Representation of sub-element scale variability in snow accumulation and ablation is increasingly recognized as important in distributed hydrologic modelling. Representing sub-grid scale variability may be accomplished through numerical integration of a nested grid or through a l...
PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes
NASA Astrophysics Data System (ADS)
Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.
2017-12-01
Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.
California's Snow Gun and its implications for mass balance predictions under greenhouse warming
NASA Astrophysics Data System (ADS)
Howat, I.; Snyder, M.; Tulaczyk, S.; Sloan, L.
2003-12-01
Precipitation has received limited treatment in glacier and snowpack mass balance models, largely due to the poor resolution and confidence of precipitation predictions relative to temperature predictions derived from atmospheric models. Most snow and glacier mass balance models rely on statistical or lapse rate-based downscaling of general or regional circulation models (GCM's and RCM's), essentially decoupling sub-grid scale, orographically-driven evolution of atmospheric heat and moisture. Such models invariably predict large losses in the snow and ice volume under greenhouse warming. However, positive trends in the mass balance of glaciers in some warming maritime climates, as well as at high elevations of the Greenland Ice Sheet, suggest that increased precipitation may play an important role in snow- and glacier-climate interactions. Here, we present a half century of April snowpack data from the Sierra Nevada and Cascade mountains of California, USA. This high-density network of snow-course data indicates that a gain in winter snow accumulation at higher elevations has compensated loss in snow volume at lower elevations by over 50% and has led to glacier expansion on Mt. Shasta. These trends are concurrent with a region-wide increase in winter temperatures up to 2° C. They result from the orographic lifting and saturation of warmer, more humid air leading to increased precipitation at higher elevations. Previous studies have invoked such a "Snow Gun" effect to explain contemporaneous records of Tertiary ocean warming and rapid glacial expansion. A climatological context of the California's "snow gun" effect is elucidated by correlation between the elevation distribution of April SWE observations and the phase of the Pacific Decadal Oscillation and the El Nino Southern Oscillation, both controlling the heat and moisture delivered to the U.S. Pacific coast. The existence of a significant "Snow Gun" effect presents two challenges to snow and glacier mass balance modeling. Firstly, the link between amplification of orographic precipitation and the temporal evolution of ocean-climate oscillations indicates that prediction of future mass balance trends requires consideration of the timing and amplitude of such oscillations. Only recently have ocean-atmosphere models begun to realistically produce such temporal variability. Secondly, the steepening snow mass-balance elevation-gradient associated with the "Snow Gun" implies greater spatial variability in balance with warming. In a warming climate, orographic processes at a scale finer that the highest resolution RCM (>20km grid) become increasingly important and predictions based on lower elevations become increasingly inaccurate for higher elevations. Therefore, thermodynamic interaction between atmospheric heat, moisture and topography must be included in downscaling techniques. In order to demonstrate the importance of the thermodynamic downscaling in mass balance predictions, we nest a high-resolution (100m grid), coupled Orographic Precipitation and Surface Energy balance Model (OPSEM) into the RegC2.5 RCM (40 km grid) and compare results. We apply this nesting technique to Mt. Shasta, California, an area of high topography (~4000m) relative to its RegCM2.5 grid elevation (1289m). These models compute average April snow volume under present and doubled-present Atmospheric CO2 concentrations. While the RegCM2.5 regional model predicts an 83% decrease in April SWE, OPSEM predicts a 16% increase. These results indicate that thermodynamic interactions between the atmosphere and topography at sub- RCM grid resolution must be considered in mass balance models.
NASA Astrophysics Data System (ADS)
King, J. M.; Kasurak, A.; Kelly, R. E.; Duguay, C. R.; Derksen, C.; Rutter, N.; Sandells, M.; Watts, T.
2012-12-01
During the winter of 2010-2011 ground-based Ku- (17.2 GHz) and X-band (9.6 GHz) scatterometers were deployed near Churchill, Manitoba, Canada to evaluate the potential for dual-frequency observation of tundra snow properties. Field-based scatterometer observations when combined with in-situ snowpack properties and physically based models, provide the means necessary to develop and evaluate local scale property retrievals. To form meaningful analysis of the observed physical interaction space, potential sources of bias and error in the observed backscatter must be identified and quantified. This paper explores variation in observed Ku- and X-band backscatter in relation to the physical complexities of shallow tundra snow whose properties evolve at scales smaller than the observing instrument. The University of Waterloo scatterometer (UW-Scat) integrates observations over wide azimuth sweeps, several meters in length, to minimize errors resulting from radar fade and poor signal-to-noise ratios. Under ideal conditions, an assumption is made that the observed snow target is homogeneous. Despite an often-outward appearance of homogeneity, topographic elements of the Canadian open tundra produce significant local scale variability in snow properties, including snow water equivalent (SWE). Snow at open tundra sites observed during this campaign was found to vary by as much as 20 cm in depth and 40 mm in SWE within the scatterometer field of view. Previous studies suggest that changes in snow properties on this order will produce significant variation in backscatter, potentially introducing bias into products used for analysis. To assess the influence of sub-scan variability, extensive snow surveys were completed within the scatterometer field of view immediately after each scan at 32 sites. A standardized sampling protocol captured a grid of geo-located measurements, characterizing the horizontal variability of bulk properties including depth, density, and SWE. Based upon these measurements, continuous surfaces were generated to represent the observed snow target. Two snow pits were also completed within the field of view, quantifying vertical variability in density, permittivity, temperature, grain size, and stratigraphy. A new post-processing method is applied to divide the previously aggregated scatterometer observations into smaller sub-sets, which are then co-located with the physical snow observations. Sub-scan backscatter coefficients and their relationship to tundra snowpack parameters are then explored. The results presented here provide quantitative methods relevant to the radar observation science of snow and, therefore, to potential future space-borne missions such as the Cold Regions Hydrology High-resolution Observatory (CoReH2O), a candidate European Space Agency Earth Explorer mission. Moreover, this paper provides guidelines for future studies exploring ground-based scatterometer observations of tundra snow.
Physics-based distributed snow models in the operational arena: Current and future challenges
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.
2017-12-01
The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.
NASA Astrophysics Data System (ADS)
Bouffon, T.; Rice, R.; Bales, R.
2006-12-01
The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.
NASA Astrophysics Data System (ADS)
Vionnet, Vincent; Six, Delphine; Auger, Ludovic; Lafaysse, Matthieu; Quéno, Louis; Réveillet, Marion; Dombrowski-Etchevers, Ingrid; Thibert, Emmanuel; Dumont, Marie
2017-04-01
Capturing spatial and temporal variabilities of meteorological conditions at fine scale is necessary for modelling snowpack and glacier winter mass balance in alpine terrain. In particular, precipitation amount and phase are strongly influenced by the complex topography. In this study, we assess the impact of three sub-kilometer precipitation datasets (rainfall and snowfall) on distributed simulations of snowpack and glacier winter mass balance with the detailed snowpack model Crocus for winter 2011-2012. The different precipitation datasets at 500-m grid spacing over part of the French Alps (200*200 km2 area) are coming either from (i) the SAFRAN precipitation analysis specially developed for alpine terrain, or from (ii) operational outputs of the atmospheric model AROME at 2.5-km grid spacing downscaled to 500 m with fixed lapse rate or from (iii) a version of the atmospheric model AROME at 500-m grid spacing. Others atmospherics forcings (air temperature and humidity, incoming longwave and shortwave radiation, wind speed) are taken from the AROME simulations at 500-m grid spacing. These atmospheric forcings are firstly compared against a network of automatic weather stations. Results are analysed with respect to station location (valley, mid- and high-altitude). The spatial pattern of seasonal snowfall and its dependency with elevation is then analysed for the different precipitation datasets. Large differences between SAFRAN and the two versions of AROME are found at high-altitude. Finally, results of Crocus snowpack simulations are evaluated against (i) punctual in-situ measurements of snow depth and snow water equivalent, and (ii) maps of snow covered areas retrieved from optical satellite data (MODIS). Measurements of winter accumulation of six glaciers of the French Alps are also used and provide very valuable information on precipitation at high-altitude where the conventional observation network is scarce. This study illustrates the potential and limitations of high-resolution atmospheric models to drive simulations of snowpack and glacier winter mass balance in alpine terrain.
NASA Astrophysics Data System (ADS)
Letcher, T.; Minder, J. R.
2015-12-01
High resolution regional climate models are used to characterize and quantify the snow albedo feedback (SAF) over the complex terrain of the Colorado Headwaters region. Three pairs of 7-year control and pseudo global warming simulations (with horizontal grid spacings of 4, 12, and 36 km) are used to study how the SAF modifies the regional climate response to a large-scale thermodynamic perturbation. The SAF substantially enhances warming within the Headwaters domain, locally as much as 5 °C in regions of snow loss. The SAF also increases the inter-annual variability of the springtime warming within Headwaters domain under the perturbed climate. Linear feedback analysis is used quantify the strength of the SAF. The SAF attains a maximum value of 4 W m-2 K-1 during April when snow loss coincides with strong incoming solar radiation. On sub-seasonal timescales, simulations at 4 km and 12 km horizontal grid-spacing show good agreement in the strength and timing of the SAF, whereas a 36km simulation shows greater discrepancies that are tired to differences in snow accumulation and ablation caused by smoother terrain. An analysis of the regional energy budget shows that transport by atmospheric motion acts as a negative feedback to regional warming, damping the effects of the SAF. On the mesoscale, this transport causes non-local warming in locations with no snow. The methods presented here can be used generally to quantify the role of the SAF in other regional climate modeling experiments.
NASA Astrophysics Data System (ADS)
Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.; Levy, M.; Taylor, M.
2014-12-01
Snowpack is crucial for the western USA, providing around 75% of the total fresh water supply (Cayan et al., 1996) and buffering against seasonal aridity impacts on agricultural, ecosystem, and urban water demands. The resilience of the California water system is largely dependent on natural stores provided by snowpack. This resilience has shown vulnerabilities due to anthropogenic global climate change. Historically, the northern Sierras showed a net decline of 50-75% in snow water equivalent (SWE) while the southern Sierras showed a net accumulation of 30% (Mote et al., 2005). Future trends of SWE highlight that western USA SWE may decline by 40-70% (Pierce and Cayan, 2013), snowfall may decrease by 25-40% (Pierce and Cayan, 2013), and more winter storms may tend towards rain rather than snow (Bales et al., 2006). The volatility of Sierran snowpack presents a need for scientific tools to help water managers and policy makers assess current and future trends. A burgeoning tool to analyze these trends comes in the form of variable-resolution global climate modeling (VRGCM). VRGCMs serve as a bridge between regional and global models and provide added resolution in areas of need, eliminate lateral boundary forcings, provide model runtime speed up, and utilize a common dynamical core, physics scheme and sub-grid scale parameterization package. A cubed-sphere variable-resolution grid with 25 km horizontal resolution over the western USA was developed for use in the Community Atmosphere Model (CAM) within the Community Earth System Model (CESM). A 25-year three-member ensemble climatology (1980-2005) is presented and major snowpack metrics such as SWE, snow depth, snow cover, and two-meter surface temperature are assessed. The ensemble simulation is also compared to observational, reanalysis, and WRF model datasets. The variable-resolution model provides a mechanism for reaching towards non-hydrostatic scales and simulations are currently being developed with refined nests of 12.5km resolution over California.
Spatial Variability of Snowpack Properties On Small Slopes
NASA Astrophysics Data System (ADS)
Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.
The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.
Naftz, D.L.; Schuster, P.F.; Reddy, M.M.
1994-01-01
One hundred samples were collected from the surface of the Upper Fremont Glacier at equally spaced intervals defined by an 8100m2 snow grid to asesss the significance of lateral variability in major-ion concentrations and del oxygen-18 values. Comparison of the observed variability of each chemical constituent to the variability expected by measurement error indicated substantial lateral variability with the surface-snow layer. Results of the nested ANOVA indicate most of the variance for every constituent is in the values grouped at the two smaller geographic scales (between 506m2 and within 506m2 sections). The variance data from the snow grid were used to develop equations to evaluate the significance of both positive and negative concentration/value peaks of nitrate and del oxygen-18 with depth, in a 160m ice core. Values of del oxygen-18 in the section from 110-150m below the surface consistently vary outside the expected limits and possibly represents cooler temperatures during the Little Ice Age from about 1810 to 1725 A.D. -from Authors
First Gridded Spatial Field Reconstructions of Snow from Tree Rings
NASA Astrophysics Data System (ADS)
Coulthard, B. L.; Anchukaitis, K. J.; Pederson, G. T.; Alder, J. R.; Hostetler, S. W.; Gray, S. T.
2017-12-01
Western North America's mountain snowpacks provide critical water resources for human populations and ecosystems. Warmer temperatures and changing precipitation patterns will increasingly alter the quantity, extent, and persistence of snow in coming decades. A comprehensive understanding of the causes and range of long-term variability in this system is required for forecasting future anomalies, but snowpack observations are limited and sparse. While individual tree ring-based annual snowpack reconstructions have been developed for specific regions and mountain ranges, we present here the first collection of spatially-explicit gridded field reconstructions of seasonal snowpack within the American Rocky Mountains. Capitalizing on a new western North American snow-sensitive network of over 700 tree-ring chronologies, as well as recent advances in PRISM-based snow modeling, our gridded reconstructions offer a full space-time characterization of snow and associated water resource fluctuations over several centuries. The quality of reconstructions is evaluated against existing observations, proxy-records, and an independently-developed first-order monthly snow model.
NASA Astrophysics Data System (ADS)
Zhang, Yinsheng; Ma, Ning
2018-04-01
Changes in the extent and amount of snow cover in Eurasia are of great interest because of their vital impacts on the global climate system and regional water resource management. This study investigated the spatial and temporal variability of the snow cover extent (SCE) and snow water equivalent (SWE) of the continental Eurasia using the Northern Hemisphere Equal-Area Scalable Earth Grid (EASE-Grid) Weekly SCE data for 1972-2006 and the Global Monthly EASE-Grid SWE data for 1979-2004. The results indicated that, in general, the spatial extent of snow cover significantly decreased during spring and summer, but varied little during autumn and winter over Eurasia in the study period. The date at which snow cover began to disappear in spring has significantly advanced, whereas the timing of snow cover onset in autumn did not vary significantly during 1972-2006. The snow cover persistence period declined significantly in the western Tibetan Plateau as well as partial area of Central Asia and northwestern Russia, but varied little in other parts of Eurasia. "Snow-free breaks" (SFBs) with intermittent snow cover in the cold season were principally observed in the Tibetan Plateau and Central Asia, causing a low sensitivity of snow cover persistence period to the timings of snow cover onset and disappearance over the areas with shallow snow. The averaged SFBs were 1-14 weeks during the study period and the maximum intermittence could even reach 25 weeks in certain years. At a seasonal scale, SWE usually peaked in February or March, but fell gradually since April across Eurasia. Both annual mean and annual maximum SWE decreased significantly during 1979-2004 in most parts of Eurasia except for eastern Siberia as well as northwestern and northeastern China. The possible cross-platform inconsistencies between two passive microwave radiometers may cause uncertainties in the detected trends of SWE here, suggesting an urgent need of producing a long-term, more homogeneous SWE product in future.
NASA Astrophysics Data System (ADS)
Oaida, C. M.; Andreadis, K.; Reager, J. T., II; Famiglietti, J. S.; Levoe, S.
2017-12-01
Accurately estimating how much snow water equivalent (SWE) is stored in mountainous regions characterized by complex terrain and snowmelt-driven hydrologic cycles is not only greatly desirable, but also a big challenge. Mountain snowpack exhibits high spatial variability across a broad range of spatial and temporal scales due to a multitude of physical and climatic factors, making it difficult to observe or estimate in its entirety. Combing remotely sensed data and high resolution hydrologic modeling through data assimilation (DA) has the potential to provide a spatially and temporally continuous SWE dataset at horizontal scales that capture sub-grid snow spatial variability and are also relevant to stakeholders such as water resource managers. Here, we present the evaluation of a new snow DA approach that uses a Local Ensemble Transform Kalman Filter (LETKF) in tandem with the Variable Infiltration Capacity macro-scale hydrologic model across the Western United States, at a daily temporal resolution, and a horizontal resolution of 1.75 km x 1.75 km. The LETKF is chosen for its relative simplicity, ease of implementation, and computational efficiency and scalability. The modeling/DA system assimilates daily MODIS Snow Covered Area and Grain Size (MODSCAG) fractional snow cover over, and has been developed to efficiently calculate SWE estimates over extended periods of time and covering large regional-scale areas at relatively high spatial resolution, ultimately producing a snow reanalysis-type dataset. Here we focus on the assessment of SWE produced by the DA scheme over several basins in California's Sierra Nevada Mountain range where Airborne Snow Observatory data is available, during the last five water years (2013-2017), which include both one of the driest and one of the wettest years. Comparison against such a spatially distributed SWE observational product provides a greater understanding of the model's ability to estimate SWE and SWE spatial variability, and highlights under which conditions snow cover DA can add value in estimating SWE.
Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography
NASA Astrophysics Data System (ADS)
Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-02-01
Subgrid variability introduces non-negligible scale effects on the grid-based representation of snow. This heterogeneity is even more evident in semiarid regions, where the high variability of the climate produces various accumulation melting cycles throughout the year and a large spatial heterogeneity of the snow cover. This variability in a watershed can often be represented by snow accumulation-depletion curves (ADCs). In this study, terrestrial photography (TP) of a cell-sized area (30 × 30 m) was used to define local snow ADCs at a Mediterranean site. Snow-cover fraction (SCF) and snow-depth (h) values obtained with this technique constituted the two datasets used to define ADCs. A flexible sigmoid function was selected to parameterize snow behaviour on this subgrid scale. It was then fitted to meet five different snow patterns in the control area: one for the accumulation phase and four for the melting phase in a cycle within the snow season. Each pattern was successfully associated with the snow conditions and previous evolution. The resulting ADCs were associated to certain physical features of the snow, which were used to incorporate them in the point snow model formulated by Herrero et al. (2009) by means of a decision tree. The final performance of this model was tested against field observations recorded over four hydrological years (2009-2013). The calibration and validation of this ADC snow model was found to have a high level of accuracy, with global RMSE values of 105.8 mm for the average snow depth and 0.21 m2 m-2 for the snow-cover fraction in the control area. The use of ADCs on the cell scale proposed in this research provided a sound basis for the extension of point snow models to larger areas by means of a gridded distributed calculation.
NASA Astrophysics Data System (ADS)
Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.
2012-12-01
Boreal forests exert a strong influence on weather and climate by modifying the surface energy and radiation balance. However, global climate and numerical weather prediction models use forest parameter values from simple look-up tables or maps that are derived from limited satellite data, on large grid scales. In reality, Arctic landscapes are inherently heterogeneous, with highly variable land cover types and structures on a variety of spatial scales. There is value in collecting detailed field data for different areas of vegetation cover, to assess the accuracy of large-scale assumptions. To address these issues, a consortium of researchers funded by the UK's Natural Environment Research Council have collected extensive data on radiation, meteorology, snow cover and canopy structure at two contrasting Arctic forest sites. The chosen study sites were an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. At both sites, arrays comprising ten shortwave pyranometers and four longwave pyrgeometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, downwelling longwave irradiance and global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. Meteorological data were recorded at all sub-canopy and open sites using automatic weather stations. Over the same periods, tree skin temperatures were measured on selected trees using contact thermocouples, infrared thermocouples and thermal imagery. Canopy structure was accurately quantified through manual surveys, extensive hemispherical photography and terrestrial laser scans of every study plot. Sub-canopy snow depth and snow water equivalent were measured on fine-scale grids at each study plot. Regular site maintenance ensured a high quality dataset covering the important Arctic spring period. The data have several applications, for example in forest ecology, canopy radiative transfer models, snow hydrological modelling, and land surface schemes, for a variety of canopy types from sparse, leafless birch to dense pine and spruce. The work also allows the comparison of modern, highly detailed methods such as laser scanning and thermal imagery with older, well-established data collection methods. By combining these data with airborne and satellite remote sensing data, snow-vegetation-atmosphere interactions could be estimated over a wide area of the heterogeneous boreal landscape. This could improve estimates of crucial parameters such as land surface albedo on the grid scales required for global or regional weather and climate models.
NASA Astrophysics Data System (ADS)
Alonso-González, Esteban; López-Moreno, J. Ignacio; Gascoin, Simon; García-Valdecasas Ojeda, Matilde; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Revuelto, Jesús; Ceballos, Antonio; Jesús Esteban-Parra, María; Essery, Richard
2018-02-01
We present snow observations and a validated daily gridded snowpack dataset that was simulated from downscaled reanalysis of data for the Iberian Peninsula. The Iberian Peninsula has long-lasting seasonal snowpacks in its different mountain ranges, and winter snowfall occurs in most of its area. However, there are only limited direct observations of snow depth (SD) and snow water equivalent (SWE), making it difficult to analyze snow dynamics and the spatiotemporal patterns of snowfall. We used meteorological data from downscaled reanalyses as input of a physically based snow energy balance model to simulate SWE and SD over the Iberian Peninsula from 1980 to 2014. More specifically, the ERA-Interim reanalysis was downscaled to 10 km × 10 km resolution using the Weather Research and Forecasting (WRF) model. The WRF outputs were used directly, or as input to other submodels, to obtain data needed to drive the Factorial Snow Model (FSM). We used lapse rate coefficients and hygrobarometric adjustments to simulate snow series at 100 m elevations bands for each 10 km × 10 km grid cell in the Iberian Peninsula. The snow series were validated using data from MODIS satellite sensor and ground observations. The overall simulated snow series accurately reproduced the interannual variability of snowpack and the spatial variability of snow accumulation and melting, even in very complex topographic terrains. Thus, the presented dataset may be useful for many applications, including land management, hydrometeorological studies, phenology of flora and fauna, winter tourism, and risk management. The data presented here are freely available for download from Zenodo (https://doi.org/10.5281/zenodo.854618). This paper fully describes the work flow, data validation, uncertainty assessment, and possible applications and limitations of the database.
Separating local topography from snow effects on momentum roughness in mountain regions
NASA Astrophysics Data System (ADS)
Diebold, M.; Katul, G. G.; Calaf, M.; Lehning, M.; Parlange, M. B.
2013-12-01
Parametrization of momentum surface roughness length in mountainous regions continues to be an active research topic given its application to improved weather forecasting and sub-grid scale representation of mountainous regions in climate models. A field campaign was conducted in the Val Ferret watershed (Swiss Alps) to assess the role of topographic variability and snow cover on momentum roughness. To this end, turbulence measurements in a mountainous region with and without snow cover have been analyzed. A meteorological mast with four sonic anemometers together with temperature and humidity sensors was installed at an elevation of 2500 m and data were obtained from October 2011 until May 2012. Because of the long-term nature of these experiments, natural variability in mean wind direction allowed a wide range of terrain slopes and snow depths to be sampled. A theoretical framework that accounted only for topographically induced pressure perturbations in the mean momentum balance was used to diagnose the role of topography on the effective momentum roughness height as inferred from the log-law. Surface roughness depended systematically on wind direction but was not significantly influenced by the presence of snow depth variation. Moreover, the wind direction and so the surface roughness influenced the normalized turbulent kinetic energy, which in theory should not depend on these factors in the near-neutral atmospheric surface layer. The implications of those findings to modeling momentum roughness heights and turbulent kinetic energy (e.g. in conventional K-epsilon closure) in complex terrain are briefly discussed.
NASA Astrophysics Data System (ADS)
Lines, A.; Elliott, J.; Ray, L.; Albert, M. R.
2017-12-01
Understanding the surface mass balance (SMB) of the Greenland ice sheet is critical to evaluating its response to a changing climate. A key factor in translating satellite and airborne elevation measurements of the ice sheet to SMB is understanding natural variability of firn layer depth and the relative compaction rate of these layers. A site near Summit Station, Greenland was chosen to investigate the variation in layering across a 100m by 100m grid using a 900 MHz and a 2.6 GHz ground penetrating radar (GPR) antenna. These radargrams were ground truthed by taking depth density profiles of five 2m snow pits and five 5m firn cores within the 100m by 100m grid. Combining these measurements with the accumulation data from the nearby ICECAPS weekly bamboo forest measurements, it's possible to see how the snow deposition from individual storm events can vary over a small area. Five metal reflectors were also placed on the surface of the snow in the bounds of the grid to serve as reference reflectors for similar measurements that will be taken in the 2018 field season at Summit Station. This will assist in understanding how one year of accumulation in the dry snow zone impacts compaction and how this rate can vary over a small area.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)
2001-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Y. L.; Houser, Paul R. (Technical Monitor)
2001-01-01
Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500-m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5-km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.
NASA Astrophysics Data System (ADS)
Suriano, Zachary J.
2018-02-01
Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.
Runoff sensitivity to snowmelt process representation for the conterminous United States
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Sexstone, G. A.
2017-12-01
Watershed-scale hydrologic models that operate at a continental extent must balance detailed descriptions of spatiotemporal variability against simplified process representations across a diverse range of physiographic and climatic regimes. Some of these models describe the sub-grid variability of snow-cover extent and snowmelt processes using snow depletion curves (SDCs), which relate the snow covered area to the snow water equivalent (SWE). The U.S. Geological Survey's National Hydrologic Modeling (NHM) system run with the daily-timestep Precipitation Runoff Modeling System (PRMS), or NHM-PRMS, originally used two default SDCs to describe snowmelt processes: one for hydrologic response units with elevations above treeline and one for hydrologic response units with elevations below treeline. Seeking to improve upon this approach, spatially-distributed SWE, derived from Snow Data Assimilation System (SNODAS) over eleven years, was used to develop new, site-specific SDCs for each hydrologic response unit in the NHM-PRMS. This study investigates the sensitivity of NHM-PRMS to changes in SDCs for a 30-year historical period by first running the NHM-PRMS with the default binary SDCs and then with the site-specific SDCs. Comparison of simulated snowmelt and streamflow response during the snowmelt season allows for spatial analysis and grouping of the sensitivity of streamflow to changes in snowmelt dynamics. Site-specific SDCs allow for the identification and categorization of areas where faster or slower snowmelt could have a greater impact to water resources. These new SDCs can be used to identify locations where increased SWE observation density would be most useful for seasonal water availability assessments.
The general situation, (but exemplified in urban areas), where a significant degree of sub-grid variability (SGV) exists in grid models poses problems when comparing gridbased air quality modeling results with observations. Typically, grid models ignore or parameterize processes ...
Multi-Sensor Approach to Mapping Snow Cover Using Data From NASA's EOS Aqua and Terra Spacecraft
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; Brodzik, M. J.
2003-12-01
Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Over the past several decades both optical and passive microwave satellite data have been utilized for snow mapping at the regional to global scale. For the period 1978 to 2002, we have shown earlier that both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are, depending on season, less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Snow mapping using optical data is based on the magnitude of the surface reflectance while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Our previous work has defined the respective advantages and disadvantages of these two types of satellite data for snow cover mapping and it is clear that a blended product is optimal. We present a multi-sensor approach to snow mapping based both on historical data as well as data from current NASA EOS sensors. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets. An example of validation at the brightness temperature level is provided through the comparison of AMSR-E with data from the well-calibrated heritage SSM/I sensor over a large homogeneous snow-covered surface (Dome C, Antarctica). Prototype snow cover maps from AMSR-E compare well with maps derived from SSM/I. Our current blended product is being developed in the 25 km EASE-Grid while the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) allowing the blended product to indicate percent snow cover over the larger grid cell. Relationships between the percent area covered by snow as indicated by the MODIS data and the threshold for the appearance of snow as indicated by the passive microwave data are presented. Both MODIS and AMSR-E data have enhanced spatial resolution compared to the earlier data sources and examples of how this increased spatial resolution results in more accurate snow cover maps are presented. A wide range of validation data sets are being employed in this study including the NASA Cold Lands Processes Field Experiment undertaken in Colorado during 2002 and 2003.
Observed Differences between North American Snow Extent and Snow Depth Variability
NASA Astrophysics Data System (ADS)
Ge, Y.; Gong, G.
2006-12-01
Snow extent and snow depth are two related characteristics of a snowpack, but they need not be mutually consistent. Differences between these two variables at local scales are readily apparent. However at larger scales which interact with atmospheric circulation and climate, snow extent is typically the variable used, while snow depth is often assumed to be minor and/or mutually consistent compared to snow extent, though this is rarely verified. In this study, a new regional/continental-scale gridded dataset derived from field observations is utilized to quantitatively evaluate the relationship between snow extent and snow depth over North America. Various statistical methods are applied to assess the mutual consistency of monthly snow depth vs. snow extent, including correlations, composites and principal components. Results indicate that snow depth variations are significant in their own rights, and that depth and extent anomalies are largely unrelated, especially over broad high latitude regions north of the snowline. In the vicinity of the snowline, where precipitation and ablation can affect both snow extent and snow depth, the two variables vary concurrently, especially in autumn and spring. It is also found that deeper winter snow translates into larger snow-covered area in the subsequent spring/summer season, which suggests a possible influence of winter snow depth on summer climate. The observed lack of mutual consistency at continental/regional scales suggests that snowpack depth variations may be of sufficiently large magnitude, spatial scope and temporal duration to influence regional-hemispheric climate, in a manner unrelated to the more extensively studied snow extent variations.
Enhanced hemispheric-scale snow mapping through the blending of optical and microwave satellite data
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; Brodzik, M. J.; Savoie, M.; Knowles, K.
2003-04-01
Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. Global snow cover fluctuation can now be monitored over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere weekly snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. Decadal trends and their significance are compared for the two data types. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as throughout the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Because the current generation of microwave snow algorithms is unable to consistently detect shallow and intermittent snow, we combine visible satellite data with the microwave data in a single blended product to overcome this problem. For the period 1978 to 2002 we combine data from the NOAA weekly snow charts with passive microwave data from the SMMR and SSM/I brightness temperature record. For the current and future time period we blend MODIS and AMSR-E data sets, both of which have greatly enhanced spatial resolution compared to the earlier data sources. Because it is not possible to determine snow depth or snow water equivalent from visible data, the regions where only the NOAA or MODIS data indicate snow are defined as "shallow snow". However, because our current blended product is being developed in the 25 km EASE-Grid and the MODIS data being used are in the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) the blended product also includes percent snow cover over the larger grid cell. A prototype version of the blended MODIS/AMSR-E product will be available in near real-time from NSIDC during the 2002-2003 winter season.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2011-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2012-11-01
One function of the Community Land Model (CLM4) is the determination of surface albedo in the Community Earth System Model (CESM1). Because the typical spatial scales of CESM1 simulations are large compared to the scales of variability of surface properties such as snow cover and vegetation, unresolved surface heterogeneity is parameterized. Fractional snow-covered area, or snow-covered fraction (SCF), within a CLM4 grid cell is parameterized as a function of grid cell mean snow depth and snow density. This parameterization is based on an analysis of monthly averaged SCF and snow depth that showed a seasonal shift in the snow depth-SCF relationship. In this paper, we show that this shift is an artifact of the monthly sampling and that the current parameterization does not reflect the relationship observed between snow depth and SCF at the daily time scale. We demonstrate that the snow depth analysis used in the original study exhibits a bias toward early melt when compared to satellite-observed SCF. This bias results in a tendency to overestimate SCF as a function of snow depth. Using a more consistent, higher spatial and temporal resolution snow depth analysis reveals a clear hysteresis between snow accumulation and melt seasons. Here, a new SCF parameterization based on snow water equivalent is developed to capture the observed seasonal snow depth-SCF evolution. The effects of the new SCF parameterization on the surface energy budget are described. In CLM4, surface energy fluxes are calculated assuming a uniform snow cover. To more realistically simulate environments having patchy snow cover, we modify the model by computing the surface fluxes separately for snow-free and snow-covered fractions of a grid cell. In this configuration, the form of the parameterized snow depth-SCF relationship is shown to greatly affect the surface energy budget. The direct exposure of the snow-free surfaces to the atmosphere leads to greater heat loss from the ground during autumn and greater heat gain during spring. The net effect is to reduce annual mean soil temperatures by up to 3°C in snow-affected regions.
Data Fusion of Gridded Snow Products Enhanced with Terrain Covariates and a Simple Snow Model
NASA Astrophysics Data System (ADS)
Snauffer, A. M.; Hsieh, W. W.; Cannon, A. J.
2017-12-01
Hydrologic planning requires accurate estimates of regional snow water equivalent (SWE), particularly areas with hydrologic regimes dominated by spring melt. While numerous gridded data products provide such estimates, accurate representations are particularly challenging under conditions of mountainous terrain, heavy forest cover and large snow accumulations, contexts which in many ways define the province of British Columbia (BC), Canada. One promising avenue of improving SWE estimates is a data fusion approach which combines field observations with gridded SWE products and relevant covariates. A base artificial neural network (ANN) was constructed using three of the best performing gridded SWE products over BC (ERA-Interim/Land, MERRA and GLDAS-2) and simple location and time covariates. This base ANN was then enhanced to include terrain covariates (slope, aspect and Terrain Roughness Index, TRI) as well as a simple 1-layer energy balance snow model driven by gridded bias-corrected ANUSPLIN temperature and precipitation values. The ANN enhanced with all aforementioned covariates performed better than the base ANN, but most of the skill improvement was attributable to the snow model with very little contribution from the terrain covariates. The enhanced ANN improved station mean absolute error (MAE) by an average of 53% relative to the composing gridded products over the province. Interannual peak SWE correlation coefficient was found to be 0.78, an improvement of 0.05 to 0.18 over the composing products. This nonlinear approach outperformed a comparable multiple linear regression (MLR) model by 22% in MAE and 0.04 in interannual correlation. The enhanced ANN has also been shown to estimate better than the Variable Infiltration Capacity (VIC) hydrologic model calibrated and run for four BC watersheds, improving MAE by 22% and correlation by 0.05. The performance improvements of the enhanced ANN are statistically significant at the 5% level across the province and in four out of five physiographic regions.
NASA Astrophysics Data System (ADS)
Armstrong, R. L.; Brodzik, M.; Savoie, M. H.
2007-12-01
Over the past several decades both visible and passive microwave satellite data have been utilized for snow mapping at the continental to global scale. Snow mapping using visible data has been based primarily on the magnitude of the surface reflectance, and in more recent cases on specific spectral signatures, while microwave data can be used to identify snow cover because the microwave energy emitted by the underlying soil is scattered by the snow grains resulting in a sharp decrease in brightness temperature and a characteristic negative spectral gradient. Both passive microwave and visible data sets indicate a similar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible satellite data and the visible data typically show higher monthly variability. We describe the respective problems as well as the advantages and disadvantages of these two types of satellite data for snow cover mapping and demonstrate how a multi-sensor approach is optimal. For the period 1978 to present we combine data from the NOAA weekly snow charts with snow cover derived from the SMMR and SSM/I brightness temperature data. For the period since 2002 we blend NASA EOS MODIS and AMSR-E data sets. Our current product incorporates MODIS data from the Climate Modelers Grid (CMG) at approximately 5 km (0.05 deg.) with microwave-derived snow water equivalent (SWE) at 25 km, resulting in a blended product that includes percent snow cover in the larger grid cell whenever the microwave SWE signal is absent. Validation of AMSR-E at the brightness temperature level is provided through the comparison with data from the well-calibrated heritage SSM/I sensor over large homogeneous snow-covered surfaces (e.g. Dome C region, Antarctica). We also describe how the application of the higher frequency microwave channels (85 and 89 GHz)enhances accurate mapping of shallow and intermittent snow cover.
A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables
NASA Astrophysics Data System (ADS)
Huang, Laura X.; Isaac, George A.; Sheng, Grant
2014-01-01
This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.
Satellite Estimation of Spectral Surface UV Irradiance. 2; Effect of Horizontally Homogeneous Clouds
NASA Technical Reports Server (NTRS)
Krothov, N.; Herman, J. R.; Bhartia, P. K.; Ahmad, Z.a; Fioletov, V.
1998-01-01
The local variability of UV irradiance at the Earth's surface is mostly caused by clouds in addition to the seasonal variability. Parametric representations of radiative transfer RT calculations are presented for the convenient solution of the transmission T of ultraviolet radiation through plane parallel clouds over a surface with reflectivity R(sub s). The calculations are intended for use with the Total Ozone Mapping Spectrometer (TOMS) measured radiances to obtain the calculated Lambert equivalent scene reflectivity R for scenes with and without clouds. The purpose is to extend the theoretical analysis of the estimation of UV irradiance from satellite data for a cloudy atmosphere. Results are presented for a range of cloud optical depths and solar zenith angles for the cases of clouds over a low reflectivity surface R(sub s) less than 0.1, over a snow or ice surface R(sub s) greater than 0.3, and for transmission through a non-conservative scattering cloud with single scattering albedo omega(sub 0) = 0.999. The key finding for conservative scattering is that the cloud-transmission function C(sub T), the ratio of cloudy-to clear-sky transmission, is roughly C(sub T) = 1 - R(sub c) with an error of less than 20% for nearly overhead sun and snow-free surfaces. For TOMS estimates of UV irradiance in the presence of both snow and clouds, independent information about snow albedo is needed for conservative cloud scattering. For non-conservative scattering with R(sub s) greater than 0.5 (snow) the satellite measured scene reflectance cannot be used to estimate surface irradiance. The cloud transmission function has been applied to the calculation of UV irradiance at the Earth's surface and compared with ground-based measurements.
Daniel Barandiaran; S.-Y. Simon Wang; R. Justin DeRose
2017-01-01
Snowpack observations in the Intermountain West are sparse and short, making them difficult for use in depicting past variability and extremes. This study presents a reconstruction of April 1 snow water equivalent (SWE) for the period of 1850â1989 using increment cores collected by the U.S. Forest Service, Interior West Forest Inventory and Analysis program (FIA). In...
Improvements in sub-grid, microphysics averages using quadrature based approaches
NASA Astrophysics Data System (ADS)
Chowdhary, K.; Debusschere, B.; Larson, V. E.
2013-12-01
Sub-grid variability in microphysical processes plays a critical role in atmospheric climate models. In order to account for this sub-grid variability, Larson and Schanen (2013) propose placing a probability density function on the sub-grid cloud microphysics quantities, e.g. autoconversion rate, essentially interpreting the cloud microphysics quantities as a random variable in each grid box. Random sampling techniques, e.g. Monte Carlo and Latin Hypercube, can be used to calculate statistics, e.g. averages, on the microphysics quantities, which then feed back into the model dynamics on the coarse scale. We propose an alternate approach using numerical quadrature methods based on deterministic sampling points to compute the statistical moments of microphysics quantities in each grid box. We have performed a preliminary test on the Kessler autoconversion formula, and, upon comparison with Latin Hypercube sampling, our approach shows an increased level of accuracy with a reduction in sample size by almost two orders of magnitude. Application to other microphysics processes is the subject of ongoing research.
NASA Astrophysics Data System (ADS)
Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.
2016-12-01
In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.
Modeling the Interaction of Radiation Between Vegetation and the Seasonal Snowcover
NASA Astrophysics Data System (ADS)
Tribbeck, M. J.; Gurney, R. J.; Morris, E. M.; Pearson, D.
2001-12-01
Prediction of meltwater runoff is crucial to communities where the seasonal snowpack is the major water supply. Water is itself a vital resource and it carries nutrients both in solution and in suspension. Simulation of snowpack depletion at a point in open areas has previously been shown to produce accurate results using physically based models such as SNTHERM. However, the radiation balance is more complex under a forest canopy as radiation is scattered and absorbed by canopy elements. This can alter the timing and magnitude of snowpack runoff substantially. The interaction of radiation between a forest canopy and its underlying snowcover is modeled by the coupling of a physically based snow model and an optical and thermal radiation canopy model. The snow model, which is based on SNTHERM (Jordan, 1991), is a discrete, multi-layer, one-dimensional mass and energy budget model for snow and is formulated with an adaptive grid system that compresses with the compacting snowpack and allows retention of snowpack stratigraphy. The vegetation canopy model approximates the canopy as a series of discrete, randomly orientated elements that scatter and absorb optical and thermal radiation. Multiple scattering of radiation between canopy and snow surface is modeled to conserve energy. The coupled model SNOWCAN differs from other vegetation-snow models such as GORT or SNOBAL as it models the albedo feedback mechanism. This is important as the albedo both affects and is affected by (through grain growth) the radiation balance. SNOWCAN is driven by standard atmospheric variables (including incident solar and thermal radiation) measured outside of the canopy and simulates snowpack properties such as temperature and density profiles as well as the sub-canopy radiation balance. The coupled snow and vegetation energy budget model was used to simulate snow depth at an old jack pine site during the 1994 BOREAS campaign. Measured and simulated snow depth showed good agreement throughout the accumulation and ablation periods, yielding an r2 correlation coefficient of 0.94. The snowpack development was also simulated at a point site within a fir stand in Reynolds Creek Experimental Watershed, Idaho, USA for the water year 2000-2001. A sensitivity analysis was carried out and comparisons were made with field observations of snowpack properties and sub-canopy radiation data for model validation.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.
2000-01-01
Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Cherry, J. E.; Hiemstra, C. A.; Bolton, W. R.
2013-12-01
Interior sub-Arctic Alaskan snow cover is rapidly changing and requires further study for correct parameterization in physically based models. This project undertook field studies during the 2013 snow melt season to capture snow depth, snow temperature profiles, and snow cover extent to compare with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor at four different sites underlain by discontinuous permafrost. The 2013 melt season, which turned out to be the latest snow melt period on record, was monitored using manual field measurements (SWE, snow depth data collection), iButtons to record temperature of the snow pack, GoPro cameras to capture time lapse of the snow melt, and low level orthoimagery collected at ~1500 m using a Navion L17a plane mounted with a Nikon D3s camera. Sites were selected across a range of landscape conditions, including a north facing black spruce hill slope, a south facing birch forest, an open tundra site, and a high alpine meadow. Initial results from the adjacent north and south facing sites indicate a highly sensitive system where snow cover melts over just a few days, illustrating the importance of high resolution temporal data capture at these locations. Field observations, iButtons and GoPro cameras show that the MODIS data captures the melt conditions at the south and the north site with accuracy (2.5% and 6.5% snow cover fraction present on date of melt, respectively), but MODIS data for the north site is less variable around the melt period, owing to open conditions and sparse tree cover. However, due to the rapid melt rate trajectory, shifting the melt date estimate by a day results in a doubling of the snow cover fraction estimate observed by MODIS. This information can assist in approximating uncertainty associated with remote sensing data that is being used to populate hydrologic and snow models (the Sacramento Soil Moisture Accounting model, coupled with SNOW-17, and the Variable Infiltration Capacity hydrologic model) and provide greater understanding of error and resultant model sensitivities associated with regional observations of snow cover across the sub-Arctic boreal landscape.
Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried
1999-01-01
The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.
Driscoll, Jessica; Hay, Lauren E.; Bock, Andrew R.
2017-01-01
Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental-scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental-extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1-km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed-scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed-scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national-scale categorization of snowmelt processes.
Snow cover retrieval over Rhone and Po river basins from MODIS optical satellite data (2000-2009).
NASA Astrophysics Data System (ADS)
Dedieu, Jean-Pierre, ,, Dr.; Boos, Alain; Kiage, Wiliam; Pellegrini, Matteo
2010-05-01
Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the MODIS optical satellite sensor can be used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas (2,500 km range). However, as the pixel size is 500m x 500m, a MODIS pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the Sub-Pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Integrated into the EU-FP7 ACQWA Project (www.acqwa.ch), this approach was first applied over Alpine area of Rhone river basin upper Geneva Lake: Canton du Valais, Switzerland (5 375 km²). In a second step over Alps, rolling hills and plain areas in Po catchment for Val d'Aosta and Piemonte regions, Italy (37 190 km²). Watershed boundaries were provided respectively by GRID (Ch) and ARPA (It) partners. The complete satellite images database was extracted from the U.S. MODIS/NASA website (http://modis.gsfc.nasa.gov/) for MOD09_B1 Reflectance images, and from the MODIS/NSIDC website (http://nsidc.org/index.html) for MOD10_A2 snow cover images. Only the Terra platform was used because images are acquired in the morning and are therefore better correlated with dry snow surface, avoiding cloud coverage of the afternoon (Aqua Platform). The MOD9 Image reflectance and MOD10_A2 products were respectively analyzed to retrieve (i) Fractional Snow cover at sub-pixel scale, and (ii) maximum snow cover. All products were retrieved at 8-days over a complete time period of 10 years (2000-2009), giving 500 images for each river basin. Digital Model Elevation was given by NASA/SRTM database at 90-m resolution and used (i) for illumination versus topography correction on snow cover, (ii) geometric rectification of images. Geographic projection is WGS84, UTM 32. Fractional Snow cover mapping was derived from the NDSI linear regression method (Salomonson et al., 2004). Cloud mask was given by MODIS-NASA library (radiometric threshold) and completed by inverse slope regression to avoid lowlands fog confusing with thin snow cover (Po river basin). Maximum Snow Cover mapping was retrieved from the NSIDC database classification (Hall et al., 2001). Validation step was processed using comparison between MODIS Snow maps outputs and meteorological data provided by network of 87 meteorological stations: temperature, precipitation, snow depth measurement. A 0.92 correlation was observed for snow/non snow cover and can be considered as quite satisfactory, given the radiometric problems encountered in mountainous areas, particularly in snowmelt season. The 10-years time period results indicates a main difference between (i) regular snow accumulation and depletion in Rhone and (ii) the high temporal and spatial variability of snow cover for Po. Then, a high sensitivity to low variation of air temperature, often close to 1° C was observed. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s, particularly for Po river basin. Results will be combined with two hydrological models: Topkapi and Fest.
NASA Astrophysics Data System (ADS)
Webb, R. W.; Williams, M. W.; Erickson, T. A.
2018-02-01
Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.
NASA Astrophysics Data System (ADS)
Kerkez, B.; Rice, R.; Glaser, S. D.; Bales, R. C.; Saksa, P. C.
2010-12-01
A 100-node wireless sensor network (WSN) was designed for the purpose of monitoring snow depth in two watersheds, spanning 3 km2 in the American River basin, in the central Sierra Nevada of California. The network will be deployed as a prototype project that will become a core element of a larger water information system for the Sierra Nevada. The site conditions range from mid-elevation forested areas to sub-alpine terrain with light forest cover. Extreme temperature and humidity fluctuations, along with heavy rain and snowfall events, create particularly challenging conditions for wireless communications. We show how statistics gathered from a previously deployed 60-node WSN, located in the Southern Sierra Critical Zone Observatory, were used to inform design. We adapted robust network hardware, manufactured by Dust Networks for highly demanding industrial monitoring, and added linear amplifiers to the radios to improve transmission distances. We also designed a custom data-logging board to interface the WSN hardware with snow-depth sensors. Due to the large distance between sensing locations, and complexity of terrain, we analyzed network statistics to select the location of repeater nodes, to create a redundant and reliable mesh. This optimized network topology will maximize transmission distances, while ensuring power-efficient network operations throughout harsh winter conditions. At least 30 of the 100 nodes will actively sense snow depth, while the remainder will act as sensor-ready repeaters in the mesh. Data from a previously conducted snow survey was used to create a Gaussian Process model of snow depth; variance estimates produced by this model were used to suggest near-optimal locations for snow-depth sensors to measure the variability across a 1 km2 grid. We compare the locations selected by the sensor placement algorithm to those made through expert opinion, and offer explanations for differences resulting from each approach.
NASA Astrophysics Data System (ADS)
Wegmann, Martin; Dutra, Emanuel; Jacobi, Hans-Werner; Zolina, Olga
2018-06-01
This study uses daily observations and modern reanalyses in order to evaluate reanalysis products over northern Eurasia regarding the spring snow albedo feedback (SAF) during the period from 2000 to 2013. We used the state-of-the-art reanalyses from ERA-Interim/Land and the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) as well as an experimental set-up of ERA-Interim/Land with prescribed short grass as land cover to enhance the comparability with the station data while underlining the caveats of comparing in situ observations with gridded data. Snow depth statistics derived from daily station data are well reproduced in all three reanalyses. However day-to-day albedo variability is notably higher at the stations than for any reanalysis product. The ERA-Interim grass set-up shows improved performance when representing albedo variability and generates comparable estimates for the snow albedo in spring. We find that modern reanalyses show a physically consistent representation of SAF, with realistic spatial patterns and area-averaged sensitivity estimates. However, station-based SAF values are significantly higher than in the reanalyses, which is mostly driven by the stronger contrast between snow and snow-free albedo. Switching to grass-only vegetation in ERA-Interim/Land increases the SAF values up to the level of station-based estimates. We found no significant trend in the examined 14-year time series of SAF, but interannual changes of about 0.5 % K-1 in both station-based and reanalysis estimates were derived. This interannual variability is primarily dominated by the variability in the snowmelt sensitivity, which is correctly captured in reanalysis products. Although modern reanalyses perform well for snow variables, efforts should be made to improve the representation of dynamic albedo changes.
Distributed snow modeling suitable for use with operational data for the American River watershed.
NASA Astrophysics Data System (ADS)
Shamir, E.; Georgakakos, K. P.
2004-12-01
The mountainous terrain of the American River watershed (~4300 km2) at the Western slope of the Northern Sierra Nevada is subject to significant variability in the atmospheric forcing that controls the snow accumulation and ablations processes (i.e., precipitation, surface temperature, and radiation). For a hydrologic model that attempts to predict both short- and long-term streamflow discharges, a plausible description of the seasonal and intermittent winter snow pack accumulation and ablation is crucial. At present the NWS-CNRFC operational snow model is implemented in a semi distributed manner (modeling unit of about 100-1000 km2) and therefore lump distinct spatial variability of snow processes. In this study we attempt to account for the precipitation, temperature, and radiation spatial variability by constructing a distributed snow accumulation and melting model suitable for use with commonly available sparse data. An adaptation of the NWS-Snow17 energy and mass balance that is used operationally at the NWS River Forecast Centers is implemented at 1 km2 grid cells with distributed input and model parameters. The input to the model (i.e., precipitation and surface temperature) is interpolated from observed point data. The surface temperature was interpolated over the basin based on adiabatic lapse rates using topographic information whereas the precipitation was interpolated based on maps of climatic mean annual rainfall distribution acquired from PRISM. The model parameters that control the melting rate due to radiation were interpolated based on aspect. The study was conducted for the entire American basin for the snow seasons of 1999-2000. Validation of the Snow Water Equivalent (SWE) prediction is done by comparing to observation from 12 snow Sensors. The Snow Cover Area (SCA) prediction was evaluated by comparing to remotely sensed 500m daily snow cover derived from MODIS. The results that the distribution of snow over the area is well captured and the quantity compared to the snow gauges are well estimated in the high elevation.
Obtaining sub-daily new snow density from automated measurements in high mountain regions
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Olefs, Marc
2018-05-01
The density of new snow is operationally monitored by meteorological or hydrological services at daily time intervals, or occasionally measured in local field studies. However, meteorological conditions and thus settling of the freshly deposited snow rapidly alter the new snow density until measurement. Physically based snow models and nowcasting applications make use of hourly weather data to determine the water equivalent of the snowfall and snow depth. In previous studies, a number of empirical parameterizations were developed to approximate the new snow density by meteorological parameters. These parameterizations are largely based on new snow measurements derived from local in situ measurements. In this study a data set of automated snow measurements at four stations located in the European Alps is analysed for several winter seasons. Hourly new snow densities are calculated from the height of new snow and the water equivalent of snowfall. Considering the settling of the new snow and the old snowpack, the average hourly new snow density is 68 kg m-3, with a standard deviation of 9 kg m-3. Seven existing parameterizations for estimating new snow densities were tested against these data, and most calculations overestimate the hourly automated measurements. Two of the tested parameterizations were capable of simulating low new snow densities observed at sheltered inner-alpine stations. The observed variability in new snow density from the automated measurements could not be described with satisfactory statistical significance by any of the investigated parameterizations. Applying simple linear regressions between new snow density and wet bulb temperature based on the measurements' data resulted in significant relationships (r2 > 0.5 and p ≤ 0.05) for single periods at individual stations only. Higher new snow density was calculated for the highest elevated and most wind-exposed station location. Whereas snow measurements using ultrasonic devices and snow pillows are appropriate for calculating station mean new snow densities, we recommend instruments with higher accuracy e.g. optical devices for more reliable investigations of the variability of new snow densities at sub-daily intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Qian, Yun; Fast, Jerome D.
2011-07-13
Recent improvements to many global climate models include detailed, prognostic aerosol calculations intended to better reproduce the observed climate. However, the trace gas and aerosol fields are treated at the grid-cell scale with no attempt to account for sub-grid impacts on the aerosol fields. This paper begins to quantify the error introduced by the neglected sub-grid variability for the shortwave aerosol radiative forcing for a representative climate model grid spacing of 75 km. An analysis of the value added in downscaling aerosol fields is also presented to give context to the WRF-Chem simulations used for the sub-grid analysis. We foundmore » that 1) the impact of neglected sub-grid variability on the aerosol radiative forcing is strongest in regions of complex topography and complicated flow patterns, and 2) scale-induced differences in emissions contribute strongly to the impact of neglected sub-grid processes on the aerosol radiative forcing. The two of these effects together, when simulated at 75 km vs. 3 km in WRF-Chem, result in an average daytime mean bias of over 30% error in top-of-atmosphere shortwave aerosol radiative forcing for a large percentage of central Mexico during the MILAGRO field campaign.« less
NASA Astrophysics Data System (ADS)
Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.
2017-12-01
Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.
NASA Astrophysics Data System (ADS)
Currier, W. R.; Giulia, M.; Pflug, J. M.; Jonas, T.; Jessica, L.
2017-12-01
Snow depth within a typical hydrologic model grid cell (150 m or 1 km) can vary from 0.5 meters to 6 meters, or more. This variability is driven by the meteorological conditions throughout the winter as well as the forest architecture. To better understand this variability, we used airborne LiDAR from Olympic National Park, WA, Yosemite National Park, CA, Jemez Caldera, NM, and Niwot Ridge, CO to determine unique spatial patterns of snow depth in forested regions. Specifically, we compared snow depth distributions along north facing forest edges and south facing forest edges to those in the open or directly under the canopy. When categorizing the north facing and south facing edges based on distance from the canopy, distances relative to tree height, and distances relative to the fraction of the sky that is visible (sky view factor) we found unique snow depth patterns for each of these regions. In all regions besides Olympic National Park, WA, north facing edges contained more snow than open areas, forested areas, or along the south facing edges. These snow distributions were relatively consistent regardless of the metric used to define the forest edge and the size of the domain (150 m through 1 km). The absence of the forest edge effect in Olympic National Park was attributed to the meteorological data and climate conditions, which showed significantly less incoming shortwave radiation and more incoming longwave radiation. Furthermore, this study evaluated the effect that wind speed and direction have on the spatial distribution of snow depth.
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2016-04-01
The spatial and temporal variability of snow cover has a significant impact on climate and environment and is of great socio-economic importance for the European Alps. Satellite remote sensing data is widely used to study snow cover variability and can provide spatially comprehensive information on snow cover extent. However, cloud cover strongly impedes the surface view and hence limits the number of useful snow observations. Outdoor webcam images not only offer unique potential for complementing satellite-derived snow retrieval under cloudy conditions but could also serve as a reference for improved validation of satellite-based approaches. Thousands of webcams are currently connected to the Internet and deliver freely available images with high temporal and spatial resolutions. To exploit the untapped potential of these webcams, a semi-automatic procedure was developed to generate snow cover maps based on webcam images. We used daily webcam images of the Swiss alpine region to apply, improve, and extend existing approaches dealing with the positioning of photographs within a terrain model, appropriate georectification, and the automatic snow classification of such photographs. In this presentation, we provide an overview of the implemented procedure and demonstrate how our registration approach automatically resolves the orientation of a webcam by using a high-resolution digital elevation model and the webcam's position. This allows snow-classified pixels of webcam images to be related to their real-world coordinates. We present several examples of resulting snow cover maps, which have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or not visible from webcams' positions. The procedure is expected to work under almost any weather condition and demonstrates the feasibility of using webcams for the retrieval of high-resolution snow cover information.
NASA Astrophysics Data System (ADS)
Xu, Jianhui; Zhang, Feifei; Zhao, Yi; Shu, Hong; Zhong, Kaiwen
2016-07-01
For the large-area snow depth (SD) data sets with high spatial resolution in the Altay region of Northern Xinjiang, China, we present a deterministic ensemble Kalman filter (DEnKF)-albedo assimilation scheme that considers the common land model (CoLM) subgrid heterogeneity. In the albedo assimilation of DEnKF-albedo, the assimilated albedos over each subgrid tile are estimated with the MCD43C1 bidirectional reflectance distribution function (BRDF) parameters product and CoLM calculated solar zenith angle. The BRDF parameters are hypothesized to be consistent over all subgrid tiles within a specified grid. In the SCF assimilation of DEnKF-albedo, a DEnKF combining a snow density-based observation operator considers the effects of the CoLM subgrid heterogeneity and is employed to assimilate MODIS SCF to update SD states over all subgrid tiles. The MODIS SCF over a grid is compared with the area-weighted sum of model predicted SCF over all the subgrid tiles within the grid. The results are validated with in situ SD measurements and AMSR-E product. Compared with the simulations, the DEnKF-albedo scheme can reduce errors of SD simulations and accurately simulate the seasonal variability of SD. Furthermore, it can improve simulations of SD spatiotemporal distribution in the Altay region, which is more accurate and shows more detail than the AMSR-E product.
NASA Astrophysics Data System (ADS)
Gruber, S.; Fiddes, J.
2013-12-01
In mountainous topography, the difference in scale between atmospheric reanalyses (typically tens of kilometres) and relevant processes and phenomena near the Earth surface, such as permafrost or snow cover (meters to tens of meters) is most obvious. This contrast of scales is one of the major obstacles to using reanalysis data for the simulation of surface phenomena and to confronting reanalyses with independent observation. At the example of modelling permafrost in mountain areas (but simple to generalise to other phenomena and heterogeneous environments), we present and test methods against measurements for (A) scaling atmospheric data from the reanalysis to the ground level and (B) smart sampling of the heterogeneous landscape in order to set up a lumped model simulation that represents the high-resolution land surface. TopoSCALE (Part A, see http://dx.doi.org/10.5194/gmdd-6-3381-2013) is a scheme, which scales coarse-grid climate fields to fine-grid topography using pressure level data. In addition, it applies necessary topographic corrections e.g. those variables required for computation of radiation fields. This provides the necessary driving fields to the LSM. Tested against independent ground data, this scheme has been shown to improve the scaling and distribution of meteorological parameters in complex terrain, as compared to conventional methods, e.g. lapse rate based approaches. TopoSUB (Part B, see http://dx.doi.org/10.5194/gmd-5-1245-2012) is a surface pre-processor designed to sample a fine-grid domain (defined by a digital elevation model) along important topographical (or other) dimensions through a clustering scheme. This allows constructing a lumped model representing the main sources of fine-grid variability and applying a 1D LSM efficiently over large areas. Results can processed to derive (i) summary statistics at coarse-scale re-analysis grid resolution, (ii) high-resolution data fields spatialized to e.g., the fine-scale digital elevation model grid, or (iii) validation products for locations at which measurements exist, only. The ability of TopoSUB to approximate results simulated by a 2D distributed numerical LSM at a factor of ~10,000 less computations is demonstrated by comparison of 2D and lumped simulations. Successful application of the combined scheme in the European Alps is reported and based on its results, open issues for future research are outlined.
Importance of precipitation systems to control the climate in Tibetan Plateau
NASA Astrophysics Data System (ADS)
Ueno, K.; Sugimoto, S.
2012-12-01
Kenichi UENO kenueno@sakura.cc.tsukuba.ac.jp Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Shiori SUGIMOTO shioris@ees.hokudai.ac.jp Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan Precipitation over the Tibetan Plateau (TP) play a crucial rule to control the atmosphere-land interaction, mass balance of glacier, vegetation growth, and significantly affects the life and society in the surrounding areas by means of causing heavy rain or drought. Key issues regarding to the precipitation mechanisms at three domains, such as 1) southern moisture entrance areas facing Indian monsoon and westerlies trough over the Himalayas, 2) active convections with longitudinal soil moisture and vegetation gradient over the plateau, and 3) leeward areas with convergences between the monsoon and northwesterly dry air mass to cause severe weathers, are summarized. To assess the sub-grid scale precipitation variability, satellite measurements with downscaling of numerical simulations are expected. Especially, precipitation type, such as snow or rain, is a critical parameter to model albedo changes and accumulation of snow. Pilot studies of discrimination precipitation types at the mountainous site in Japan are also introduced.; t;
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)
2001-01-01
On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.
Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events
NASA Astrophysics Data System (ADS)
Suriano, Z. J.; Leathers, D. J.
2017-12-01
In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.
Snow and Ice Products from the Moderate Resolution Imaging Spectroradiometer
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Klein, Andrew G.
2003-01-01
Snow and sea ice products, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, flown on the Terra and Aqua satellites, are or will be available through the National Snow and Ice Data Center Distributed Active Archive Center (DAAC). The algorithms that produce the products are automated, thus providing a consistent global data set that is suitable for climate studies. The suite of MODIS snow products begins with a 500-m resolution, 2330-km swath snow-cover map that is then projected onto a sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to daily and 8-day composite climate-modeling grid (CMG) products at 0.05 resolution. A daily snow albedo product will be available in early 2003 as a beta test product. The sequence of sea ice products begins with a swath product at 1-km resolution that provides sea ice extent and ice-surface temperature (IST). The sea ice swath products are then mapped onto the Lambert azimuthal equal area or EASE-Grid projection to create a daily and 8-day composite sea ice tile product, also at 1 -km resolution. Climate-Modeling Grid (CMG) sea ice products in the EASE-Grid projection at 4-km resolution are planned for early 2003.
NASA Astrophysics Data System (ADS)
Snauffer, Andrew M.; Hsieh, William W.; Cannon, Alex J.; Schnorbus, Markus A.
2018-03-01
Estimates of surface snow water equivalent (SWE) in mixed alpine environments with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief, and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC. Relevant spatiotemporal covariates were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and interannual correlations for April surveys were found using cross-validation. The ANN using the three best-performing SWE products (ANN3) had the lowest mean station MAE across the province. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all of BC's five physiographic regions except for the BC Plains. Subsequent comparisons with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to better estimate SWE over the VIC domain and within most regions. The superior performance of ANN3 over the individual products, product means, MLR, and VIC was found to be statistically significant across the province.
NASA Astrophysics Data System (ADS)
Montzka, C.; Rötzer, K.; Bogena, H. R.; Vereecken, H.
2017-12-01
Improving the coarse spatial resolution of global soil moisture products from SMOS, SMAP and ASCAT is currently an up-to-date topic. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. A method has been developed that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. Here, we predict for each SMOS, SMAP and ASCAT grid cell the sub-grid soil moisture variability based on the SoilGrids1km data set. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean. The resulting data set provides important information for downscaling coarse soil moisture observations of the SMOS, SMAP and ASCAT missions. Downscaling SMAP data by a field capacity proxy indicates adequate accuracy of the sub-grid soil moisture patterns.
NASA Astrophysics Data System (ADS)
Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.
2012-12-01
A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.
NASA Astrophysics Data System (ADS)
Liu, Ge; Wu, Renguang; Zhang, Yuanzhi; Nan, Sulan
2014-07-01
The summer snow anomalies over the Tibetan Plateau (TP) and their effects on climate variability are often overlooked, possibly due to the fact that some datasets cannot properly capture summer snow cover over high terrain. The satellite-derived Equal-Area Scalable Earth grid (EASE-grid) dataset shows that snow still exists in summer in the western part and along the southern flank of the TP. Analysis demonstrates that the summer snow cover area proportion (SCAP) over the TP has a significant positive correlation with simultaneous precipitation over the mei-yu-baiu (MB) region on the interannual time scale. The close relationship between the summer SCAP and summer precipitation over the MB region could not be simply considered as a simultaneous response to the Silk Road pattern and the SST anomalies in the tropical Indian Ocean and tropical central-eastern Pacific. The SCAP anomaly has an independent effect and may directly modulate the land surface heating and, consequently, vertical motion over the western TP, and concurrently induce anomalous vertical motion over the North Indian Ocean via a meridional vertical circulation. Through a zonal vertical circulation over the tropics and a Kelvin wave-type response, anomalous vertical motion over the North Indian Ocean may result in an anomalous high over the western North Pacific and modulate the convective activity in the western Pacific warm pool, which stimulates the East Asia-Pacific (EAP) pattern and eventually affects summer precipitation over the MB region.
NASA Astrophysics Data System (ADS)
Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.
2018-02-01
Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process-based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio-temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle-induced forest mortality and climate warming across the north-central Colorado Rocky Mountains. EC-based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub-canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark-beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.
NASA Astrophysics Data System (ADS)
Bigot, S.; Dedieu, Jp.; Rome, S.
2009-04-01
Sylvain.bigot@ujf-grenoble.fr Jean-pierre.dedieu@hmg.inpg.fr Sandra.rome@ujf-grenoble.fr Estimation of the Snow Covered Area (SCA) is an important issue for meteorological application and hydrological modeling of runoff. With spectral bands in the visible, near and middle infrared, the SPOT-4 and -5 VEGETATION sensors are used to detect snow cover because of large differences between reflectance from snow covered and snow free surfaces. At the same time, it allows separation between snow and clouds. Moreover, the sensor provides a daily coverage of large areas. However, as the pixel size is 1km x 1km, a VGT pixel may be partially covered by snow, particularly in Alpine areas, where snow may not be present in valleys lying at lower altitudes. Also, variation of reflectance due to differential sunlit effects as a function of slope and aspect, as well as bidirectional effects may be present in images. Nevertheless, it is possible to estimate snow cover at the sub-pixel level with a relatively good accuracy and with very good results if the sub-pixel estimations are integrated for a few pixels relative to an entire watershed. Application of this approach in the French Alps is presented over the Vercors Natural Park area (N 44°.50' / E 05°.30'), based on 10-day Synthetic products for the 1998-2008 time period, and using the NDSII (Normalized Difference Snow/Ice Index) as numerical threshold. This work performs an analysis of climate impact on snow cover spatial and temporal variability, at mid-elevation mountain range (1500 m asl) under temperate climate conditions. The results indicates (i) a increasing temporal and spatial variability of snow coverage, and (ii) a high sensitivity to low variation of air temperature, often close to 1° C. This is the case in particular for the beginning and the end of the winter season. The regional snow cover depletion is both influenced by thermal positives anomalies (e.g. 2000 and 2006), and the general trend of rising atmospheric temperatures since the late 1980s.
Airborne Grid Sea-Ice Surveys for Comparison with CryoSat-2
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.
2014-12-01
The U.S. Naval Research Laboratory is engaged in a study of the changing Arctic with a particular focus on ice thickness and distribution variability. The purpose is to optimize computer models used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat-2 ice thickness data prior to its incorporation into new ice forecast models. The large footprint of the CryoSat-2 altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of airborne scanning lidar and nadir pointing radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. One difficulty in the collection of grids comprised of adjacent overlapping tracks is that the ice moves as much as 300 m over the duration of a single track (~ 10 min). With a typical lidar swath width of 500m we needed to adjust the survey tracks in near real-time for the ice motion. This was accomplished by a photogrammetric method of ice velocity determination (RTIME) reported in another presentation. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. An important factor is that we were able to reconstruct the ice configuration at the time of the satellite overflight, resulting in an accurate representation of the surface illuminated by CryoSat-2. Our intention is to develop a model of the ice surface using the lidar grid which includes both snow and ice using radar profiles to determine snow thickness. In 2013 a set of 6 usable grids 5-20 km wide (cross-track) by 10-30 km long were collected north of Barrow, AK. In 2014 a further 5 narrower grids (~5km) were collected. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface.
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)
2002-01-01
On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.
Downscaling scheme to drive soil-vegetation-atmosphere transfer models
NASA Astrophysics Data System (ADS)
Schomburg, Annika; Venema, Victor; Lindau, Ralf; Ament, Felix; Simmer, Clemens
2010-05-01
The earth's surface is characterized by heterogeneity at a broad range of scales. Weather forecast models and climate models are not able to resolve this heterogeneity at the smaller scales. Many processes in the soil or at the surface, however, are highly nonlinear. This holds, for example, for evaporation processes, where stomata or aerodynamic resistances are nonlinear functions of the local micro-climate. Other examples are threshold dependent processes, e.g., the generation of runoff or the melting of snow. It has been shown that using averaged parameters in the computation of these processes leads to errors and especially biases, due to the involved nonlinearities. Thus it is necessary to account for the sub-grid scale surface heterogeneities in atmospheric modeling. One approach to take the variability of the earth's surface into account is the mosaic approach. Here the soil-vegetation-atmosphere transfer (SVAT) model is run on an explicit higher resolution than the atmospheric part of a coupled model, which is feasible due to generally lower computational costs of a SVAT model compared to the atmospheric part. The question arises how to deal with the scale differences at the interface between the two resolutions. Usually the assumption of a homogeneous forcing for all sub-pixels is made. However, over a heterogeneous surface, usually the boundary layer is also heterogeneous. Thus, by assuming a constant atmospheric forcing again biases in the turbulent heat fluxes may occur due to neglected atmospheric forcing variability. Therefore we have developed and tested a downscaling scheme to disaggregate the atmospheric variables of the lower atmosphere that are used as input to force a SVAT model. Our downscaling scheme consists of three steps: 1) a bi-quadratic spline interpolation of the coarse-resolution field; 2) a "deterministic" part, where relationships between surface and near-surface variables are exploited; and 3) a noise-generation step, in which the still missing, not explained, variance is added as noise. The scheme has been developed and tested based on high-resolution (400 m) model output of the weather forecast (and regional climate) COSMO model. Downscaling steps 1 and 2 reduce the error made by the homogeneous assumption considerably, whereas the third step leads to close agreement of the sub-grid scale variance with the reference. This is, however, achieved at the cost of higher root mean square errors. Thus, before applying the downscaling system to atmospheric data a decision should be made whether the lowest possible errors (apply only downscaling step 1 and 2) or a most realistic sub-grid scale variability (apply also step 3) is desired. This downscaling scheme is currently being implemented into the COSMO model, where it will be used in combination with the mosaic approach. However, this downscaling scheme can also be applied to drive stand-alone SVAT models or hydrological models, which usually also need high-resolution atmospheric forcing data.
Monitoring and projecting snow on Hawaii Island
NASA Astrophysics Data System (ADS)
Zhang, Chunxi; Hamilton, Kevin; Wang, Yuqing
2017-05-01
The highest mountain peaks on Hawaii Island are snow covered for part of almost every year. This snow has aesthetic and recreational value as well as cultural significance for residents and visitors. Thus far there have been almost no systematic observations of snowfall, snow cover, or snow depth in Hawaii. Here we use satellite observations to construct a daily index of Hawaii Island snow cover starting from 2000. The seasonal mean of our index displays large interannual variations that are correlated with the seasonal mean freezing level and frequency of trade wind inversions as determined from nearby balloon soundings. Our snow cover index provides a diagnostic for monitoring climate variability and trends within the extensive area of the globe dominated by the North Pacific trade wind meteorological regime. We have also conducted simulations of the Hawaii climate with a regional atmospheric model. Retrospective simulations for 1990-2015 were run with boundary conditions prescribed from gridded observational analyses. Simulations for the end of 21st century employed boundary conditions based on global climate model projections that included standard scenarios for anticipated anthropogenic climate forcing. The future projections indicate that snowfall will nearly disappear by the end of the current century.
NASA Astrophysics Data System (ADS)
Nijzink, R. C.; Samaniego, L.; Mai, J.; Kumar, R.; Thober, S.; Zink, M.; Schäfer, D.; Savenije, H. H. G.; Hrachowitz, M.
2015-12-01
Heterogeneity of landscape features like terrain, soil, and vegetation properties affect the partitioning of water and energy. However, it remains unclear to which extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated in the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge based model constraints reduces model uncertainty; and (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both, the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as overall measure for model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 % respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. Besides, it was shown that suitable semi-quantitative prior constraints in combination with the transfer function based regularization approach of mHM, can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Samaniego, Luis; Mai, Juliane; Kumar, Rohini; Thober, Stephan; Zink, Matthias; Schäfer, David; Savenije, Hubert H. G.; Hrachowitz, Markus
2016-03-01
Heterogeneity of landscape features like terrain, soil, and vegetation properties affects the partitioning of water and energy. However, it remains unclear to what extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated into the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge-based model constraints reduces model uncertainty, and whether (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge-based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as an overall measure of model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 %, respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. In addition, it was shown that suitable semi-quantitative prior constraints in combination with the transfer-function-based regularization approach of mHM can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
Improving Snow Modeling by Assimilating Observational Data Collected by Citizen Scientists
NASA Astrophysics Data System (ADS)
Crumley, R. L.; Hill, D. F.; Arendt, A. A.; Wikstrom Jones, K.; Wolken, G. J.; Setiawan, L.
2017-12-01
Modeling seasonal snow pack in alpine environments includes a multiplicity of challenges caused by a lack of spatially extensive and temporally continuous observational datasets. This is partially due to the difficulty of collecting measurements in harsh, remote environments where extreme gradients in topography exist, accompanied by large model domains and inclement weather. Engaging snow enthusiasts, snow professionals, and community members to participate in the process of data collection may address some of these challenges. In this study, we use SnowModel to estimate seasonal snow water equivalence (SWE) in the Thompson Pass region of Alaska while incorporating snow depth measurements collected by citizen scientists. We develop a modeling approach to assimilate hundreds of snow depth measurements from participants in the Community Snow Observations (CSO) project (www.communitysnowobs.org). The CSO project includes a mobile application where participants record and submit geo-located snow depth measurements while working and recreating in the study area. These snow depth measurements are randomly located within the model grid at irregular time intervals over the span of four months in the 2017 water year. This snow depth observation dataset is converted into a SWE dataset by employing an empirically-based, bulk density and SWE estimation method. We then assimilate this data using SnowAssim, a sub-model within SnowModel, to constrain the SWE output by the observed data. Multiple model runs are designed to represent an array of output scenarios during the assimilation process. An effort to present model output uncertainties is included, as well as quantification of the pre- and post-assimilation divergence in modeled SWE. Early results reveal pre-assimilation SWE estimations are consistently greater than the post-assimilation estimations, and the magnitude of divergence increases throughout the snow pack evolution period. This research has implications beyond the Alaskan context because it increases our ability to constrain snow modeling outputs by making use of snow measurements collected by non-expert, citizen scientists.
Calculation of new snow densities from sub-daily automated snow measurements
NASA Astrophysics Data System (ADS)
Helfricht, Kay; Hartl, Lea; Koch, Roland; Marty, Christoph; Lehning, Michael; Olefs, Marc
2017-04-01
In mountain regions there is an increasing demand for high-quality analysis, nowcasting and short-range forecasts of the spatial distribution of snowfall. Operational services, such as for avalanche warning, road maintenance and hydrology, as well as hydropower companies and ski resorts need reliable information on the depth of new snow (HN) and the corresponding water equivalent (HNW). However, the ratio of HNW to HN can vary from 1:3 to 1:30 because of the high variability of new snow density with respect to meteorological conditions. In the past, attempts were made to calculate new snow densities from meteorological parameters mainly using daily values of temperature and wind. Further complex statistical relationships have been used to calculate new snow densities on hourly to sub-hourly time intervals to drive multi-layer snow cover models. However, only a few long-term in-situ measurements of new snow density exist for sub-daily time intervals. Settling processes within the new snow due to loading and metamorphism need to be considered when computing new snow density. As the effect of these processes is more pronounced for long time intervals, a high temporal resolution of measurements is desirable. Within the pluSnow project data of several automatic weather stations with simultaneous measurements of precipitation (pluviometers), snow water equivalent (SWE) using snow pillows and snow depth (HS) measurements using ultrasonic rangers were analysed. New snow densities were calculated for a set of data filtered on the basis of meteorological thresholds. The calculated new snow densities were compared to results from existing new snow density parameterizations. To account for effects of settling of the snow cover, a case study based on a multi-year data set using the snow cover model SNOWPACK at Weissfluhjoch was performed. Measured median values of hourly new snow densities at the different stations range from 54 to 83 kgm-3. This is considerably lower than a 1:10 approximation (i.e. 100 kgm-3), which is mainly based on daily values in the Alps. Variations in new snow density could not be explained in a satisfactory manner using meteorological data measured at the same location. Likewise, some of the tested parametrizations of new snow density, which primarily use air temperature as a proxy, result in median new snow densities close to the ones from automated measurements, but show only a low correlation between calculated and measured new snow densities. The case study on the influence of snow settling on HN resulted on average in an underestimation of HN by 17%, which corresponds to 2-3% of the cumulated HN from the previous 24 hours. Therefore, the mean hourly new snow densities may be overestimated by 14%. The analysis in this study is especially limited with respect to the meteorological influence on the HS measurement using ultra-sonic rangers. Nevertheless, the reasonable mean values encourage calculating new snow densities from standard hydro-meteorological measurements using more precise observation devices such as optical snow depth sensors and more sensitive scales for SWE measurements also on sub-daily time-scales.
Development and Evaluation of a Cloud-Gap-Filled MODIS Daily Snow-Cover Product
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Foster, James L.; Kumar, Sujay V.
2010-01-01
The utility of the Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover products is limited by cloud cover which causes gaps in the daily snow-cover map products. We describe a cloud-gap-filled (CGF) daily snowcover map using a simple algorithm to track cloud persistence, to account for the uncertainty created by the age of the snow observation. Developed from the 0.050 resolution climate-modeling grid daily snow-cover product, MOD10C1, each grid cell of the CGF map provides a cloud-persistence count (CPC) that tells whether the current or a prior day was used to make the snow decision. Percentage of grid cells "observable" is shown to increase dramatically when prior days are considered. The effectiveness of the CGF product is evaluated by conducting a suite of data assimilation experiments using the community Noah land surface model in the NASA Land Information System (LIS) framework. The Noah model forecasts of snow conditions, such as snow-water equivalent (SWE), are updated based on the observations of snow cover which are obtained either from the MOD1 OC1 standard product or the new CGF product. The assimilation integrations using the CGF maps provide domain averaged bias improvement of -11 %, whereas such improvement using the standard MOD1 OC1 maps is -3%. These improvements suggest that the Noah model underestimates SWE and snow depth fields, and that the assimilation integrations contribute to correcting this systematic error. We conclude that the gap-filling strategy is an effective approach for increasing cloud-free observations of snow cover.
Airborne Grid Sea-Ice Surveys for Comparison with Cryosat-2
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Gardner, J. M.; Liang, R.; Hagen, R. A.; Ball, D.; Newman, T.
2015-12-01
The Naval Research Laboratory is studying of the changing Arctic with a focus on ice thickness and distribution variability. The goal is optimization of computer models used to predict sea ice changes. An important part of our study is to calibrate/validate Cryosat-2 ice thickness data prior to its incorporation into new ice forecast models. The footprint of the altimeter over sea-ice is a significant issue in any attempt to ground-truth the data. Along-track footprints are reduced to ~ 300 m by SAR processing of the returns. However, the cross-track footprint is determined by the topography of the surface. Further, the actual return is the sum of the returns from individual reflectors within the footprint making it difficult to interpret the return, and optimize the waveform tracker. We therefore collected a series of grids of scanning LiDAR and radar on sub-satellite tracks over sea-ice that would extend far enough cross-track to capture the illuminated area. The difficulty in the collection of such grids, which are comprised of adjacent overlapping tracks is ice motion of as much as 300 m over the duration of a single flight track (~ 20 km) of data collection. With a typical LiDAR swath width of < 500m adjustment of the survey tracks in near real-time for the ice motion is necessary for a coherent data set. This was accomplished by a an NRL devised photogrammetric method of ice velocity determination. Post-processing refinements resulted in typical track-to-track miss-ties of ~ 1-2 m, much of which could be attributed to ice deformation over the period of the survey. This allows us to reconstruct the ice configuration to the time of the satellite overflight, resulting in a good picture of the surface actually illuminated by the radar. The detailed 2-d LiDAR image is the snow surface, not the underlying ice presumably illuminated by the radar. Our hope is that the 1-D radar profiles collected along the LiDAR swath centerlines will be sufficient to correct the grid for snow thickness. A total of 15 grids 5-20 km wide (cross-track) by 10-30 km long (along-track) centered on ice illuminated by CryoSat-2 were collected north of Barrow, AK. This occured over three field seasons which took place from 2013-15. Data from the grids are shown here and are being used to examine the relationship of the tracked satellite waveform data to the actual surface.
Soil erosion by snow gliding - a first quantification attempt in a sub-alpine area, Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-03-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide deposits, the fallout radionuclide 137Cs, and modelling with the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the soil erosion rate of RUSLE and the 137Cs method is related to snow gliding and sediment concentrations in the snow glide deposits. Cumulative snow glide distance was measured for the sites in the winter 2009/10 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance ranged from 2 to 189 cm, with lower values at the north facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed: the difference of RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2= 0.64; p < 0.005) and snow sediment yields (R2 = 0.39; p = 0.13). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.
NASA Astrophysics Data System (ADS)
Sorteberg, Hilleborg K.
2010-05-01
In the hydropower industry, it is important to have precise information about snow deposits at all times, to allow for effective planning and optimal use of the water. In Norway, it is common to measure snow density using a manual method, i.e. the depth and weight of the snow is measured. In recent years, radar measurements have been taken from snowmobiles; however, few energy supply companies use this method operatively - it has mostly been used in connection with research projects. Agder Energi is the first Norwegian power producer in using radar tecnology from helicopter in monitoring mountain snow levels. Measurement accuracy is crucial when obtaining input data for snow reservoir estimates. Radar screening by helicopter makes remote areas more easily accessible and provides larger quantities of data than traditional ground level measurement methods. In order to draw up a snow survey system, it is assumed as a basis that the snow distribution is influenced by vegetation, climate and topography. In order to take these factors into consideration, a snow survey system for fields in high mountain areas has been designed in which the data collection is carried out by following the lines of a grid system. The lines of this grid system is placed in order to effectively capture the distribution of elevation, x-coordinates, y-coordinates, aspect, slope and curvature in the field. Variation in climatic conditions are also captured better when using a grid, and dominant weather patterns will largely be captured in this measurement system.
Long-term variability in Northern Hemisphere snow cover and associations with warmer winters
McCabe, Gregory J.; Wolock, David M.
2010-01-01
A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.
Long-term variability in Northern Hemisphere snow cover and associations with warmer winters
McCabe, G.J.; Wolock, D.M.
2010-01-01
A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease. ?? 2009 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.
2017-03-01
This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 h prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude diagrams (CFADs) reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.
Nicholls, Stephen D; Decker, Steven G; Tao, Wei-Kuo; Lang, Stephen E; Shi, Jainn J; Mohr, Karen I
2017-01-01
This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.
Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen I.
2018-01-01
This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217–0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions. PMID:29697705
NASA Technical Reports Server (NTRS)
Nicholls, Stephen D.; Decker, Steven G.; Tao, Wei-Kuo; Lang, Stephen E.; Shi, Jainn J.; Mohr, Karen Irene
2017-01-01
This study evaluated the impact of five single- or double-moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven intense wintertime cyclones impacting the mid-Atlantic United States; 5-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (five BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities led to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatiotemporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF simulations demonstrate low-to-moderate (0.217 to 0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.
On the changing contribution of snow to the hydrology of the Fraser River Basin, Canada
NASA Astrophysics Data System (ADS)
Dery, S. J.; Kang, D.; Shi, X.; Gao, H.
2013-12-01
This talk will present an application of the Variable Infiltration Capacity (VIC) model to the Fraser River Basin (FRB) of British Columbia (BC), Canada over the latter half of the 20th century. The Fraser River is the longest waterway in BC and supports the world's most abundant Pacific Ocean salmon populations. Previous modeling and observational studies have demonstrated that the FRB is a snow-dominated system but with climate change it may evolve to a pluvial regime. Thus the goal of this study is to evaluate the changing contribution of snow to the hydrology of the watershed over the latter half of the 20th century. To this end, a 0.25° atmospheric forcing dataset is used to drive the VIC model from 1948 to 2006 at a daily time step over a domain covering the entire FRB. A model evaluation is first conducted over 11 major sub-watersheds of the FRB to quantitatively assess the spatial variations of snow water equivalent (SWE) and runoff. The ratio of the spatially averaged maximum SWE to runoff (RSR) is used to quantify the contribution of snow to the runoff in the 11 sub-watersheds of interest. From 1948 to 2006, RSR exhibits a significant decreasing trend in 9 of the 11 sub-watersheds (at a 0.05 of p-value according to the Mann-Kendall Test statistics). Changes in snow accumulation and melt lead to significant advances of the spring freshet throughout the basin. As the climate continues to warm, ecological processes and human usage of natural resources in the FRB may be substantially affected by its transition from a snow to a hybrid (nival/pluvial) and even a rain-dominated watershed.
Monitoring Areal Snow Cover Using NASA Satellite Imagery
NASA Technical Reports Server (NTRS)
Harshburger, Brian J.; Blandford, Troy; Moore, Brandon
2011-01-01
The objective of this project is to develop products and tools to assist in the hydrologic modeling process, including tools to help prepare inputs for hydrologic models and improved methods for the visualization of streamflow forecasts. In addition, this project will facilitate the use of NASA satellite imagery (primarily snow cover imagery) by other federal and state agencies with operational streamflow forecasting responsibilities. A GIS software toolkit for monitoring areal snow cover extent and producing streamflow forecasts is being developed. This toolkit will be packaged as multiple extensions for ArcGIS 9.x and an opensource GIS software package. The toolkit will provide users with a means for ingesting NASA EOS satellite imagery (snow cover analysis), preparing hydrologic model inputs, and visualizing streamflow forecasts. Primary products include a software tool for predicting the presence of snow under clouds in satellite images; a software tool for producing gridded temperature and precipitation forecasts; and a suite of tools for visualizing hydrologic model forecasting results. The toolkit will be an expert system designed for operational users that need to generate accurate streamflow forecasts in a timely manner. The Remote Sensing of Snow Cover Toolbar will ingest snow cover imagery from multiple sources, including the MODIS Operational Snowcover Data and convert them to gridded datasets that can be readily used. Statistical techniques will then be applied to the gridded snow cover data to predict the presence of snow under cloud cover. The toolbar has the ability to ingest both binary and fractional snow cover data. Binary mapping techniques use a set of thresholds to determine whether a pixel contains snow or no snow. Fractional mapping techniques provide information regarding the percentage of each pixel that is covered with snow. After the imagery has been ingested, physiographic data is attached to each cell in the snow cover image. This data can be obtained from a digital elevation model (DEM) for the area of interest.
NASA Astrophysics Data System (ADS)
Roth, Travis R.; Nolin, Anne W.
2017-11-01
Forest cover modifies snow accumulation and ablation rates via canopy interception and changes in sub-canopy energy balance processes. However, the ways in which snowpacks are affected by forest canopy processes vary depending on climatic, topographic and forest characteristics. Here we present results from a 4-year study of snow-forest interactions in the Oregon Cascades. We continuously monitored snow and meteorological variables at paired forested and open sites at three elevations representing the Low, Mid, and High seasonal snow zones in the study region. On a monthly to bi-weekly basis, we surveyed snow depth and snow water equivalent across 900 m transects connecting the forested and open pairs of sites. Our results show that relative to nearby open areas, the dense, relatively warm forests at Low and Mid sites impede snow accumulation via canopy snow interception and increase sub-canopy snowpack energy inputs via longwave radiation. Compared with the Forest sites, snowpacks are deeper and last longer in the Open site at the Low and Mid sites (4-26 and 11-33 days, respectively). However, we see the opposite relationship at the relatively colder High sites, with the Forest site maintaining snow longer into the spring by 15-29 days relative to the nearby Open site. Canopy interception efficiency (CIE) values at the Low and Mid Forest sites averaged 79 and 76 % of the total event snowfall, whereas CIE was 31 % at the lower density High Forest site. At all elevations, longwave radiation in forested environments appears to be the primary energy component due to the maritime climate and forest presence, accounting for 93, 92, and 47 % of total energy inputs to the snowpack at the Low, Mid, and High Forest sites, respectively. Higher wind speeds in the High Open site significantly increase turbulent energy exchanges and snow sublimation. Lower wind speeds in the High Forest site create preferential snowfall deposition. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.
A satellite simulator for TRMM PR applied to climate model simulations
NASA Astrophysics Data System (ADS)
Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.
2017-12-01
Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.
NASA Astrophysics Data System (ADS)
Baba, Wassim; Gascoin, Simon; Hanich, Lahoucine; Kinnard, Christophe
2017-04-01
Snow melt from the Atlas Mountains watersheds represent an important water resource for the semi-arid, cultivated, lowlands. Due to the high incoming solar radiation and low precipitation, the spatial-temporal variability of the snowpack is expected to be strongly influenced by the topography. We explore this hypothesis using a distributed energy balance snow model (SnowModel) in the experimental watershed of the Rheraya River in Morocco (225 km2). The digital elevation model (DEM) in SnowModel is used for the computation of the gridded meteorological forcing from the automatic weather stations data. We acquired three Pléiades stereo pairs in to produce an accurate, high resolution DEM of the Rheraya watershed at 4 m posting. Then, the DEM was resampled to different spatial resolutions (8 m, 30 m, 90 m, 250 m and 500 m) to simulate the snowpack evolution over 2008-2009 snow season. As validation data we used a time series of 15 maps of the snow cover area (SCA) from Formosat-2 imagery over the same snow season in the upper Rheraya watershed. These maps have a resolution of 8 m, which enables to capture small-scale variability in the snow cover. We found that the simulations at 90 m, 30 m and 8 m yield similar results at the catchment scale, with significant differences in areas of very steep topography only. From February to April, an overall good agreement was observed between the simulated SCA and the Formosat-2 SCA at 8 m and 90 m. Before the melting season, true positive (TP) column of confusion matrix is close to 1, but it drops to 0.6 during the melting season. Heidke Skill Score is higher than 0.7 for the most of the validation dates and averages 0.8. On the contrary, 500 m simulation underestimates the SCA throughout the snow season and the TP score is always inferior to the one obtained at 8 m and 90 m. We further analyzed the effect of topography by comparing the distribution of meteorological and snowpack variables along north-south and east-west transects. This analysis indicates that the impact of the topography on the simulated SWE and snow melt is mainly driven by changes in the solar radiations and the precipitations.
The goal of achieving verisimilitude of air quality simulations to observations is problematic. Chemical transport models such as the Community Multi-Scale Air Quality (CMAQ) modeling system produce volume averages of pollutant concentration fields. When grid sizes are such tha...
Susong, D.D.; Abbott, M.L.; Krabbenhoft, D.P.
2003-01-01
Snow was sampled and analyzed for total mercury (THg) on the Idaho National Engineering and Environmental Laboratory (INEEL) and surrounding region prior to the start-up of a large (9-11 g/h) gaseous mercury emission source. The objective was to determine the effects of the source on local and regional atmospheric deposition of mercury. Snow samples collected from 48 points on a polar grid near the source had THg concentrations that ranged from 4.71 to 27.26 ng/L; snow collected from regional background sites had THg concentrations that ranged from 0.89 to 16.61 ng/L. Grid samples had higher concentrations than the regional background sites, which was unexpected because the source was not operating yet. Emission of Hg from soils is a possible source of Hg in snow on the INEEL. Evidence from Hg profiles in snow and from unfiltered/filtered split samples supports this hypothesis. Ongoing work on the INEEL is investigating Hg fluxes from soils and snow.
Rajiv Prasad; David G. Tarboton; Glen E. Liston; Charles H. Luce; Mark S. Seyfried
2001-01-01
In this paper a physically based snow transport model (SnowTran-3D) was used to simulate snow drifting over a 30 m grid and was compared to detailed snow water equivalence (SWE) surveys on three dates within a small 0.25 km2 subwatershed, Upper Sheep Creek. Two precipitation scenarios and two vegetation scenarios were used to carry out four snow transport model runs in...
Potential and limitations of webcam images for snow cover monitoring in the Swiss Alps
NASA Astrophysics Data System (ADS)
Dizerens, Céline; Hüsler, Fabia; Wunderle, Stefan
2017-04-01
In Switzerland, several thousands of outdoor webcams are currently connected to the Internet. They deliver freely available images that can be used to analyze snow cover variability on a high spatio-temporal resolution. To make use of this big data source, we have implemented a webcam-based snow cover mapping procedure, which allows to almost automatically derive snow cover maps from such webcam images. As there is mostly no information about the webcams and its parameters available, our registration approach automatically resolves these parameters (camera orientation, principal point, field of view) by using an estimate of the webcams position, the mountain silhouette, and a high-resolution digital elevation model (DEM). Combined with an automatic snow classification and an image alignment using SIFT features, our procedure can be applied to arbitrary images to generate snow cover maps with a minimum of effort. Resulting snow cover maps have the same resolution as the digital elevation model and indicate whether each grid cell is snow-covered, snow-free, or hidden from webcams' positions. Up to now, we processed images of about 290 webcams from our archive, and evaluated images of 20 webcams using manually selected ground control points (GCPs) to evaluate the mapping accuracy of our procedure. We present methodological limitations and ongoing improvements, show some applications of our snow cover maps, and demonstrate that webcams not only offer a great opportunity to complement satellite-derived snow retrieval under cloudy conditions, but also serve as a reference for improved validation of satellite-based approaches.
Parameterizing Grid-Averaged Longwave Fluxes for Inhomogeneous Marine Boundary Layer Clouds
NASA Technical Reports Server (NTRS)
Barker, Howard W.; Wielicki, Bruce A.
1997-01-01
This paper examines the relative impacts on grid-averaged longwave flux transmittance (emittance) for Marine Boundary Layer (MBL) cloud fields arising from horizontal variability of optical depth tau and cloud sides, First, using fields of Landsat-inferred tau and a Monte Carlo photon transport algorithm, it is demonstrated that mean all-sky transmittances for 3D variable MBL clouds can be computed accurately by the conventional method of linearly weighting clear and cloudy transmittances by their respective sky fractions. Then, the approximations of decoupling cloud and radiative properties and assuming independent columns are shown to be adequate for computation of mean flux transmittance. Since real clouds have nonzero geometric thicknesses, cloud fractions A'(sub c) presented to isotropic beams usually exceed the more familiar vertically projected cloud fractions A(sub c). It is shown, however, that when A(sub c)less than or equal to 0.9, biases for all-sky transmittance stemming from use of A(sub c) as opposed to A'(sub c) are roughly 2-5 times smaller than, and opposite in sign to, biases due to neglect of horizontal variability of tau. By neglecting variable tau, all-sky transmittances are underestimated often by more than 0.1 for A(sub c) near 0.75 and this translates into relative errors that can exceed 40% (corresponding errors for all-sky emittance are about 20% for most values of A(sub c). Thus, priority should be given to development of General Circulation Model (GCM) parameterizations that account for the effects of horizontal variations in unresolved tau, effects of cloud sides are of secondary importance. On this note, an efficient stochastic model for computing grid-averaged cloudy-sky flux transmittances is furnished that assumes that distributions of tau, for regions comparable in size to GCM grid cells, can be described adequately by gamma distribution functions. While the plane-parallel, homogeneous model underestimates cloud transmittance by about an order of magnitude when 3D variable cloud transmittances are less than or equal to 0.2 and by approx. 20% to 100% otherwise, the stochastic model reduces these biases often by more than 80%.
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Weltzien, Ingunn H.
2016-09-01
Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.
A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa
NASA Astrophysics Data System (ADS)
Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.
2015-12-01
The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.
Snow hydrology in Mediterranean mountain regions: A review
NASA Astrophysics Data System (ADS)
Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; López-Moreno, Juan Ignacio; Drapeau, Laurent; Page, Michel Le; Escadafal, Richard
2017-08-01
Water resources in Mediterranean regions are under increasing pressure due to climate change, economic development, and population growth. Many Mediterranean rivers have their headwaters in mountainous regions where hydrological processes are driven by snowpack dynamics and the specific variability of the Mediterranean climate. A good knowledge of the snow processes in the Mediterranean mountains is therefore a key element of water management strategies in such regions. The objective of this paper is to review the literature on snow hydrology in Mediterranean mountains to identify the existing knowledge, key research questions, and promising technologies. We collected 620 peer-reviewed papers, published between 1913 and 2016, that deal with the Mediterranean-like mountain regions in the western United States, the central Chilean Andes, and the Mediterranean basin. A large amount of studies in the western United States form a strong scientific basis for other Mediterranean mountain regions. We found that: (1) the persistence of snow cover is highly variable in space and time but mainly controlled by elevation and precipitation; (2) the snowmelt is driven by radiative fluxes, but the contribution of heat fluxes is stronger at the end of the snow season and during heat waves and rain-on-snow events; (3) the snow densification rates are higher in these regions when compared to other climate regions; and (4) the snow sublimation is an important component of snow ablation, especially in high-elevation regions. Among the pressing issues is the lack of continuous ground observation in high-elevation regions. However, a few years of snow depth (HS) and snow water equivalent (SWE) data can provide realistic information on snowpack variability. A better spatial characterization of snow cover can be achieved by combining ground observations with remotely sensed snow data. SWE reconstruction using satellite snow cover area and a melt model provides reasonable information that is suitable for hydrological applications. Further advances in our understanding of the snow processes in Mediterranean snow-dominated basins will be achieved by finer and more accurate representation of the climate forcing. While the theory on the snowpack energy and mass balance is now well established, the connections between the snow cover and the water resources involve complex interactions with the sub-surface processes, which demand future investigation.
NASA Astrophysics Data System (ADS)
Norton, P. A., II; Haj, A. E., Jr.
2014-12-01
The United States Geological Survey is currently developing a National Hydrologic Model (NHM) to support and facilitate coordinated and consistent hydrologic modeling efforts at the scale of the continental United States. As part of this effort, the Geospatial Fabric (GF) for the NHM was created. The GF is a database that contains parameters derived from datasets that characterize the physical features of watersheds. The GF was used to aggregate catchments and flowlines defined in the National Hydrography Dataset Plus dataset for more than 100,000 hydrologic response units (HRUs), and to establish initial parameter values for input to the Precipitation-Runoff Modeling System (PRMS). Many parameter values are adjusted in PRMS using an automated calibration process. Using these adjusted parameter values, the PRMS model estimated variables such as evapotranspiration (ET), potential evapotranspiration (PET), snow-covered area (SCA), and snow water equivalent (SWE). In order to evaluate the effectiveness of parameter calibration, and model performance in general, several satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) gridded datasets including ET, PET, SCA, and SWE were compared to PRMS-simulated values. The MODIS and SNODAS data were spatially averaged for each HRU, and compared to PRMS-simulated ET, PET, SCA, and SWE values for each HRU in the Upper Missouri River watershed. Default initial GF parameter values and PRMS calibration ranges were evaluated. Evaluation results, and the use of MODIS and SNODAS datasets to update GF parameter values and PRMS calibration ranges, are presented and discussed.
Real-Time Alpine Measurement System Using Wireless Sensor Networks
2017-01-01
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra’s wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape. PMID:29120376
Real-Time Alpine Measurement System Using Wireless Sensor Networks.
Malek, Sami A; Avanzi, Francesco; Brun-Laguna, Keoma; Maurer, Tessa; Oroza, Carlos A; Hartsough, Peter C; Watteyne, Thomas; Glaser, Steven D
2017-11-09
Monitoring the snow pack is crucial for many stakeholders, whether for hydro-power optimization, water management or flood control. Traditional forecasting relies on regression methods, which often results in snow melt runoff predictions of low accuracy in non-average years. Existing ground-based real-time measurement systems do not cover enough physiographic variability and are mostly installed at low elevations. We present the hardware and software design of a state-of-the-art distributed Wireless Sensor Network (WSN)-based autonomous measurement system with real-time remote data transmission that gathers data of snow depth, air temperature, air relative humidity, soil moisture, soil temperature, and solar radiation in physiographically representative locations. Elevation, aspect, slope and vegetation are used to select network locations, and distribute sensors throughout a given network location, since they govern snow pack variability at various scales. Three WSNs were installed in the Sierra Nevada of Northern California throughout the North Fork of the Feather River, upstream of the Oroville dam and multiple powerhouses along the river. The WSNs gathered hydrologic variables and network health statistics throughout the 2017 water year, one of northern Sierra's wettest years on record. These networks leverage an ultra-low-power wireless technology to interconnect their components and offer recovery features, resilience to data loss due to weather and wildlife disturbances and real-time topological visualizations of the network health. Data show considerable spatial variability of snow depth, even within a 1 km 2 network location. Combined with existing systems, these WSNs can better detect precipitation timing and phase in, monitor sub-daily dynamics of infiltration and surface runoff during precipitation or snow melt, and inform hydro power managers about actual ablation and end-of-season date across the landscape.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Vionnet, Vincent; Guyomarc'h, Gilbert; Heiser, Micha; Nishimura, Kouichi
2015-04-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns. It does not, however, provide a quantitative estimate of changes in snow depths. The objective of our research was to introduce a new parameter to quantify changes in snow depths in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its consistently bi-modal wind directions. Our work focused on two pronounced, approximately 10 m high terrain breaks, and we worked with 1 m resolution digital snow surface models (DSM). The DSM and measured changes in snow depths were obtained with high-accuracy terrestrial laser scan (TLS) measurements. First we calculated the terrain-based parameter Sx on a digital snow surface model and correlated Sx with measured changes in snow-depths (Δ SH). Results showed that Δ SH can be approximated by Δ SHestimated = α * Sx, where α is a newly introduced parameter. The parameter α has shown to be linked to the amount of snow deposited influenced by blowing snow flux. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter α . To simulate the development of the snow surface in dependency of Sx, SPC flux and time, we apply a simple cellular automata system. The system consists of raster cells that develop through discrete time steps according to a set of rules. The rules are based on the states of neighboring cells. Our model assumes snow transport in dependency of Sx gradients between neighboring cells. The cells evolve based on difference quotients between neighbouring cells. Our analyses and results are steps towards using the terrain-based parameter Sx, coupled with SPC data, to quantitatively estimate changes in snow depths, using high raster resolutions of 1 m.
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
NASA Astrophysics Data System (ADS)
Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong
2016-02-01
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. In Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
Zhang, Kai; Zhao, Chun; Wan, Hui; ...
2016-02-12
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less
Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Zhao, Chun; Wan, Hui
This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean dust emission, aerosol optical depth, and top-of-atmosphere radiative fluxes can be adjusted to the level of the default model, but the frequency distribution of dust emission changes, with more contribution from weaker wind events and less contribution from stronger wind events. Lastly, in Africa and Asia, the overall frequencies of occurrence of dust emissions increase, and the seasonal variations are enhanced, while the geographical patterns of the emission frequency show little change.« less
Validation of the RegCM4-Subgrid module for the high resolution climate simulation over Korea
NASA Astrophysics Data System (ADS)
Lee, C.; Im, E.; Chang, K.; Choi, Y.
2010-12-01
Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and the low and high rainfall extremes can influence the water balance of river basin, with several consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, especially for water resources. As an attempt to accurately assess the impact of climate change over Korea, we developed the dynamical downscaling system using the RegCM4 with a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS). The Sub-BATS system is composed of 20 km coarse-grid cell and 4 km sub-grid cell. Before a full climate change simulation is carried out, we performed the simulation spanning the 19-year periods (1989-2007) with the lateral boundary fields obtained from the ERA-Interim reanalysis. The Korean peninsula is characterized by narrow mountain systems surrounded by ocean, and covered by a relatively dense observational network (approximate 400 stations), which provides an excellent dataset to validate a finescale downscaled results over the region. The evaluation of simulated surface variables (e.g. temperature, precipitation, snow, runoff) shows the usefulness of the RegCM4-Subgrid module as a tool to produce fine scale climate information of surface processes for coupling with hydrological model over the Korean peninsula Acknowledgements This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government(MEST) (No. 2009-0085533), and by the "Advanced research on industrial meteorology" and " Development of meteorological resources for green growth." of National Institute of Meteorological Research (NIMR), funded by the Korea Meteorological Administration(KMA).
Physical and Chemical Properties of Seasonal Snow and the Impacts on Albedo in New Hampshire, USA
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Amante, J.; Dibb, J. E.
2014-12-01
Snow albedo is critical to surface energy budgets and thus to the timing of mid-winter and vernal melt events in seasonal snow packs. Timing of these melt events is important in predicting flooding, understanding plant and animal phenology, and the availability of winter recreational activity. The state of New Hampshire experiences large spatial and temporal variability in snow albedo as a result of differences in meteorological conditions, physical snow structure, and chemical impurities in the snow, particularly highly absorptive black carbon (BC) and dust particles. This work focuses on the winters of 2012-2013 and 2013-2014, comparing three intensive study sites. Data collected at these sites include sub-hourly meteorological data, near daily measurements of snow depth, snow density, surface IR temperature, specific surface area (SSA) from contact spectroscopy, and spectrally resolved snow albedo using an ASD FieldSpec4 throughout the winter season. Additionally, snow samples were analyzed for black carbon content and other chemical impurities including Cl-, NO3-, NH4 , K , Na , Mg2+ , Ca2+ and SO42-. For each storm event at the three intensive sites, moisture sources and paths were determined using HYPLIT back trajectory modeling to determine potential sources of black carbon and other impurities in the snow. Storms with terrestrial-based paths across the US Midwest and Canada resulted in higher BC content than storms with ocean-based paths and sources. In addition to the variable storm path between sites and between years, the second year of study was on average 2.5°C colder than the first year, impacting duration of snow cover at each site and the SSA of surface snow which is sensitive to frequency of snow events and relies on cold temperatures to reduce grain metamorphism. Combining an understanding of storm frequency and path with physical and chemical attributes of the snow allows us to investigate snow albedo sensitivities with implications for understanding the impacts of future climate change on snow albedo in the Northeastern US.
A passive microwave snow depth algorithm with a proxy for snow metamorphism
Josberger, E.G.; Mognard, N.M.
2002-01-01
Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Montilla, Soledad; Pimentel, Rafael; José Pérez-Palazón, María; Aguillar, Cristina; José Polo, María
2017-04-01
Snow plays a key role at the hydrological cycle in semiarid mountainous areas, modifying the energy and water balances that govern the regime of stored water in the snowpack, a key resource for the spring and summer river flow. The Natural and National Park of Sierra Nevada (SNNP), a coastal mountain range up to 3450 m a.s.l. in southern Spain, is a representative example of snow areas in Mediterranean-climate regions; its high altitudinal gradient results in a wide variety of eco-climatic environments, and it is part of the global monitoring network to study climate change. Both monitoring and modelling efforts have been performed to assess this variability and its significant scales; whereas increasing temperature trends have been found, no significant trends are observed so far regarding the precipitation regime both on a seasonal and annual basis, with a highly variable impact on the snow regime in this area, especially in the mid-altitude range. In this context, the study of the snow cover in the neighbouring Natural Park of Cazorla, Segura and Las Villas (CSLVNP), with similar climatic conditions but lower altitudes (up to 2107 m a.s.l.) is proposed as a parallel monitoring site for early warning of impacts of climate change on the snow regime. The CSLVNP is the most extensive protected area in Spain and it is located to the north of SNPN, with less influence of the Mediterranean Sea. This study carried out a first quantification of the snow importance in this area, which exhibits a large transitional zone with a dominant alpine environment, and its relationship with the observed local precipitation-temperature trends. For this, the snow cover fraction on a 30x30 m gridded resolution has been studied during a 5-yr period combining on-site meteorological observations and remote-sensing data analysis, and snow modelling by the distributed and physically based approach for Mediterranean regions proposed by Herrero et al. (2009; 2010). The analysis of the available series of satellite images Landsat 8 OLI/TIRS, Landsat 7 ETM+ and Landsat 4-5 TM were used to obtain snow cover fraction maps with 30x30 m resolution. The study period 2010-2015 was simulated with the distributed snow model and the results were compared against these snow map series. Additionally, the annual and seasonal trends of precipitation, mean daily temperature and global radiation were obtained from the available local data sets. Globally, the simulated results overestimate the snow presence in the study area, very likely due to the estimation of snowfall. However, on a local scale, the model performance improves in the region between 1750 and 2250 m altitude. On the other hand, those zones at lower altitudes, which are a transition of the clearly alpine environment above, present a high variability of results related to the spatial patterns of precipitation, temperature and radiation. Regarding the precipitation-temperature regime, an increasing 0.05 °/yr over the last 30 years (1970-2010) was found, but no significant conclusion can be achieved on precipitation trends. This is also observed in the SNNP, which confirms the potential representativeness of PNCSV as an early warning site. Further work is being carried out to improve the snow modelling at this site and generate longer snow cover fraction maps series and other characteristic variables of the snow in this area.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Risley, J. C.; Tracey, J. A.; Markstrom, S. L.; Hay, L.
2014-12-01
Snow cover areal depletion curves were used in a continuous daily hydrologic model to simulate seasonal spring snowmelt during the period between maximum snowpack accumulation and total melt. The curves are defined as the ratio of snow-water equivalence (SWE) divided by the seasonal maximum snow-water equivalence (Ai) (Y axis) versus the percent snow cover area (SCA) (X axis). The slope of the curve can vary depending on local watershed conditions. Windy sparsely vegetated high elevation watersheds, for example, can have a steeper slope than lower elevation forested watersheds. To improve the accuracy of simulated runoff at ungaged watersheds, individual snow cover areal depletion curves were created for over 100,000 hydrologic response units (HRU) in the continental scale U.S. Geological Survey (USGS) National Hydrologic Model (NHM). NHM includes the same components of the USGS Precipitation-Runoff-Modeling System (PRMS), except it uses consistent land surface characterization and model parameterization across the U.S. continent. Weighted-mean daily time series of 1-kilometer gridded SWE, from Snow Data Assimilation System (SNODAS), and 500-meter gridded SCA, from Moderate Resolution Imaging Spectroradiometer (MODIS), for 2003-2014 were computed for each HRU using the USGS Geo Data Portal. Using a screening process, pairs of SWE/Ai and SCA from the snowmelt period of each year were selected. SCA values derived from imagery that did not have any cloud cover and were >0 and <100 percent were selected. Unrealistically low and high SCA values that were paired with high and low SWE/Ai ratios, respectively, were removed. Second order polynomial equations were then fit to the remaining pairs of SWE/Ai and SCA to create a unique curve for each HRU. Simulations comparing these new curves with an existing single default curve in NHM will be made to determine if there are significant improvements in runoff.
A model of the planetary boundary layer over a snow surface
NASA Technical Reports Server (NTRS)
Halberstam, I.; Melendez, R.
1979-01-01
A model of the planetary boundary layer over a snow surface has been developed. It contains the vertical heat exchange processes due to radiation, conduction, and atmospheric turbulence. Parametrization of the boundary layer is based on similarity functions developed by Hoffert and Sud (1976), which involve a dimensionless variable, dependent on boundary-layer height and a localized Monin-Obukhov length. The model also contains the atmospheric surface layer and the snowpack itself, where snowmelt and snow evaporation are calculated. The results indicate a strong dependence of surface temperatures, especially at night, on the bursts of turbulence which result from the frictional damping of surface-layer winds during periods of high stability, as described by Businger (1973). The model also shows the cooling and drying effect of the snow on the atmosphere, which may be the mechanism for air mass transformation in sub-Arctic regions.
Space-time analysis of snow cover change in the Romanian Carpathians (2001-2016)
NASA Astrophysics Data System (ADS)
Micu, Dana; Cosmin Sandric, Ionut
2017-04-01
Snow cover is recognized as an essential climate variable, highly sensitive to the ongoing climate warming, which plays an important role in regulating mountain ecosystems. Evidence from the existing weather stations located above 800 m over the last 50 years points out that the climate of the Romanian Carpathians is visibly changing, showing an ongoing and consistent warming process. Quantifying and attributing the changes in snow cover on various spatial and temporal scales have a great environmental and socio-economic importance for this mountain region. The study is revealing the inter-seasonal changes in the timing and distribution of snow cover across the Romanian Carpathians, by combining gridded snow data (CARPATCLIM dataset, 1961-2010) and remote sensing data (2001-2016) in specific space-time assessment at regional scale. The geostatistical approach applied in this study, based on a GIS hotspot analysis, takes advantage of all the dimensions in the datasets, in order to understand the space-time trends in this climate variable at monthly time-scale. The MODIS AQUA and TERRA images available from 2001 to 2016 have been processed using ArcGIS for Desktop and Python programming language. All the images were masked out with the Carpathians boundary. Only the pixels with snow have been retained for analysis. The regional trends in snow cover distribution and timing have been analysed using Space-Time cube with ArcGIS for Desktop, according with Esri documentation using the Mann-Kendall trend test on every location with data as an independent bin time-series test. The study aimed also to assess the location of emerging hotspots of snow cover change in Carpathians. These hotspots have been calculated using Getis-Ord Gi* statistic for each bin using Hot Spot Analysis implemented in ArcGIS for Desktop. On regional scale, snow cover appear highly sensitive to the decreasing trends in air temperatures and land surface temperatures, combined with the decrease in seasonal precipitation, especially at lower elevations in all the three divisions of the Romanian Carpathians (generally below 1,700-1,800 m). The space-time patterns of snow cover change are dominated by a significant decreasing trend of snow days and earlier spring snow melt. The key findings of this study provides robust indication of a decreasing snow trends across the Carpathian Mountain region and could provide valuable spatial and temporal snow information for other related research fields as well as for an effective environmental monitoring in the mountain ecosystems of the Carpathian region
Observation of Snow cover glide on Sub-Alpine Coniferous Forests in Mount Zao, Northeastern Japan
NASA Astrophysics Data System (ADS)
Sasaki, A.; Suzuki, K.
2017-12-01
This is the study to clarify the snow cover glide behavior in the sub-alpine coniferous forests on Mount Zao, Northeastern Japan, in the winter of 2014-2015. We installed the glide-meter which is sled type, and measured the glide motion on the slope of Abies mariesii forest and its surrounding slope. In addition, we observed the air temperature, snow depth, density of snow, and snow temperature to discuss relationship between weather conditions and glide occurrence. The snow cover of the 2014-15 winter started on November 13th and disappeared on April 21st. The maximum snow depth was 242 cm thick, it was recorded at February 1st. The snow cover glide in the surrounding slope was occurred first at February 10th, although maximum snow depth recorded on February 1st. The glide motion in the surrounding slope is continuing and its velocity was 0.4 cm per day. The glide in the surrounding slope stopped at March 16th. The cumulative amount of the glide was 21.1 cm. The snow cover glide in the A. mariesii forest was even later occurred first at February 21st. The glide motion of it was intermittent and extremely small. On sub-alpine zone of Mount Zao, snow cover glide intensity is estimated to be 289 kg/m2 on March when snow water equivalent is maximum. At same period, maximum snow cover glide intensity is estimated to be about 1000 kg/m2 at very steep slopes where the slope angle is about 35 degree. Although potential of snow cover glide is enough high, the snow cover glide is suppressed by stem of A. mariesii trees, in the sub-alpine coniferous forest.
NASA Astrophysics Data System (ADS)
Schön, Peter; Prokop, Alexander; Naaim-Bouvet, Florence; Nishimura, Kouichi; Vionnet, Vincent; Guyomarc'h, Gilbert
2014-05-01
Wind and the associated snow drift are dominating factors determining the snow distribution and accumulation in alpine areas, resulting in a high spatial variability of snow depth that is difficult to evaluate and quantify. The terrain-based parameter Sx characterizes the degree of shelter or exposure of a grid point provided by the upwind terrain, without the computational complexity of numerical wind field models. The parameter has shown to qualitatively predict snow redistribution with good reproduction of spatial patterns, but has failed to quantitatively describe the snow redistribution, and correlations with measured snow heights were poor. The objective of our research was to a) identify the sources of poor correlations between predicted and measured snow re-distribution and b) improve the parameters ability to qualitatively and quantitatively describe snow redistribution in our research area, the Col du Lac Blanc in the French Alps. The area is at an elevation of 2700 m and particularly suited for our study due to its constant wind direction and the availability of data from a meteorological station. Our work focused on areas with terrain edges of approximately 10 m height, and we worked with 1-2 m resolution digital terrain and snow surface data. We first compared the results of the terrain-based parameter calculations to measured snow-depths, obtained by high-accuracy terrestrial laser scan measurements. The results were similar to previous studies: The parameter was able to reproduce observed patterns in snow distribution, but regression analyses showed poor correlations between terrain-based parameter and measured snow-depths. We demonstrate how the correlations between measured and calculated snow heights improve if the parameter is calculated based on a snow surface model instead of a digital terrain model. We show how changing the parameter's search distance and how raster re-sampling and raster smoothing improve the results. To improve the parameter's quantitative abilities, we modified the parameter, based on the comparisons with TLS data and the terrain and wind conditions specific to the research site. The modification is in a linear form f(x) = a * Sx, where a is a newly introduced parameter; f(x) yields the estimates for the snow height. We found that the parameter depends on the time period between the compared snow surfaces and the intensity of drifting snow events, which are linked to wind velocities. At the Col du Lac Blanc test side, blowing snow flux is recorded with snow particle counters (SPC). Snow flux is the number of drifting snow particles per time and area. Hence, the SPC provide data about the duration and intensity of drifting snow events, two important factors not accounted for by the terrain parameter Sx. We analyse how the SPC snow flux data can be used to estimate the magnitude of the new variable parameter a. We could improve the parameters' correlations with measured snow heights and its ability to quantitatively describe snow distribution in the Col du Lac Blanc area. We believe that our work is also a prerequisite to further improve the parameter's ability to describe snow redistribution.
The U.S. Environmental Protection Agency (U.S. EPA) is extending its Models-3/Community Multiscale Air Quality (CMAQ) Modeling System to provide detailed gridded air quality concentration fields and sub-grid variability characterization at neighborhood scales and in urban areas...
Comparison of Commonly-Used Microwave Radiative Transfer Models for Snow Remote Sensing
NASA Technical Reports Server (NTRS)
Royer, Alain; Roy, Alexandre; Montpetit, Benoit; Saint-Jean-Rondeau, Olivier; Picard, Ghislain; Brucker, Ludovic; Langlois, Alexandre
2017-01-01
This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T(sub B)): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T(sub B) at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations. In addition to density, snow microstructure is defined for each snow layer by grain optical diameter (Do) and stickiness for DMRT-ML and DMRT-QMS, mean grain geometrical maximum extent (D(sub max)) for HUT n-layers and the exponential correlation length for MEMLS. These metrics were derived from either in-situ measurements of snow specific surface area (SSA) or macrophotos of grain sizes (D(sub max)), assuming non-sticky spheres for the DMRT models. Simulated T(sub B) sensitivity analysis using the same inputs shows relatively consistent T(sub B) behavior as a function of Do and density variations for the vertical polarization (maximum deviation of 18 K and 27 K, respectively), while some divergences appear in simulated variations for the polarization ratio (PR). Comparisons with ground based radiometric measurements show that the simulations based on snow SSA measurements have to be scaled with a model-specific factor of Do in order to minimize the root mean square error (RMSE) between measured and simulated T(sub B). Results using in-situ grain size measurements (SSA or D(sub max), depending on the model) give a mean T(sub B) RMSE (19 and 37 GHz) of the order of 16-26 K, which is similar for all models when the snow microstructure metrics are scaled. However, the MEMLS model converges to better results when driven by the correlation length estimated from in-situ SSA measurements rather than D(sub max) measurements. On a practical level, this paper shows that the SSA parameter, a snow property that is easy to retrieve in-situ, appears to be the most relevant parameter for characterizing snow microstructure, despite the need for a scaling factor.
Snow cover data records from satellite and conventional measurements
NASA Astrophysics Data System (ADS)
Derksen, C.; Brown, R.; Wang, L.
2008-12-01
A major goal of snow-related research in the Climate Research Division of Environment Canada is the development of consistent snow cover information from satellite and in situ data sources for climate monitoring and model evaluation. This work involves new satellite algorithm development for reliable mapping of snow water equivalent (SWE), snow cover extent (SCE) and snow cover onset and melt dates, evaluation of existing snow cover products such as the NOAA weekly data set with in situ and satellite data, and the reconstruction and reanalysis of snow cover information from the application of physical snow models, geostatistics and data assimilation methods. In the context of the International Polar Year, a major effort is being made to develop and evaluate snow cover information over the Arctic region with a particular focus on the dynamic spring melt period where positive feedbacks to the climate system are more pronounced. Assessment of the NOAA daily and weekly SCE products with MODIS and QuikSCAT derived datasets identified a systematic late bias of 2-3 weeks in snow-off dates over northern Canada. This bias was not observed over northern Eurasia which suggests that regional differences in variables such as lake fraction and cloud cover are systematically influencing the accuracy of the NOAA product over northern Canada. Considerable progress has been made in deriving passive microwave derived SWE information over sub- Arctic regions of North America where pre-existing algorithms were unable to account for the influence of forest cover and lake ice. Previous uncertainties in retrieving SWE across the boreal forest have been resolved with the combination of 18.7 and 10.7 GHz measurements from the Advanced Microwave Scanning Radiometer (AMSR-E; 2002-present). Full time series development (1978-onwards) remains problematic, however, because 10.7 GHz measurements are not available from the Special Sensor Microwave/Imager (1987-present). Satellite measurements coupled with lake ice model simulations have illustrated frequency dependent, seasonally evolving relationships between brightness temperature and lake fraction across tundra regions. A potential solution based on the temporal evolution of 37 GHz AMSR-E measurements shows some promise as this was found to be significantly correlated with field measurements of tundra SWE, and to be relatively insensitive to lake fraction. New pan-Arctic (N 60°N) snowmelt onset and end date records (2000-2006) were produced from enhanced resolution (4.45 km) QuikSCAT (QSCAT) Ku-band backscatter measurements. The goal is to merge this with melt onset information from other components of the cryosphere (e.g. glaciers, ice caps, ice sheets, lake ice, sea ice) to provide an integrated circumpolar melt onset and duration dataset for climate monitoring and research on cryosphere-climate links and feedbacks. A major challenge is expanding the relatively short time period of Ku-band satellite measurements with historical C-band data (i.e. from ERS-1). Geostatistical methods and snow cover modeling were used to develop a 10-km gridded SWE dataset over Quebec from 1970-2005 for climate studies and evaluation of the performance of the Canadian Regional Climate Model.
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Diao, Minghui; Zhang, Kai; Gettelman, Andrew; Lu, Zheng; Penner, Joyce E.; Lin, Zhaohui
2017-04-01
In this study we evaluate cloud properties simulated by the Community Atmosphere Model version 5 (CAM5) using in situ measurements from the HIAPER Pole-to-Pole Observations (HIPPO) campaign for the period of 2009 to 2011. The modeled wind and temperature are nudged towards reanalysis. Model results collocated with HIPPO flight tracks are directly compared with the observations, and model sensitivities to the representations of ice nucleation and growth are also examined. Generally, CAM5 is able to capture specific cloud systems in terms of vertical configuration and horizontal extension. In total, the model reproduces 79.8 % of observed cloud occurrences inside model grid boxes and even higher (94.3 %) for ice clouds (T ≤ -40 °C). The missing cloud occurrences in the model are primarily ascribed to the fact that the model cannot account for the high spatial variability of observed relative humidity (RH). Furthermore, model RH biases are mostly attributed to the discrepancies in water vapor, rather than temperature. At the micro-scale of ice clouds, the model captures the observed increase of ice crystal mean sizes with temperature, albeit with smaller sizes than the observations. The model underestimates the observed ice number concentration (Ni) and ice water content (IWC) for ice crystals larger than 75 µm in diameter. Modeled IWC and Ni are more sensitive to the threshold diameter for autoconversion of cloud ice to snow (Dcs), while simulated ice crystal mean size is more sensitive to ice nucleation parameterizations than to Dcs. Our results highlight the need for further improvements to the sub-grid RH variability and ice nucleation and growth in the model.
The Potential for Snow to Supply Human Water Demand in the Present and Future
NASA Technical Reports Server (NTRS)
Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.
2015-01-01
Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins - which together have a present population of approx. 2 billion people - are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of more than 300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.
NewAge: a semi-distributed hydrological model as a dynamical system, and something more.
NASA Astrophysics Data System (ADS)
Rigon, Riccardo; Franceschi, Silvia; Antonello, Andrea; Endrizzi, Stefano; Formetta, Giuseppe
2010-05-01
We describe and analyse the performances of the semi-distributed hydrological model NewAGE. This model itself is made-up of five main parts: the radiation budget estimation, the snow modelling, the evapotranspiration part, the hillslope runoff budget and the runoff aggregation in the river network, and finally the flood propagation. The model concept is based on the idea the elementary units are the hillslopes for each one the model gives the estimates of the prognostic simulated variables (one estimate for variable). Each "hillslope" does not need to coincide to the real hillslope, and can actually cover a small basin, up to some square kilometres. It constitutes the elementary "grid" element of the model. Each "hillslope" is connected to the others by the channel network. In turn, this is represented by an oriented graph, whose links are numbered through a generalisation of the Pfafstetter ordering. The topological partition of the basin is performed by a proper set of tools in JGrass. The mass budget for each hillslope is performed according to a suitable modification of Duffy (1996) dynamical model of hillslope runoff. Discharge in each link of the river network is evaluated according to Cuencas (2005). Radiation is calculated accounting for the sub-hillslope-variability in accord to a suitable scheme described in this contribution. Evapotranspiration estimation uses the Penman-Monteith formula, and includes hillslope variability in land use, soil cover and hydrological state. Flood wave propagation for the main streams can be estimated with a solver of the 1D de Saint Venant equation. Snow is modelled by a custom implementation of the Utah Energy Balance concepts. This model can simulate all the parts of the hydrological cycle, but besides being also a model of the physical processes, it also implements the infrastructure dealing with human works and reservoirs. These modelling parts are supported by appropriate ancillary modules for the treatment of the meteorological data. The various pieces of NewAGE are implemented as code components according the the OpenMI 1.4 standard, and interface to the users by means of the GIS system JGrass. It is distributed under the GPL3 license. Here we report here about two case studies made up of the model regarding the two rivers Passirio and Adige with outlet in Bozen, and covering respectively the discharge and the snow cover estimation. This last is compared to MODIS product.
NASA Astrophysics Data System (ADS)
Dai, Liyun; Che, Tao; Ding, Yongjian; Hao, Xiaohua
2017-08-01
Snow cover on the Qinghai-Tibetan Plateau (QTP) plays a significant role in the global climate system and is an important water resource for rivers in the high-elevation region of Asia. At present, passive microwave (PMW) remote sensing data are the only efficient way to monitor temporal and spatial variations in snow depth at large scale. However, existing snow depth products show the largest uncertainties across the QTP. In this study, MODIS fractional snow cover product, point, line and intense sampling data are synthesized to evaluate the accuracy of snow cover and snow depth derived from PMW remote sensing data and to analyze the possible causes of uncertainties. The results show that the accuracy of snow cover extents varies spatially and depends on the fraction of snow cover. Based on the assumption that grids with MODIS snow cover fraction > 10 % are regarded as snow cover, the overall accuracy in snow cover is 66.7 %, overestimation error is 56.1 %, underestimation error is 21.1 %, commission error is 27.6 % and omission error is 47.4 %. The commission and overestimation errors of snow cover primarily occur in the northwest and southeast areas with low ground temperature. Omission error primarily occurs in cold desert areas with shallow snow, and underestimation error mainly occurs in glacier and lake areas. With the increase of snow cover fraction, the overestimation error decreases and the omission error increases. A comparison between snow depths measured in field experiments, measured at meteorological stations and estimated across the QTP shows that agreement between observation and retrieval improves with an increasing number of observation points in a PMW grid. The misclassification and errors between observed and retrieved snow depth are associated with the relatively coarse resolution of PMW remote sensing, ground temperature, snow characteristics and topography. To accurately understand the variation in snow depth across the QTP, new algorithms should be developed to retrieve snow depth with higher spatial resolution and should consider the variation in brightness temperatures at different frequencies emitted from ground with changing ground features.
Layer detection and snowpack stratigraphy characterisation from digital penetrometer signals
NASA Astrophysics Data System (ADS)
Floyer, James Antony
Forecasting for slab avalanches benefits from precise measurements of snow stratigraphy. Snow penetrometers offer the possibility of providing detailed information about snowpack structure; however, their use has yet to be adopted by avalanche forecasting operations in Canada. A manually driven, variable rate force-resistance penetrometer is tested for its ability to measure snowpack information suitable for avalanche forecasting and for spatial variability studies on snowpack properties. Subsequent to modifications, weak layers of 5 mm thick are reliably detected from the penetrometer signals. Rate effects are investigated and found to be insignificant for push velocities between 0.5 to 100 cm s-1 for dry snow. An analysis of snow deformation below the penetrometer tip is presented using particle image velocimetry and two zones associated with particle deflection are identified. The compacted zone is a region of densified snow that is pushed ahead of the penetrometer tip; the deformation zone is a broader zone surrounding the compacted zone, where deformation is in compression and in shear. Initial formation of the compacted zone is responsible for pronounced force spikes in the penetrometer signal. A layer tracing algorithm for tracing weak layers, crusts and interfaces across transects or grids of penetrometer profiles is presented. This algorithm uses Wiener spiking deconvolution to detect a portion of the signal manually identified as a layer in one profile across to an adjacent profile. Layer tracing is found to be most effective for tracing crusts and prominent weak layers, although weak layers close to crusts were not well traced. A framework for extending this method for detecting weak layers with no prior knowledge of weak layer existence is also presented. A study relating the fracture character of layers identified in compression tests is presented. A multivariate model is presented that distinguishes between sudden and other fracture characters 80% of the time. Transects of penetrometer profiles are presented over several alpine terrain features commonly associated with spatial variability of snowpack properties. Physical processes relating to the variability of certain snowpack properties revealed in the transects is discussed. The importance of characteristic signatures for training avalanche practitioners to recognise potentially unstable terrain is also discussed.
Chang, A.T.C.; Kelly, R.E.J.; Josberger, E.G.; Armstrong, R.L.; Foster, J.L.; Mognard, N.M.
2005-01-01
Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain. Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural snowpacks need to be understood if comparisons are to be made between a point SD measurement and satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground measurements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that in comparing samples of ground-measured point SD data with satellite-derived 25 ?? 25 km2 pixels of SD from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant differences in yearly SD values even though the accumulated datasets showed similarities. Second, from variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling grid cell domain of 1?? ?? 1?? in the study terrain, 10 distributed snow depth measurements per cell are required to produce a sampling error of 5 cm or better. This study has important implications for validating SD derivations from satellite microwave observations. ?? 2005 American Meteorological Society.
NASA Astrophysics Data System (ADS)
AL, R.
2016-12-01
It has been widely recognized that western Himalayan region depends heavily on glacier and snow melt for its water needs. This is true especially for the Chenab sub-basin and more generally for other sub-catchments of the mighty Indus catering to the water demands of millions of stake holders who depend on this water resource. However, there are very few studies available to understand high altitude glaciated catchments, the climatic controls over their flow regimes, and their dependency on glacier mass balances, mainly because of poor access. Hence, the proglacial stream discharges from Chhota Shigri Glacier, a representative glacier of western Himalayan region has been analyzed for understanding the impact of rising air temperatures and highly variable summer precipitation events on discharges that are sourced majorly from snow melt and glacier wastage. This study, for the first time attempts to understand the factors influencing the interannual, subseasonal, and the diurnal variability observed in this representative catchment over four ablation seasons (2010-2013), by monitoring solar radiation, air temperature, summer precipitation, albedo and transient snow cover. The proglacial discharge is governed by air temperatures and albedo-enhancing summer precipitation events, which also enhances transient snow cover. While, the positive mass balance years gave rise to lesser proglacial discharges in comparison to negative mass balance years, lesser winter accumulation was compensated by the lower ablation resulting summer snowfall events in some years. While rising summer air temperatures give rise to glacier wastage, the role of melting transient snow cover on stream discharge is highly significant, especially for positive mass balance years. The pronounced interannual variations and the decreased proglacial discharge in comparison to 1980s suggest that Chhota Shigri Glacier is possibly wasting its way to reach equilibrium to the changed climatic conditions of the 21st century; however these findings need to be corroborated with runoff modeling.
MODIS Snow and Sea Ice Products
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.
2004-01-01
In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.
Flexible Energy Scheduling Tool for Integrating Variable Generation | Grid
, security-constrained economic dispatch, and automatic generation control programs. DOWNLOAD PAPER Electric commitment, security-constrained economic dispatch, and automatic generation control sub-models. Each sub resolutions and operating strategies can be explored. FESTIV produces not only economic metrics but also
NASA Technical Reports Server (NTRS)
Choudhury, Bhaskar J.; Foster, James L.
2010-01-01
A radiative transfer model for estimating snow water equivalent (SWE, mm) from satellite-observed brightness temperature (K) at 19 and 37 GHz (respectively, T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)) over partially forested area is presented, as an extension of a previously published model, by considering scattering of radiation within the canopy. For the specific case of dense vegetation covering fractional area f, the model can be written as, SWE = alpha{ A. delta (T(sub B(sub, sat)) + B - C. f}/(l f), where delta T(sub B(sub, sat)), is the difference of T(sub B(sub, sat,19)) and T(sub B(sub, sat,37)), alpha(mm/K) is the slope of SWE vs. brightness temperature difference at 19 and 37 GHz that would be obtained by ignoring the presence of atmosphere, delta(T(sub B)sub g)), for a homogeneous snow cover (which varies with grain size). The parameters A, B, and C, are determined primarily by atmospheric characteristics, and for a likely range of atmospheric conditions appear to be in the range of, respectively, 1.15-1.63, 0.69-2.84 K and 0.59-2.39 K. Ignoring atmospheric correction would introduce bias towards underestimation of SWE (and also, snow cover area and snow depth). Increasing cloud liquid water path (L) has the effect of increasing A, and ignoring this variation of A with L would have the impact of biasing the estimate of SWE (and snow extent). Such biasing is further exacerbated with increasing f, because of the appearance of term (l-f) in the denominator. The impact of ignoring the intercept parameters (B and C) would be noticeable at low values of SWE (appearing as a bias towards underestimation of SWE), which has been determined to be about 6 mm for average environmental conditions. The uncertainty in estimating SWE due to variations in the atmospheric characteristics is likely to be less than 15%, but could be up to 25% for non-vegetated snow-covered areas. Better estimates of SWE (and snow extent) would be obtained by adjusting the parameters of the above model to regional differences in the atmospheric characteristics. The biases in determining SWE arising due to variations in atmospheric conditions and due to changes in fractional forest cover are not independent, since they interact as {A/(l-f)}. The present calculations also show that improvement in determining snow cover area from the microwave data is likely to occur when these data are corrected for atmospheric effects, as demonstrated by a specific case study.
NASA Astrophysics Data System (ADS)
Wang, Y.; Geerts, B.; Liu, C.
2015-12-01
This work first examines the performance of a regional climate model in capturing orographic precipitation and snowpack dynamics in the northern US Rockies. The Weather Research and Forecasting (WRF) model is run at a sufficiently fine resolution (4-km horizontal grid spacing), over a sub-continental domain driven by the Climate Forecast System Reanalysis (CFSR), to examine WRF's ability to simulate the observed seasonal precipitation and snowpack dynamics. WRF retrospective simulations are being run over a 30-year period from 1980 to 2010. Observations from Snow Telemetry (SNOTEL, providing precipitation rate and snowpack snow water equivalent (SWE)) and the Parameter-elevation Regressions on Independent Slopes Model (PRISM, providing fine-scale monthly mean values of precipitation and temperature) are used for validation. The results show that WRF captures observed seasonal precipitation and snowpack build-up reasonably well. The second part of this work is in progress. A pseudo-global warming (PGW) technique is used to perturb the retrospective reanalysis with the anticipated change according to the consensus global model guidance under the CMIP5 "high emissions" (RCP8.5) scenario produced by the CCSM4. This technique preserves low-frequency general circulation patterns and the characteristics of storms entering the domain. The WRF model is rerun over 30 years centered on 2050 with perturbed initial and boundary conditions. The results will be used to examine the effect of climate variability and projected global warming on the statistical distributions of precipitation amounts and SWE in the studied domain.
Snow-atmosphere coupling and its impact on temperature variability and extremes over North America
NASA Astrophysics Data System (ADS)
Diro, G. T.; Sushama, L.; Huziy, O.
2018-04-01
The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating temperature extreme characteristics.
Studies of snowpack properties by passive microwave radiometry
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.
1978-01-01
Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub b). The T sub b varies with snow grain and crystal sizes, liquid water content and snowpack temperature. The T sub b of the 0.8 cm wavelength channel was found to decrease moreso with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub b for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground. Ultimately it may be possible to estimate snow volume over large areas using calibrated brightness temperatures and consequently improve snowmelt runoff predictions.
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rahimi-Esfarjani, Stefan R.; Lu, Zheng
2018-01-01
The deposition of light-absorbing aerosols (LAAs), such as black carbon (BC) and dust, onto snow cover has been suggested to reduce the snow albedo and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) with a regionally refined high-resolution (0.125°) grid to quantify the impacts of LAAs in snow in the Rocky Mountain region during the period 1981-2005. We first evaluate the model simulation of LAA concentrations both near the surface and in snow and then investigate the snowpack and runoff changes induced by LAAs in snow. The model simulates similar magnitudes of near-surface atmospheric dust concentrations as observations in the Rocky Mountain region. Although the model underestimates near-surface atmospheric BC concentrations, the model overestimates BC-in-snow concentrations by 35 % on average. The regional mean surface radiative effect (SRE) due to LAAs in snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-42 % of total SRE. Due to positive snow albedo feedbacks induced by the LAA SRE, snow water equivalent is reduced by 2-50 mm and snow cover fraction by 5-20 % in the two regions around the mountains (eastern Snake River Plain and southwestern Wyoming), corresponding to an increase in surface air temperature by 0.9-1.1 °C. During the snow melting period, LAAs accelerate the hydrologic cycle with monthly runoff increases of 0.15-1.00 mm day-1 in April-May and reductions of 0.04-0.18 mm day-1 in June-July in the mountainous regions. Of all the mountainous regions, the Southern Rockies experience the largest reduction of total runoff by 15 % during the later stage of snowmelt (i.e., June and July). Compared to previous studies based on field observations, our estimation of dust-induced SRE is generally 1 order of magnitude smaller in the Southern Rockies, which is ascribed to the omission of larger dust particles (with the diameter > 10 µm) in the model. This calls for the inclusion of larger dust particles in the model to reduce the discrepancies. Overall these results highlight the potentially important role of LAA interactions with snowpack and the subsequent impacts on the hydrologic cycles across the Rocky Mountains.
NCAR global model topography generation software for unstructured grids
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Bacmeister, J. T.; Callaghan, P. F.; Taylor, M. A.
2015-06-01
It is the purpose of this paper to document the NCAR global model topography generation software for unstructured grids. Given a model grid, the software computes the fraction of the grid box covered by land, the gridbox mean elevation, and associated sub-grid scale variances commonly used for gravity wave and turbulent mountain stress parameterizations. The software supports regular latitude-longitude grids as well as unstructured grids; e.g. icosahedral, Voronoi, cubed-sphere and variable resolution grids. As an example application and in the spirit of documenting model development, exploratory simulations illustrating the impacts of topographic smoothing with the NCAR-DOE CESM (Community Earth System Model) CAM5.2-SE (Community Atmosphere Model version 5.2 - Spectral Elements dynamical core) are shown.
NASA Astrophysics Data System (ADS)
Vander Jagt, Benjamin John
Snow and its water equivalent plays a vital role in global water and energy balances, with particular relevance in mountainous areas with arid and semi-arid climate regimes. Spaceborne passive microwave (PM) remote sensing measurements are attractive for snowpack characterization due to their continuous global coverage and historical record; over 30 years of research has been invested in the development of methods to characterize large-scale snow water resources from PM-based measurements. Historically, use of PM data for snowpack characterization in montane enviroments has been obstructed by the complex subpixel variability of snow properties within the PM measurement footprint. The main subpixel effects can be grouped as: the effect of snow microstructure (e.g. snow grain size) and stratigraphy on snow microwave emission, vegetation attenuation of PM measurements, and the sensitivity PM brightness temperature (Tb) observation to the variability of different subpixel properties at spaceborne measurement scales. This dissertation is focused on a systematic examination of these issues, which thus far have prevented the widespread integration of snow water equivalent (SWE) retrieval methods. It is meant to further our comprehension of the underlying processes at work in these rugged, remote, a hydrologically important areas. The role that snow microstructure plays in the PM retrievals of SWE is examined first. Traditional estimates of grain size are subjective and prone to error. Objective techniques to characterize grain size are described and implemented, including near infrared (NIR), stereology, and autocorrelation based approaches. Results from an intensive Colorado field study in which independent estimates of grain size and their modeled brightness temperature (Tb) emission are evaluated against PM Tb observations are included. The coarse resolution of the passive microwave measurements provides additional challenges when trying to resolve snow states via remote sensing observations. The natural heterogeneity of snowpack (e.g. depth, stratigraphy, etc) and vegetative states within the PM footprint occurs at spatial scales smaller than PM observation scales. The sensitivity to changes in snow depth given sub-pixel variability in snow and vegetation is explored and quantified using the comprehensive dataset acquired during the Cold Land Processes experiment (CLPX). Lastly, vegetation has long been an obstacle in efforts to derive snow depth and mass estimates from passive microwave (PM) measurements of brightness temperature (Tb). We introduce a vegetation transmissivity model that is derived entirely from multi-scale and multi-temporal PM Tb observations and a globally available vegetation dataset, specifically the Leaf Area Index (LAI). This newly constructed model characterizes the attenuation of PM Tb observations at frequencies typically employed for snow retrieval algorithms, as a function of LAI. Additionally, the model is used to predict how much SWE is observable within the major river basins of Colorado and the central Rockies.
Studies of snowpack properties by passive microwave radiometry
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.
1979-01-01
Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub B). The T sub B varies with snow grain and crystal sizes, liquid water content, and snowpack temperature. The T sub B of the 0.8 cm wavelength channel was found to decrease more so with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub B for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground.
Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation
NASA Technical Reports Server (NTRS)
Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew
2016-01-01
This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.
Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies
NASA Astrophysics Data System (ADS)
Tootle, G.; Anderson, S.; Grissino-Mayer, H.
2012-12-01
Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. Tree-ring chronologies (TRCs) were used to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k-nearest neighbor techniques. Moisture sensitive tree-ring chronologies in and adjacent to the UCRB were correlated with regional soil moisture and tested for temporal stability. TRCs that were positively correlated and stable for the calibration period were retained. Stepwise linear regression was applied to identify the best predictor combinations for each soil moisture region. The regressions explained 42-78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained increased variance in the datasets. Reconstructed soil moisture was standardized and compared with standardized reconstructed streamflow and snow water equivalent from the same region. Soil moisture reconstructions were highly correlated with streamflow and snow water equivalent reconstructions, indicating reconstructions of soil moisture in the UCRB using TRCs successfully represent hydrologic trends, including the identification of periods of prolonged drought.
USING CMAQ FOR EXPOSURE MODELING AND CHARACTERIZING THE SUB-GRID VARIABILITY FOR EXPOSURE ESTIMATES
Atmospheric processes and the associated transport and dispersion of atmospheric pollutants are known to be highly variable in time and space. Current air quality models that characterize atmospheric chemistry effects, e.g. the Community Multi-scale Air Quality (CMAQ), provide vo...
Delgiudice, Glenn D; Fieberg, John R; Sampson, Barry A
2013-01-01
Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer.
DelGiudice, Glenn D.; Fieberg, John R.; Sampson, Barry A.
2013-01-01
Backgound Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. Methodology/Principal Findings We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Conclusions/Significance Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer. PMID:23785421
ALBEDO MODELS FOR SNOW AND ICE ON A FRESHWATER LAKE. (R824801)
Snow and ice albedo measurements were taken over a freshwater lake in Minnesota for three months during the winter of 1996¯1997 for use in a winter lake water quality model. The mean albedo of new snow was measured as 0.83±0.028, while the...
NASA Astrophysics Data System (ADS)
Sicart, J. E.; Ramseyer, V.; Lejeune, Y.; Essery, R.; Webster, C.; Rutter, N.
2017-12-01
At high altitudes and latitudes, snow has a large influence on hydrological processes. Large fractions of these regions are covered by forests, which have a strong influence on snow accumulation and melting processes. Trees absorb a large part of the incoming shortwave radiation and this heat load is mostly dissipated as longwave radiation. Trees shelter the snow surface from wind, so sub-canopy snowmelt depends mainly on the radiative fluxes: vegetation attenuates the transmission of shortwave radiation but enhances longwave irradiance to the surface. An array of 13 pyranometers and 11 pyrgeometers was deployed on the snow surface below a coniferous forest at the CEN-MeteoFrance Col de Porte station in the French Alps (1325 m asl) during the 2017 winter in order to investigate spatial and temporal variabilities of solar and infrared irradiances in different meteorological conditions. Sky view factors measured with hemispherical photographs at each radiometer location were in a narrow range from 0.2 to 0.3. The temperature of the vegetation was measured with IR thermocouples and an IR camera. In clear sky conditions, the attenuation of solar radiation by the canopy reached 96% and its spatial variability exceeded 100 W m-2. Longwave irradiance varied by 30 W m-2 from dense canopy to gap areas. In overcast conditions, the spatial variabilities of solar and infrared irradiances were reduced and remained closely related to the sky view factor. A simple radiative model taking into account the penetration through the canopy of the direct and diffuse solar radiation, and isotropic infrared emission of the vegetation as a blackbody emitter, accurately reproduced the dynamics of the radiation fluxes at the snow surface. Model results show that solar transmissivity of the canopy in overcast conditions is an excellent proxy of the sky view factor and the emitting temperature of the vegetation remained close to the air temperature in this typically dense Alpine forest.
Global perspective of nitrate flux in ice cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, O.; Mayewski, P.A.; Whitlow, S.
1995-03-20
The relationships between the concentration and the flux of chemical species (Cl{sup {minus}}, NO{sub 3}{sup {minus}}, SO{sub 4}{sup 2{minus}}, Na{sup +}, K{sup +}, NH{sub 4}{sup +}, Mg{sub 2+}, Ca{sup 2+}) versus snow accumulation rate were examined at GISP2 and 20D in Greenland, Mount Logan from the St. Elias Range, Yukon Territory, Canada, and Sentik Glacier from the northwest end of the Zanskar Range in the Indian Himalayas. At all sites, only nitrate flux is significantly ({alpha}=0.05) related to snow accumulation rate. Of all the chemical series, only nitrate concentration data are normally distributed. Therefore the authors suggest that nitrate concentrationmore » in snow is affected by postdepositional exchange with the atmosphere over a broad range of environmental conditions. The persistant summer maxima in nitrate observed in Greenland snow over the entire range of record studied (the last 800 years) may be mainly due to NO{sub x} released from peroxyacetyl nitrate by thermal decomposition in the presence of higher OH concentrations in summer. The late winter/early spring nitrate peak observed in modern Greenland snow may be related to the buildup of anthropogenically derived NO{sub y} in the Arctic troposphere during the long polar winter. 58 refs., 3 figs., 4 tabs.« less
Evaluation of a 12-km Satellite-Era Reanalysis of Surface Mass Balance for the Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Cullather, R. I.; Nowicki, S.; Zhao, B.; Max, S.
2016-12-01
The recent contribution to sea level change from the Greenland Ice Sheet is thought to be strongly driven by surface processes including melt and runoff. Global reanalyses are potential means of reconstructing the historical time series of ice sheet surface mass balance (SMB), but lack spatial resolution needed to resolve ablation areas along the periphery of the ice sheet. In this work, the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is used to examine the spatial and temporal variability of surface melt over the Greenland Ice Sheet. MERRA-2 is produced for the period 1980 to the present at a grid spacing of ½° latitude by ⅝° longitude, and includes snow hydrology processes including compaction, meltwater percolation and refreezing, runoff, and a prognostic surface albedo. The configuration of the MERRA-2 system allows for the background model - the Goddard Earth Observing System model, version 5 (GEOS-5) - to be carried in phase space through analyzed states via the computation of analysis increments, a capability referred to as "replay". Here, a MERRA-2 replay integration is conducted in which atmospheric forcing fields are interpolated and adjusted to sub- atmospheric grid-scale resolution. These adjustments include lapse-rate effects on temperature, humidity, precipitation, and other atmospheric variables that are known to have a strong elevation dependency over ice sheets. The surface coupling is performed such that mass and energy are conserved. The atmospheric forcing influences the surface representation, which operates on land surface tiles with an approximate 12-km spacing. This produces a high-resolution, downscaled SMB which is interactively coupled to the reanalysis model. We compare the downscaled SMB product with other reanalyses, regional climate model values, and a second MERRA-2 replay in which the background model has been replaced with a 12-km, non-hydrostatic version of GEOS-5. The assessment focuses on regional changes in SMB and SMB components, the identification of changes and temporal variability in the SMB equilibrium line, and the relation between SMB and other climate variables related to general circulation.
de Pablo, M A; Ramos, M; Molina, A; Prieto, M
2018-02-15
A new Circumpolar Active Layer Monitoring (CALM) site was established in 2009 at the Limnopolar Lake watershed in Byers Peninsula, Livingston Island, Antarctica, to provide a node in the western Antarctic Peninsula, one of the regions that recorded the highest air temperature increase in the planet during the last decades. The first detailed analysis of the temporal and spatial evolution of the thaw depth at the Limnopolar Lake CALM-S site is presented here, after eight years of monitoring. The average values range between 48 and 29cm, decreasing at a ratio of 16cm/decade. The annual thaw depth observations in the 100×100 m CALM grid are variable (Variability Index of 34 to 51%), although both the Variance Coefficient and the Climate Matrix Analysis Residual point to the internal consistency of the data. Those differences could be explained then by the terrain complexity and node-specific variability due to the ground properties. The interannual variability was about 60% during 2009-2012, increasing to 124% due to the presence of snow in 2013, 2015 and 2016. The snow has been proposed here as one of the most important factors controlling the spatial variability of ground thaw depth, since its values correlate with the snow thickness but also with the ground surface temperature and unconfined compression resistance, as measured in 2010. The topography explains the thaw depth spatial distribution pattern, being related to snowmelt water and its accumulation in low-elevation areas (downslope-flow). Patterned grounds and other surface features correlate well with high thaw depth patterns as well. The edaphic factor (E=0.05842m 2 /°C·day; R 2 =0.63) is in agreement with other permafrost environments, since frozen index (F>0.67) and MAAT (<-2°C) denote a continuous permafrost existence in the area. All these characteristics provided the basis for further comparative analyses between others nearby CALM sites. Copyright © 2017 Elsevier B.V. All rights reserved.
Albedo Spatial Variability and Causes on the Western Greenland Ice Sheet Percolation Zone
NASA Astrophysics Data System (ADS)
Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Koffman, B. G.; Marshall, H. P.; Birkel, S. D.; Dibb, J. E.
2016-12-01
Many recent studies have concluded that Greenland Ice Sheet (GIS) mass loss has been accelerating over recent decades, but spatial and temporal variations in GIS mass balance remain poorly understood due to a complex relationship among precipitation and temperature changes, increasing melt and runoff, ice discharge, and surface albedo. Satellite measurements from MODerate resolution Imaging Spectroradiometer (MODIS) indicate that albedo has been declining over the past decade, but the cause and extent of GIS albedo change remains poorly constrained by field data. As fresh snow (albedo > 0.85) warms and melts, its albedo decreases due to snow grain growth, promoting solar absorption, higher snowpack temperatures and further melt. However, dark impurities like soot and dust can also significantly reduce snow albedo, even in the dry snow zone. While many regional climate models (e.g. the Regional Atmospheric Climate MOdel - RACMO2) calculate albedo spatial resolutions on the order of 10-30 km, and MODIS averages albedo over 500 m, surface features like sastrugi can affect albedo on much smaller scales. Here we assess the relative importance of grain size and shape vs. impurity concentrations on albedo in the western GIS percolation zone. We collected broadband albedo measurements (300-2500 nm at 3-8 nm resolution) at 35 locations using an ASD FieldSpec4 spectroradiometer to simultaneously quantify radiative fluxes and spectral reflectance. Measurements were collected on 10 x 10 m, 1 x 1 km, 5 x 5 km, and 10 x 10 km grids to determine the spatial variability of albedo as part of the 850-km Greenland Traverse for Accumulation and Climate Studies (GreenTrACS) traverse from Raven/Dye 2 to Summit. Additionally, we collected shallow (0-50 cm) snow pit samples every 5 cm at ASD measurement sites to quantify black carbon and mineral dust concentrations and size distributions using a Single Particle Soot Photometer and Coulter Counter, respectively. Preliminary results indicate larger albedo variability in the infrared than visible and near infrared. We compare our in situ field measurements with co-located albedo data from airplanes, satellites, and climate models, and discuss implications for GIS surface mass balance.
Lange, Benjamin A; Flores, Hauke; Michel, Christine; Beckers, Justin F; Bublitz, Anne; Casey, John Alec; Castellani, Giulia; Hatam, Ido; Reppchen, Anke; Rudolph, Svenja A; Haas, Christian
2017-11-01
There is mounting evidence that multiyear ice (MYI) is a unique component of the Arctic Ocean and may play a more important ecological role than previously assumed. This study improves our understanding of the potential of MYI as a suitable habitat for sea ice algae on a pan-Arctic scale. We sampled sea ice cores from MYI and first-year sea ice (FYI) within the Lincoln Sea during four consecutive spring seasons. This included four MYI hummocks with a mean chl a biomass of 2.0 mg/m 2 , a value significantly higher than FYI and MYI refrozen ponds. Our results support the hypothesis that MYI hummocks can host substantial ice-algal biomass and represent a reliable ice-algal habitat due to the (quasi-) permanent low-snow surface of these features. We identified an ice-algal habitat threshold value for calculated light transmittance of 0.014%. Ice classes and coverage of suitable ice-algal habitat were determined from snow and ice surveys. These ice classes and associated coverage of suitable habitat were applied to pan-Arctic CryoSat-2 snow and ice thickness data products. This habitat classification accounted for the variability of the snow and ice properties and showed an areal coverage of suitable ice-algal habitat within the MYI-covered region of 0.54 million km 2 (8.5% of total ice area). This is 27 times greater than the areal coverage of 0.02 million km 2 (0.3% of total ice area) determined using the conventional block-model classification, which assigns single-parameter values to each grid cell and does not account for subgrid cell variability. This emphasizes the importance of accounting for variable snow and ice conditions in all sea ice studies. Furthermore, our results indicate the loss of MYI will also mean the loss of reliable ice-algal habitat during spring when food is sparse and many organisms depend on ice-algae. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models
NASA Astrophysics Data System (ADS)
Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello
2017-07-01
The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.
Dressler, K.A.; Leavesley, G.H.; Bales, R.C.; Fassnacht, S.R.
2006-01-01
The USGS precipitation-runoff modelling system (PRMS) hydrologic model was used to evaluate experimental, gridded, 1 km2 snow-covered area (SCA) and snow water equivalent (SWE) products for two headwater basins within the Rio Grande (i.e. upper Rio Grande River basin) and Salt River (i.e. Black River basin) drainages in the southwestern USA. The SCA product was the fraction of each 1 km2 pixel covered by snow and was derived from NOAA advanced very high-resolution radiometer imagery. The SWE product was developed by multiplying the SCA product by SWE estimates interpolated from National Resources Conservation Service snow telemetry point measurements for a 6 year period (1995-2000). Measured SCA and SWE estimates were consistently lower than values estimated from temperature and precipitation within PRMS. The greatest differences occurred in the relatively complex terrain of the Rio Grande basin, as opposed to the relatively homogeneous terrain of the Black River basin, where differences were small. Differences between modelled and measured snow were different for the accumulation period versus the ablation period and had an elevational trend. Assimilating the measured snowfields into a version of PRMS calibrated to achieve water balance without assimilation led to reduced performance in estimating streamflow for the Rio Grande and increased performance in estimating streamflow for the Black River basin. Correcting the measured SCA and SWE for canopy effects improved simulations by adding snow mostly in the mid-to-high elevations, where satellite estimates of SCA are lower than model estimates. Copyright ?? 2006 John Wiley & Sons, Ltd.
Estimation of global snow cover using passive microwave data
NASA Astrophysics Data System (ADS)
Chang, Alfred T. C.; Kelly, Richard E.; Foster, James L.; Hall, Dorothy K.
2003-04-01
This paper describes an approach to estimate global snow cover using satellite passive microwave data. Snow cover is detected using the high frequency scattering signal from natural microwave radiation, which is observed by passive microwave instruments. Developed for the retrieval of global snow depth and snow water equivalent using Advanced Microwave Scanning Radiometer EOS (AMSR-E), the algorithm uses passive microwave radiation along with a microwave emission model and a snow grain growth model to estimate snow depth. The microwave emission model is based on the Dense Media Radiative Transfer (DMRT) model that uses the quasi-crystalline approach and sticky particle theory to predict the brightness temperature from a single layered snowpack. The grain growth model is a generic single layer model based on an empirical approach to predict snow grain size evolution with time. Gridding to the 25 km EASE-grid projection, a daily record of Special Sensor Microwave Imager (SSM/I) snow depth estimates was generated for December 2000 to March 2001. The estimates are tested using ground measurements from two continental-scale river catchments (Nelson River and the Ob River in Russia). This regional-scale testing of the algorithm shows that for passive microwave estimates, the average daily snow depth retrieval standard error between estimated and measured snow depths ranges from 0 cm to 40 cm of point observations. Bias characteristics are different for each basin. A fraction of the error is related to uncertainties about the grain growth initialization states and uncertainties about grain size changes through the winter season that directly affect the parameterization of the snow depth estimation in the DMRT model. Also, the algorithm does not include a correction for forest cover and this effect is clearly observed in the retrieval. Finally, error is also related to scale differences between in situ ground measurements and area-integrated satellite estimates. With AMSR-E data, improvements to snow depth and water equivalent estimates are expected since AMSR-E will have twice the spatial resolution of the SSM/I and will be able to characterize better the subnivean snow environment from an expanded range of microwave frequencies.
Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling
NASA Astrophysics Data System (ADS)
Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.
2012-12-01
Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.
Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions
NASA Technical Reports Server (NTRS)
Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick
2015-01-01
Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.
Wet snow hazard for power lines: a forecast and alert system applied in Italy
NASA Astrophysics Data System (ADS)
Bonelli, P.; Lacavalla, M.; Marcacci, P.; Mariani, G.; Stella, G.
2011-09-01
Wet snow icing accretion on power lines is a real problem in Italy, causing failures on high and medium voltage power supplies during the cold season. The phenomenon is a process in which many large and local scale variables contribute in a complex way and not completely understood. A numerical weather forecast can be used to select areas where wet snow accretion has an high probability of occurring, but a specific accretion model must also be used to estimate the load of an ice sleeve and its hazard. All the information must be carefully selected and shown to the electric grid operator in order to warn him promptly. The authors describe a prototype of forecast and alert system, WOLF (Wet snow Overload aLert and Forecast), developed and applied in Italy. The prototype elaborates the output of a numerical weather prediction model, as temperature, precipitation, wind intensity and direction, to determine the areas of potential risk for the power lines. Then an accretion model computes the ice sleeves' load for different conductor diameters. The highest values are selected and displayed on a WEB-GIS application principally devoted to the electric operator, but also to more expert users. Some experimental field campaigns have been conducted to better parameterize the accretion model. Comparisons between real accidents and forecasted icing conditions are presented and discussed.
Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.
2014-01-01
Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.
Parametrisation of initial conditions for seasonal stream flow forecasting in the Swiss Rhine basin
NASA Astrophysics Data System (ADS)
Schick, Simon; Rössler, Ole; Weingartner, Rolf
2016-04-01
Current climate forecast models show - to the best of our knowledge - low skill in forecasting climate variability in Central Europe at seasonal lead times. When it comes to seasonal stream flow forecasting, initial conditions thus play an important role. Here, initial conditions refer to the catchments moisture at the date of forecast, i.e. snow depth, stream flow and lake level, soil moisture content, and groundwater level. The parametrisation of these initial conditions can take place at various spatial and temporal scales. Examples are the grid size of a distributed model or the time aggregation of predictors in statistical models. Therefore, the present study aims to investigate the extent to which the parametrisation of initial conditions at different spatial scales leads to differences in forecast errors. To do so, we conduct a forecast experiment for the Swiss Rhine at Basel, which covers parts of Germany, Austria, and Switzerland and is southerly bounded by the Alps. Seasonal mean stream flow is defined for the time aggregation of 30, 60, and 90 days and forecasted at 24 dates within the calendar year, i.e. at the 1st and 16th day of each month. A regression model is employed due to the various anthropogenic effects on the basins hydrology, which often are not quantifiable but might be grasped by a simple black box model. Furthermore, the pool of candidate predictors consists of antecedent temperature, precipitation, and stream flow only. This pragmatic approach follows the fact that observations of variables relevant for hydrological storages are either scarce in space or time (soil moisture, groundwater level), restricted to certain seasons (snow depth), or regions (lake levels, snow depth). For a systematic evaluation, we therefore focus on the comprehensive archives of meteorological observations and reanalyses to estimate the initial conditions via climate variability prior to the date of forecast. The experiment itself is based on four different approaches, whose differences in model skill were estimated within a rigorous cross-validation framework for the period 1982-2013: The predictands are regressed on antecedent temperature, precipitation, and stream flow. Here, temperature and precipitation constitute basin averages out of the E-OBS gridded data set. As in 1., but temperature and precipitation are used at the E-OBS grid scale (0.25 degree in longitude and latitude) without spatial averaging. As in 1., but the regression model is applied to 66 gauged subcatchments of the Rhine basin. Forecasts for these subcatchments are then simply summed and upscaled to the area of the Rhine basin. As in 3., but the forecasts at the subcatchment scale are additionally weighted in terms of hydrological representativeness of the corresponding subcatchment.
Hardy, Sarah M; Lindgren, Michael; Konakanchi, Hanumantharao; Huettmann, Falk
2011-10-01
Populations of the snow crab (Chionoecetes opilio) are widely distributed on high-latitude continental shelves of the North Pacific and North Atlantic, and represent a valuable resource in both the United States and Canada. In US waters, snow crabs are found throughout the Arctic and sub-Arctic seas surrounding Alaska, north of the Aleutian Islands, yet commercial harvest currently focuses on the more southerly population in the Bering Sea. Population dynamics are well-monitored in exploited areas, but few data exist for populations further north where climate trends in the Arctic appear to be affecting species' distributions and community structure on multiple trophic levels. Moreover, increased shipping traffic, as well as fisheries and petroleum resource development, may add additional pressures in northern portions of the range as seasonal ice cover continues to decline. In the face of these pressures, we examined the ecological niche and population distribution of snow crabs in Alaskan waters using a GIS-based spatial modeling approach. We present the first quantitative open-access model predictions of snow-crab distribution, abundance, and biomass in the Chukchi and Beaufort Seas. Multi-variate analysis of environmental drivers of species' distribution and community structure commonly rely on multiple linear regression methods. The spatial modeling approach employed here improves upon linear regression methods in allowing for exploration of nonlinear relationships and interactions between variables. Three machine-learning algorithms were used to evaluate relationships between snow-crab distribution and environmental parameters, including TreeNet, Random Forests, and MARS. An ensemble model was then generated by combining output from these three models to generate consensus predictions for presence-absence, abundance, and biomass of snow crabs. Each algorithm identified a suite of variables most important in predicting snow-crab distribution, including nutrient and chlorophyll-a concentrations in overlying waters, temperature, salinity, and annual sea-ice cover; this information may be used to develop and test hypotheses regarding the ecology of this species. This is the first such quantitative model for snow crabs, and all GIS-data layers compiled for this project are freely available from the authors, upon request, for public use and improvement.
NASA Astrophysics Data System (ADS)
Heldmyer, A.; Livneh, B.; Barsugli, J. J.; Dewes, C.; Ray, A. J.; Rangwala, I.; Guinotte, J. M.; Torbit, S.
2017-12-01
A major gap in research on the future of snowpack in the western United States is accounting for snow persistence in relation to topographical effects like terrain aspect and slope, which have important consequences for species that rely on snow for habitat in alpine regions, such as the wolverine (Gulo gulo). Previous work has shown a predicted loss of snow-covered area in Montana (which encompasses much of the Wolverine's extent range) ranging from 50 - 85%. However, these estimates use coarse model grid-boxes (6 - 12 km per side) that lack topographic shading, with mean elevations below the higher elevations where the wolverine tends to live. We address these informational gaps by applying a physically-based, high-resolution hydrologic model (250 m spatial resolution), the Distributed Hydrologic Soil and Vegetation Model (DHSVM), to project snow water equivalent (SWE) in two regions important to the survival of the wolverine within Glacier and Rocky Mountain National Parks. Because snowpack evolution is driven primarily by the energy balance at the surface, particularly during melt season, the inclusion of a realistic, physically-based energy balance together with topographic shading enables a clearer understanding of how projected climatic perturbations will affect future snowpack. We apply a diverse sample of future (2035-2064) climate conditions from CMIP5 General Circulation Models (GCMs) to meteorological forcing data from a baseline historical period (1998-2013) through the delta method, after validating historical simulations with SNOTEL and MODIS satellite data. Despite considerable variability across models, the results show a consistent decrease in Snow-Covered Area (SCA) across investigated future climate projections, an increased loss of snowpack during years of drought, and a fragmentation of land with deep snow available for refuge.
NASA Astrophysics Data System (ADS)
Li, Xinghua; Fu, Wenxuan; Shen, Huanfeng; Huang, Chunlin; Zhang, Liangpei
2017-08-01
Monitoring the variability of snow cover is necessary and meaningful because snow cover is closely connected with climate and ecological change. In this work, 500 m resolution MODIS daily snow cover products from 2000 to 2014 were adopted to analyze the status in Hengduan Mountains. In order to solve the spatial discontinuity caused by clouds in the products, we propose an adaptive spatio-temporal weighted method (ASTWM), which is based on the initial result of a Terra and Aqua combination. This novel method simultaneously considers the temporal and spatial correlations of the snow cover. The simulated experiments indicate that ASTWM removes clouds completely, with a robust overall accuracy (OA) of above 93% under different cloud fractions. The spatio-temporal variability of snow cover in the Hengduan Mountains was investigated with two indices: snow cover days (SCD) and snow fraction. The results reveal that the annual SCD gradually increases and the coefficient of variation (CV) decreases with elevation. The pixel-wise trends of SCD first rise and then drop in most areas. Moreover, intense intra-annual variability of the snow fraction occurs from October to March, during which time there is abundant snow cover. The inter-annual variability, which mainly occurs in high elevation areas, shows an increasing trend before 2004/2005 and a decreasing trend after 2004/2005. In addition, the snow fraction responds to the two climate factors of air temperature and precipitation. For the intra-annual variability, when the air temperature and precipitation decrease, the snow cover increases. Besides, precipitation plays a more important role in the inter-annual variability of snow cover than temperature.
A Distributed Snow Evolution Modeling System (SnowModel)
NASA Astrophysics Data System (ADS)
Liston, G. E.; Elder, K.
2004-12-01
A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.
NASA Astrophysics Data System (ADS)
Schroeder, R.; Jacobs, J. M.; Vuyovich, C.; Cho, E.; Tuttle, S. E.
2017-12-01
Each spring the Red River basin (RRB) of the North, located between the states of Minnesota and North Dakota and southern Manitoba, is vulnerable to dangerous spring snowmelt floods. Flat terrain, low permeability soils and a lack of satisfactory ground observations of snow pack conditions make accurate predictions of the onset and magnitude of major spring flood events in the RRB very challenging. This study investigated the potential benefit of using gridded snow water equivalent (SWE) products from passive microwave satellite missions and model output simulations to improve snowmelt flood predictions in the RRB using NOAA's operational Community Hydrologic Prediction System (CHPS). Level-3 satellite SWE products from AMSR-E, AMSR2 and SSM/I, as well as SWE computed from Level-2 brightness temperatures (Tb) measurements, including model output simulations of SWE from SNODAS and GlobSnow-2 were chosen to support the snowmelt modeling exercises. SWE observations were aggregated spatially (i.e. to the NOAA North Central River Forecast Center forecast basins) and temporally (i.e. by obtaining daily screened and weekly unscreened maximum SWE composites) to assess the value of daily satellite SWE observations relative to weekly maximums. Data screening methods removed the impacts of snow melt and cloud contamination on SWE and consisted of diurnal SWE differences and a temperature-insensitive polarization difference ratio, respectively. We examined the ability of the satellite and model output simulations to capture peak SWE and investigated temporal accuracies of screened and unscreened satellite and model output SWE. The resulting SWE observations were employed to update the SNOW-17 snow accumulation and ablation model of CHPS to assess the benefit of using temporally and spatially consistent SWE observations for snow melt predictions in two test basins in the RRB.
Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal.
Chetri, Madhu; Odden, Morten; Wegge, Per
2017-01-01
Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57), collected within 26 sampling grid cells (5×5 km) that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples), whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%). Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%), but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%), and wild ungulates more frequently in scats from females (males: 48%, females: 70%). The sexual difference agrees with previous telemetry studies on snow leopards and other large carnivores, and may reflect a high-risk high-gain strategy among males.
Snow Leopard and Himalayan Wolf: Food Habits and Prey Selection in the Central Himalayas, Nepal
Odden, Morten; Wegge, Per
2017-01-01
Top carnivores play an important role in maintaining energy flow and functioning of the ecosystem, and a clear understanding of their diets and foraging strategies is essential for developing effective conservation strategies. In this paper, we compared diets and prey selection of snow leopards and wolves based on analyses of genotyped scats (snow leopards n = 182, wolves n = 57), collected within 26 sampling grid cells (5×5 km) that were distributed across a vast landscape of ca 5000 km2 in the Central Himalayas, Nepal. Within the grid cells, we sampled prey abundances using the double observer method. We found that interspecific differences in diet composition and prey selection reflected their respective habitat preferences, i.e. snow leopards significantly preferred cliff-dwelling wild ungulates (mainly bharal, 57% of identified material in scat samples), whereas wolves preferred typically plain-dwellers (Tibetan gazelle, kiang and argali, 31%). Livestock was consumed less frequently than their proportional availability by both predators (snow leopard = 27%; wolf = 24%), but significant avoidance was only detected among snow leopards. Among livestock species, snow leopards significantly preferred horses and goats, avoided yaks, and used sheep as available. We identified factors influencing diet composition using Generalized Linear Mixed Models. Wolves showed seasonal differences in the occurrence of small mammals/birds, probably due to the winter hibernation of an important prey, marmots. For snow leopard, occurrence of both wild ungulates and livestock in scats depended on sex and latitude. Wild ungulates occurrence increased while livestock decreased from south to north, probably due to a latitudinal gradient in prey availability. Livestock occurred more frequently in scats from male snow leopards (males: 47%, females: 21%), and wild ungulates more frequently in scats from females (males: 48%, females: 70%). The sexual difference agrees with previous telemetry studies on snow leopards and other large carnivores, and may reflect a high-risk high-gain strategy among males. PMID:28178279
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.; ...
2017-09-14
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Endalamaw, Abraham; Bolton, W. Robert; Young-Robertson, Jessica M.
Modeling hydrological processes in the Alaskan sub-arctic is challenging because of the extreme spatial heterogeneity in soil properties and vegetation communities. Nevertheless, modeling and predicting hydrological processes is critical in this region due to its vulnerability to the effects of climate change. Coarse-spatial-resolution datasets used in land surface modeling pose a new challenge in simulating the spatially distributed and basin-integrated processes since these datasets do not adequately represent the small-scale hydrological, thermal, and ecological heterogeneity. The goal of this study is to improve the prediction capacity of mesoscale to large-scale hydrological models by introducing a small-scale parameterization scheme, which bettermore » represents the spatial heterogeneity of soil properties and vegetation cover in the Alaskan sub-arctic. The small-scale parameterization schemes are derived from observations and a sub-grid parameterization method in the two contrasting sub-basins of the Caribou Poker Creek Research Watershed (CPCRW) in Interior Alaska: one nearly permafrost-free (LowP) sub-basin and one permafrost-dominated (HighP) sub-basin. The sub-grid parameterization method used in the small-scale parameterization scheme is derived from the watershed topography. We found that observed soil thermal and hydraulic properties – including the distribution of permafrost and vegetation cover heterogeneity – are better represented in the sub-grid parameterization method than the coarse-resolution datasets. Parameters derived from the coarse-resolution datasets and from the sub-grid parameterization method are implemented into the variable infiltration capacity (VIC) mesoscale hydrological model to simulate runoff, evapotranspiration (ET), and soil moisture in the two sub-basins of the CPCRW. Simulated hydrographs based on the small-scale parameterization capture most of the peak and low flows, with similar accuracy in both sub-basins, compared to simulated hydrographs based on the coarse-resolution datasets. On average, the small-scale parameterization scheme improves the total runoff simulation by up to 50 % in the LowP sub-basin and by up to 10 % in the HighP sub-basin from the large-scale parameterization. This study shows that the proposed sub-grid parameterization method can be used to improve the performance of mesoscale hydrological models in the Alaskan sub-arctic watersheds.« less
Improved NLDAS-2 Noah-simulated Hydrometeorological Products with an Interim Run
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Youlong; Peter-Lidard, Christa; Huang, Maoyi
2015-02-28
In NLDAS-2 Noah simulation, the NLDAS team introduced an intermediate fix suggested by Slater et al. (2007) and Livneh et al. (2010) to reduce large sublimation. The fix is used to constraint surface exchange coefficient (CH) using CH =CHoriginal x max (1.0-RiB/0.5, 0.05) when atmospheric boundary layer is stable. RiB is Richardson number. In NLDAS-2 Noah version, this fix was used for all stable cases including snow-free grid cells. In this study, we simply applied this fix to the grid cells in which both stable atmospheric boundary layer and snow exist simultaneously excluding the snow-free grid cells as we recognizemore » that the fix constraint in NLDAS-2 is too strong. We make a 31-year (1979-2009) Noah NLDAS-2 interim (NoahI) run. We use observed streamflow, evapotranspiration, land surface temperature, soil temperature, and ground heat flux to evaluate the results simulated from NoahI and make the reasonable comparison with those simulated from NLDAS-2 Noah (Xia et al., 2012). The results show that NoahI has the same performance as Noah does for snow water equivalent simulation. However, NoahI significantly improved the other hydrometeorological products’ simulation as described above when compared to Noah and the observations. This simple modification is being installed to the next Noah version. The hydrometeorological products simulated from NoahI will be staged on NCEP public server for the public in future.« less
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Wanchang
2017-10-01
The Variable Infiltration Capacity (VIC) hydrologic model was adopted for investigating spatial and temporal variability of hydrologic impacts of climate change over the Nenjiang River Basin (NRB) based on a set of gridded forcing dataset at 1/12th degree resolution from 1970 to 2013. Basin-scale changes in the input forcing data and the simulated hydrological variables of the NRB, as well as station-scale changes in discharges for three major hydrometric stations were examined, which suggested that the model was performed fairly satisfactory in reproducing the observed discharges, meanwhile, the snow cover and evapotranspiration in temporal and spatial patterns were simulated reasonably corresponded to the remotely sensed ones. Wetland maps produced by multi-sources satellite images covering the entire basin between 1978 and 2008 were also utilized for investigating the responses and feedbacks of hydrological regimes on wetland dynamics. Results revealed that significant decreasing trends appeared in annual, spring and autumn streamflow demonstrated strong affection of precipitation and temperature changes over the study watershed, and the effects of climate change on the runoff reduction varied in the sub-basin area over different time scales. The proportion of evapotranspiration to precipitation characterized several severe fluctuations in droughts and floods took place in the region, which implied the enhanced sensitiveness and vulnerability of hydrologic regimes to changing environment of the region. Furthermore, it was found that the different types of wetlands undergone quite unique variation features with the varied hydro-meteorological conditions over the region, such as precipitation, evapotranspiration and soil moisture. This study provided effective scientific basis for water resource managers to develop effective eco-environment management plans and strategies that address the consequences of climate changes.
NASA Astrophysics Data System (ADS)
Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.
2013-12-01
Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.
Snow cover variations in Gansu, China, from 2002 to 2013
NASA Astrophysics Data System (ADS)
Liu, Xun; Ke, Chang-Qing; Shao, Zhu-De
2015-11-01
Gansu is an inland province located in the northwest of China with an arid to semi-arid climate and a developed animal husbandry. Snowmelt in Gansu is an important source of water for rivers and plays an important role in ecological environment and social-economic activities. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day composite snow products MOD10A2 and MYD10A2 are combined to analyse snow cover variations during the snow season (October to March) period from 2002 to 2013. We define the snow area percentage (SAP) and snow cover occurrence percentage (SCOP) to analyse the spatial and temporal characteristics of the snow cover variation in Gansu. In addition, we apply the Mann-Kendall test to verify the SAP inter-annual variation. The results indicate that the SAP in Gansu remained above 5 % with three peaks in November, December and January. SAP varies a lot in the four sub-regions of Gansu, with the highest in the Gannan Plateau sub-region and the lowest in the Longzhong Loess Plateau sub-region in most of the snow seasons examined. The SCOP is high in the southwest mountains and low in the northeast Gobi and desert. The SCOP is highly related to elevation in most of Gansu, with an exception in the high mountains. In the Hexi Desert and oasis region, the SAP significantly decreases during the snow season, particularly in February and March. We find that there are a significantly negative correlation between SCOP and temperature during the snow season and a significantly positive correlation between SCOP and precipitation in December.
Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif
2015-02-01
A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. Copyright © 2014 Elsevier B.V. All rights reserved.
Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6
NASA Astrophysics Data System (ADS)
Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.
2017-01-01
This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.
NASA Astrophysics Data System (ADS)
Lafaysse, Matthieu; Hingray, Benoit
2010-05-01
The impact of global change on water resources is expected to be especially pronounced in mountainous areas. Future hydrological scenarios required for impact studies are classically simulated with hydrological models from future meteorological scenarios based on GCMs outputs. Future hydrological regimes of French rivers were estimated following this methodology by Boé et al. (2009) with the physical-based hydrological model SAFRAN-ISBA-MODCOU (SIM), developed by Météo-France. Scenarios obtained for the Alps seem however not very reliable due to the poor performance achieved by the model for the present climate over this region. This work presents possible improvements of SIM for a more relevant simulation of alpine catchments hydrological behavior. Results obtained for the upper Durance catchment (3580 km2) are given for illustration. This catchment is located in Southern French Alps. Its outlet is the Serre-Ponçon lake, a large dam operated for hydropower production, with a key role for water supply in southeastern France. With altitudes ranging from 700 to 4100 meters, the catchment presents highly seasonal flows: minimum and maximum discharges are observed in winter and spring respectively due to snow accumulation and melt, low flows are sustained by glacier melt in late summer (39 km2 are covered by glaciers), major floods can be observed in fall due to large liquid precipitation amounts. Two main limitations of SIM were identified for this catchment. First the 8km-side grid discretization gives a bad representation of the spatial variability of hydrological processes induced by elevation and orientation. Then, low flows are not well represented because the model doesn't include deep storage in aquifers nor ice melt from glaciers. We modified SIM accordingly. For the first point, we applied a discretization based on topography : we divided the catchment in 9 sub-catchments and further 300 meters elevation bands. The vertical variability of meteorological inputs and vegetation cover could be thus better accounted for. Then, each elevation band is divided in 7 exposure classes, in order to represent the influence on snow cover of the solar radiation spatial variability . This discretisation results in 539 Hydrological Units where hydrological processes are assumed to be homogeneous. For the second point, we first included the possibility for glacier melt in previous discretization. We next added a conceptual non-linear underground reservoir in order to simulate water retention by aquifers. These adaptations lead to a clear improvement of simulations for all the hydrometric stations. Daily simulated discharges fit well with measurements (Nash score = 0.8). The model has a good ability to simulate interannual variability and it is robust under a long simulation period (1959-2006). This encourages us to use it in a modified climate context. We studied the effect of each model improvement with a set of sensitivity tests. Accounting for elevation bands allows simulating more persistent snow cover at high altitudes, contributing later to river flows. Adding underground storage leads to delay the snowmelt runoff transfer in river. The exposure influence is not so sensitive for discharges simulation, but it gives a more accurate description of the spatial variability of snow cover. Although glaciered areas are very small compared to total basin area, a better simulation of summer low flows is obtained including a glacier melt module. Despite previous improvements, winter low flows are still slightly underestimated. As suggested by a simple sensitivity analysis, this could be partly due to the fact that the model doesn't correctly simulate basal snowmelt by ground heat flow.
NASA Astrophysics Data System (ADS)
Rinehart, A. J.; Vivoni, E. R.
2005-12-01
Snow processes play a significant role in the hydrologic cycle of mountainous and high-latitude catchments in the western United States. Snowmelt runoff contributes to a large percentage of stream runoff while snow covered regions remain highly localized to small portions of the catchment area. The appropriate representation of snow dynamics at a given range of spatial and temporal scales is critical for adequately predicting runoff responses in snowmelt-dominated watersheds. In particular, the accurate depiction of snow cover patterns is important as a range of topographic, land-use and geographic parameters create zones of preferential snow accumulation or ablation that significantly affect the timing of a region's snow melt and the persistence of a snow pack. In this study, we present the development and testing of a distributed snow model designed for simulations over complex terrain. The snow model is developed within the context of the TIN-based Real-time Integrated Basin Simulator (tRIBS), a fully-distributed watershed model capable of continuous simulations of coupled hydrological processes, including unsaturated-saturated zone dynamics, land-atmosphere interactions and runoff generation via multiple mechanisms. The use of triangulated irregular networks as a domain discretization allows tRIBS to accurately represent topography with a reduced number of computational nodes, as compared to traditional grid-based models. This representation is developed using a Delauney optimization criterion that causes areas of topographic homogeneity to be represented at larger spatial scales than the original grid, while more heterogeneous areas are represented at higher resolutions. We utilize the TIN-based terrain representation to simulate microscale (10-m to 100-m) snow pack dynamics over a catchment. The model includes processes such as the snow pack energy balance, wind and bulk redistribution, and snow interception by vegetation. For this study, we present tests from a distributed one-layer energy balance model as applied to a northern New Mexico hillslope in a ponderosa pine forest using both synthetic and real meteorological forcing. We also provide tests of the model's capability to represent spatial patterns within a small watershed in the Jemez Mountain region. Finally, we discuss the interaction of the tested snow process module with existing components in the watershed model and additional applications and capabilities under development.
NASA Technical Reports Server (NTRS)
Yasunari, Tppei J.; Lau, K.-U.; Koster, Randal D.; Suarez, Max; Mahanama, Sarith; Dasilva, Arlindo M.; Colarco, Peter R.
2011-01-01
The snow darkening effect, i.e. the reduction of snow albedo, is caused by absorption of solar radiation by absorbing aerosols (dust, black carbon, and organic carbon) deposited on the snow surface. This process is probably important over Himalayan and Tibetan glaciers due to the transport of highly polluted Atmospheric Brown Cloud (ABC) from the Indo-Gangetic Plain (IGP). This effect has been incorporated into the NASA Goddard Earth Observing System model, version 5 (GEOS-5) atmospheric transport model. The Catchment land surface model (LSM) used in GEOS-5 considers 3 snow layers. Code was developed to track the mass concentration of aerosols in the three layers, taking into account such processes as the flushing of the compounds as liquid water percolates through the snowpack. In GEOS-5, aerosol emissions, transports, and depositions are well simulated in the Goddard Chemistry Aerosol Radiation and Transport (GO CART) module; we recently made the connection between GOCART and the GEOS-5 system fitted with the revised LSM. Preliminary simulations were performed with this new system in "replay" mode (i.e., with atmospheric dynamics guided by reanalysis) at 2x2.5 degree horizontal resolution, covering the period 1 November 2005 - 31 December 2009; we consider the final three years of simulation here. The three simulations used the following variants of the LSM: (1) the original Catchment LSM with a fixed fresh snowfall density of 150 kg m-3 ; (2) the LSM fitted with the new snow albedo code, used here without aerosol deposition but with changes in density formulation and melting water effect on snow specific surface area, (3) the LSM fitted with the new snow albedo code as same as (2) but with fixed aerosol deposition rates (computed from GOCART values averaged over the Tibetan Plateau domain [Ion.: 60-120E; lat.: 20-50N] during March-May 2008) applied to all grid points at every time step. For (2) and (3), the same setting on the fresh snowfall density as in (1) was used.
Uncertainty in Estimates of Net Seasonal Snow Accumulation on Glaciers from In Situ Measurements
NASA Astrophysics Data System (ADS)
Pulwicki, A.; Flowers, G. E.; Radic, V.
2017-12-01
Accurately estimating the net seasonal snow accumulation (or "winter balance") on glaciers is central to assessing glacier health and predicting glacier runoff. However, measuring and modeling snow distribution is inherently difficult in mountainous terrain, resulting in high uncertainties in estimates of winter balance. Our work focuses on uncertainty attribution within the process of converting direct measurements of snow depth and density to estimates of winter balance. We collected more than 9000 direct measurements of snow depth across three glaciers in the St. Elias Mountains, Yukon, Canada in May 2016. Linear regression (LR) and simple kriging (SK), combined with cross correlation and Bayesian model averaging, are used to interpolate estimates of snow water equivalent (SWE) from snow depth and density measurements. Snow distribution patterns are found to differ considerably between glaciers, highlighting strong inter- and intra-basin variability. Elevation is found to be the dominant control of the spatial distribution of SWE, but the relationship varies considerably between glaciers. A simple parameterization of wind redistribution is also a small but statistically significant predictor of SWE. The SWE estimated for one study glacier has a short range parameter (90 m) and both LR and SK estimate a winter balance of 0.6 m w.e. but are poor predictors of SWE at measurement locations. The other two glaciers have longer SWE range parameters ( 450 m) and due to differences in extrapolation, SK estimates are more than 0.1 m w.e. (up to 40%) lower than LR estimates. By using a Monte Carlo method to quantify the effects of various sources of uncertainty, we find that the interpolation of estimated values of SWE is a larger source of uncertainty than the assignment of snow density or than the representation of the SWE value within a terrain model grid cell. For our study glaciers, the total winter balance uncertainty ranges from 0.03 (8%) to 0.15 (54%) m w.e. depending primarily on the interpolation method. Despite the challenges associated with accurately and precisely estimating winter balance, our results are consistent with the previously reported regional accumulation gradient.
Satellite Based Probabilistic Snow Cover Extent Mapping (SCE) at Hydro-Québec
NASA Astrophysics Data System (ADS)
Teasdale, Mylène; De Sève, Danielle; Angers, Jean-François; Perreault, Luc
2016-04-01
Over 40% of Canada's water resources are in Quebec and Hydro-Quebec has developed potential to become one of the largest producers of hydroelectricity in the world, with a total installed capacity of 36,643 MW. The Hydro-Québec fleet park includes 27 large reservoirs with a combined storage capacity of 176 TWh, and 668 dams and 98 controls. Thus, over 98% of all electricity used to supply the domestic market comes from water resources and the excess output is sold on the wholesale markets. In this perspective the efficient management of water resources is needed and it is based primarily on a good river flow estimation including appropriate hydrological data. Snow on ground is one of the significant variables representing 30% to 40% of its annual energy reserve. More specifically, information on snow cover extent (SCE) and snow water equivalent (SWE) is crucial for hydrological forecasting, particularly in northern regions since the snowmelt provides the water that fills the reservoirs and is subsequently used for hydropower generation. For several years Hydro Quebec's research institute ( IREQ) developed several algorithms to map SCE and SWE. So far all the methods were deterministic. However, given the need to maximize the efficient use of all resources while ensuring reliability, the electrical systems must now be managed taking into account all risks. Since snow cover estimation is based on limited spatial information, it is important to quantify and handle its uncertainty in the hydrological forecasting system. This paper presents the first results of a probabilistic algorithm for mapping SCE by combining Bayesian mixture of probability distributions and multiple logistic regression models applied to passive microwave data. This approach allows assigning for each grid point, probabilities to the set of the mutually exclusive discrete outcomes: "snow" and "no snow". Its performance was evaluated using the Brier score since it is particularly appropriate to measure the accuracy of probabilistic discrete predictions. The scores were measured by comparing the snow probabilities produced by our models with the Hydro-Québec's snow ground data.
NASA Astrophysics Data System (ADS)
Sicart, J.; Essery, R.; Pomeroy, J.
2004-12-01
At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.
NASA Astrophysics Data System (ADS)
Steiner, N.; McDonald, K. C.; Dinardo, S. J.; Miller, C. E.
2015-12-01
Arctic permafrost soils contain a vast amount of organic carbon that will be released into the atmosphere as carbon dioxide or methane when thawed. Surface to air greenhouse gas fluxes are largely dependent on such surface controls as the frozen/thawed state of the snow and soil. Satellite remote sensing is an important means to create continuous mapping of surface properties. Advances in the ability to determine soil and snow freeze/thaw timings from microwave frequency observations improves upon our ability to predict the response of carbon gas emission to warming through synthesis with in-situ observation, such as the 2012-2015 Carbon in Arctic Reservoir Vulnerability Experiment (CARVE). Surface freeze/thaw or snowmelt timings are often derived using a constant or spatially/temporally variable threshold applied to time-series observations. Alternately, time-series singularity classifiers aim to detect discontinuous changes, or "edges", in time-series data similar to those that occur from the large contrast in dielectric constant during the freezing or thaw of soil or snow. We use multi-scale analysis of continuous wavelet transform spectral gradient brightness temperatures from various channel combinations of passive microwave radiometers, Advanced Microwave Scanning Radiometer (AMSR-E, AMSR2) and Special Sensor Microwave Imager (SSM/I F17) gridded at a 10 km posting with resolution proportional to the observational footprint. Channel combinations presented here aim to illustrate and differentiate timings of "edges" from transitions in surface water related to various landscape components (e.g. snow-melt, soil-thaw). To support an understanding of the physical basis of observed "edges" we compare satellite measurements with simple radiative transfer microwave-emission modeling of the snow, soil and vegetation using in-situ observations from the SNOw TELemetry (SNOTEL) automated weather stations. Results of freeze/thaw and snow-melt timings and trends are reported for Alaska and the North-West Canadian Arctic for the period 2002 to 2015.
Comparisons of methods to obtain insoluble particles in snow for transmission electron microscopy
NASA Astrophysics Data System (ADS)
Ren, Yong; Zhang, Xiongfei; Wei, Hailun; Xu, Liang; Zhang, Jian; Sun, Jiaxing; Wang, Xin; Li, Weijun
2017-03-01
Most studies of insoluble particles in snow have been focused on their mass concentration. Little is understood about the physicochemical properties of individual insoluble particles in snow. However, the information is essential to trace sources of the particles, to understand ice nuclei, and to quantify critical aerosol particles (e.g., black carbon) in snow analyzed by bulk methods. The lack of individual particle analyses of snow meltwater stems from the difficulty of producing feasible samples of the snow-borne insoluble particles. In this study, we examined six sample preparation methods and compared their results using transmission electron microscopy (TEM). The results are the following: (1) Drop-by-drop method (DDM) is the easiest method to make TEM samples but cannot remove the influence of the dissolved substances in snow meltwater. (2) Direct filtration method (DFM) was infeasible because the water penetration of carbon film on copper TEM grids is low. (3) Filtration and transfer method (FTM) is through using ultrasonication to transfer insoluble particles on the nuclepore polycarbonate membranes to TEM grids. The drawback of this method is that ultrasonication breaks individual particles into fragments. (4) Freeze-drying method (FDM) can result in new particles from the drying dissolved substances, which interferes with the identification of insoluble particles. (5) Dilution-gravity separation method (DGM) can obtain different substances based on their specific gravity in long standing water. The method can effectively reduce soluble substances but lose insoluble carbonaceous particles (e.g., soot and organic particles). (6) Tangential flow filtration and dilution (TFF-D) through concentrating and desalting dissolved substances is to remove the dissolved substances but keep insoluble particles in snow meltwater. The TFF-D method not only can be suitable for electron microscopy to study individual insoluble particles in snow meltwater but also for any offline microscopic observation such as Raman spectroscopy and mass spectrometry.
NASA Astrophysics Data System (ADS)
Steele, Caitriana; Dialesandro, John; James, Darren; Elias, Emile; Rango, Albert; Bleiweiss, Max
2017-12-01
Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM) and in other models for simulating discharge from snowmelt. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM +) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and may not always provide sufficient cloud-free dates. The coarser spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) offers better temporal resolution and in cloudy years, MODIS data offer the best alternative for mapping snow cover when finer spatial resolution data are unavailable. However, MODIS' coarse spatial resolution (500 m) can obscure fine spatial patterning in snow cover and some MODIS products are not sensitive to end-of-season snow cover. In this study, we aimed to test MODIS snow products for use in simulating snowmelt runoff from smaller headwater basins by a) comparing maps of TM and MODIS-based SCA and b) determining how SRM streamflow simulations are changed by the different estimates of seasonal snow depletion. We compared gridded MODIS snow products (Collection 5 MOD10A1 fractional and binary SCA; SCA derived from Collection 6 MOD10A1 Normalised Difference Snow Index (NDSI) Snow Cover), and the MODIS Snow Covered-Area and Grain size retrieval (MODSCAG) canopy-corrected fractional SCA (SCAMG), with reference SCA maps (SCAREF) generated from binary classification of TM imagery. SCAMG showed strong agreement with SCAREF; excluding true negatives (where both methods agreed no snow was present) the median percent difference between SCAREF and SCAMG ranged between -2.4% and 4.7%. We simulated runoff for each of the four study years using SRM populated with and calibrated for snow depletion curves derived from SCAREF. We then substituted in each of the MODIS-derived depletion curves. With efficiency coefficients ranging between 0.73 and 0.93, SRM simulation results from the SCAMG runs yielded the best results of all the MODIS products and only slightly underestimated discharge volume (between 7 and 11% of measured annual discharge). SRM simulations that used SCA derived from Collection 6 NDSI Snow Cover also yielded promising results, with efficiency coefficients ranging between 0.73 and 0.91. In conclusion, we recommend that when simulating snowmelt runoff from small basins (<4000 km2) with SRM, we recommend that users select either canopy-corrected MODSCAG or create their own site-specific products from the Collection 6 MOD10A1 NDSI.
NASA Astrophysics Data System (ADS)
Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.
2005-12-01
NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products. The NOHRSC NSA products are used operationally by NOAA's National Weather Service field offices when issuing hydrologic forecasts and warnings including river and flood forecasts, water supply forecasts, and spring flood outlooks for the nation. Additionally, the NOHRSC NSA products are used by a wide variety of federal, state, local, municipal, private-sector, and general-public end-users with a requirement for real-time snowpack information. The paper discusses, in detail, the techniques and procedures used to create the NOHRSC NSA products and gives a number of examples of the real-time snow products generated and distributed over the NOHRSC web site (www.nohrsc.noaa.gov). Also discussed are major limitations of the approach, the most notable being deficiencies in observation of snow water equivalent. Snow observation networks generally lack the consistency and coverage needed to significantly improve confidence in snow model states through updating. Many regions of the world simply lack snow water equivalent observations altogether, a significant constraint on global application of the NSA approach.
NASA Technical Reports Server (NTRS)
Brucker, L.; Dinnat, E. P.; Koenig, L. S.
2014-01-01
Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze-thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of 5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze-thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used a redistributed by the US Snow and Ice Data Center at http:nsidc.orgdataaquariusindex.html, and show potential for cryospheric studies.
NASA Astrophysics Data System (ADS)
Maxwell, Justin T.; Harley, Grant L.
2017-08-01
Understanding the historic variability in the hydroclimate provides important information on possible extreme dry or wet periods that in turn inform water management plans. Tree rings have long provided historical context of hydroclimate variability of the U.S. However, the tree-ring network used to create these countrywide gridded reconstructions is sparse in certain locations, such as the Midwest. Here, we increase ( n = 20) the spatial resolution of the tree-ring network in southern Indiana and compare a summer (June-August) Palmer Drought Severity Index (PDSI) reconstruction to existing gridded reconstructions of PDSI for this region. We find both droughts and pluvials that were previously unknown that rival the most intense PDSI values during the instrumental period. Additionally, historical drought occurred in Indiana that eclipsed instrumental conditions with regard to severity and duration. During the period 1962-2004 CE, we find that teleconnections of drought conditions through the Atlantic Meridional Overturning Circulation have a strong influence ( r = -0.60, p < 0.01) on secondary tree growth in this region for the late spring-early summer season. These findings highlight the importance of continuing to increase the spatial resolution of the tree-ring network used to infer past climate dynamics to capture the sub-regional spatial variability. Increasing the spatial resolution of the tree-ring network for a given region can better identify sub-regional variability, improve the accuracy of regional tree-ring PDSI reconstructions, and provide better information for climatic teleconnections.
NASA Technical Reports Server (NTRS)
Dillard, J. P.
1975-01-01
LANDSAT-1 imagery showing extent of snow cover was collected and is examined for the 1973 and 1974 snowmelt seasons for three Columbia River Basins. Snowlines were mapped and the aerial snow cover was determined using satellite data. Satellite snow mapping products were compared products from conventional information sources (computer programming and aerial photography was used). Available satellite data were successfully analyzed by radiance thresholding to determine snowlines and the attendant snow-covered area. Basin outline masks, contour elevation masks, and grid overlays were utilized as satellite data interpretation aids. Verification of the LANDSAT-1 data was generally good although there were exceptions. A major problem was lack of adequate cloud-free satellite imagery of high resolution and determining snowlines in forested areas.
Spaceborne Radar Observations of High Mountain Asia Snow and Ice
NASA Astrophysics Data System (ADS)
Lund, J.
2016-12-01
The glaciers of High Mountain Asia show a negative trend in mass balance. Within its sub regions, however, a complex pattern of climate regions and glacial forcings arise. This complexity, coupled with the challenges of field study in the region, illicit notable uncertainties both in observation and prediction of glacial mass balance. Beyond being valuable indicators of climate variability, the glaciers of High Mountain Asia are important water resources for densely populated downstream regions, and also contribute to global sea level rise. Scatterometry, regularly used in polar regions to detect melt in snow and ice, has seen little use in lower latitude glaciers. In High Mountain Asia, focus has been placed on spatial and temporal trends in scatterometer signals for melt onset and freeze-up. In polar regions, scatterometry and synthetic aperture radar (SAR) data have been used to estimate snow accumulation, along with interferometric SAR (InSAR) to measure glacier velocity, better constraining glacial mass balance estimates. For this poster, multiple radar sensors will be compared with both in situ as well as reanalysis precipitation data in varying climate regions in High Mountain Asia to explore correlations between snow accumulation and radar signals. Snowmelt timing influences on InSAR coherence may also be explored.
NASA Astrophysics Data System (ADS)
Hammond, John C.; Saavedra, Freddy A.; Kampf, Stephanie K.
2018-04-01
With climate warming, many regions are experiencing changes in snow accumulation and persistence. These changes are known to affect streamflow volume, but the magnitude of the effect varies between regions. This research evaluates whether variables derived from remotely sensed snow cover can be used to estimate annual streamflow at the small watershed scale across the western U.S., a region with a wide range of climate types. We compared snow cover variables derived from MODIS, snow persistence (SP), and snow season (SS), to more commonly utilized metrics, snow fraction (fraction of precipitation falling as snow, SF), and peak snow water equivalent (SWE). Each variable represents different information about snow, and this comparison assesses similarities and differences between the snow metrics. Next, we evaluated how two snow variables, SP and SWE, related to annual streamflow (Q) for 119 USGS reference watersheds and examined whether these relationships varied for wet/warm (precipitation surplus) and dry/cold (precipitation deficit) watersheds. Results showed high correlations between all snow variables, but the slopes of these relationships differed between climates, with wet/warm watersheds displaying lower SF and higher SWE for the same SP. In dry/cold watersheds, both SP and SNODAS SWE correlated with Q spatially across all watersheds and over time within individual watersheds. We conclude that SP can be used to map spatial patterns of annual streamflow generation in dry/cold parts of the region. Applying this approach to the Upper Colorado River Basin demonstrates that 50% of streamflow comes from areas >3,000 masl. If the relationship between SP and Q is similar in other dry/cold regions, this approach could be used to estimate annual streamflow in ungauged basins.
Sensitivity of the snowmelt runoff model to underestimates of remotely sensed snow covered area
USDA-ARS?s Scientific Manuscript database
Three methods for estimating snow covered area (SCA) from Terra MODIS data were used to derive conventional depletion curves for input to the Snowmelt Runoff Model (SRM). We compared the MOD10 binary and fractional snow cover products and a method for estimating sub-pixel snow cover using spectral m...
NASA Astrophysics Data System (ADS)
Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.
2013-02-01
Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e. the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID) are conducted over western Europe. Part 1 describes the background information for the model comparison and simulation design, as well as the application of WRF for January and July 2001 over triple-nested domains in western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°. Six simulated meteorological variables (i.e. temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients of major meteorological variables. While the domainwide performance of T2, Q2, RH2, and WD10 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in WS10 and Precip even at 0.025°. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g. lack of soil temperature and moisture nudging), limitations in the physical parameterizations of the planetary boundary layer (e.g. cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g. snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvement for WS10, Precip, and some mesoscale events (e.g. strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. These results indicate a need to further improve the model representations of the above parameterizations at all scales.
CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.
2015-11-10
The condensation fronts (snow lines) of H{sub 2}O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N{sub 2}H{sup +} J = 3−2 and DCO{sup +} J = 4−3 emission lines toward the disk around the Herbig Ae star HD 163296 at ∼0.″5 (60 AU) resolution, and evaluatemore » their utility as tracers of the CO snow line location. The N{sub 2}H{sup +} emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C{sup 18}O data, which implies a sharp drop in CO abundance at 90 AU. Thus N{sub 2}H{sup +} appears to be a robust tracer of the midplane CO snow line. The DCO{sup +} emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO{sup +} emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.« less
View Angle Effects on MODIS Snow Mapping in Forests
NASA Technical Reports Server (NTRS)
Xin, Qinchuan; Woodcock, Curtis E.; Liu, Jicheng; Tan, Bin; Melloh, Rae A.; Davis, Robert E.
2012-01-01
Binary snow maps and fractional snow cover data are provided routinely from MODIS (Moderate Resolution Imaging Spectroradiometer). This paper investigates how the wide observation angles of MODIS influence the current snow mapping algorithm in forested areas. Theoretical modeling results indicate that large view zenith angles (VZA) can lead to underestimation of fractional snow cover (FSC) by reducing the amount of the ground surface that is viewable through forest canopies, and by increasing uncertainties during the gridding of MODIS data. At the end of the MODIS scan line, the total modeled error can be as much as 50% for FSC. Empirical analysis of MODIS/Terra snow products in four forest sites shows high fluctuation in FSC estimates on consecutive days. In addition, the normalized difference snow index (NDSI) values, which are the primary input to the MODIS snow mapping algorithms, decrease as VZA increases at the site level. At the pixel level, NDSI values have higher variances, and are correlated with the normalized difference vegetation index (NDVI) in snow covered forests. These findings are consistent with our modeled results, and imply that consideration of view angle effects could improve MODIS snow monitoring in forested areas.
NASA Astrophysics Data System (ADS)
Wu, C.; Liu, X.; Diao, M.; Zhang, K.; Gettelman, A.
2015-12-01
A dominant source of uncertainty within climate system modeling lies in the representation of cloud processes. This is not only because of the great complexity in cloud microphysics, but also because of the large variations of cloud amount and macroscopic properties in time and space. In this study, the cloud properties simulated by the Community Atmosphere Model version 5.4 (CAM5.4) are evaluated using the HIAPER Pole-to-Pole Observations (HIPPO, 2009-2011). CAM5.4 is driven by the meteorology (U, V, and T) from GEOS5 analysis, while water vapor, hydrometeors and aerosols are calculated by the model itself. For direct comparison of CAM5.4 and HIPPO observations, model output is collocated with HIPPO flights. Generally, the model has an ability to capture specific cloud systems of meso- to large-scales. In total, the model can reproduce 80% of observed cloud occurrences inside model grid boxes, and even higher (93%) for ice clouds (T≤-40°C). However, the model produces plenty of clouds that are not presented in the observation. The model also simulates significantly larger cloud fraction including for ice clouds compared to the observation. Further analysis shows that the overestimation is a result of bias in relative humidity (RH) in the model. The bias of RH can be mostly attributed to the discrepancies of water vapor, and to a lesser extent to those of temperature. Down to the micro-scale level of ice clouds, the model can simulate reasonably well the magnitude of ice and snow number concentration (Ni, with diameter larger than 75 μm). However, the model simulates fewer occurrences of Ni>50 L-1. This can be partially ascribed to the low bias of aerosol number concentration (Naer, with diameter between 0.1-1 μm) simulated by the model. Moreover, the model significantly underestimates both the number mean diameter (Di,n) and the volume mean diameter (Di,v) of ice/snow. The result shows that the underestimation may be related to a weaker positive relationship between Di,n and Naer and/or the underestimation of Naer. Finally, it is suggested that better representation of sub-grid variability of meteorology (e.g., water vapor) is needed to improve the formation and evolution of ice clouds in the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maclaurin, Galen; Sengupta, Manajit; Xie, Yu
A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less
Collaboration on Development and Validation of the AMSR-E Snow Water Equivalent Algorithm
NASA Technical Reports Server (NTRS)
Armstrong, Richard L.
2000-01-01
The National Snow and Ice Data Center (NSIDC) has produced a global SMMR and SSM/I Level 3 Brightness Temperature data set in the Equal Area Scalable Earth (EASE) Grid for the period 1978 to 2000. Processing of current data is-ongoing. The EASE-Grid passive microwave data sets are appropriate for algorithm development and validation prior to the launch of AMSR-E. Having the lower frequency channels of SMMR (6.6 and 10.7 GHz) and the higher frequency channels of SSM/I (85.5 GHz) in the same format will facilitate the preliminary development of applications which could potentially make use of similar frequencies from AMSR-E (6.9, 10.7, 89.0 GHz).
NASA Astrophysics Data System (ADS)
Dozier, J.; Tolle, K.; Bair, N.
2014-12-01
We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?
Scales of variability of black carbon plumes and their dependence on resolution of ECHAM6-HAM
NASA Astrophysics Data System (ADS)
Weigum, Natalie; Stier, Philip; Schutgens, Nick; Kipling, Zak
2015-04-01
Prediction of the aerosol effect on climate depends on the ability of three-dimensional numerical models to accurately estimate aerosol properties. However, a limitation of traditional grid-based models is their inability to resolve variability on scales smaller than a grid box. Past research has shown that significant aerosol variability exists on scales smaller than these grid-boxes, which can lead to discrepancies between observations and aerosol models. The aim of this study is to understand how a global climate model's (GCM) inability to resolve sub-grid scale variability affects simulations of important aerosol features. This problem is addressed by comparing observed black carbon (BC) plume scales from the HIPPO aircraft campaign to those simulated by ECHAM-HAM GCM, and testing how model resolution affects these scales. This study additionally investigates how model resolution affects BC variability in remote and near-source regions. These issues are examined using three different approaches: comparison of observed and simulated along-flight-track plume scales, two-dimensional autocorrelation analysis, and 3-dimensional plume analysis. We find that the degree to which GCMs resolve variability can have a significant impact on the scales of BC plumes, and it is important for models to capture the scales of aerosol plume structures, which account for a large degree of aerosol variability. In this presentation, we will provide further results from the three analysis techniques along with a summary of the implication of these results on future aerosol model development.
High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models
NASA Astrophysics Data System (ADS)
Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David
2014-12-01
High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.
NASA Astrophysics Data System (ADS)
Gallet, Jean-Charles; Merkouriadi, Ioanna; Liston, Glen E.; Polashenski, Chris; Hudson, Stephen; Rösel, Anja; Gerland, Sebastian
2017-10-01
Snow is crucial over sea ice due to its conflicting role in reflecting the incoming solar energy and reducing the heat transfer so that its temporal and spatial variability are important to estimate. During the Norwegian Young Sea ICE (N-ICE2015) campaign, snow physical properties and variability were examined, and results from April until mid-June 2015 are presented here. Overall, the snow thickness was about 20 cm higher than the climatology for second-year ice, with an average of 55 ± 27 cm and 32 ± 20 cm on first-year ice. The average density was 350-400 kg m-3 in spring, with higher values in June due to melting. Due to flooding in March, larger variability in snow water equivalent was observed. However, the snow structure was quite homogeneous in spring due to warmer weather and lower amount of storms passing over the field camp. The snow was mostly consisted of wind slab, faceted, and depth hoar type crystals with occasional fresh snow. These observations highlight the more dynamic character of evolution of snow properties over sea ice compared to previous observations, due to more variable sea ice and weather conditions in this area. The snowpack was isothermal as early as 10 June with the first onset of melt clearly identified in early June. Based on our observations, we estimate than snow could be accurately represented by a three to four layers modeling approach, in order to better consider the high variability of snow thickness and density together with the rapid metamorphose of the snow in springtime.
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María
2016-04-01
In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.
NASA Astrophysics Data System (ADS)
Trautmann, Tina; Koirala, Sujan; Carvalhais, Nuno; Niemann, Christoph; Fink, Manfred; Jung, Martin
2017-04-01
Understanding variations in the terrestrial water storage (TWS) and its components is essential to gain insights into the dynamics of the hydrological cycle, and to assess temporal and spatial variations of water availability under global changes. We investigated spatio-temporal patterns of TWS variations and their composition in the humid regions of northern mid-to-high latitudes during 2001-2014 by using a simple hydrological model with few effective parameters. Compared to traditional modelling studies, our simple model was informed and constrained by multiple state-of-the-art earth observation products including TWS from Gravity Recovery and Climate Experiment (GRACE) satellites (Wiese 2015), Snow Water Equivalent (SWE) from GlobSnow project (Loujous et al. 2014), evapotranspiration fluxes from eddy covariance measurements (Tramontana et al. 2016), and gridded runoff estimates for Europe (Gudmundsson & Seneviratne 2016). Thorough evaluation of model demonstrates that the model reproduces the observed patterns of hydrological fluxes and states well. The validated model results are then used to assess the contributions of snow pack, soil moisture and groundwater on the integrated TWS across spatial (local grid scale, spatially integrated) and temporal (seasonal, inter-annual) scales. Interestingly, our results show that TWS variations on different scales are dominated by different components. On both, seasonal and inter-annual time scales, the spatially integrated TWS signal mainly originates from dynamics of snow pack. On the local grid scale, mean seasonal TWS variations are driven by snow dynamics as well, whereas inter-annual variations are found to originate from soil moisture availability. Thus, we show that the determinants of TWS variations are scale-dependent, while coincidently underline the potential of model-data fusion techniques to gain insights into the complex hydrological system. References: Gudmundsson, L. and S. I. Seneviratne (2016): Observation-based gridded runoff estimates for Europe (E-RUN version 1.1). -Earth System Science Data, 8, 279-295. doi: 10.5194/essd-8-279-201. Loujous, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Kangwa, M., Eskelinen, M., Metsämäki, S., Solberg, R., Salberg, A.-B., Bippus, G., Ripper, E., Nagler, T., Derksen, C., Wiesmann, A., Wunderle, S., Hüsler, F., Fontana, F., and Foppa, N., 2014: GlobSnow-2 Final Report, European Space Agency. Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D. (2016): Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. -Biogeosciences, 13, 4291-4313. doi:10.5194/bg-13-4291-2016. D.N. Wiese (2015): GRACE monthly global water mass grids. NETCDF RELEASE 5.0. Ver. 5.0. PO.DAAC, CA, USA. Dataset accessed [2016-01-03] at http://dx.doi.org/10.5067/TEMSC-OCL05.
Shallow cumuli ensemble statistics for development of a stochastic parameterization
NASA Astrophysics Data System (ADS)
Sakradzija, Mirjana; Seifert, Axel; Heus, Thijs
2014-05-01
According to a conventional deterministic approach to the parameterization of moist convection in numerical atmospheric models, a given large scale forcing produces an unique response from the unresolved convective processes. This representation leaves out the small-scale variability of convection, as it is known from the empirical studies of deep and shallow convective cloud ensembles, there is a whole distribution of sub-grid states corresponding to the given large scale forcing. Moreover, this distribution gets broader with the increasing model resolution. This behavior is also consistent with our theoretical understanding of a coarse-grained nonlinear system. We propose an approach to represent the variability of the unresolved shallow-convective states, including the dependence of the sub-grid states distribution spread and shape on the model horizontal resolution. Starting from the Gibbs canonical ensemble theory, Craig and Cohen (2006) developed a theory for the fluctuations in a deep convective ensemble. The micro-states of a deep convective cloud ensemble are characterized by the cloud-base mass flux, which, according to the theory, is exponentially distributed (Boltzmann distribution). Following their work, we study the shallow cumulus ensemble statistics and the distribution of the cloud-base mass flux. We employ a Large-Eddy Simulation model (LES) and a cloud tracking algorithm, followed by a conditional sampling of clouds at the cloud base level, to retrieve the information about the individual cloud life cycles and the cloud ensemble as a whole. In the case of shallow cumulus cloud ensemble, the distribution of micro-states is a generalized exponential distribution. Based on the empirical and theoretical findings, a stochastic model has been developed to simulate the shallow convective cloud ensemble and to test the convective ensemble theory. Stochastic model simulates a compound random process, with the number of convective elements drawn from a Poisson distribution, and cloud properties sub-sampled from a generalized ensemble distribution. We study the role of the different cloud subtypes in a shallow convective ensemble and how the diverse cloud properties and cloud lifetimes affect the system macro-state. To what extent does the cloud-base mass flux distribution deviate from the simple Boltzmann distribution and how does it affect the results from the stochastic model? Is the memory, provided by the finite lifetime of individual clouds, of importance for the ensemble statistics? We also test for the minimal information given as an input to the stochastic model, able to reproduce the ensemble mean statistics and the variability in a convective ensemble. An important property of the resulting distribution of the sub-grid convective states is its scale-adaptivity - the smaller the grid-size, the broader the compound distribution of the sub-grid states.
Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions
NASA Astrophysics Data System (ADS)
Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.
2010-12-01
Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.
G. L. Wooldridge; R. C. Musselman; R. A. Sommerfeld; D. G. Fox; B. H. Connell
1996-01-01
1. Deformations of Engelmann spruce and subalpine fir trees were surveyed for the purpose of determining climatic wind speeds and directions and snow depths in the Glacier Lakes Ecosystem Experiments Site (GLEES) in the Snowy Range of southeastern Wyoming, USA. Tree deformations were recorded at 50- and 100-m grid intervals over areas of c. 30 ha and 300 ha,...
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste; ...
2017-04-03
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
Mapping snow depth within a tundra ecosystem using multiscale observations and Bayesian methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wainwright, Haruko M.; Liljedahl, Anna K.; Dafflon, Baptiste
This paper compares and integrates different strategies to characterize the variability of end-of-winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic Alaska. Snow depth was measured using in situ snow depth probes and estimated using ground-penetrating radar (GPR) surveys and the photogrammetric detection and ranging (phodar) technique with an unmanned aerial system (UAS). We found that GPR data provided high-precision estimates of snow depth (RMSE=2.9cm), with a spatial sampling of 10cm along transects. Phodar-based approaches provided snow depth estimates in a less laborious manner compared to GPR and probing, while yielding a high precision (RMSE=6.0cm) andmore » a fine spatial sampling (4cm×4cm). We then investigated the spatial variability of snow depth and its correlation to micro- and macrotopography using the snow-free lidar digital elevation map (DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly variable over short (several meter) distances, and the variability was correlated with microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) were filled in with snow, which resulted in a smooth and even snow surface following macrotopography. We developed and implemented a Bayesian approach to integrate the snow-free lidar DEM and multiscale measurements (probe and GPR) as well as the topographic correlation for estimating snow depth over the landscape. Our approach led to high-precision estimates of snow depth (RMSE=6.0cm), at 0.5m resolution and over the lidar domain (750m×700m).« less
Impact of snow gliding on soil redistribution for a sub-alpine area in Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Alewell, C.
2013-07-01
The aim of this study is to assess the importance of snow gliding as soil erosion agent for four different land use/land cover types in a sub-alpine area in Switzerland. The 14 investigated sites are located close to the valley bottom at approximately 1500 m a.s.l., while the elevation of the surrounding mountain ranges is about 2500 m a.s.l. We used two different approaches to estimate soil erosion rates: the fallout radionuclide 137Cs and the Revised Universal Soil Loss Equation (RUSLE). The RUSLE model is suitable to estimate soil loss by water erosion, while the 137Cs method integrates soil loss due to all erosion agents involved. Thus, we hypothesise that the soil erosion rates determined with the 137Cs method are higher and that the observed discrepancy between the erosion rate of RUSLE and the 137Cs method is related to snow gliding. Cumulative snow glide distance was measured for the sites in the winter 2009/2010 and modelled for the surrounding area with the Spatial Snow Glide Model (SSGM). Measured snow glide distance range from 0 to 189 cm with lower values for the north exposed slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected land use changes in the Alps. Our hypothesis was confirmed, the difference of RUSLE and 137Cs erosion rates was correlated to the measured snow glide distance (R2 = 0.73; p < 0.005). A high difference (lower proportion of water erosion compared to total net erosion) was observed for high snow glide rates and vice versa. The SSGM reproduced the relative difference of the measured snow glide values between different land use/land cover types. The resulting map highlights the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding is a key process impacting soil erosion pattern and magnitude in sub-alpine areas with similar topographic and climatic conditions.
Generation of Level 3 SMMR and SSM/I Brightness Temperatures for the Period 1978-1999
NASA Technical Reports Server (NTRS)
Partington, Kim
1999-01-01
The NOAA/NASA Pathfinder Program was initially designed to assure that certain key remote sensing data sets of particular significance to global change research were scientifically validated, consistently processed and made readily available to the research community at minimal cost. Through this Program the National Snow and Ice Data Center (NSIDC), University of Colorado has successfully processed, archived and distributed the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) Level 3 (EASE-Grid format) Pathfinder data sets for the period 1978 to 1999. These data are routinely distributed to approximately 150 researchers through various media including CD-ROM, 8 mm tape, ftp and the EOS Information Management System (IMS). At NSIDC these data are currently being applied in the development and validation of algorithms to derive snow water equivalent (NASA NAG5-6636), the mapping of frozen ground and the detection of the onset of melt over ice sheets, sea ice and snow cover. The EASE-Grid format, developed at NSIDC in conjunction with the SMMR-SSM/I Pathfinder project has also been applied to Advanced Very High Resolution Radiometer (AVHRR) and TOVS Pathfinder data, as well as ancillary data such as digital elevation, land cover classification and several in situ data sets. EASE-Grid will also be used for all land products derived from the NASA EOS AMSR-E instrument.
Surface Snow Density of East Antarctica Derived from In-Situ Observations
NASA Astrophysics Data System (ADS)
Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.
2018-04-01
Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.
NASA Astrophysics Data System (ADS)
Ramage, J. M.; Brodzik, M. J.; Hardman, M.; Troy, T. J.
2017-12-01
Snow is a vital part of the terrestrial hydrological cycle, a crucial resource for people and ecosystems. In mountainous regions snow is extensive, variable, and challenging to document. Snow melt timing and duration are important factors affecting the transfer of snow mass to soil moisture and runoff. Passive microwave brightness temperature (Tb) changes at 36 and 18 GHz are a sensitive way to detect snow melt onset due to their sensitivity to the abrupt change in emissivity. They are widely used on large icefields and high latitude watersheds. The coarse resolution ( 25 km) of historically available data has precluded effective use in high relief, heterogeneous regions, and gaps between swaths also create temporal data gaps at lower latitudes. New enhanced resolution data products generated from a scatterometer image reconstruction for radiometer (rSIR) technique are available at the original frequencies. We use these Calibrated Enhanced-resolution Brightness (CETB) Temperatures Earth System Data Records (ESDR) to evaluate existing snow melt detection algorithms that have been used in other environments, including the cross polarized gradient ratio (XPGR) and the diurnal amplitude variations (DAV) approaches. We use the 36/37 GHz (3.125 km resolution) and 18/19 GHz (6.25 km resolution) vertically and horizontally polarized datasets from the Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Radiometer for EOS (AMSR-E) and evaluate them for use in this high relief environment. The new data are used to assess glacier and snow melt records in the Hunza River Basin [area 13,000 sq. km, located at 36N, 74E], a tributary to the Upper Indus Basin, Pakistan. We compare the melt timing results visually and quantitatively to the corresponding EASE-Grid 2.0 25-km dataset, SRTM topography, and surface temperatures from station and reanalysis data. The new dataset is coarser than the topography, but is able to differentiate signals of melt/refreeze timing for different altitudes and land cover in this remote area with significant hazards from snow melt and glacier discharge. The improved spatial resolution, enhanced to 3-6 km, and retaining twice daily observations is a key improvement to fully analyze snowpack melt characteristics in remote mountainous regions.
NASA Astrophysics Data System (ADS)
Magnin, Florence; Westermann, Sebastian; Pogliotti, Paolo; Ravanel, Ludovic; Deline, Philip
2016-04-01
Permafrost degradation through the thickening of the active layer and the rising temperature at depth is a crucial process of rock wall stability. The ongoing increase in rock falls observed during hot periods in mid-latitude mountain ranges is regarded as a result of permafrost degradation. However, the short-term thermal dynamics of alpine rock walls are misunderstood since they result of complex processes related to the interaction of local climate variables, heterogeneous snow cover and heat transfers. As a consequence steady-state and long-term changes that can be approached with simpler process mainly related to air temperature, solar radiations and heat conduction were the most common dynamics to be studied so far. The effect of snow on the bedrock surface temperature is increasingly investigated and has already been demonstrated to be an essential factor of permafrost distribution. Nevertheless, its effect on the year-to-year changes of the active layer thickness and of the permafrost temperature in steep alpine bedrock has not been investigated yet, partly due to the lack of appropriate data. We explore the role of snow accumulations on the active layer and permafrost thermal regime of steep rock walls of a high-elevated site, the Aiguille du Midi (AdM, 3842 m a.s.l, Mont Blanc massif, Western European Alps) by mean of a multi-methods approach. We first analyse six years of temperature records in three 10-m-deep boreholes. Then we describe the snow accumulation patterns on two rock faces by means of automatically processed camera records. Finally, sensitivity analyses of the active layer thickness and permafrost temperature towards timing and magnitude of snow accumulations are performed using the numerical permafrost model CryoGrid 3. The energy balance module is forced with local meteorological measurements on the AdM S face and validated with surface temperature measurements at the weather station location. The heat conduction scheme is calibrated with the temperature measurements in the S-exposed borehole. Results show that the snow may be responsible for permafrost presence while it is absent in the surrounding snow free bedrock. The long lasting of the snow at high elevation, where it can remain until the mid-summer has a delaying effect on the seasonal thaw, which contributes to the lowering of the active layer thickness.
NASA Astrophysics Data System (ADS)
Khodzher, T. V.; Golobokova, L. P.; Osipov, E. Yu.; Shibaev, Yu. A.; Lipenkov, V. Ya.; Osipova, O. P.; Petit, J. R.
2014-05-01
In January of 2008, during the 53rd Russian Antarctic Expedition, surface snow samples were taken from 13 shallow (0.7 to 1.5 m depth) snow pits along the first tractor traverse from Progress to Vostok stations, East Antarctica. Sub-surface snow/firn layers are dated from 2.1 to 18 yr. The total length of the coast to inland traverse is more than 1280 km. Here we analysed spatial variability of concentrations of sulphate ions and elements and their fluxes in the snow deposited within the 2006-2008 time interval. Anions were analysed by high-performance liquid chromatography (HPLC), and the determination of selected metals, including Na, K, Mg, Ca and Al, was carried out by mass spectroscopy with atomization by induced coupled plasma (ICP-MS). Surface snow concentration records were examined for trends versus distance inland, elevation, accumulation rate and slope gradient. Na shows a significant positive correlation with accumulation rate, which decreases as distance from the sea and altitude increase. K, Ca and Mg concentrations do not show any significant relationship either with distance inland or with elevation. Maximal concentrations of these elements with a prominent Al peak are revealed in the middle part of the traverse (500-600 km from the coast). Analysis of element correlations and atmospheric circulation patterns allow us to suggest their terrestrial origin (e.g. aluminosilicates carried as a continental dust) from the Antarctic nunatak areas. Sulphate concentrations show no significant relationship with distance inland, elevation, slope gradient and accumulation rate. Non-sea salt secondary sulphate is the most important contribution to the total sulphate budget along the traverse. Sulphate of volcanic origin attributed to the Pinatubo eruption (1991) was revealed in the snow pit at 1276 km (depth 120-130 cm).
A Priori Subgrid Scale Modeling for a Droplet Laden Temporal Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo, Nora; Bellan, Josette
2000-01-01
Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using a direct numerical simulation (DNS) database. The DNS is for a Reynolds number (based on initial vorticity thickness) of 600, with droplet mass loading of 0.2. The gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. Since Large Eddy Simulation (LES) of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be given by the filtered variables plus a correction based on the filtered standard deviation, which can be computed from the sub-grid scale (SGS) standard deviation. This model predicts unfiltered variables at droplet locations better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: Smagorinsky, gradient and scale-similarity. When properly calibrated, the gradient and scale-similarity methods give results in excellent agreement with the DNS.
NASA Astrophysics Data System (ADS)
Brucker, L.; Dinnat, E. P.; Koenig, L. S.
2014-05-01
Following the development and availability of Aquarius weekly polar-gridded products, this study presents the spatial and temporal radiometer and scatterometer observations at L band (frequency ~1.4 GHz) over the cryosphere including the Greenland and Antarctic ice sheets, sea ice in both hemispheres, and over sub-Arctic land for monitoring the soil freeze/thaw state. We provide multiple examples of scientific applications for the L-band data over the cryosphere. For example, we show that over the Greenland Ice Sheet, the unusual 2012 melt event lead to an L-band brightness temperature (TB) sustained decrease of ~5 K at horizontal polarization. Over the Antarctic ice sheet, normalized radar cross section (NRCS) observations recorded during ascending and descending orbits are significantly different, highlighting the anisotropy of the ice cover. Over sub-Arctic land, both passive and active observations show distinct values depending on the soil physical state (freeze/thaw). Aquarius sea surface salinity (SSS) retrievals in the polar waters are also presented. SSS variations could serve as an indicator of fresh water input to the ocean from the cryosphere, however the presence of sea ice often contaminates the SSS retrievals, hindering the analysis. The weekly grided Aquarius L-band products used are distributed by the US Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html , and show potential for cryospheric studies.
Black carbon in the atmosphere and deposition on snow, last 130 years
NASA Astrophysics Data System (ADS)
Skeie, R. B.; Berntsen, T.; Myhre, G.; Pedersen, C.; Gerland, S.; Ström, J.; Forsström, S.
2009-04-01
The transport of Black Carbon (BC) in the atmosphere and the deposition of BC on snow surfaces for the last 130 years, with special emphasis on the last 8 years, are modeled with the Oslo CTM2 model. In addition regional contribution to BC deposition on snow in the polar region is evaluated for some years. The model results are compared with observations including our own recent measurement of BC in snow. Radiative forcing due to the direct effect as well as the snow-albedo effect is also calculated. Oslo CTM2 is an offline chemical transport model with T42 horizontal resolution using meteorological data from the IFS model at ECMWF. The scheme for BC includes hydrophilic and hydrophobic particles, as well as emissions from fossil fuel, biofuel and open biomass burning. Data on snow fall, melt and evaporation from ECMWF are used to generate and remove snow layers in each grid box. In these snow layers the amounts of deposited BC are stored, and concentration of BC in each snow layer is calculated. For the period 1870-2000 time slice simulations are done every 10th year. The period is simulated with constant meteorological data for the year 2000-2001 and vertical resolution of 40 levels. The emission data used is from Bond [1] for fossil fuel and biofuel, and data from Ito and Penner [2] for open biomass burning. The period 2000 until present are modeled with real time meteorological data and vertical resolution of 60 levels. Fossil fuel emission data used are the year 2000 data from Bond [1] except for the Asian region where REAS emissions [3] are used. For biomass burning BC emission the GFED data set are used [4]. The results are compared with available BC measurements from ice cores, air and snow. The observed time history of the BC concentration in snow over Greenland, US, and Himalaya is compared to the model results. During the years 2006-2008 several measurements of BC concentrations in snow in the Arctic region have been done, showing significant spatial variability. Within the large spread in the observations of BC concentration in snow, the model gives results that are consistent with the observations. In addition to evaluating total effect of BC in snow and its radiative effects, regional contribution to BC deposition on snow in the Arctic region are calculated. Today China is the region with largest BC fossil fuel emissions. Our results using the Olso CTM2 model show however that it is the 4th region in contribution to BC deposition on snow north of 65 degrees. The largest contributor is Russia, followed by Western Europe and North America. In the historical period, the share of emissions between these regions differs from the present situation. The BC emissions from fossil fuel in North America and Western Europe were respectively 3 and 2 times larger in 1920-30 than the present emissions from these regions. Therefore those regions had a higher contribution to BC in snow in the Arctic region 80 years ago than they have today. References: 1. Bond, T.C., et al., Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. Global Biogeochemical Cycles, 2007. 21(2): p. 16. 2. Ito, A. and J.E. Penner, Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. Global Biogeochemical Cycles, 2005. 19(2): p. 14. 3. Ohara, T., et al., An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric Chemistry and Physics, 2007. 7(16): p. 4419-4444. 4. van der Werf, G.R., et al., Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys., 2006. 6(11): p. 3423-3441.
NASA Astrophysics Data System (ADS)
Pathiraja, S. D.; van Leeuwen, P. J.
2017-12-01
Model Uncertainty Quantification remains one of the central challenges of effective Data Assimilation (DA) in complex partially observed non-linear systems. Stochastic parameterization methods have been proposed in recent years as a means of capturing the uncertainty associated with unresolved sub-grid scale processes. Such approaches generally require some knowledge of the true sub-grid scale process or rely on full observations of the larger scale resolved process. We present a methodology for estimating the statistics of sub-grid scale processes using only partial observations of the resolved process. It finds model error realisations over a training period by minimizing their conditional variance, constrained by available observations. Special is that these realisations are binned conditioned on the previous model state during the minimization process, allowing for the recovery of complex error structures. The efficacy of the approach is demonstrated through numerical experiments on the multi-scale Lorenz 96' model. We consider different parameterizations of the model with both small and large time scale separations between slow and fast variables. Results are compared to two existing methods for accounting for model uncertainty in DA and shown to provide improved analyses and forecasts.
NASA Astrophysics Data System (ADS)
Mathevet, T.; Joel, G.; Gottardi, F.; Nemoz, B.
2017-12-01
The aim of this communication is to present analyses of climate variability and change on snow water equivalent (SWE) observations, reconstructions (1900-2016) and scenarii (2020-2100) of a hundred of snow courses dissiminated within the french Alps. This issue became particularly important since a decade, in regions where snow variability had a large impact on water resources availability, poor snow conditions in ski resorts and artificial snow production. As a water resources manager in french mountainuous regions, EDF (french hydropower company) has developed and managed a hydrometeorological network since 1950. A recent data rescue research allowed to digitize long term SWE manual measurments of a hundred of snow courses within the french Alps. EDF have been operating an automatic SWE sensors network, complementary to the snow course network. Based on numerous SWE observations time-series and snow accumulation and melt model (Garavaglia et al., 2017), continuous daily historical SWE time-series have been reconstructed within the 1950-2016 period. These reconstructions have been extented to 1900 using 20 CR reanalyses (ANATEM method, Kuentz et al., 2015) and up to 2100 using GIEC Climate Change scenarii. Considering various mountainous areas within the french Alps, this communication focuses on : (1) long term (1900-2016) analyses of variability and trend of total precipitation, air temperature, snow water equivalent, snow line altitude, snow season length , (2) long term variability of hydrological regime of snow dominated watersheds and (3) future trends (2020 -2100) using GIEC Climate Change scenarii. Comparing historical period (1950-1984) to recent period (1984-2016), quantitative results within a region in the north Alps (Maurienne) shows an increase of air temperature by 1.2 °C, an increase of snow line height by 200m, a reduction of SWE by 200 mm/year and a reduction of snow season length by 15 days. These analyses will be extended from north to south of the Alps, on a region spanning 200 km. Caracterisation of the increase of snow line height and SWE reduction are particularly important at a local and watershed scale. This long term change of snow dynamics within moutainuous regions both impacts snow resorts and artificial snow production developments and multi-purposes dam reservoirs managments.
NASA Astrophysics Data System (ADS)
Dhakal, S.; Ojha, S.
2017-12-01
Climate change and its impact of water resource have gained tremendous attention among scientific committee, governments and other stakeholders since last couple of decades, especially in Himalayan region. In this study, we purpose remotely sensed measurements to monitor snow cover, both spatially and temporal, and assess climate change impact on water resource. The snow cover data from MODIS satellite (2000-2010) have been used to analyze some climate change indicators. In particular, the variability in the maximum snow extent with elevations, its temporal variability (8-day, monthly, seasonal and annual), its variation trend and its relation with temperature have been analyzed. The snow products used in this study are the maximum snow extent and fractional snow covers, which come in 8-day temporal and 500m and 0.05 degree spatial resolutions, respectively. The results showed a tremendous potential of the MODIS snow product for studying the spatial and temporal variability of snow as well as the study of climate change impact in large and inaccessible regions like the Himalayas. The snow area extent (SAE) (%) time series exhibits similar patterns during seven hydrological years, even though there are some deviations in the accumulation and melt periods. The analysis showed relatively well inverse relation between the daily mean temperature and SAE during the melting period. Some important trends of snow fall are also observed. In particular, the decreasing trend in January and increasing trend in late winter and early spring may be interpreted as a signal of a possible seasonal shift. However, it requires more years of data to verify this conclusion.
Uncertainty quantification in LES of channel flow
Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; ...
2016-07-12
Here, in this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence andmore » are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for.« less
Small scale variability of snow properties on Antarctic sea ice
NASA Astrophysics Data System (ADS)
Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael
2016-04-01
Snow on sea ice plays an important role in air-ice-sea interactions, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by interactions with the wind. Snow density is a key property in many processes, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell Sea, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on sea ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface processes, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.
Mapping Snow Grain Size over Greenland from MODIS
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander
2008-01-01
This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.
Validation of EOS Aqua AMSR Sea Ice Products for East Antarctica
NASA Technical Reports Server (NTRS)
Massom, Rob; Lytle, Vicky; Allison, Ian; Worby, Tony; Markus, Thorsten; Scambos, Ted; Haran, Terry; Enomoto, Hiro; Tateyama, Kazu; Pfaffling, Andi
2004-01-01
This paper presents results from AMSR-E validation activities during a collaborative international cruise onboard the RV Aurora Australis to the East Antarctic sea ice zone (64-65 deg.S, 110-120 deg.E) in the early Austral spring of 2003. The validation strategy entailed an IS-day survey of the statistical characteristics of sea ice and snowcover over a Lagrangian grid 100 x 50 km in size (demarcated by 9 drifting ice beacons) i.e. at a scale representative of Ah4SR pixels. Ice conditions ranged h m consolidated first-year ice to a large polynya offshore from Casey Base. Data sets collected include: snow depth and snow-ice interface temperatures on 24 (?) randomly-selected floes in grid cells within a 10 x 50 km area (using helicopters); detailed snow and ice measurements at 13 dedicated ice stations, one of which lasted for 4 days; time-series measurements of snow temperature and thickness at selected sites; 8 aerial photography and thermal-IR radiometer flights; other satellite products (SAR, AVHRR, MODIS, MISR, ASTER and Envisat MERIS); ice drift data; and ancillary meteorological (ship-based, meteorological buoys, twice-daily radiosondes). These data are applied to a validation of standard AMSR-E ice concentration, snowcover thickness and ice-temperature products. In addition, a validation is carried out of ice-surface skin temperature products h m the NOAA AVHRR and EOS MODIS datasets.
NASA Astrophysics Data System (ADS)
Kim, Youngwook; Kimball, John S.; Glassy, Joseph; Du, Jinyang
2017-02-01
The landscape freeze-thaw (FT) signal determined from satellite microwave brightness temperature (Tb) observations has been widely used to define frozen temperature controls on land surface water mobility and ecological processes. Calibrated 37 GHz Tb retrievals from the Scanning Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave Imager (SSM/I), and SSM/I Sounder (SSMIS) were used to produce a consistent and continuous global daily data record of landscape FT status at 25 km grid cell resolution. The resulting FT Earth system data record (FT-ESDR) is derived from a refined classification algorithm and extends over a larger domain and longer period (1979-2014) than prior FT-ESDR releases. The global domain encompasses all land areas affected by seasonal frozen temperatures, including urban, snow- and ice-dominant and barren land, which were not represented by prior FT-ESDR versions. The FT retrieval is obtained using a modified seasonal threshold algorithm (MSTA) that classifies daily Tb variations in relation to grid-cell-wise FT thresholds calibrated using surface air temperature data from model reanalysis. The resulting FT record shows respective mean annual spatial classification accuracies of 90.3 and 84.3 % for evening (PM) and morning (AM) overpass retrievals relative to global weather station measurements. Detailed data quality metrics are derived characterizing the effects of sub-grid-scale open water and terrain heterogeneity, as well as algorithm uncertainties on FT classification accuracy. The FT-ESDR results are also verified against other independent cryospheric data, including in situ lake and river ice phenology, and satellite observations of Greenland surface melt. The expanded FT-ESDR enables new investigations encompassing snow- and ice-dominant land areas, while the longer record and favorable accuracy allow for refined global change assessments that can better distinguish transient weather extremes, landscape phenological shifts, and climate anomalies from longer-term trends extending over multiple decades. The dataset is freely available online (doi:10.5067/MEASURES/CRYOSPHERE/nsidc-0477.003).
The Tambora effect on the hydrology of Switzerland in 1816/1817
NASA Astrophysics Data System (ADS)
Rössler, Ole; Brönnimann, Stefan
2017-04-01
The eruption of the volcano Tambora in 1815 caused what is literally called "the year without summer" in 1816 in Switzerland, resulting among others in extensive harvest losses. Furthermore, it has been reported that the snow was significantly present throughout the year. Hence, in the following winter fresh snow piled on top what was left from the last year, and an unusually snowy spring 1817 further increased snow heights. It has been argued that the spring floods at the Lake Constance (highest reported lake level) and at Basel are a result from the assumed massive snow melt. We here present an approach and first results of a study that tries to reconstruct this extraordinary event. Based on historical meteorological measurements at three locations, an analogue method was applied that reconstructs daily precipitation and temperature for the years 1816 and 1817 for the Rhine river basin up to Basel. Analogues were sampled from observation based gridded datasets of precipitation and temperature from last 50 years in Switzerland. As the Rhine catchment to Basel covers also parts of Germany and Austria, the Swiss gridded dataset was extended via analogues date from the E-OBS dataset. This meteorological input drove the hydrological model WaSiM-ETH, both for the reference period 1981-2009 and the Tambora scenario period 1816/1817. First, the hydrological model was calibrated (1991-1999) and validated (1981-2009) against discharge from the river Rhine at Basel, CH, using the same gridded data sets for temperature and precipitation. For the sake of simplicity in first place, land use and river regulations are kept as they are today. We found that the general river regime is reproducible in 1816 and 1817. So is the reported snow development. Hence, we argue that the general set up is feasible and the effect of the Tambora eruption on the average hydrological conditions can be estimated. However, the flood peaks during the years 1816 and 1817 are underestimated if present at all as comparisons with early recordings of flood peaks in Basel show.
Domain-averaged snow depth over complex terrain from flat field measurements
NASA Astrophysics Data System (ADS)
Helbig, Nora; van Herwijnen, Alec
2017-04-01
Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.
Changing Seasonality of Tundra Vegetation and Associated Climatic Variables
NASA Astrophysics Data System (ADS)
Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.
2014-12-01
This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over most seasons but shows slight increases in spring in North America and during fall over Eurasia. Later spring or earlier fall snow cover can both lead to reductions in TI-NDVI. The time-varying spatial patterns of NDVI trends can be largely explained using either snow cover or land surface temperature trends.
Gridded rainfall estimation for distributed modeling in western mountainous areas
NASA Astrophysics Data System (ADS)
Moreda, F.; Cong, S.; Schaake, J.; Smith, M.
2006-05-01
Estimation of precipitation in mountainous areas continues to be problematic. It is well known that radar-based methods are limited due to beam blockage. In these areas, in order to run a distributed model that accounts for spatially variable precipitation, we have generated hourly gridded rainfall estimates from gauge observations. These estimates will be used as basic data sets to support the second phase of the NWS-sponsored Distributed Hydrologic Model Intercomparison Project (DMIP 2). One of the major foci of DMIP 2 is to better understand the modeling and data issues in western mountainous areas in order to provide better water resources products and services to the Nation. We derive precipitation estimates using three data sources for the period of 1987-2002: 1) hourly cooperative observer (coop) gauges, 2) daily total coop gauges and 3) SNOw pack TELemetry (SNOTEL) daily gauges. The daily values are disaggregated using the hourly gauge values and then interpolated to approximately 4km grids using an inverse-distance method. Following this, the estimates are adjusted to match monthly mean values from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). Several analyses are performed to evaluate the gridded estimates for DMIP 2 experiments. These gridded inputs are used to generate mean areal precipitation (MAPX) time series for comparison to the traditional mean areal precipitation (MAP) time series derived by the NWS' California-Nevada River Forecast Center for model calibration. We use two of the DMIP 2 basins in California and Nevada: the North Fork of the American River (catchment area 885 sq. km) and the East Fork of the Carson River (catchment area 922 sq. km) as test areas. The basins are sub-divided into elevation zones. The North Fork American basin is divided into two zones above and below an elevation threshold. Likewise, the Carson River basin is subdivided in to four zones. For each zone, the analyses include: a) overall difference, b) annual difference, c) typical year monthly comparison, and d) regression fit of the MAPX and MAP data. In terms of mean areal precipitation, overall differences between the MAP and MAPX time series are very small for the North Fork American River elevation zones. For the East Fork Carson River zones, the over all difference is up to 10 percent. The difference tends to be high when the elevation zones are small in area. In our presentation, we will show the results of our analyses and discuss future evaluations of these precipitation estimates using distributed and lumped hydrologic models.
Siudek, Patrycja
2016-12-01
In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.
Mapping Snow Depth with Automated Terrestrial Laser Scanning - Investigating Potential Applications
NASA Astrophysics Data System (ADS)
Adams, M. S.; Gigele, T.; Fromm, R.
2017-11-01
This contribution presents an automated terrestrial laser scanning (ATLS) setup, which was used during the winter 2016/17 to monitor the snow depth distribution on a NW-facing slope at a high-alpine study site. We collected data at high temporal [(sub-)daily] and spatial resolution (decimetre-range) over 0.8 km² with a Riegl LPM-321, set in a weather-proof glass fibre enclosure. Two potential ATLS-applications are investigated here: monitoring medium-sized snow avalanche events, and tracking snow depth change caused by snow drift. The results show the ATLS data's high explanatory power and versatility for different snow research questions.
DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banzatti, A.; Pontoppidan, K. M.; Pinilla, P.
2015-12-10
Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 betweenmore » dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index α{sub mm} due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (α{sub visc} < 10{sup −3}), the snow line produces a ringlike structure with a minimum at α{sub mm} ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.« less
New estimates of changes in snow cover over Russia in recent decades
NASA Astrophysics Data System (ADS)
Bulygina, O.; Korshunova, N.; Razuvaev, V.; Groisman, P. Y.
2017-12-01
Snow covers plays critical roles in the energy and water balance of the Earth through its unique physical properties (high reflectivity and low thermal conductivity) and water storage. The main objective of this research is to monitoring snow cover change in Russia. The estimates of changes of major snow characteristics (snow cover duration, maximum winter snow depth, snow water equivalent) are described. Apart from the description of long-term averages of snow characteristics, the estimates of their change that are averaged over quasi-homogeneous climatic regions are derived and regional differences in the change of snow characteristics are studied. We used in our study daily snow observations for 820 Russian meteorological station from 1966 to 2017. All of these meteorological stations are of unprotected type. The water equivalent is analyzed from snow course survey data at 958 meteorological stations from 1966 to 2017. The time series are prepared by RIHMI-WDC. Regional analysis of snow cover data was carried out using quasi-homogeneous climatic regions. The area-averaging technique using station values converted to anomalies with respect to a common reference period (in this study, 1981-2010). Anomalies were arithmetically averaged first within 1°N x 2°E grid cells and thereafter by a weighted average value derived over the quasi-homogeneous climatic regions. This approach provides a more uniform spatial field for averaging. By using a denser network of meteorological stations, bringing into consideration snow course data and, we managed to specify changes in all observed major snow characteristics and to obtain estimates generalized for quasi-homogeneous climatic regions. The detected changes in the dates of the establishment and disappearance of the snow cover.
This presentation explains the importance of the fine-scale features for air toxics exposure modeling. The paper presents a new approach to combine local-scale and regional model results for the National Air Toxic Assessment. The technique has been evaluated with a chemical tra...
Evaluation of an improved intermediate complexity snow scheme in the ORCHIDEE land surface model
NASA Astrophysics Data System (ADS)
Wang, Tao; Ottlé, Catherine; Boone, Aaron; Ciais, Philippe; Brun, Eric; Morin, Samuel; Krinner, Gerhard; Piao, Shilong; Peng, Shushi
2013-06-01
Snow plays an important role in land surface models (LSM) for climate and model applied over Fran studies, but its current treatment as a single layer of constant density and thermal conductivity in ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) induces significant deficiencies. The intermediate complexity snow scheme ISBA-ES (Interaction between Soil, Biosphere and Atmosphere-Explicit Snow) that includes key snow processes has been adapted and implemented into ORCHIDEE, referred to here as ORCHIDEE-ES. In this study, the adapted scheme is evaluated against the observations from the alpine site Col de Porte (CDP) with a continuous 18 year data set and from sites distributed in northern Eurasia. At CDP, the comparisons of snow depth, snow water equivalent, surface temperature, snow albedo, and snowmelt runoff reveal that the improved scheme in ORCHIDEE is capable of simulating the internal snow processes better than the original one. Preliminary sensitivity tests indicate that snow albedo parameterization is the main cause for the large difference in snow-related variables but not for soil temperature simulated by the two models. The ability of the ORCHIDEE-ES to better simulate snow thermal conductivity mainly results in differences in soil temperatures. These are confirmed by performing sensitivity analysis of ORCHIDEE-ES parameters using the Morris method. These features can enable us to more realistically investigate interactions between snow and soil thermal regimes (and related soil carbon decomposition). When the two models are compared over sites located in northern Eurasia from 1979 to 1993, snow-related variables and 20 cm soil temperature are better reproduced by ORCHIDEE-ES than ORCHIDEE, revealing a more accurate representation of spatio-temporal variability.
Wang, Lizhu; Riseng, Catherine M.; Mason, Lacey; Werhrly, Kevin; Rutherford, Edward; McKenna, James E.; Castiglione, Chris; Johnson, Lucinda B.; Infante, Dana M.; Sowa, Scott P.; Robertson, Mike; Schaeffer, Jeff; Khoury, Mary; Gaiot, John; Hollenhurst, Tom; Brooks, Colin N.; Coscarelli, Mark
2015-01-01
Managing the world's largest and most complex freshwater ecosystem, the Laurentian Great Lakes, requires a spatially hierarchical basin-wide database of ecological and socioeconomic information that is comparable across the region. To meet such a need, we developed a spatial classification framework and database — Great Lakes Aquatic Habitat Framework (GLAHF). GLAHF consists of catchments, coastal terrestrial, coastal margin, nearshore, and offshore zones that encompass the entire Great Lakes Basin. The catchments captured in the database as river pour points or coastline segments are attributed with data known to influence physicochemical and biological characteristics of the lakes from the catchments. The coastal terrestrial zone consists of 30-m grid cells attributed with data from the terrestrial region that has direct connection with the lakes. The coastal margin and nearshore zones consist of 30-m grid cells attributed with data describing the coastline conditions, coastal human disturbances, and moderately to highly variable physicochemical and biological characteristics. The offshore zone consists of 1.8-km grid cells attributed with data that are spatially less variable compared with the other aquatic zones. These spatial classification zones and their associated data are nested within lake sub-basins and political boundaries and allow the synthesis of information from grid cells to classification zones, within and among political boundaries, lake sub-basins, Great Lakes, or within the entire Great Lakes Basin. This spatially structured database could help the development of basin-wide management plans, prioritize locations for funding and specific management actions, track protection and restoration progress, and conduct research for science-based decision making.
The Impact of Sika Deer on Vegetation in Japan: Setting Management Priorities on a National Scale
NASA Astrophysics Data System (ADS)
Ohashi, Haruka; Yoshikawa, Masato; Oono, Keiichi; Tanaka, Norihisa; Hatase, Yoriko; Murakami, Yuhide
2014-09-01
Irreversible shifts in ecosystems caused by large herbivores are becoming widespread around the world. We analyzed data derived from the 2009-2010 Sika Deer Impact Survey, which assessed the geographical distribution of deer impacts on vegetation through a questionnaire, on a scale of 5-km grid-cells. Our aim was to identify areas facing irreversible ecosystem shifts caused by deer overpopulation and in need of management prioritization. Our results demonstrated that the areas with heavy impacts on vegetation were widely distributed across Japan from north to south and from the coastal to the alpine areas. Grid-cells with heavy impacts are especially expanding in the southwestern part of the Pacific side of Japan. The intensity of deer impacts was explained by four factors: (1) the number of 5-km grid-cells with sika deer in neighboring 5 km-grid-cells in 1978 and 2003, (2) the year sika deer were first recorded in a grid-cell, (3) the number of months in which maximum snow depth exceeded 50 cm, and (4) the proportion of urban areas in a particular grid-cell. Based on our model, areas with long-persistent deer populations, short snow periods, and fewer urban areas were predicted to be the most vulnerable to deer impact. Although many areas matching these criteria already have heavy deer impact, there are some areas that remain only slightly impacted. These areas may need to be designated as having high management priority because of the possibility of a rapid intensification of deer impact.
The impact of Sika deer on vegetation in Japan: setting management priorities on a national scale.
Ohashi, Haruka; Yoshikawa, Masato; Oono, Keiichi; Tanaka, Norihisa; Hatase, Yoriko; Murakami, Yuhide
2014-09-01
Irreversible shifts in ecosystems caused by large herbivores are becoming widespread around the world. We analyzed data derived from the 2009-2010 Sika Deer Impact Survey, which assessed the geographical distribution of deer impacts on vegetation through a questionnaire, on a scale of 5-km grid-cells. Our aim was to identify areas facing irreversible ecosystem shifts caused by deer overpopulation and in need of management prioritization. Our results demonstrated that the areas with heavy impacts on vegetation were widely distributed across Japan from north to south and from the coastal to the alpine areas. Grid-cells with heavy impacts are especially expanding in the southwestern part of the Pacific side of Japan. The intensity of deer impacts was explained by four factors: (1) the number of 5-km grid-cells with sika deer in neighboring 5 km-grid-cells in 1978 and 2003, (2) the year sika deer were first recorded in a grid-cell, (3) the number of months in which maximum snow depth exceeded 50 cm, and (4) the proportion of urban areas in a particular grid-cell. Based on our model, areas with long-persistent deer populations, short snow periods, and fewer urban areas were predicted to be the most vulnerable to deer impact. Although many areas matching these criteria already have heavy deer impact, there are some areas that remain only slightly impacted. These areas may need to be designated as having high management priority because of the possibility of a rapid intensification of deer impact.
Scales of snow depth variability in high elevation rangeland sagebrush
NASA Astrophysics Data System (ADS)
Tedesche, Molly E.; Fassnacht, Steven R.; Meiman, Paul J.
2017-09-01
In high elevation semi-arid rangelands, sagebrush and other shrubs can affect transport and deposition of wind-blown snow, enabling the formation of snowdrifts. Datasets from three field experiments were used to investigate the scales of spatial variability of snow depth around big mountain sagebrush ( Artemisia tridentata Nutt.) at a high elevation plateau rangeland in North Park, Colorado, during the winters of 2002, 2003, and 2008. Data were collected at multiple resolutions (0.05 to 25 m) and extents (2 to 1000 m). Finer scale data were collected specifically for this study to examine the correlation between snow depth, sagebrush microtopography, the ground surface, and the snow surface, as well as the temporal consistency of snow depth patterns. Variograms were used to identify the spatial structure and the Moran's I statistic was used to determine the spatial correlation. Results show some temporal consistency in snow depth at several scales. Plot scale snow depth variability is partly a function of the nature of individual shrubs, as there is some correlation between the spatial structure of snow depth and sagebrush, as well as between the ground and snow depth. The optimal sampling resolution appears to be 25-cm, but over a large area, this would require a multitude of samples, and thus a random stratified approach is recommended with a fine measurement resolution of 5-cm.
Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie
2016-01-01
Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. PMID:28003452
Bichet, Coraline; Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie
2016-12-28
Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. © 2016 The Author(s).
Cross, Paul C.; Klaver, Robert W.; Brennan, Angela; Creel, Scott; Beckmann, Jon P.; Higgs, Megan D.; Scurlock, Brandon M.
2013-01-01
Abstract. It is increasingly common for studies of animal ecology to use model-based predictions of environmental variables as explanatory or predictor variables, even though model prediction uncertainty is typically unknown. To demonstrate the potential for misleading inferences when model predictions with error are used in place of direct measurements, we compared snow water equivalent (SWE) and snow depth as predicted by the Snow Data Assimilation System (SNODAS) to field measurements of SWE and snow depth. We examined locations on elk (Cervus canadensis) winter ranges in western Wyoming, because modeled data such as SNODAS output are often used for inferences on elk ecology. Overall, SNODAS predictions tended to overestimate field measurements, prediction uncertainty was high, and the difference between SNODAS predictions and field measurements was greater in snow shadows for both snow variables compared to non-snow shadow areas. We used a simple simulation of snow effects on the probability of an elk being killed by a predator to show that, if SNODAS prediction uncertainty was ignored, we might have mistakenly concluded that SWE was not an important factor in where elk were killed in predatory attacks during the winter. In this simulation, we were interested in the effects of snow at finer scales (2) than the resolution of SNODAS. If bias were to decrease when SNODAS predictions are averaged over coarser scales, SNODAS would be applicable to population-level ecology studies. In our study, however, averaging predictions over moderate to broad spatial scales (9–2200 km2) did not reduce the differences between SNODAS predictions and field measurements. This study highlights the need to carefully evaluate two issues when using model output as an explanatory variable in subsequent analysis: (1) the model’s resolution relative to the scale of the ecological question of interest and (2) the implications of prediction uncertainty on inferences when using model predictions as explanatory or predictor variables.
NASA Astrophysics Data System (ADS)
Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra B.
2016-05-01
Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA's Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture.
NASA Astrophysics Data System (ADS)
Harpold, A. A.; Brooks, P. D.; Biederman, J. A.; Swetnam, T.
2011-12-01
Difficulty estimating snowpack variability across complex forested terrain currently hinders the prediction of water resources in the semi-arid Southwestern U.S. Catchment-scale estimates of snowpack variability are necessary for addressing ecological, hydrological, and water resources issues, but are often interpolated from a small number of point-scale observations. In this study, we used LiDAR-derived distributed datasets to investigate how elevation, aspect, topography, and vegetation interact to control catchment-scale snowpack variability. The study area is the Redondo massif in the Valles Caldera National Preserve, NM, a resurgent dome that varies from 2500 to 3430 m and drains from all aspects. Mean LiDAR-derived snow depths from four catchments (2.2 to 3.4 km^2) draining different aspects of the Redondo massif varied by 30%, despite similar mean elevations and mixed conifer forest cover. To better quantify this variability in snow depths we performed a multiple linear regression (MLR) at a 7.3 by 7.3 km study area (5 x 106 snow depth measurements) comprising the four catchments. The MLR showed that elevation explained 45% of the variability in snow depths across the study area, aspect explained 18% (dominated by N-S aspect), and vegetation 2% (canopy density and height). This linear relationship was not transferable to the catchment-scale however, where additional MLR analyses showed the influence of aspect and elevation differed between the catchments. The strong influence of North-South aspect in most catchments indicated that the solar radiation is an important control on snow depth variability. To explore the role of solar radiation, a model was used to generate winter solar forcing index (SFI) values based on the local and remote topography. The SFI was able to explain a large amount of snow depth variability in areas with similar elevation and aspect. Finally, the SFI was modified to include the effects of shading from vegetation (in and out of canopy), which further explained snow depth variability. The importance of SFI for explaining catchment-scale snow depth variability demonstrates that aspect is not a sufficient metric for direct radiation in complex terrain where slope and remote topographic shading are significant. Surprisingly, the net effects of interception and shading by vegetation on snow depths were minimal compared to elevation and aspect in these catchments. These results suggest that snowpack losses from interception may be balanced by increased shading to reduce the overall impacts from vegetation compared to topographic factors in this high radiation environment. Our analysis indicated that elevation and solar radiation are likely to control snow variability in larger catchments, with interception and shading from vegetation becoming more important at smaller scales.
NASA Astrophysics Data System (ADS)
Qu, Yue; Slootsky, Michael; Forrest, Stephen
2015-10-01
We demonstrate a method for extracting waveguided light trapped in the organic and indium tin oxide layers of bottom emission organic light emitting devices (OLEDs) using a patterned planar grid layer (sub-anode grid) between the anode and the substrate. The scattering layer consists of two transparent materials with different refractive indices on a period sufficiently large to avoid diffraction and other unwanted wavelength-dependent effects. The position of the sub-anode grid outside of the OLED active region allows complete freedom in varying its dimensions and materials from which it is made without impacting the electrical characteristics of the device itself. Full wave electromagnetic simulation is used to study the efficiency dependence on refractive indices and geometric parameters of the grid. We show the fabrication process and characterization of OLEDs with two different grids: a buried sub-anode grid consisting of two dielectric materials, and an air sub-anode grid consisting of a dielectric material and gridline voids. Using a sub-anode grid, substrate plus air modes quantum efficiency of an OLED is enhanced from (33+/-2)% to (40+/-2)%, resulting in an increase in external quantum efficiency from (14+/-1)% to (18+/-1)%, with identical electrical characteristics to that of a conventional device. By varying the thickness of the electron transport layer (ETL) of sub-anode grid OLEDs, we find that all power launched into the waveguide modes is scattered into substrate. We also demonstrate a sub-anode grid combined with a thick ETL significantly reduces surface plasmon polaritons, and results in an increase in substrate plus air modes by a >50% compared with a conventional OLED. The wavelength, viewing angle and molecular orientational independence provided by this approach make this an attractive and general solution to the problem of extracting waveguided light and reducing plasmon losses in OLEDs.
Mesoscale variability of the Upper Colorado River snowpack
Ling, C.-H.; Josberger, E.G.; Thorndike, A.S.
1996-01-01
In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin - the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming - the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4?? latitude by 1/4?? longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.
Land-Atmosphere Interactions: Successes, Problems and Prospects
NASA Technical Reports Server (NTRS)
Sud, Y. C.; Mocko, D. M.
1999-01-01
After two decades of active research, a much better understanding of the broader role of biospheric processes on the local climate has emerged. A surface-albedo increase, particularly in desert border regions of the subtropics (as well as the deforested tropical regions), leads to a net surface energy deficit, which in turn leads to a relative sinking and reduced rainfall. On the other hand, studies of the influence of altered ratios of evapotranspiration and sensible fluxes, in situations where the net solar income is unchanged, show that evapotranspiration is a more desirable flux for increased precipitation and vitality of the biosphere. Besides providing water vapor and convective available potential energy (CAPE) to the lower troposphere, evapotranspiration helps in building larger CAPE before "turning on" the moist-convection. Larger CAPE in the lower troposphere enables convection to reach into the deeper atmosphere thereby heating the upper troposphere; indeed, moist-convection is also accompanied by the evaporation of falling precipitation that cools and moistens the lower atmosphere. While convective, as opposed to stratiform, precipitation reduces the fractional cloud cover; it also allows more solar radiation to reach the surface thereby invigorating surface fluxes. These, together with moist convection and associated downdrafts help to maintain the characteristic upper temperature limit(s) of the moist-land as well as oceanic regions. Regardless of the above understanding, several important problems continue to hinder the accurate simulation of a realistic land atmosphere interaction in a numerical model (both GCM and/or Meso-scale models). Among the unsolved problems are parameterization of sub-grid scale land processes that include small-scale variability of soil moisture, snow-cover and snow-physics, the biodiversity of the biosphere, orography, local drainage characteristics under natural conditions, and surface flow over the natural terrain. A well-known non-linear response of surface fluxes to these variations makes the problem of parameterizing land-atmosphere interaction processes hard-to-address and simulate, particularly in a GCM. In our presentation, we will discuss how orographic, snow-cover, and water table interactions can be included into a Simple Biosphere Model such as SiB/SSiB. Figure I shows how, in the Russian region, spring snowmelt affects the soil moisture profile. Corresponding figure 2 shows how interaction with the water table decreases the natural evapotranspiration in the Sahel region simulation. While these simulations need better validation with data, the simulations reveal that surface processes are sensitive to these parameterizations. With these developments, we continue to advance our understanding of the interaction of land with the atmosphere aloft, but the intrinsic variability of the newer parameters, e. g., hydraulic properties of the soil, diminish the positive influences of these advances on the improved climate simulation with GCMs.
NASA Astrophysics Data System (ADS)
Oroza, C.; Zheng, Z.; Glaser, S. D.; Bales, R. C.; Conklin, M. H.
2016-12-01
We present a structured, analytical approach to optimize ground-sensor placements based on time-series remotely sensed (LiDAR) data and machine-learning algorithms. We focused on catchments within the Merced and Tuolumne river basins, covered by the JPL Airborne Snow Observatory LiDAR program. First, we used a Gaussian mixture model to identify representative sensor locations in the space of independent variables for each catchment. Multiple independent variables that govern the distribution of snow depth were used, including elevation, slope, and aspect. Second, we used a Gaussian process to estimate the areal distribution of snow depth from the initial set of measurements. This is a covariance-based model that also estimates the areal distribution of model uncertainty based on the independent variable weights and autocorrelation. The uncertainty raster was used to strategically add sensors to minimize model uncertainty. We assessed the temporal accuracy of the method using LiDAR-derived snow-depth rasters collected in water-year 2014. In each area, optimal sensor placements were determined using the first available snow raster for the year. The accuracy in the remaining LiDAR surveys was compared to 100 configurations of sensors selected at random. We found the accuracy of the model from the proposed placements to be higher and more consistent in each remaining survey than the average random configuration. We found that a relatively small number of sensors can be used to accurately reproduce the spatial patterns of snow depth across the basins, when placed using spatial snow data. Our approach also simplifies sensor placement. At present, field surveys are required to identify representative locations for such networks, a process that is labor intensive and provides limited guarantees on the networks' representation of catchment independent variables.
The application of depletion curves for parameterization of subgrid variability of snow
C. H. Luce; D. G. Tarboton
2004-01-01
Parameterization of subgrid-scale variability in snow accumulation and melt is important for improvements in distributed snowmelt modelling. We have taken the approach of using depletion curves that relate fractional snowcovered area to element-average snow water equivalent to parameterize the effect of snowpack heterogeneity within a physically based mass and energy...
Aspects on HTS applications in confined power grids
NASA Astrophysics Data System (ADS)
Arndt, T.; Grundmann, J.; Kuhnert, A.; Kummeth, P.; Nick, W.; Oomen, M.; Schacherer, C.; Schmidt, W.
2014-12-01
In an increasing number of electric power grids the share of distributed energy generation is also increasing. The grids have to cope with a considerable change of power flow, which has an impact on the optimum topology of the grids and sub-grids (high-voltage, medium-voltage and low-voltage sub-grids) and the size of quasi-autonomous grid sections. Furthermore the stability of grids is influenced by its size. Thus special benefits of HTS applications in the power grid might become most visible in confined power grids.
NASA Astrophysics Data System (ADS)
Belart, Joaquín M. C.; Berthier, Etienne; Magnússon, Eyjólfur; Anderson, Leif S.; Pálsson, Finnur; Thorsteinsson, Thorsteinn; Howat, Ian M.; Aðalgeirsdóttir, Guðfinna; Jóhannesson, Tómas; Jarosch, Alexander H.
2017-06-01
Sub-meter resolution, stereoscopic satellite images allow for the generation of accurate and high-resolution digital elevation models (DEMs) over glaciers and ice caps. Here, repeated stereo images of Drangajökull ice cap (NW Iceland) from Pléiades and WorldView2 (WV2) are combined with in situ estimates of snow density and densification of firn and fresh snow to provide the first estimates of the glacier-wide geodetic winter mass balance obtained from satellite imagery. Statistics in snow- and ice-free areas reveal similar vertical relative accuracy (< 0.5 m) with and without ground control points (GCPs), demonstrating the capability for measuring seasonal snow accumulation. The calculated winter (14 October 2014 to 22 May 2015) mass balance of Drangajökull was 3.33 ± 0.23 m w.e. (meter water equivalent), with ∼ 60 % of the accumulation occurring by February, which is in good agreement with nearby ground observations. On average, the repeated DEMs yield 22 % less elevation change than the length of eight winter snow cores due to (1) the time difference between in situ and satellite observations, (2) firn densification and (3) elevation changes due to ice dynamics. The contributions of these three factors were of similar magnitude. This study demonstrates that seasonal geodetic mass balance can, in many areas, be estimated from sub-meter resolution satellite stereo images.
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.; Rodell, Matthew; Reichle, Rolf; Li, Bailing; Jasinski, Michael; Mocko, David; Getirana, Augusto; De Lannoy, Gabrielle;
2016-01-01
The objective of the North American Land Data Assimilation System (NLDAS) is to provide best available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.
NASA Astrophysics Data System (ADS)
Matt, Felix; Burkhart, John F.
2017-04-01
Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of short wave radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the magnitude of these effects as simulated in numerical models have large uncertainties, originating mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters and evaluate the simulated variables connected with the representation of LAISI. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI, a key variable in understanding snowpack energy-balance dynamics. In this study, we assess the effect of LAISI on snow melt and discharge generation and the involved uncertainties in a high mountain catchment located in the western Himalayas by using a distributed hydrological catchment model with focus on the representation of the seasonal snow pack. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of short wave radiation by LAISI into account. Meteorological forcing data is generated from an assimilation of observations and high resolution WRF simulations, and LAISI mixing ratios from deposition rates of Black Carbon simulated with the FLEXPART model. To asses the quality of our simulations and the related uncertainties, we compare the simulated additional energy absorbed by the snow due to the presence of LAISI to the MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm satellite product.
NASA Astrophysics Data System (ADS)
Revuelto, Jesús; Jonas, Tobias; López-Moreno, Juan Ignacio
2015-04-01
Snow distribution in mountain areas plays a key role in many processes as runoff dynamics, ecological cycles or erosion rates. Nevertheless, the acquisition of high resolution snow depth data (SD) in space-time is a complex task that needs the application of remote sensing techniques as Terrestrial Laser Scanning (TLS). Such kind of techniques requires intense field work for obtaining high quality snowpack evolution during a specific time period. Combining TLS data with other remote sensing techniques (satellite images, photogrammetry…) and in-situ measurements could represent an improvement of the available information of a variable with rapid topographic changes. The aim of this study is to reconstruct daily SD distribution from lapse-rate images from a webcam and data from two to three TLS acquisitions during the snow melting periods of 2012, 2013 and 2014. This information is obtained at Izas Experimental catchment in Central Spanish Pyrenees; a catchment of 33ha, with an elevation ranging from 2050 to 2350m a.s.l. The lapse-rate images provide the Snow Covered Area (SCA) evolution at the study site, while TLS allows obtaining high resolution information of SD distribution. With ground control points, lapse-rate images are georrectified and their information is rasterized into a 1-meter resolution Digital Elevation Model. Subsequently, for each snow season, the Melt-Out Date (MOD) of each pixel is obtained. The reconstruction increases the estimated SD lose for each time step (day) in a distributed manner; starting the reconstruction for each grid cell at the MOD (note the reverse time evolution). To do so, the reconstruction has been previously adjusted in time and space as follows. Firstly, the degree day factor (SD lose/positive average temperatures) is calculated from the information measured at an automatic weather station (AWS) located in the catchment. Afterwards, comparing the SD lose at the AWS during a specific time period (i.e. between two TLS acquisitions) to that melted on each grid cell, a coefficient is obtained for spatially distributing the SD loses. For 2012 and 2013, three TLS acquisition campaigns were available during each melting period. This way the first acquisitions of both melting periods were reserved for validation while the other two were considered for adjusting the reconstruction. Validation has revealed a very good performance of the reconstructed SD distribution when compared with the TLS data (r2 values between 0.74 and 0.8 respectively). When no calibration with TLS data was applied for distributing melt rates; this is, using the distribution coefficients for reconstructing SD of precedent years, rather similar accuracy was reached. With the spatial calibration of 2012 and 2013, the reconstructions for the two TLS acquisition dates in 2014, obtained r2 values that ranged between 0.73 and 0.76. This shows the usefulness of lapse-rate images to estimate not only SCA but also the spatial distribution of the SD when combined with TLS acquisition and punctual information on temperature and SD. In such a way it is shown the effectiveness of combining two remote sensing techniques for obtaining distributed information on snow depth.
Anderson, Lesleigh
2012-01-01
Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.
NASA Technical Reports Server (NTRS)
Kim, Edward J.; England, Anthony W.; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
In this paper, we explore scaling and data assimilation-related issues associated with utilizing passive microwave satellite observations of Cold Lands-in this case, the climatologically and ecologically sensitive arctic tundra. Our approach expands on our earlier work using a one-year dataset from the Radiobrightness Energy Balance Experiment-3 (REBEX-3). REBEX-3 featured a tower-based SSM/I (Special Sensor Microwave/Imager) simulator deployed on the North Slope of Alaska in 1994-95. Two findings are significant here. First, a comparison of tower and satellite signatures at 19 and 37 GHz strongly suggested that the North Slope is radiometrically homogeneous for spatial scales up to SSM/I footprints (approximately 25 km), an unusual and valuable characteristic for monitoring and retrieving land surface conditions. And second, at the plot scale, signatures of snow/no-snow and freeze/thaw transitions were identifiable for tussock tundra land cover, so that even snow-free frozen tundra could be unambiguously distinguished from tundra covered with dry snow, another unusual and valuable characteristic. We present results from analyzing satellite brightness signatures of selected North Slope pixels corresponding to instrumented sites along a transect from the Brooks Range to the Arctic Ocean. A custom EASE (Equal Area Scalable Earth)-Grid processor was used to extract SSMJI data for every orbit with observations of this region during the 1994-95 year. The resulting high temporal-resolution (4-8 points/day), gridded data were then analyzed for evidence of the same diurnal and seasonal signatures seen at the plot scale (through micrometeorological and/or brightness data). Differences between satellite and tower brightness observations are quantified for various conditions at the REBEX-3 site. Such differences from the less-frequent and/or larger-scale satellite observations represent a form of input 'noise' in data assimilation applications. For the other sites, the performance of snow/no-snow and freeze/thaw discriminators vs. ground truth represents an opportunity to gauge the homogeneity of other pixels.
NASA Technical Reports Server (NTRS)
Arrigo, K. R.; vanDijken, G. L.; Comiso, J. C.
1996-01-01
Passive microwave satellite observations have frequently been used to observe changes in sea ice cover and concentration. Comiso et al. showed that there may also be a direct relationship between the thickness of snow cover (h(sub s)) on ice and microwave emissivity at 90 GHz. Because the in situ experiment of experiment of Comiso et al. was limited to a single station, the relationship is re-examined in this paper in a more general context and using more extensive in situ microwave observations and measurements of h from the Weddell Sea 1986 and 1989 winter cruises. Good relationships were found to exist between h(sub s) sand the emissivity at 90 GHz - 10 GHz and the emissivity at 90 GHz - 18.7 GHz when the standard deviation of h(sub s) was less than 50% of the mean and when h(sub s) was less than 0.25 m. The reliance of these relationships on h(sub s) is most likely caused by the limited penetration through the snow of radiation at 90 GHz. When the algorithm was applied to the Special Sensor Microwave/Imager (SSM/I) satellite data from the Weddell Sea, the resulting mean h(sub s) agreed within 5% of the mean calculated from greater than 1400 in situ observations.
NASA Technical Reports Server (NTRS)
Dey, B.
1985-01-01
In this study, the existing seasonal snow cover area runoff forecasting models of the Indus, Kabul, Sutlej and Chenab basins were evaluated with the concurrent flow correlation model for the period 1975-79. In all the basins under study, correlation of concurrent flow model explained the variability in flow better than by the snow cover area runoff models. Actually, the concurrent flow correlation model explained more than 90 percent of the variability in the flow of these rivers. Compared to this model, the snow cover area runoff models explained less of the variability in flow. In the Himalayan river basins under study and at least for the period under observation, the concurrent flow correlation model provided a set of results with which to compare the estimates from the snow cover area runoff models.
Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.
2017-01-01
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839
Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W
2017-01-01
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.
NASA Astrophysics Data System (ADS)
Revuelto, Jesús; Azorin-Molina, Cesar; Alonso-González, Esteban; Sanmiguel-Vallelado, Alba; Navarro-Serrano, Francisco; Rico, Ibai; López-Moreno, Juan Ignacio
2017-12-01
This work describes the snow and meteorological data set available for the Izas Experimental Catchment in the Central Spanish Pyrenees, from the 2011 to 2017 snow seasons. The experimental site is located on the southern side of the Pyrenees between 2000 and 2300 m above sea level, covering an area of 55 ha. The site is a good example of a subalpine environment in which the evolution of snow accumulation and melt are of major importance in many mountain processes. The climatic data set consists of (i) continuous meteorological variables acquired from an automatic weather station (AWS), (ii) detailed information on snow depth distribution collected with a terrestrial laser scanner (TLS, lidar technology) for certain dates across the snow season (between three and six TLS surveys per snow season) and (iii) time-lapse images showing the evolution of the snow-covered area (SCA). The meteorological variables acquired at the AWS are precipitation, air temperature, incoming and reflected solar radiation, infrared surface temperature, relative humidity, wind speed and direction, atmospheric air pressure, surface temperature (snow or soil surface), and soil temperature; all were taken at 10 min intervals. Snow depth distribution was measured during 23 field campaigns using a TLS, and daily information on the SCA was also retrieved from time-lapse photography. The data set (https://doi.org/10.5281/zenodo.848277) is valuable since it provides high-spatial-resolution information on the snow depth and snow cover, which is particularly useful when combined with meteorological variables to simulate snow energy and mass balance. This information has already been analyzed in various scientific studies on snow pack dynamics and its interaction with the local climatology or topographical characteristics. However, the database generated has great potential for understanding other environmental processes from a hydrometeorological or ecological perspective in which snow dynamics play a determinant role.
Influence of snow cover changes on surface radiation and heat balance based on the WRF model
NASA Astrophysics Data System (ADS)
Yu, Lingxue; Liu, Tingxiang; Bu, Kun; Yang, Jiuchun; Chang, Liping; Zhang, Shuwen
2017-10-01
The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.
NASA Astrophysics Data System (ADS)
Eveleth, R.; Cassar, N.; Doney, S. C.; Munro, D. R.; Sweeney, C.
2017-05-01
Using simultaneous sub-kilometer resolution underway measurements of surface O2/Ar, total O2 and pCO2 from annual austral summer surveys in 2012, 2013 and 2014, we explore the impacts of biological and physical processes on the O2 and pCO2 system spatial and interannual variability at the Western Antarctic Peninsula (WAP). In the WAP, mean O2/Ar supersaturation was (7.6±9.1)% and mean pCO2 supersaturation was (-28±22)%. We see substantial spatial variability in O2 and pCO2 including sub-mesoscale/mesoscale variability with decorrelation length scales of 4.5 km, consistent with the regional Rossby radius. This variability is embedded within onshore-offshore gradients. O2 in the LTER grid region is driven primarily by biological processes as seen by the median ratio of the magnitude of biological oxygen (O2/Ar) to physical oxygen (Ar) supersaturation anomalies (%) relative to atmospheric equilibrium (2.6), however physical processes have a more pronounced influence in the southern onshore region of the grid where we see active sea-ice melting. Total O2 measurements should be interpreted with caution in regions of significant sea-ice formation and melt and glacial meltwater input. pCO2 undersaturation predominantly reflects biological processes in the LTER grid. In contrast we compare these results to the Drake Passage where gas supersaturations vary by smaller magnitudes and decorrelate at length scales of 12 km, in line with latitudinal changes in the regional Rossby radius. Here biological processes induce smaller O2/Ar supersaturations (mean (0.14±1.3)%) and pCO2 undersaturations (mean (-2.8±3.9)%) than in the WAP, and pressure changes, bubble and gas exchange fluxes drive stable Ar supersaturations.
NASA Astrophysics Data System (ADS)
Tennant, Christopher J.; Harpold, Adrian A.; Lohse, Kathleen Ann; Godsey, Sarah E.; Crosby, Benjamin T.; Larsen, Laurel G.; Brooks, Paul D.; Van Kirk, Robert W.; Glenn, Nancy F.
2017-08-01
In mountains with seasonal snow cover, the effects of climate change on snowpack will be constrained by landscape-vegetation interactions with the atmosphere. Airborne lidar surveys used to estimate snow depth, topography, and vegetation were coupled with reanalysis climate products to quantify these interactions and to highlight potential snowpack sensitivities to climate and vegetation change across the western U.S. at Rocky Mountain (RM), Northern Basin and Range (NBR), and Sierra Nevada (SNV) sites. In forest and shrub areas, elevation captured the greatest amount of variability in snow depth (16-79%) but aspect explained more variability (11-40%) in alpine areas. Aspect was most important at RM sites where incoming shortwave to incoming net radiation (SW:NetR↓) was highest (˜0.5), capturing 17-37% of snow depth variability in forests and 32-37% in shrub areas. Forest vegetation height exhibited negative relationships with snow depth and explained 3-6% of its variability at sites with greater longwave inputs (NBR and SNV). Variability in the importance of physiography suggests differential sensitivities of snowpack to climate and vegetation change. The high SW:NetR↓ and importance of aspect suggests RM sites may be more responsive to decreases in SW:NetR↓ driven by warming or increases in humidity or cloud cover. Reduced canopy-cover could increase snow depths at SNV sites, and NBR and SNV sites are currently more sensitive to shifts from snow to rain. The consistent importance of aspect and elevation indicates that changes in SW:NetR↓ and the elevation of the rain/snow transition zone could have widespread and varied effects on western U.S. snowpacks.
NASA Astrophysics Data System (ADS)
Bormann, K.; Rittger, K.; Painter, T. H.
2016-12-01
The continuation of large-scale snow cover records into the future is crucial for monitoring the impacts of global pressures such as climate change and weather variability on the cryosphere. With daily MODIS records since 2000 from a now ageing MODIS constellation (Terra & Aqua) and daily VIIRS records since 2012 from the Suomi-NPP platform, the consistency of information between the two optical sensors must be understood. First, we evaluated snow cover maps derived from both MODIS and VIIRS retrievals with coincident cloud-free Landsat 8 OLI maps across a range of locations. We found that both MODIS and VIIRS snow cover maps show similar errors when evaluated with Landsat OLI retrievals. Preliminary results also show a general agreement in regional snowline between the two sensors that is maintained during the spring snowline retreat where the proportion of mixed pixels is increased. The agreement between sensors supports the future use of VIIRS snow cover maps to continue the long-term record beyond the lifetime of MODIS. Second, we use snowline elevation to quantify large scale snow cover variability and to monitor potential changes in the rain/snow transition zone where climate change pressures may be enhanced. Despite the large inter-annual variability that is often observed in snow metrics, we expect that over the 16-year time series we will see a rise in seasonal elevation of the snowline and consequently an increasing rain/snow transition boundary in mountain environments. These results form the basis for global snowline elevation monitoring using optical remote sensing data and highlight regional differences in snowline elevation dynamics. The long-term variability in observed snowline elevation provides a recent climatology of mountain snowpack across several regions that will likely to be of interest to those interested in climate change impacts in mountain environments. This work will also be of interest to existing users of MODSCAG and VIIRSCAG snow cover products and those working in remote sensing of the mountain snowpack.
NASA Astrophysics Data System (ADS)
Shea, J. M.; Harder, P.; Pomeroy, J. W.; Kraaijenbrink, P. D. A.
2017-12-01
Mountain snowpacks represent a critical seasonal reservoir of water for downstream needs, and snowmelt is a significant component of mountain hydrological budgets. Ground-based point measurements are unable to describe the full spatial variability of snow accumulation and melt rates, and repeat Unmanned Air Vehicle (UAV) surveys provide an unparalleled opportunity to measure snow accumulation, redistribution and melt in alpine environments. This study presents results from a UAV-based observation campaign conducted at the Fortress Mountain Snow Laboratory in the Canadian Rockies in 2017. Seven survey flights were conducted between April (maximum snow accumulation) and mid-July (bare ground) to collect imagery with both an RGB camera and thermal infrared imager with the sensefly eBee RTK platform. UAV imagery are processed with structure from motion techniques, and orthoimages, digital elevation models, and surface temperature maps are validated against concurrent ground observations of snow depth, snow water equivalent, and snow surface temperature. We examine the seasonal evolution of snow depth and snow surface temperature, and explore the spatial covariances of these variables with respect to topographic factors and snow ablation rates. Our results have direct implications for scaling snow ablation calculations and model resolution and discretization.
Coupling of snow and permafrost processes using the Basic Modeling Interface (BMI)
NASA Astrophysics Data System (ADS)
Wang, K.; Overeem, I.; Jafarov, E. E.; Piper, M.; Stewart, S.; Clow, G. D.; Schaefer, K. M.
2017-12-01
We developed a permafrost modeling tool based by implementing the Kudryavtsev empirical permafrost active layer depth model (the so-called "Ku" component). The model is specifically set up to have a basic model interface (BMI), which enhances the potential coupling to other earth surface processes model components. This model is accessible through the Web Modeling Tool in Community Surface Dynamics Modeling System (CSDMS). The Kudryavtsev model has been applied for entire Alaska to model permafrost distribution at high spatial resolution and model predictions have been verified by Circumpolar Active Layer Monitoring (CALM) in-situ observations. The Ku component uses monthly meteorological forcing, including air temperature, snow depth, and snow density, and predicts active layer thickness (ALT) and temperature on the top of permafrost (TTOP), which are important factors in snow-hydrological processes. BMI provides an easy approach to couple the models with each other. Here, we provide a case of coupling the Ku component to snow process components, including the Snow-Degree-Day (SDD) method and Snow-Energy-Balance (SEB) method, which are existing components in the hydrological model TOPOFLOW. The work flow is (1) get variables from meteorology component, set the values to snow process component, and advance the snow process component, (2) get variables from meteorology and snow component, provide these to the Ku component and advance, (3) get variables from snow process component, set the values to meteorology component, and advance the meteorology component. The next phase is to couple the permafrost component with fully BMI-compliant TOPOFLOW hydrological model, which could provide a useful tool to investigate the permafrost hydrological effect.
Improving the Representation of Snow Crystal Properties Within a Single-Moment Microphysics Scheme
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Dembek, S. R.
2010-01-01
As computational resources continue their expansion, weather forecast models are transitioning to the use of parameterizations that predict the evolution of hydrometeors and their microphysical processes, rather than estimating the bulk effects of clouds and precipitation that occur on a sub-grid scale. These parameterizations are referred to as single-moment, bulk water microphysics schemes, as they predict the total water mass among hydrometeors in a limited number of classes. Although the development of single moment microphysics schemes have often been driven by the need to predict the structure of convective storms, they may also provide value in predicting accumulations of snowfall. Predicting the accumulation of snowfall presents unique challenges to forecasters and microphysics schemes. In cases where surface temperatures are near freezing, accumulated depth often depends upon the snowfall rate and the ability to overcome an initial warm layer. Precipitation efficiency relates to the dominant ice crystal habit, as dendrites and plates have relatively large surface areas for the accretion of cloud water and ice, but are only favored within a narrow range of ice supersaturation and temperature. Forecast models and their parameterizations must accurately represent the characteristics of snow crystal populations, such as their size distribution, bulk density and fall speed. These properties relate to the vertical distribution of ice within simulated clouds, the temperature profile through latent heat release, and the eventual precipitation rate measured at the surface. The NASA Goddard, single-moment microphysics scheme is available to the operational forecast community as an option within the Weather Research and Forecasting (WRF) model. The NASA Goddard scheme predicts the occurrence of up to six classes of water mass: vapor, cloud ice, cloud water, rain, snow and either graupel or hail.
The PCR-GLOBWB global hydrological reanalysis product
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Wanders, N.; Sutanudjaja, E.; Van Beek, L. P.
2013-12-01
Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal land surface hydrological reanalysis with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we used PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB is basically a leaky bucket type of water balance model with a process-based simulation of moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid distributions of elevation, land cover and soil saturation distribution. The model thus includes detailed schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. . By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrated the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow module, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields due to local topographic and orographic effects. Results show that the model parameters can be calibrated and forcing precipitation fields were successfully corrected. The calibrated model output was compared to the reference run of PCR-GLOBWB before calibration. Here we found significant improvement in simulation of the global terrestrial water cycle, specifically discharge simulation for major river basins in the world. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).
Global land-atmosphere coupling associated with cold climate processes
NASA Astrophysics Data System (ADS)
Dutra, Emanuel
This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.
Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change
Lehtonen, Ilari; Kamarainen, Matti; Gregow, Hilppa; ...
2016-10-17
This study examined the impacts of projected climate change on heavy snow loads on Finnish forests, where snow-induced forest damage occurs frequently. For snow-load calculations, we used daily data from five global climate models under representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, statistically downscaled onto a high-resolution grid using a quantile-mapping method. Our results suggest that projected climate warming results in regionally asymmetric response on heavy snow loads in Finnish forests. In eastern and northern Finland, the annual maximum snow loads on tree crowns were projected to increase during the present century, as opposed to southern and western parts ofmore » the country. The change was rather similar both for heavy rime loads and wet snow loads, as well as for frozen snow loads. Only the heaviest dry snow loads were projected to decrease over almost the whole of Finland. Our results are aligned with previous snowfall projections, typically indicating increasing heavy snowfalls over the areas with mean temperature below -8 °C. In spite of some uncertainties related to our results, we conclude that the risk for snow-induced forest damage is likely to increase in the future in the eastern and northern parts of Finland, i.e. in the areas experiencing the coldest winters in the country. In conclusion, the increase is partly due to the increase in wet snow hazards but also due to more favourable conditions for rime accumulation in a future climate that is more humid but still cold enough.« less
Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtonen, Ilari; Kamarainen, Matti; Gregow, Hilppa
This study examined the impacts of projected climate change on heavy snow loads on Finnish forests, where snow-induced forest damage occurs frequently. For snow-load calculations, we used daily data from five global climate models under representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, statistically downscaled onto a high-resolution grid using a quantile-mapping method. Our results suggest that projected climate warming results in regionally asymmetric response on heavy snow loads in Finnish forests. In eastern and northern Finland, the annual maximum snow loads on tree crowns were projected to increase during the present century, as opposed to southern and western parts ofmore » the country. The change was rather similar both for heavy rime loads and wet snow loads, as well as for frozen snow loads. Only the heaviest dry snow loads were projected to decrease over almost the whole of Finland. Our results are aligned with previous snowfall projections, typically indicating increasing heavy snowfalls over the areas with mean temperature below -8 °C. In spite of some uncertainties related to our results, we conclude that the risk for snow-induced forest damage is likely to increase in the future in the eastern and northern parts of Finland, i.e. in the areas experiencing the coldest winters in the country. In conclusion, the increase is partly due to the increase in wet snow hazards but also due to more favourable conditions for rime accumulation in a future climate that is more humid but still cold enough.« less
Spatiotemporal Variability and in Snow Phenology over Eurasian Continent druing 1966-2012
NASA Astrophysics Data System (ADS)
Zhong, X.; Zhang, T.; Wang, K.; Zheng, L.; Wang, H.
2016-12-01
Snow cover is a key part of the cryosphere, which is a critical component of the global climate system. Snow cover phenology critically effects on the surface energy budget, the surface albedo and hydrological processes. In this study, the climatology and spatiotemporal variability of snow cover phenology were investigated using the long-term (1966-2012) ground-based measurements of daily snow depth from 1103 stations across the Eurasian Continent. The results showed that the distributions of the first date, last date, snow cover duration and number of snow cover days generally represented the latitudinal zonality over the Eurasian Continent, and there were significant elevation gradient patterns in the Tibetan Plateau. The first date of snow cover delayed by about 1.2 day decade-1, the last date of snow cover advanced with the rate of -1.2 day decade-1, snow cover duration and number of snow cover days shortened by about 2.7and 0.6 day decade-1, respectively, from 1966 through 2012. Compared with precipitation, the correlation between snow cover phenology and air temperature was more significant. The changes in snow cover duration were mainly controlled by the changes of air temperature in autumn and spring. The shortened number of snow cover days was affected by rising temperature during the cold season except for the air temperature in autumn and spring.
Sexstone, Graham A.; Clow, David W.; Fassnacht, Steven R.; Liston, Glen E.; Hiemstra, Christopher A.; Knowles, John F.; Penn, Colin A.
2018-01-01
Snow sublimation is an important component of the snow mass balance, but the spatial and temporal variability of this process is not well understood in mountain environments. This study combines a process‐based snow model (SnowModel) with eddy covariance (EC) measurements to investigate (1) the spatio‐temporal variability of simulated snow sublimation with respect to station observations, (2) the contribution of snow sublimation to the ablation of the snowpack, and (3) the sensitivity and response of snow sublimation to bark beetle‐induced forest mortality and climate warming across the north‐central Colorado Rocky Mountains. EC‐based observations of snow sublimation compared well with simulated snow sublimation at stations dominated by surface and canopy sublimation, but blowing snow sublimation in alpine areas was not well captured by the EC instrumentation. Water balance calculations provided an important validation of simulated sublimation at the watershed scale. Simulated snow sublimation across the study area was equivalent to 28% of winter precipitation on average, and the highest relative snow sublimation fluxes occurred during the lowest snow years. Snow sublimation from forested areas accounted for the majority of sublimation fluxes, highlighting the importance of canopy and sub‐canopy surface sublimation in this region. Simulations incorporating the effects of tree mortality due to bark‐beetle disturbance resulted in a 4% reduction in snow sublimation from forested areas. Snow sublimation rates corresponding to climate warming simulations remained unchanged or slightly increased, but total sublimation losses decreased by up to 6% because of a reduction in snow covered area and duration.
Spatial-altitudinal and temporal variation of Degree Day Factors (DDFs) in the Upper Indus Basin
NASA Astrophysics Data System (ADS)
Khan, Asif; Attaullah, Haleema; Masud, Tabinda; Khan, Mujahid
2017-04-01
Melt contribution from snow and ice in the Hindukush-Karakoram-Himalayan (HKH) region could account for more than 80% of annual river flows in the Upper Indus Basin (UIB). Increase or decrease in precipitation, energy input and glacier reserves can significantly affect water resources of this region. Therefore improved hydrological modelling and accurate future water resources prediction are vital for food production and hydro-power generation for millions of people living downstream, and are intensively needed. In mountain regions Degree Day Factors (DDFs) significantly vary on spatial and altitudinal basis, and are primary inputs of temperature-based hydrological modelling. However previous studies have used different DDFs as calibration parameters without due attention to the physical meaning of the values employed, and these estimates possess significant variability and uncertainty. This study provides estimates of DDFs for various altitudinal zones in the UIB at sub-basin level. Snow, clean ice and ice with debris cover bear different melt rates (or DDFs), therefore areally-averaged DDFs based on snow, clean and debris-covered ice classes in various altitudinal zones have been estimated for all sub-basins of the UIB. Zonal estimates of DDFs in the current study are significantly different from earlier adopted DDFs, hence suggest a revisit of previous hydrological modelling studies. DDFs presented in current study have been validated by using Snowmelt Runoff Model (SRM) in various sub-basins with good Nash Sutcliffe coefficients (R2 > 0.85) and low volumetric errors (Dv<10%). DDFs and methods provided in the current study can be used in future improved hydrological modelling and to provide accurate predictions of future river flows changes. The methodology used for estimation of DDFs is robust, and can be adopted to produce such estimates in other regions of the, particularly in the nearby other HKH basins.
THE INFLUENCE OF THE SPATIAL DISTRIBUTION OF SNOW ON BASIN-AVERAGED SNOWMELT. (R824784)
Spatial variability in snow accumulation and melt owing to topographic effects on solar radiation, snow drifting, air temperature and precipitation is important in determining the timing of snowmelt releases. Precipitation and temperature effects related to topography affect snow...
Retrospective Snow Analysis Across the Continental United States for the National Water Model
NASA Astrophysics Data System (ADS)
Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.
2016-12-01
For large portions of the United States, snow plays a vital role in hydrologic prediction. This is particularly true in the mountain west where snowmelt contributes up to 80% of total streamflow runoff. The Office of Water Prediction (OWP) will begin running the National Water Model (NWM) during the second half of 2016, which is a continental-scale implementation of the WRF-Hydro community hydrologic modeling framework. Assessing and benchmarking the performance of the snow component of the NWM is important for future research-to-operations activities and for forecasters to better understand NWM output. For this study, WRF-Hydro was ran using the same domain and physics options as the NWM (1 km LSM, 250m overland routing, and NHDPlus Version 2.1 channel network). The land surface component chosen is Noah-MP land surface model. Forcing from the National Land Data Assimilation System (NLDAS-2) was downscaled from the native 0.125 degree resolution to the 1 km modeling domain to drive the model. The model was ran over a 5-year retrospective period to gauge multi-year performance of the snow states. Output was analyzed against both in-situ observations, such as SNOTEL, and the Snow Data Assimilation System (SNODAS). In addition, gridded snow states and SNODAS grids were aggregated to Omernik-derived ecological regions. This was done in order to break up snow analysis by regions that share similar ecological and physiographic characteristics. Results show WRF-Hydro is able to capture peak timing across most of the mountain west fairly well. In terms of magnitudes, the model struggles across portions of the west with a low bias. This is especially true in the Cascades, which could be traced back to precipitation partitioning issues in the model. Across the central Rockies, the model exhibits a lower dry bias showing improved performance there. Previous literature suggests a dry bias in the precipitation out west may be contributing to model performance. East of the Rockies, the model captures events well, including both timing and magnitude when compared to SNODAS. There are issues with particular events in these regions, but this may be due to the nature of the events being mixed-phase. Overall performance with snow simulation for the NWM shows promise for use in operations.
MODIS Collection 6 Data at the National Snow and Ice Data Center (NSIDC)
NASA Astrophysics Data System (ADS)
Fowler, D. K.; Steiker, A. E.; Johnston, T.; Haran, T. M.; Fowler, C.; Wyatt, P.
2015-12-01
For over 15 years, the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) has archived and distributed snow and sea ice products derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the NASA Earth Observing System (EOS) Aqua and Terra satellites. Collection 6 represents the next revision to NSIDC's MODIS archive, mainly affecting the snow-cover products. Collection 6 specifically addresses the needs of the MODIS science community by targeting the scenarios that have historically confounded snow detection and introduced errors into the snow-cover and fractional snow-cover maps even though MODIS snow-cover maps are typically 90 percent accurate or better under good observing conditions, Collection 6 uses revised algorithms to discriminate between snow and clouds, resolve uncertainties along the edges of snow-covered regions, and detect summer snow cover in mountains. Furthermore, Collection 6 applies modified and additional snow detection screens and new Quality Assessment protocols that enhance the overall accuracy of the snow maps compared with Collection 5. Collection 6 also introduces several new MODIS snow products, including a daily Climate Modelling Grid (CMG) cloud gap-filled (CGF) snow-cover map which generates cloud-free maps by using the most recent clear observations.. The MODIS Collection 6 sea ice extent and ice surface temperature algorithms and products are much the same as Collection 5; however, Collection 6 updates to algorithm inputs—in particular, the L1B calibrated radiances, land and water mask, and cloud mask products—have improved the sea ice outputs. The MODIS sea ice products are currently available at NSIDC, and the snow cover products are soon to follow in 2016 NSIDC offers a variety of methods for obtaining these data. Users can download data directly from an online archive or use the NASA Reverb Search & Order Tool to perform spatial, temporal, and parameter subsetting, reformatting, and re-projection of the data.
NASA Technical Reports Server (NTRS)
Pawson, Steven; Ott, Lesley E.; Zhu, Zhengxin; Bowman, Kevin; Brix, Holger; Collatz, G. James; Dutkiewicz, Stephanie; Fisher, Joshua B.; Gregg, Watson W.; Hill, Chris;
2011-01-01
Forward GEOS-5 AGCM simulations of CO2, with transport constrained by analyzed meteorology for 2009-2010, are examined. The CO2 distributions are evaluated using AIRS upper tropospheric CO2 and ACOS-GOSAT total column CO2 observations. Different combinations of surface C02 fluxes are used to generate ensembles of runs that span some uncertainty in surface emissions and uptake. The fluxes are specified in GEOS-5 from different inventories (fossil and biofuel), different data-constrained estimates of land biological emissions, and different data-constrained ocean-biology estimates. One set of fluxes is based on the established "Transcom" database and others are constructed using contemporary satellite observations to constrain land and ocean process models. Likewise, different approximations to sub-grid transport are employed, to construct an ensemble of CO2 distributions related to transport variability. This work is part of NASA's "Carbon Monitoring System Flux Pilot Project,"
Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England
NASA Astrophysics Data System (ADS)
Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.
2015-12-01
Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.
Recent Climate Variability in Antarctica from Satellite-derived Temperature Data
NASA Technical Reports Server (NTRS)
Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.
2004-01-01
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.
2003-01-01
This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp
Relationship of deer and moose populations to previous winters' snow
Mech, L.D.; McRoberts, R.E.; Peterson, R.O.; Page, R.E.
1987-01-01
(1) Linear regression was used to relate snow accumulation during single and consecutive winters with white-tailed deer (Odocoileus virginianus) fawn:doe ratios, mosse (Alces alces) twinning rates and calf:cow ratios, and annual changes in deer and moose populations. Significant relationships were found between snow accumulation during individual winters and these dependent variables during the following year. However, the strongest relationships were between the dependent variables and the sums of the snow accumulations over the previous three winters. The percentage of the variability explained was 36 to 51. (2) Significant relationships were also found between winter vulnerability of moose calves and the sum of the snow accumulations in the current, and up to seven previous, winters, with about 49% of the variability explained. (3) No relationship was found between wolf numbers and the above dependent variables. (4) These relationships imply that winter influences on maternal nutrition can accumulate for several years and that this cumulative effect strongly determines fecundity and/or calf and fawn survivability. Although wolf (Canis lupus L.) predation is the main direct mortality agent on fawns and calves, wolf density itself appears to be secondary to winter weather in influencing the deer and moose populations.
Blowing snow detection from ground-based ceilometers: application to East Antarctica
NASA Astrophysics Data System (ADS)
Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina V.; Lhermitte, Stef; Lenaerts, Jan T. M.; Schween, Jan H.; Mangold, Alexander; Laffineur, Quentin; van Lipzig, Nicole P. M.
2017-12-01
Blowing snow impacts Antarctic ice sheet surface mass balance by snow redistribution and sublimation. However, numerical models poorly represent blowing snow processes, while direct observations are limited in space and time. Satellite retrieval of blowing snow is hindered by clouds and only the strongest events are considered. Here, we develop a blowing snow detection (BSD) algorithm for ground-based remote-sensing ceilometers in polar regions and apply it to ceilometers at Neumayer III and Princess Elisabeth (PE) stations, East Antarctica. The algorithm is able to detect (heavy) blowing snow layers reaching 30 m height. Results show that 78 % of the detected events are in agreement with visual observations at Neumayer III station. The BSD algorithm detects heavy blowing snow 36 % of the time at Neumayer (2011-2015) and 13 % at PE station (2010-2016). Blowing snow occurrence peaks during the austral winter and shows around 5 % interannual variability. The BSD algorithm is capable of detecting blowing snow both lifted from the ground and occurring during precipitation, which is an added value since results indicate that 92 % of the blowing snow is during synoptic events, often combined with precipitation. Analysis of atmospheric meteorological variables shows that blowing snow occurrence strongly depends on fresh snow availability in addition to wind speed. This finding challenges the commonly used parametrizations, where the threshold for snow particles to be lifted is a function of wind speed only. Blowing snow occurs predominantly during storms and overcast conditions, shortly after precipitation events, and can reach up to 1300 m a. g. l. in the case of heavy mixed events (precipitation and blowing snow together). These results suggest that synoptic conditions play an important role in generating blowing snow events and that fresh snow availability should be considered in determining the blowing snow onset.
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu
2017-11-01
We introduce the method ADAMONT v1.0 to adjust and disaggregate daily climate projections from a regional climate model (RCM) using an observational dataset at hourly time resolution. The method uses a refined quantile mapping approach for statistical adjustment and an analogous method for sub-daily disaggregation. The method ultimately produces adjusted hourly time series of temperature, precipitation, wind speed, humidity, and short- and longwave radiation, which can in turn be used to force any energy balance land surface model. While the method is generic and can be employed for any appropriate observation time series, here we focus on the description and evaluation of the method in the French mountainous regions. The observational dataset used here is the SAFRAN meteorological reanalysis, which covers the entire French Alps split into 23 massifs, within which meteorological conditions are provided for several 300 m elevation bands. In order to evaluate the skills of the method itself, it is applied to the ALADIN-Climate v5 RCM using the ERA-Interim reanalysis as boundary conditions, for the time period from 1980 to 2010. Results of the ADAMONT method are compared to the SAFRAN reanalysis itself. Various evaluation criteria are used for temperature and precipitation but also snow depth, which is computed by the SURFEX/ISBA-Crocus model using the meteorological driving data from either the adjusted RCM data or the SAFRAN reanalysis itself. The evaluation addresses in particular the time transferability of the method (using various learning/application time periods), the impact of the RCM grid point selection procedure for each massif/altitude band configuration, and the intervariable consistency of the adjusted meteorological data generated by the method. Results show that the performance of the method is satisfactory, with similar or even better evaluation metrics than alternative methods. However, results for air temperature are generally better than for precipitation. Results in terms of snow depth are satisfactory, which can be viewed as indicating a reasonably good intervariable consistency of the meteorological data produced by the method. In terms of temporal transferability (evaluated over time periods of 15 years only), results depend on the learning period. In terms of RCM grid point selection technique, the use of a complex RCM grid points selection technique, taking into account horizontal but also altitudinal proximity to SAFRAN massif centre points/altitude couples, generally degrades evaluation metrics for high altitudes compared to a simpler grid point selection method based on horizontal distance.
The assessment of EUMETSAT HSAF Snow Products for mountainuos areas in the eastern part of Turkey
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Surer, S.; Beser, O.; Bolat, K.; Erturk, A. G.
2012-04-01
Monitoring the snow parameters (e.g. snow cover area, snow water equivalent) is a challenging work. Because of its natural physical properties, snow highly affects the evolution of weather from daily basis to climate on a longer time scale. The derivation of snow products over mountainous regions has been considered very challenging. This can be done by periodic and precise mapping of the snow cover. However inaccessibility and scarcity of the ground observations limit the snow cover mapping in the mountainous areas. Today, it is carried out operationally by means of optical satellite imagery and microwave radiometry. In retrieving the snow cover area from satellite images bring the problem of topographical variations within the footprint of satellite sensors and spatial and temporal variation of snow characteristics in the mountainous areas. Most of the global and regional operational snow products use generic algorithms for flat and mountainous areas. However the non-uniformity of the snow characteristics can only be modeled with different algorithms for mountain and flat areas. In this study the early findings of Satellite Application Facilities on Hydrology (H-SAF) project, which is financially supported by EUMETSAT, will be presented. Turkey is a part of the H-SAF project, both in product generation (eg. snow recognition, fractional snow cover and snow water equivalent) for mountainous regions for whole Europe, cal/val of satellite-derived snow products with ground observations and cal/val studies with hydrological modeling in the mountainous terrain of Europe. All the snow products are operational on a daily basis. For the snow recognition product (H10) for mountainous areas, spectral thresholding methods were applied on sub pixel scale of MSG-SEVIRI images. The different spectral characteristics of cloud, snow and land determined the structure of the algorithm and these characteristics were obtained from subjective classification of known snow cover features in the MSG/SEVIRI images. The fractional snow cover area (H12) algorithm is based on a sub-pixel reflectance model applied on METOP-AVHRR data. Knowing the effects of topography on satellite-measured radiances for rough terrain, the sun zenith and azimuth angles, as well as direction of observation relative to these are taken into account in estimating the target reflectances from the satellite images. The values of SWE products (H13) were obtained using an assimilation process based on the Helsinki University of Technology model using Advanced Microwave Scanning Radiometer for EOS (AMSR-E) daily brightness-temperature values. The validation studies for three products have been performed for the water years 2010 and 2011. Average values of 70% of probability of detection for snow recognition product, 60% of overall accuracy for the fractional snow cover product and 45 mm RMSE for the snow water equivalent product have been obtained from the validation studies. Final versions of these three products will be presented and discussed. Key words: snow, satellite images, mountain, HSAF, snow cover, snow water equivalent
NASA Astrophysics Data System (ADS)
Beamer, J. P.; Hill, D. F.; Liston, G. E.; Arendt, A. A.; Hood, E. W.
2013-12-01
In Prince William Sound (PWS), Alaska, there is a pressing need for accurate estimates of the spatial and temporal variations in coastal freshwater discharge (FWD). FWD into PWS originates from streamflow due to rainfall, annual snowmelt, and changes in stored glacier mass and is important because it helps establish spatial and temporal patterns in ocean salinity and temperature, and is a time-varying boundary condition for oceanographic circulation models. Previous efforts to model FWD into PWS have been heavily empirical, with many physical processes absorbed into calibration coefficients that, in many cases, were calibrated to streams and rivers not hydrologically similar to those discharging into PWS. In this work we adapted and validated a suite of high-resolution (in space and time), physically-based, distributed weather, snowmelt, and runoff-routing models designed specifically for snow melt- and glacier melt-dominated watersheds like PWS in order to: 1) provide high-resolution, real-time simulations of snowpack and FWD, and 2) provide a record of historical variations of FWD. SnowModel, driven with gridded topography, land cover, and 32 years (1979-2011) of 3-hourly North American Regional Reanalysis (NARR) atmospheric forcing data, was used to simulate snowpack accumulation and melt across a PWS model domain. SnowModel outputs of daily snow water equivalent (SWE) depth and grid-cell runoff volumes were then coupled with HydroFlow, a runoff-routing model which routed snowmelt, glacier-melt, and rainfall to each watershed outlet (PWS coastline) in the simulation domain. The end product was a continuous 32-year simulation of daily FWD into PWS. In order to validate the models, SWE and snow depths from SnowModel were compared with observed SWE and snow depths from SnoTel and snow survey data, and discharge from HydroFlow was compared with observed streamflow measurements. As a second phase of this research effort, the coupled models will be set-up to run in real-time, where daily measurements from weather stations in the PWS will be used to drive simulations of snow cover and streamflow. In addition, we will deploy a strategic array of instrumentation aimed at validating the simulated weather estimates and the calculations of freshwater discharge. Upon successful implementation and validation of the modeling system, it will join established and ongoing computational and observational efforts that have a common goal of establishing a comprehensive understanding of the physical behavior of PWS.
Assimilation of Terrestrial Water Storage from GRACE in a Snow-Dominated Basin
NASA Technical Reports Server (NTRS)
Forman, Barton A.; Reichle, R. H.; Rodell, M.
2011-01-01
Terrestrial water storage (TWS) information derived from Gravity Recovery and Climate Experiment (GRACE) measurements is assimilated into a land surface model over the Mackenzie River basin located in northwest Canada. Assimilation is conducted using an ensemble Kalman smoother (EnKS). Model estimates with and without assimilation are compared against independent observational data sets of snow water equivalent (SWE) and runoff. For SWE, modest improvements in mean difference (MD) and root mean squared difference (RMSD) are achieved as a result of the assimilation. No significant differences in temporal correlations of SWE resulted. Runoff statistics of MD remain relatively unchanged while RMSD statistics, in general, are improved in most of the sub-basins. Temporal correlations are degraded within the most upstream sub-basin, but are, in general, improved at the downstream locations, which are more representative of an integrated basin response. GRACE assimilation using an EnKS offers improvements in hydrologic state/flux estimation, though comparisons with observed runoff would be enhanced by the use of river routing and lake storage routines within the prognostic land surface model. Further, GRACE hydrology products would benefit from the inclusion of better constrained models of post-glacial rebound, which significantly affects GRACE estimates of interannual hydrologic variability in the Mackenzie River basin.
75 FR 25873 - West Virginia; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
... provide emergency protective measures, including snow assistance, under the Public Assistance program for... assistance, as warranted. This assistance excludes regular time costs for the sub-grantees' regular employees..., (Category B), including snow assistance, under the Public Assistance program for any continuous 48-hour...
NASA Astrophysics Data System (ADS)
José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María
2017-04-01
Climatology trends, precipitation and temperature variations condition the hydrological evolution of the river flow response at basin and sub-basin scales. The link between both climate and flow trends is crucial in mountainous areas, where small variations in temperature can produce significant impacts on precipitation (occurrence as rainfall or snowfall), snowmelt and evaporation, and consequently very different flow signatures. This importance is greater in semiarid regions, where the high variability of the climatic annual and seasonal regimes usually amplifies this impact on river flow. The Sierra Nevada National Park (Southern Spain), with altitudes ranging from 2000 to 3500 m.a.s.l., is part of the global climate change observatories network and a clear example of snow regions in a semiarid environment. This mountain range is head of different catchments, being the Guadalfeo River Basin one of the most influenced by the snow regime. This study shows the observed 55-year (1961-2015) trends of annual precipitation and daily mean temperature, and the associated impacts on snowfall and snow persistence, and the resulting trend of the annual river flow in the Guadalfeo River Basin (Southern Spain), a semiarid abrupt mountainous area (up to 3450 m a.s.l.) facing the Mediterranean Sea where the Alpine and Mediterranean climates coexist in a domain highly influenced by the snow regime, and a significant seasonality in the flow regime. The annual precipitation and annual daily mean temperature experimented a decreasing trend of 2.05 mm/year and an increasing trend of 0.037 °C/year, respectively, during the study period, with a high variability on a decadal basis. However, the torrential precipitation events are more frequent in the last few years of the study period, with an apparently increasing associated dispersion. The estimated annual snowfall trend shows a decreasing trend of 0.24 mm/year, associated to the decrease of precipitation rather than to temperature increase. From the analyses of river flow observations and hydrological modelling, these trends result in an estimated decreasing annual trend of the mean river inflow to reservoirs of 0.091 m3/s, which is equivalent to a mean loss of 2.87 hm3/year during the study period. Nonetheless, these results are associated to a high variability of both extreme values and the annual and decadal values. Moreover, the decrease of the annual inflow is approximately a 25% higher than the loss of precipitation, due to the impact on the different water fluxes from the snowpack associated to the enhanced torrential behaviour of both snowfall/rainfall occurrence and snow persistence. The results show the complexity of hydrological processes in Mediterranean regions, especially under the snow influence, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area, with a decrease of the available water resource volume in the medium and long term. However, on an annual basis, years with an intense snowfall regime but mild and longer dry periods result in a significant increase of the annual river flow and water storage. Reservoir operation criteria and water allocation should undergo a revision based on hydrological modelling of the snow regions and scenario analysis.
The First Neptune Analog or Super-Earth with a Neptune-Like Orbit: MOA-2013-BLG-605Lb
NASA Technical Reports Server (NTRS)
Sumi, T.; Bennett, D. P.; Udalski, A.; Gould, A.; Poleski, R.; Bond, I. A.; Skowron, J.; Rattenbury, N.; Pogge, R. W.; Bensby, T.
2016-01-01
We present the discovery of the first Neptune analog exoplanet or super-Earth with a Neptune-like orbit, MOA- 2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at 9 approximately 14 times the expected position of the snow line, a(sub snow), which is similar to Neptune's separation of 11 a(sub snow) from the Sun. The planet/host-star mass ratio is q = (3.6 +/- 0.7) × 10(exp -4) and the projected separation normalized by the Einstein radius is s = 2.39 +/- 0.05. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy." The three models have (i) a Neptune-mass planet with a mass of M(sub p) = 21(+6/-7)(M) orbiting a low-mass M-dwarf with a mass of M(sub h) = 0.19(+0.05/-0.06 (solar mass)), (ii) a mini-Neptune with M(sub p) = 7.9(+1.8/-1.5)(M)) orbiting a brown dwarf host with M(sub h) = 0.068(+0.019/-0.011(solar mass)), and (iii) a super-Earth with M(sub p) = 3.2(+0.5/-0.3(M)) orbiting a low-mass brown dwarf host with M(sub h) = 0.025(+0.005/-0.004)(solar mass)), which is slightly favored. The 3D planet-host separations are 4.6(+4.7/-1.2)au, 2.1(+1.0/-0.2)au, and 0.94(+0.67/-0.02)au, which are 8.9(+10.5/-1.4)m 12(+7/-1), or 14(+11/-1) times larger than a(sub snow) for these models, respectively. Keck adaptive optics observations confirm that the lens is faint. This discovery suggests that low-mass planets with Neptune-like orbits are common. Therefore processes similar to the one that formed Neptune in our own solar system or cold super-Earths may be common in other solar systems.
NASA Technical Reports Server (NTRS)
Markus, Thorsten; Maksym, Ted
2007-01-01
Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Technical Reports Server (NTRS)
Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro
2013-01-01
Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.
NASA Astrophysics Data System (ADS)
Jaeger, K. L.
2017-12-01
The U.S. Geological Survey (USGS) has developed the PRObability Of Streamflow PERmanence (PROSPER) model, a GIS-based empirical model that provides predictions of the annual probability of a stream channel having year-round flow (Streamflow permanence probability; SPP) for any unregulated and minimally-impaired stream channel in the Pacific Northwest (Washington, Oregon, Idaho, western Montana). The model provides annual predictions for 2004-2016 at a 30-m spatial resolution based on monthly or annually updated values of climatic conditions, and static physiographic variables associated with the upstream basin. Prediction locations correspond to the channel network consistent with the National Hydrography Dataset stream grid and are publicly available through the USGS StreamStats platform (https://water.usgs.gov/osw/streamstats/). In snowmelt-driven systems, the most informative predictor variable was mean upstream snow water equivalent on May 1, which highlights the influence of late spring snow cover for supporting streamflow in mountain river networks. In non-snowmelt-driven systems, the most informative variable was mean annual precipitation. Streamflow permanence probabilities varied across the study area by geography and from year-to-year. Notably lower SPP corresponded to the climatically drier subregions of the study area. Higher SPP were concentrated in coastal and higher elevation mountain regions. In addition, SPP appeared to trend with average hydroclimatic conditions, which were also geographically coherent. The year-to-year variability lends support for the growing recognition of the spatiotemporal dynamism of streamflow permanence. An analysis of three focus basins located in contrasting geographical and hydroclimatic settings demonstrates differences in the sensitivity of streamflow permanence to antecedent climate conditions as a function of geography. Consequently, results suggest that PROSPER model can be a useful tool to evaluate regions of the landscape that may be resilient or sensitive to drought conditions, allowing for targeted management efforts to protect critical reaches.
Colorado River basin sensitivity to disturbance impacts
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.
2017-12-01
The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing, dependent on the strength and direction of the forcing. These results indicate the importance of understanding model sensitivities under disturbance impacts to manage these shifts; plan for future water resource changes and determine how the impacts will affect the sustainability and adaptability of food-energy-water systems.
High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry
NASA Astrophysics Data System (ADS)
Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.
2017-12-01
Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.
NASA Astrophysics Data System (ADS)
Seyfried, M. S.; Link, T. E.
2013-12-01
Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal trends in Ts variability controlled by snow cover and solar radiation as modified by topography. During periods of spatially continuous snow cover Ts was practically homogeneous throughout. In the absence of snow cover, Ts is highly variable, with most of the variability attributable to different topographic units defined by slope and aspect. During transition periods when snow melts out, Ts is highly variable within the watershed and within topographic units. The importance of accounting for these relatively small scale effects is underscored by the fact that the overall range of Ts in study area 600 m long is similar to that of the much large RCEW with 900 m elevation gradient.
NASA Astrophysics Data System (ADS)
Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan
2017-04-01
We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html
Aquarius for the polar regions: a new gridded product and its analysis over the cryosphere
NASA Astrophysics Data System (ADS)
Brucker, L.; Dinnat, E.; Koenig, L.; Hakkinen, S. M.; Picard, G.; Vernières, G.; Borovikov, A.; Kovach, R.; Champollion, N.
2013-12-01
Microwave radiometers used to monitor the Earth's polar regions typically operate in the frequency range 6-150 GHz. Recent radiometers, like those onboard SMOS and Aquarius/SAC-D spacecrafts, provide measurements at a lower frequency (~1.4 GHz, L-band), bringing new capabilities to monitor the state of the ice sheets, sea ice cover, and polar oceans. We present a gridded weekly product of Aquarius measured brightness temperature (TB) and backscatter, and of retrieved Sea Surface Salinity (SSS), for the northern and southern high latitudes. This product, specifically designed for the polar regions, is distributed on the Equal-Area Scalable Earth Grid (EASE2.0) at 36-km resolution. This data set aims to increase the use of Aquarius measurements for cryospheric applications, and to improve our understanding of L-band measurements of ice sheet and sea ice. We describe it with a focus on the Greenland and Antarctic ice sheets. We also highlight the influence of the azimuth angle (~1 K for a 1.5o angle variation), and the variation within a grid cell (up to 1.5 K in locations where measurements are made 25+ times per one-week orbit cycle). This knowledge is of interest for geophysical property retrievals, and satellite intercalibration. In addition, we present an analysis of Aquarius measurements over the Antarctic Plateau, a potential target for intercalibration of spaceborne L-band radiometers. At Dome C, the mean annual TB is 181.2×0.7 K and 209.4×0.3 K for beam 3 at horizontal and vertical polarizations, respectively. While the annual standard deviation appears small, it is higher than the sensor accuracy of 0.2 K, especially at horizontal polarization. A careful analysis of the TB variations reveals an interesting correlation with the presence/absence of surface hoar (large grains) identified with autonomous daily infrared photographs of the snow surface. An additional correlation was found with the grain index retrieved from a combination of high microwave frequencies (89&150 GHz) recorded by AMSU-B. These results are important because they emphasize that part of the L-band measurement variability is explained by surface snow metamorphism. Therefore, despite the fact that L-band radiation has a deep penetration into the ice sheet, the horizontal polarization remains noticeably sensitive to surface snow properties, evolving quickly with atmospheric forcing. Aquarius SSS data are also examined to identify ocean freshening related to Greenland ice sheet melt water. Our investigations reveal off-shore Greenland SSS variations in agreement with the ice sheet melting period. Satellite SSS retrievals are examined in conjunction with buoy and ship measurements, and oceanic simulations. Of note, Aquarius retrievals are sensitive to the presence of sea ice in the field of view, requiring a cautious interpretation of derived SSS.
Snow depth evolution on sea ice from Snow Buoy measurement
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.
2016-12-01
Snow cover is an Essential Climate Variable. On sea ice, snow dominates the energy and momentum exchanges across the atmosphere-ice-ocean interfaces, and actively contributes to sea ice mass balance. Yet, snow depth on sea ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and air temperature evolution on Arctic and Antarctic sea ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and air temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast sea ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell Sea. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell Sea, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic sea ice in September 2015. Their air temperature record revealed exceptionally high air temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic sea ice will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.
NASA Astrophysics Data System (ADS)
Islam, Siraj Ul; Déry, Stephen J.
2017-03-01
This study evaluates predictive uncertainties in the snow hydrology of the Fraser River Basin (FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity (VIC) model forced with several high-resolution gridded climate datasets. These datasets include the Canadian Precipitation Analysis and the thin-plate smoothing splines (ANUSPLIN), North American Regional Reanalysis (NARR), University of Washington (UW) and Pacific Climate Impacts Consortium (PCIC) gridded products. Uncertainties are evaluated at different stages of the VIC implementation, starting with the driving datasets, optimization of model parameters, and model calibration during cool and warm phases of the Pacific Decadal Oscillation (PDO). The inter-comparison of the forcing datasets (precipitation and air temperature) and their VIC simulations (snow water equivalent - SWE - and runoff) reveals widespread differences over the FRB, especially in mountainous regions. The ANUSPLIN precipitation shows a considerable dry bias in the Rocky Mountains, whereas the NARR winter air temperature is 2 °C warmer than the other datasets over most of the FRB. In the VIC simulations, the elevation-dependent changes in the maximum SWE (maxSWE) are more prominent at higher elevations of the Rocky Mountains, where the PCIC-VIC simulation accumulates too much SWE and ANUSPLIN-VIC yields an underestimation. Additionally, at each elevation range, the day of maxSWE varies from 10 to 20 days between the VIC simulations. The snow melting season begins early in the NARR-VIC simulation, whereas the PCIC-VIC simulation delays the melting, indicating seasonal uncertainty in SWE simulations. When compared with the observed runoff for the Fraser River main stem at Hope, BC, the ANUSPLIN-VIC simulation shows considerable underestimation of runoff throughout the water year owing to reduced precipitation in the ANUSPLIN forcing dataset. The NARR-VIC simulation yields more winter and spring runoff and earlier decline of flows in summer due to a nearly 15-day earlier onset of the FRB springtime snowmelt. Analysis of the parametric uncertainty in the VIC calibration process shows that the choice of the initial parameter range plays a crucial role in defining the model hydrological response for the FRB. Furthermore, the VIC calibration process is biased toward cool and warm phases of the PDO and the choice of proper calibration and validation time periods is important for the experimental setup. Overall the VIC hydrological response is prominently influenced by the uncertainties involved in the forcing datasets rather than those in its parameter optimization and experimental setups.
NASA Astrophysics Data System (ADS)
Saidaliyeva, Zarina; Davenport, Ian; Nobakht, Mohamad; White, Kevin; Shahgedanova, Maria
2017-04-01
Kazakhstan is a major producer of grain. Large scale grain production dominates in the north, making Kazakhstan one of the largest exporters of grain in the world. Agricultural production accounts for 9% of the national GDP, providing 25% of national employment. The south relies on grain production from household farms for subsistence, and has low resilience, so is vulnerable to reductions in output. Yields in the south depend on snowmelt and glacier runoff. The major limit to production is water supply, which is affected by glacier retreat and frequent droughts. Climate change is likely to impact all climate drivers negatively, leading to a decrease in crop yield, which will impact Kazakhstan and countries dependent on importing its produce. This work makes initial steps in modelling the impact of climate change on crop yield, by identifying the links between snowfall, soil moisture and agricultural productivity. Several remotely-sensed data sources are being used. The availability of snowmelt water over the period 2010-2014 is estimated by extracting the annual maximum snow water equivalent (SWE) from the Globsnow dataset, which assimilates satellite microwave observations with field observations to produce a spatial map. Soil moisture over the period 2010-2016 is provided by the ESA Soil Moisture and Ocean Salinity (SMOS) mission. Vegetation density is approximated by the Normalised Difference Vegetation Index (NDVI) produced from NASA's MODIS instruments. Statistical information on crop yields is provided by the Ministry of National Economy of the Republic of Kazakhstan Committee on Statistics. Demonstrating the link between snowmelt yield and agricultural productivity depends on showing the impact of snow mass during winter on remotely-sensed soil moisture, the link between soil moisture and vegetation density, and finally the link between vegetation density and crop yield. Soil moisture maps were extracted from SMOS observations, and resampled onto a 40km x 40km grid, and analysed to produce monthly averages. The monthly maximum snow water equivalent estimates for March were resampled onto the same grid, to approximate the total snow contributing to snowmelt. The MODIS MOD13A2 1km 16-day NDVI product was resampled onto the same 40km grid, and aggregated into 32-day averages. Annual crop yield is available in terms of kg of yield per hectare for each region in Kazakhstan between 2004 and 2015. To show the connection between the snowmelt and soil moisture, the cells within the snow and soil moisture grids were compared to calculate correlation. Data were aggregated per region. Regions in northern Kazakhstan showed the strongest correlations, because more of the soil water supply is derived from snowmelt than rain, and the southern regions showed poor correlation because of the greater influence of rainfall and irrigation. Correlations between soil moisture and vegetation density, and crop yield are ongoing, and results will be presented. It is envisaged that this research will assist the Kazakh farming community, providing real-time soil moisture data from SMOS.
NASA Astrophysics Data System (ADS)
Wang, Yetang; Thomas, Elizabeth R.; Hou, Shugui; Huai, Baojuan; Wu, Shuangye; Sun, Weijun; Qi, Shanzhong; Ding, Minghu; Zhang, Yulun
2017-11-01
This study uses a set of 37 firn core records over the West Antarctic Ice Sheet (WAIS) to test the performance of the twentieth century from the European Centre for Medium-Range Weather Forecasts (ERA-20C) reanalysis for snow accumulation and quantify temporal variability in snow accumulation since 1900. The firn cores are allocated to four geographical areas demarcated by drainage divides (i.e., Antarctic Peninsula (AP), western WAIS, central WAIS, and eastern WAIS) to calculate stacked records of regional snow accumulation. Our results show that the interannual variability in ERA-20C precipitation minus evaporation (P - E) agrees well with the corresponding ice core snow accumulation composites in each of the four geographical regions, suggesting its skill for simulating snow accumulation changes before the modern satellite era (pre-1979). Snow accumulation experiences significantly positive trends for the AP and eastern WAIS, a negative trend for the western WAIS, and no significant trend for the central WAIS from 1900 to 2010. The contrasting trends are associated with changes in the large-scale moisture transport driven by a deepening of the low-pressure systems and anomalies of sea ice in the Amundsen Sea Low region.
NASA Astrophysics Data System (ADS)
Armstrong, Richard L.; Brodzik, Mary Jo
2003-04-01
Snow cover is an important variable for climate and hydrologic models due to its effects on energy and moisture budgets. Seasonal snow can cover more than 50% of the Northern Hemisphere land surface during the winter resulting in snow cover being the land surface characteristic responsible for the largest annual and interannual differences in albedo. Passive microwave satellite remote sensing can augment measurements based on visible satellite data alone because of the ability to acquire data through most clouds or during darkness as well as to provide a measure of snow depth or water equivalent. It is now possible to monitor the global fluctuation of snow cover over a 24 year period using passive microwave data (Scanning Multichannel Microwave Radiometer (SMMR) 1978-1987 and Special Sensor Microwave/Imager (SSM/I), 1987-present). Evaluation of snow extent derived from passive microwave algorithms is presented through comparison with the NOAA Northern Hemisphere snow extent data. For the period 1978 to 2002, both passive microwave and visible data sets show a smiliar pattern of inter-annual variability, although the maximum snow extents derived from the microwave data are consistently less than those provided by the visible statellite data and the visible data typically show higher monthly variability. During shallow snow conditions of the early winter season microwave data consistently indicate less snow-covered area than the visible data. This underestimate of snow extent results from the fact that shallow snow cover (less than about 5.0 cm) does not provide a scattering signal of sufficient strength to be detected by the algorithms. As the snow cover continues to build during the months of January through March, as well as on into the melt season, agreement between the two data types continually improves. This occurs because as the snow becomes deeper and the layered structure more complex, the negative spectral gradient driving the passive microwave algorithm is enhanced. Trends in annual averages are similar, decreasing at rates of approximately 2% per decade. The only region where the passive microwave data consistently indicate snow and the visible data do not is over the Tibetan Plateau and surrounding mountain areas. In the effort to determine the accuracy of the microwave algorithm over this region we are acquiring surface snow observations through a collaborative study with CAREERI/Lanzhou. In order to provide an optimal snow cover product in the future, we are developing a procedure that blends snow extent maps derived from MODIS data with snow water equivalent maps derived from both SSM/I and AMSR.
Diffusional flux of CO2 through snow: Spatial and temporal variability among alpine-subalpine sites
Richard A. Sommerfeld; William J. Massman; Robert C. Musselman
1996-01-01
Three alpine and three subalpine sites were monitored for up to 4 years to acquire data on the temporal and spatial variability of CO2 flux through snowpacks. We conclude that the snow formed a passive cap which controlled the concentration of CO2 at the snow-soil interface, while the flux of CO2 into the atmosphere was controlled by CO2 production in the soil....
Simulating the Snow Water Equivalent and its changing pattern over Nepal
NASA Astrophysics Data System (ADS)
Niroula, S.; Joseph, J.; Ghosh, S.
2016-12-01
Snow fall in the Himalayan region is one of the primary sources of fresh water, which accounts around 10% of total precipitation of Nepal. Snow water is an intricate variable in terms of its global and regional estimates whose complexity is favored by spatial variability linked with rugged topography. The study is primarily focused on simulation of Snow Water Equivalent (SWE) by the use of a macroscale hydrologic model, Variable Infiltration Capacity (VIC). As whole Nepal including its Himalayas lies under the catchment of Ganga River in India, contributing at least 40% of annual discharge of Ganges, this model was run in the entire watershed that covers part of Tibet and Bangladesh as well. Meteorological inputs for 29 years (1979-2007) are drawn from ERA-INTERIM and APHRODITE dataset for horizontal resolution of 0.25 degrees. The analysis was performed to study temporal variability of SWE in the Himalayan region of Nepal. The model was calibrated by observed stream flows of the tributaries of the Gandaki River in Nepal which ultimately feeds river Ganga. Further, the simulated SWE is used to estimate stream flow in this river basin. Since Nepal has a greater snow cover accumulation in monsoon season than in winter at high altitudes, seasonality fluctuations in SWE affecting the stream flows are known. The model provided fair estimates of SWE and stream flow as per statistical analysis. Stream flows are known to be sensitive to the changes in snow water that can bring a negative impact on power generation in a country which has huge hydroelectric potential. In addition, our results on simulated SWE in second largest snow-fed catchment of the country will be helpful for reservoir management, flood forecasting and other water resource management issues. Keywords: Hydrology, Snow Water Equivalent, Variable Infiltration Capacity, Gandaki River Basin, Stream Flow
Variability in snow-depth time series within the Adige catchment
NASA Astrophysics Data System (ADS)
Marcolini, Giorgia; Bellin, Alberto; Disse, Markus; Gabriele, Chiogna
2017-04-01
Snow cover extension and duration is particularly sensitive to climate change because strongly influenced by changes in temperature and precipitation. It affects the hydrological cycle of Alpine catchments as well as many other aspects of life in mountainous regions, such as ecosystem functioning and economy. Despite its relevance, variability in snow related parameters has not been investigated in the Southern side of the Alps as extensively as in the Northern side of the Alps. In this work, we investigate the temporal variability of mean seasonal snow depth (computed by averaging the daily snow depth in the period 1 November-30 April between two following years) and of snow cover duration (defined, similarly, as the number of days in the period 1 November-30 April with snow depth higher than 30 cm) for the homogeneous stations within the Adige catchment (North-East Italy) by using wavelets transform. We focus our analysis on the period 1980-2010, which with 37 time series is the richest of data and we group the stations in four elevation classes (below 1350 m a.s.l., between 1350 m a.s.l. and 1650 m a.s.l., between 1650 m a.s.l. and 2000 m a.s.l. and above 2000 m a.s.l.). Stations located above and below 1650 m a.s.l. show different behaviors, with the latter showing in the last decades a larger reduction of mean seasonal snow depth and snow cover duration, than the former. We also observe that starting from the late '80s snow cover duration and mean seasonal snow depth display values below the average in the study area, confirming the observations performed in other regions of the Alps. We also find an elevation-dependent correlation between the increase in winter teperature and snow cover extension and duration.
NASA Astrophysics Data System (ADS)
Parajuli, A.; Nadeau, D.; Anctil, F.; Parent, A. C.; Bouchard, B.; Jutras, S.
2017-12-01
In snow-fed catchments, it is crucial to monitor and to model snow water equivalent (SWE), particularly to simulate the melt water runoff. However, the distribution of SWE can be highly heterogeneous, particularly within forested environments, mainly because of the large variability in snow depths. Although the boreal forest is the dominant land cover in Canada and in a few other northern countries, very few studies have quantified the spatiotemporal variability of snow depths and snowpack dynamics within this biome. The objective of this paper is to fill this research gap, through a detailed monitoring of snowpack dynamics at nine locations within a 3.57 km2 experimental forested catchment in southern Quebec, Canada (47°N, 71°W). The catchment receives 6 m of snow annually on average and is predominantly covered with balsam fir stand with some traces of spruce and white birch. In this study, we used a network of nine so-called `snow profiling stations', providing automated snow depth and snowpack temperature profile measurements, as well as three contrasting sites (juvenile, sapling and open areas) where sublimation rates were directly measured with flux towers. In addition, a total of 1401 manual snow samples supported by 20 snow pits measurements were collected throughout the winter of 2017. This paper presents some preliminary analyses of this unique dataset. Simple empirical relations relying SWE with easy-to-determine proxies, such as snow depths and snow temperature, are tested. Then, binary regression trees and multiple regression analysis are used to model SWE using topographic characteristics (slope, aspect, elevation), forest features (tree height, tree diameter, forest density and gap fraction) and meteorological forcing (solar radiation, wind speed, snow-pack temperature profile, air temperature, humidity). An analysis of sublimation rates comparing open area, saplings and juvenile forest is also presented in this paper.
Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raich, J.W.
2003-09-15
We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreenmore » broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.« less
Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana
Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.
2002-01-01
A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity.
Operational Testing of Satellite based Hydrological Model (SHM)
NASA Astrophysics Data System (ADS)
Gaur, Srishti; Paul, Pranesh Kumar; Singh, Rajendra; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.
2017-04-01
Incorporation of the concept of transposability in model testing is one of the prominent ways to check the credibility of a hydrological model. Successful testing ensures ability of hydrological models to deal with changing conditions, along with its extrapolation capacity. For a newly developed model, a number of contradictions arises regarding its applicability, therefore testing of credibility of model is essential to proficiently assess its strength and limitations. This concept emphasizes to perform 'Hierarchical Operational Testing' of Satellite based Hydrological Model (SHM), a newly developed surface water-groundwater coupled model, under PRACRITI-2 program initiated by Space Application Centre (SAC), Ahmedabad. SHM aims at sustainable water resources management using remote sensing data from Indian satellites. It consists of grid cells of 5km x 5km resolution and comprises of five modules namely: Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU). SW module (functions in the grid cells with land cover other than forest and snow) deals with estimation of surface runoff, soil moisture and evapotranspiration by using NRCS-CN method, water balance and Hragreaves method, respectively. The hydrology of F module is dependent entirely on sub-surface processes and water balance is calculated based on it. GW module generates baseflow (depending on water table variation with the level of water in streams) using Boussinesq equation. ROU module is grounded on a cell-to-cell routing technique based on the principle of Time Variant Spatially Distributed Direct Runoff Hydrograph (SDDH) to route the generated runoff and baseflow by different modules up to the outlet. For this study Subarnarekha river basin, flood prone zone of eastern India, has been chosen for hierarchical operational testing scheme which includes tests under stationary as well as transitory conditions. For this the basin has been divided into three sub-basins using three flow gauging sites as reference, viz., Muri, Jamshedpur and Ghatshila. Individual model set-up has been prepared for these sub-basins and calibration and validation using Split-sample test, first level of operational testing scheme is in progress. Subsequently for geographic transposability, Proxy-basin test will be done using Muri and Jamshedpur as proxy basins. Climatic transposability will be tested for dry and wet years using Differential split-sample test. For incorporating both geographic and climatic transposability Proxy-basin differential split sample test will be used. For quantitative evaluation of SHM, during Split-sample test Nash-Sutcliffe efficiency (NSE), Coefficient of Determination (R R^2)) and Percent BIAS (PBIAS) are being used. However, for transposability, a productive approach involving these performance measures, i.e. NSE*R R^2)*PBIAS will be used to decide the best value of parameters. Keywords: SHM, credibility, operational testing, transposability.
NASA Astrophysics Data System (ADS)
Osterberg, E. C.; Birkel, S. D.; Kreutz, K. J.; Wake, C. P.; Campbell, S. W.; Winski, D.
2015-12-01
Researchers from the University of Maine, University of New Hampshire, and Dartmouth College supported by NSF recently recovered two ice cores from the Mt. Hunter Plateau in the Alaska Range of Denali National Park. Ongoing analyses of snow accumulation, snowmelt, stable isotopes, and chemistry within the core are providing proxy information for ~1000 years of regional climate variability. Broader context to link circulation across the North Pacific and western North America can be obtained by using climate reanalysis. In this vein, we are using monthly, daily, and sub-daily meteorological fields from the NCEP Climate Forecasting System Reanalysis (CFSR) to characterize large-scale circulation associated with notable events in the ice core record onward from 1979. One goal is to assess the relationship between annual snow accumulation spikes and storm frequency and magnitude. A second goal is to relate these observations to events during the Little Ice Age and Medieval Warm Period. Work is in progress, and results will be presented at the fall meeting.
NASA Astrophysics Data System (ADS)
Li, Y.; McDougall, T. J.
2016-02-01
Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.
NASA Astrophysics Data System (ADS)
Roy, A.; Royer, A.; Montpetit, B.; Bartlett, P. A.; Langlois, A.
2012-12-01
Snow grain size is a key parameter for modeling microwave snow emission properties and the surface energy balance because of its influence on the snow albedo, thermal conductivity and diffusivity. A model of the specific surface area (SSA) of snow was implemented in the one-layer snow model in the Canadian LAnd Surface Scheme (CLASS) version 3.4. This offline multilayer model (CLASS-SSA) simulates the decrease of SSA based on snow age, snow temperature and the temperature gradient under dry snow conditions, whereas it considers the liquid water content for wet snow metamorphism. We compare the model with ground-based measurements from several sites (alpine, Arctic and sub-Arctic) with different types of snow. The model provides simulated SSA in good agreement with measurements with an overall point-to-point comparison RMSE of 8.1 m2 kg-1, and a RMSE of 4.9 m2 kg-1 for the snowpack average SSA. The model, however, is limited under wet conditions due to the single-layer nature of the CLASS model, leading to a single liquid water content value for the whole snowpack. The SSA simulations are of great interest for satellite passive microwave brightness temperature assimilations, snow mass balance retrievals and surface energy balance calculations with associated climate feedbacks.
How snowmelt changed due to climate change in an ungauged catchment on the Tibetan Plateau?
NASA Astrophysics Data System (ADS)
Wang, Rui; Yao, Zhijun
2017-04-01
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial-temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from MODIS snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree-day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9 3 d/10a and the end time of snow melt has become later by 0.6 2.3 d/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6 % and 6.8 %, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River.
Grid-cell-based crop water accounting for the famine early warning system
Verdin, J.; Klaver, R.
2002-01-01
Rainfall monitoring is a regular activity of food security analysts for sub-Saharan Africa due to the potentially disastrous impact of drought. Crop water accounting schemes are used to track rainfall timing and amounts relative to phenological requirements, to infer water limitation impacts on yield. Unfortunately, many rain gauge reports are available only after significant delays, and the gauge locations leave large gaps in coverage. As an alternative, a grid-cell-based formulation for the water requirement satisfaction index (WRSI) was tested for maize in Southern Africa. Grids of input variables were obtained from remote sensing estimates of rainfall, meteorological models, and digital soil maps. The spatial WRSI was computed for the 1996–97 and 1997–98 growing seasons. Maize yields were estimated by regression and compared with a limited number of reports from the field for the 1996–97 season in Zimbabwe. Agreement at a useful level (r = 0·80) was observed. This is comparable to results from traditional analysis with station data. The findings demonstrate the complementary role that remote sensing, modelling, and geospatial analysis can play in an era when field data collection in sub-Saharan Africa is suffering an unfortunate decline.
A Citizen Science Campaign to Validate Snow Remote-Sensing Products
NASA Astrophysics Data System (ADS)
Wikstrom Jones, K.; Wolken, G. J.; Arendt, A. A.; Hill, D. F.; Crumley, R. L.; Setiawan, L.; Markle, B.
2017-12-01
The ability to quantify seasonal water retention and storage in mountain snow packs has implications for an array of important topics, including ecosystem function, water resources, hazard mitigation, validation of remote sensing products, climate modeling, and the economy. Runoff simulation models, which typically rely on gridded climate data and snow remote sensing products, would be greatly improved if uncertainties in estimates of snow depth distribution in high-elevation complex terrain could be reduced. This requires an increase in the spatial and temporal coverage of observational snow data in high-elevation data-poor regions. To this end, we launched Community Snow Observations (CSO). Participating citizen scientists use Mountain Hub, a multi-platform mobile and web-based crowdsourcing application that allows users to record, submit, and instantly share geo-located snow depth, snow water equivalence (SWE) measurements, measurement location photos, and snow grain information with project scientists and other citizen scientists. The snow observations are used to validate remote sensing products and modeled snow depth distribution. The project's prototype phase focused on Thompson Pass in south-central Alaska, an important infrastructure corridor that includes avalanche terrain and the Lowe River drainage and is essential to the City of Valdez and the fisheries of Prince William Sound. This year's efforts included website development, expansion of the Mountain Hub tool, and recruitment of citizen scientists through a combination of social media outreach, community presentations, and targeted recruitment of local avalanche professionals. We also conducted two intensive field data collection campaigns that coincided with an aerial photogrammetric survey. With more than 400 snow depth observations, we have generated a new snow remote-sensing product that better matches actual SWE quantities for Thompson Pass. In the next phase of the citizen science portion of this project we will focus on expanding our group of participants to a larger geographic area in Alaska, further develop our partnership with Mountain Hub, and build relationships in new communities as we conduct a photogrammetric survey in a different region next year.
Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey
2012-01-01
The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.
SWANN: The Snow Water Artificial Neural Network Modelling System
NASA Astrophysics Data System (ADS)
Broxton, P. D.; van Leeuwen, W.; Biederman, J. A.
2017-12-01
Snowmelt from mountain forests is important for water supply and ecosystem health. Along Arizona's Mogollon Rim, snowmelt contributes to rivers and streams that provide a significant water supply for hydro-electric power generation, agriculture, and human consumption in central Arizona. In this project, we are building a snow monitoring system for the Salt River Project (SRP), which supplies water and power to millions of customers in the Phoenix metropolitan area. We are using process-based hydrological models and artificial neural networks (ANNs) to generate information about both snow water equivalent (SWE) and snow cover. The snow-cover data is generated with ANNs that are applied to Landsat and MODIS satellite reflectance data. The SWE data is generated using a combination of gridded SWE estimates generated by process-based snow models and ANNs that account for variations in topography, forest cover, and solar radiation. The models are trained and evaluated with snow data from SNOTEL stations as well as from aerial LiDAR and field data that we collected this past winter in northern Arizona, as well as with similar data from other sites in the Southwest US. These snow data are produced in near-real time, and we have built a prototype decision support tool to deliver them to SRP. This tool is designed to provide daily-to annual operational monitoring of spatial and temporal changes in SWE and snow cover conditions over the entire Salt River Watershed (covering 17,000 km2), and features advanced web mapping capabilities and watershed analytics displayed as graphical data.
Domain decomposition by the advancing-partition method for parallel unstructured grid generation
NASA Technical Reports Server (NTRS)
Banihashemi, legal representative, Soheila (Inventor); Pirzadeh, Shahyar Z. (Inventor)
2012-01-01
In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Laaha, Gregor; Van Lanen, Henny; Parajka, Juraj; Fleig, Anne; Ploum, Stefan
2016-04-01
Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.
NASA Astrophysics Data System (ADS)
Van Loon, A.; Laaha, G.; Van Lanen, H.; Parajka, J.; Fleig, A. K.; Ploum, S.
2015-12-01
Around the world, drought events with severe socio-economic impacts seem to have a link with winter snowpack. That is the case for the current California drought, but analysing historical archives and drought impact databases for the US and Europe we found many impacts that can be attributed to snowpack anomalies. Agriculture and electricity production (hydropower) were found to be the sectors that are most affected by drought related to snow. In this study, we investigated the processes underlying hydrological drought in snow-dominated regions. We found that drought drivers are different in different regions. In Norway, more than 90% of spring streamflow droughts were preceded by below-average winter precipitation, while both winter air temperature and spring weather were indifferent. In Austria, however, spring streamflow droughts could only be explained by a combination of factors. For most events, winter and spring air temperatures were above average (70% and 65% of events, respectively), and winter and spring precipitation was below average (75% and 80%). Because snow storage results from complex interactions between precipitation and temperature and these variables vary strongly with altitude, snow-related drought drivers have a large spatial variability. The weather input is subsequently modified by land properties. Multiple linear regression between drought severity variables and a large number of catchment characteristics for 44 catchments in Austria showed that storage influences both drought duration and deficit volume. The seasonal storage of water in snow and glaciers was found to be a statistically important variable explaining streamflow drought deficit. Our drought impact analysis in Europe also showed that 40% of the selected drought impacts was caused by a combination of snow-related and other drought types. For example, the combination of a winter drought with a preceding or subsequent summer drought was reported to have a large effect on reservoir levels and, consequently, on drinking water and electricity production. Snow storage therefore, is an important factor to consider in drought monitoring, prediction and management.
How well do the GCMs replicate the historical precipitation variability in the Colorado River Basin?
NASA Astrophysics Data System (ADS)
Guentchev, G.; Barsugli, J. J.; Eischeid, J.; Raff, D. A.; Brekke, L.
2009-12-01
Observed precipitation variability measures are compared to measures obtained using the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project (CMIP3) General Circulation Models (GCM) data from 36 model projections downscaled by Brekke at al. (2007) and 30 model projections downscaled by Jon Eischeid. Three groups of variability measures are considered in this historical period (1951-1999) comparison: a) basic variability measures, such as standard deviation, interdecadal standard deviation; b) exceedance probability values, i.e., 10% (extreme wet years) and 90% (extreme dry years) exceedance probability values of series of n-year running mean annual amounts, where n=1,12; 10% exceedance probability values of annual maximum monthly precipitation (extreme wet months); and c) runs variability measures, e.g., frequency of negative and positive runs of annual precipitation amounts, total number of the negative and positive runs. Two gridded precipitation data sets produced from observations are used: the Maurer et al. (2002) and the Daly et al. (1994) Precipitation Regression on Independent Slopes Method (PRISM) data sets. The data consist of monthly grid-point precipitation averaged on a United States Geological Survey (USGS) hydrological sub-region scale. The statistical significance of the obtained model minus observed measure differences is assessed using a block bootstrapping approach. The analyses were performed on annual, seasonal and monthly scale. The results indicate that the interdecadal standard deviation is underestimated, in general, on all time scales by the downscaled model data. The differences are statistically significant at a 0.05 significance level for several Lower Colorado Basin sub-regions on annual and seasonal scale, and for several sub-regions located mostly in the Upper Colorado River Basin for the months of March, June, July and November. Although the models simulate drier extreme wet years, wetter extreme dry years and drier extreme wet months for the Upper Colorado basin, the differences are mostly not-significant. Exceptions are the results about the extreme wet years for n=3 for sub-region White-Yampa, for n=6, 7, and 8 for sub-region Upper Colorado-Dolores, and about the extreme dry years for n=11 for sub-region Great Divide-Upper Green. None of the results for the sub-regions in the Lower Colorado Basin were significant. For most of the Upper Colorado sub-regions the models simulate significantly lower frequency of negative and positive 4-6 year runs, while for several sub-regions a significantly higher frequency of 2-year negative runs is evident in the model versus the Maurer data comparisons. The model projections versus the PRISM data comparison reveals similar results for the negative runs, while for the positive runs the results indicate that the models simulate higher frequency of the 2-6 year runs. The results for the Lower Colorado basin sub-regions are similar, in general, to these for the Upper Colorado sub-regions. The differences between the simulated and the observed total number of negative or positive runs were not significant for almost all of the sub-regions within the Colorado River Basin.
NASA Astrophysics Data System (ADS)
Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf
2013-04-01
The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro-meteorological 3-dimensional model Alpine 3D, which is based on a distributed application of SNOWPACK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereasmore » the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.« less
NASA Astrophysics Data System (ADS)
Xu, Z.; Rhoades, A.; Johansen, H.; Ullrich, P. A.; Collins, W. D.
2017-12-01
Dynamical downscaling is widely used to properly characterize regional surface heterogeneities that shape the local hydroclimatology. However, the factors in dynamical downscaling, including the refinement of model horizontal resolution, large-scale forcing datasets and dynamical cores, have not been fully evaluated. Two cutting-edge global-to-regional downscaling methods are used to assess these, specifically the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research & Forecasting (WRF) regional climate model, under different horizontal resolutions (28, 14, and 7 km). Two groups of WRF simulations are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM outputs (WRF_VRCESM) to evaluate the effects of the large-scale forcing datasets. The impacts of dynamical core are assessed by comparing the VR-CESM simulations to the coupled WRF_VRCESM simulations with the same physical parameterizations and similar grid domains. The simulated hydroclimatology (i.e., total precipitation, snow cover, snow water equivalent and surface temperature) are compared with the reference datasets. The large-scale forcing datasets are critical to the WRF simulations in more accurately simulating total precipitation, SWE and snow cover, but not surface temperature. Both the WRF and VR-CESM results highlight that no significant benefit is found in the simulated hydroclimatology by just increasing horizontal resolution refinement from 28 to 7 km. Simulated surface temperature is sensitive to the choice of dynamical core. WRF generally simulates higher temperatures than VR-CESM, alleviates the systematic cold bias of DJF temperatures over the California mountain region, but overestimates the JJA temperature in California's Central Valley.
Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenclik, Derek; Denholm, Paul; Chalamala, Babu
For nearly a century, global power systems have focused on three key functions: to generate, transmit, and distribute electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load, despite variability in load on timescales ranging from sub-second disturbances to multi-year trends. With the increasing role of variable generation from wind and solar, retirements of fossil fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.
Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration
Stenclik, Derek; Denholm, Paul; Chalamala, Babu
2017-10-17
For nearly a century, global power systems have focused on three key functions: to generate, transmit, and distribute electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load, despite variability in load on timescales ranging from sub-second disturbances to multi-year trends. With the increasing role of variable generation from wind and solar, retirements of fossil fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.
Satellite and Surface Perspectives of Snow Extent in the Southern Appalachian Mountains
NASA Technical Reports Server (NTRS)
Sugg, Johnathan W.; Perry, Baker L.; Hall, Dorothy K.
2012-01-01
Assessing snow cover patterns in mountain regions remains a challenge for a variety of reasons. Topography (e.g., elevation, exposure, aspect, and slope) strongly influences snowfall accumulation and subsequent ablation processes, leading to pronounced spatial variability of snow cover. In-situ observations are typically limited to open areas at lower elevations (<1000 m). In this paper, we use several products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to assess snow cover extent in the Southern Appalachian Mountains (SAM). MODIS daily snow cover maps and true color imagery are analyzed after selected snow events (e.g., Gulf/Atlantic Lows, Alberta Clippers, and Northwest Upslope Flow) from 2006 to 2012 to assess the spatial patterns of snowfall across the SAM. For each event, we calculate snow cover area across the SAM using MODIS data and compare with the Interactive Multi-sensor Snow and ice mapping system (IMS) and available in-situ observations. Results indicate that Gulf/Atlantic Lows are typically responsible for greater snow extent across the entire SAM region due to intensified cyclogenesis associated with these events. Northwest Upslope Flow events result in snow cover extent that is limited to higher elevations (>1000 m) across the SAM, but also more pronounced along NW aspects. Despite some limitations related to the presence of ephemeral snow or cloud cover immediately after each event, we conclude that MODIS products are useful for assessing the spatial variability of snow cover in heavily forested mountain regions such as the SAM.
Moore, Peggy E.; Van Wagtendonk, Jan W.; Yee, Julie L.; McClaran, Mitchel P.; Cole, David N.; McDougald, Neil K.; Brooks, Matthew L.
2013-01-01
Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate. Our objective was to describe patterns and variability in aboveground live vascular plant biomass in relation to climatic factors. We harvested aboveground biomass at peak growth from four 64-m2 plots each in xeric, mesic, and hydric meadows annually from 1994 to 2000. Data from nearby weather stations provided independent variables of spring snow water content, snow-free date, and thawing degree days for a cumulative index of available energy. We assembled these climatic variables into a set of mixed effects analysis of covariance models to evaluate their relationships with annual aboveground net primary productivity (ANPP), and we used an information theoretic approach to compare the quality of fit among candidate models. ANPP in the xeric meadow was negatively related to snow water content and thawing degree days and in the mesic meadow was negatively related to snow water content. Relationships between ANPP and these 2 covariates in the hydric meadow were not significant. Increasing snow water content may limit ANPP in these meadows if anaerobic conditions delay microbial activity and nutrient availability. Increased thawing degree days may limit ANPP in xeric meadows by prematurely depleting soil moisture. Large within-year variation of ANPP in the hydric meadow limited sensitivity to the climatic variables. These relationships suggest that, under projected warmer and drier conditions, ANPP will increase in mesic meadows but remain unchanged in xeric meadows because declines associated with increased temperatures would offset the increases from decreased snow water content.
Evaluating Interannual Variability of Accumulation Gradients on the Juneau Icefield
NASA Astrophysics Data System (ADS)
Koncewicz, E.; Bollen, K.; Burkhart, A.; Cabrera, V.; Rovzar, T.; Truax, O.; McNeil, C.; Nicholson, L. I.; O'Neel, S.
2016-12-01
The Juneau Icefield Research Program has collected mass balance data over the last 70 years on the Taku and Lemon Creek glaciers. We analyze data from 2004-2016 to investigate the interannual variability in the accumulation gradients of these two glaciers from ground penetrating radar (GPR), probing, and snow pits. Understanding interannual variability of accumulation gradients on the Juneau Icefield will help us to interpret its long-term mass balance record. The Lemon Creek Glacier is a small valley glacier on the southwest edge of the Icefield. GPR data was collected over the glacier surface in March 2015 and 2016. In July of 2014 and 2016, the accumulation area was probed for snow depth, and two snow pits were dug for snow depth and density. The accumulation gradients resulting from each method are compared between years to assess the interannnual variability of the accumulation gradient and the resulting glacier wide mass balance. The Taku Glacier is the largest outlet glacier on the Juneau Icefield. We use three snow pits dug each year along the longitudinal profile of the glacier between 1000m and 1115m, the region that typically reflects the ELA. In 2004, 2005, 2010, 2011, and 2016, snow probing was continued in the central region of the Taku and the resulting gradients are compared to each other and to the gradients derived from the snow pits. We assess the resulting impact on glacier wide mass balance furthering our understanding of the state of these two well-monitored glaciers on the Juneau Icefield.
The FIM-iHYCOM Model in SubX: Evaluation of Subseasonal Errors and Variability
NASA Astrophysics Data System (ADS)
Green, B.; Sun, S.; Benjamin, S.; Grell, G. A.; Bleck, R.
2017-12-01
NOAA/ESRL/GSD has produced both real-time and retrospective forecasts for the Subseasonal Experiment (SubX) using the FIM-iHYCOM model. FIM-iHYCOM couples the atmospheric Flow-following finite volume Icosahedral Model (FIM) to an icosahedral-grid version of the Hybrid Coordinate Ocean Model (HYCOM). This coupled model is unique in terms of its grid structure: in the horizontal, the icosahedral meshes are perfectly matched for FIM and iHYCOM, eliminating the need for a flux interpolator; in the vertical, both models use adaptive arbitrary Lagrangian-Eulerian hybrid coordinates. For SubX, FIM-iHYCOM initializes four time-lagged ensemble members around each Wednesday, which are integrated forward to provide 32-day forecasts. While it has already been shown that this model has similar predictive skill as NOAA's operational CFSv2 in terms of the RMM index, FIM-iHYCOM is still fairly new and thus its overall performance needs to be thoroughly evaluated. To that end, this study examines model errors as a function of forecast lead week (1-4) - i.e., model drift - for key variables including 2-m temperature, precipitation, and SST. Errors are evaluated against two reanalysis products: CFSR, from which FIM-iHYCOM initial conditions are derived, and the quasi-independent ERA-Interim. The week 4 error magnitudes are similar between FIM-iHYCOM and CFSv2, albeit with different spatial distributions. Also, intraseasonal variability as simulated in these two models will be compared with reanalyses. The impact of hindcast frequency (4 times per week, once per week, or once per day) on the model climatology is also examined to determine the implications for systematic error correction in FIM-iHYCOM.
NASA Astrophysics Data System (ADS)
Mic, R.; Corbus, C.; Caian, M.; Neculau, G.
2009-09-01
This paper is a subject of a stage within the scope of European Project 037005 STREP FP6 - CECILIA ("The assessment of impact and vulnerability of climate changes in the Centre and Eastern Europe"). The aim of this project is to assess the impact of climate changes from the regional scale to local scale of Centre and Eastern Europe area, pointing up very high climate resolution usefulness for catching the effects due to the field complexity of study area. The analysed Buzau and Ialomita river basins from Romania covering an area of 14392 km² are situated outside the Curvature Carpathian Mountains, into a zone where the altitude varies from 2500 m to 50 m. In conformity of altitude, the annual precipitation varied from 1400 mm/year, in the mountainous area to 400 mm/year in the plane area and the evapotranspiration between 500 mm/year in the high area to 850 mm/year in the plane area. However, due to a very high variability of weather conditions, droughts as well as excessive humidity periods occur in the course of a year. For the impact study of the possibly climate changes on the runoff in the Buzau and Ialomita river basins, the WatBal model was used, which have been calibrated through the runoff simulation in 17 cross-sections for the reference period 1971 - 2000. WatBal model has two main components. The first is the water balance component that uses continuous functions to describe water movement into a conceptualised basin and the second is the component that allows the calculation of potential evapotranspiration using the Priestly-Taylor equation. For the calculation of changes in the main climatic parameters (atmospheric precipitation, air temperature, relative humidity, solar radiation and wind speed), used in the analysis of the climate change impact on the hydrological regime, there were used the simulations accomplished with a regional climatic model (regCM3), elaborated by ICTP (Trieste), implemented in Romania and used for monthly, seasonal and climate scenarios numerical simulations, at a high spatial resolution of 10 km. Determination of the grid network nodes of the regional climate model regCM3 related to sub-basins from the Buzau and Ialomita river basins was accomplished with a methodology based on obtaining a digital map of river basins, together with related sub-basins. Overlapping this digital map over the network nodes of the grid was made by georeferencing. The changes were calculated for the periods 2021-2050 and 2071-2100 towards the reference period, for each month, like the differences between the values of the climatic parameters corresponding to the two periods. The monthly mean discharges at 4 gauging stations from the Buzau river basin and 13 gauging stations from Ialomita river basin, in the above mentioned hypotheses, are estimated. Study revealed the following changes in the components of the hydrological cycle due to the climate change: - The increase of the evapotranspiration, especially in the summer months, due to the increase of the air temperature. - The reduction of the depth and duration of snow cover due to the increase of the air temperature during winter time. - The variation of the annual mean runoff recorded an increase from the plain to the mountains, standing out a tendency of smoothing during the year in parallel with a global decrease of these. - The early occurrence of the floods and the reduction of the mixed spring floods (snow and rain) by the desynchronisation of the snow melting with the rainfall occurrence. - The reduction of the annual mean runoff on rivers due especially to the increase of the evapotranstpiration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Raj K.; Berg, Larry K.; Pekour, Mikhail
The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains eachmore » for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.« less
NASA Astrophysics Data System (ADS)
Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid
2017-10-01
Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.
Monitoring Mountain Meteorology without Much Money (Invited)
NASA Astrophysics Data System (ADS)
Lundquist, J. D.
2009-12-01
Mountains are the water towers of the world, storing winter precipitation in the form of snow until summer, when it can be used for agriculture and cities. However, mountain weather is highly variable, and measurements are sparsely distributed. In order adequately sample snow and climate variables in complex terrain, we need as many measurements as possible. This means that instruments must be inexpensive and relatively simple to deploy. Here, we demonstrate how dime-sized temperature sensors developed for the refrigeration industry can be used to monitor air temperature (using evergreen trees as radiation shields) and snow cover duration (using the diurnal cycle in near-surface soil temperature). Together, these measurements can be used to recreate accumulated snow water equivalent over the prior year. We also demonstrate how buckets of water may be placed under networked acoustic snow depth sensors to provide an index of daily evaporation rates at SNOTEL stations. (a) Temperature sensor sealed for deployment in the soil. (b) Launching a temperature sensor into a tree. (c) Pulley system to keep sensor above the snow. (a) Photo of bucket underneath acoustic snow depth sensor. (b) Water depth in the bucket as calculated by the snow depth sensor and by a pressure sensor inside the bucket.
Interannual Variability of Snow and Ice and Impact on the Carbon Cycle
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2004-01-01
The goal of this research is to assess the impact of the interannual variability in snow/ice using global satellite data sets acquired in the last two decades. This variability will be used as input to simulate the CO2 interannual variability at high latitudes using a biospheric model. The progress in the past few years is summarized as follows: 1) Albedo decrease related to spring snow retreat; 2) Observed effects of interannual summertime sea ice variations on the polar reflectance; 3) The Northern Annular Mode response to Arctic sea ice loss and the sensitivity of troposphere-stratosphere interaction; 4) The effect of Arctic warming and sea ice loss on the growing season in northern terrestrial ecosystem.
GEOS-5 Seasonal Forecast System: ENSO Prediction Skill and Bias
NASA Technical Reports Server (NTRS)
Borovikov, Anna; Kovach, Robin; Marshak, Jelena
2018-01-01
The GEOS-5 AOGCM known as S2S-1.0 has been in service from June 2012 through January 2018 (Borovikov et al. 2017). The atmospheric component of S2S-1.0 is Fortuna-2.5, the same that was used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA), but with adjusted parameterization of moist processes and turbulence. The ocean component is the Modular Ocean Model version 4 (MOM4). The sea ice component is the Community Ice CodE, version 4 (CICE). The land surface model is a catchment-based hydrological model coupled to the multi-layer snow model. The AGCM uses a Cartesian grid with a 1 deg × 1.25 deg horizontal resolution and 72 hybrid vertical levels with the upper most level at 0.01 hPa. OGCM nominal resolution of the tripolar grid is 1/2 deg, with a meridional equatorial refinement to 1/4 deg. In the coupled model initialization, selected atmospheric variables are constrained with MERRA. The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both ocean state and sea ice initialization. SST, T and S profiles and sea ice concentration were assimilated.
Snow cover distribution over elevation zones in a mountainous catchment
NASA Astrophysics Data System (ADS)
Panagoulia, D.; Panagopoulos, Y.
2009-04-01
A good understanding of the elevetional distribution of snow cover is necessary to predict the timing and volume of runoff. In a complex mountainous terrain the snow cover distribution within a watershed is highly variable in time and space and is dependent on elevation, slope, aspect, vegetation type, surface roughness, radiation load, and energy exchange at the snow-air interface. Decreases in snowpack due to climate change could disrupt the downstream urban and agricultural water supplies, while increases could lead to seasonal flooding. Solar and longwave radiation are dominant energy inputs driving the ablation process. Turbulent energy exchange at the snow cover surface is important during the snow season. The evaporation of blowing and drifting snow is strongly dependent upon wind speed. Much of the spatial heterogeneity of snow cover is the result of snow redistribution by wind. Elevation is important in determining temperature and precipitation gradients along hillslopes, while the temperature gradients determine where precipitation falls as rain and snow and contribute to variable melt rates within the hillslope. Under these premises, the snow accumulation and ablation (SAA) model of the US National Weather Service (US NWS) was applied to implement the snow cover extent over elevation zones of a mountainous catchment (the Mesochora catchment in Western-Central Greece), taking also into account the indirectly included processes of sublimation, interception, and snow redistribution. The catchment hydrology is controlled by snowfall and snowmelt and the simulated discharge was computed from the soil moisture accounting (SMA) model of the US NWS and compared to the measured discharge. The elevationally distributed snow cover extent presented different patterns with different time of maximization, extinction and return during the year, producing different timing of discharge that is a crucial factor for the control and management of water resources systems.
NASA Technical Reports Server (NTRS)
Armstrong, Richard; Hardman, Molly
1991-01-01
A snow model that supports the daily, operational analysis of global snow depth and age has been developed. It provides improved spatial interpolation of surface reports by incorporating digital elevation data, and by the application of regionalized variables (kriging) through the use of a global snow depth climatology. Where surface observations are inadequate, the model applies satellite remote sensing. Techniques for extrapolation into data-void mountain areas and a procedure to compute snow melt are also contained in the model.
NASA Astrophysics Data System (ADS)
Noël, Brice; van de Berg, Willem Jan; Melchior van Wessem, J.; van Meijgaard, Erik; van As, Dirk; Lenaerts, Jan T. M.; Lhermitte, Stef; Kuipers Munneke, Peter; Smeets, C. J. P. Paul; van Ulft, Lambertus H.; van de Wal, Roderik S. W.; van den Broeke, Michiel R.
2018-03-01
We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958-2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines, topography and ice albedo fields. Parameters in the cloud scheme governing the conversion of cloud condensate into precipitation have been tuned to correct inland snowfall underestimation: snow properties are modified to reduce drifting snow and melt production in the ice sheet percolation zone. The ice albedo prescribed in the updated model is lower at the ice sheet margins, increasing ice melt locally. RACMO2.3p2 shows good agreement compared to in situ meteorological data and point SEB/SMB measurements, and better resolves the spatial patterns and temporal variability of SMB compared with the previous model version, notably in the north-east, south-east and along the K-transect in south-western Greenland. This new model version provides updated, high-resolution gridded fields of the GrIS present-day climate and SMB, and will be used for projections of the GrIS climate and SMB in response to a future climate scenario in a forthcoming study.
NASA Astrophysics Data System (ADS)
Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.
2014-01-01
Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.
A UNIFORM VERSUS AN AGGREGATED WATER BALANCE OF A SEMI-ARID WATERSHED. (R824784)
Hydrologists have long struggled with the problem of how to account for the effects of spatial variability in precipitation, vegetation and soils. This problem is particularly acute in snow-fed, semi-arid watersheds, which typically have considerable variability in snow distribut...
NASA Astrophysics Data System (ADS)
Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.
2016-12-01
Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.
The shifting nature of vegetation controls on peak snowpack with varying slope and aspect
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Broxton, P. D.; Brooks, P. D.
2012-12-01
The controls on peak seasonal snowpack are known to shift between forested and open environments as well as with slope and aspect. Peak snowpack is predicted well by interception models under uniformly dense canopy, while topography, wind and radiation are strong predictors in open areas. However, many basins have complex mosaics of forest canopy and small gaps, where snowpack controls involve complex interactions among climate, topography and forest structure. In this presentation we use a new fully distributed tree-scale model to investigate vegetation controls on snowpack for a range of slope and aspect, and we evaluate the energy balance in forest canopy and gap environments. The model is informed by airborne LiDAR and ground-based observations of climate, vegetation and snowpack. It represents interception, snow distribution by wind, latent and sensible heat fluxes, and radiative fluxes above and below the canopy at a grid scale of 1 m square on an hourly time step. First, the model is minimally calibrated using continuous records of snow depth and snow water equivalent (SWE). Next, the model is evaluated using distributed observations at peak accumulation. Finally, the domain is synthetically altered to introduce ranges of slope and aspect. Northerly aspects accumulate greater peak SWE than southerly aspects (e.g. 275 mm vs. 250 mm at a slope of 28 %) but show lower spatial variability (e. g. CV = 0.14 vs. CV = 0.17 at slope of 28 %). On northerly aspects, most of the snowpack remains shaded by vegetation, whereas on southerly aspects the northern portions of gaps and southern forest edges receive direct insolation during late winter. This difference in net radiation makes peak SWE in forest gaps and adjacent forest edges more sensitive to topography than SWE in areas under dense canopy. Tree-scale modeling of snow dynamics over synthetic terrain offers extensive possibilities to test interactions among vegetation and topographic controls.
Sub-grid drag model for immersed vertical cylinders in fluidized beds
Verma, Vikrant; Li, Tingwen; Dietiker, Jean -Francois; ...
2017-01-03
Immersed vertical cylinders are often used as heat exchanger in gas-solid fluidized beds. Computational Fluid Dynamics (CFD) simulations are computationally expensive for large scale systems with bundles of cylinders. Therefore sub-grid models are required to facilitate simulations on a coarse grid, where internal cylinders are treated as a porous medium. The influence of cylinders on the gas-solid flow tends to enhance segregation and affect the gas-solid drag. A correction to gas-solid drag must be modeled using a suitable sub-grid constitutive relationship. In the past, Sarkar et al. have developed a sub-grid drag model for horizontal cylinder arrays based on 2Dmore » simulations. However, the effect of a vertical cylinder arrangement was not considered due to computational complexities. In this study, highly resolved 3D simulations with vertical cylinders were performed in small periodic domains. These simulations were filtered to construct a sub-grid drag model which can then be implemented in coarse-grid simulations. Gas-solid drag was filtered for different solids fractions and a significant reduction in drag was identified when compared with simulation without cylinders and simulation with horizontal cylinders. Slip velocities significantly increase when vertical cylinders are present. Lastly, vertical suspension drag due to vertical cylinders is insignificant however substantial horizontal suspension drag is observed which is consistent to the finding for horizontal cylinders.« less
Earth Observations taken by the Expedition 18 Crew
2008-12-06
ISS018-E-011174 (6 Dec. 2008) --- The City of Thunder Bay, Ontario, Canada is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. Located on the shores of Lake Superior, the metropolitan area of Thunder Bay is one of the largest in the Province of Ontario. It is also the major port providing access to the Great Lakes for central Canada?s grain products. The City of Thunder Bay is relatively new ? it was incorporated in 1970 by combining the cities of Fort William (depicted in this astronaut photograph) and Port Arthur with the townships of Neebing and McIntyre. While the growth and merging of separate municipalities into a larger contiguous metropolitan area is common (a process called agglomeration by urban geographers), it is less common for distinct cities to also merge into a new political entity. This detailed view is centered on the southern portion of Thunder Bay, comprised of the older city of Fort William. Winter snows outline the street grid of the city, while park areas interspersed throughout the street grid appear as roughly rectangular areas of unbroken white snow. Built materials appear light gray, while vegetated areas and rock outcrop near Mount McKay are dark green to dark gray. The Kam River to the south of Fort William is ice-covered, and has a homogeneous covering of snow that traces the river channel.
NASA Astrophysics Data System (ADS)
Roth, T. R.; Nolin, A. W.
2016-12-01
Temperate forests modify snow evolution patterns both spatially and temporally relative to open areas. Dense, warm forests both impede snow accumulation through increased canopy snow interception and increase sub-canopy longwave energy inputs onto the snow surface. These process modifications vary in magnitude and duration depending on climatic, topographic and forest characteristics. Here we present results from a four year study of paired forested and open sites at three elevations, Low - 1150 m, Mid - 1325 m and High - 1465 m. Snowpacks are deeper and last up to 3-4 weeks longer at the Low and Mid elevation Open sites relative to the adjacent Forest sites. Conversely, at the High Forest site, snow is retained 2-4 weeks longer than the Open site. This change in snowpack depth and persistence is attributed to deposition patterns at higher elevations and forest structure differences that alter the canopy interception efficiency and the sub-canopy energy balance. Canopy interception efficiency (CIE) in the Low and Mid Forest sites, over the duration of the study were 79% and 76% of the total event snowfall, whereas CIE was 31% at the High Forest site. Longwave radiation in forested environments is the primary energy component across each elevation band due to the warm winter environment and forest presence, accounting for 82%, 88%, and 59% of the energy balance at the Low, Mid, and High Forest sites, respectively. High wind speeds in the High elevation Open site significantly increases the turbulent energy and creates preferential snowfall deposition in the nearby Forest site. These results show the importance of understanding the effects of forest cover on sub-canopy snowpack evolution and highlight the need for improved forest cover model representation to accurately predict water resources in maritime forests.
The PCR-GLOBWB global hydrological reanalysis product
NASA Astrophysics Data System (ADS)
Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens
2014-05-01
Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields with consideration of local topographic and orographic effects. Results show that the model parameters can be successfully calibrated, while corrections to the forcing precipitation fields are substantial. Topography has the largest impact on the corrected precipitation and globally the precipitation is reduced by 3%. The calibrated model output is compared to the reference run of PCR-GLOBWB before calibration showing significant improvement in simulation of the global terrestrial water cycle. The RMSE is reduced by 10% on average, leading to improved discharge simulations, especially under base flow situations. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).
NASA Astrophysics Data System (ADS)
Roesch, Andreas; Schaaf, Crystal; Gao, Feng
2004-06-01
Moderate-Resolution Imaging Spectroradiometer (MODIS) surface albedo at high spatial and spectral resolution is compared with other remotely sensed climatologies, ground-based data, and albedos simulated with the European Center/Hamburg 4 (ECHAM4) global climate model at T42 resolution. The study demonstrates the importance of MODIS data in assessing and improving albedo parameterizations in weather forecast and climate models. The remotely sensed PINKER surface albedo climatology follows the MODIS estimates fairly well in both the visible and near-infrared spectra, whereas ECHAM4 simulates high positive albedo biases over snow-covered boreal forests and the Himalayas. In contrast, the ECHAM4 albedo is probably too low over the Sahara sand desert and adjacent steppes. The study clearly indicates that neglecting albedo variations within T42 grid boxes leads to significant errors in the simulated regional climate and horizontal fluxes, mainly in mountainous and/or snow-covered regions. MODIS surface albedo at 0.05 resolution agrees quite well with in situ field measurements collected at Baseline Surface Radiation Network (BSRN) sites during snow-free periods, while significant positive biases are found under snow-covered conditions, mainly due to differences in the vegetation cover at the BSRN site (short grass) and the vegetation within the larger MODIS grid box. Black sky (direct beam) albedo from the MODIS bidirectional reflectance distribution function model captures the diurnal albedo cycle at BSRN sites with sufficient accuracy. The greatest negative biases are generally found when the Sun is low. A realistic approach for relating albedo and zenith angle has been proposed. Detailed evaluations have demonstrated that ignoring the zenith angle dependence may lead to significant errors in the surface energy balance.
Wunderlin, Tina; Ferrari, Belinda; Power, Michelle
2016-09-01
Seasonally, snow environments cover up to 50% of the land's surface, yet the microbial diversity and ecosystem functioning within snow, particularly from alpine regions are not well described. This study explores the bacterial diversity in snow using next-generation sequencing technology. Our data expand the global inventory of snow microbiomes by focusing on two understudied regions, the Swiss Alps and the Australian Alps. A total biomass similar to cell numbers in polar snow was detected, with 5.2 to 10.5 × 10(3) cells mL(-1) of snow. We found that microbial community structure of surface snow varied by country and site and along the altitudinal range (alpine and sub-alpine). The bacterial communities present were diverse, spanning 25 distinct phyla, but the six phyla Proteobacteria (Alpha- and Betaproteobacteria), Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria and Firmicutes, accounted for 72%-98% of the total relative abundance. Taxa such as Acidobacteriaceae and Methylocystaceae, associated with cold soils, may be part of the atmospherically sourced snow community, while families like Sphingomonadaceae were detected in every snow sample and are likely part of the common snow biome. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
ANFIS-based modelling for coagulant dosage in drinking water treatment plant: a case study.
Heddam, Salim; Bermad, Abdelmalek; Dechemi, Noureddine
2012-04-01
Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.
NASA Astrophysics Data System (ADS)
Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.
2017-12-01
Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.
High-resolution, spatially extensive climate grids can be useful in regional hydrologic applications. However, in regions where precipitation is dominated by snow, snowmelt models are often used to account for timing and magnitude of water delivery. We developed an empirical, non...
Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble
NASA Astrophysics Data System (ADS)
Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.
2012-02-01
An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. A validation of the derived trends for 293 grid cells across the European domain with observation-based trend estimates, allowed an assessment of the uncertainty of the modelled trends. The models agreed on the predominant continental scale patterns of trends, but disagreed on magnitudes and even on trend directions at the transition between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow, were more variable and should be viewed with caution due to higher uncertainty. The ensemble mean overall provided the best representation of the trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of Eastern Europe, which has not previously been demonstrated and discussed in comparable detail.
Spatial variability of shortwave radiative fluxes in the context of snowmelt
NASA Astrophysics Data System (ADS)
Pinker, Rachel T.; Ma, Yingtao; Hinkelman, Laura; Lundquist, Jessica
2014-05-01
Snow-covered mountain ranges are a major source of water supply for run-off and groundwater recharge. Snowmelt supplies as much as 75% of surface water in basins of the western United States. Factors that affect the rate of snow melt include incoming shortwave and longwave radiation, surface albedo, snow emissivity, snow surface temperature, sensible and latent heat fluxes, ground heat flux, and energy transferred to the snowpack from deposited snow or rain. The net radiation generally makes up about 80% of the energy balance and is dominated by the shortwave radiation. Complex terrain poses a great challenge for obtaining the needed information on radiative fluxes from satellites due to elevation issues, spatially-variable cloud cover, rapidly changing surface conditions during snow fall and snow melt, lack of high quality ground truth for evaluation of the satellite based estimates, as well as scale issues between the ground observations and the satellite footprint. In this study we utilize observations of high spatial resolution (5-km) as available from the Moderate Resolution Imaging Spectro-radiometer (MODIS) to derive surface shortwave radiative fluxes in complex terrain, with attention to the impact of slopes on the amount of radiation received. The methodology developed has been applied to several water years (January to July during 2003, 2004, 2005 and 2009) over the western part of the United States, and the available information was used to derive metrics on spatial and temporal variability in the shortwave fluxes. It is planned to apply the findings from this study for testing improvements in Snow Water Equivalent (SWE) estimates.
Ecohydrological Controls on Intra-Basin Alpine Subarctic Water Balances
NASA Astrophysics Data System (ADS)
Carey, S. K.; Ziegler, C. M.
2007-12-01
In the mountainous Canadian subarctic, elevation gradients control the disposition of vegetation, permafrost, and characteristics of the soil profile. How intra-basin ecosystems combine to control catchment-scale water and biogeochimcal cycling is uncertain. To this end, a multi-year ecohydrological investigation was undertaken in Granger Basin (GB), a 7.6 km2 sub-basin of the Wolf Creek Research Basin, Yukon Territory, Canada. GB was divided into four sub-basins based on the dominant vegetation and permafrost status, and the timing and magnitude of hydrological processes were compared using hydrometric and hydrochemical methods. Vegetation plays an important role in end-of-winter snow accumulation as snow redistribution by wind is controlled by roughness length. In sub-basins of GB with tall shrubs, snow accumulation is enhanced compared with areas of short shrubs and tundra vegetation. The timing of melt was staggered with elevation, although melt-rates were similar among the sub-basins. Runoff was enhanced at the expense of infiltration in tall shrub areas due to high snow water equivalent and antecedent soil moisture. In the high-elevation tundra sub-basin, thin soils with cold ground temperatures resulted in increased surface runoff. For the freshet period, the lower and upper sub-basins accounted for 81 % of runoff while accounting for 58 % of the total basin area. Two-component isotopic hydrograph separation revealed that during melt, pre-event water dominated in all sub-basins, yet those with greater permafrost disposition and taller shrubs had increased event-water. Dissolved organic carbon (DOC) spiked prior to peak freshet in each sub-basin except for the highest with thin soils, and was associated with flushing of surficial organic soils. For the post-melt period, all sub-basins have similar runoff contributions. Solute and stable isotope data indicate that in sub-basins dominated by permafrost, supra-permafrost runoff pathways predominate as flow pathways are confined above the permafrost aquitard. In contrast, lower elevation zones supply runoff via deeper subsurface flow pathways with increased levels of dissolved solutes. With regards to DOC, sub-basins dominated by permafrost supply the bulk of DOC to the stream because of near-surface pathways. Results highlight the importance of vegetation, the soil profile and frozen ground status in controlling hydrological and hydrochemical fluxes. Future changes in vegetation, which are occurring rapidly in the subarctic, are expected to have a large impact on the hydrology and biogeochemistry of these systems.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Harpold, A. A.; Gochis, D. J.; Reed, D.; Brooks, P. D.
2010-12-01
Seasonal snowcover is a primary source of water to urban and agricultural regions in the western United States, where Mountain Pine Beetle (MPB) has caused rapid and extensive changes to vegetation in montane forests. Levels of MPB infestation in these seasonally snow-covered systems are unprecedented, and it is unknown how this will affect water yield, especially in changing climate conditions. To address this unknown we ask: How does snow accumulation and ablation vary across forest with differing levels of impact? Our study areas in the Rocky Mountains of CO and WY are similar in latitude, elevation and forest structure before infestation, but they vary in the intensity and timing of beetle infestation and tree mortality. We present a record for winter 2010 that includes continuous snow depth as well as stand-scale snow surveys at maximum accumulation. Additional measurements include snowfall, net radiation, temperature and wind speed as well as characterization of forest structure by leaf area index. In a stand uninfested by MPB, maximum snow depth was fairly uniform under canopy (mean = 86 cm, coefficient of variation = 0.021), while canopy gaps showed greater and more variable depth (mean = 117 cm, CV = 0.111). This is consistent with several studies demonstrating that snowfall into canopy gaps depends upon gap size, orientation, wind speed and storm size. In a stand impacted in 2007, snow depth under canopy was less uniform, and there were smaller differences in both mean depth and variability between canopy (mean = 93 cm, CV = 0.072) and gaps (mean = 97 cm, CV = 0.070), consistent with decreased canopy density. In a more recently infested (2009) stand with an intermediate level of MPB impact, mean snow depths were similar between canopy (96 cm, CV = 0.016) and gaps (95 cm, CV = 0.185) but gaps showed much greater variability, suggesting controls similar to those in effect in the uninfested stand. We further use these data to model snow accumulation and ablation as a function of vegetation, topography and fine-scale climate variability, with preliminary results presented at the meeting.
Revealing the Hidden Water Budget of an Alpine Volcanic Watershed Using a Bayesian Mixing Model
NASA Astrophysics Data System (ADS)
Markovich, K. H.; Arumi, J. L.; Dahlke, H. E.; Fogg, G. E.
2017-12-01
Climate change is altering alpine water budgets in observable ways, such as snow melting sooner or falling as rain, but also in hidden ways, such as shifting recharge timing and increased evapotranspiration demand leading to diminished summer low flows. The combination of complex hydrogeology and sparse availability of data make it difficult to predict the direction or magnitude of shifts in alpine water budgets, and thus difficult to inform decision-making. We present a data sparse watershed in the Andes Mountains of central Chile in which complex geology, interbasin flows, and surface water-groundwater interactions impede our ability to fully describe the water budget. We collected water samples for stable isotopes and major anions and cations, over the course of water year 2016-17 to characterize the spatial and temporal variability in endmember signatures (snow, rain, and groundwater). We use a Bayesian Hierarchical Model (BHM) to explicitly incorporate uncertainty and prior information into a mixing model, and predict the proportional contribution of snow, rain, and groundwater to streamflow throughout the year for the full catchment as well as its two sub-catchments. Preliminary results suggest that streamflow is likely more rainfall-dominated than previously thought, which not only alters our projections of climate change impacts, but make this watershed a potential example for other watersheds undergoing a snow to rain transition. Understanding how these proportions vary in space and time will help us elucidate key information on stores, fluxes, and timescales of water flow for improved current and future water resource management.
NASA Astrophysics Data System (ADS)
Jeong, Dae Il; Sushama, Laxmi; Naveed Khaliq, M.
2017-06-01
Snow is an important component of the cryosphere and it has a direct and important influence on water storage and supply in snowmelt-dominated regions. This study evaluates the temporal evolution of snow water equivalent (SWE) for the February-April spring period using the GlobSnow observation dataset for the 1980-2012 period. The analysis is performed for different regions of hemispherical to sub-continental scales for the Northern Hemisphere. The detection-attribution analysis is then performed to demonstrate anthropogenic and natural effects on spring SWE changes for different regions, by comparing observations with six CMIP5 model simulations for three different external forcings: all major anthropogenic and natural (ALL) forcings, greenhouse gas (GHG) forcing only, and natural forcing only. The observed spring SWE generally displays a decreasing trend, due to increasing spring temperatures. However, it exhibits a remarkable increasing trend for the southern parts of East Eurasia. The six CMIP5 models with ALL forcings reproduce well the observed spring SWE decreases at the hemispherical scale and continental scales, whereas important differences are noted for smaller regions such as southern and northern parts of East Eurasia and northern part of North America. The effects of ALL and GHG forcings are clearly detected for the spring SWE decline at the hemispherical scale, based on multi-model ensemble signals. The effects of ALL and GHG forcings, however, are less clear for the smaller regions or with single-model signals, indicating the large uncertainty in regional SWE changes, possibly due to stronger influence of natural climate variability.
Sea Ice Thickness Estimates from Data Collected Using Airborne Sensors and Coincident In Situ Data
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Abelev, A.; Hagen, R. A.; Liang, R.; Ball, D.
2016-12-01
The Naval Research Laboratory collected data using Airborne sensors and coincident in-situ measurements over multiple sites of floating, but land-fast ice north of Barrow, AK. The in-situ data provide ground-truth for airborne measurements from a scanning LiDAR (Riegl Q 560i), digital photogrammetry (Applanix DSS-439), a low-frequency SAR (P-band in 2014 and P and L bands in 2015 and 2016) and a snow/Ku radar procured from the Center for Remote Sensing of Ice Sheets of the University of Kansas. The CReSIS radar was updated in 2015 to integrate the snow and Ku radars into a single continuous chirp, thus improving resolution. The objective of the surveys was to aid our understanding of the accuracy of ice thickness estimation via the freeboard method using the airborne sensor suite. Airborne data were collected on multiple overflights of the transect areas. The LiDAR measured total freeboard (ice + snow) referenced to leads in the ice, and produced swaths 200-300 m wide. The SAR imaged the ice beneath the snow and the snow/Ku radar measured snow thickness. The freeboard measurements and snow thickness are used to estimate ice thickness via isostasy and density estimates. Comparisons and processing methodology will be shown using data from three field seasons (2014-2016). The results of this ground-truth experiment will inform our analysis of grids of airborne data collected over areas of sea-ice illuminated by Cryosat-2.
NASA Astrophysics Data System (ADS)
Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri
2017-04-01
Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.
Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California
NASA Astrophysics Data System (ADS)
Urmy, Samuel S.; Horne, John K.
2016-07-01
A 38 kHz upward-facing echosounder was deployed on the seafloor at a depth of 875 m in Monterey Bay, CA, USA (36° 42.748‧N, 122° 11.214‧W) from 27 February 2009 to 18 August 2010. This 18-month record of acoustic backscatter was compared to oceanographic time series from a nearby data buoy to investigate the responses of animals in sound-scattering layers to oceanic variability at seasonal and sub-seasonal time scales. Pelagic animals, as measured by acoustic backscatter, moved higher in the water column and decreased in abundance during spring upwelling, attributed to avoidance of a shoaling oxycline and advection offshore. Seasonal changes were most evident in a non-migrating scattering layer near 500 m depth that disappeared in spring and reappeared in summer, building to a seasonal maximum in fall. At sub-seasonal time scales, similar responses were observed after individual upwelling events, though they were much weaker than the seasonal relationship. Correlations of acoustic backscatter with oceanographic variability also differed with depth. Backscatter in the upper water column decreased immediately following upwelling, then increased approximately 20 days later. Similar correlations existed deeper in the water column, but at increasing lags, suggesting that near-surface productivity propagated down the water column at 10-15 m d-1, consistent with sinking speeds of marine snow measured in Monterey Bay. Sub-seasonal variability in backscatter was best correlated with sea-surface height, suggesting that passive physical transport was most important at these time scales.
High resolution climate scenarios for snowmelt modelling in small alpine catchments
NASA Astrophysics Data System (ADS)
Schirmer, M.; Peleg, N.; Burlando, P.; Jonas, T.
2017-12-01
Snow in the Alps is affected by climate change with regard to duration, timing and amount. This has implications with respect to important societal issues as drinking water supply or hydropower generation. In Switzerland, the latter received a lot of attention following the political decision to phase out of nuclear electricity production. An increasing number of authorization requests for small hydropower plants located in small alpine catchments was observed in the recent years. This situation generates ecological conflicts, while the expected climate change poses a threat to water availability thus putting at risk investments in such hydropower plants. Reliable high-resolution climate scenarios are thus required, which account for small-scale processes to achieve realistic predictions of snowmelt runoff and its variability in small alpine catchments. We therefore used a novel model chain by coupling a stochastic 2-dimensional weather generator (AWE-GEN-2d) with a state-of-the-art energy balance snow cover model (FSM). AWE-GEN-2d was applied to generate ensembles of climate variables at very fine temporal and spatial resolution, thus providing all climatic input variables required for the energy balance modelling. The land-surface model FSM was used to describe spatially variable snow cover accumulation and melt processes. The FSM was refined to allow applications at very high spatial resolution by specifically accounting for small-scale processes, such as a subgrid-parametrization of snow covered area or an improved representation of forest-snow processes. For the present study, the model chain was tested for current climate conditions using extensive observational dataset of different spatial and temporal coverage. Small-scale spatial processes such as elevation gradients or aspect differences in the snow distribution were evaluated using airborne LiDAR data. 40-year of monitoring data for snow water equivalent, snowmelt and snow-covered area for entire Switzerland was used to verify snow distribution patterns at coarser spatial and temporal scale. The ability of the model chain to reproduce current climate conditions in small alpine catchments makes this model combination an outstanding candidate to produce high resolution climate scenarios of snowmelt in small alpine catchments.
NASA Astrophysics Data System (ADS)
Teich, M.; Hagenmuller, P.; Bebi, P.; Jenkins, M. J.; Giunta, A. D.; Schneebeli, M.
2017-12-01
Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception, wind speed reduction, and changes to the energy balance. The lack of snowpack observations in forests limits our ability to understand the evolution of snow stratigraphy and its spatio-temporal variability as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack under canopies of a spruce forest in the central Rocky Mountains, USA, using the SnowMicroPen (SMP), a high resolution digital penetrometer. Weekly-repeated penetration force measurements were recorded along 10 m transects every 0.3 m in winter 2015 and bi-weekly along 20 m transects every 0.5 m in 2016 in three study plots beneath canopies of undisturbed, bark beetle-disturbed and harvested forest stands, and an open meadow. To disentangle information about layer hardness and depth variabilities, and to quantitatively compare the different SMP profiles, we applied a matching algorithm to our dataset, which combines several profiles by automatically adjusting their layer thicknesses. We linked spatial and temporal variabilities of penetration force and depth, and thus snow stratigraphy to forest and meteorological conditions. Throughout the season, snow stratigraphy was more heterogeneous in undisturbed but also beneath bark beetle-disturbed forests. In contrast, and despite remaining small diameter trees and woody debris, snow stratigraphy was rather homogenous at the harvested plot. As expected, layering at the non-forested plot varied only slightly over the small spatial extent sampled. At the open and harvested plots, persistent crusts and ice lenses were clearly present in the snowpack, while such hard layers barely occurred beneath undisturbed and disturbed canopies. Due to settling, hardness significantly increased with depth at open and harvested plots, which was less distinctive at the other two plots. Our results contribute to the general understanding of forest-snowpack interactions and, if combined with density and specific surface area estimates, can be used to validate snowpack and microwave models for avalanche formation and SWE retrieval in forests.
Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012
NASA Astrophysics Data System (ADS)
Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan
2018-01-01
Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.
NASA Astrophysics Data System (ADS)
Abe, Manabu; Takata, Kumiko; Kawamiya, Michio; Watanabe, Shingo
2017-09-01
The Earth system model, Model for Interdisciplinary Research on Climate-Earth system model (MIROC-ESM), in which the leaf area index (LAI) is calculated interactively with an ecological land model, simulated future changes in the snow water equivalent under the scenario of global warming. Using MIROC-ESM, the effects of the snow albedo feedback (SAF) in a boreal forest region of northern Eurasia were examined under the possible climate future scenario RCP8.5. The simulated surface air temperature (SAT) in spring greatly increases across Siberia and the boreal forest region, whereas the snow cover decreases remarkably only in western Eurasia. The large increase in SAT across Siberia is attributed to strong SAF, which is caused by both the reduced snow-covered fraction and the reduced surface albedo of the snow-covered portion due to the vegetation masking effect in those grid cells. A comparison of the future changes with and without interactive LAI changes shows that in Siberia, the vegetation masking effect increases the spring SAF by about two or three times and enhances the spring warming by approximately 1.5 times. This implies that increases in vegetation biomass in the future are a potential contributing factor to warming trends and that further research on the vegetation masking effect is needed for reliable future projection.
Snow cover variability in a forest ecotone of the Oregon Cascades via MODIS Terra products
Tihomir Sabinov Kostadinov; Todd R. Lookingbill
2015-01-01
Snowcover pattern and persistence have important implications for planetary energy balance, climate sensitivity to forcings, and vegetation structure, function, and composition. Variability in snow cover within mountainous regions of the Pacific Northwest, USA is attributable to a combination of anthropogenic climate change and climate oscillations. However,...
NASA Technical Reports Server (NTRS)
Selkirk, Henry B.; Molod, Andrea M.
2014-01-01
Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.
Grid-cell-based crop water accounting for the famine early warning system
NASA Astrophysics Data System (ADS)
Verdin, James; Klaver, Robert
2002-06-01
Rainfall monitoring is a regular activity of food security analysts for sub-Saharan Africa due to the potentially disastrous impact of drought. Crop water accounting schemes are used to track rainfall timing and amounts relative to phenological requirements, to infer water limitation impacts on yield. Unfortunately, many rain gauge reports are available only after significant delays, and the gauge locations leave large gaps in coverage. As an alternative, a grid-cell-based formulation for the water requirement satisfaction index (WRSI) was tested for maize in Southern Africa. Grids of input variables were obtained from remote sensing estimates of rainfall, meteorological models, and digital soil maps. The spatial WRSI was computed for the 1996-97 and 1997-98 growing seasons. Maize yields were estimated by regression and compared with a limited number of reports from the field for the 1996-97 season in Zimbabwe. Agreement at a useful level (r = 0·80) was observed. This is comparable to results from traditional analysis with station data. The findings demonstrate the complementary role that remote sensing, modelling, and geospatial analysis can play in an era when field data collection in sub-Saharan Africa is suffering an unfortunate decline. Published in 2002 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Pérez-Luque, Antonio J.; Herrero, Javier; Bonet, Francisco J.; Pérez-Pérez, Ramón
2016-04-01
Climate change is causing declines in snow-cover extent and duration in European mountain ranges. This is especially important in Mediterranean mountain ranges where the observed trends towards precipitation and higher temperatures can provoke problems of water scarcity. In this work, we analyzed temporal trends (2000 to 2014) of snow-related variables obtained from satellite and modelling data in Sierra Nevada, a Mediterranean high-mountain range located in Southern Spain, at 37°N. Snow cover indicators (snow-cover duration, snow-cover onset dates and snow-cover melting dates) were obtained by processing images of MOD10A2 MODIS product using an automated workflow. Precipitation data were obtained using WiMMed, a complete and fully distributed hydrological model that is used to map the annual rainfall and snowfall with a resolution of 30x30 m over the whole study area. It uses expert algorithms to interpolate precipitation and temperature at an hourly scale, and simulates partition of precipitation into snowfall with several methods. For each snow-related indicator (snow-covers and snowfall), a trend analysis was applied at the MODIS pixel scale during the study period (2000-2014). We applied Mann-Kendall test and Theil-Sen slope estimation in each of the pixels comprising Sierra Nevada. The trend analysis assesses the intensity, magnitude and degree of statistical significance during the period analysed. The spatial pattern of these trends was explored according to elevation ranges. Finally, we explored the relationship between trends of snow-cover related indicators and precipitation trends. Our results show that snow-cover has undergone significant changes in the last 14 years. 80 % of the pixels covering Sierra Nevada showed a negative trend in the duration of snow-cover. We also observed a delay in the snow-cover onset date (68.03 % pixels showing a positive trend in the snow-cover onset date) and an advance in the melt date (80.72 % of pixels followed a negative trend for the snow-cover melting date). Precipitation does not show a significant trend for these years, even though its inter-annual variability has been outstanding. The maximum mean annual precipitation of 906 mm/year doubles the mean precipitation, which somehow compensates for the occurrence of a sequence of dry years with a minimum of 250 mm/year. The assessment of the spatial pattern of snow cover duration shows that both the trend and the slope of the trend becomes more pronounced with elevation. At higher elevations the snow-cover duration decreased an average of 3 days from 2000-2014. This research has been funded by ECOPOTENTIAL (Improving future ecosystem benefits through Earth Observations) Horizon 2020 EU project, and Sierra Nevada Global Change Observatory (LTER-site)
NASA Astrophysics Data System (ADS)
Semmens, Kathryn Alese
Snow accumulation and melt are dynamic features of the cryosphere indicative of a changing climate. Spring melt and refreeze timing are of particular importance due to the influence on subsequent hydrological and ecological processes, including peak runoff and green-up. To investigate the spatial and temporal variability of melt timing across a sub-arctic region (the Yukon River Basin (YRB), Alaska/Canada) dominated by snow and lacking substantial ground instrumentation, passive microwave remote sensing was utilized to provide daily brightness temperatures (Tb) regardless of clouds and darkness. Algorithms to derive the timing of melt onset and the end of melt-refreeze, a critical transition period where the snowpack melts during the day and refreezes at night, were based on thresholds for Tb and diurnal amplitude variations (day and night difference). Tb data from the Special Sensor Microwave Imager (1988 to 2011) was used for analyzing YRB terrestrial snowmelt timing and for characterizing melt regime patterns for icefields in Alaska and Patagonia. Tb data from the Advanced Microwave Scanning Radiometer for EOS (2003 to 2010) was used for determining the occurrence of early melt events (before melt onset) associated with fog or rain on snow, for investigating the correlation between melt timing and forest fires, and for driving a flux-based snowmelt runoff model. From the SSM/I analysis: the melt-refreeze period lengthened for the majority of the YRB with later end of melt-refreeze and earlier melt onset; and positive Tb anomalies were found in recent years from glacier melt dynamics. From the AMSR-E analysis: early melt events throughout the YRB were most often associated with warm air intrusions and reflect a consistent spatial distribution; years and areas of earlier melt onset and refreeze had more forest fire occurrences suggesting melt timing's effects extend to later seasons; and satellite derived melt timing served as an effective input for model simulation of discharge in remote, ungauged snow-dominated basins. The melt detection methodology and results present a new perspective on the changing cryosphere, provide an understanding of melt's influence on other earth system processes, and develop a baseline from which to assess and evaluate future change. The temporal and spatial variability conveyed through the regional context of this research may be useful to communities in climate change adaptation planning.
Snow observations in Mount Lebanon (2011-2016)
NASA Astrophysics Data System (ADS)
Fayad, Abbas; Gascoin, Simon; Faour, Ghaleb; Fanise, Pascal; Drapeau, Laurent; Somma, Janine; Fadel, Ali; Bitar, Ahmad Al; Escadafal, Richard
2017-08-01
We present a unique meteorological and snow observational dataset in Mount Lebanon, a mountainous region with a Mediterranean climate, where snowmelt is an essential water resource. The study region covers the recharge area of three karstic river basins (total area of 1092 km2 and an elevation up to 3088 m). The dataset consists of (1) continuous meteorological and snow height observations, (2) snowpack field measurements, and (3) medium-resolution satellite snow cover data. The continuous meteorological measurements at three automatic weather stations (MZA, 2296 m; LAQ, 1840 m; and CED, 2834 m a.s.l.) include surface air temperature and humidity, precipitation, wind speed and direction, incoming and reflected shortwave irradiance, and snow height, at 30 min intervals for the snow seasons (November-June) between 2011 and 2016 for MZA and between 2014 and 2016 for CED and LAQ. Precipitation data were filtered and corrected for Geonor undercatch. Observations of snow height (HS), snow water equivalent, and snow density were collected at 30 snow courses located at elevations between 1300 and 2900 m a.s.l. during the two snow seasons of 2014-2016 with an average revisit time of 11 days. Daily gap-free snow cover extent (SCA) and snow cover duration (SCD) maps derived from MODIS snow products are provided for the same period (2011-2016). We used the dataset to characterize mean snow height, snow water equivalent (SWE), and density for the first time in Mount Lebanon. Snow seasonal variability was characterized with high HS and SWE variance and a relatively high snow density mean equal to 467 kg m-3. We find that the relationship between snow depth and snow density is specific to the Mediterranean climate. The current model explained 34 % of the variability in the entire dataset (all regions between 1300 and 2900 m a.s.l.) and 62 % for high mountain regions (elevation 2200-2900 m a.s.l.). The dataset is suitable for the investigation of snow dynamics and for the forcing and validation of energy balance models. Therefore, this dataset bears the potential to greatly improve the quantification of snowmelt and mountain hydrometeorological processes in this data-scarce region of the eastern Mediterranean. The DOI for the data is https://doi.org/10.5281/zenodo.583733.
NASA Astrophysics Data System (ADS)
Ahmadalipour, Ali; Moradkhani, Hamid
2017-12-01
Hydrologic modeling is one of the primary tools utilized for drought monitoring and drought early warning systems. Several sources of uncertainty in hydrologic modeling have been addressed in the literature. However, few studies have assessed the uncertainty of gridded observation datasets from a drought monitoring perspective. This study provides a hydrologic modeling oriented analysis of the gridded observation data uncertainties over the Pacific Northwest (PNW) and its implications on drought assessment. We utilized a recently developed 100-member ensemble-based observed forcing data to simulate hydrologic fluxes at 1/8° spatial resolution using Variable Infiltration Capacity (VIC) model, and compared the results with a deterministic observation. Meteorological and hydrological droughts are studied at multiple timescales over the basin, and seasonal long-term trends and variations of drought extent is investigated for each case. Results reveal large uncertainty of observed datasets at monthly timescale, with systematic differences for temperature records, mainly due to different lapse rates. The uncertainty eventuates in large disparities of drought characteristics. In general, an increasing trend is found for winter drought extent across the PNW. Furthermore, a ∼3% decrease per decade is detected for snow water equivalent (SWE) over the PNW, with the region being more susceptible to SWE variations of the northern Rockies than the western Cascades. The agricultural areas of southern Idaho demonstrate decreasing trend of natural soil moisture as a result of precipitation decline, which implies higher appeal for anthropogenic water storage and irrigation systems.
Coupled basin-scale water resource models for arid and semiarid regions
NASA Astrophysics Data System (ADS)
Winter, C.; Springer, E.; Costigan, K.; Fasel, P.; Mniewski, S.; Zyvoloski, G.
2003-04-01
Managers of semi-arid and arid water resources must allocate increasingly variable surface sources and limited groundwater resources to growing demands. This challenge is leading to a new generation of detailed computational models that link multiple interacting sources and demands. We will discuss a new computational model of arid region hydrology that we are parameterizing for the upper Rio Grande Basin of the United States. The model consists of linked components for the atmosphere (the Regional Atmospheric Modeling System, RAMS), surface hydrology (the Los Alamos Distributed Hydrologic System, LADHS), and groundwater (the Finite Element Heat and Mass code, FEHM), and the couplings between them. The model runs under the Parallel Application WorkSpace software developed at Los Alamos for applications running on large distributed memory computers. RAMS simulates regional meteorology coupled to global climate data on the one hand and land surface hydrology on the other. LADHS generates runoff by infiltration or saturation excess mechanisms, as well as interception, evapotranspiration, and snow accumulation and melt. FEHM simulates variably saturated flow and heat transport in three dimensions. A key issue is to increase the components’ spatial and temporal resolution to account for changes in topography and other rapidly changing variables that affect results such as soil moisture distribution or groundwater recharge. Thus, RAMS’ smallest grid is 5 km on a side, LADHS uses 100 m spacing, while FEHM concentrates processing on key volumes by means of an unstructured grid. Couplings within our model are based on new scaling methods that link groundwater-groundwater systems and streams to aquifers and we are developing evapotranspiration methods based on detailed calculations of latent heat and vegetative cover. Simulations of precipitation and soil moisture for the 1992-93 El Nino year will be used to demonstrate the approach and suggest further needs.
NASA Astrophysics Data System (ADS)
Ala-aho, P. O. A.; Tetzlaff, D.; Laudon, H.; McNamara, J. P.; Soulsby, C.
2016-12-01
We use the Spatially distributed Tracer-Aided Rainfall-Runoff (STARR) modelling framework to explore non-stationary flow and isotope response in three northern headwater catchments. The model simulates dynamic, spatially variable tracer concentration in different water stores and fluxes within a catchment, which can constrain internal catchment mixing processes, flow paths and associated water ages. To date, a major limitation in using such models in snow-dominated catchments has been the difficulties in paramaterising the isotopic transformations in snowpack accumulation and melt. We use high quality long term datasets for hydrometrics and stable water isotopes collected in three northern study catchments for model calibration and testing. The three catchments exhibit different hydroclimatic conditions, soil and vegetation types, and topographic relief, which brings about variable degree of snow dominance across the catchments. To account for the snow influence we develop novel formulations to estimate the isotope evolution in the snowpack and melt. Algorithms for the isotopic evolution parameterize an isotopic offset between snow evaporation and melt fluxes and the remaining snow storage. The model for each catchment is calibrated to match both streamflow and tracer concentration at the stream outlet to ensure internal consistency of the system behaviour. The model is able to reproduce the streamflow along with the spatio-temporal differences in tracer concentrations across the three studies catchments reasonably well. Incorporating the spatially distributed snowmelt processes and associated isotope transformations proved essential in capturing the stream tracer reponse for strongly snow-influenced cathments. This provides a transferrable tool which can be used to understand spatio-temporal variability of mixing and water ages for different storages and flow paths in other snow influenced, environments.
NASA Astrophysics Data System (ADS)
Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.
2015-07-01
Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.
NASA Astrophysics Data System (ADS)
Baker, Kirk R.; Hawkins, Andy; Kelly, James T.
2014-12-01
Near source modeling is needed to assess primary and secondary pollutant impacts from single sources and single source complexes. Source-receptor relationships need to be resolved from tens of meters to tens of kilometers. Dispersion models are typically applied for near-source primary pollutant impacts but lack complex photochemistry. Photochemical models provide a realistic chemical environment but are typically applied using grid cell sizes that may be larger than the distance between sources and receptors. It is important to understand the impacts of grid resolution and sub-grid plume treatments on photochemical modeling of near-source primary pollution gradients. Here, the CAMx photochemical grid model is applied using multiple grid resolutions and sub-grid plume treatment for SO2 and compared with a receptor mesonet largely impacted by nearby sources approximately 3-17 km away in a complex terrain environment. Measurements are compared with model estimates of SO2 at 4- and 1-km resolution, both with and without sub-grid plume treatment and inclusion of finer two-way grid nests. Annual average estimated SO2 mixing ratios are highest nearest the sources and decrease as distance from the sources increase. In general, CAMx estimates of SO2 do not compare well with the near-source observations when paired in space and time. Given the proximity of these sources and receptors, accuracy in wind vector estimation is critical for applications that pair pollutant predictions and observations in time and space. In typical permit applications, predictions and observations are not paired in time and space and the entire distributions of each are directly compared. Using this approach, model estimates using 1-km grid resolution best match the distribution of observations and are most comparable to similar studies that used dispersion and Lagrangian modeling systems. Model-estimated SO2 increases as grid cell size decreases from 4 km to 250 m. However, it is notable that the 1-km model estimates using 1-km meteorological model input are higher than the 1-km model simulation that used interpolated 4-km meteorology. The inclusion of sub-grid plume treatment did not improve model skill in predicting SO2 in time and space and generally acts to keep emitted mass aloft.
NASA Astrophysics Data System (ADS)
Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.
In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.
Laws of distribution of the snow cover on the greater Caucasus (Soviet Union)
NASA Technical Reports Server (NTRS)
Gurtovaya, Y. Y.; Sulakvelidze, G. K.; Yashina, A. V.
1985-01-01
The laws of the distribution of the snow cover on the mountains of the greater Caucasus are discussed. It is shown that an extremely unequal distribution of the snow cover is caused by the complex orography of this territory, the diversity of climatic conditions and by the difference in altitude. Regions of constant, variable and unstable snow cover are distinguished because of the clearly marked division into altitude layers, each of which is characterized by climatic differences in the nature of the snow accumulation.
NASA Astrophysics Data System (ADS)
Wu, C.; Liu, X.; Lin, Z.; Rahimi-Esfarjani, S. R.; Lu, Z.
2017-12-01
Deposition of light-absorbing aerosols (LAAs) including black carbon (BC) and dust onto snow surface has been suggested to reduce the snow albedo, and modulate the snowpack and consequent hydrologic cycle. In this study we use the variable-resolution Community Earth System Model (VR-CESM) to quantify the impacts of LAAs deposition onto snow in the Rocky Mountain region (RMR) during the period of 1981-2005. We first evaluate the model simulation of LAA concentrations both in the atmosphere and in snow, and then investigate the snowpack and runoff changes induced by LAAs-in-snow. The model simulates similar magnitudes of surface atmospheric dust concentrations as observations, but underestimates surface atmospheric BC concentrations by about a factor of two. Despite of this, the magnitude of BC-in-snow concentrations is overall comparable to observations. Regional mean surface radiative effect (SRE) due to LAAs-in-snow reaches up to 0.6-1.7 W m-2 in spring, and dust contributes to about 21-43% of total SRE. Maximum surface air temperature increase due to the LLA's SRE is around 0.9-1.1oC. Snow water equivalent and snow cover fraction reduce by around 2-50 mm and 0.05-0.2, respectively in the two regions around the mountains (Eastern Snake River Plain and Southwestern Wyoming) due to positive snow-albedo feedbacks. During the snow melting period, LAAs accelerate the hydrologic cycle with runoff increased by 7%-42% in April-May and reduced by 2-23% in June-July in the mountainous regions. Under the influence of LAAs-in-snow, Southern Rockies experience the most significant reduction of runoff by about 15% in the later stage of snow melt (i.e., June-July). Our results highlight the potentially important role of LAAs-in-snow in the historical and future changes of snowpack in the RMR.
NASA Technical Reports Server (NTRS)
Pan, Jinmei; Durand, Michael; Sandells, Melody; Lemmetyinen, Juha; Kim, Edward J.; Pulliainen, Jouni; Kontu, Anna; Derksen, Chris
2015-01-01
Microwave emission models are a critical component of snow water equivalent retrieval algorithms applied to passive microwave measurements. Several such emission models exist, but their differences need to be systematically compared. This paper compares the basic theories of two models: the multiple-layer HUT (Helsinki University of Technology) model and MEMLS (Microwave Emission Model of Layered Snowpacks). By comparing the mathematical formulation side-by-side, three major differences were identified: (1) by assuming the scattered intensity is mostly (96) in the forward direction, the HUT model simplifies the radiative transfer (RT) equation into 1-flux; whereas MEMLS uses a 2-flux theory; (2) the HUT scattering coefficient is much larger than MEMLS; (3 ) MEMLS considers the trapped radiation inside snow due to internal reflection by a 6-flux model, which is not included in HUT. Simulation experiments indicate that, the large scattering coefficient of the HUT model compensates for its large forward scattering ratio to some extent, but the effects of 1-flux simplification and the trapped radiation still result in different T(sub B) simulations between the HUT model and MEMLS. The models were compared with observations of natural snow cover at Sodankyl, Finland; Churchill, Canada; and Colorado, USA. No optimization of the snow grain size was performed. It shows that HUT model tends to under estimate T(sub B) for deep snow. MEMLS with the physically-based improved Born approximation performed best among the models, with a bias of -1.4 K, and an RMSE of 11.0 K.
Formation, distribution and variability in snow cover on the Asian territory of the USSR
NASA Technical Reports Server (NTRS)
Pupkov, V. N.
1985-01-01
A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.
NASA Astrophysics Data System (ADS)
Winska, M.
2016-12-01
The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.
NASA Astrophysics Data System (ADS)
Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.
2017-12-01
The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.
NASA Astrophysics Data System (ADS)
Hill, R.; Calvin, W. M.; Harpold, A. A.
2016-12-01
Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Previous retrieval of subpixel snow-covered area in alpine regions used multiple snow endmembers due to the sensitivity of snow spectral reflectance to grain size. We will present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction and approximate grain size or melt state. The root mean squared error will provide a spectrum-wide assessment of the mixture model's goodness-of-fit. Analysis will compare snow-covered area and snow-cover depletion in the 2016 year, and annual variation from the 2015 year. Field data were also acquired on three days concurrent with the 2016 flights in the Sagehen Experimental Forest and will support ground validation of the airborne data set.
OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems
NASA Technical Reports Server (NTRS)
Kao, David L.; Chan, William M.
2012-01-01
Structured grid solvers such as NASA's OVERFLOW compressible Navier-Stokes flow solver can generate large data files that contain convergence histories for flow equation residuals, turbulence model equation residuals, component forces and moments, and component relative motion dynamics variables. Most of today's large-scale problems can extend to hundreds of grids, and over 100 million grid points. However, due to the lack of efficient tools, only a small fraction of information contained in these files is analyzed. OVERSMART (OVERFLOW Solution Monitoring And Reporting Tool) provides a comprehensive report of solution convergence of flow computations over large, complex grid systems. It produces a one-page executive summary of the behavior of flow equation residuals, turbulence model equation residuals, and component forces and moments. Under the automatic option, a matrix of commonly viewed plots such as residual histograms, composite residuals, sub-iteration bar graphs, and component forces and moments is automatically generated. Specific plots required by the user can also be prescribed via a command file or a graphical user interface. Output is directed to the user s computer screen and/or to an html file for archival purposes. The current implementation has been targeted for the OVERFLOW flow solver, which is used to obtain a flow solution on structured overset grids. The OVERSMART framework allows easy extension to other flow solvers.
NASA Astrophysics Data System (ADS)
Jiang, S.; Cole-Dai, J.; Li, Y.; An, C.
2016-12-01
Snow deposition and accumulation on the Antarctic ice sheet preserve records of climatic change, as well as those of chemical characteristics of the environment. Chemical composition of snow and ice cores can be used to track the sources of important substances including pollutants and to investigate relationships between atmospheric chemistry and climatic conditions. Recent development in analytical methodology has enabled the determination of ultra-trace levels of perchlorate in polar snow. We have measured perchlorate concentrations in surface snow samples collected along a traverse route from Zhongshan Station to Dome A in East Antarctica to determine the level of atmospheric perchlorate in East Antarctica and to assess the spatial variability of perchlorate along the traverse route. Results show that the perchlorate concentrations vary between 32 and 200 ng kg-1, with an average of 104.3 ng kg-1. And perchlorate concentration profile presents regional variation patterns along the traverse route. In the coastal region, perchlorate concentration displays an apparent decreasing relationship with increasing distance inland; it exhibits no apparent trend in the intermediate region from 200 to 1000 km. The inland region from 1000 to 1244 km presents a generally increasing trend of perchlorate concentration approaching the dome. Different rates of atmospheric production, dilution by snow accumulation and re-deposition of snow-emitted perchlorate (post-depositional change) are the three possible factors influencing the spatial variability of perchlorate over Antarctica.
NASA Astrophysics Data System (ADS)
Suciu, L. G.; Griffin, R. J.; Masiello, C. A.
2017-12-01
Wildfires and prescribed burning are important sources of particulate and gaseous pyrogenic organic carbon (PyOC) emissions to the atmosphere. These emissions impact atmospheric chemistry, air quality and climate, but the spatial and temporal variabilities of these impacts are poorly understood, primarily because small and fresh fire plumes are not well predicted by three-dimensional Eulerian chemical transport models due to their coarser grid size. Generally, this results in underestimation of downwind deposition of PyOC, hydroxyl radical reactivity, secondary organic aerosol formation and ozone (O3) production. However, such models are very good for simulation of multiple atmospheric processes that could affect the lifetimes of PyOC emissions over large spatiotemporal scales. Finer resolution models, such as Lagrangian reactive plumes models (or plume-in-grid), could be used to trace fresh emissions at the sub-grid level of the Eulerian model. Moreover, Lagrangian plume models need background chemistry predicted by the Eulerian models to accurately simulate the interactions of the plume material with the background air during plume aging. Therefore, by coupling the two models, the physico-chemical evolution of the biomass burning plumes can be tracked from local to regional scales. In this study, we focus on the physico-chemical changes of PyOC emissions from sub-grid to grid levels using an existing chemical mechanism. We hypothesize that finer scale Lagrangian-Eulerian simulations of several prescribed burns in the U.S. will allow more accurate downwind predictions (validated by airborne observations from smoke plumes) of PyOC emissions (i.e., submicron particulate matter, organic aerosols, refractory black carbon) as well as O3 and other trace gases. Simulation results could be used to optimize the implementation of additional PyOC speciation in the existing chemical mechanism.
NASA Astrophysics Data System (ADS)
Webb, Ryan W.
2017-09-01
Snow is an important environmental variable in headwater systems that controls hydrological processes such as streamflow, groundwater recharge, and evapotranspiration. These processes will be affected by both the amount of snow available for melt and the rate at which it melts. Snow water equivalent (SWE) and snowmelt are known to vary within complex subalpine terrain due to terrain and canopy influences. This study assesses this variability during the melt season using ground penetrating radar to survey multiple plots in northwestern Colorado near a snow telemetry (SNOTEL) station. The plots include south aspect and flat aspect slopes with open, coniferous (subalpine fir, Abies lasiocarpa and engelman spruce, Picea engelmanii), and deciduous (aspen, populous tremuooides) canopy cover. Results show the high variability for both SWE and loss of SWE during spring snowmelt in 2014. The coefficient of variation for SWE tended to increase with time during snowmelt whereas loss of SWE remained similar. Correlation lengths for SWE were between two and five meters with melt having correlation lengths between two and four meters. The SNOTEL station regularly measured higher SWE values relative to the survey plots but was able to reasonably capture the overall mean loss of SWE during melt. Ground Penetrating Radar methods can improve future investigations with the advantage of non-destructive sampling and the ability to estimate depth, density, and SWE.
The Impacts of Bowtie Effect and View Angle Discontinuity on MODIS Swath Data Gridding
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei
2007-01-01
We have analyzed two effects of the MODIS viewing geometry on the quality of gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. This discontinuity appears as striping of the image clearly visible in certain cases with viewing geometry close to principle plane over the snow of the glint area of water. The striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be preserved during gridding. Second, due to bowtie effect, the observations in adjacent scans overlap each other. Commonly used method of calculating grid cell value by averaging all overlapping observations may result in smearing of the image. This paper describes a refined gridding algorithm that takes the above two effects into account. By calculating the grid cell value by averaging the overlapping observations from a single scan, the new algorithm preserves the measured BRF signal and enhances sharpness of the image.
Reed M. Perkins; Julia A. Jones
2008-01-01
Large floods are often attributed to the melting of snow during a rain event. This study tested how climate variability, snowpack presence, and basin physiography were related to storm hydrograph shape in three small (2) basins with old-growth forest in western Oregon. Relationships between hydrograph characteristics and precipitation...
Effects of Changing Climate During the Snow Ablation Season on Seasonal Streamflow Forecasts
NASA Astrophysics Data System (ADS)
Gutzler, D. S.; Chavarria, S. B.
2017-12-01
Seasonal forecasts of total surface runoff (Q) in snowmelt-dominated watersheds derive most of their prediction skill from the historical relationship between late winter snowpack (SWE) and subsequent snowmelt runoff. Across the western US, however, the relationship between SWE and Q is weakening as temperatures rise. We describe the effects of climate variability and change during the springtime snow ablation season on water supply outlooks (forecasts of Q) for southwestern rivers. As snow melts earlier, the importance of post-snow rainfall increases: interannual variability of spring season precipitation accounts for an increasing fraction of the variability of Q in recent decades. The results indicate that improvements to the skill of S2S forecasts of spring season temperature and precipitation would contribute very significantly to water supply outlooks that are now based largely on observed SWE. We assess this hypothesis using historical data from several snowpack-dominated basins in the American Southwest (Rio Grande, Pecos, and Gila Rivers) which are undergoing rapid climate change.
NASA Astrophysics Data System (ADS)
Ayala, A.; McPhee, J.; Vargas, X.
2014-04-01
The Andes Cordillera remains a sparsely monitored and studied snow hydrology environment in comparison to similar mountain ranges in the Northern Hemisphere. In order to uncover some of the key processes driving snow water equivalent (SWE) spatial variability, we present and analyze a distributed SWE data set, sampled at the end of accumulation season 2011. Three representative catchments across the region were monitored, obtaining measurements in an elevation range spanning 2000 to 3900 m asl and from 32.4° to 34.0°S in latitude. Climatic conditions during this season corresponded to a moderate La Niña phenomenon, which is generally correlated with lower-than normal accumulation. Collected measurements can be described at the regional and watershed extents by altitudinal gradients that imply an increase by a factor of two in snow depth between 2200 and 3000 m asl, though with significant variability at the upper sites. In these upper sites, we found north-facing, wind-sheltered slopes showing 25% less average SWE values than south-facing, wind-exposed ones. This suggests that under these conditions, solar radiation dominated wind transport effects in controlling end-of-winter variability. Nevertheless, we found clusters of snow depth measurements above 3000 m asl that can be explained by wind exposure differences. This is the first documented snow depth data set of this spatial extent for this region, and it is framed within an ongoing research effort aimed at improving understanding and modeling of snow hydrology in the extratropical Andes Cordillera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meusinger, Carl; Johnson, Matthew S.; Berhanu, Tesfaye A.
2014-06-28
Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently amore » result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.« less
NASA Astrophysics Data System (ADS)
Kreutz, K. J.; Campbell, S. W.; Winski, D.; Osterberg, E. C.; Kochtitzky, W. H.; Copland, L.; Dixon, D.; Introne, D.; Medrzycka, D.; Main, B.; Bernsen, S.; Wake, C. P.
2017-12-01
A growing array of high-resolution paleoclimate records from the terrestrial region bordering the Gulf of Alaska (GoA) continues to reveal details about ocean-atmosphere variability in the region during the Common Era. Ice core records from high-elevation ranges in proximity to the GoA provide key information on extratropical hydroclimate, and potential teleconnections to low latitude regions. In particular, stable water isotope and snow accumulation reconstructions from ice cores collected in high precipitation locations are uniquely tied to regional water cycle changes. Here we present new data collected in 2016 and 2017 from the St. Elias Mountains (Eclipse Icefield, Yukon Territories, Canada), including a range of ice core and geophysical measurements. Low- and high-frequency ice penetrating radar data enable detailed mapping of icefield bedrock topography and internal reflector stratigraphy. The 1911 Katmai eruption layer can be clearly traced across the icefield, and tied definitively to the coeval ash layer found in the 345 meter ice core drilled at Eclipse Icefield in 2002. High-resolution radar data are used to map spatial variability in 2015/16 and 2016/17 snow accumulation. Ice velocity data from repeat GPS stake measurements and remote sensing feature tracking reveal a clear divide flow regime on the icefield. Shallow firn/ice cores (20 meters in 2017 and 65 meters in 2016) are used to update the 345 meter ice core drilled at Eclipse Icefield in 2002. We use new algorithm-based layer counting software to improve and provide error estimates on the new ice core chronology, which extends from 2017 to 1450AD. 3D finite element modeling, incorporating all available geophysical data, is used to refine the reconstructed accumulation rate record and account for vertical and horizontal ice flow. Together with high-resolution stable water isotope data, the updated Eclipse record provides detailed, sub-annual resolution data on several aspects of the regional water cycle (e.g., accumulation/precipitation, moisture source and trajectory, coupled ocean/atmosphere variability). We compare the updated Eclipse record with other data in the North Pacific region, including the new Denali 1200-year ice core datasets, to assess regional hydroclimate variability during the Common Era.
NASA Astrophysics Data System (ADS)
Matt, F.; Burkhart, J. F.
2017-12-01
Light absorbing impurities in snow and ice (LAISI) originating from atmospheric deposition enhance snow melt by increasing the absorption of solar radiation. The consequences are a shortening of the snow cover duration due to increased snow melt and, with respect to hydrologic processes, a temporal shift in the discharge generation. However, the effects as simulated in numerical models have large uncertainties. These uncertainties originate mainly from uncertainties in the wet and dry deposition of light absorbing aerosols, limitations in the model representation of the snowpack, and the lack of observable variables required to estimate model parameters. This leads to high uncertainties in the additional energy absorbed by the snow due to the presence of LAISI (the so called radiative forcing of LAISI), a key variable in understanding snowpack energy-balance dynamics. In this study, we present an approach combining distributed model simulations on the catchment scale and remotely sensed radiative forcing from LAISI in order to evaluate and improve model predictions. In a case study, we assess the effect of LAISI on snow melt and discharge generation in a high mountain catchment located in the western Himalaya using the distributed hydrologic model, Shyft. The snow albedo is hereby calculated from a radiative transfer model for snow, taking the increased absorption of solar radiation by LAISI into account. LAISI mixing ratios in snow are determined from atmospheric aerosol deposition rates. To asses the quality of our simulations, we model the instantaneous clear sky radiative forcing at MODIS overpass times, and compare it to the MODIS Dust Radiative Forcing in Snow (MODDRFS) satellite product. By scaling the deposition input to the model, we can optimize the simulated radiative forcing towards the satellite observations.
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Weltzien, Ingunn
2016-04-01
The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.
Spatial Data Exploring by Satellite Image Distributed Processing
NASA Astrophysics Data System (ADS)
Mihon, V. D.; Colceriu, V.; Bektas, F.; Allenbach, K.; Gvilava, M.; Gorgan, D.
2012-04-01
Our society needs and environmental predictions encourage the applications development, oriented on supervising and analyzing different Earth Science related phenomena. Satellite images could be explored for discovering information concerning land cover, hydrology, air quality, and water and soil pollution. Spatial and environment related data could be acquired by imagery classification consisting of data mining throughout the multispectral bands. The process takes in account a large set of variables such as satellite image types (e.g. MODIS, Landsat), particular geographic area, soil composition, vegetation cover, and generally the context (e.g. clouds, snow, and season). All these specific and variable conditions require flexible tools and applications to support an optimal search for the appropriate solutions, and high power computation resources. The research concerns with experiments on solutions of using the flexible and visual descriptions of the satellite image processing over distributed infrastructures (e.g. Grid, Cloud, and GPU clusters). This presentation highlights the Grid based implementation of the GreenLand application. The GreenLand application development is based on simple, but powerful, notions of mathematical operators and workflows that are used in distributed and parallel executions over the Grid infrastructure. Currently it is used in three major case studies concerning with Istanbul geographical area, Rioni River in Georgia, and Black Sea catchment region. The GreenLand application offers a friendly user interface for viewing and editing workflows and operators. The description involves the basic operators provided by GRASS [1] library as well as many other image related operators supported by the ESIP platform [2]. The processing workflows are represented as directed graphs giving the user a fast and easy way to describe complex parallel algorithms, without having any prior knowledge of any programming language or application commands. Also this Web application does not require any kind of install for what the house-hold user is concerned. It is a remote application which may be accessed over the Internet. Currently the GreenLand application is available through the BSC-OS Portal provided by the enviroGRIDS FP7 project [3]. This presentation aims to highlight the challenges and issues of flexible description of the Grid based processing of satellite images, interoperability with other software platforms available in the portal, as well as the particular requirements of the Black Sea related use cases.
Krimmel, Robert M.
2000-01-01
Mass balance and climate variables are reported for South Cascade Glacier, Washington, for the years 1986-91. These variables include air temperature, precipitation, water runoff, snow accumulation, snow and ice melt terminus position, surface level, and ice speed. Data are reduced to daily and monthly values where appropriate. The glacier-averaged values of spring snow accumulation and fall net balance given in this report differ from previous results because amore complete analysis is made. Snow accumulation values for the1986-91 period ranged from 3.54 (water equivalent) meters in 1991 to2.04 meters in 1987. Net balance values ranged from 0.07 meters in1991 to -2.06 meters in 1987. The glacier became much smaller during the 1986-91 period and retreated a cumulative 50 meters.
Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation
NASA Astrophysics Data System (ADS)
Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.
2004-12-01
The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it relative to the sparsely vegetated tundra. Duration of melt was similar in the forest and shrub tundra at 20 days while the sparse tundra was shorter at 13 days; the differences due to differing snow accumulation and melt rates. The greatest variability in the timing and rate of melt was found in the shrub tundra, where the effect of the shrub canopy over snow depends on snow depth and insolation and is reduced in years with high snow accumulation or extensive cloudy periods in spring. The results show that it is necessary to consider the combination of elevation and vegetation effects on snow microclimate and melt processes in high latitude mountain catchments, but that weather patterns induce substantial variability on the effect these factors.
Monitoring the spatio-temporal evolution of the snow cover in the eastern Alps from MODIS data
NASA Astrophysics Data System (ADS)
Cianfarra, P.; Salvini, F.; Valt, M.
2009-04-01
Estimating the snow cover extent in mountain ranges is important for a wide variety purposes including of scientific studies, environmental and meteo-climatic applications, as well as predicting water availability for energy resource and agriculture. Moreover, the monitoring of the spatio-temporal variation of the snow cover thickness, coupled with ground data from weather stations, allows to identify avalanche risk areas after heavy snowfall. The aim of this study is to test an automatic procedure to identify and map the snow coverage for different altitude interval in the eastern part of the Alpine range. There has been much progress since 1966 when the first operational snow mapping was done by NOAA with spaceborne sensors that provide daily, global observations to monitor the variability in space and time in the extent of snow cover. MODIS sensors offer increased improvements relative to the AVHRR that has been operational for many years on the NOAA Polar Operational Environmental Satellite System. In this context the MODIS provides observations at a nominal spatial resolution of 500 m versus the 1.1 km spatial resolution of the AVHRR and continuously available (spatially and temporally), spectral band observation that span the visible and short-wave infrared wavelengths, including those useful for recognize snow cover. The other advantage of using MODIS data is its availability and cost by the NASA's server. In this work we used MOD02 (L1B) data providing calibrated radiance values at the sensor (without atmospheric correction). Snow cover map production included the following steps: selection of the images with clear sky conditions, geometric correction and georeferencing to UTM zone 32 ,WSG 84 ellipsoid, to eliminate the distortion of and the typical bow-tie effect that produces the observed not alignment of the scan lines in the row image; spatial sub setting to produce an image covering an area of about 200 x 120 km; identification of the snow cover was done by computing the Normalised Difference Snow Index (NDSI) knowing that snow reflectance is higher in the visible (0.5-0.7 mm) wavelengths and has lower reflectance in the short wave infrared (1-4 mm) wavelengths. This allowed to separate snow from clouds and other non-snow-covered pixels. The NDSI for MODIS images is defined as the difference of reflectances observed in the visible band 4 (0.555 mm) and the short wave infrared band 6 (1.640 mm) divided by the sum of the two reflectances: NDSI=(B4 - B6)/ (B4 + B6) This approach allowed to reduce (yet not totally eliminate) the influence of the atmospheric effects and lighting conditions. A series of thresholds were tested to the ratio image to establish the best value for snow cover identification. Eventually, the snow cover extent was computed for 6 altitude intervals. Results from the different processed images were compared and statistically analysed. A complete set of ground truth of these preliminary results is still missing; yet we are confident that once the tuning of the processing will be completed, the automated processing of MODIS data will provide low cost, near real-time estimates of the snow cover distribution over the eastern Alps. This product would be a valuable tool for public administrations and authorities for environmental protection, control and risk management.
NASA Astrophysics Data System (ADS)
Welch, S. C.; Kerkez, B.; Glaser, S. D.; Bales, R. C.; Rice, R.
2011-12-01
We have designed a basin-scale (>2000 km2) instrument cluster, made up of 20 local-scale (1-km footprint) wireless sensor networks (WSNs), to measure patterns of snow depth and snow water equivalent (SWE) across the main snowmelt producing area within the American River basin. Each of the 20 WSNs has on the order of 25 wireless nodes, with over 10 nodes actively sensing snow depth, and thus snow accumulation and melt. When combined with existing snow density measurements and full-basin satellite snowcover data, these measurements are designed to provide dense ground-truth snow properties for research and real-time SWE for water management. The design of this large-scale network is based on rigorous testing of previous, smaller-scale studies, permitting for the development of methods to significantly, and efficiently scale up network operations. Recent advances in WSN technology have resulted in a modularized strategy that permits rapid future network deployment. To select network and sensor locations, various sensor placement approaches were compared, including random placement, placement of WSNs in locations that have captured the historical basin mean, as well as a placement algorithm leveraging the covariance structure of the SWE distribution. We show that that the optimal network locations do not exhibit a uniform grid, but rather follow strategic patterns based on physiographic terrain parameters. Uncertainty estimates are also provided to assess the confidence in the placement approach. To ensure near-optimal coverage of the full basin, we validated each placement approach with a multi-year record of SWE derived from reconstruction of historical satellite measurements.
NASA Astrophysics Data System (ADS)
Belair, S.; Bernier, N.; Tong, L.; Mailhot, J.
2008-05-01
The 2010 Winter Olympic and Paralympic Games will take place in Vancouver, Canada, from 12 to 28 February 2010 and from 12 to 21 March 2010, respectively. In order to provide the best possible guidance achievable with current state-of-the-art science and technology, Environment Canada is currently setting up an experimental numerical prediction system for these special events. This system consists of a 1-km limited-area atmospheric model that will be integrated for 16h, twice a day, with improved microphysics compared with the system currently operational at the Canadian Meteorological Centre. In addition, several new and original tools will be used to adapt and refine predictions near and at the surface. Very high-resolution two-dimensional surface systems, with 100-m and 20-m grid size, will cover the Vancouver Olympic area. Using adaptation methods to improve the forcing from the lower-resolution atmospheric models, these 2D surface models better represent surface processes, and thus lead to better predictions of snow conditions and near-surface air temperature. Based on a similar strategy, a single-point model will be implemented to better predict surface characteristics at each station of an observing network especially installed for the 2010 events. The main advantage of this single-point system is that surface observations are used as forcing for the land surface models, and can even be assimilated (although this is not expected in the first version of this new tool) to improve initial conditions of surface variables such as snow depth and surface temperatures. Another adaptation tool, based on 2D stationnary solutions of a simple dynamical system, will be used to produce near-surface winds on the 100-m grid, coherent with the high- resolution orography. The configuration of the experimental numerical prediction system will be presented at the conference, together with preliminary results for winter 2007-2008.
a Physical Parameterization of Snow Albedo for Use in Climate Models.
NASA Astrophysics Data System (ADS)
Marshall, Susan Elaine
The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.
Transformations of snow chemistry in the boreal forest: Accumulation and volatilization
Pomeroy, J.W.; Davies, T.D.; Jones, H.G.; Marsh, P.; Peters, N.E.; Tranter, M.
1999-01-01
This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik, Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.This paper examines the processes and dynamics of ecologically-important inorganic chemical (primarily NO3-N) accumulation and loss in boreal forest snow during the cold winter period at a northern and southern location in the boreal forest of western Canada. Field observations from Inuvik. Northwest Territories and Waskesiu, Saskatchewan, Canada were used to link chemical transformations and physical processes in boreal forest snow. Data on the disposition and overwinter transformation of snow water equivalent, NO3-, SO42- and other major ions were examined. No evidence of enhanced dry deposition of chemical species to intercepted snow was found at either site except where high atmospheric aerosol concentrations prevailed. At Inuvik, concentrations of SO42- and Cl- were five to six times higher in intercepted snow than in surface snow away from the trees. SO4-S and Cl loads at Inuvik were correspondingly enhanced three-fold within the nearest 0.5 m to individual tree stems. Measurements of snow affected by canopy interception without rapid sublimation provided no evidence of ion volatilization from intercepted snow. Where intercepted snow sublimation rates were significant, ion loads in sub-canopy snow suggested that NO3- volatized with an efficiency of about 62% per snow mass sublimated. Extrapolating this measurement from Waskesiu to sublimation losses observed in other southern boreal environments suggests that 19-25% of snow inputs of NO3- can be lost during intercepted snow sublimation. The amount of N lost during sublimation may be large in high-snowfall, high N load southern boreal forests (Quebec) where 0.42 kg NO3-N ha-1 is estimated as a possible seasonal NO3- volatilization. The sensitivity of the N fluxes to climate and forest canopy variation and implications of the winter N losses for N budgets in the boreal forest are discussed.
The 2012 Arctic Field Season of the NRL Sea-Ice Measurement Program
NASA Astrophysics Data System (ADS)
Gardner, J. M.; Brozena, J. M.; Hagen, R. A.; Liang, R.; Ball, D.
2012-12-01
The U.S. Naval Research Laboratory (NRL) is beginning a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in both 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. These measurements were coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map. The LiDAR and radar altimeter were also flown on grid patterns over the ice that were synchronous with 5 Cryosat2 satellite passes. These grids were intended to cover roughly 10 km long segments of Cryosat2 tracks with widths similar to the footprint of the satellite (~2 km). Reduction of these grids is challenging because of ice drift which can be many hundreds of meters over the 1-2 hours collection period of each grid. Relocation of the individual scanning LiDAR tracks is done by means of tie-points observed in the overlapping swaths. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2017-12-01
Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.Above results are discussed in a peer-review paper just being accepted for publication on Climate Dynamics (Alessandri et al., 2017; doi:10.1007/s00382-017-3766-y).
Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble
NASA Astrophysics Data System (ADS)
Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.
2012-07-01
An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. The derived trends were validated for 293 grid cells across the European domain with observation-based trend estimates. The ensemble mean overall provided the best representation of trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of eastern Europe, which has not previously been demonstrated and discussed in comparable detail. Overall, positive trends in annual streamflow appear to reflect the marked wetting trends of the winter months, whereas negative annual trends result primarily from a widespread decrease in streamflow in spring and summer months, consistent with a decrease in summer low flow in large parts of Europe. High flow appears to have increased in rain-dominated hydrological regimes, whereas an inconsistent or decreasing signal was found in snow-dominated regimes. The different models agreed on the predominant continental-scale pattern of trends, but in some areas disagreed on the magnitude and even the direction of trends, particularly in transition zones between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing observed trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow were more variable - both among models and in the spatial patterns of agreement between models and the observations. The use of models to display changes in these hydrological characteristics should therefore be viewed with caution due to higher uncertainty.
1996-2007 Interannual Spatio-Temporal Variability in Snowmelt in Two Montane Watersheds
NASA Astrophysics Data System (ADS)
Jepsen, S. M.; Molotch, N. P.; Rittger, K. E.
2009-12-01
Snowmelt is a primary water source for ecosystems within, and urban/agricultural centers near, mountain regions. Stream chemistry from montane catchments is controlled by the flowpaths of water from snowmelt and the timing and duration of snow coverage. A process level understanding of the variability in these processes requires an understanding of the effect of changing climate and anthropogenic loading on spatio-temporal snowmelt patterns. With this as our objective, we are applying a snow reconstruction model to two well-studied montane watersheds, Tokopah Basin (TOK), California and Green Lakes Valley (GLV), Colorado, to examine interannual variability in the timing and location of snowmelt in response to variable climate conditions during the period from 1996 to 2007. The reconstruction model back solves for snowmelt by combining surface energy fluxes, inferred from meteorological data, with sequences of melt season snow images derived from satellite data (i.e., snowmelt depletion curves). Preliminary model results for 2002 were tested against measured snow water equivalent (SWE) and hydrograph data for the two watersheds. The computed maximum SWE averaged over TOK and GLV were 94 cm (~+17% error) and 50.2 cm (~+1% error), respectively. We present an analysis of interannual variability in these errors, in addition to reconstructed snowmelt maps over different land cover types under changing climate conditions between 1996-2007, focusing on the variability with interannual variation in climate.
NASA Technical Reports Server (NTRS)
Fassnacht, Steven R.; Sexstone, Graham A.; Kashipazha, Amir H.; Lopez-Moreno, Juan Ignacio; Jasinski, Michael F.; Kampf, Stephanie K.; Von Thaden, Benjamin C.
2015-01-01
During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow-covered area (SCA) once snow-free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate-resolution imaging spectro radiometer images to produce snow-cover depletion curves. The snow depletion curves were created for an 80,000 sq km domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow-cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A stations peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter-annual consistency.
Indices for estimating fractional snow cover in the western Tibetan Plateau
NASA Astrophysics Data System (ADS)
Shreve, Cheney M.; Okin, Gregory S.; Painter, Thomas H.
Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higher-resolution datasets subject to the constraint of cloud cover. This paper introduces a new optical snow index and assesses four optically derived MODIS snow indices using Landsat-based validation scenes: MODIS Snow-Covered Area and Grain Size (MODSCAG), Relative Multiple Endmember Spectral Mixture Analysis (RMESMA), Relative Spectral Mixture Analysis (RSMA) and the normalized-difference snow index (NDSI). Pearson correlation coefficients were positively correlated with the validation datasets for all four optical snow indices, suggesting each provides a good measure of total snow extent. At the 95% confidence level, linear least-squares regression showed that MODSCAG and RMESMA had accuracy comparable to validation scenes. Fusion of optical snow indices with passive microwave products, which provide snow depth and snow water equivalent, has the potential to contribute to hydrologic and energy-balance modeling in the Tibetan Plateau.
Vegetation Greenness and Its Drivers across Ice-free Greenland
NASA Astrophysics Data System (ADS)
Pedersen, S. H.; Liston, G. E.; Tamstorf, M. P.; Schmidt, N. M.
2017-12-01
The coastal and mountain areas surrounding the Greenland Ice Sheet cover one-fifth of Greenland. This ice-free area spans more than 20 degrees latitude and includes high-, low-, and sub-Arctic climate zones and the terrain varies from sea level to 3700 m elevation. Hence, this area contains a wide range of vegetation growing conditions associated with precipitation, temperature, and incoming solar radiation found across these latitudinal, elevational, and coast-inland gradients. In this study, we mapped the spatial distribution of vegetation at 300-m spatial resolution across ice-free Greenland using the annual maximum vegetation greenness (MaxNDVI) and the timing of MaxNDVI derived from daily Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data from 2000-2015. Further, we investigated the drivers of the annual MaxNDVI and its timing across the diverse vegetation growing conditions in Greenland using modeled climatic variables, including snow quantity and timing, at the same temporal and spatial resolutions. The annual average MaxNDVI varied between 0.3 and 0.5 in North Greenland, and 0.6 and 0.9 in South Greenland. The timing of MaxNDVI differed more than two weeks between North and South Greenland. The potential growing season, e.g., the period with no snow on the ground, was as short as one month in North Greenland (mainly August), and four to five times longer in South Greenland (typically starting in mid-May). The snow-free date varied with elevation, from valley bottoms to the mountain tops, having the same range that existed from South to North Greenland. Our results show that MaxNDVI and its timing are significantly driven by the timing of snow-free ground and the amount of meltwater available from the snowpack during spring snowmelt.
Barnes, Christopher A.; Roy, David P.
2010-01-01
Satellite-derived land cover land use (LCLU), snow and albedo data, and incoming surface solar radiation reanalysis data were used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing for 58 ecoregions covering 69% of the conterminous United States. A net positive surface radiative forcing (i.e., warming) of 0.029 Wm−2 due to LCLU albedo change from 1973 to 2000 was estimated. The forcings for individual ecoregions were similar in magnitude to current global forcing estimates, with the most negative forcing (as low as −0.367 Wm−2) due to the transition to forest and the most positive forcing (up to 0.337 Wm−2) due to the conversion to grass/shrub. Snow exacerbated both negative and positive forcing for LCLU transitions between snow-hiding and snow-revealing LCLU classes. The surface radiative forcing estimates were highly sensitive to snow-free interannual albedo variability that had a percent average monthly variation from 1.6% to 4.3% across the ecoregions. The results described in this paper enhance our understanding of contemporary LCLU change on surface radiative forcing and suggest that future forcing estimates should model snow and interannual albedo variation.
Influence of tundra snow layer thickness on measured and modelled radar backscatter
NASA Astrophysics Data System (ADS)
Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.
2017-12-01
Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.
Spatio-temporal Variability of Stratified Snowpack Cold Content Observed in the Rocky Mountains
NASA Astrophysics Data System (ADS)
Schmidt, J. S.; Sexstone, G. A.; Serreze, M. C.
2017-12-01
Snowpack cold content (CCsnow) is the energy required to bring a snowpack to an isothermal temperature of 0.0°C. The spatio-temporal variability of CCsnow is complex as it is a measure that integrates the response of a snowpack to each component of the snow-cover energy balance. Snow and ice at high elevation is climate sensitive water storage for the Western U.S. Therefore, an improved understanding of the spatio-temporal variability of CCsnow may provide insight into snowpack dynamics and sensitivity to climate change. In this study, stratified snowpit observations of snow water equivalent (SWE) and snow temperature (Tsnow) from the USGS Rocky Mountain Snowpack network (USGS RMS) were used to evaluate vertical CCsnow profiles over a 16-year period in Montana, Idaho, Wyoming, Colorado and New Mexico. Since 1993, USGS RMS has collected snow chemistry, snow temperature, and SWE data throughout the Rocky Mountain region, making it well positioned for Anthropocene cryosphere benchmarking and climate change interpretation. Spatial grouping of locations based on similar CCsnow characteristics was evaluated and trend analyses were performed. Additionally, we evaluated the regional relation of CCsnow to snowmelt timing. CCsnow was more precisely calculated and more representative using vertically stratified field observed values than bulk values, which highlights the utility of the snowpack dataset presented here. Location specific annual and 16 year mean stratified snowpit profiles of SWE, Tsnow, and CCsnow well represent the physical geography and past weather patterns acting on the snowpack. Observed trends and spatial variability of CCsnow profiles explored by this study provides an improved understanding of changing snowpack behavior in the western U.S., and will be useful for assessing the regional sensitivity of snowpacks to future climate change.
NASA Astrophysics Data System (ADS)
Tedesco, M.; Datta, R.; Fettweis, X.; Agosta, C.
2015-12-01
Surface-layer snow density is important to processes contributing to surface mass balance, but is highly variable over Antarctica due to a wide range of near-surface climate conditions over the continent. Formulations for fresh snow density have typically either used fixed values or been modeled empirically using field data that is limited to specific seasons or regions. There is also currently limited work exploring how the sensitivity to fresh snow density in regional climate models varies with resolution. Here, we present a new formulation compiled from (a) over 1600 distinct density profiles from multiple sources across Antarctica and (b) near-surface variables from the regional climate model Modèle Atmosphérique Régionale (MAR). Observed values represent coastal areas as well as the plateau, in both West and East Antarctica (although East Antarctica is dominant). However, no measurements are included from the Antarctic Peninsula, which is both highly topographically variable and extends to lower latitudes than the remainder of the continent. In order to assess the applicability of this fresh snow density formulation to the Antarctic Peninsula at high resolutions, a version of MAR is run for several years both at low-resolution at the continental scale and at a high resolution for the Antarctic Peninsula alone. This setup is run both with and without the new fresh density formulation to quantify the sensitivity of the energy balance and SMB components to fresh snow density. Outputs are compared with near-surface atmospheric variables available from AWS stations (provided by the University of Wisconsin Madison) as well as net accumulation values from the SAMBA database (provided from the Laboratoire de Glaciologie et Géophysique de l'Environnement).
Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer
NASA Astrophysics Data System (ADS)
Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel
2017-04-01
This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.
ESA GlobPermafrost - mapping the extent and thermal state of permafrost with satellite data
NASA Astrophysics Data System (ADS)
Westermann, Sebastian; Obu, Jaroslav; Aalstad, Kristoffer; Bartsch, Annett; Kääb, Andreas
2017-04-01
The ESA GlobPermafrost initiative (2016-2019) aims at developing, validating and implementing information products based on remote sensing data to support permafrost research. Mapping of permafrost extent and ground temperatures is conducted at 1 km scale using remotely sensed land surface temperatures (MODIS), snow water equivalent (ESA GlobSnow) and land cover (ESA CCI landcover) in conjunction with a simple ground thermal model (CryoGrid 1). The spatial variability of the ground thermal regime at scales smaller than the model resolution is explicitly taken into account by considering an ensemble of realizations with different model properties. The approach has been tested for the unglacierized land areas in the North Atlantic region, an area of more than 5 million km2. The results have been compared to in-situ temperature measurements in more than 100 boreholes, indicating an accuracy of approximately 2.5°C. Within GlobPermafrost, the scheme will be extended to cover the entire the circum-polar permafrost area. Here, we provide an evaluation of the first prototype covering "lowland" permafrost areas north of 40° latitude (available on www.globpermafrost.info in early 2017). We give a feasibility assessment for extending the scheme to global scale, including both mountain and Antarctic permafrost. Finally, we discuss the potential and limitations for estimating changes of permafrost extent on decadal timescales.
Analytical flow duration curves for summer streamflow in Switzerland
NASA Astrophysics Data System (ADS)
Santos, Ana Clara; Portela, Maria Manuela; Rinaldo, Andrea; Schaefli, Bettina
2018-04-01
This paper proposes a systematic assessment of the performance of an analytical modeling framework for streamflow probability distributions for a set of 25 Swiss catchments. These catchments show a wide range of hydroclimatic regimes, including namely snow-influenced streamflows. The model parameters are calculated from a spatially averaged gridded daily precipitation data set and from observed daily discharge time series, both in a forward estimation mode (direct parameter calculation from observed data) and in an inverse estimation mode (maximum likelihood estimation). The performance of the linear and the nonlinear model versions is assessed in terms of reproducing observed flow duration curves and their natural variability. Overall, the nonlinear model version outperforms the linear model for all regimes, but the linear model shows a notable performance increase with catchment elevation. More importantly, the obtained results demonstrate that the analytical model performs well for summer discharge for all analyzed streamflow regimes, ranging from rainfall-driven regimes with summer low flow to snow and glacier regimes with summer high flow. These results suggest that the model's encoding of discharge-generating events based on stochastic soil moisture dynamics is more flexible than previously thought. As shown in this paper, the presence of snowmelt or ice melt is accommodated by a relative increase in the discharge-generating frequency, a key parameter of the model. Explicit quantification of this frequency increase as a function of mean catchment meteorological conditions is left for future research.
Food, energy, and water in an era of disappearing snow
NASA Astrophysics Data System (ADS)
Mote, P.; Lettenmaier, D. P.; Li, S.; Xiao, M.
2017-12-01
Mountain snowpack stores a significant quantity of water in the western US, accumulating during the wet season and melting during the dry summers and supplying more than 65% of the water used for irrigated agriculture, energy production (both hydropower and thermal), and municipal and industrial uses. The importance of snow to western agriculture is demonstrated by the fact that most snow monitoring is performed by the US Department of Agriculture. In a paper published in 2005, we showed that roughly 70% of monitoring sites showed decreasing trends through 2002. Now, with 14 additional years of data, over 90% of snow monitoring sites with long records across the western US show declines through 2016, of which 33% are significant (vs 5% expected by chance) and 2% are significant and positive (vs 5% expected by chance). Declining trends are observed across all months, states, and climates, but are largest in spring, in the Pacific states, and in locations with mild winter climate. We corroborate and extend these observations using a gridded hydrology model, which also allows a robust estimate of total western snowpack and its decline. Averaged across the western US, the decline in total April 1 snow water equivalent since mid-century is roughly 15-30% or 25-50 km3, comparable in volume to the West's largest man-made reservoir, Lake Mead. In the absence of rapid reductions in emissions of greenhouse gases, these losses will accelerate; snow losses on this scale demonstrate the necessity of rethinking water storage, policy, and usage.
NASA Astrophysics Data System (ADS)
Sturm, M.; Nolan, M.; Larsen, C. F.
2014-12-01
A long-standing goal in snow hydrology has been to map snow cover in detail, either mapping snow depth or snow water equivalent (SWE) with sub-meter resolution. Airborne LiDAR and air photogrammetry have been used successfully for this purpose, but both require significant investments in equipment and substantial processing effort. Here we detail a relatively inexpensive and simple airborne photogrammetric technique that can be used to measure snow depth. The main airborne hardware consists of a consumer-grade digital camera attached to a survey-quality, dual-frequency GPS. Photogrammetric processing is done using commercially available Structure from Motion (SfM) software that does not require ground control points. Digital elevation models (DEMs) are made from snow-free acquisitions in the summer and snow-covered acquisitions in winter, and the maps are then differenced to arrive at snow thickness. We tested the accuracy and precision of snow depths measured using this system through 1) a comparison with airborne scanning LiDAR, 2) a comparison of results from two independent and slightly different photogrameteric systems, and 3) comparison to extensive on-the-ground measured snow depths. Vertical accuracy and precision are on the order of +/-30 cm and +/- 8 cm, respectively. The accuracy can be made to approach that of the precision if suitable snow-free ground control points exists and are used to co-register summer to winter DEM maps. Final snow depth accuracy from our series of tests was on the order of ±15 cm. This photogrammetric method substantially lowers the economic and expertise barriers to entry for mapping snow.
Verrot, Lucile; Destouni, Georgia
2015-01-01
Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.
NASA Technical Reports Server (NTRS)
Peng, G.; Meier, W. N.; Scott, D. J.; Savoie, M. H.
2013-01-01
A long-term, consistent, and reproducible satellite-based passive microwave sea ice concentration climate data record (CDR) is available for climate studies, monitoring, and model validation with an initial operation capability (IOC). The daily and monthly sea ice concentration data are on the National Snow and Ice Data Center (NSIDC) polar stereographic grid with nominal 25 km × 25 km grid cells in both the Southern and Northern Hemisphere polar regions from 9 July 1987 to 31 December 2007. The data files are available in the NetCDF data format at http://nsidc.org/data/g02202.html and archived by the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA) under the satellite climate data record program (http://www.ncdc.noaa.gov/cdr/operationalcdrs.html). The description and basic characteristics of the NOAA/NSIDC passive microwave sea ice concentration CDR are presented here. The CDR provides similar spatial and temporal variability as the heritage products to the user communities with the additional documentation, traceability, and reproducibility that meet current standards and guidelines for climate data records. The data set, along with detailed data processing steps and error source information, can be found at http://dx.doi.org/10.7265/N5B56GN3.
Black hole feeding and feedback: the physics inside the `sub-grid'
NASA Astrophysics Data System (ADS)
Negri, A.; Volonteri, M.
2017-05-01
Black holes (BHs) are believed to be a key ingredient of galaxy formation. However, the galaxy-BH interplay is challenging to study due to the large dynamical range and complex physics involved. As a consequence, hydrodynamical cosmological simulations normally adopt sub-grid models to track the unresolved physical processes, in particular BH accretion; usually the spatial scale where the BH dominates the hydrodynamical processes (the Bondi radius) is unresolved, and an approximate Bondi-Hoyle accretion rate is used to estimate the growth of the BH. By comparing hydrodynamical simulations at different resolutions (300, 30, 3 pc) using a Bondi-Hoyle approximation to sub-parsec runs with non-parametrized accretion, our aim is to probe how well an approximated Bondi accretion is able to capture the BH accretion physics and the subsequent feedback on the galaxy. We analyse an isolated galaxy simulation that includes cooling, star formation, Type Ia and Type II supernovae, BH accretion and active galactic nuclei feedback (radiation pressure, Compton heating/cooling) where mass, momentum and energy are deposited in the interstellar medium through conical winds. We find that on average the approximated Bondi formalism can lead to both over- and underestimations of the BH growth, depending on resolution and on how the variables entering into the Bondi-Hoyle formalism are calculated.
Peterson, Kari; Cole-Dai, Jihong; Brandis, Derek; Cox, Thomas; Splett, Scott
2015-10-01
An ion chromatography-electrospray ionization-tandem mass spectrometry (IC-ESI-MS/MS) method has been developed for rapid and accurate measurement of perchlorate in polar snow and ice core samples in which perchlorate concentrations are expected to be as low as 0.1 ng L(-1). Separation of perchlorate from major inorganic species in snow is achieved with an ion chromatography system interfaced to an AB SCIEX triple quadrupole mass spectrometer operating in multiple reaction monitoring mode. Under optimized conditions, the limit of detection and lower limit of quantification without pre-concentration have been determined to be 0.1 and 0.3 ng L(-1), respectively, with a linear dynamic range of 0.3-10.0 ng L(-1) in routine measurement. These represent improvements over previously reported methods using similar analytical techniques. The improved method allows fast, accurate, and reproducible perchlorate quantification down to the sub-ng L(-1) level and will facilitate perchlorate measurement in the study of natural perchlorate production with polar ice cores in which perchlorate concentrations are anticipated to vary in the low and sub-ng L(-1) range. Initial measurements of perchlorate in ice core samples from central Greenland show that typical perchlorate concentrations in snow dated prior to the Industrial Revolution are about 0.8 ng L(-1), while perchlorate concentrations are significantly higher in recent (post-1980) snow, suggesting that anthropogenic sources are a significant contributor to perchlorate in the current environment.
Improving the Representation of Snow Crystal Properties with a Single-Moment Mircophysics Scheme
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Petersen, Walter A.; Case, Jonathan L.; Demek, Scott R.
2010-01-01
Single-moment microphysics schemes are utilized in an increasing number of applications and are widely available within numerical modeling packages, often executed in near real-time to aid in the issuance of weather forecasts and advisories. In order to simulate cloud microphysical and precipitation processes, a number of assumptions are made within these schemes. Snow crystals are often assumed to be spherical and of uniform density, and their size distribution intercept may be fixed to simplify calculation of the remaining parameters. Recently, the Canadian CloudSat/CALIPSO Validation Project (C3VP) provided aircraft observations of snow crystal size distributions and environmental state variables, sampling widespread snowfall associated with a passing extratropical cyclone on 22 January 2007. Aircraft instrumentation was supplemented by comparable surface estimations and sampling by two radars: the C-band, dual-polarimetric radar in King City, Ontario and the NASA CloudSat 94 GHz Cloud Profiling Radar. As radar systems respond to both hydrometeor mass and size distribution, they provide value when assessing the accuracy of cloud characteristics as simulated by a forecast model. However, simulation of the 94 GHz radar signal requires special attention, as radar backscatter is sensitive to the assumed crystal shape. Observations obtained during the 22 January 2007 event are used to validate assumptions of density and size distribution within the NASA Goddard six-class single-moment microphysics scheme. Two high resolution forecasts are performed on a 9-3-1 km grid, with C3VP-based alternative parameterizations incorporated and examined for improvement. In order to apply the CloudSat 94 GHz radar to model validation, the single scattering characteristics of various crystal types are used and demonstrate that the assumption of Mie spheres is insufficient for representing CloudSat reflectivity derived from winter precipitation. Furthermore, snow density and size distribution characteristics are allowed to vary with height, based upon direct aircraft estimates obtained from C3VP data. These combinations improve the representation of modeled clouds versus their radar-observed counterparts, based on profiles and vertical distributions of reflectivity. These meteorological events are commonplace within the mid-latitude cold season and present a challenge to operational forecasters. This study focuses on one event, likely representative of others during the winter season, and aims to improve the representation of snow for use in future operational forecasts.
DOT National Transportation Integrated Search
2014-01-01
This study developed a new snow model and a database which warehouses geometric, weather and traffic : data on New Jersey highways. The complexity of the model development lies in considering variable road : width, different spreading/plowing pattern...
NASA Astrophysics Data System (ADS)
Knowles, John F.; Lestak, Leanne R.; Molotch, Noah P.
2017-06-01
We used multiple sources of remotely sensed and ground based information to evaluate the spatiotemporal variability of snowpack accumulation, potential evapotranspiration (PET), and Normalized Difference Vegetation Index (NDVI) throughout the Southern Rocky Mountain ecoregion, USA. Relationships between these variables were used to establish baseline values of expected forest productivity given water and energy inputs. Although both the snow water equivalent (SWE) and a snow aridity index (SAI), which used SWE to normalize PET, were significant predictors of the long-term (1989-2012) NDVI, SAI explained 11% more NDVI variability than SWE. Deviations from these relationships were subsequently explored in the context of widespread forest mortality due to bark beetles. Over the entire study area, NDVI was lower per unit SAI in beetle-disturbed compared to undisturbed areas during snow-related drought; however, both SAI and NDVI were spatially heterogeneous within this domain. As a result, we selected three focus areas inside the larger study area within which to isolate the relative impacts of SAI and disturbance on NDVI using multivariate linear regression. These models explained 66%-85% of the NDVI and further suggested that both SAI and disturbance effects were significant, although the disturbance effect was generally greater. These results establish the utility of SAI as a measure of moisture limitation in snow-dominated systems and demonstrate a reduction in forest productivity due to bark beetle disturbance that is particularly evident during drought conditions resultant from low snow accumulation during the winter.
Navier-Stokes simulation of rotor-body flowfield in hover using overset grids
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Ahmad, J. U.
1993-01-01
A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.
NASA Astrophysics Data System (ADS)
Pardo-Iguzquiza, Eulogio; Juan Collados Lara, Antonio; Pulido-Velazquez, David
2016-04-01
The snow availability in Alpine catchments is essential for the economy of these areas. It plays an important role in tourist development but also in the management of the Water Resources Snow is an important water resource in many river basins with mountains in the catchment area. The determination of the snow water equivalent requires the estimation of the evolution of the snow pack (cover area, thickness and snow density) along the time. Although there are complex physical models of the dynamics of the snow pack, sometimes the data available are scarce and a stochastic model like the cellular automata (CA) can be of great practical interest. CA can be used to model the dynamics of growth and wane of the snow pack. The CA is calibrated with historical data. This requires the determination of transition rules that are capable of modeling the evolution of the spatial pattern of snow cover area. Furthermore, CA requires the definition of states and neighborhoods. We have included topographical variables and climatological variables in order to define the state of each pixel. The evolution of snow cover in a pixel depends on its state, the state of the neighboring pixels and the transition rules. The calibration of the CA is done using daily MODIS data, available for the period 24/02/2002 to present with a spatial resolution of 500 m, and the LANDSAT information available with a sixteen-day periodicity from 1984 to the present and with spatial resolution of 30 m. The methodology has been applied to estimation of the snow cover area of Sierra Nevada mountain range in the Southern of Spain to obtain snow cover area daily information with 500 m spatial resolution for the period 1980-2014. Acknowledgments: This research has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank NASA DAAC and LANDSAT project for the data provided for this study.
Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin
NASA Astrophysics Data System (ADS)
Ji, H. J.; Liu, J.
2017-12-01
Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring snow disaster.
NASA Astrophysics Data System (ADS)
Hill, R.; Calvin, W. M.; Harpold, A.
2017-12-01
Mountain snow storage is the dominant source of water for humans and ecosystems in western North America. Consequently, the spatial distribution of snow-covered area is fundamental to both hydrological, ecological, and climate models. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were collected along the entire Sierra Nevada mountain range extending from north of Lake Tahoe to south of Mt. Whitney during the 2015 and 2016 snow-covered season. The AVIRIS dataset used in this experiment consists of 224 contiguous spectral channels with wavelengths ranging 400-2500 nanometers at a 15-meter spatial pixel size. Data from the Sierras were acquired on four days: 2/24/15 during a very low snow year, 3/24/16 near maximum snow accumulation, and 5/12/16 and 5/18/16 during snow ablation and snow loss. Building on previous retrieval of subpixel snow-covered area algorithms that take into account varying grain size we present a model that analyzes multiple endmembers of varying snow grain size, vegetation, rock, and soil in segmented regions along the Sierra Nevada to determine snow-cover spatial extent, snow sub-pixel fraction, and approximate grain size. In addition, varying simulated models of the data will compare and contrast the retrieval of current snow products such as MODIS Snow-Covered Area and Grain Size (MODSCAG) and the Airborne Space Observatory (ASO). Specifically, does lower spatial resolution (MODIS), broader resolution bandwidth (MODIS), and limited spectral resolution (ASO) affect snow-cover area and grain size approximations? The implications of our findings will help refine snow mapping products for planned hyperspectral satellite spectrometer systems such as EnMAP (slated to launch in 2019), HISUI (planned for inclusion on the International Space Station in 2018), and HyspIRI (currently under consideration).
Evaluation of decadal hindcasts using satellite simulators
NASA Astrophysics Data System (ADS)
Spangehl, Thomas; Mazurkiewicz, Alex; Schröder, Marc
2013-04-01
The evaluation of dynamical ensemble forecast systems requires a solid validation of basic processes such as the global atmospheric water and energy cycle. The value of any validation approach strongly depends on the quality of the observational data records used. Current approaches utilize in situ measurements, remote sensing data and reanalyses. Related data records are subject to a number of uncertainties and limitations such as representativeness, spatial and temporal resolution and homogeneity. However, recently several climate data records with known and sufficient quality became available. In particular, the satellite data records offer the opportunity to obtain reference information on global scales including the oceans. Here we consider the simulation of satellite radiances from the climate model output enabling an evaluation in the instrument's parameter space to avoid uncertainties stemming from the application of retrieval schemes in order to minimise uncertainties on the reference side. Utilizing the CFMIP Observation Simulator Package (COSP) we develop satellite simulators for the Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) and the Infrared Atmospheric Sounding Interferometer (IASI). The simulators are applied within the MiKlip project funded by BMBF (German Federal Ministry of Education and Research) to evaluate decadal climate predictions performed with the MPI-ESM developed at the Max Planck Institute for Meteorology. While TRMM PR enables the evaluation of the vertical structure of precipitation over tropical and sub-tropical areas, IASI is used to support the global evaluation of clouds and radiation. In a first step the reliability of the developed simulators needs to be explored. The simulation of radiances in the instrument space requires the generation of sub-grid scale variability from the climate model output. Furthermore, assumptions are made to simulate radiances such as, for example, the distribution of different hydrometeor types. Therefore, testing is performed to determine the extent to which the quality of the simulator results depends on the applied methods used to generate sub-grid variability (e.g. sub-grid resolution). Moreover, the sensitivity of results to the choice of different distributions of hydrometeors is explored. The model evaluation is carried out in a statistical manner using histograms of radar reflectivities (TRMM PR) and brightness temperatures (IASI). Finally, methods to deduce data suitable for probabilistic evaluation of decadal hindcasts such as simple indices are discussed.
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Jedlovec, G. L.; Lapenta, W. M.
2009-01-01
As operational numerical weather prediction is performed at increasingly finer spatial resolution, precipitation traditionally represented by sub-grid scale parameterization schemes is now being calculated explicitly through the use of single- or multi-moment, bulk water microphysics schemes. As computational resources grow, the real-time application of these schemes is becoming available to a broader audience, ranging from national meteorological centers to their component forecast offices. A need for improved quantitative precipitation forecasts has been highlighted by the United States Weather Research Program, which advised that gains in forecasting skill will draw upon improved simulations of clouds and cloud microphysical processes. Investments in space-borne remote sensing have produced the NASA A-Train of polar orbiting satellites, specially equipped to observe and catalog cloud properties. The NASA CloudSat instrument, a recent addition to the A-Train and the first 94 GHz radar system operated in space, provides a unique opportunity to compare observed cloud profiles to their modeled counterparts. Comparisons are available through the use of a radiative transfer model (QuickBeam), which simulates 94 GHz radar returns based on the microphysics of cloudy model profiles and the prescribed characteristics of their constituent hydrometeor classes. CloudSat observations of snowfall are presented for a case in the central United States, with comparisons made to precipitating clouds as simulated by the Weather Research and Forecasting Model and the Goddard single-moment microphysics scheme. An additional forecast cycle is performed with a temperature-based parameterization of the snow distribution slope parameter, with comparisons to CloudSat observations provided through the QuickBeam simulator.
The topographic distribution of annual incoming solar radiation in the Rio Grande River basin
NASA Technical Reports Server (NTRS)
Dubayah, R.; Van Katwijk, V.
1992-01-01
We model the annual incoming solar radiation topoclimatology for the Rio Grande River basin in Colorado, U.S.A. Hourly pyranometer measurements are combined with satellite reflectance data and 30-m digital elevation models within a topographic solar radiation algorithm. Our results show that there is large spatial variability within the basin, even at an annual integration length, but the annual, basin-wide mean is close to that measured by the pyranometers. The variance within 16 sq km and 100 sq km regions is a linear function of the average slope in the region, suggesting a possible parameterization for sub-grid-cell variability.
NASA Astrophysics Data System (ADS)
Shulski, Martha D.; Seeley, Mark W.
2004-11-01
Models were utilized to determine the snow accumulation season (SAS) and to quantify windblown snow for the purpose of snowdrift control for locations in Minnesota. The models require mean monthly temperature, snowfall, density of snow, and wind frequency distribution statistics. Temperature and precipitation data were obtained from local cooperative observing sites, and wind data came from Automated Surface Observing System (ASOS)/Automated Weather Observing System (AWOS) sites in the region. The temperature-based algorithm used to define the SAS reveals a geographic variability in the starting and ending dates of the season, which is determined by latitude and elevation. Mean seasonal snowfall shows a geographic distribution that is affected by topography and proximity to Lake Superior. Mean snowfall density also exhibits variability, with lower-density snow events displaced to higher-latitude positions. Seasonal wind frequencies show a strong bimodal distribution with peaks from the northwest and southeast vector direction, with an exception for locations in close proximity to the Lake Superior shoreline. In addition, for western and south-central Minnesota there is a considerably higher frequency of wind speeds above the mean snow transport threshold of 7 m s-1. As such, this area is more conducive to higher potential snow transport totals. Snow relocation coefficients in this area are in the range of 0.4 0.9, and, according to the empirical models used in this analysis, this range implies that actual snow transport is 40% 90% of the total potential in south-central and western areas of the state.
Hydrologic Remote Sensing and Land Surface Data Assimilation.
Moradkhani, Hamid
2008-05-06
Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface-atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation.
NASA Astrophysics Data System (ADS)
Morin, Samuel; Ghislain, Dubois
2017-04-01
Snow on the ground is a critical resource for mountain regions to sustain river flow, to provide freshwater input to ecosystems and to support winter tourism, in particular in ski resorts. The level of activity, employment, turnover and profit of hundreds of ski resorts in the European Alps primarily depends on meteorological conditions, in particular natural snowfall but also increasingly conditions favourable for snowmaking (production of machine made snow, also referred to as technical snow). Ski resorts highly depend on appropriate conditions for snowmaking (mainly the availability of cold water, as well as sub-freezing temperature with sufficiently low humidity conditions). However, beyond the time scale of weather forecasts (a few days), managers of ski resorts have to rely on various and scattered sources of information, hampering their ability to cope with highly variable meteorological conditions. Improved anticipation capabilities at all time scales, spanning from "weather forecast" (up to 5 days typically) to "climate prediction" at the seasonal scale (up to several months) holds significant potential to increase the resilience of socio-economic stakeholders and supports their real-time adaptation potential. To address this issue, the recently funded (2017-2020) H2020 PROSNOW project will build a demonstrator of a meteorological and climate prediction and snow management system from one week to several months ahead, specifically tailored to the needs of the ski industry. PROSNOW will apply state-of-the-art knowledge relevant to the predictability of atmospheric and snow conditions, and investigate and document the added value of such services. The project proposes an Alpine-wide system (including ski resorts located in France, Switzerland, Germany, Austria and Italy). It will join and link providers of weather forecasts and climate predictions at the seasonal scale, research institutions specializing in snowpack modelling, a relevant ensemble of at least 8 representative resorts in the Alps, technical bodies representing ski resorts managers, and private technology companies. These companies are already providing services for snow management such as snow depth monitoring, snowmaking operations monitoring and planning using latest technologies. The added value of the demonstrator will be assessed for the ski industry, but also for additional stakeholders including local and regional tourism authorities, hydropower managers, and natural hazard forecasters and planners. This presentation will introduce the main goals and concepts of the PROSNOW project, in order to foster interactions with the specialized scientific communities relevant to this challenge.
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
NASA Astrophysics Data System (ADS)
Werner, A. T.; Cannon, A. J.
2015-06-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e., correlation tests) and distributional properties (i.e., tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3 day peak flow and 7 day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational datasets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational dataset. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7 day low flow events, regardless of reanalysis or observational dataset. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis datasets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical datasets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
NASA Astrophysics Data System (ADS)
Werner, Arelia T.; Cannon, Alex J.
2016-04-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis data sets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical data sets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.
NASA Astrophysics Data System (ADS)
Dubois, Ghislain
2017-04-01
Alpine ski resorts are highly dependent on snow, which availability is characterized by a both a high inter-annual variability and a gradual diminution due to climate change. Due to this dependency to climatic resources, the ski industry is increasingly affected by climate change: higher temperatures limit snow falls, increase melting and limit the possibilities of technical snow making. Therefore, since the seventies, managers drastically improved their practices, both to adapt to climate change and to this inter-annual variability of snow conditions. Through slope preparation and maintenance, snow stock management, artificial snow making, a typical resort can approximately keep the same season duration with 30% less snow. The ski industry became an activity of high technicity The EUPORIAS FP7 (www.euporias.eu) project developed between 2012 and 2016 a deep understanding of the supply and demand conditions for the provision of climate services disseminating seasonal forecasts. In particular, we developed a case study, which allowed conducting several activities for a better understanding of the demand and of the business model of future services applied to the ski industry. The investigations conducted in France inventoried the existing tools and databases, assessed the decision making process and data needs of ski operators, and provided evidences that some discernable skill of seasonal forecasts exist. This case study formed the basis of the recently funded PROSNOW H2020 project. We will present the main results of EUPORIAS project for the ski industry.
NASA Astrophysics Data System (ADS)
Ramage, J. M.; Brodzik, M. J.; Hardman, M.
2016-12-01
Passive microwave (PM) 18 GHz and 36 GHz horizontally- and vertically-polarized brightness temperatures (Tb) channels from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) have been important sources of information about snow melt status in glacial environments, particularly at high latitudes. PM data are sensitive to the changes in near-surface liquid water that accompany melt onset, melt intensification, and refreezing. Overpasses are frequent enough that in most areas multiple (2-8) observations per day are possible, yielding the potential for determining the dynamic state of the snow pack during transition seasons. AMSR-E Tb data have been used effectively to determine melt onset and melt intensification using daily Tb and diurnal amplitude variation (DAV) thresholds. Due to mixed pixels in historically coarse spatial resolution Tb data, melt analysis has been impractical in ice-marginal zones where pixels may be only fractionally snow/ice covered, and in areas where the glacier is near large bodies of water: even small regions of open water in a pixel severely impact the microwave signal. We use the new enhanced-resolution Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature (CETB) Earth System Data Record product's twice daily obserations to test and update existing snow melt algorithms by determining appropriate melt thresholds for both Tb and DAV for the CETB 18 and 36 GHz channels. We use the enhanced resolution data to evaluate melt characteristics along glacier margins and melt transition zones during the melt seasons in locations spanning a wide range of melt scenarios, including the Patagonian Andes, the Alaskan Coast Range, and the Russian High Arctic icecaps. We quantify how improvement of spatial resolution from the original 12.5 - 25 km-scale pixels to the enhanced resolution of 3.125 - 6.25 km improves the ability to evaluate melt timing across boundaries and transition zones in diverse glacial environments.
NASA Technical Reports Server (NTRS)
Riggs, George A.; Hall, Dorothy K.; Roman, Miguel O.
2017-01-01
Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6) and VIIRS Collection 1 (C1) represent the state-of-the-art global snow cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map.The increased data content allows flexibility in using the datasets for specific regions and end-user applications.Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16C year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms.These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.
Quantifying variabilty of the solar resource using the Kriging method
NASA Astrophysics Data System (ADS)
Monger, Samuel Haze
Energy consumption will steadily rise in coming years and if fossil fuels, particularly coal, continue to be the primary resource for electricity generation our planet is going to face many hardships. Solar energy is the most abundant resource available to humankind, and although solar generated power is still expensive, the technology is in a state of rapid development as governments strive to meet renewable energy goals as part of the effort to slow climate change and become less dependent on finite resources. However there are many valid concerns associated with integrating high levels of solar energy with the transmission grid due to the rapid changes in power output and voltage from photovoltaic generated electricity due to drops in the solar resource. Therefore, a study was conducted to address issues in this field of research by attempting to quantify the variability of solar irradiance at a specific area using a uniform grid of 45 irradiance sensors. Another goal of this study was to determine if fewer measurement stations could be used in the quantification of variability. This thesis addresses these issues by using the Sandia Variability Index and the dead band ramp algorithm in a statistical analysis on irradiance fluctuations in the regulation and sub-regulation time frames. A kriging method will be introduced which accurately predicts variability using only four stations.
NASA Astrophysics Data System (ADS)
Ullman, D. J.; Schmittner, A.; Danabasoglu, G.; Norton, N. J.; Müller, M.
2016-02-01
Oscillations in the moon's orbit around the earth modulate regional tidal dissipation with a periodicity of 18.6 years. In regions where the diurnal tidal constituents dominate diapycnal mixing, this Lunar Nodal Cycle (LNC) may be significant enough to influence ocean circulation, sea surface temperature, and climate variability. Such periodicity in the LNC as an external forcing may provide a mechanistic source for Pacific decadal variability (i.e. Pacific Decadal Oscillation, PDO) where diurnal tidal constituents are strong. We have introduced three enhancements to the latest version of the Community Earth System Model (CESM) to better simulate tidal-forced mixing. First, we have produced a sub-grid scale bathymetry scheme that better resolves the vertical distribution of the barotropic energy flux in regions where the native CESM grid does not resolve high spatial-scale bathymetric features. Second, we test a number of alternative barotropic tidal constituent energy flux fields that are derived from various satellite altimeter observations and tidal models. Third, we introduce modulations of the individual diurnal and semi-diurnal tidal constituents, ranging from monthly to decadal periods, as derived from the full lunisolar tidal potential. Using both ocean-only and fully-coupled configurations, we test the influence of these enhancements, particularly the LNC modulations, on ocean mixing and bidecadal climate variability in CESM.
NASA Astrophysics Data System (ADS)
Williams, C.; Silins, U.; Wagner, M. J.; Bladon, K. D.; Martens, A. M.; Anderson, A.; Stone, M.; Emelko, M. B.
2014-12-01
Interception of precipitation in sub-alpine forests is likely to be strongly reduced after wildfire, potentially producing large increases in net precipitation. Objectives of this study were to describe changes in rainfall and snow interception, and net precipitation after the severe 2003 Lost Creek wildfire as part of the Southern Rockies Watershed Project in the south-west Rocky Mountains of Alberta, Canada. Throughfall troughs and stemflow gauges were used to explore relationships between throughfall, stemflow, and net rainfall with variation in gross rainfall in burned and undisturbed stands during the summers of 2006-2008. These relationships were used to scale the effects of the wildfire on net rainfall for the first decade after the wildfire (2004-2013) using a 10 year rainfall record in the watershed. Annual snowpack surveys (5 snow courses in each of burned and reference stands) measured peak snowpack depth, density, and snow water equivalent (SWE) for this same period. Mean annual P was 1140 mm (684-1519 mm) during the first 10 years after the wildfire, with 61% falling as snow. Throughfall and stemflow in the burned forest accounted for 86% and 7% of gross rainfall, respectively, compared with 53% and 0.002% in the unburned stands in the summers of 2006-2008. Scaled rainfall interception relationships (=f(rainfall event size)) indicated annual increases in net rainfall were 192 mm/yr (133-347 mm) for 10 years after the fire. Similarly, mean increases in peak SWE were 134 mm/yr (93-216 mm). Collectively, the mean increase in net precipitation was 325 mm/yr (226-563 mm; 29%) for the first decade after the wildfire. Hydrologic forcing by increased net precipitation may be a particularly important element of wildfire impacts on sub-alpine watersheds. Furthermore, because of the very slow growth rates of sub-alpine forests, increases in net precipitation are likely to persist and affect precipitation-runoff relationships for decades in these environments.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, P.; Phani Murali Krishna, R.; Goswami, Bidyut B.; Abhik, S.; Ganai, Malay; Mahakur, M.; Khairoutdinov, Marat; Dudhia, Jimmy
2016-05-01
Inspite of significant improvement in numerical model physics, resolution and numerics, the general circulation models (GCMs) find it difficult to simulate realistic seasonal and intraseasonal variabilities over global tropics and particularly over Indian summer monsoon (ISM) region. The bias is mainly attributed to the improper representation of physical processes. Among all the processes, the cloud and convective processes appear to play a major role in modulating model bias. In recent times, NCEP CFSv2 model is being adopted under Monsoon Mission for dynamical monsoon forecast over Indian region. The analyses of climate free run of CFSv2 in two resolutions namely at T126 and T382, show largely similar bias in simulating seasonal rainfall, in capturing the intraseasonal variability at different scales over the global tropics and also in capturing tropical waves. Thus, the biases of CFSv2 indicate a deficiency in model's parameterization of cloud and convective processes. Keeping this in background and also for the need to improve the model fidelity, two approaches have been adopted. Firstly, in the superparameterization, 32 cloud resolving models each with a horizontal resolution of 4 km are embedded in each GCM (CFSv2) grid and the conventional sub-grid scale convective parameterization is deactivated. This is done to demonstrate the role of resolving cloud processes which otherwise remain unresolved. The superparameterized CFSv2 (SP-CFS) is developed on a coarser version T62. The model is integrated for six and half years in climate free run mode being initialised from 16 May 2008. The analyses reveal that SP-CFS simulates a significantly improved mean state as compared to default CFS. The systematic bias of lesser rainfall over Indian land mass, colder troposphere has substantially been improved. Most importantly the convectively coupled equatorial waves and the eastward propagating MJO has been found to be simulated with more fidelity in SP-CFS. The reason of such betterment in model mean state has been found to be due to the systematic improvement in moisture field, temperature profile and moist instability. The model also has better simulated the cloud and rainfall relation. This initiative demonstrates the role of cloud processes on the mean state of coupled GCM. As the superparameterization approach is computationally expensive, so in another approach, the conventional Simplified Arakawa Schubert (SAS) scheme is replaced by a revised SAS scheme (RSAS) and also the old and simplified cloud scheme of Zhao-Karr (1997) has been replaced by WSM6 in CFSV2 (hereafter CFS-CR). The primary objective of such modifications is to improve the distribution of convective rain in the model by using RSAS and the grid-scale or the large scale nonconvective rain by WSM6. The WSM6 computes the tendency of six class (water vapour, cloud water, ice, snow, graupel, rain water) hydrometeors at each of the model grid and contributes in the low, middle and high cloud fraction. By incorporating WSM6, for the first time in a global climate model, we are able to show a reasonable simulation of cloud ice and cloud liquid water distribution vertically and spatially as compared to Cloudsat observations. The CFS-CR has also showed improvement in simulating annual rainfall cycle and intraseasonal variability over the ISM region. These improvements in CFS-CR are likely to be associated with improvement of the convective and stratiform rainfall distribution in the model. These initiatives clearly address a long standing issue of resolving the cloud processes in climate model and demonstrate that the improved cloud and convective process paramterizations can eventually reduce the systematic bias and improve the model fidelity.
Remote Sensing of Terrestrial Snow and Ice for Global Change Studies
NASA Technical Reports Server (NTRS)
Kelly, Richard; Hall, Dorothy K.
2007-01-01
Snow and ice play a significant role in the Earth's water cycle and are sensitive and informative indicators climate change. Significant changes in terrestrial snow and ice water storage are forecast, and while evidence of large-scale changes is emerging, in situ measurements alone are insufficient to help us understand and explain these changes. Imaging remote sensing systems are capable of successfully observing snow and ice in the cryosphere. This chapter examines how those remote sensing sensors, that now have more than 35 years of observation records, are capable of providing information about snow cover, snow water equivalent, snow melt, ice sheet temperature and ice sheet albedo. While significant progress has been made, especially in the last five years, a better understanding is required of the records of satellite observations of these cryospheric variables.
The Effect of Climate Change on Snow Pack at Sleepers River, Vermont, USA
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Chalmers, A.; Denner, J.; Clark, S.
2017-12-01
Sleepers River Research Watershed, a U.S. Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) site in northeastern Vermont, has a 58-year record (since 1959) of snow depth and snow water equivalence (SWE), one of the longest continuous records in eastern North America. Snow measurements occur weekly during the winter at the watershed using an Adirondack type snow tube sampler. Sleepers River averages about 1100 mm of precipitation annually of which 20 to 30 percent falls as snow. Snow cover typically persists from December to April. Length of snow cover and snow depth vary with elevation, aspect, and cover type. Sites include open field, and hardwood and conifer stand clearings from 225 to 630 meters elevation. We evaluated changes in snow depth, snow cover duration, and SWE relative to elevation, soil frost depth, air temperature, total precipitation, and the El Niño - Southern Oscillation (ENSO) cycle. Overall, warmer winter temperatures have resulted in more midwinter thaws, more rain during the winter, and more variable soil frost depth. Trends in snowpack amount and duration were compared to winter-spring streamflow center-of-mass to evaluate if shifts in the snow pack regime were leading to earlier snowmelt.
NASA Astrophysics Data System (ADS)
Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan
2016-08-01
Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic dynamics. These results suggest that analysis of global inundation is feasible using a sub-grid model, but that spatial patterns at sub-kilometer resolutions still need to be adequately predicted.
Estimating snow leopard population abundance using photography and capture-recapture techniques
Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.
2006-01-01
Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.
Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape
2016-01-01
Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research. PMID:27171203
Patterns of Snow Leopard Site Use in an Increasingly Human-Dominated Landscape.
Alexander, Justine Shanti; Gopalaswamy, Arjun M; Shi, Kun; Hughes, Joelene; Riordan, Philip
2016-01-01
Human population growth and concomitant increases in demand for natural resources pose threats to many wildlife populations. The landscapes used by the endangered snow leopard (Panthera uncia) and their prey is increasingly subject to major changes in land use. We aimed to assess the influence of 1) key human activities, as indicated by the presence of mining and livestock herding, and 2) the presence of a key prey species, the blue sheep (Pseudois nayaur), on probability of snow leopard site use across the landscape. In Gansu Province, China, we conducted sign surveys in 49 grid cells, each of 16 km2 in size, within a larger area of 3392 km2. We analysed the data using likelihood-based habitat occupancy models that explicitly account for imperfect detection and spatial auto-correlation between survey transect segments. The model-averaged estimate of snow leopard occupancy was high [0.75 (SE 0.10)], but only marginally higher than the naïve estimate (0.67). Snow leopard segment-level probability of detection, given occupancy on a 500 m spatial replicate, was also high [0.68 (SE 0.08)]. Prey presence was the main determinant of snow leopard site use, while human disturbances, in the form of mining and herding, had low predictive power. These findings suggest that snow leopards continue to use areas very close to such disturbances, as long as there is sufficient prey. Improved knowledge about the effect of human activity on large carnivores, which require large areas and intact prey populations, is urgently needed for conservation planning at the local and global levels. We highlight a number of methodological considerations that should guide the design of such research.
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Mohammad Safeeq; Shraddhanand Shukla; Ivan Arismendi; Gordon E. Grant; Sarah L. Lewis; Anne Nolin
2015-01-01
In the western United States, climate warming poses a unique threat to water and snow hydrology because much of the snowpack accumulates at temperatures near 0 °C. As the climate continues to warm, much of the region's precipitation is expected to switch from snow to rain, causing flashier hydrographs, earlier inflow to reservoirs, and reduced spring and summer...
Soil erosion by snow gliding - a first quantification attempt in a subalpine area in Switzerland
NASA Astrophysics Data System (ADS)
Meusburger, K.; Leitinger, G.; Mabit, L.; Mueller, M. H.; Walter, A.; Alewell, C.
2014-09-01
Snow processes might be one important driver of soil erosion in Alpine grasslands and thus the unknown variable when erosion modelling is attempted. The aim of this study is to assess the importance of snow gliding as a soil erosion agent for four different land use/land cover types in a subalpine area in Switzerland. We used three different approaches to estimate soil erosion rates: sediment yield measurements in snow glide depositions, the fallout radionuclide 137Cs and modelling with the Revised Universal Soil Loss Equation (RUSLE). RUSLE permits the evaluation of soil loss by water erosion, the 137Cs method integrates soil loss due to all erosion agents involved, and the measurement of snow glide deposition sediment yield can be directly related to snow-glide-induced erosion. Further, cumulative snow glide distance was measured for the sites in the winter of 2009/2010 and modelled for the surrounding area and long-term average winter precipitation (1959-2010) with the spatial snow glide model (SSGM). Measured snow glide distance confirmed the presence of snow gliding and ranged from 2 to 189 cm, with lower values on the north-facing slopes. We observed a reduction of snow glide distance with increasing surface roughness of the vegetation, which is an important information with respect to conservation planning and expected and ongoing land use changes in the Alps. Snow glide erosion estimated from the snow glide depositions was highly variable with values ranging from 0.03 to 22.9 t ha-1 yr-1 in the winter of 2012/2013. For sites affected by snow glide deposition, a mean erosion rate of 8.4 t ha-1 yr-1 was found. The difference in long-term erosion rates determined with RUSLE and 137Cs confirms the constant influence of snow-glide-induced erosion, since a large difference (lower proportion of water erosion compared to total net erosion) was observed for sites with high snow glide rates and vice versa. Moreover, the difference between RUSLE and 137Cs erosion rates was related to the measured snow glide distance (R2 = 0.64; p < 0.005) and to the snow deposition sediment yields (R2 = 0.39; p = 0.13). The SSGM reproduced the relative difference of the measured snow glide values under different land uses and land cover types. The resulting map highlighted the relevance of snow gliding for large parts of the investigated area. Based on these results, we conclude that snow gliding appears to be a crucial and non-negligible process impacting soil erosion patterns and magnitude in subalpine areas with similar topographic and climatic conditions.
Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.
Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk
2017-02-01
The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.
Characterization of Cloud Water-Content Distribution
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2010-01-01
The development of realistic cloud parameterizations for climate models requires accurate characterizations of subgrid distributions of thermodynamic variables. To this end, a software tool was developed to characterize cloud water-content distributions in climate-model sub-grid scales. This software characterizes distributions of cloud water content with respect to cloud phase, cloud type, precipitation occurrence, and geo-location using CloudSat radar measurements. It uses a statistical method called maximum likelihood estimation to estimate the probability density function of the cloud water content.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Sartelet, K.; Wu, S.-Y.; Seigneur, C.
2013-07-01
Comprehensive model evaluation and comparison of two 3-D air quality modeling systems (i.e., the Weather Research and Forecast model (WRF)/Polyphemus and WRF with chemistry and the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) (WRF/Chem-MADRID)) are conducted over Western Europe. Part 1 describes the background information for the model comparison and simulation design, the application of WRF for January and July 2001 over triple-nested domains in Western Europe at three horizontal grid resolutions: 0.5°, 0.125°, and 0.025°, and the effect of aerosol/meteorology interactions on meteorological predictions. Nine simulated meteorological variables (i.e., downward shortwave and longwave radiation fluxes (SWDOWN and LWDOWN), outgoing longwave radiation flux (OLR), temperature at 2 m (T2), specific humidity at 2 m (Q2), relative humidity at 2 m (RH2), wind speed at 10 m (WS10), wind direction at 10 m (WD10), and precipitation (Precip)) are evaluated using available observations in terms of spatial distribution, domainwide daily and site-specific hourly variations, and domainwide performance statistics. The vertical profiles of temperature, dew points, and wind speed/direction are also evaluated using sounding data. WRF demonstrates its capability in capturing diurnal/seasonal variations and spatial gradients and vertical profiles of major meteorological variables. While the domainwide performance of LWDOWN, OLR, T2, Q2, and RH2 at all three grid resolutions is satisfactory overall, large positive or negative biases occur in SWDOWN, WS10, and Precip even at 0.125° or 0.025° in both months and in WD10 in January. In addition, discrepancies between simulations and observations exist in T2, Q2, WS10, and Precip at mountain/high altitude sites and large urban center sites in both months, in particular, during snow events or thunderstorms. These results indicate the model's difficulty in capturing meteorological variables in complex terrain and subgrid-scale meteorological phenomena, due to inaccuracies in model initialization parameterization (e.g., lack of soil temperature and moisture nudging), limitations in the physical parameterizations (e.g., shortwave radiation, cloud microphysics, cumulus parameterizations, and ice nucleation treatments) as well as limitations in surface heat and moisture budget parameterizations (e.g., snow-related processes, subgrid-scale surface roughness elements, and urban canopy/heat island treatments and CO2 domes). While the use of finer grid resolutions of 0.125° and 0.025° shows some improvements for WS10, WD10, Precip, and some mesoscale events (e.g., strong forced convection and heavy precipitation), it does not significantly improve the overall statistical performance for all meteorological variables except for Precip. The WRF/Chem simulations with and without aerosols show that aerosols lead to reduced net shortwave radiation fluxes, 2 m temperature, 10 m wind speed, planetary boundary layer (PBL) height, and precipitation and increase aerosol optical depth, cloud condensation nuclei, cloud optical depth, and cloud droplet number concentrations over most of the domain. These results indicate a need to further improve the model representations of the above parameterizations as well as aerosol-meteorology interactions at all scales.
NASA Astrophysics Data System (ADS)
Lussana, Cristian; Saloranta, Tuomo; Skaugen, Thomas; Magnusson, Jan; Tveito, Ole Einar; Andersen, Jess
2018-02-01
The conventional climate gridded datasets based on observations only are widely used in atmospheric sciences; our focus in this paper is on climate and hydrology. On the Norwegian mainland, seNorge2 provides high-resolution fields of daily total precipitation for applications requiring long-term datasets at regional or national level, where the challenge is to simulate small-scale processes often taking place in complex terrain. The dataset constitutes a valuable meteorological input for snow and hydrological simulations; it is updated daily and presented on a high-resolution grid (1 km of grid spacing). The climate archive goes back to 1957. The spatial interpolation scheme builds upon classical methods, such as optimal interpolation and successive-correction schemes. An original approach based on (spatial) scale-separation concepts has been implemented which uses geographical coordinates and elevation as complementary information in the interpolation. seNorge2 daily precipitation fields represent local precipitation features at spatial scales of a few kilometers, depending on the station network density. In the surroundings of a station or in dense station areas, the predictions are quite accurate even for intense precipitation. For most of the grid points, the performances are comparable to or better than a state-of-the-art pan-European dataset (E-OBS), because of the higher effective resolution of seNorge2. However, in very data-sparse areas, such as in the mountainous region of southern Norway, seNorge2 underestimates precipitation because it does not make use of enough geographical information to compensate for the lack of observations. The evaluation of seNorge2 as the meteorological forcing for the seNorge snow model and the DDD (Distance Distribution Dynamics) rainfall-runoff model shows that both models have been able to make profitable use of seNorge2, partly because of the automatic calibration procedure they incorporate for precipitation. The seNorge2 dataset 1957-2015 is available at https://doi.org/10.5281/zenodo.845733. Daily updates from 2015 onwards are available at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/provisional_archive/PREC1d/gridded_dataset/catalog.html.
Adaptive EAGLE dynamic solution adaptation and grid quality enhancement
NASA Technical Reports Server (NTRS)
Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.
1992-01-01
In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.
Impacts of 1, 1.5, and 2 Degree Warming on Arctic Terrestrial Snow and Sea Ice
NASA Astrophysics Data System (ADS)
Derksen, C.; Mudryk, L.; Howell, S.; Flato, G. M.; Fyfe, J. C.; Gillett, N. P.; Sigmond, M.; Kushner, P. J.; Dawson, J.; Zwiers, F. W.; Lemmen, D.; Duguay, C. R.; Zhang, X.; Fletcher, C. G.; Dery, S. J.
2017-12-01
The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change (UNFCCC) established the global temperature goal of "holding the increase in the global average temperature to below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels." In this study, we utilize multiple gridded snow and sea ice products (satellite retrievals; assimilation systems; physical models driven by reanalyses) and ensembles of climate model simulations to determine the impacts of observed warming, and project the relative impacts of the UNFCC future warming targets on Arctic seasonal terrestrial snow and sea ice cover. Observed changes during the satellite era represent the response to approximately 1°C of global warming. Consistent with other studies, analysis of the observational record (1970's to present) identifies changes including a shorter snow cover duration (due to later snow onset and earlier snow melt), significant reductions in spring snow cover and summer sea ice extent, and the loss of a large proportion of multi-year sea ice. The spatial patterns of observed snow and sea ice loss are coherent across adjacent terrestrial/marine regions. There are strong pattern correlations between snow and temperature trends, with weaker association between sea ice and temperature due to the additional influence of dynamical effects such wind-driven redistribution of sea ice. Climate model simulations from the Coupled Model Inter-comparison Project Phase 5(CMIP-5) multi-model ensemble, large initial condition ensembles of the Community Earth System Model (CESM) and Canadian Earth System Model (CanESM2) , and warming stabilization simulations from CESM were used to identify changes in snow and ice under further increases to 1.5°C and 2°C warming. The model projections indicate these levels of warming will be reached over the coming 2-4 decades. Warming to 1.5°C results in an increase in the number of melting days over snow and sea ice (and resultant increases in snow-free and ice-free duration), which are similar in magnitude to the change from pre-industrial conditions to present day. Continued warming to 2°C further intensifies the cryospheric response consistent with amplified Arctic warming relative to the global average trend.
NASA Astrophysics Data System (ADS)
Xie, J.; Kneubühler, M.; Garonna, I.; Jong, R. D.; Schaepman, M. E.
2017-12-01
Seasonal accumulation and melt of snow in mountainous regions varies with meteorological factors and affects forest phenology in various ways. However, our knowledge about the relationship between seasonal snow and forest phenology - and particularly its topographical variation - is still limited and needs further investigation. We tested the relationship between a number of snow, meteorological and land surface phenology metrics (satellite-derived and gridded) in the forested regions of the Swiss Alps for the period of 2003-2014. Satellite-derived start of season and end of season metrics (SOS and EOS, respectively), in combination with snow accumulation (SA), snow cover melt date (SCMD), monthly maximum, mean and minimum temperature, monthly mean relative sunshine duration and precipitation were considered in our analysis. We calculated Spearman's rank correlation of interannual differences (Δ) of SOS and EOS with snow and meteorological metrics and examined the variation of these correlations with elevation (from 200 up to 2400 meter above sea level (m a.s.l.)). We found SOS to have a significant (p < 0.05) positive correlation with both SCMD (mean R=0.71, over 34.2% of all pixels) and SA (mean R=0.62, over 19.0% of all pixels). On the other hand, SOS showed a significant negative correlation with spring temperature and relative sunshine duration. EOS showed significant positive correlation with autumn temperature (mean R=0.70, over 30.4% of all pixels). Moreover, we found the forest phenology of the northern and eastern Swiss Alps to be more sensitive to seasonal snow but less sensitive to meteorological factors than in the southern and western Swiss Alps. The areas which are sensitive to seasonal snow and meteorological factors are more pronounced at higher elevations. We conclude that the effect of snow melt on spring phenology is of equal magnitude as spring temperature and relative sunshine duration. Autumn forest phenology is mainly influenced by autumn temperature. The effects of seasonal snow and climatic controls on spring and autumn phenology are more pronounced at higher than at lower elevations. We suggest that alpine forest ecosystems above 1500 m a.s.l. will therefore be particularly sensitive to future changes of seasonal snow and climate warming scenarios in the Swiss Alps.
NASA Astrophysics Data System (ADS)
Marty, Christoph; Meister, Roland
2012-12-01
Snow and weather observations at Weissfluhjoch were initiated in 1936, when a research team set a snow stake and started digging snow pits on a plateau located at 2,540 m asl above Davos, Switzerland. This was the beginning of what is now the longest series of daily snow depth, new snow height and bi-monthly snow water equivalent measurements from a high-altitude research station. Our investigations reveal that the snow depth at Weissfluhjoch with regard to the evolution and inter-annual variability represents a good proxy for the entire Swiss Alps. In order to set the snow and weather observations from Weissfluhjoch in a broader context, this paper also shows some comparisons with measurements from five other high-altitude observatories in the European Alps. The results show a surprisingly uniform warming of 0.8°C during the last three decades at the six investigated mountain stations. The long-term snow measurements reveal no change in mid-winter, but decreasing trends (especially since the 1980s) for the solid precipitation ratio, snow fall, snow water equivalent and snow depth during the melt season due to a strong temperature increase of 2.5°C in the spring and summer months of the last three decades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël
2014-06-28
Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results frommore » studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well reproduced the values obtained in the laboratory study. These cross sections can be used in isotopic models to reproduce the stable isotopic composition of nitrate found in Antarctic snow profiles.« less
NASA Astrophysics Data System (ADS)
Riboust, Philippe; Thirel, Guillaume; Le Moine, Nicolas; Ribstein, Pierre
2016-04-01
A better knowledge of the accumulated snow on the watersheds will help flood forecasting centres and hydro-power companies to predict the amount of water released during spring snowmelt. Since precipitations gauges are sparse at high elevations and integrative measurements of the snow accumulated on watershed surface are hard to obtain, using snow models is an adequate way to estimate snow water equivalent (SWE) on watersheds. In addition to short term prediction, simulating accurately SWE with snow models should have many advantages. Validating the snow module on both SWE and snowmelt should give a more reliable model for climate change studies or regionalization for ungauged watersheds. The aim of this study is to create a new snow module, which has a structure that allows the use of measured snow data for calibration or assimilation. Energy balance modelling seems to be the logical choice for designing a model in which internal variables, such as SWE, could be compared to observations. Physical models are complex, needing high computational resources and many different types of inputs that are not widely measured at meteorological stations. At the opposite, simple conceptual degree-day models offer to simulate snowmelt using only temperature and precipitation as inputs with fast computing. Its major drawback is to be empirical, i.e. not taking into account all of the processes of the energy balance, which makes this kind of model more difficult to use when willing to compare SWE to observed measurements. In order to reach our objectives, we created a snow model structured by a simplified energy balance where each of the processes is empirically parameterized in order to be calculated using only temperature, precipitation and cloud cover variables. This model's structure is similar to the one created by M.T. Walter (2005), where parameterizations from the literature were used to compute all of the processes of the energy balance. The conductive fluxes into the snowpack were modelled by using analytical solutions to the heat equation taking phase change into account. This approach has the advantage to use few forcing variables and to take into account all the processes of the energy balance. Indeed, the simulations should be quick enough to allow, for example, ensemble prediction or simulation of numerous basins, more easily than physical snow models. The snow module formulation has been completed and is in its validation phase using data from the experimental station of Col de Porte, Alpes, France. Data from the US SNOTEL product will be used in order to test the model structure on a larger scale and to test diverse calibration procedures, since the aim is to use it on a basin scale for discharge modelling purposes.
Snow cover and snow goose Anser caerulescens caerulescens distribution during spring migration
Hupp, Jerry W.; Zacheis, Amy B.; Anthony, R. Michael; Robertson, Donna G.; Erickson, Wallace P.; Palacios, Kelly C.
2001-01-01
Arctic geese often use spring migration stopover areas when feeding habitats are partially snow covered. Melting of snow during the stopover period causes spatial and temporal variability in distribution and abundance of feeding habitat. We recorded changes in snow cover and lesser snow goose Anser caerulescens caerulescens distribution on a spring migration stopover area in south-central Alaska during aerial surveys in 1993-1994. Our objectives were to determine whether geese selected among areas with different amounts of snow cover and to assess how temporal changes in snow cover affected goose distribution. We also measured temporal changes in chemical composition of forage species after snow melt. We divided an Arc/Info coverage of the approximately 210 km2 coastal stopover area into 2-km2 cells, and measured snow cover and snow goose use of cells. Cells that had 10-49.9% snow cover were selected by snow geese, whereas cells that lacked snow cover were avoided. In both years, snow cover diminished along the coast between mid-April and early May. Flock distribution changed as snow geese abandoned snow-free areas in favour of cells where snow patches were interspersed with bare ground. Snow-free areas may have been less attractive to geese because available forage had been quickly exploited as bare ground was exposed, and because soils became drier making extraction of underground forage more difficult. Fiber content of two forage species increased whereas non-structural carbohydrate concentrations of forage plants appeared to diminish after snow melt, but changes in nutrient concentrations likely occurred too slowly to account for abandonment of snow-free areas by snow geese.
NASA Astrophysics Data System (ADS)
Cornwell, E.; Molotch, N. P.; McPhee, J.
2016-01-01
Seasonal snow cover is the primary water source for human use and ecosystems along the extratropical Andes Cordillera. Despite its importance, relatively little research has been devoted to understanding the properties, distribution and variability of this natural resource. This research provides high-resolution (500 m), daily distributed estimates of end-of-winter and spring snow water equivalent over a 152 000 km2 domain that includes the mountainous reaches of central Chile and Argentina. Remotely sensed fractional snow-covered area and other relevant forcings are combined with extrapolated data from meteorological stations and a simplified physically based energy balance model in order to obtain melt-season melt fluxes that are then aggregated to estimate the end-of-winter (or peak) snow water equivalent (SWE). Peak SWE estimates show an overall coefficient of determination R2 of 0.68 and RMSE of 274 mm compared to observations at 12 automatic snow water equivalent sensors distributed across the model domain, with R2 values between 0.32 and 0.88. Regional estimates of peak SWE accumulation show differential patterns strongly modulated by elevation, latitude and position relative to the continental divide. The spatial distribution of peak SWE shows that the 4000-5000 m a.s.l. elevation band is significant for snow accumulation, despite having a smaller surface area than the 3000-4000 m a.s.l. band. On average, maximum snow accumulation is observed in early September in the western Andes, and in early October on the eastern side of the continental divide. The results presented here have the potential of informing applications such as seasonal forecast model assessment and improvement, regional climate model validation, as well as evaluation of observational networks and water resource infrastructure development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zigler, A.; Palchan, T.; Bruner, N.
We report on the first generation of 5.5-7.5 MeV protons by a moderate-intensity short-pulse laser ({approx}5x10{sup 17} W/cm{sup 2}, 40 fsec) interacting with frozen H{sub 2}O nanometer-size structure droplets (snow nanowires) deposited on a sapphire substrate. In this setup, the laser intensity is locally enhanced by the snow nanowire, leading to high spatial gradients. Accordingly, the nanoplasma is subject to enhanced ponderomotive potential, and confined charge separation is obtained. Electrostatic fields of extremely high intensities are produced over the short scale length, and protons are accelerated to MeV-level energies.
A New, Two-layer Canopy Module For The Detailed Snow Model SNOWPACK
NASA Astrophysics Data System (ADS)
Gouttevin, I.; Lehning, M.; Jonas, T.; Gustafsson, D.; Mölder, M.
2014-12-01
A new, two-layer canopy module with thermal inertia for the detailed snow model SNOWPACK is presented. Compared to the old, one-layered canopy formulation with no heat mass, this module now offers a level of physical detail consistent with the detailed snow and soil representation in SNOWPACK. The new canopy model is designed to reproduce the difference in thermal regimes between leafy and woody canopy elements and their impact on the underlying snowpack energy balance. The new model is validated against data from an Alpine and a boreal site. Comparisons of modelled sub-canopy thermal radiations to stand-scale observations at Alptal, Switzerland, demonstrate the improvements induced by our new parameterizations. The main effect is a more realistic simulation of the canopy night-time drop in temperatures. The lower drop is induced by both thermal inertia and the two-layer representation. A specific result is that such a performance cannot be achieved by a single-layered canopy model. The impact of the new parameterizations on the modelled dynamics of the sub-canopy snowpack is analysed and yields consistent results, but the frequent occurrence of mixed-precipitation events at Alptal prevents a conclusive assessment of model performances against snow data.Without specific tuning, the model is also able to reproduce the measured summertime tree trunk temperatures and biomass heat storage at the boreal site of Norunda, Sweden, with an increased accuracy in amplitude and phase. Overall, the SNOWPACK model with its enhanced canopy module constitutes a unique (in its physical process representation) atmosphere-to-soil-through-canopy-and-snow modelling chain.
NASA Astrophysics Data System (ADS)
Wanders, Niko; Wood, Eric
2016-04-01
Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. For example, seasonal forecasts of drought risk can enable farmers to make adaptive choices on crop varieties, labour usage, and technology investments. Seasonal and sub-seasonal predictions can increase preparedness to hydrological extremes that regularly occur in all regions of the world with large impacts on society. We investigated the skill of six seasonal forecast models from the NMME-2 ensemble coupled to two global hydrological models (VIC and PCRGLOBWB) for the period 1982-2012. The 31 years of NNME-2 hindcast data is used in combination with an ensemble mean and ESP forecast, to forecast important hydrological variables (e.g. soil moisture, groundwater storage, snow, reservoir levels and river discharge). By using two global hydrological models we are able to quantify both the uncertainty in the meteorological input and the uncertainty created by the different hydrological models. We show that the NMME-2 forecast outperforms the ESP forecasts in terms of anomaly correlation and brier skill score for all forecasted hydrological variables, with a low uncertainty in the performance amongst the hydrological models. However, the continuous ranked probability score (CRPS) of the NMME-2 ensemble is inferior to the ESP due to a large spread between the individual ensemble members. We use a cost analysis to show that the damage caused by floods and droughts in large scale rivers can globally be reduced by 48% (for leads from 1-2 months) to 20% (for leads between 6-9 months) when precautions are taken based on the NMME-2 ensemble instead of an ESP forecast. In collaboration with our local partner in West Africa (AGHRYMET), we looked at the performance of the sub-seasonal forecasts for crop planting dates and high flow season in West Africa. We show that the uncertainty in the optimal planting date is reduced from 30 days to 12 days (2.5 month lead) and an increased predictability of the high flow season from 45 days to 20 days (3-4 months lead). Additionally, we show that snow accumulation and melt onset in the Northern hemisphere can be forecasted with an uncertainty of 10 days (2.5 months lead). Both the overall skill, and the skill found in these last two examples, indicates that the new NMME-2 forecast dataset is valuable for sub-seasonal forecast applications. The high temporal resolution (daily), long leads (one year leads) and large hindcast archive enable new sub-seasonal forecasting applications to be explored. We show that the NMME-2 has a large potential for sub-seasonal hydrological forecasting and other potential hydrological applications (e.g. reservoir management), which could benefit from these new forecasts.
NASA Astrophysics Data System (ADS)
Marshall, Hans-Peter
The distribution of water in the snow-covered areas of the world is an important climate change indicator, and it is a vital component of the water cycle. At local and regional scales, the snow water equivalent (SWE), the amount of liquid water a given area of the snowpack represents, is very important for water resource management, flood forecasting, and prediction of available hydropower energy. Measurements from only a few automatic weather stations, such as the SNOTEL network, or sparse manual snowpack measurements are typically extrapolated for estimating SWE over an entire basin. Widespread spatial variability in the distribution of SWE and snowpack stratigraphy at local scales causes large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due to their large spatial coverage and high temporal resolution. Although snow cover extent can currently be estimated from remote sensing data, accurately quantifying SWE from remote sensing measurements has remained difficult, due to a high sensitivity to variations in grain size and stratigraphy. In alpine snowpacks, the large degree of spatial variability of snowpack properties and geometry, caused by topographic, vegetative, and microclimatic effects, also makes prediction of snow avalanches very difficult. Ground-based radar and penetrometer measurements can quickly and accurately characterize snowpack properties and SWE in the field. A portable lightweight radar was developed, and allows a real-time estimate of SWE to within 10%, as well as measurements of depths of all major density transitions within the snowpack. New analysis techniques developed in this thesis allow accurate estimates of mechanical properties and an index of grain size to be retrieved from the SnowMicroPenetrometer. These two tools together allow rapid characterization of the snowpack's geometry, mechanical properties, and SWE, and are used to guide a finite element model to study the stress distribution on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.
Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, U.S.
Pederson, Gregory T.; Betancourt, Julio L.; McCabe, Gregory J.
2013-01-01
We used a first-order, monthly snow model and observations to disentangle seasonal influences on 20th century,regional snowpack anomalies in the Rocky Mountains of western North America, where interannual variations in cool-season (November–March) temperatures are broadly synchronous, but precipitation is typically antiphased north to south and uncorrelated with temperature. Over the previous eight centuries, regional snowpack variability exhibits strong, decadally persistent north-south (N-S) antiphasing of snowpack anomalies. Contrary to the normal regional antiphasing, two intervals of spatially synchronized snow deficits were identified. Snow deficits shown during the 1930s were synchronized north-south by low cool-season precipitation, with spring warming (February–March) since the 1980s driving the majority of the recent synchronous snow declines, especially across the low to middle elevations. Spring warming strongly influenced low snowpacks in the north after 1958, but not in the south until after 1980. The post-1980, synchronous snow decline reduced snow cover at low to middle elevations by ~20% and partly explains earlier and reduced streamflow and both longer and more active fire seasons. Climatologies of Rocky Mountain snowpack are shown to be seasonally and regionally complex, with Pacific decadal variability positively reinforcing the anthropogenic warming trend.
NASA Astrophysics Data System (ADS)
Eckerstorfer, M.; Malnes, E.; Christiansen, H. H.
2017-09-01
In periglacial landscapes, snow dynamics and microtopography have profound implications of freeze-thaw conditions and thermal regime of the ground. We mapped periglacial landforms at Kapp Linné, central Svalbard, where we chose six widespread landforms (solifluction sheet, nivation hollow, palsa and peat in beach ridge depressions, raised marine beach ridge, and exposed bedrock ridge) as study sites. At these six landforms, we studied ground thermal conditions, freeze-thaw cycles, and snow dynamics using a combination of in situ monitoring and C-band radar satellite data in the period 2005-2012. Based on these physical parameters, the six studied landforms can be classified into raised, dry landforms with minor ground ice content and a thin, discontinuous snow cover and into wet landforms with high ice content located in the topographical depressions in-between with medium to thick snow cover. This results in a differential snow-melting period inferred from the C-band radar satellite data, causing the interseasonal and interlandform variability in the onset of ground surface thawing once the ground becomes snow free. Therefore, variability also exists in the period of thawed ground surface conditions. However, the length of the season with thawed ground surface conditions does not determine the mean annual ground surface temperature, it only correlates well with the active layer depths. From the C-band radar satellite data series, measured relative backscatter trends hint toward a decrease in snow cover through time and a more frequent presence of ice layers from mid-winter rain on snow events at Kapp Linné, Svalbard.
Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network
NASA Astrophysics Data System (ADS)
Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.
2017-08-01
A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.
Using geostatistical methods to estimate snow water equivalence distribution in a mountain watershed
Balk, B.; Elder, K.; Baron, Jill S.
1998-01-01
Knowledge of the spatial distribution of snow water equivalence (SWE) is necessary to adequately forecast the volume and timing of snowmelt runoff. In April 1997, peak accumulation snow depth and density measurements were independently taken in the Loch Vale watershed (6.6 km2), Rocky Mountain National Park, Colorado. Geostatistics and classical statistics were used to estimate SWE distribution across the watershed. Snow depths were spatially distributed across the watershed through kriging interpolation methods which provide unbiased estimates that have minimum variances. Snow densities were spatially modeled through regression analysis. Combining the modeled depth and density with snow-covered area (SCA produced an estimate of the spatial distribution of SWE. The kriged estimates of snow depth explained 37-68% of the observed variance in the measured depths. Steep slopes, variably strong winds, and complex energy balance in the watershed contribute to a large degree of heterogeneity in snow depth.
Trends in soil moisture and real evapotranspiration in Douro River for the period 1980-2010
NASA Astrophysics Data System (ADS)
García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
This study analyzes the evolution of different hydrological variables, such as soil moisture and real evapotranspiration, for the last 30 years, in the Douro Basin, the most extensive basin in the Iberian Peninsula. The different components of the real evaporation, connected to the soil moisture content, can be important when analyzing the intensity of droughts and heat waves, and particularly relevant for the study of the climate change impacts. The real evapotranspiration and soil moisture data are provided by simulations obtained using the Variable Infiltration Capacity (VIC) hydrological model. This model is a large-scale hydrologic model and allows estimates of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cells and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset are used as input variables for VIC model. The simulations have a spatial resolution of about 9 km, and the analysis is carried out on a seasonal time-scale. Additionally, we compare these results with those obtained from a dynamical downscaling driven by ERA-Interim data using the Weather Research and Forecasting (WRF) model, with the same spatial resolution. The results obtained from Spain02 data show a decrease in soil moisture at different parts of the basin during spring and summer, meanwhile soil moisture seems to be increased for autumn. No significant changes are found for real evapotranspiration. Keywords: real evapotranspiration, soil moisture, Douro Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-05-31
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Dynamically reconfigurable photovoltaic system
Okandan, Murat; Nielson, Gregory N.
2016-12-27
A PV system composed of sub-arrays, each having a group of PV cells that are electrically connected to each other. A power management circuit for each sub-array has a communications interface and serves to connect or disconnect the sub-array to a programmable power grid. The power grid has bus rows and bus columns. A bus management circuit is positioned at a respective junction of a bus column and a bus row and is programmable through its communication interface to connect or disconnect a power path in the grid. As a result, selected sub-arrays are connected by selected power paths to be in parallel so as to produce a low system voltage, and, alternately in series so as to produce a high system voltage that is greater than the low voltage by at least a factor of ten.
Snow depth retrieval from L-band satellite measurements on Arctic and Antarctic sea ice
NASA Astrophysics Data System (ADS)
Maaß, N.; Kaleschke, L.; Wever, N.; Lehning, M.; Nicolaus, M.; Rossmann, H. L.
2017-12-01
The passive microwave mission SMOS provides daily coverage of the polar regions and measures at a low frequency of 1.4 GHz (L-band). SMOS observations have been used to operationally retrieve sea ice thickness up to 1 m and to estimate snow depth in the Arctic for thicker ice. Here, we present how SMOS-retrieved snow depths compare with airborne measurements from NASA's Operation IceBridge mission (OIB) and with AMSR-2 satellite retrievals at higher frequencies, and we show first applications to Antarctic sea ice. In previous studies, SMOS and OIB snow depths showed good agreement on spatial scales from 50 to 1000 km for some days and disagreement for other days. Here, we present a more comprehensive comparison of OIB and SMOS snow depths in the Arctic for 2011 to 2015. We find that the SMOS retrieval works best for cold conditions and depends on auxiliary information on ice surface temperature, here provided by MODIS thermal imagery satellite data. However, comparing SMOS and OIB snow depths is difficult because of the different spatial resolutions (SMOS: 40 km, OIB: 40 m). Spatial variability within the SMOS footprint can lead to different snow conditions as seen from SMOS and OIB. Ideally the comparison is made for uniform conditions: Low lead and open water fraction, low spatial and temporal variability of ice surface temperature, no mixture of multi- and first-year ice. Under these conditions and cold temperatures (surface temperatures below -25°C), correlation coefficients between SMOS and OIB snow depths increase from 0.3 to 0.6. A finding from the comparison with AMSR-2 snow depths is that the SMOS-based maps depend less on the age of the sea ice than the maps derived from higher frequencies. Additionally, we show first results of SMOS snow depths for Antarctic sea ice. SMOS observations are compared to measurements of autonomous snow buoys drifting in the Weddell Sea since 2014. For a better comparability of these point measurements with SMOS data, we use model simulations along these trajectories made with a sea ice version of SNOWPACK, a 1D multi-layer thermodynamic snow model driven by reanalysis data. These simulations are especially helpful for indicating the occurrence of snow-ice-transformation, which cannot be identified in the buoy data and contributes to the measured snow height.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong
2012-12-17
Precipitation is an important input variable for hydrologic and ecological modeling and analysis. Next Generation Radar (NEXRAD) can provide precipitation products that cover most of the continental United States with a high resolution display of approximately 4 × 4 km2. Two major issues concerning the applications of NEXRAD data are (1) lack of a NEXRAD geo-processing and geo-referencing program and (2) bias correction of NEXRAD estimates. In this chapter, a geographic information system (GIS) based software that can automatically support processing of NEXRAD data for hydrologic and ecological models is presented. Some geostatistical approaches to calibrating NEXRAD data using rainmore » gauge data are introduced, and two case studies on evaluating accuracy of NEXRAD Multisensor Precipitation Estimator (MPE) and calibrating MPE with rain-gauge data are presented. The first case study examines the performance of MPE in mountainous region versus south plains and cold season versus warm season, as well as the effect of sub-grid variability and temporal scale on NEXRAD performance. From the results of the first case study, performance of MPE was found to be influenced by complex terrain, frozen precipitation, sub-grid variability, and temporal scale. Overall, the assessment of MPE indicates the importance of removing bias of the MPE precipitation product before its application, especially in the complex mountainous region. The second case study examines the performance of three MPE calibration methods using rain gauge observations in the Little River Experimental Watershed in Georgia. The comparison results show that no one method can perform better than the others in terms of all evaluation coefficients and for all time steps. For practical estimation of precipitation distribution, implementation of multiple methods to predict spatial precipitation is suggested.« less
NASA Astrophysics Data System (ADS)
Riggs, George A.; Hall, Dorothy K.; Román, Miguel O.
2017-10-01
Knowledge of the distribution, extent, duration and timing of snowmelt is critical for characterizing the Earth's climate system and its changes. As a result, snow cover is one of the Global Climate Observing System (GCOS) essential climate variables (ECVs). Consistent, long-term datasets of snow cover are needed to study interannual variability and snow climatology. The NASA snow-cover datasets generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua spacecraft and the Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) are NASA Earth System Data Records (ESDR). The objective of the snow-cover detection algorithms is to optimize the accuracy of mapping snow-cover extent (SCE) and to minimize snow-cover detection errors of omission and commission using automated, globally applied algorithms to produce SCE data products. Advancements in snow-cover mapping have been made with each of the four major reprocessings of the MODIS data record, which extends from 2000 to the present. MODIS Collection 6 (C6; https://nsidc.org/data/modis/data_summaries) and VIIRS Collection 1 (C1; https://doi.org/10.5067/VIIRS/VNP10.001) represent the state-of-the-art global snow-cover mapping algorithms and products for NASA Earth science. There were many revisions made in the C6 algorithms which improved snow-cover detection accuracy and information content of the data products. These improvements have also been incorporated into the NASA VIIRS snow-cover algorithms for C1. Both information content and usability were improved by including the Normalized Snow Difference Index (NDSI) and a quality assurance (QA) data array of algorithm processing flags in the data product, along with the SCE map. The increased data content allows flexibility in using the datasets for specific regions and end-user applications. Though there are important differences between the MODIS and VIIRS instruments (e.g., the VIIRS 375 m native resolution compared to MODIS 500 m), the snow detection algorithms and data products are designed to be as similar as possible so that the 16+ year MODIS ESDR of global SCE can be extended into the future with the S-NPP VIIRS snow products and with products from future Joint Polar Satellite System (JPSS) platforms. These NASA datasets are archived and accessible through the NASA Distributed Active Archive Center at the National Snow and Ice Data Center in Boulder, Colorado.
NASA Astrophysics Data System (ADS)
McPhee, James; Videla, Yohann
2014-05-01
The 5000-km2 upper Maipo River Basin, in central Chile's Andes, has an adequate streamgage network but almost no meteorological or snow accumulation data. Therefore, hydrologic model parameterization is strongly subject to model errors stemming from input and model-state uncertainty. In this research, we apply the Cold Regions Hydrologic Model (CRHM) to the basin, force it with reanalysis data downscaled to an appropriate resolution, and inform a parsimonious basin discretization, based on the hydrologic response unit concept, with distributed data on snowpack properties obtained through snow surveys for two seasons. With minimal calibration the model is able to reproduce the seasonal accumulation and melt cycle as recorded in the one snow pillow available for the basin, and although a bias in maximum accumulation persists, snowpack persistence in time is appropriately simulated based on snow water equivalent and snow covered area observations. Blowing snow events were simulated by the model whenever daily wind speed surpassed 8 m/s, although the use of daily instead of hourly data to force the model suggests that this phenomenon could be underestimated. We investigate the representation of snow redistribution by the model, and compare it with small-scale observations of wintertime snow accumulation on glaciers, in a first step towards characterizing ice distribution within a HRU spatial discretization. Although built at a different spatial scale, we present a comparison of simulated results with distributed snow depth data obtained within a 40 km2 sub-basin of the main Maipo watershed in two snow surveys carried out at the end of winter seasons 2011 and 2012, and compare basin-wide SWE estimates with a regression tree extrapolation of the observed data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
VAN HEYST,B.J.
1999-10-01
Sulfur and nitrogen oxides emitted to the atmosphere have been linked to the acidification of water bodies and soils and perturbations in the earth's radiation balance. In order to model the global transport and transformation of SO{sub x} and NO{sub x}, detailed spatial and temporal emission inventories are required. Benkovitz et al. (1996) published the development of an inventory of 1985 global emissions of SO{sub x} and NO{sub x} from anthropogenic sources. The inventory was gridded to a 1{degree} x 1{degree} latitude-longitude grid and has served as input to several global modeling studies. There is now a need to providemore » modelers with an update of this inventory to a more recent year, with a split of the emissions into elevated and low level sources. This paper describes the development of a 1990 update of the SO{sub x} and NO{sub x} global inventories that also includes a breakdown of sources into 17 sector groups. The inventory development starts with a gridded global default EDGAR inventory (Olivier et al, 1996). In countries where more detailed national inventories are available, these are used to replace the emissions for those countries in the global default. The gridded emissions are distributed into two height levels (0-100m and >100m) based on the final plume heights that are estimated to be typical for the various sectors considered. The sources of data as well as some of the methodologies employed to compile and develop the 1990 global inventory for SO{sub x} and NO{sub x} are discussed. The results reported should be considered to be interim since the work is still in progress and additional data sets are expected to become available.« less
Changes in the relation between snow station observations and basin scale snow water resources
NASA Astrophysics Data System (ADS)
Sexstone, G. A.; Penn, C. A.; Clow, D. W.; Moeser, D.; Liston, G. E.
2017-12-01
Snow monitoring stations that measure snow water equivalent or snow depth provide fundamental observations used for predicting water availability and flood risk in mountainous regions. In the western United States, snow station observations provided by the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network are relied upon for forecasting spring and summer streamflow volume. Streamflow forecast accuracy has declined for many regions over the last several decades. Changes in snow accumulation and melt related to climate, land use, and forest cover are not accounted for in current forecasts, and are likely sources of error. Therefore, understanding and updating relations between snow station observations and basin scale snow water resources is crucial to improve accuracy of streamflow prediction. In this study, we investigated the representativeness of snow station observations when compared to simulated basin-wide snow water resources within the Rio Grande headwaters of Colorado. We used the combination of a process-based snow model (SnowModel), field-based measurements, and remote sensing observations to compare the spatiotemporal variability of simulated basin-wide snow accumulation and melt with that of SNOTEL station observations. Results indicated that observations are comparable to simulated basin-average winter precipitation but overestimate both the simulated basin-average snow water equivalent and snowmelt rate. Changes in the representation of snow station observations over time in the Rio Grande headwaters were also investigated and compared to observed streamflow and streamflow forecasting errors. Results from this study provide important insight in the context of non-stationarity for future water availability assessments and streamflow predictions.
A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Geland, S.; Perovich, D. K.
2017-12-01
The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.
NASA Astrophysics Data System (ADS)
Yue, Chao; Ciais, Philippe; Li, Wei
2018-02-01
Several modelling studies reported elevated carbon emissions from historical land use change (ELUC) by including bidirectional transitions on the sub-grid scale (termed gross land use change), dominated by shifting cultivation and other land turnover processes. However, most dynamic global vegetation models (DGVMs) that have implemented gross land use change either do not account for sub-grid secondary lands, or often have only one single secondary land tile over a model grid cell and thus cannot account for various rotation lengths in shifting cultivation and associated secondary forest age dynamics. Therefore, it remains uncertain how realistic the past ELUC estimations are and how estimated ELUC will differ between the two modelling approaches with and without multiple sub-grid secondary land cohorts - in particular secondary forest cohorts. Here we investigated historical ELUC over 1501-2005 by including sub-grid forest age dynamics in a DGVM. We run two simulations, one with no secondary forests (Sageless) and the other with sub-grid secondary forests of six age classes whose demography is driven by historical land use change (Sage). Estimated global ELUC for 1501-2005 is 176 Pg C in Sage compared to 197 Pg C in Sageless. The lower ELUC values in Sage arise mainly from shifting cultivation in the tropics under an assumed constant rotation length of 15 years, being 27 Pg C in Sage in contrast to 46 Pg C in Sageless. Estimated cumulative ELUC values from wood harvest in the Sage simulation (31 Pg C) are however slightly higher than Sageless (27 Pg C) when the model is forced by reconstructed harvested areas because secondary forests targeted in Sage for harvest priority are insufficient to meet the prescribed harvest area, leading to wood harvest being dominated by old primary forests. An alternative approach to quantify wood harvest ELUC, i.e. always harvesting the close-to-mature forests in both Sageless and Sage, yields similar values of 33 Pg C by both simulations. The lower ELUC from shifting cultivation in Sage simulations depends on the predefined forest clearing priority rules in the model and the assumed rotation length. A set of sensitivity model runs over Africa reveal that a longer rotation length over the historical period likely results in higher emissions. Our results highlight that although gross land use change as a former missing emission component is included by a growing number of DGVMs, its contribution to overall ELUC remains uncertain and tends to be overestimated when models ignore sub-grid secondary forests.
Reproducing snow making strategies with deterministic modeling and image-based validation
NASA Astrophysics Data System (ADS)
Allamano, P.; Claps, P.; Poggi, D.
2012-04-01
Almost all winter resorts rely on artificial snow production as a surrogate for natural snow when the natural snow cover is missing or inadequate. The sustainability of snowmaking practices represents a debated issue, with two contrasting views: on the one hand the need for enhancing the value of mountain regions in terms of touristic appeal; on the other hand, the question whether the production of artificial snow is sustainable from an environmental point of view. We present here the outcomes of a pilot study aimed at assessing the impact of snowmaking practices on water resources management in the Gressoney valley. The study area is located in the Aosta Valley (North-Western Italy). The total area covered by ski runs is of about 95 ha, with an elevation range of 2000 m and an average snow production over the last 5 seasons of 200.000 m3 of water per year. Daily records of water volume used for artificial snow making were made available by the ski runs administrators for the last 5 seasons along with webcam images taken for the last 2 years. Daily meteorological records (of temperature and precipitation) were retrieved in 5 meteo stations within the district area since 1928 (83 years). The snowpack evolution in the skiable domain is modeled by means of a distributed water balance model which adopts a radiation-temperature index representation to describe snowmelt, and accounts for the topographic complexity of the area by modeling radiation over a very fine terrain grid (10 by 10 m cells). The model requires distributed daily temperature and precipitation as inputs. The snowmelt module is calibrated locally at the five stations. The snow-making module, aimed at synthesizing the production strategies at the district scale, is calibrated by keeping the required average snow cover depths on the ski runs as a free parameter. After calibrating the model parameters, also with the aid of visual comparison of modeled and real snow patterns registered by the webcams, we were able to reconstruct the seasonal evolution of natural and artificial snow cover over the whole district since 1928. A 83 years-long synthetic record of seasonal volumes potentially allocated for artificial snow production was obtained and a preliminary evaluation of the probability to have insufficient resource to face both domestic and snow production needs was performed. The system was found to have a 10% probability of deficiency, with deficit volumes ranging from 10.000 to 100.000 m3.
NASA Astrophysics Data System (ADS)
Vasil'chuk, Yu. K.; Shevchenko, V. P.; Lisitzin, A. P.; Budantseva, N. A.; Vorobiov, S. N.; Kirpotin, S. N.; Krizkov, I. V.; Manasypov, R. M.; Pokrovsky, O. S.; Chizhova, Ju. N.
2016-12-01
The purpose of this work is to study the variability of the isotope composition (δ18O, δD, d exc) of the snow cover on a long transect of Western Siberia from the southern taiga to the tundra. The study of the snow cover is of paleogeographic, paleogeocryological, and paleohydrological value. The snow cover of western Siberia was sampled on a broadly NS transzonal profile from the environs of Tomsk (southern taiga zone) to the eastern coast of the Gulf of Ob (tundra zone) from February 19 to March 4, 2014. Snow samples were collected at 31 sites. Most of the samples represented by fresh snow, i.e., snow that had fallen a day before the moment of sampling were collected in two areas. In the area of Yamburg, the snow specimens collected from the surface are most probably settled snow of different ages. The values of δ18O in the snow from Tomsk to Yamburg varied from-21.89 to-32.82‰, and the values of δD, from-163.3 to-261.2‰. The value of deuterium excess was in the range of 4.06-19.53‰.
Characterization of Mesoscale Predictability
2013-09-30
2009), which, it had been argued, had high mesoscale predictability. More recently, we have considered the prediction of lowland snow in the Puget ...averaged total and perturbation kinetic energy spectra on the 5-km, convection-permitting grid. The ensembles clearly captured the observed k-5/3 total...kinetic energy spectrum at wavelengths less than approximately 400 km and also showed a transition to a roughly k-3 dependence at longer wavelengths
The evaluation and development of the Met Office Unified Model using surface and space borne radar.
NASA Astrophysics Data System (ADS)
Petch, J.
2012-12-01
The Met Office Unified Model is used for the prediction of weather and climate on time scales of hours through to centuries. Therefore, the parametrizations in that model need to work on weather and climate timescale, and with grid-lengths from hundres of meters through to several hundred kilometres. Focusing on the development of the cloud and radiation schemes I will discuss how we are using ground-based remote-sensing observations from Chilbolton (England) and a combination of Cloudsat and Calipso data to evaluate and improve the performance of the model. I will show how the prediction of the clouds has improved since the AR5 version of the model and how we have developed an improved cloud generator to rebresent the sub-grid variability of clouds for radiative transfer.
Role of Smarter Grids in Variable Renewable Resource Integration (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.
2012-07-01
This presentation discusses the role of smarter grids in variable renewable resource integration and references material from a forthcoming ISGAN issue paper: Smart Grid Contributions to Variable Renewable Resource Integration, co-written by the presenter and currently in review.
NASA Astrophysics Data System (ADS)
Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren
2017-09-01
An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.
Examination of snowmelt over Western Himalayas using remote sensing data
NASA Astrophysics Data System (ADS)
Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.
2016-07-01
Snowmelt variability in the Western Himalayas has been examined using remotely sensed snow water equivalent (SWE) and snow-covered area (SCA) datasets. It is seen that climatological snowfall and snowmelt amount varies in the Himalayan region from west to east and from month to month. Maximum snowmelt occurs at the elevation zone between 4500 and 5000 m. As the spring and summer approach and snowmelt begins, a large amount of snow melts in May. Strength and weaknesses of temperature-based snowmelt models have been analyzed for this region by computing the snowmelt factor or the degree-day factor (DDF). It is seen that average DDF in the Himalayas is more in April and less in July. During spring and summer months, melting rate is higher in the areas that have height above 2500 m. The region that lies between 4500 and 5000 m elevation zones contributes toward more snowmelt with higher melting rate. Snowmelt models have been developed to estimate interannual variations of monthly snowmelt amount using the DDF, observed SWE, and surface air temperature from reanalysis datasets. In order to further improve the estimate snowmelt, regression between observed and modeled snowmelt has been carried out and revised DDF values have been computed. It is found that both the models do not capture the interannual variability of snowmelt in April. The skill of the model is moderate in May and June, but the skill is relatively better in July. In order to explain this skill, interannual variability (IAV) of surface air temperature has been examined. Compared to July, in April, the IAV of temperature is large indicating that a climatological value of DDF is not sufficient to explain the snowmelt rate in April. Snow area and snow amount depletion curves over Himalayas indicate that in a small area at high altitude, snow is still observed with large SWE whereas over most of the region, all the snow has melted.
NASA Astrophysics Data System (ADS)
Pervez, M. S.; Budde, M. E.; Rowland, J.
2015-12-01
We extract percent of basin snow covered areas above 2500m elevation from Moderate Resolution Imaging Spectroradiometer (MODIS) 500-meter 8-day snow cover composites to monitor accumulation and depletion of snow in the basin. While the accumulation and depletion of snow cover extent provides an indication of the temporal progression of the snow pack, it does not provide insight into available water for irrigation. Therefore, we use snow model results from the National Operational Hydrologic Remote Sensing Center to quantify snow water equivalent and volume of water available within the snowpack for irrigation. In an effort to understand how water availability, along with its inter-annual variability, relates to the food security of the country, we develop a simple, effective, and easy-to-implement model to identify irrigated areas across the country on both annual and mid-season basis. The model is based on applying thresholds to peak growing season vegetation indices—derived from 250-meter MODIS images—in a decision-tree classifier to separate irrigated crops from non-irrigated vegetation. The spatial distribution and areal estimates of irrigated areas from these maps compare well with irrigated areas classified from multiple snap shots of the landscape from Landsat 5 optical and thermal images over selected locations. We observed that the extents of irrigated areas varied depending on the availability of snowmelt and can be between 1.35 million hectares in a year with significant water deficit and 2.4 million hectares in a year with significant water surplus. The changes in the amount of available water generally can contribute up to a 30% change in irrigated areas. We also observed that the strong correlation between inter-annual variability of irrigated areas and the variability in the country's cereal production could be utilized to predict an annual estimate of cereal production, providing early indication of food security scenarios for the country.
THE RELATIONSHIP BETWEEN {nu}{sub max} AND AGE t FROM ZAMS TO RGB-TIP FOR LOW-MASS STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Y. K.; Gai, N., E-mail: tyk450@163.com, E-mail: ning.gai@hotmail.com
2013-07-10
Stellar age is an important quantity in astrophysics, which is useful for many fields both in the universe and galaxies. It cannot be determined by direct measurements, but can only be estimated or inferred. We attempt to find a useful indicator of stellar age, which is accurate from the zero-age main sequence to the tip of red giant branch for low-mass stars. Using the Yale Rotation and Evolution Code (YREC), a grid of stellar models has been constructed. Meanwhile, the frequency of maximum oscillations' power {nu}{sub max} and the large frequency separation {Delta}{nu} are calculated using the scaling relations. Formore » the stars, the masses of which are from 0.8 M{sub Sun} to 2.8 M{sub Sun }, we can obtain the {nu}{sub max} and stellar age by combing the scaling relations with the four sets of grid models (YREC, Dotter et al., Marigo et al., and YY isochrones). We find that {nu}{sub max} is tightly correlated and decreases monotonically with the age of the star from the main sequence to the red giant evolutionary stages. Moreover, we find that the line shapes of the curves in the Age versus {nu}{sub max} diagram, which is plotted by the four sets of grid models, are consistent for red giants with masses from 1.1 M{sub Sun} to 2.8 M{sub Sun }. For red giants, the differences of correlation coefficients between Age and {nu}{sub max} for different grid models are minor and can be ignored. Interestingly, we find two peaks that correspond to the subgiants and bump of red giants in the Age versus {nu}{sub max} diagram. By general linear least-squares, we make the polynomial fitting and deduce the relationship between log(Age) and log({nu}{sub max}) in red giants' evolutionary state.« less
NASA Astrophysics Data System (ADS)
Prat, O. P.; Nelson, B. R.; Nickl, E.; Ferraro, R. R.
2017-12-01
This study evaluates the ability of different satellite-based precipitation products to capture daily precipitation extremes over the entire globe. The satellite products considered are the datasets belonging to the Reference Environmental Data Records (REDRs) program (PERSIANN-CDR, GPCP, CMORPH, AMSU-A,B, Hydrologic bundle). Those products provide long-term global records of daily adjusted Quantitative Precipitation Estimates (QPEs) that range from 20-year (CMORPH-CDR) to 35-year (PERSIANN-CDR, GPCP) record of daily adjusted global precipitation. The AMSU-A,B, Hydro-bundle is an 11-year record of daily rain rate over land and ocean, snow cover and surface temperature over land, and sea ice concentration, cloud liquid water, and total precipitable water over ocean among others. The aim of this work is to evaluate the ability of the different satellite QPE products to capture daily precipitation extremes. This evaluation will also include comparison with in-situ data sets at the daily scale from the Global Historical Climatology Network (GHCN-Daily), the Global Precipitation Climatology Centre (GPCC) gridded full data daily product, and the US Climate Reference Network (USCRN). In addition, while the products mentioned above only provide QPEs, the AMSU-A,B hydro-bundle provides additional hydrological information (precipitable water, cloud liquid water, snow cover, sea ice concentration). We will also present an analysis of those additional variables available from global satellite measurements and their relevance and complementarity in the context of long-term hydrological and climate studies.
NASA Astrophysics Data System (ADS)
Xiong, C.; Shi, J.; Wang, T.
2017-12-01
Snow and ice is very sensitive to the climate change. Rising air temperature will cause the snowmelt time change. In contrast, the change in snow state will have feedback on climate through snow albedo. The snow melt timing is also correlated with the associated runoff. Ice phenology describes the seasonal cycle of lake ice cover and includes freeze-up and breakup periods and ice cover duration, which is an important weather and climate indicator. It is also important for lake-atmosphere interactions and hydrological and ecological processes. The enhanced resolution (up to 3.125 km) passive microwave data is used to estimate the snowmelt pattern and lake ice phenology on and around Tibetan Plateau. The enhanced resolution makes the estimation of snowmelt and lake ice phenology in more spatial detail compared to previous 25 km gridded passive microwave data. New algorithm based on smooth filters and change point detection was developed to estimate the snowmelt and lake ice freeze-up and break-up timing. Spatial and temporal pattern of snowmelt and lake ice phonology are estimated. This study provides an objective evidence of climate change impact on the cryospheric system on Tibetan Plateau. The results show significant earlier snowmelt and lake ice break-up in some regions.
Validation of Satellite Snow Cover Maps in North America and Norway
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Solberg, Rune; Riggs, George A.
2002-01-01
Satellite-derived snow maps from NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) have been produced since February of 2000. The global maps are available daily at 500-m resolution, and at a climate-modeling grid (CMG) resolution of 1/20 deg (approximately 5.6 km). We compared the 8-day composite CMG MODIS-derived global maps from November 1,2001, through March 21,2002, and daily CMG maps from February 26 - March 5,2002, with National Oceanic and Atmospheric Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System (IMS) 25-km resolution maps for North America. For the Norwegian study area, national snow maps, based on synoptic measurements as well as visual interpretation of AVHRR images, published by the Det Norske Meteorologiske Institutt (Norwegian Meteorological Institute) (MI) maps, as well as Landsat ETM+ images were compared with the MODIS maps. The MODIS-derived maps agreed over most areas with the IMS or MI maps, however, there are important areas of disagreement between the maps, especially when the 8-day composite maps were used. It is concluded that MODIS daily CMG maps should be studied for validation purposes rather than the 8-day composite maps, despite the limitations imposed by cloud obscuration when using the daily maps.
Canopy Effects on Macroscale Snow Sublimation
NASA Astrophysics Data System (ADS)
Svoma, B. M.
2015-12-01
Sublimation of snow cover directly affects snow accumulation, impacting ecosystem processes, soil moisture, soil porosity, biogeochemical processes, wildfire, and water resources. Available energy, the exposed surface area of a snow cover, and exposure time with the atmosphere vary greatly in complex terrain (e.g., aspect, elevation, forest cover), with latitude, and with continentality. It is therefore difficult to scale up results from site specific short term studies. Using the 32-km NARR, the 4-km PRISM, with 30-m terrain and forest cover data, meteorological variables are downscaled to simulate sublimation from canopy intercepted snow and from the snowpack over the Salt River Basin in Arizona for a wet and dry year. Simulations indicate that: (1) total sublimation is highly variable in response to variability in both sublimation rate and snow cover duration; (2) total canopy sublimation is similar for both years while ground sublimation is considerably greater during the wet year; (3) sublimation is a relatively greater contribution to the snow water budget during the dry year (28% vs. 20% of total snowfall); (4) at high elevations, ground sublimation is less in open areas than forested areas during the dry year, while the reverse is evident during the wet year as snowpack lasted longer into spring. While a reduction in leaf area index leads to a reduction of total sublimation due to less interception in both years, ground sublimation increases during the dry year, possibly due to less sheltering from solar radiation and wind. This reduction in sheltering results in a large decrease in snowpack duration (i.e., ten days in spring) at mid-elevations for the wet year, leading to a decrease in ground sublimation. This results in a 500 meter difference in the elevation of maximum sublimation reduction upon reduced leaf area index between the two years. Forest cover properties can vary considerably on short and long time scales through natural (wildfire, bark beetle infestation, drought) and anthropogenic (land management practices) processes. Therefore, understanding how small scale changes impact snow sublimation at larger spatial scales, and how this varies temporally, is critical from ecosystem function and water resources perspectives.
NASA Astrophysics Data System (ADS)
Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.
2014-12-01
In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.
Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout
NASA Astrophysics Data System (ADS)
Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry
2018-03-01
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.
A multi-resolution approach to electromagnetic modeling.
NASA Astrophysics Data System (ADS)
Cherevatova, M.; Egbert, G. D.; Smirnov, M. Yu
2018-04-01
We present a multi-resolution approach for three-dimensional magnetotelluric forward modeling. Our approach is motivated by the fact that fine grid resolution is typically required at shallow levels to adequately represent near surface inhomogeneities, topography, and bathymetry, while a much coarser grid may be adequate at depth where the diffusively propagating electromagnetic fields are much smoother. This is especially true for forward modeling required in regularized inversion, where conductivity variations at depth are generally very smooth. With a conventional structured finite-difference grid the fine discretization required to adequately represent rapid variations near the surface are continued to all depths, resulting in higher computational costs. Increasing the computational efficiency of the forward modeling is especially important for solving regularized inversion problems. We implement a multi-resolution finite-difference scheme that allows us to decrease the horizontal grid resolution with depth, as is done with vertical discretization. In our implementation, the multi-resolution grid is represented as a vertical stack of sub-grids, with each sub-grid being a standard Cartesian tensor product staggered grid. Thus, our approach is similar to the octree discretization previously used for electromagnetic modeling, but simpler in that we allow refinement only with depth. The major difficulty arose in deriving the forward modeling operators on interfaces between adjacent sub-grids. We considered three ways of handling the interface layers and suggest a preferable one, which results in similar accuracy as the staggered grid solution, while retaining the symmetry of coefficient matrix. A comparison between multi-resolution and staggered solvers for various models show that multi-resolution approach improves on computational efficiency without compromising the accuracy of the solution.