Science.gov

Sample records for sub-micron agglomerate-free alumina

  1. A Single Step Lapping and Polishing Process for Achieving Surfaces of Compound Semiconductors with Atomic Flatness using a Sub-micron Agglomerate-free Alumina Slurry

    SciTech Connect

    P.S. Dutta; G. Rajagopalan; J.J. Gutmann; D. Keller; L. Sweet

    2002-08-29

    A novel approach for a single step lapping and final polishing of III-V and II-VI compounds using agglomerate-free alumina slurries has been developed. The agglomerate-free nature of the sub-micron slurry leads to removal rates comparable to conventional slurries (with larger particles of tens of microns) used for semiconductor lapping. Surfaces with minimal surface damage and extremely low surface roughness have been obtained using the sub-micron slurries and a soft pad. Strategies for post polishing surface cleaning have been discussed. The new methodology has been experimented on GaSb, InAs, GaAs, InP, InSb, CdTe, GaInSb, GaInAs, AlGaAsSb, GaInAsSb and HgCdTe. Selected results of surface analyses of GaSb and GaInSb using atomic force microscopy will be presented.

  2. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    SciTech Connect

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul Gabriel; McKenzie, Bonnie Beth; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and

  3. Gelcasting of sub-micron alumina, sialon, and silicon nitride powders

    SciTech Connect

    Omatete, O.O.; Strehlow, R.A.; Walls, C.A.

    1990-01-01

    Gelcasting is a near-net-shape forming technique that is applicable to various types of powders. It is accomplished by casting a concentrated suspension of a commercial ceramic powder in a solution of a polymerizable monomer and then polymerizing. A filled gel is formed, which is dried and processed further. Alumina, sialon, and silicon nitride parts of various geometries have been made and are described. Emphasis is placed on the unit-operations of the process. Because a requirement of the process is a castable suspension of more than 50 vol % solids loading, good dispersion is crucial. Drying, another key process, has been studied extensively. Shrinkage from the cast size occurs during drying and further shrinkage occurs during sintering. Data on the relationship of physical properties of products to some of the more significant processing variables is discussed. Emphasis is also placed on the machinability of the dried gelled body. Because the body at this stage is quite durable, green part machining is feasible. The monomer used in the process is acrylamide, which undergoes a vinyl polymerization. Environmental, safety and hygiene issues are summarized. 9 refs., 6 figs.

  4. Sub-micron filter

    DOEpatents

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  5. A facile approach to the synthesis of non-porous and microporous sub-micron spherical zirconia and alumina-zirconia solid solution.

    PubMed

    Ghotbi, Mohammad Yeganeh; Nasiri, Vida; Rafiee, Mehdi

    2013-01-01

    Amorphous monodisperse sub-micron spherical zirconia and alumina/zirconia solid solution particles were prepared by hydrolysis of zirconium and aluminum salts in ethanol. The heat-treatment process of the amorphous materials in air atmosphere at 500°C for 2h leaded to the production of non-porous zirconia and alumina/zirconia solid solution in tetragonal phase. The alkaline etching process of the as-prepared alumina/zirconia solid solution resulted in the formation of mono-modal microporous material with specific surface area of 125.0 m(2) g(-1) in comparison with 2. 9m(2) g(-1) for the parent material. Thermal analysis of the solid solution revealed that the incorporation of aluminum ions in the zirconia structure has decreased the phase transformation temperature from amorphous to crystalline structure. Moreover, optical study confirmed the presence of oxygen vacancy defect by substitution of tetravalent cations, Zr(4+) by trivalent cations, Al(3+) in zirconia lattice.

  6. Method for sampling sub-micron particles

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1985-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  7. Sub-micron particle sampler apparatus

    DOEpatents

    Gay, Don D.; McMillan, William G.

    1987-01-01

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar.RTM. and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis.

  8. Modeling the Combustion of a Sub-micron Aluminum Particle (PREPRINT)

    DTIC Science & Technology

    2011-05-18

    Boltzmann constant, is the emissivity of the alumina, and Nu is the convective Nusselt number . 5 Approved for public release; distribution unlimited...currently valid OMB control number . PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 24-05-2011 2. REPORT TYPE Journal...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Modeling the Combustion of a Sub-micron Aluminum Particle 5b. GRANT

  9. Sub-micron particle sampler apparatus and method for sampling sub-micron particles

    DOEpatents

    Gay, D.D.; McMillan, W.G.

    1984-04-12

    Apparatus and method steps for collecting sub-micron sized particles include a collection chamber and cryogenic cooling. The cooling is accomplished by coil tubing carrying nitrogen in liquid form, with the liquid nitrogen changing to the gas phase before exiting from the collection chamber in the tubing. Standard filters are used to filter out particles of diameter greater than or equal to 0.3 microns; however, the present invention is used to trap particles of less than 0.3 micron in diameter. A blower draws air to said collection chamber through a filter which filters particles with diameters greater than or equal to 0.3 micron. The air is then cryogenically cooled so that moisture and sub-micron sized particles in the air condense into ice on the coil. The coil is then heated so that the ice melts, and the liquid is then drawn off and passed through a Buchner funnel where the liquid is passed through a Nuclepore membrane. A vacuum draws the liquid through the Nuclepore membrane, with the Nuclepore membrane trapping sub-micron sized particles therein. The Nuclepore membrane is then covered on its top and bottom surfaces with sheets of Mylar and the assembly is then crushed into a pellet. This effectively traps the sub-micron sized particles for later analysis. 6 figures.

  10. An Advanced Wafer Stepper For Sub-Micron Fabrication

    NASA Astrophysics Data System (ADS)

    Mayer, Herbert E.; Loebach, Ernst W.

    1987-09-01

    An advanced wafer stepper is presented addressing the specific problems involved by sub-micron lithography such as alignment and focusing to multilayer resist films. New sub-systems were developed while maintaining principles well proven in a previous design. The system is described emphasizing the new sub-systems, and performance data are presented.

  11. Scanning SQUID susceptometers with sub-micron spatial resolution

    SciTech Connect

    Kirtley, John R. Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  12. Scanning SQUID susceptometers with sub-micron spatial resolution

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.-K.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.

    2016-09-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  13. Discovering sub-micron ice particles across Dione' surface

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Schenk, Pual; Tosi, Federico; Clark, Roger; Dalle Ore, Cristina; Combe, Jean-Philippe

    2015-11-01

    Water ice is the most abundant component of Saturn’s mid-sized moons. However, these moons show an albedo asymmetry - their leading sides are bright while their trailing side exhibits dark terrains. Such differences arise from two surface alteration processes: (i) the bombardment of charged particles from the interplanetary medium and driven by Saturn’s magnetosphere on the trailing side, and (ii) the impact of E-ring water ice particles on the satellites’ leading side. As a result, the trailing hemisphere appears to be darker than the leading side. This effect is particularly evident on Dione's surface. A consequence of these surface alteration processes is the formation or the implantation of sub-micron sized ice particles.The presence of such particles influences and modifies the surfaces' spectrum because of Rayleigh scattering by the particles. In the near infrared range of the spectrum, the main sub-micron ice grains spectral indicators are: (i) asymmetry and (ii) long ward minimum shift of the absorption band at 2.02 μm (iii) a decrease in the ratio between the band depths at 1.50 and 2.02 μm (iv) a decrease in the height of the spectral peak at 2.6 μm (v) the suppression of the Fresnel reflection peak at 3.1 μm and (vi) the decrease of the reflection peak at 5 μm relative to those at 3.6 μm.We present results from our ongoing work mapping the variation of sub-micron ice grains spectral indicators across Dione' surface using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). To characterize the global variations of spectral indicators across Dione' surface, we divided it into a 1°x1° grid and then averaged the band depths and peak values inside each square cell.We will investigate if there exist a correspondence with water ice abundance variations by producing water ice' absorption band depths at 1.25, 1.52 and 2.02 μm, and with surface morphology by comparing the results with ISS color maps in the ultraviolet, visible and infrared

  14. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    EPA Science Inventory

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  15. Separating the signal from the noise: Expanding flow cytometry into the sub-micron range.

    EPA Science Inventory

    Cytometry Part A Special Section: Separating the signal from the noise: Expanding flow cytometry into the sub-micron range. The current Cytometry Part A Special Section presents three studies that utilize cytometers to study sub-micron particles. The three studies involve the 1...

  16. Deciphering sub-micron ice particles on Enceladus surface

    NASA Astrophysics Data System (ADS)

    Scipioni, F.; Schenk, P.; Tosi, F.; D'Aversa, E.; Clark, R.; Combe, J.-Ph.; Ore, C. M. Dalle

    2017-07-01

    The surface of Saturn's moon Enceladus is composed primarily by pure water ice. The Cassini spacecraft has observed present-day geologic activity at the moon's South Polar Region, related with the formation and feeding of Saturn's E-ring. Plumes of micron-sized particles, composed of water ice and other non-ice contaminants (e.g., CO2, NH3, CH4), erupt from four terrain's fractures named Tiger Stripes. Some of this material falls back on Enceladus' surface to form deposits that extend to the North at ∼40°W and ∼220°W, with the highest concentration found at the South Pole. In this work we analyzed VIMS-IR data to identify plumes deposits across Enceladus' surface through the variation in band depth of the main water ice spectral features. To characterize the global variation of water ice band depths across Enceladus, the entire surface was sampled with an angular resolution of 1° in both latitude and longitude, and for each angular bin we averaged the value of all spectral indices as retrieved by VIMS. The position of the plumes' deposits predicted by theoretical models display a good match with water ice band depths' maps on the trailing hemisphere, whereas they diverge significantly on the leading side. Space weathering processes acting on Enceladus' surface ionize and break up water ice molecules, resulting in the formation of particles smaller than one micron. We also mapped the spectral indices for sub-micron particles and we compared the results with the plumes deposits models. Again, a satisfactory match is observed on the trailing hemisphere only. Finally, we investigated the variation of the depth of the water ice absorption bands as a function of the phase angle. In the visible range, some terrains surrounding the Tiger Stripes show a decrease in albedo when the phase angle is smaller than 10°. This unusual effect cannot be confirmed by near infrared data, since observations with a phase angle lower than 10° are not available. For phase angle

  17. Membrane fouling caused by sub-micron particles in a mixed liquor suspension of an MBR.

    PubMed

    Kimura, K; Ogyu, R; Miyoshi, T; Naruse, T; Tsuyuhara, T; Watanabe, Y

    2013-01-01

    Membrane fouling needs to be mitigated for widespread use of membrane bioreactors (MBRs). It has been pointed out that particles with small sizes found in supernatants (sub-micron particles) of mixed liquor suspensions of MBRs are important in the evolution of membrane fouling of this technology. However, information on characteristics of sub-micron particles in MBRs is still insufficient. In this study, a pilot-scale MBR treating municipal wastewater was used to investigate and characterize sub-micron particles in an MBR and to identify the size fraction(s) responsible for irreversible fouling in an MBR. It was clearly shown that characteristics of sub-micron particles in the MBR varied considerably depending on their sizes. Results of Fourier transform infrared (FTIR) analysis and monosaccharide analysis suggested that irreversible fouling in this study was mainly caused by the specific size fraction of 0.1-0.45 μm, which was close to the size of micropores of the membrane used. Pore plugging might explain this to some extent.

  18. Generating Sub-Micron Features On Rough Surfaces Using Optical Trap Assisted Nanopatterning

    SciTech Connect

    Tsai, Yu-Cheng; Fardel, Romain; Arnold, Craig B.

    2010-10-08

    Near-field intensity enhancement enables laser modification of materials with feature sizes below the classical diffraction limit. However, the need to maintain close distances between the objective element and the substrate typically limit demonstrations of this technology to flat surfaces, even though there are many cases where the ability to produce sub-micron features on rough or structured surfaces are needed. Here, we show the use of a new technique, optical trap assisted nanopatterning (OTAN), for the production of nanoscale features on rippled substrates. The ability to position a microbead near-field objective close to the surface without the need for active feedback and control allows one to continuously move the bead across a rough surface without sticking. Sub-micron patterning of polyimide is demonstrated on surfaces with 1.1 {mu}m steps showing good uniformity. Finally, the enabling technology allows for straightforward parallelization where multiple patterns can be created simultaneously over surface.

  19. A modular process for integrating thick polysilicon MEMS devices with sub-micron CMOS

    NASA Astrophysics Data System (ADS)

    Yasaitis, John A.; Judy, Michael; Brosnihan, Tim; Garone, Peter M.; Pokrovskiy, Nikolay; Sniderman, Debbie; Limb, Scott; Howe, Roger T.; Boser, Bernhard E.; Palaniapan, Moorthi; Jiang, Xuesong; Bhave, Sunil

    2003-01-01

    A new MEMS process module, called Mod MEMS, has been developed to monolithically integrate thick (5-10um), multilayer polysilicon MEMS structures with sub-micron CMOS. This process is particularly useful for advanced inertial MEMS products such as automotive airbag accelerometers where reduced cost and increased functionality is required, or low cost, high performance gyroscopes where thick polysilicon (>6um) and CMOS integration is required to increase poly mass and stiffness, and reduce electrical parasitics in order to optimize angular rate sensing. In this paper we will describe the new modular process flow, development of the critical unit process steps, integration of the module with a foundry sub-micron CMOS process, and provide test data on several inertial designs fabricated with this process.

  20. Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour.

    PubMed

    Ahadian, Samad; Banan Sadeghian, Ramin; Yaginuma, Shin; Ramón-Azcón, Javier; Nashimoto, Yuji; Liang, Xiaobin; Bae, Hojae; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu; Nakayama, Koji S; Khademhosseini, Ali

    2015-11-01

    Hydrogels with tunable electrical and mechanical properties have a wide range of biological applications in tissue engineering, biosensing, and biorobotics. In this work, palladium-based metallic glass sub-micron wires (PdMGSMWs) were employed to enhance the conductivity and mechanical strength of gelatin methacryloyl (GelMA) gels. The values of electrical resistivity and stiffness of hybrid GelMA-PdMGSMW hydrogels were varied by the concentration of the sub-micron wires in the gels. Compared with pristine GelMA gels, hybrid GelMA-PdMGSMW gels were more efficient in regulating adhesion and spreading of C2C12 myoblasts. Formation, contractility, and metabolic activity of C2C12 myotubes in GelMA hydrogels also increased upon inclusion of the PdMGSMWs and applying electrical stimulation. The latter phenomenon is likely because of the electrical conductivity of hybrid GelMA gels.

  1. Preparation of sub-micron nitrocellulose particles for improved combustion behavior.

    PubMed

    Zhang, Xin; Weeks, Brandon L

    2014-03-15

    A novel method to prepare sub-micron nitrocellulose particles with spherical shape is demonstrated. The morphology of the nitrocellulose can be controlled by the solvent and the growth temperature. Using dimethylformamide (DMF) at a growth temperature is 5°C, reproducibly yielded spherical nitrocellulose particles. The final diameter of the prepared nitrocellulose particles can be further tuned by concentration. The smallest particles in this study were found to have diameters of 500nm at a concentration of 5-10mg/ml with 2 micron spheres formed at 30mg/ml. Furthermore, the thermal properties and the burn rates of the prepared materials are studied by differential scanning calorimetry and digital high-speed photography, respectively. In comparison to the bulk nitrocellulose material, the sub-micron nitrocellulose particles have lower decomposition activation energy, a 350% increase in burn rate, and a more complete combustion.

  2. Generating Sub-Micron Features On Rough Surfaces Using Optical Trap Assisted Nanopatterning

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Cheng; Fardel, Romain; Arnold, Craig B.

    2010-10-01

    Near-field intensity enhancement enables laser modification of materials with feature sizes below the classical diffraction limit. However, the need to maintain close distances between the objective element and the substrate typically limit demonstrations of this technology to flat surfaces, even though there are many cases where the ability to produce sub-micron features on rough or structured surfaces are needed. Here, we show the use of a new technique, optical trap assisted nanopatterning (OTAN), for the production of nanoscale features on rippled substrates. The ability to position a microbead near-field objective close to the surface without the need for active feedback and control allows one to continuously move the bead across a rough surface without sticking. Sub-micron patterning of polyimide is demonstrated on surfaces with 1.1 μm steps showing good uniformity. Finally, the enabling technology allows for straightforward parallelization where multiple patterns can be created simultaneously over surface.

  3. 1.55 Micrometer Sub-Micron Finger, Interdigitated MSM Photodetector Arrays with Low Dark Current

    DTIC Science & Technology

    2010-02-02

    morphology is generally smoother. These transparent conducting oxides may also be used as electrodes in solar cells and flat-panel display devices...REPORT Final Report of 1.55 UM Sub-Micron Finger, Interdigitated MSM Photodetector Arrays with Low Dark Current 14. ABSTRACT 16. SECURITY... Interdigitated MSM Photodetector Arrays with Low Dark Current Sponsored by: U. S. Army Research Office Dr. Michael D. Gerhold Contract

  4. Oxidation of synthesized sub-micron pyrite (FeS2) in seawater

    NASA Astrophysics Data System (ADS)

    Gartman, Amy; Luther, George W.

    2014-11-01

    Synthesized sub-micron pyrite was oxidized in 0.2 μm-filtered Sargasso seawater in order to investigate the rate of oxidation and reaction end-products. Over the initial phase of the reaction, the sub-micron pyrite behaved as a soluble entity as the initial rate of oxidation was determined to be first order with respect to both pyrite and oxygen concentration, where the rate is described as -dFeS2/dt = k[FeS2][O2] and k, the rate constant, is 7.60 × 10-5 + 6.29 × 10-5 μM-1 day-1 at 25 °C. Oxidation proceeds inward from an initial surface oxidation of the pyrite and the formation of an amorphous mixed valence Fe(II)/(III) oxide surrounding the remaining pyrite core. The oxidation rates obtained through this study are up to two orders of magnitude slower than reported in previous pyrite oxidation studies using ground rather than synthesized pyrite at similar pH values. These results may be applied anywhere seawater and sub-micron pyrite are found, including hydrothermal vents, salt marshes and marine sediments.

  5. Ordered YBCO sub-micron array structures induced by pulsed femtosecond laser irradiation.

    PubMed

    Luo, C W; Lee, C C; Li, C H; Shih, H C; Chen, Y-J; Hsieh, C C; Su, C H; Tzeng, W Y; Wu, K H; Juang, J Y; Uen, T M; Chen, S P; Lin, J-Y; Kobayashi, T

    2008-12-08

    We report on the formation of organized sub-micron YBa(2)Cu(3)O(7) (YBCO) dots induced by irradiating femtosecond laser pulses on YBCO films prepared by pulse laser deposition with fluence in the range of 0.21 approximately 0.53 J/cm(2). The morphology of the YBCO film surface depends strongly on the laser fluences irradiated. At lower laser fluence (approximately 0.21 J/cm(2)) the morphology was pattern of periodic ripples with sub-micrometer spacing. Slightly increasing the laser fluence to 0.26 J/cm(2) changes the pattern into organized sub-micron dots with diameters ranging from 100 nm to 800 nm and height of 150 nm. Further increase of the laser fluence to over 0.32 J/cm(2), however, appeared to result in massive melting and led to irregular morphology. The mechanism and the implications of the current findings will be discussed. Arrays of YBCO sub-micron dots with T(c) = 89.7 K were obtained.

  6. Generation of sub-micron particles and secondary pollutants from building materials by ozone reaction

    NASA Astrophysics Data System (ADS)

    Aoki, Taisuke; Tanabe, Shin-ichi

    This study reports results from two different experiments examining reactions between ozone and common building materials that can lead to the formation of secondary products and particulate-phase materials. Monitored species include sub-micron particles and volatile organic compounds (VOCs). In the first set of experiments, various building materials were placed in a 20 L stainless-steel chamber and exposed to ozone. The materials included expanded polystyrene, a natural rubber adhesive, cedar board, Japanese Cyprus board and silver fir board, as well as d-limonene, which is a known constituent of certain woods and cleaning products. The combination of ozone and either d-limonene, cedar board or cypress board produced sub-micron particles, with most of the increase occurring in the size range of 0.01- 0.5μm diameter. This was not observed for the other materials. In the case of cedar board, the consequence of ozone exposure over an extended time interval was monitored. As the exposure time elapsed, the concentration of sub-micron particles moderately decreased. In the second set of experiments, unwaxed or waxed plastic tiles were placed in the 20 L chamber and exposed to ozone. Sub-micron particles and organic compounds were measured during the course of the experiments. In the case of the waxed tile, the number of 0.01- 1.0μm size particles grew about 50×108particlesm-3; particle growth was significantly less for the un-waxed tile. For both the waxed and un-waxed tiles, the emission rates of heptane, nonane, nonanal, and decanal increased after ozone was added to the supply air. (However, it is not clear if some or all of this production was due to ozone reacting with the sorbent used for sampling or with compounds captured by the sorbent.) This study provides further evidence that ozone-initiated reactions with building materials can be a significant source of both sub-micron particles and secondary organic compounds in indoor environments.

  7. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness.

    PubMed

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or antiinflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural antithrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (< 60 microm) compared with coarse grain NiTi compacts (< 100 microm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features.

  8. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  9. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    NASA Astrophysics Data System (ADS)

    Hu, Kuan-Kan; Chang, Ruey-Dar; Woon, Wei Yen

    2015-10-01

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  10. Suppression of transient enhanced diffusion in sub-micron patterned silicon template by dislocation loops formation

    SciTech Connect

    Hu, Kuan-Kan; Woon, Wei Yen; Chang, Ruey-Dar

    2015-10-15

    We investigate the evolution of two dimensional transient enhanced diffusion (TED) of phosphorus in sub-micron scale patterned silicon template. Samples doped with low dose phosphorus with and without high dose silicon self-implantation, were annealed for various durations. Dopant diffusion is probed with plane-view scanning capacitance microscopy. The measurement revealed two phases of TED. Significant suppression in the second phase TED is observed for samples with high dose self-implantation. Transmission electron microscopy suggests the suppressed TED is related to the evolution of end of range defect formed around ion implantation sidewalls.

  11. Hybridization between nanocavities for a polarimetric color sorter at the sub-micron scale.

    PubMed

    Segal, Elad; Weissman, Adam; Gachet, David; Salomon, Adi

    2016-08-18

    Metallic hole arrays have been recently used for color generation and filtering due to their reliability and color tunability. However, color generation is still limited to several microns. Understanding the interaction between the individual elements of the whole nanostructure may push the resolution to the sub-micron level. Herein, we study the hybridization between silver nanocavities in order to obtain active color generation at the micron scale. To do so, we use five identical triangular cavities which are separated by hundreds of nanometers from each other. By tuning either the distance between the cavities or the optical polarization state of the incoming field, the transmitted light through the cavities is actively enhanced at specific frequencies. Consequently, a rainbow of colors is observed from a sub-micron scale unit. The reason for this is that the metallic surface plays a vital role in the hybridization between the cavities and contributes to higher frequency modes. Cathodoluminescence measurements have confirmed this assumption and have revealed that these five triangular cavities act as a unified entity surrounded by the propagated surface plasmons. In such plasmonic structures, multi-color tuning can be accomplished and may open the possibility to improve color generation and high-quality pixel fabrication.

  12. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  13. Sub-micron alignment for nuclear emulsion plates using low energy electrons caused by radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Miyamoto, S.; Ariga, A.; Fukuda, T.; Kazuyama, M.; Komatsu, M.; Nakano, T.; Niwa, K.; Sato, O.; Takahashi, S.

    2007-06-01

    Nuclear emulsion plates are employed in three-dimensional charged particle detectors that have sub-micron position resolution over 1 m2 with no dead space and no dead time. These detectors are suitable for the study of short-lived particle decays, and direct detection of neutrino interactions of all flavors. Typically emulsion plates are used in a stacked structure. Precise alignment between plates is required for physics analysis. The most accurate alignment method is to use tracks passing through the emulsion plates. The accuracy is about 0.2 μm. However, in an experiment with low track density alignment accuracy decreases to 20 μm because of plate distortion and it becomes more difficult to perform the analysis. This paper describes a new alignment method between emulsion plates by using trajectories of low energy electrons originating from environmental radioactive isotopes. As a trial emulsion plates were exposed to β-rays and γ-rays from K40. The trajectories which passed through emulsion layers were detected by a fully automated emulsion readout system. Using this method, the alignment between emulsion plates is demonstrated to be sub-micron. This method can be applied to many nuclear emulsion experiments. For example, the location of neutrino interaction vertices in the OPERA experiment can benefit from this new technique.

  14. Characterization of the mean force on sub-micron particles in a standing wave field

    NASA Astrophysics Data System (ADS)

    Imani Jajarmi, Ramin; Robert, Etienne; KTH Mechanics Team

    2014-11-01

    The concentration of submicron particles suspended in air by means of a standing wave field is investigated experimentally. The focus in on molecular effects for very small particles and the quantification of the acoustophoretic force as particle size enters the sub-micron range. The experiment consists of a rectangular cross-section channel, with variable height, through which air seeded with TiO2 and salt particles is circulated. An electrostatic transducer generates a standing wave with frequencies in the 40--100 KHz range and the particle concentration is measured qualitatively using laser light scattering. Quantitative measurements of the particle number density and size distribution is obtained by isokinetic sampling downstream of the transducer. A Scanning Mobility Particle Sizer (SMPS) is used for the characterization of the aerosol as a function of position in the standing wave. The results gathered include the effects of acoustic (frequency, amplitude) and flow (bulk velocity, turbulence intensity) parameters on the separation efficiency. This allows for the estimation of the acoustic force acting on sub-micron particles and comparison with existing theoretical models that do not take into account molecular effects.

  15. The sub-micron resolution X-ray spectroscopy beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    De Andrade, V.; Thieme, J.; Northrup, P.; Yao, Y.; Lanzirotti, A.; Eng, P.; Shen, Q.

    2011-09-01

    For many research areas such as life, environmental, earth or material sciences, novel analytical resources have to be developed for an advance understanding of complex natural and engineered systems that are heterogeneous on the micron to the tenths of microns scale. NSLS-II at BNL will be a synchrotron radiation source with an ultra-high brilliance delivering a high current (500 mA). One of the 1st six NSLS-II beamlines will be the Sub-micron Resolution X-ray spectroscopy beamline (SRX), dedicated as an analytical tool to study complex systems on a sub-micron length scale. SRX will comprise two branches thanks to a canted setup with two undulators: the first branch using Kirkpatrick-Baez mirrors as focusing optics will cover the energy range of 4.65-23 keV, allowing for XANES experiments from the Ti to the Rh K-edge. Thanks to a horizontally deflecting double crystal monochromator with maximum stability, a set of slits located on the secondary source, and two sets of complementary and quickly interchangeable KB mirrors, spectroscopy with very high spectral and spatial resolution will be achieved. The spot size will almost fully cover a range from 60×60 to 1300×500 nm 2, providing an attractive adaptability of the observation scale. A 1.5 m long IVU21 will serve as a light source. The expected high flux in a sub-micron-spot (5×10 12 and 7×10 13 ph s -1 at maximum and lowest resolutions) will open new possibilities for spectromicroscopy of trace elements. The 2nd canted undulator will serve as an independent light source for the second branch designed for experiments with X-ray energies in the range of 2-15 keV. Using Fresnel zone plates, the spatial resolution aimed for is around 30 nm with up to 7×10 9 ph s -1 in the spot. This branch would be attractive for many biological applications from life and environmental science due to low-Z elements of interest within that energy range. In both experimental stations, X-ray fluorescence will be used for imaging

  16. Synthesis of sub-micron nickel particles coated onto aluminum powders via a modified polyol process

    NASA Astrophysics Data System (ADS)

    Cheng, J. L.; Hng, H. H.; Ng, H. Y.; Soon, P. C.; Lee, Y. W.

    2008-10-01

    Aluminum is commonly used as a fuel additive for propellants. The main limitations to its use lie in comparatively slow ignition and oxidation/combustion kinetics. Combustion performance of aluminized propellants can be improved through the use of Ni-coated Al particles. Sub-micron to nano-sized particles, with their increased reactivity, also improve combustion performance. Hence, in these contexts, fine Ni particles coated onto commercially available micron-sized Al powders using a modified polyol process were synthesized and evaluated. Ni-coated Al powders of various compositions produced by this method showed significant improvement in oxidation kinetics compared to untreated Al powders. The onset oxidation temperatures for the Ni-coated Al powders were found to be significantly reduced compared to pure untreated Al.

  17. Recording oscillations of sub-micron size cantilevers by extreme ultraviolet Fourier transform holography.

    PubMed

    Monserud, Nils C; Malm, Erik B; Wachulak, Przemyslaw W; Putkaradze, Vakhtang; Balakrishnan, Ganesh; Chao, Weilun; Anderson, Erik; Carlton, David; Marconi, Mario C

    2014-02-24

    We recorded the fast oscillation of sub-micron cantilevers using time-resolved extreme ultraviolet (EUV) Fourier transform holography. A tabletop capillary discharge EUV laser with a wavelength of 46.9 nm provided a large flux of coherent illumination that was split using a Fresnel zone plate to generate the object and the reference beams. The reference wave was produced by the first order focus while a central opening in the zone plate provided a direct illumination of the cantilevers. Single-shot holograms allowed for the composition of a movie featuring the fast oscillation. Three-dimensional displacements of the object were determined as well by numerical back-propagation, or "refocusing" of the electromagnetic fields during the reconstruction of a single hologram.

  18. Progress towards sub-micron hard x-ray imaging using elliptically bent mirrors

    SciTech Connect

    MacDowell, A.A.; Celestre, R.; Chang, C.H.; Frank, K.

    1997-07-01

    Of the many methods used to focus x-rays, the use of mirrors with an elliptical curvature shows the most promise of providing a sub-micron white light focus. Our group has been developing the techniques of controlled bending of mirror substrates in order to produce the desired elliptical shape. We have been successful in producing surfaces with the required microradian slope error tolerances. Details of the bending techniques used, results from laboratory slope error measurements using a Long Trace Profiler (LTP) and data from the measurement of focus shape using knife edge and imaging methods using x-rays in the 5-12 KeV energy range are presented. The development of a white light focusing opens many possibilities in diffraction and spectroscopic studies.

  19. Initial Development of a sub-micron Angle Resolved Photoemission Microscope

    NASA Astrophysics Data System (ADS)

    Bostwick, Aaron; McChesney, Jessica; Rotenberg, Eli

    2007-03-01

    -abstract- We have begun initial development of a sub-micron angle resolved photoemmision microscope. The current test system consists of an SES-200 detector and a zone plate based focusing system operating at 180eV photon energy. We have measured angle resolved spectra using the SES-200 angle-dispersive collection mode at resolution of ˜500nm. We have used this to show orientational contrast on highly oriented pyrolytic graphite (HOPG). The domains on HOPG are on the order of 1-20 microns and are well orientated along the c-axis but show random azimuthal order. We are able to clearly image these domains even though they show no chemical contrast, and can measure the single crystal band structure on disordered polycrystalline sample. We believe this demonstrates the promise of such a system for the measurement of materials which cannot be found in bulk single crystals.

  20. Deep Sub Micron 65nm Program- Perspectives for the Next Generation Satellites

    NASA Astrophysics Data System (ADS)

    Hili, Laurent; Dugoujon, Laurent; Roche, Phillippe; Malou, Florence; Perdu, Phillippe

    2012-08-01

    This paper presents the recent advances in terms of European digital microelectronics technologies for space applications. This article exemplifies the case of the Deep Sub-Micron 65nm program led by ESA and CNES in partnership with semiconductor industry, ST Microelectronics. Recent programs such as Inmarsat XL (Astrium) have exacerbated the limits of the current digital ASIC (Application Specific Integrated Circuit). Those limits have been reached in all areas; transistors/gates integration, speed, power and number of available IOs. The DSM 65nm program shows how those limits will be overcome thanks to breakthrough technologies such as high speed serial links (HSSL / 6.25Gbps), high pin count flip chip package technology (1600 pins).

  1. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  2. Development of an electrostatic propulsion engine using sub-micron powders as the reaction mass

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Kendall, K. R.

    1991-01-01

    Asteroid sample return missions would benefit from development of an improved rocket engine. Chemical rockets achieve their large thrust with high mass consumption rate (dm/dt) but low exhaust velocity; therefore, a large fraction of their total mass is fuel. Present day ion thrusters are characterized by high exhaust velocity, but low dm/dt; thus, they are inherently low thrust devices. However, their high exhausy velocity is poorly matched to typical mission requirements and therefore, wastes energy. A better match would be intermediate between the two forms of propulsion. This could be achieved by electrostatically accelerating solid powder grains, raising the possibility that interplanetary material could be processed to use as reaction mass. An experiment to study the charging properties of sub-micron sized powder grains is described. If a suitable material can be identified, then it could be used as the reaction mass in an electrostatic propulsion engine. The experiment employs a time of flight measurement to determine the exhaust velocity (v) of various negatively charged powder grains that were charged and accelerated in a simple device. The purpose is to determine the charge to mass ratio that can be sustained for various substances. In order to be competitive with present day ion thrusters, a specific impulse (v/g) of 3000 to 5000 seconds is required. Preliminary results are presented. More speculatively, there are some mission profiles that would benefit from collection of reaction mass at the remote asteroid site. Experiments that examine the generation of sub-micron clusters by electrostatic self-disruption of geologically derived material are planned.

  3. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  4. Quantification of leakage of sub-micron aerosols through surgical masks and facemasks for pediatric use.

    PubMed

    Guha, Suvajyoti; McCaffrey, Brady; Hariharan, Prasanna; Myers, Matthew R

    2017-03-01

    Surgical respirators, surgical masks (SMs), and facemasks for pediatric use (FPUs) are routinely used in the U.S. healthcare industry as personal protective equipment (PPE) against infectious diseases. While N95s including surgical respirators have been routinely studied, SMs and FPUs have not received as much attention, particularly in the context of aerosolized threats. This is because SMs and PFUs are not designed to protect against sub-micron aerosols. However, with the possibility of new or re-emerging airborne diseases or bio-aerosol weapons lingering, combined with the limited availability of respirators and logistical issues associated with fit-testing millions, the general adult and pediatric populations may elect to wear SMs and FPUs, respectively, in the case of a pandemic or a bio-terrorist attack. When a person dons a PPE, gaps are created between the wearer's face and the PPE, and aerosols leaking through these gaps can be an important contributor to the risk of infection compared to filtered aerosols. To understand and quantify the contribution of leakage of aerosols through gaps, with particular emphasis on SMs and FPUs, this study investigated leakage of charge-neutralized, polydispersed, dried sodium-chloride aerosols across different brands of PPE. Different breathing rates, aerosol particle sizes, and gap sizes were considered. A few major findings of this study were: (a) leakage, is not a strong function of sub-micron aerosol size; (b) for the same gap size, leakage of aerosols through surgical respirators can often be higher than in SMs and FPUs; and (c) as the gap size increases, the increase in leakage through surgical respirators is higher compared for SMs and FPUs, implying that some SMs and FPUs that possess electret layers may be preferable to N95s that have not been fit-tested. The results obtained can also be used to explain conflicting findings from clinical studies on the effectiveness of SMs when compared to N95s and can be input

  5. Chemical Mapping of Proterozoic Organic Matter at Sub-Micron Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Robert, Francois; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S.

    2006-01-01

    We have used a NanoSIMS ion microprobe to map sub-micron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae from the approximately 0.85 Ga Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments reveal distinct wall-and sheath-like structures enriched in C, N and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibit filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N and S. By analogy to data from the well-preserved microfossils, these structures are interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Because the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings open a large body of generally neglected material to in situ structural, chemical, and isotopic study. Our results also offer new criteria for assessing biogenicity of problematic kerogenous materials and thus can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.

  6. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-09-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  7. Scalable sub-micron patterning of organic materials toward high density soft electronics

    SciTech Connect

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong -Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun -Hi; Noh, Yong -Young; Yun Jaung, Jae; Kim, Yong -Hoon; Kyu Park, Sung

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  8. Scalable sub-micron patterning of organic materials toward high density soft electronics

    DOE PAGES

    Kim, Jaekyun; Kim, Myung -Gil; Kim, Jaehyun; ...

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. Inmore » this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. As a result, the successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.« less

  9. Measuring Sub-micron Size Fractionated Particulate Matter on Aluminum Impactor Disks

    SciTech Connect

    Buchholz, B A; Zermeno, P; Hwang, H; Young, T M

    2009-07-28

    Sub-micron sized airborne particulate matter is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to size fractionate particulate matter (PM) into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56-100 nm, 100-180 nm, 180-320 nm, 320-560 nm, 560-1000 nm, and 1000-1800 nm. Since MOUDI have low flow rates, it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20-200 microgram C) and large aluminum substrate ({approx}25 mg Al) presents several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for {sup 14}C-AMS analysis of PM deposited on Al impact foils.

  10. Conformational transitions of cytochrome c in sub-micron-sized capsules at air/buffer interface.

    PubMed

    Jaganathan, Maheshkumar; Dhathathreyan, Aruna

    2014-09-30

    This work presents the design of sub-micron-sized capsules of Cytochrome c (cyt c) in the range 300-350 nm and the conformational transitions of the protein that occur when the films of these capsules spread at the air/buffer interface are subjected to repeated compression-expansion cycles. Steady state fluorescence, time-resolved fluorescence, and circular dichroic (CD) spectra have been used to study the highly compact native conformation (70% helicity) of the protein in the capsules and its stability has been analyzed using cyclic voltammetry. The capsules have been characterized using zeta sizer and high resolution transmission electron microscopy (HRTEM). Surface concentration-surface pressure (Γ-π) isotherms of the films of the capsules spread at air/buffer interface following compression-expansion show destabilizing effect on cyt c. FTIR and CD spectra of these films skimmed from the surface show that the protein transitions gradually from its native helical to an anomalous beta sheet aggregated state. This results from a competition between stabilizing hydrated polar segments of the protein in the capsule and destabilizing nonspecific hydrophobic interactions arising at the air/buffer interface. This 2D model could further our understanding of the spatial and temporal roles of proteins in confined spaces and also in the design of new drug delivery vehicles using proteins.

  11. Local structure of human hair spatially resolved by sub-micron X-ray beam

    PubMed Central

    Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth

    2015-01-01

    Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair’s axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle’s boundary in which the IFs are aligned with the hair’s axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems. PMID:26617337

  12. From particle self-assembly to functionalized sub-micron protein patterns

    NASA Astrophysics Data System (ADS)

    Blättler, T. M.; Binkert, A.; Zimmermann, M.; Textor, M.; Vörös, J.; Reimhult, E.

    2008-02-01

    Biologically relevant nanopatterns are useful platforms to address fundamental questions, for example, regarding protein-protein and cell-protein interactions. For the creation of nanopatterns, complex and expensive instrumentation is often needed. We present a simple but versatile patterning method using a combination of particle and subsequent molecular self-assembly to produce ordered structures in the micron and sub-micron range. Polystyrene particles were, in a first step, assembled via dip-coating or dried in a drying cell. Silicon wafers and glass slides coated with SiO2 and a top layer of 11 nm of TiO2 were used as substrates. Large hexagonally ordered particle monolayers were formed with high reproducibility. These were subsequently shrunk in a controlled manner by exposure to a O2/N2 plasma and subsequently used as etching masks to transfer the particle pattern onto the substrate, creating TiO2 features in an SiO2 background. After removing the mask the oxide contrast was translated in three simple dip-and-rinse steps into a biochemical contrast of protein-coated features in an inert background. In short, alkane phosphates were first selectively adsorbed to the TiO2 features. Then the SiO2 background was backfilled using poly(L-lysine)-graft-poly(ethylene glycol) and finally streptavidin was adsorbed to the hydrophobic alkane phosphate SAMs, allowing subsequent binding and hybridization of biotinylated DNA.

  13. Detection, imaging, and kinetics of sub-micron organelles of chondrocytes by multiple beam interference microscopy

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio; Barboza, J. M.; Colantuoni, Gladys; Quintero, Maritza

    2004-07-01

    Chondrocytes, obtained from testosterone treated human articular cartilage, were examined by a recently developed Multiple Beam Interference Microscopy (MBIM) attached to a confocal set up, Video-enhanced differential interference microphotography and also by cinematography. In the MBIM, the intensity of the transmitted pattern is given by the Airy function which increases the contrast dramatically as the coefficient of the reflectance of the parallel plates increases. Moreover, in this configuration, the beam passes several times through a specific organelle and increases its optical path difference both because of the increase in the trajectory and refractive index (high density) of the organelle. The improved contrast enhances the resolving power of the system and makes visible several structural details of sub micron dimensions like nucleolus, retraction fibers, podia, etc. which are not possible to reveal with such a clarity by conventional techniques such as bright field, phase contrast or DIC. This technique permits to detect the oscillatory and rotational motions of unstained cilia for the first time. The frequency of oscillations was found to be 0.8 Hz.

  14. Local structure of human hair spatially resolved by sub-micron X-ray beam

    NASA Astrophysics Data System (ADS)

    Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth

    2015-11-01

    Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair’s axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle’s boundary in which the IFs are aligned with the hair’s axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.

  15. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    PubMed Central

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  16. Preparation of multicompartment sub-micron particles using a triple-needle electrohydrodynamic device.

    PubMed

    Labbaf, Sheyda; Deb, Sanjukta; Cama, Giuseppe; Stride, Eleanor; Edirisinghe, Mohan

    2013-11-01

    Control over the size and morphology of polymeric carriers for drug delivery systems is essential to optimize their functionality. In the current study, we demonstrate the feasibility of using an electrohydrodynamic process with a triple-needle device to prepare nearly mono-dispersed, spherical, tri-layered sub-micron particles. Three biocompatible polymer solutions of poly (lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL) and polymethylsilsesquioxane (PMSQ) were used to prepare particles with three distinct layers. Optimized particles were shown to be spherical with an average size ranging from 320 nm (±80 nm) to 220 (±8 nm), which varied with a change in the working distance in the electrohydrodynamic processing. The surface and internal structure and morphology were studied using confocal, transmission and scanning electron microscopy combined with focused ion beam sectioning. Cytotoxicity was shown to be negligible in an in vitro assay. The ability to fabricate such multilayered particles in a single step, under ambient conditions has considerable potential for a range of applications in particular controlled release drug delivery system.

  17. Direct femtosecond laser writing system for sub-micron and micron scale patterning

    NASA Astrophysics Data System (ADS)

    Vanagas, Egidijus; Tuzhilin, Dmitry; Zinkou, Michail; Sedunov, Alexander; Vasiliev, Nikolai; Kudryashov, Igor; Kononov, Vladimir; Suruga, Shozi

    2003-11-01

    Commercial femtosecond micromachining system (FMS) has been developed that capable to process the material in sub-micron (< 200 nm) and micron scale. Core of the system are: optical unit, controller unit and software. The other parts: fs-laser system; focusing unit; stage unit can be varied (exchangeable). Two different fs-laser systems already are compatible with core of FMS: Mira/RegA (Coherent) and Hurricane (Spectra-Physics). FMS controller unit allows to control every single fs-pulse delivery on the target. Three possible types of focusing unit are available: microscope type unit, long focal distance lens unit, and axicon lens based unit. Standard stage unit options are: three-axis piezostage, and two-axis air bearing stage combined with Z-axis piezostage. Repeatability for all dimensions is within +/-5 nm. Also, step motor stages are available. The system allows 3D scan with confocal laser-microscope (resolution δr=200nm, δz=540nm) build in optical unit. Software controls all basic functions of the system performance and writing any pattern (including 3D) on or into specimen. The results obtained by direct fs-laser writing method are presented and discussed: bits in the range of 100 - 200 nm sizes, 6 TB/cm3 density optical storage matrix, waveguides fabrication inside transparent materials, high aspect ratio (1:125) patterning of dielectric materials with Gauss-Bessel beam.

  18. Magnetic memory in a ceramic YBCO superconductor composed of sub-micron-size grains

    NASA Astrophysics Data System (ADS)

    Deguchi, Hiroyuki; Ashida, Takuya; Syudo, Mitsuhiro; Mito, Masaki; Takagi, Seishi; Hagiwara, Makoto; Koyama, Kuniyuki

    2013-06-01

    The ceramic YBa2Cu4O8 (YBCO) composed of sub-micron-size grains is considered as a random Josephson-coupled network of 0 and π junctions and shows successive phase transitions. The first transition occurs inside each grain at T c1 = 81 K, and the second transition occurs among the grains at T c2 = 47 K. A magnetic glass behavior similar to those of spin-glasses is observed at temperatures below T c2. The memory phenomena are investigated by recording the zero-fieldcooled and thermoremanent magnetizations measured on heating after the cooling process with a halt at T s = 41 K. Memory effects of the halt are imprinted in the system when the sample is re-heated. In the case without a field switch at T s , the influence of the halt is confined to a narrow temperature region near T s whereas the memory effect of the halt employing a field switch is extended over a wide temperature region below T s . The results suggest that chiral-glass ordering occurs at T c2 in the ceramic YBCO.

  19. Laser smoothing of sub-micron grooves in hydroxyl-rich fused silica

    SciTech Connect

    Shen, N; Matthews, M J; Fair, J E; Britten, J A; Nguyen, H T; Cooke, D; Elhadj, S; Yang, S T

    2009-10-30

    Nano- to micrometer-sized surface defects on UV-grade fused silica surfaces are known to be effectively smoothed through the use of high-temperature localized CO{sub 2} laser heating, thereby enhancing optical properties. However, the details of the mass transport and the effect of hydroxyl content on the laser smoothing of defective silica at submicron length scales is still not completely understood. In this study, we examine the morphological evolution of sub-micron, dry-etched periodic surface structures on type II and type III SiO{sub 2} substrates under 10.6 {micro}m CO{sub 2} laser irradiation using atomic force microscopy (AFM). In-situ thermal imaging was used to map the transient temperature field across the heated region, allowing assessment of the T-dependent mass transport mechanisms under different laser-heating conditions. Computational fluid dynamics simulations correlated well with experimental results, and showed that for large effective capillary numbers (N{sub c} > 2), surface diffusion is negligible and smoothing is dictated by capillary action, despite the relatively small spatial scales studied here. Extracted viscosity values over 1700-2000K were higher than the predicted bulk values, but were consistent with the surface depletion of OH groups, which was confirmed using confocal Raman microscopy.

  20. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics.

    PubMed

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Jaung, Jae Yun; Kim, Yong-Hoon; Park, Sung Kyu

    2015-09-28

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics.

  1. Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics

    PubMed Central

    Kim, Jaekyun; Kim, Myung-Gil; Kim, Jaehyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Woobin; Hwang, Chahwan; Moon, Juhyuk; Yang, Lin; Kim, Yun-Hi; Noh, Yong-Young; Yun Jaung, Jae; Kim, Yong-Hoon; Kyu Park, Sung

    2015-01-01

    The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties. Unfortunately, the industrial implementation of the soft electronic materials has been hindered due to lack of scalable fine-patterning methods. In this report, we demonstrated facile general route for high throughput sub-micron patterning of soft materials, using spatially selective deep-ultraviolet irradiation. For organic and carbon-based materials, the highly energetic photons (e.g. deep-ultraviolet rays) enable direct photo-conversion from conducting/semiconducting to insulating state through molecular dissociation and disordering with spatial resolution down to a sub-μm-scale. The successful demonstration of organic semiconductor circuitry promise our result proliferate industrial adoption of soft materials for next generation electronics. PMID:26411932

  2. Local structure of human hair spatially resolved by sub-micron X-ray beam.

    PubMed

    Stanić, Vesna; Bettini, Jefferson; Montoro, Fabiano Emmanuel; Stein, Aaron; Evans-Lutterodt, Kenneth

    2015-11-30

    Human hair has three main regions, the medulla, the cortex, and the cuticle. An existing model for the cortex suggests that the α-keratin- based intermediate filaments (IFs) align with the hair's axis, but are orientationally disordered in-plane. We found that there is a new region in the cortex near the cuticle's boundary in which the IFs are aligned with the hair's axis, but additionally, they are orientationally ordered in-plane due to the presence of the cuticle/hair boundary. Further into the cortex, the IF arrangement becomes disordered, eventually losing all in-plane orientation. We also find that in the cuticle, a key diffraction feature is absent, indicating the presence of the β-keratin rather than that of the α-keratin phase. This is direct structural evidence that the cuticle contains β-keratin sheets. This work highlights the importance of using a sub-micron x-ray beam to unravel the structures of poorly ordered, multi-phase systems.

  3. Sub-micron resolution CT for failure analysis and process development

    NASA Astrophysics Data System (ADS)

    Feser, M.; Gelb, J.; Chang, H.; Cui, H.; Duewer, F.; Lau, S. H.; Tkachuk, A.; Yun, W.

    2008-09-01

    Many modern industrial processes and research applications place increasingly higher demands on x-ray computed tomography (CT) imaging resolution and sensitivity for low-contrast specimens with a low atomic number. The three approaches to increasing imaging resolution are (1) reduction in the x-ray spot size, (2) use of higher resolution detectors or (3) employment of x-ray optical elements. Systems that pursue one or more of these approaches are available and under continued development. The Xradia MicroXCT™ projection-type microscope described in this paper has been optimized for high-resolution x-ray CT by employing a high-resolution detector paired with a microfocus x-ray source. Large working distances in this CT system enable full tomographic data collection at micrometre resolution of large samples, such as flip-chip packages. X-ray CT instruments using x-ray optical elements for condenser optics and imaging objective lenses are a new development capable of reaching sub-50 nm resolution. These instruments find various applications, including die-level imaging in the semiconductor industry as well as the process development for fuel cells, which we describe here as one application. Sub-micron resolution CT instruments without x-ray optical elements have a large application base already; however, new instruments optimized for soft materials and low-contrast specimens, such as the Xradia nanoXCT™, offer completely new capabilities and open new applications. New developments in the area of phase contrast imaging enable unprecedented image contrast for specimens with very low absorption, which for research applications enables for the first time the imaging of many specimens in their natural state (e.g., arteries to examine calcification). Zernike phase contrast for sub-50 nm x-ray CT even enables the imaging of single cell or thin tissue slices for biological or medical applications.

  4. Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography.

    PubMed

    Shah, Furqan A; Stenlund, Patrik; Martinelli, Anna; Thomsen, Peter; Palmquist, Anders

    2016-11-01

    The osteocyte network, through the numerous dendritic processes of osteocytes, is responsible for sensing mechanical loading and orchestrates adaptive bone remodelling by communicating with both the osteoclasts and the osteoblasts. The osteocyte network in the vicinity of implant surfaces provides insight into the bone healing process around metallic implants. Here, we investigate whether osteocytes are able to make an intimate contact with topologically modified, but micrometre smooth (S a < 0.5 µm) implant surfaces, and if sub-micron topography alters the composition of the interfacial tissue. Screw shaped, commercially pure (cp-Ti) titanium implants with (i) machined (S a = ~0.2 µm), and (ii) two-step acid-etched (HF/HNO3 and H2SO4/HCl; S a = ~0.5 µm) surfaces were inserted in Sprague Dawley rat tibia and followed for 28 days. Both surfaces showed similar bone area, while the bone-implant contact was 73 % higher for the acid-etched surface. By resin cast etching, osteocytes were observed to maintain a direct intimate contact with the acid-etched surface. Although well mineralised, the interfacial tissue showed lower Ca/P and apatite-to-collagen ratios at the acid-etched surface, while mineral crystallinity and the carbonate-to-phosphate ratios were comparable for both implant surfaces. The interfacial tissue composition may therefore vary with changes in implant surface topography, independently of the amount of bone formed. Implant surfaces that influence bone to have higher amounts of organic matrix without affecting the crystallinity or the carbonate content of the mineral phase presumably result in a more resilient interfacial tissue, better able to resist crack development during functional loading than densely mineralised bone.

  5. Characterization of phosphorus in organisms at sub-micron resolution using X-ray fluorescence spectromicroscopy.

    SciTech Connect

    Diaz, J.; Ingall, E; Vogt, S; Paterson, D; DeJonge, M; Rao, C; Brandes, J

    2009-01-01

    X-ray spectromicroscopy (combined X-ray spectroscopy and microscopy) is uniquely capable of determining sub-micron scale elemental content and chemical speciation in minimally-prepared particulate samples. The high spatial resolutions achievable with this technique have enabled the close examination of important microscale processes relevant to the cycling of biogeochemically important elements. Here, we demonstrate the value of X-ray microscopy to environmental and biological research by examining the phosphorus and metal chemistry of complete individual cells from the algal genera Chlamydomonas sp. and Chlorella sp. X-ray analysis revealed that both genera store substantial intracellular phosphorus as distinct, heterogeneously distributed granules whose X-ray fluorescence spectra are consistent with that of polyphosphate. Polyphosphate inclusions ranged in size from 0.3-1.4 {micro}m in diameter and exhibited a nonspecies-specific average phosphorus concentration of 6.87 {+-} 1.86 {micro}g cm{sup -2}, which was significantly higher than the average concentration of phosphorus measured in the total cell, at 3.14 {+-} 0.98 {micro}g cm{sup -2} (95% confidence). Polyphosphate was consistently associated with calcium and iron, exhibiting average P:cation molar ratios of 8.31 {+-} 2.00 and 108 {+-} 34, respectively (95% confidence). In some cells, polyphosphate was also associated with potassium, zinc, manganese, and titanium. Based on our results, X-ray spectromicroscopy can provide high-resolution elemental data on minimally prepared, unsectioned cells that are unattainable through alternative microscopic methods and conventional bulk chemical techniques currently available in many fields of marine chemistry.

  6. Grain orientation and strain measurements in sub-micron wide passivated individual aluminum test structures

    SciTech Connect

    Tamura, N.; Valek, B.C.; Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Brown, W.L.; Marieb, T.; Bravman, J.C.; Batterman, B.W.; Patel, J.R.

    2001-03-01

    An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad of problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains.

  7. Sources and characteristics of sub-micron aerosols in the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; Brioude, J.; Brock, C. A.; de Gouw, J. A.; Hall, K.; Holloway, J. S.; Neuman, J.; Nowak, J. B.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Parrish, D. D.

    2010-12-01

    The NOAA WP-3D aircraft performed several flights in the San Joaquin Valley (SJV), California during the CalNex-2010 (California Research at the Nexus of Air Quality and Climate Change) field project in May-June 2010. SJV is generally a rural valley, with a high concentration of feedlots and agricultural sites as well as urbanized centers such as Fresno and Bakersfield. Preliminary results on size-resolved chemical composition of sub-micron aerosols measured using a compact time-of-flight aerosol mass spectrometer, measurements of trace gases affecting secondary production of aerosols, and FLEXPART back trajectory analyses are presented in order to identify sources of aerosols transported to or produced in the valley. Observed enhancements in various trace gases and aerosol species indicate a mixed influence from urban, industrial, and animal feedlots in the SJV. Three distinct observations suggest a complex transport pattern of pollutants with different origins to and within the valley: 1) CO and NOx mixing ratios were prominent downwind of the urban areas in the valley; 2) SO2, aerosol organics and sulfate were higher closer to the foothills of the Sierra Nevada Mountains on the east of the valley; 3) high concentration of aerosol phase ammonium and nitrate were observed in NH3-rich air masses, directly downwind of the feedlots in the central part of the valley. Aerosol enhancements in each of these air mass categories relative to the background determine the relative contribution and significance of different sources to aerosol loadings in the valley. Differences in VOC measurements and meteorology will be explored to investigate the observed variation in characteristics of organics on different days.

  8. Sub-micron opto-chemical probes for studying living neurons

    NASA Astrophysics Data System (ADS)

    Hossein-Zadeh, M.; Delgado, J.; Schweizer, F.; Lieberman, R.

    2017-02-01

    We have fabricated sub-micron opto-chemical probes for pH, oxygen and calcium monitoring and demonstrated their application in intracellular and extracellular monitoring of neurons (cortical neuronal cultures and acute hippocampal slices). Using these probes, we have measured extracellular pH in the stratum radiatum of the CA1 region of mouse hippocampus upon stimulation of presynaptic Schaffer collateral axons. Synaptic transmission was monitored using standard electrophysiological techniques. We find that the local pH transiently changes in response to synaptic stimulation. In addition, the geometry of the functionalized region on the probe combined with high sensitivity imaging enables simultaneous monitoring of spatially adjacent but distinct compartments. As proof of concept we impaled cultured neurons with the probe measured calcium and pH inside as well as directly outside of neurons as we changed the pH and calcium concentration in the physiological solution in the perfusion chamber. As such these probes can be used to study the impact of the environment on both cellular and extra-cellular space. Additionally as the chemical properties of the surrounding medium can be controlled and monitored with high precision, these probes enable differential measurement of the target parameter referenced to a stable bath. This approach eliminates the uncertainties associated with non-chemical fluctuations in the fluorescent emission and result in a self-calibrated opto-chemical probe. We have also demonstrated multifunctional probes that are capable of measuring up to three parameters in the extracellular space in brain slices.

  9. Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement.

    PubMed

    Liao, Changrui; Liu, Shen; Xu, Lei; Wang, Chao; Wang, Yiping; Li, Zhengyong; Wang, Qiao; Wang, D N

    2014-05-15

    We demonstrate a sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure sensing applications. The thinnest silica diaphragm, with a thickness of ∼320  nm, has been achieved by use of an improved electrical arc discharge technique. Such a sub-micron silica diaphragm breaks the sensitivity limitation imposed by traditional all-silica Fabry-Perot interferometric pressure sensors and, as a result, a high pressure sensitivity of ∼1036  pm/MPa at 1550 nm and a low temperature cross-sensitivity of ∼960  Pa/°C are achieved when a silica diaphragm of ∼500  nm in thickness is used. Moreover, the all-silica spherical structure enhanced the mechanical strength of the micro-cavity sensor, making it suitable for high sensitivity pressure sensing in harsh environments.

  10. Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics

    NASA Astrophysics Data System (ADS)

    Czajkowski, J.; Lauri, J.; Sliz, R.; Fält, P.; Fabritius, T.; Myllylä, R.; Cense, B.

    2012-04-01

    We present the use of sub-micron resolution optical coherence tomography (OCT) in quality inspection for printed electronics. The device used in the study is based on a supercontinuum light source, Michelson interferometer and high-speed spectrometer. The spectrometer in the presented spectral-domain optical coherence tomography setup (SD-OCT) is centered at 600 nm and covers a 400 nm wide spectral region ranging from 400 nm to 800 nm. Spectra were acquired at a continuous rate of 140,000 per second. The full width at half maximum of the point spread function obtained from a Parylene C sample was 0:98 m. In addition to Parylene C layers, the applicability of sub-micron SD-OCT in printed electronics was studied using PET and epoxy covered solar cell, a printed RFID antenna and a screen-printed battery electrode. A commercial SD-OCT system was used for reference measurements.

  11. A simple and wide-range refractive index measuring approach by using a sub-micron grating

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Wei; Wu, Chun-Che; Lin, Shih-Chieh

    2015-04-01

    This paper presents the design and simulation results of a high-precision low-cost refractometer that demonstrates the main advantage of a wide measurement range (1 ≤ n ≤ 2). The proposed design is based on the diffractive properties of sub-micron gratings and Snell's Law. The precision and uncertainty factors of the proposed system were tested and analyzed, revealing that the proposed refractometer demonstrates a wide measurement range with sensitivity of 10-4.

  12. Prescribed 3-D Direct Writing of Suspended Micron/Sub-micron Scale Fiber Structures via a Robotic Dispensing System.

    PubMed

    Yuan, Hanwen; Cambron, Scott D; Keynton, Robert S

    2015-06-12

    A 3-axis dispensing system is utilized to control the initiating and terminating fiber positions and trajectory via the dispensing software. The polymer fiber length and orientation is defined by the spatial positioning of the dispensing system 3-axis stages. The fiber diameter is defined by the prescribed dispense time of the dispensing system valve, the feed rate (the speed at which the stage traverses from an initiating to a terminating position), the gauge diameter of the dispensing tip, the viscosity and surface tension of the polymer solution, and the programmed drawing length. The stage feed rate affects the polymer solution's evaporation rate and capillary breakup of the filaments. The dispensing system consists of a pneumatic valve controller, a droplet-dispensing valve and a dispensing tip. Characterization of the direct write process to determine the optimum combination of factors leads to repeatedly acquiring the desired range of fiber diameters. The advantage of this robotic dispensing system is the ease of obtaining a precise range of micron/sub-micron fibers onto a desired, programmed location via automated process control. Here, the discussed self-assembled micron/sub-micron scale 3D structures have been employed to fabricate suspended structures to create micron/sub-micron fluidic devices and bioengineered scaffolds.

  13. Sub-micronic capsules based on gelatin and poly(maleic anhydride-alt-vinyl acetate) obtained by interfacial condensation with potential biomedical applications.

    PubMed

    Iurea, Delia Mihaela; Peptu, Cătălina Anişoara; Chailan, Jean-François; Carriere, Pascal; Popa, Marcel

    2013-06-01

    New sub-micronic capsules based on a copolymer of maleic anhydride-alt-vinyl acetate and a natural polymer (gelatin) using an interfacial condensation method were obtained. Sub-micronic capsules were characterized by Fourier Transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) method, zeta-potential, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The thermal properties were investigated by thermogravimetric analysis (TGA). According to some parameters of the synthesis reaction (polymer weight ratio, acetone/water ratio, surfactant concentration), the mean diameter of the sub-micronic capsules can be tuned from 200 to 760 nm. The sub-micronic capsules show a higher agglomeration tendency as the amount of gelatin in their composition increases. The swelling capacity in aqueous solutions is dependent on the composition and size of the sub-micronic capsules, decreasing with their diameter and gelatin composition. The drug loading and release capacity was studied using Penicillin G (sodium salt) (PG), and it has been proved that it is influenced by the sub-micronic capsules morphology induced by preparation parameters. Encapsulation and controlled release of small molecule were successfully carried out, demonstrating the potential biomedical applications of these new easily obtained sub-micronic capsules.

  14. Sub-micron particle number size distribution characteristics at two urban locations in Leicester

    NASA Astrophysics Data System (ADS)

    Hama, Sarkawt M. L.; Cordell, Rebecca L.; Kos, Gerard P. A.; Weijers, E. P.; Monks, Paul S.

    2017-09-01

    The particle number size distribution (PNSD) of atmospheric particles not only provides information about sources and atmospheric processing of particles, but also plays an important role in determining regional lung dose. Owing to the importance of PNSD in understanding particulate pollution two short-term campaigns (March-June 2014) measurements of sub-micron PNSD were conducted at two urban background locations in Leicester, UK. At the first site, Leicester Automatic Urban Rural Network (AURN), the mean number concentrations of nucleation, Aitken, accumulation modes, the total particles, equivalent black carbon (eBC) mass concentrations were 2002, 3258, 1576, 6837 # cm-3, 1.7 μg m-3, respectively, and at the second site, Brookfield (BF), were 1455, 2407, 874, 4737 # cm-3, 0.77 μg m-3, respectively. The total particle number was dominated by the nucleation and Aitken modes, with both consisting of 77%, and 81% of total number concentrations at AURN and BF sites, respectively. This behaviour could be attributed to primary emissions (traffic) of ultrafine particles and the temporal evolution of mixing layer. The size distribution at the AURN site shows bimodal distribution at 22 nm with a minor peak at 70 nm. The size distribution at BF site, however, exhibits unimodal distribution at 35 nm. This study has for the first time investigated the effect of Easter holiday on PNSD in UK. The temporal variation of PNSD demonstrated a good degree of correlation with traffic-related pollutants (NOX, and eBC at both sites). The meteorological conditions, also had an impact on the PNSD and eBC at both sites. During the measurement period, the frequency of NPF events was calculated to be 13.3%, and 22.2% at AURN and BF sites, respectively. The average value of formation and growth rates of nucleation mode particles were 1.3, and 1.17 cm-3 s-1 and 7.42, and 5.3 nm h-1 at AURN, and BF sites, respectively. It can suggested that aerosol particles in Leicester originate mainly

  15. Systematic Sub-Micron Na/Ca Banding in Orbulina universa and bilobata

    NASA Astrophysics Data System (ADS)

    Bonnin, E. A.; Zhu, Z.; Spero, H. J.; Hoenisch, B.; Russell, A. D.; Fehrenbacher, J. S.; Gagnon, A. C.

    2016-02-01

    Mg/Ca ratios in planktic foraminifera are used widely as a proxy for past sea-surface temperatures. However, over the last decade, it has become clear that these ratios are not constant throughout the shell. Instead these ratios vary systematically by several fold between day and night independent of temperature, a phenomenon that has yet to be explained mechanistically. Determining whether elements other than Mg also exhibit sub-micron banding is essential to properly interpret Me/Ca-based paleoproxies and could help constrain the mechanisms causing Me/Ca variability. Using time-of-flight secondary ion mass spectrometry (ToF-SIMS), an isotope mapping technique with a spatial resolution of roughly 200 nm, we discovered systematic Na/Ca banding in individuals of the symbiont-bearing planktic foraminifer Orbulina universa that had been cultured at constant temperature. Using stable-isotope time stamps, we show that this Na/Ca banding varies inversely with Mg/Ca, with high Na/Ca during the day and low Na/Ca at night for most individuals. Using a combination of analytical models and complementary instrumental techniques, we test whether these patterns can be explained by various ion transport processes. In addition to this Na/Ca banding pattern, there is a distinct region of both high Mg/Ca and high Na/Ca at the location of the primary organic membrane. This POM signature may be a useful way to map organic layers in foraminifera, a method we tested in bilobata, a rare morphotype of O. universa that develops a secondary sphere. Mapping Na/Ca and Mg/Ca in bilobata, we show that an additional organic layer is required during secondary sphere growth and that mineralization occurs over both spheres when this additional quasi-chamber forms. Applying ToF-SIMS and our new understanding of Na/Ca heterogeneity to bilobata is a first step towards connecting the extensive geochemical knowledge developed in O. universa to the multi-chambered species used in paleoceanography.

  16. Area- and energy-efficient CORDIC accelerators in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Vishnoi, U.; Noll, T. G.

    2012-09-01

    The COordinate Rotate DIgital Computer (CORDIC) algorithm is a well known versatile approach and is widely applied in today's SoCs for especially but not restricted to digital communications. Dedicated CORDIC blocks can be implemented in deep sub-micron CMOS technologies at very low area and energy costs and are attractive to be used as hardware accelerators for Application Specific Instruction Processors (ASIPs). Thereby, overcoming the well known energy vs. flexibility conflict. Optimizing Global Navigation Satellite System (GNSS) receivers to reduce the hardware complexity is an important research topic at present. In such receivers CORDIC accelerators can be used for digital baseband processing (fixed-point) and in Position-Velocity-Time estimation (floating-point). A micro architecture well suited to such applications is presented. This architecture is parameterized according to the wordlengths as well as the number of iterations and can be easily extended for floating point data format. Moreover, area can be traded for throughput by partially or even fully unrolling the iterations, whereby the degree of pipelining is organized with one CORDIC iteration per cycle. From the architectural description, the macro layout can be generated fully automatically using an in-house datapath generator tool. Since the adders and shifters play an important role in optimizing the CORDIC block, they must be carefully optimized for high area and energy efficiency in the underlying technology. So, for this purpose carry-select adders and logarithmic shifters have been chosen. Device dimensioning was automatically optimized with respect to dynamic and static power, area and performance using the in-house tool. The fully sequential CORDIC block for fixed-point digital baseband processing features a wordlength of 16 bits, requires 5232 transistors, which is implemented in a 40-nm CMOS technology and occupies a silicon area of 1560 μm2 only. Maximum clock frequency from circuit

  17. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    NASA Astrophysics Data System (ADS)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron

  18. Laser induced sub-micron changes of the chemical composition of SiO2-based optical fibers

    NASA Astrophysics Data System (ADS)

    Fokine, Michael A.

    2003-11-01

    A method to create sub-micron changes of the chemical composition of silica based optical fibers is reviewed. The method is used to create thermally stable refractive index structures, Fiber Bragg gratings, which can be used e.g. as sensors operating at very high temperatures. The method is based on UV induced chemical reactions of the silica glass with in-diffused molecular hydrogen. A change in the chemical composition is attained after thermal treatment, and the mechanism is attributed to diffusion of hydrogen compounds within the glass.

  19. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    DOE PAGES

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  20. Sub-micron resolution of localized ion beam induced charge reduction in silicon detectors damaged by heavy ions

    SciTech Connect

    Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; Vizkelethy, Gyorgy; Abraham, John B. S.; Doyle, Barney L.

    2015-12-01

    In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si++ ions and 60 keV Li+ ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.

  1. Fabrication and electrical characterization of sub-micron diameter through-silicon via for heterogeneous three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Abbaspour, R.; Brown, D. K.; Bakir, M. S.

    2017-02-01

    This paper presents the fabrication and electrical characterization of high aspect-ratio (AR) sub-micron diameter through silicon vias (TSVs) for densely interconnected three-dimensional (3D) stacked integrated circuits (ICs). The fabricated TSV technology features an AR of 16:1 with 680 nm diameter copper (Cu) core and 920 nm overall diameter. To address the challenges in scaling TSVs, scallop-free low roughness nano-Bosch silicon etching and direct Cu electroplating on a titanium-nitride (TiN) diffusion barrier layer have been developed as key enabling modules. The electrical resistance of the sub-micron TSVs is measured to be on average 1.2 Ω, and the Cu resistivity is extracted to be approximately 2.95 µΩ cm. Furthermore, the maximum achievable current-carrying capacity (CCC) of the scaled TSVs is characterized to be approximately 360 µA for the 680 nm Cu core.

  2. Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging.

    PubMed

    Lin, Shengtao; Shah, Anant; Hernández-Gil, Javier; Stanziola, Antonio; Harriss, Bethany I; Matsunaga, Terry O; Long, Nicholas; Bamber, Jeffrey; Tang, Meng-Xing

    2017-06-01

    We demonstrate a versatile phase-change sub-micron contrast agent providing three modes of contrast enhancement: 1) photoacoustic imaging contrast, 2) ultrasound contrast with optical activation, and 3) ultrasound contrast with acoustic activation. This agent, which we name 'Cy-droplet', has the following novel features. It comprises a highly volatile perfluorocarbon for easy versatile activation, and a near-infrared optically absorbing dye chosen to absorb light at a wavelength with good tissue penetration. It is manufactured via a 'microbubble condensation' method. The phase-transition of Cy-droplets can be optically triggered by pulsed-laser illumination, inducing photoacoustic signal and forming stable gas bubbles that are visible with echo-ultrasound in situ. Alternatively, Cy-droplets can be converted to microbubble contrast agents upon acoustic activation with clinical ultrasound. Potentially all modes offer extravascular contrast enhancement because of the sub-micron initial size. Such versatility of acoustic and optical 'triggerability' can potentially improve multi-modality imaging, molecularly targeted imaging and controlled drug release.

  3. Sub-micron fracture mechanism in silica-based glass activated by permanent densification from high-strain loading

    SciTech Connect

    Wereszczak, Andrew A.; Waters, Shirley B.; Parten, Randy J.; Pye, L. David

    2016-04-26

    Several silica-based glasses were fractured at high strain energy via drop-weight testing on small specimens. A cylindrical specimen geometry was chosen to promote initially simple, axisymmetric, and uniform compressive loading. The imposed uniaxial compressive strain at impact was sufficiently high to qualitatively cause permanent densification. Produced fragments were collected for postmortem and a fraction of them, for all the silica-based glasses, consistently had distinct sub-micron-sized fractures (~ 300–1000 nm), designated here as “microkernels”, on their surfaces. They would most often appear as a sub-micron pore on the fragment - apparently if the microkernel had popped out as a consequence of the local crack plane running through it, tensile-strain release, and the associated formation of the fragment it was on. No fractographic evidence was found to show the microkernels were associated with local failure initiation. However, their positioning and habit sometimes suggested they were associated with localized crack branching and that they could have influenced secondary fracturing that occurred during overall crushing and comminution and associated fragment size and shape creation. Furthermore, the size range of these microkernels is much too small to affect structural flexure strength of these glasses for most applications but are of a size and concentration that may affect their ballistic, shock, crush, and comminution responses when permanent densification is concomitantly occurring.

  4. Sub-micron fracture mechanism in silica-based glass activated by permanent densification from high-strain loading

    DOE PAGES

    Wereszczak, Andrew A.; Waters, Shirley B.; Parten, Randy J.; ...

    2016-04-26

    Several silica-based glasses were fractured at high strain energy via drop-weight testing on small specimens. A cylindrical specimen geometry was chosen to promote initially simple, axisymmetric, and uniform compressive loading. The imposed uniaxial compressive strain at impact was sufficiently high to qualitatively cause permanent densification. Produced fragments were collected for postmortem and a fraction of them, for all the silica-based glasses, consistently had distinct sub-micron-sized fractures (~ 300–1000 nm), designated here as “microkernels”, on their surfaces. They would most often appear as a sub-micron pore on the fragment - apparently if the microkernel had popped out as a consequence ofmore » the local crack plane running through it, tensile-strain release, and the associated formation of the fragment it was on. No fractographic evidence was found to show the microkernels were associated with local failure initiation. However, their positioning and habit sometimes suggested they were associated with localized crack branching and that they could have influenced secondary fracturing that occurred during overall crushing and comminution and associated fragment size and shape creation. Furthermore, the size range of these microkernels is much too small to affect structural flexure strength of these glasses for most applications but are of a size and concentration that may affect their ballistic, shock, crush, and comminution responses when permanent densification is concomitantly occurring.« less

  5. Sub-micron fracture mechanism in silica-based glass activated by permanent densification from high-strain loading

    SciTech Connect

    Wereszczak, Andrew A.; Waters, Shirley B.; Parten, Randy J.; Pye, L. David

    2016-04-26

    Several silica-based glasses were fractured at high strain energy via drop-weight testing on small specimens. A cylindrical specimen geometry was chosen to promote initially simple, axisymmetric, and uniform compressive loading. The imposed uniaxial compressive strain at impact was sufficiently high to qualitatively cause permanent densification. Produced fragments were collected for postmortem and a fraction of them, for all the silica-based glasses, consistently had distinct sub-micron-sized fractures (~ 300–1000 nm), designated here as “microkernels”, on their surfaces. They would most often appear as a sub-micron pore on the fragment - apparently if the microkernel had popped out as a consequence of the local crack plane running through it, tensile-strain release, and the associated formation of the fragment it was on. No fractographic evidence was found to show the microkernels were associated with local failure initiation. However, their positioning and habit sometimes suggested they were associated with localized crack branching and that they could have influenced secondary fracturing that occurred during overall crushing and comminution and associated fragment size and shape creation. Furthermore, the size range of these microkernels is much too small to affect structural flexure strength of these glasses for most applications but are of a size and concentration that may affect their ballistic, shock, crush, and comminution responses when permanent densification is concomitantly occurring.

  6. Propagation characteristics of silver and tungsten subwavelength annular aperture generated sub-micron non-diffraction beams.

    PubMed

    Cheng, Tsung-Dar; Lin, Ding-Zheng; Yeh, Jyi-Tyan; Liu, Jonq-Min; Yeh, Chau-Shioung; Lee, Chih-Kung

    2009-03-30

    We examined the optical properties such as propagation modes, focal length, side lobes, etc. of metallic subwavelength annular apertures (SAA) and used finite-difference time-domain (FDTD) simulation to compare our experimental findings. Using two different metals, silver and tungsten, we examined the different optical transmission properties of the two metallic SAA structures. The far-field propagation of the silver SAA structure was found to be a type of quasi-Bessel beam when compared with a quasi-Bessel beam generated by a perfect axicon. The propagation characteristics of these two beams were found to match qualitatively. The far-field transmitted light generated by the silver SAA structure was found to possess a 390 nm sub-micron focal spot with a 24 microm depth of focus, which was much smaller than the focal spot generated by a perfect axicon. We also found that a silver SAA structure can generate a sub-micron quasi- Bessel beam that has a much lower far-field side-lobe when compared to that of non-diffraction beams generated by a tungsten SAA structure.

  7. Enhanced sub-micron colloidal particle separation with interdigitated microelectrode arrays using mixed AC/DC dielectrophoretic scheme.

    PubMed

    Swaminathan, Vikhram V; Shannon, Mark A; Bashir, Rashid

    2015-04-01

    Dielectrophoretic separation of particles finds a variety of applications in the capture of species such as cells, viruses, proteins, DNA from biological systems, as well as other organic and inorganic contaminants from water. The ability to capture particles is constrained by poor volumetric scaling of separation force with respect to particle diameter, as well as the weak penetration of electric fields in the media. In order to improve the separation of sub-micron colloids, we present a scheme based on multiple interdigitated electrode arrays under mixed AC/DC bias. The use of high frequency longitudinal AC bias breaks the shielding effects through electroosmotic micromixing to enhance electric fields through the electrolyte, while a transverse DC bias between the electrode arrays enables penetration of the separation force to capture particles from the bulk of the microchannel. We determine the favorable biasing conditions for field enhancement with the help of analytical models, and experimentally demonstrate the improved capture from sub-micron colloidal suspensions with the mixed AC/DC electrostatic excitation scheme over conventional AC-DEP methods.

  8. Exploring the Role of Sub-micron-sized Dust Grains in the Atmospheres of Red L0-L6 Dwarfs

    NASA Astrophysics Data System (ADS)

    Hiranaka, Kay; Cruz, Kelle L.; Douglas, Stephanie T.; Marley, Mark S.; Baldassare, Vivienne F.

    2016-10-01

    We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markov Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1-100 μm) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.

  9. Comprehensive understanding of dark count mechanisms of single-photon avalanche diodes fabricated in deep sub-micron CMOS technologies

    NASA Astrophysics Data System (ADS)

    Xu, Yux; Xiang, Ping; Xie, Xiaopeng

    2017-03-01

    The dark count noise mechanisms of single-photon avalanche diodes (SPADs) fabricated in deep sub-micron (DSM) CMOS technologies are investigated in depth. An electric field dependence of tunneling model combined with carrier thermal generation is established for dark count rate (DCR) prediction. Applying the crucial parameters provided by Geiger mode TCAD simulation such as avalanche triggering probability and electric field distribution in the SPAD avalanche region, the individual contribution of each noise source to DCR is calculated for several SPADs in DSM CMOS technologies. The model calculation results reveal that the trap-assisted tunneling is the main DCR generation source for these DSM CMOS SPADs. With the increase of doping levels in the device avalanche region, the band-to-band tunneling will be the dominant factor that could lead to the higher DCR in scaled DSM CMOS technologies.

  10. Analysis of functional failure mode of commercial deep sub-micron SRAM induced by total dose irradiation

    NASA Astrophysics Data System (ADS)

    Zheng, Qi-Wen; Cui, Jiang-Wei; Zhou, Hang; Yu, De-Zhao; Yu, Xue-Feng; Lu, Wu; Guo, Qi; Ren, Di-Yuan

    2015-10-01

    Functional failure mode of commercial deep sub-micron static random access memory (SRAM) induced by total dose irradiation is experimentally analyzed and verified by circuit simulation. We extensively characterize the functional failure mode of the device by testing its electrical parameters and function with test patterns covering different functional failure modes. Experimental results reveal that the functional failure mode of the device is a temporary function interruption caused by peripheral circuits being sensitive to the standby current rising. By including radiation-induced threshold shift and off-state leakage current in memory cell transistors, we simulate the influence of radiation on the functionality of the memory cell. Simulation results reveal that the memory cell is tolerant to irradiation due to its high stability, which agrees with our experimental result.

  11. Effects of Carbides on the Microstructural Evolution in Sub-micron Grain 9310 Steel During Isothermal Heat Treatment

    NASA Astrophysics Data System (ADS)

    Kozmel, Thomas; Tin, Sammy

    2015-07-01

    Recent interest in bulk ultra-fine-grained microstructures has given rise for the necessity to quantify their behavior during heat treatment should any subsequent thermal processing of the material be necessary after forming. The present study showed that the microstructure of 9310 steel forgings containing varying fractions of sub-micron grains retained some degree of stability after 4 hours of heat treatment between the temperatures of 522 K and 866 K (249 °C and 593 °C, respectively). The behavior of the microstructure during heat treatment was largely influenced by both the carbide volume fraction and distribution, which affected the level of Zener Drag present. This in effect controlled the type of growth behavior exhibited by the ferrite grains and the ability to retain the fine-grained structure.

  12. Impact of Device Scaling on Deep Sub-micron Transistor Reliability: A Study of Reliability Trends using SRAM

    NASA Technical Reports Server (NTRS)

    White, Mark; Huang, Bing; Qin, Jin; Gur, Zvi; Talmor, Michael; Chen, Yuan; Heidecker, Jason; Nguyen, Duc; Bernstein, Joseph

    2005-01-01

    As microelectronics are scaled in to the deep sub-micron regime, users of advanced technology CMOS, particularly in high-reliability applications, should reassess how scaling effects impact long-term reliability. An experimental based reliability study of industrial grade SRAMs, consisting of three different technology nodes, is proposed to substantiate current acceleration models for temperature and voltage life-stress relationships. This reliability study utilizes step-stress techniques to evaluate memory technologies (0.25mum, 0.15mum, and 0.13mum) embedded in many of today's high-reliability space/aerospace applications. Two acceleration modeling approaches are presented to relate experimental FIT calculations to Mfr's qualification data.

  13. Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.

    PubMed

    Lee, Yeeu-Chang; Chang, Che-Chun; Chou, Yen-Yu

    2013-01-14

    In order to reduce surface reflection, anti-reflective (AR) coatings are widely used on the surfaces of solar cells to improve the efficiency of photoelectric conversion. This study employed colloidal lithography with a dry etching process to fabricate sub-micron anti-reflection structures on a GaAs substrate. Etching parameters, such as RF power and etching gas were investigated to determine their influence on surface morphology. We fabricated an array of conical structures 550 nm in diameter and 450 nm in height. The average reflectance of a bare GaAs wafer was reduced from 35.0% to 2.3% across a spectral range of 300 nm - 1200 nm. The anti-reflective performance of SWSs was also calculated using Rigorous Coupled Wave Analysis (RCWA) method. Both simulation and experiment results demonstrate a high degree of similarity.

  14. Impact of Device Scaling on Deep Sub-micron Transistor Reliability: A Study of Reliability Trends using SRAM

    NASA Technical Reports Server (NTRS)

    White, Mark; Huang, Bing; Qin, Jin; Gur, Zvi; Talmor, Michael; Chen, Yuan; Heidecker, Jason; Nguyen, Duc; Bernstein, Joseph

    2005-01-01

    As microelectronics are scaled in to the deep sub-micron regime, users of advanced technology CMOS, particularly in high-reliability applications, should reassess how scaling effects impact long-term reliability. An experimental based reliability study of industrial grade SRAMs, consisting of three different technology nodes, is proposed to substantiate current acceleration models for temperature and voltage life-stress relationships. This reliability study utilizes step-stress techniques to evaluate memory technologies (0.25mum, 0.15mum, and 0.13mum) embedded in many of today's high-reliability space/aerospace applications. Two acceleration modeling approaches are presented to relate experimental FIT calculations to Mfr's qualification data.

  15. Micro and sub-micron surface structuring of AZ31 by laser re-melting and dimpling

    NASA Astrophysics Data System (ADS)

    Furlan, Valentina; Demir, Ali Gökhan; Previtali, Barbara

    2015-12-01

    In this work, the use of ns-pulsed fibre laser for surface structuring of AZ31 Mg alloy is investigated. Surface re-melting was employed to change surface morphology, especially in terms of surface roughness. Dimpling by percussion microdrilling was investigated to control the hole geometry.. With surface remelting mono-directional and homogeneous surfaces were obtained with Fl<500 J/cm2. Above 500 J/cm2 particle generation was observed, which induced sub-micron structure growth with nano-fibrous features. Moreover, surface roughness could be controlled below the initial value and much higher. With dimpling, transformation from gentle to strong ablation was observed at F0=10.3 J/cm2. XRD analysis was employed to link oxide growth to the surface morphology. Tensile tests were carried out to assess the damage on the mechanical properties after surface structuring.

  16. Tracking sub-micron fluorescent particles in three dimensions with a microscope objective under non-design optical conditions

    NASA Astrophysics Data System (ADS)

    Luo, R.; Sun, Y. F.; Peng, X. F.; Yang, X. Y.

    2006-06-01

    A microscope objective designed for air medium has been used under non-design optical conditions to focus an exciting laser beam on sub-micron fluorescent particles with the emitted fluorescence received through a glass layer with a mismatched refractive index. The diffraction pattern with several clear interference fringes generated from the fluorescence emitted from a fluorescent particle changed with the particle's position along the optical axis. A scalar diffraction model developed by Gibson and Lanni (1991 J. Opt. Soc. Am. A 8 1601-13) was used to predict the diffraction patterns for various aberration conditions and to analyse the effects of the coherence properties of the fluorescence on the details of the diffraction pattern. The particle position along the optical axis, i.e. its defocus distance, could be determined based on the characteristic sizes of the particle's diffraction pattern to track the particle in three dimensions.

  17. Dust Diffusion and Settling in the Presence of Collisions: Trapping (sub)micron Grains in the Midplane

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.

    2016-05-01

    In protoplanetary disks, the distribution and abundance of small (sub)micron grains are important for a range of physical and chemical processes. For example, they dominate the optical depth at short wavelengths and their surfaces are the sites of many important chemical reactions, such as the formation of water. Based on their aerodynamical properties (i.e., their strong dynamical coupling with the surrounding gas) it is often assumed that these small grains are well-mixed with the gas. Our goal is to study the vertical (re)distribution of grains taking into account settling, turbulent diffusion, and collisions with other dust grains. Assuming a fragmentation-limited background dust population, we developed a Monte Carlo approach that follows single monomers as they move through a vertical column of gas and become incorporated in different aggregates as they undergo sticking and fragmenting collisions. We find that (sub)micron grains are not necessarily well-mixed vertically, but can become trapped in a thin layer with a scale height that is significantly smaller than that of the gas. This collisional trapping occurs when the timescale for diffusion is comparable to or longer than the collision timescale in the midplane and its effect is strongest when the most massive particles in the size distribution show significant settling. Based on simulations and analytical considerations, we conclude that for typical dust-to-gas ratios and turbulence levels, the collisional trapping of small grains should be a relatively common phenomenon. The absence of trapping could then indicate a low dust-to-gas ratio, possibly because a large portion of the dust mass has been removed through radial drift or is locked up in planetesimals.

  18. A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy

    NASA Astrophysics Data System (ADS)

    Vecchi, R.; Chiari, M.; D'Alessandro, A.; Fermo, P.; Lucarelli, F.; Mazzei, F.; Nava, S.; Piazzalunga, A.; Prati, P.; Silvani, F.; Valli, G.

    Sub-micron sized particles are of increasing concern owing to their effects on human health and on the environment. Up to now there are still very few studies on PM1 (i.e. particulate matter with aerodynamic diameter smaller than 1 μm) chemical characterisation; the sub-micron sized fraction is not under regulations although it is of interest because it is almost exclusively associated to anthropogenic sources. To perform the first large-scale assessment of sub-micron sized aerosol concentrations, composition and sources, two monitoring campaigns at three urban sites in Italy were carried out during the wintertime and summertime of 2004. Chemical characterisation (elements, soluble ionic fraction, elemental and organic carbon) was carried out on PM1 samples: major contributions were due to organic matter (about 30% in summer and 50% in winter) and ammonium sulphate (about 10% in winter and 40% in summer). During the cold season, nitrates also contributed up to 30% in Milan (lower contributions were registered at the other two urban sites). Chemical mass closure was achieved with an unaccounted mass in the range 14-22%. Positive Matrix Factorisation (PMF) was applied to identify the major sub-micron sized particles' sources.

  19. Micron and sub-micron feature replication of amorphous polymers at elevated mold temperature without externally applied pressure

    NASA Astrophysics Data System (ADS)

    Mosaddegh, Peiman; Angstadt, David C.

    2008-03-01

    The focus of this study is on the ability of amorphous polymers to replicate micron and sub-micron features when molded at an elevated mold temperature without externally applied pressure. Molding was performed using three different types of amorphous polymers: cyclo-olefin copolymer (COC), polystyrene (PS) and poly (methyl methacrylate) (PMMA) on a silicon mold containing surface features as small as 700 nm in depth and aspect ratios ranging from 5 to 0.02. In this study, processing temperatures were selected in order to match the viscosity for all polymers used. Polymer viscosity was characterized via cone and plate rheometry and wettability was characterized via contact angle analysis to quantify interfacial effects. Feature replication was assessed using scanning electron microscopy (SEM) and atomic force microscopy (AFM) to compare the molded feature depth ratio. It was observed that for the features with an aspect ratio (depth/width) bigger than 2 the depth ratio of the molded parts decreases. PS shows the best replication because of high wettability behavior. PMMA shows the intermediate replication because of dipole-dipole interaction and its lower diffusion coefficient than PS. COC has the worse replication especially in low aspect ratio because of sticking to the silicon oxide layer. PS has the best surface roughness among all polymers.

  20. Measurement of process-induced defects in Si sub-micron devices by combination of EDMR and TEM

    NASA Astrophysics Data System (ADS)

    Umeda, T.; Toda, A.; Mochizuki, Y.

    2004-07-01

    Process-induced defects are a serious issue for modern sub-micron Si LSIs. To characterize such defects, two different techniques are useful: electrically detected magnetic resonance (EDMR) and transmission electron microscope (TEM), which can detect small (point) and extended defects, respectively. We applied EDMR and TEM to the issue of defect-induced leakage currents in dynamic-random-access memory (DRAM) cells. For our DRAM samples (a 0.25-μm-rule series), although TEM showed no extended defects, EDMR successfully detected two types of point defects: V{2}+O x (Si divacancy-oxygen complexes) and larger Si vacancies (at least larger than V{6}). We confirmed that these defects are the source of DRAM leakage currents. The observed defects were formed by ion implantation processes, but were more thermally stable than those in bulk Si crystals. The origins of this enhanced stability are attributed to the presence of oxygen atoms and a strong mechanical strain in LSIs. To clarify the origin of the complicated strain in LSI structures, we can directly measure the local-strain distribution in DRAM samples by means of convergent-beam electron diffraction (CBED) using TEM, which provides us with a valuable hint for understanding the formation mechanism of process-induced defects.

  1. A method for sizing sub-micron particles using small angle diffraction of soft x-rays

    SciTech Connect

    Berkeland, D.J.; Underwood, J.H.; Perera, R.C.C.

    1988-10-01

    The purpose of this work is to develop a method of sizing sub-micron particles using small-angle soft x-ray diffraction. Solid poly-styrene spheres of known sizes were used as scattering samples, with C-K..cap alpha.. (44.8/angstrom/) and V-L..cap alpha.. (24.3/angstrom/) radiation from a conventional x-ray source. Two devices were used to diffract the x-rays. One collimates the radiation using a series of pinholes immediately preceding the sample, and directs the unfocussed radiation onto film placed far from the sample. The other utilizes radiation from a single pinhole above the source onto the sample and a spherical multilayer mirror in series, so that the radiation passes twice through the sample and is focused onto film immediately above the pinhole assembly to increase the effective sample area. Using the latter device, two types of diffraction patterns were obtained: a sharp, relatively small pattern from spheres which form a hexagonal lattice structure, and a diffuse, larger pattern from an unordered, or random, array of spheres. Both patterns are presented in this work, along with the calculations, based upon light scattering from an unordered and an ordered array of particles, of the scattering patterns. 9 refs., 32 figs., 2 tabs.

  2. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  3. Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip.

    PubMed

    Kim, Jisu; Shin, Jung H

    2016-09-22

    We demonstrate stable, free-space optical trapping and manipulation in an integrated microfluidic chip using counter-propagating beams. An inverted ridge-type waveguide made of SU8 is cut across by an open trench. The design of the waveguide provides low propagation losses and small divergence of the trapping beam upon emergence from the facet, and the trench designed to be deeper and wider than the optical mode enables full utilization of the optical power with an automatic alignment for counter-propagating beams in a trap volume away from all surfaces. After integration with polydimethylsiloxane (PDMS) microfluidic channel for particle delivery, 0.65 μm and 1 μm diameter polystyrene beads were trapped in free space in the trench, and manipulated to an arbitrary position between the waveguides with a resolution of < 100 nm. Comparison with numerical simulations confirm stable trapping of sub-micron particles, with a 10 kBT threshold power of less than 1 mW and a stiffness that can be 1 order of magnitude larger than that of comparable fiber-based trapping methods.

  4. Formation of sub-micron size carbon structures by plasma jets emitted from a pulsed capillary discharge

    NASA Astrophysics Data System (ADS)

    Bhuyan, H.; Favre, M.; Valderrama, E.; Avaria, G.; Wyndham, E.; Chuaqui, H.; Baier, J.; Kelly, H.; Grondona, D.; Marquez, A.

    2009-01-01

    We have performed an experimental investigation of the potential use of intense plasma jets produced in a repetitive pulsed capillary discharge (PCD) operating in methane gas, to irradiate Si (1 0 0) substrates. The surface modifications induced by the plasma jet using two different material inserts at the capillary end, graphite and titanium, are characterized using standard surface science diagnostic tools, such as scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis and Raman spectroscopy (RS). It has been found that the application of methane plasma jet results in the formation of sub-micron size carbon structures. It is observed that the resulting plasma irradiated surface morphologies are different, depending on the different material inserts used at the capillary end, at otherwise identical operational conditions. To investigate the species responsible for the observed surface changes in different material inserts to the capillary, optical-emission spectroscopy (OES) was recorded using a 300-1000 nm spectrometer. The OES results show the presence of H, CH and C 2 Swan band in the discharge plasma, which play a significant role in the formation of the carbon structures.

  5. The sub-micron hole array in sapphire produced by inductively-coupled plasma reactive ion etching.

    PubMed

    Shiao, Ming-Hua; Chang, Chun-Ming; Huang, Su-Wei; Lee, Chao-Te; Wu, Tzung-Chen; Hsueh, Wen-Jeng; Ma, Kung-Jeng; Chiang, Donyau

    2012-02-01

    The sub-micron hole array in a sapphire substrate was fabricated by using nanosphere lithography (NSL) combined with inductively-coupled-plasma reactive ion etching (ICP-RIE) technique. Polystyrene nanospheres of about 600 nm diameter were self-assembled on c-plane sapphire substrates by the spin-coating method. The diameter of polystyrene nanosphere was modified by using oxygen plasma in ICP-RIE system. The size of nanosphere modified by oxygen plasma was varied from 550 to 450 nm with different etching times from 15 to 35 s. The chromium thin film of 100 nm thick was then deposited on the shrunk nanospheres on the substrate by electron-beam evaporation system. The honeycomb type chromium mask can be obtained on the sapphire substrate after the polystyrene nanospheres were removed. The substrate was further etched in two sets of chlorine/Argon and boron trichloride/Argon mixture gases at constant pressure of 50 mTorr in ICP-RIE processes. The 400 nm hole array in diameter can be successfully produced under suitable boron trichloride/Argon gas flow ratio.

  6. Time-specific measurements of energy deposition from radiation fields in simulated sub-micron tissue volumes

    SciTech Connect

    Famiano, M.A.

    1997-07-07

    A tissue-equivalent spherical proportional counter is used with a modified amplifier system to measure specific energy deposited from a uniform radiation field for short periods of time ({approximately}1 {micro}s to seconds) in order to extrapolate to dose in sub-micron tissue volumes. The energy deposited during these time intervals is compared to biological repair processes occurring within the same intervals after the initial energy deposition. The signal is integrated over a variable collection time which is adjusted with a square-wave pulse. Charge from particle passages is collected on the anode during the period in which the integrator is triggered, and the signal decays quickly to zero after the integrator feedback switch resets; the process repeats for every triggering pulse. Measurements of energy deposited from x rays, {sup 137}Cs gamma rays, and electrons from a {sup 90}Sr/{sup 90}Y source for various time intervals are taken. Spectral characteristics as a function of charge collection time are observed and frequency plots of specific energy and collection time-interval are presented. In addition, a threshold energy flux is selected for each radiation type at which the formation of radicals (based on current measurements) in mammalian cells equals the rate at which radicals are repaired.

  7. Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip

    PubMed Central

    Kim, Jisu; Shin, Jung H.

    2016-01-01

    We demonstrate stable, free-space optical trapping and manipulation in an integrated microfluidic chip using counter-propagating beams. An inverted ridge-type waveguide made of SU8 is cut across by an open trench. The design of the waveguide provides low propagation losses and small divergence of the trapping beam upon emergence from the facet, and the trench designed to be deeper and wider than the optical mode enables full utilization of the optical power with an automatic alignment for counter-propagating beams in a trap volume away from all surfaces. After integration with polydimethylsiloxane (PDMS) microfluidic channel for particle delivery, 0.65 μm and 1 μm diameter polystyrene beads were trapped in free space in the trench, and manipulated to an arbitrary position between the waveguides with a resolution of < 100 nm. Comparison with numerical simulations confirm stable trapping of sub-micron particles, with a 10 kBT threshold power of less than 1 mW and a stiffness that can be 1 order of magnitude larger than that of comparable fiber-based trapping methods. PMID:27653191

  8. Exploitation of sub-micron cavitation nuclei to enhance ultrasound-mediated transdermal transport and penetration of vaccines.

    PubMed

    Bhatnagar, Sunali; Kwan, James J; Shah, Apurva R; Coussios, Constantin-C; Carlisle, Robert C

    2016-09-28

    Inertial cavitation mediated by ultrasound has been previously shown to enable skin permeabilisation for transdermal drug and vaccine delivery, by sequentially applying the ultrasound then the therapeutic in liquid form on the skin surface. Using a novel hydrogel dosage form, we demonstrate that the use of sub-micron gas-stabilising polymeric nanoparticles (nanocups) to sustain and promote cavitation activity during simultaneous application of both drug and vaccine results in a significant enhancement of both the dose and penetration of a model vaccine, Ovalbumin (OVA), to depths of 500μm into porcine skin. The nanocups themselves exceeded the penetration depth of the vaccine (up to 700μm) due to their small size and capacity to 'self-propel'. In vivo murine studies indicated that nanocup-assisted ultrasound transdermal vaccination achieved significantly (p<0.05) higher delivery doses without visible skin damage compared to the use of a chemical penetration enhancer. Transdermal OVA doses of up to 1μg were achieved in a single 90-second treatment, which was sufficient to trigger an antigen-specific immune response. Furthermore, ultrasound-assisted vaccine delivery in the presence of nanocups demonstrated substantially higher specific anti-OVA IgG antibody levels compared to other transdermal methods. Further optimisation can lead to a viable, safe and non-invasive delivery platform for vaccines with potential use in a primary care setting or personalized self-vaccination at home.

  9. Parametric study of plasma-mediated thermoluminescence produced by Al2O3 sub-micron powders

    NASA Astrophysics Data System (ADS)

    Morávek, T.; Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ráheľ, J.

    2017-10-01

    Sub-micron Al2O3 powders with a surface activated by dielectric barrier discharge exhibit improved performance in wet deposition of ceramic layers. In addressing the possible mechanisms responsible for the observed improvement, a comprehensive thermoluminescence (TL) study of plasma-activated powders was performed. TL offers the unique possibility of exploring the population of intrinsic electrons/holes in the charge trapping states. This study covers a wide range of experimental conditions affecting the TL of powders: treatment time, plasma working gas composition, change of discharge configuration, step-annealing of powder, exposure to laser irradiation and aging time. Deconvoluted TL spectra were followed for the changes in their relative contributions. The TL spectra of all tested gases (air, Ar, N2 and 5% He in N2) consist of the well-known main dosimetric peak at 450 K and a peak of similar magnitude at higher temperatures, centered between 700 and 800 K depending on the working gas used. N2 plasma treatment gave rise to a new specific TL peak at 510 K, which exhibited several peculiarities. Initial thermal annealing of Al2O3 powders led to its significant amplification (unlike the other peaks); the peak was insensitive to optical bleaching, and it exhibited slow gradual growth during the long-term aging test. Besides its relevance to the ceramic processing studies, a comprehensive set of data is presented that provides a useful and unconventional view on plasma-mediated material changes.

  10. Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip

    NASA Astrophysics Data System (ADS)

    Kim, Jisu; Shin, Jung H.

    2016-09-01

    We demonstrate stable, free-space optical trapping and manipulation in an integrated microfluidic chip using counter-propagating beams. An inverted ridge-type waveguide made of SU8 is cut across by an open trench. The design of the waveguide provides low propagation losses and small divergence of the trapping beam upon emergence from the facet, and the trench designed to be deeper and wider than the optical mode enables full utilization of the optical power with an automatic alignment for counter-propagating beams in a trap volume away from all surfaces. After integration with polydimethylsiloxane (PDMS) microfluidic channel for particle delivery, 0.65 μm and 1 μm diameter polystyrene beads were trapped in free space in the trench, and manipulated to an arbitrary position between the waveguides with a resolution of < 100 nm. Comparison with numerical simulations confirm stable trapping of sub-micron particles, with a 10 kBT threshold power of less than 1 mW and a stiffness that can be 1 order of magnitude larger than that of comparable fiber-based trapping methods.

  11. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    SciTech Connect

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-06-15

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N{sub 2} adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m{sup 2}/g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at {lambda}=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 {mu}m/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: > Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. > We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. > Loaded fluorescent particles can be moved under a magnetic field in a

  12. Fabrication of a high-aspect-ratio sub-micron tool using a cathode coated with stretched-out insulating layers

    NASA Astrophysics Data System (ADS)

    Zeng, Yongbin; Wang, Yufeng; Qu, Ningsong; Zhu, Di

    2013-09-01

    This paper describes a method for preparing a high-aspect-ratio sub-micron tool using a cathode coated with stretched-out insulating layers and a straight reciprocating motion applied at the anode via the liquid membrane electrochemical machining (ECM). Simulation results indicate that the application of a cathode coated with stretched-out insulating layers is beneficial for the localization of ECM. Moreover, a mathematical model was derived to estimate the final average diameter of the fabricated tools. Experiments were conducted to verify the versatility and feasibility of the proposed method and its mathematical model. It was observed that the calculated and the experimental results are in good agreement with each other. A sub-micron tool with an average diameter 140.8 nm and an aspect ratio up to 50 was fabricated using the proposed method.

  13. Microscopic Strain Mapping in Nanostructured and Microstructured Alumina-Titania Coatings Under 4-point Compressive and Tensile Bending

    DTIC Science & Technology

    2010-06-01

    A & A Co. Engineering Conference International, Sub-Micron & Nanostructured Ceramics Colorado Springs, June 7-12, 2009, Colorado, USA Microscopic...Strain Mapping in Nanostructured and Microstructured Alumina-Titania Coatings Under 4-point Compressive and Tensile Bending A . Ignatov1,2, E. K. Akdogan1...provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently

  14. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    PubMed Central

    Song, Guanying; Li, Zhenjiang; Li, Kaihua; Zhang, Lina; Meng, Alan

    2017-01-01

    In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS), polyvinylpyrrolidone (PVP) and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) spectra indicated that the as-prepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL) of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials. PMID:28336887

  15. Laser Interaction with Nano-Spheres: Applications in Sub-Micron Particles Removal and Nanodot Array Fabrication

    NASA Astrophysics Data System (ADS)

    Sentis, M.; Grojo, D.; Delaporte, Ph.; Pereira, A.

    Laser-assisted nanoparticle removal processes like selective particle ablation, mechanical ejection, local substrate ablation, explosive evaporation are considered by experimental and theoretical approaches. Experiments are based on the estimation of particle removal efficiencies and thresholds depending on material and size of particles. Afterwards, a novel and efficient photonic-based method to synthesize porous alumina membranes (PAMs) and subsequent metal nano-dot arrays on various substrates, based on near laser field enhancement by nano spheres, is reported.

  16. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory during 2004-2015

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jaffe, D. A.; Hee, J.

    2016-12-01

    Tropospheric ozone (O3) and airborne particles have significant impacts on human health and the environment. The Mt. Bachelor Observatory (MBO, 2.8 km a.s.l.) in Central Oregon, USA, now has one of the longest continuous free tropospheric records of O3, CO and aerosols in North America. In this study, we report on sources and trends of O3 and sub-micron aerosol scattering at MBO for 2004-2015. For O3, the seasonal cycle shows a bimodal pattern with peaks in April and July, while aerosol scattering (σsp) is lognormally distributed with a very high average in August and a smaller maximum in May. Mean O3 concentrations show a positive and significant trend in all seasons except winter, with an increase of approximately 0.6 ppb/year. This trend appears to be driven by Asian pollution in spring and regional wildfires in summer. For aerosol scattering, we see a significant increase only in summer, driven by recent increases in wildfire activity in the western US. Monthly criteria for isolating free troposphere (FT) and boundary layer (BL) air masses at MBO were obtained based on comparison of MBO water vapor (WV) distributions to those of Salem (SLE) and Medford (MFR), Oregon at equivalent pressure level. In all seasons, FT O3 is, on average, higher than BL O3, but the seasonal patterns are rather similar. For σsp the mean in summer is significantly higher than the FT, indicating the importance of regional wildfire smoke. We have identified four types of air masses that impact O3, CO and aerosols: Asian long range transport (ALRT), regional wildfires, regional industrial pollution, and upper troposphere and lower stratosphere (UTLS) intrusions. Over the 12 years of observations, we have identified 204 individual plume events based on the criteria of 8 consecutive polluted hours with elevated σsp, O3 or CO. Multi-pollutant correlations and backward trajectories were used to differentiate background source categories. A series of enhancement ratios (ERs) including

  17. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory (MBO) during 2004-2015

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Jaffe, Daniel A.

    2017-09-01

    In this paper, we report the climatology of tropospheric ozone (O3) and sub-micron aerosol scattering at the Mt. Bachelor Observatory (MBO, 2.8 km asl) in central Oregon, USA, during 2004-2015. The seasonal cycle for O3 showed a bimodal pattern with peaks in April and July, while aerosol scattering (σsp) was lognormally distributed with a very high peak in August and a smaller peak in May. The mean O3 concentrations showed positive and significant trends in all seasons except winter, with a slope of 0.6-0.8 ppbv yr-1. Monthly criteria for isolating free tropospheric (FT) and boundary layer influenced (BLI) air masses at MBO were obtained based on comparison of MBO water vapor (WV) distributions to those of Salem (SLE) and Medford (MFR), Oregon, at equivalent pressure level. In all seasons, FT O3 was, on average, higher than BLI O3, but the seasonal patterns were rather similar. For σsp the FT mean in spring was higher, but the BLI mean in summer was significantly higher, indicating the importance of regional wildfire smoke. To better understand the causes for the seasonal and interannual trends at MBO, we identified four major categories of air masses that impact O3, carbon monoxide (CO) and aerosols: upper troposphere and lower stratosphere (UTLS) O3 intrusion, Asian long-range transport (ALRT), Arctic air pollution (AAP) and plumes from the Pacific Northwest region (PNW). ALRT and PNW plumes can be further divided into wildfires (WF), industrial pollution (IP) and mineral dust (MD). Over the 12 years of observations, 177 individual plume events have been identified. Enhancement ratios (ERs) and Ångström exponents (AEs) of aerosols were calculated for all events. The lowest slope of Δσsp/ΔO3 is a unique feature of UTLS events. PNW-WF events have the highest averages for Δσsp/ΔCO, Δσsp/ΔO3 and Δσsp/ΔNOy compared to other events. These ERs decrease during long-range transport due to the shorter residence time of aerosols compared to the other

  18. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-03-01

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols

  19. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency.

    PubMed

    Li, Peng; Zong, Yichen; Zhang, Yingying; Yang, Mengmeng; Zhang, Rufan; Li, Shuiqing; Wei, Fei

    2013-04-21

    We fabricated depth-type hierarchical CNT/quartz fiber (QF) filters through in situ growth of CNTs upon quartz fiber (QF) filters using a floating catalyst chemical vapor deposition (CVD) method. The filter specific area of the CNT/QF filters is more than 12 times higher than that of the pristine QF filters. As a result, the penetration of sub-micron aerosols for CNT/QF filters is reduced by two orders of magnitude, which reaches the standard of high-efficiency particulate air (HEPA) filters. Simultaneously, due to the fluffy brush-like hierarchical structure of CNTs on QFs, the pore size of the hybrid filters only has a small increment. The pressure drop across the CNT/QF filters only increases about 50% with respect to that of the pristine QF filters, leading to an obvious increased quality factor of the CNT/QF filters. Scanning electron microscope images reveal that CNTs are very efficient in capturing sub-micron aerosols. Moreover, the CNT/QF filters show high water repellency, implying their superiority for applications in humid conditions.

  20. Sub-micron-sized polyethylenimine-modified polystyrene/Fe3O4/chitosan magnetic composites for the efficient and recyclable adsorption of Cu(II) ions

    NASA Astrophysics Data System (ADS)

    Xiao, Changwei; Liu, Xijian; Mao, Shimin; Zhang, Lijuan; Lu, Jie

    2017-02-01

    A sub-micron-sized polyethylenimine(PEI)-modified polystyrene/Fe3O4/chitosan magnetic composite (PS/Fe3O4/CS-PEI) was developed as a novel adsorbent for the removal of Cu(II) ions from aqueous solutions. The PS/Fe3O4/CS-PEI microspheres with a diameter of ∼300 nm can be highly monodisperse and conveniently separated from suspensions by a magnet due to their excellent magnetism. When the PS/Fe3O4/CS-PEI microspheres were used as an absorbent for the absorption of Cu(II) ions, the adsorption isotherms and adsorption kinetics well fitted the Langmuir model and the pseudo-second-order model, respectively. The maximum adsorption capacity was about 204.6 mg g-1, which was higher than those of other chitosan adsorbents reported recently. The adsorption was considerably fast, reaching the equilibrium within 15 min. In addition, the adsorbed Cu(II) ions could be effectively desorbed using 0.1 mol L-1 NaOH solution, and the regeneration study proved that the composite microspheres could be repeatedly utilized without significant capacity loss after six cycles. All the results demonstrated that the synthesized sub-micron-sized magnetic PS/Fe3O4/CS-PEI composites can be used as an ideal adsorbent of Cu(II) ions for environmental cleanup applications.

  1. Effect of epicuticular wax crystals on the localization of artificially deposited sub-micron carbon-based aerosols on needles of Cryptomeria japonica.

    PubMed

    Nakaba, Satoshi; Yamane, Kenichi; Fukahori, Mie; Nugroho, Widyanto Dwi; Yamaguchi, Masahiro; Kuroda, Katsushi; Sano, Yuzou; Wuled Lenggoro, I; Izuta, Takeshi; Funada, Ryo

    2016-09-01

    Elucidation of the mechanism of adsorption of particles suspended in the gas-phase (aerosol) to the outer surfaces of leaves provides useful information for understanding the mechanisms of the effect of aerosol particles on the growth and physiological functions of trees. In the present study, we examined the localization of artificially deposited sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica, a typical Japanese coniferous tree species, by field-emission scanning electron microscopy. The clusters (aggregates) of carbon-based particles were deposited on the needle surface regions where epicuticular wax crystals were sparsely distributed. By contrast, no clusters of the particles were found on the needle surface regions with dense distribution of epicuticular wax crystals. Number of clusters of carbon-based particles per unit area showed statistically significant differences between regions with sparse epicuticular wax crystals and those with dense epicuticular wax crystals. These results suggest that epicuticular wax crystals affect distribution of carbon-based particles on needles. Therefore, densely distributed epicuticular wax crystals might prevent the deposition of sub-micron-sized carbon-based particles on the surfaces of needles of Cryptomeria japonica to retain the function of stomata.

  2. Morphology transformations in tetrabutyl titanate-acetic acid system and sub-micron/micron hierarchical TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Niu; Xie, Yanan; Sebo, Bobby; Liu, Yumin; Sun, Xiaohua; Peng, Tao; Sun, Weiwei; Bu, Chenghao; Guo, Shishang; Zhao, Xingzhong

    2013-11-01

    The concentration of tetrabutyl titanate (TBT) and H2O influence on the reaction kinetics of TBT and acetic acid (AcOH) solvothermal system are systematically studied. It is found that TBT and H2O have greatly accelerated the hydrolysis-condensation process of the TBT-AcOH system. By adjusting those concentrations with reaction time, we prepare five kinds of sub-micron/micron precursors, which are hierarchical structures consisting of different primary building blocks. The morphology of these precursors varies from noninterlaced structures composed of flower-like microsphere and ellipsoid sphere to interlaced structures composed of flower-like microsphere interlaced nanofibers, ellipsoid spheres interlaced flower-like microsphere and nanoparticles interlaced flower-like microsphere. These interlaced structures are synthesized for the first time and are not ordinary mixtures of the noninterlaced structures. After heat treatment, these precursors are transformed to anatase TiO2. Shape-dependent photovoltaic performances of dye-sensitized solar cells (DSSCs) are also discussed. DSSCs based on these hierarchical sub-micron/micron TiO2 show 7.3%-7.9% energy conversion efficiencies, and the devices based on interlaced structures have higher efficiencies (7.4%-7.9%) than those of the devices based on noninterlaced structures (7.3%-7.6%).

  3. Both improvements of the light extraction efficiency and scattered angle of GaN-LED using sub-micron Fresnel lens array

    NASA Astrophysics Data System (ADS)

    Gu, Xinyu; Chen, Linsen; Shen, Su; Wan, Wenqiang

    2015-11-01

    With the demanding requirements for light source, light emitting diodes (LED) attracts more and more attention because of its inherent advantages such as low power consumption, high reliability and longevity. However, there are two disadvantages for LED, one is the low light extraction efficiency resulting from the total internal reflection, and the other is the relative large scattered angle. In order to improve the light extraction efficiency and collimate the out-coupling light, a sub-micron Fresnel lens array is introduced and investigated in this paper. The focal length of the proposed Fresnel lens is 3μm and the minimum width of the outmost ring is about 150nm. To calculate and analyze the light extraction efficiency and the scattered angle of LED with such Fresnel lens array structure, we optimize the parameters of the Fresnel lens, such as the depth of the Fresnel lens array structure and the thickness of the p-type gallium nitride layer by using the finite difference time domain method (FDTD). By comparing the discussed patterned GaN-based LED with that traditional flat LEDs, it can be found that significant enhancement factor of the light extraction efficiency, which is improved by 3.5 times, can be obtained and the scattered angle at half maximum can be decreased 50° from 60° with this novel Fresnel lens structure. It will be expected that the proposed sub-micron structure can find wide applications in LEDs industry.

  4. Hydrothermal Synthesis Au-Bi2Te3 Nanocomposite Thermoelectric Film with a Hierarchical Sub-Micron Antireflection Quasi-Periodic Structure.

    PubMed

    Tian, Junlong; Zhang, Wang; Zhang, Yuan; Xue, Ruiyang; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-06-03

    In this work, Au-Bi(2)Te(3) nanocomposite thermoelectric film with a hierarchical sub-micron antireflection quasi-periodic structure was synthesized via a low-temperature chemical route using Troides helena (Linnaeus) forewing (T_FW) as the biomimetic template. This method combines chemosynthesis with biomimetic techniques, without the requirement of expensive equipment and energy intensive processes. The microstructure and the morphology of the Au-Bi(2)Te(3) nanocomposite thermoelectric film was analyzed by X-ray diffraction (XRD), field-emission scanning-electron microscopy (FESEM), and transmission electron microscopy (TEM). Coupled the plasmon resonances of the Au nanoparticles with the hierarchical sub-micron antireflection quasi-periodic structure, the Au-Bi(2)Te(3) nanocomposite thermoelectric film possesses an effective infrared absorption and infrared photothermal conversion performance. Based on the finite difference time domain method and the Joule effect, the heat generation and the heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film were studied. The heterogeneity of heat source density distribution of the Au-Bi(2)Te(3) nanocomposite thermoelectric film opens up a novel promising technique for generating thermoelectric power under illumination.

  5. Sub-micron resolution surface plasmon resonance imaging enabled by nanohole arrays with surrounding Bragg mirrors for enhanced sensitivity and isolation.

    PubMed

    Lindquist, Nathan C; Lesuffleur, Antoine; Im, Hyungsoon; Oh, Sang-Hyun

    2009-02-07

    We present nanohole arrays in thin gold films as sub-micron resolution surface plasmon resonance (SPR) imaging pixels in a microarray format. With SPR imaging, the resolution is not limited by diffraction, but by the propagation of surface plasmon waves to adjacent sensing areas, or nanohole arrays, causing unwanted interference. For ultimate scalability, several issues need to be addressed, including: (1) as several nanohole arrays are brought close to each other, surface plasmon interference introduces large sources of error; and (2) as the size of the nanohole array is reduced, i.e. fewer holes, detection sensitivity suffers. To address these scalability issues, we surround each biosensing pixel (a 3-by-3 nanohole array) with plasmonic Bragg mirrors, blocking interference between adjacent SPR sensing pixels for high-density packing, while maintaining the sensitivity of a 50 x larger footprint pixel (a 16-by-16 nanohole array). We measure real-time, label-free streptavidin-biotin binding kinetics with a microarray of 600 sub-micron biosensing pixels at a packing density of more than 10(7) per cm(2).

  6. Low loss (approximately 6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler.

    PubMed

    Fang, Q; Song, J F; Tao, S H; Yu, M B; Lo, G Q; Kwong, D L

    2008-04-28

    In this communication, the sub-micron size polycrystalline silicon (poly- Si) single mode waveguides are fabricated and integrated with SiON waveguide coupler by deep UV lithography. The propagation loss of poly-Si waveguide and coupling loss with optical flat polarization-maintaining fiber (PMF) are measured. For whole C-band (i.e., lambda approximately 1520-1565nm), the propagation loss of TE mode is measured to approximately 6.45+/-0.3dB/cm. The coupling loss with optical flat PMF is approximately 3.4dB/facet for TE mode. To the best of our knowledge, the propagation loss is among the best reported results. This communication discusses the factors reducing the propagation loss, especially the effect of the refractive index contrast. Compared to the SiO(2) cladding, poly-Si waveguide with SiON cladding exhibits lower propagation loss.

  7. Magnetic and Mössbauer characterization of the magnetic properties of single-crystalline sub-micron sized Bi₂Fe₄O₉ cubes

    SciTech Connect

    Papaefthymiou, Georgia C.; Wong, Stanislaus S.; Viescas, Arthur J.; Le Breton, Jean-Marie; Chiron, Hubert; Juraszek, Jean; Park, Tae-Jin

    2014-11-25

    Magnetic and Mössbauer characterization of single crystalline, sub-micron sized Bi₂Fe₄O₉ cubes has been performed using SQUID magnetometry and transmission Mössbauer spectroscopy in the temperature range of 4.2 K ≤ T ≤ 300 K. A broad magnetic phase transition from the paramagnetic to the anti-ferromagnetic state is observed below 250 K, with the Mössbauer spectra exhibiting a superposition of magnetic, collapsed and quadrupolar spectra in the transition region of 200 K < T < 245 K. Room temperature Mössbauer spectra obtained in transmission geometry are identical to those recorded in back-scattering geometry via conversion electron Mössbauer spectroscopy, indicating the absence of strain at the surface. A small hysteresis loop is observed in SQUID measurements at 5 K, attributable to the presence of weak-ferromagnetism arising from the canting of Fe³⁺ ion sublattices in the antiferromagnetic matrix.

  8. Co-existence of a few and sub micron inhomogeneities in Al-rich AlGaN/AlN quantum wells

    SciTech Connect

    Iwata, Yoshiya; Oto, Takao; Banal, Ryan G.; Funato, Mitsuru; Kawakami, Yoichi; Gachet, David

    2015-03-21

    Inhomogeneity in Al-rich AlGaN/AlN quantum wells is directly observed using our custom-built confocal microscopy photoluminescence (μ-PL) apparatus with a reflective system. The μ-PL system can reach the AlN bandgap in the deep ultra-violet spectral range with a spatial resolution of 1.8 μm. In addition, cathodoluminescence (CL) measurements with a higher spatial resolution of about 100 nm are performed. A comparison of the μ-PL and CL measurements reveals that inhomogeneities, which have different spatial distributions of a few- and sub-micron scales that are superimposed, play key roles in determining the optical properties.

  9. Direct sub-micron microstructuring on cylinder using TiO2 sol-gel process and radial phase mask based lithography

    NASA Astrophysics Data System (ADS)

    Berthod, L.; Vocanson, F.; Langlet, M.; Veillas, C.; Reynaud, S.; Verrier, I.; Laukkanen, J.; Parriaux, O.; Jourlin, Y.

    2016-04-01

    Design and fabrication of a high efficiency phase mask have been performed for printing submicron period gratings along 8 mm diameter glass cylinders. In this article, the authors present the radial phase mask specially designed and manufactured for a cylindrical surface micro-structuring under UV photolithography. Its period is sub-micron (480 nm < ΛPM < 720 nm). The authors describe then the phase mask based UV lithography set-up using the interference between the transmitted beams of +1 and -1 orders generated by the phase mask. Preliminary results of printed gratings on a cylinder are described on a sol-gel TiO2 thin film layer, enabling direct photo patterning on functionalized layer. The feasibility of a grating printed with a period of Λcylin = 960 nm on an 8 mm diameter cylinder with this dedicated mask has been demonstrated.

  10. Simulation and optimization of a sub-micron beam for macromolecular crystallography using SHADOW and XOP at GM/CA CAT at the APS

    NASA Astrophysics Data System (ADS)

    Liu, Zunping; Xu, Shenglan; Yoder, Derek W.; Fischetti, Robert F.

    2011-10-01

    The small, high intensity and low convergence beams available on beamlines at 3rd generation synchrotron sources have been a boon to macromolecular crystallography. It is now becoming routine to solve structures using a beam in the 5 - 20 micron (FWHM) range. However, many problems in structural biology suffer from poor S/N due to small (a few microns) crystals or larger inhomogenous crystals. In additional, theoretical calculations and experimental results have demonstrated that radiation damage may be reduced by using a micron-sized X-ray beam. At GM/CA CAT we are developing a sub-micron, low convergence beam to address these issues. The sub-micron beam capability will be developed on the existing beamline 23ID-D where the minimum beam size available to users is currently 5 microns in diameter. The target goals are a beam size of ~0.8 micron (FWHM) in diameter, with a beam convergence of less 0.6 milli-rads, a flux greater than 5×1010 photons/sec, and an energy range from 5 to 35 keV. Five optical systems will be compared: 1) a single set of highly demagnifying Kirkpatrick-Baez (K-B) mirrors, 2) multiple Fresnel Zone Plates (FZP), 3) a set of K-B mirrors focusing to a secondary source that is imaged by another set of K-B mirrors, 4) a set of K-B mirrors focusing to a secondary source that is imaged by a FZP, 5) a horizontal focusing mirror focusing to a secondary source that is imaged by another horizontal mirror together with a vertical focusing mirror. Here we will present the results of a design optimization based on ray trace simulations (SHADOW), flux calculations (XOP), and experimental results on 23ID.

  11. Rheological and filtration behavior of aqueous alumina casting slips dispersed with polyacrylate and polymethacrylate deflocculants

    NASA Astrophysics Data System (ADS)

    Shemo, David M.

    Dynamic stress-controlled rheometry methods and filtration analysis were used to characterize aluminum oxide suspensions relative to several process variables. These included dispersant molecular weight, dispersant concentration, solids concentration, alumina PSD, and aging time. It is believed that through rheological analysis, a better understanding of a slip's structure and dewatering behavior can be achieved. Based upon time- and stress-sweep data, structural models were developed for the build-up (gelation) and break-down (yielding) processes in alumina suspensions. Aqueous alumina suspensions dispersed with acrylate-based polyelectrolytes of average molecular weights of 2400, 3500, and 15000 were evaluated over an aging period of up to ten days. The aging-induced variations in their rheological, filtration, and electrochemical characteristics were quantified. These effects were related to changes in the structures of the suspensions over time. It was found that the aging effect was most pronounced for slips dispersed with higher molecular weight polyacrylate or polymethacrylate deflocculants. A mechanism was proposed to account for the aging behavior and the effect of dispersant molecular weight. Alumina slips were prepared with bimodal particle size compositions by combining two sub-micron alumina powders. Variation in rheological behavior with the composition was evaluated for slips at moderate and high solids concentration, and at fully dispersed and under dispersed states. The corresponding changes in the filtration behavior and cast density were measured. A structural model was constructed for the observed variations with alumina composition.

  12. Sub-micron Polymer–Zeolitic Imidazolate Framework Layered Hybrids via Controlled Chemical Transformation of Naked ZnO Nanocrystal Films

    SciTech Connect

    Meckler, Stephen M.; Li, Changyi; Queen, Wendy L.; Williams, Teresa E.; Long, Jeffrey R.; Buonsanti, Raffaella; Milliron, Delia J.; Helms, Brett A.

    2015-11-24

    Here we show that sub-micron coatings of zeolitic imidazolate frameworks (ZIFs) and even ZIF–ZIF bilayers can be grown directly on polymers of intrinsic microporosity from zinc oxide (ZnO) nanocrystal precursor films, yielding a new class of all-microporous layered hybrids. The ZnO-to-ZIF chemical transformation proceeded in less than 30 min under microwave conditions using a solution of the imidazole ligand in N,N-dimethylformamide (DMF), water, or mixtures thereof. By varying the ratio of DMF to water, it was possible to control the morphology of the ZIF-on-polymer from isolated crystallites to continuous films. Grazing incidence X-ray diffraction was used to confirm the presence of crystalline ZIF in the thin films, and X-ray absorption spectroscopy was used to quantify film purity, revealing films with little to no residual ZnO. The role solvent plays in the transformation mechanism is discussed in light of these findings, which suggest the ZnO nanocrystals may be necessary to localize heterogeneous nucleation of the ZIF to the polymer surface.

  13. Image-Guided Ultrasound Characterization of Volatile Sub-Micron Phase-Shift Droplets in the 20-40 MHz Frequency Range.

    PubMed

    Sheeran, Paul S; Daghighi, Yasaman; Yoo, Kimoon; Williams, Ross; Cherin, Emmanuel; Foster, F Stuart; Burns, Peter N

    2016-03-01

    Phase-shift perfluorocarbon droplets are designed to convert from the liquid to the gas state by the external application of acoustic or optical energy. Although droplet vaporization has been investigated extensively at ultrasonic frequencies between 1 and 10 MHz, few studies have characterized performance at the higher frequencies commonly used in small animal imaging. In this study, we use standard B-mode imaging sequences on a pre-clinical ultrasound platform to both image and activate sub-micron decafluorobutane droplet populations in vitro and in vivo at center frequencies in the range of 20-40 MHz. Results show that droplets remain stable against vaporization at low imaging pressures but are vaporized at peak negative pressures near 3.5 MPa at the three frequencies tested. This study also found that a small number of size outliers present in the distribution can greatly influence droplet performance. Removal of these outliers results in a more accurate assessment of the vaporization threshold and produces free-flowing microbubbles upon vaporization in the mouse kidney.

  14. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media.

    PubMed

    Fraser, Sarah A; Ting, Yuk-Hong; Mallon, Kelly S; Wendt, Amy E; Murphy, Christopher J; Nealey, Paul F

    2008-09-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features.

  15. A Fast, Versatile Nanoprobe for Complex Materials: The Sub-micron Resolution X-ray Spectroscopy Beamline at NSLS-II (491st Brookhaven Lecture)

    SciTech Connect

    Thieme, Juergen

    2014-02-06

    Time is money and for scientists who need to collect data at research facilities like Brookhaven Lab’s National Synchrotron Light Source (NSLS), “beamtime” can be a precious commodity. While scanning a complex material with a specific technique and standard equipment today would take days to complete, researchers preparing to use brighter x-rays and the new sub-micron-resolution x-ray spectroscopy (SRX) beamline at the National Synchrotron Light Source II (NSLS-II) could scan the same sample in greater detail with just a few hours of beamtime. Talk about savings and new opportunities for researchers! Users will rely on these tools for locating trace elements in contaminated soils, developing processes for nanoparticles to deliver medical treatments, and much more. Dr. Thieme explains benefits for next-generation research with spectroscopy and more intense x-rays at NSLS-II. He discusses the instrumentation, features, and uses for the new SRX beamline, highlighting its speed, adjustability, and versatility for probing samples ranging in size from millimeters down to the nanoscale. He will talk about complementary beamlines being developed for additional capabilities at NSLS-II as well.

  16. Infrared-induced variation of the magnetic properties of a magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure.

    PubMed

    Tian, Junlong; Zhang, Wang; Huang, Yiqiao; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-26

    A carbon-matrix nickel composite magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure (SPTAS) was fabricated via a simple and promising method that combines chemosynthesis with biomimetic techniques. The Troides helena (Linnaeus) forewing (T_FW) was chosen as the biomimetic template. The carbon-matrix Ni wing fabricated via electroless Ni deposition for 6 h (CNMF_6h) exhibits enhanced infrared absorption. Over a wavelength range (888-2500 nm), the enhancement of the infrared absorption of CNMF_6h is up to 1.85 times compared with the T_FW. Furthermore, infrared excitation induces a photothermal effect that results in variation in the magnetic properties of the carbon-matrix Ni wing. The magnetic properties were also confirmed using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The good correlation between the AFM and MFM images demonstrates that the surface of the SPTAS of CNMF_6h exhibits strong magnetic properties. The infrared induced photothermal effect that results in magnetic variation is promising for use in the design of novel magnetoplasmonic films with potential applications in infrared information recording and heat-assisted magnetic recording.

  17. Infrared-induced variation of the magnetic properties of a magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure

    NASA Astrophysics Data System (ADS)

    Tian, Junlong; Zhang, Wang; Huang, Yiqiao; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-01

    A carbon-matrix nickel composite magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure (SPTAS) was fabricated via a simple and promising method that combines chemosynthesis with biomimetic techniques. The Troides helena (Linnaeus) forewing (T_FW) was chosen as the biomimetic template. The carbon-matrix Ni wing fabricated via electroless Ni deposition for 6 h (CNMF_6h) exhibits enhanced infrared absorption. Over a wavelength range (888-2500 nm), the enhancement of the infrared absorption of CNMF_6h is up to 1.85 times compared with the T_FW. Furthermore, infrared excitation induces a photothermal effect that results in variation in the magnetic properties of the carbon-matrix Ni wing. The magnetic properties were also confirmed using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The good correlation between the AFM and MFM images demonstrates that the surface of the SPTAS of CNMF_6h exhibits strong magnetic properties. The infrared induced photothermal effect that results in magnetic variation is promising for use in the design of novel magnetoplasmonic films with potential applications in infrared information recording and heat-assisted magnetic recording.

  18. Sub-micron and nanoscale feature depth modulates alignment of stromal fibroblasts and corneal epithelial cells in serum-rich and serum-free media

    PubMed Central

    Fraser, Sarah A.; Ting, Yuk-Hong; Mallon, Kelly S.; Wendt, Amy E.; Murphy, Christopher J.; Nealey, Paul F.

    2011-01-01

    Topographic features are generally accepted as being capable of modulating cell alignment. Of particular interest is the potential that topographic feature geometry induces cell alignment indirectly through impacting adsorbed proteins from the cell culture medium on the surface of the substrate. However, it has also been reported that micron-scale feature depth significantly impacts the level of alignment of cellular populations on topography, despite being orders of magnitude larger than the average adsorbed protein layer (nm). In order to better determine the impact of biomimetic length scale topography and adsorbed protein interaction on cellular morphology we have systematically investigated the effect of combinations of sub-micron to nanoscale feature depth and lateral pitch on corneal epithelial cell alignment. In addition we have used the unique properties of a serum-free media alternative in direct comparison to serum-rich medium to investigate the role of culture medium protein composition on cellular alignment to topographically patterned surfaces. Our observation that increasing groove depth elicited larger populations of corneal epithelial cells to align regardless of culture medium composition and of cell orientation with respect to the topography, suggests that these cells can sense changes in topographic feature depths independent of adsorbed proteins localized along ridge edges and tops. However, our data also suggests a strong combinatory effect of topography with culture medium composition, and also a cell type dependency in determining the level of cell elongation and alignment to nanoscale topographic features. PMID:18041718

  19. Top-Contact Self-Aligned Printing for High-Performance Carbon Nanotube Thin-Film Transistors with Sub-Micron Channel Length.

    PubMed

    Cao, Xuan; Wu, Fanqi; Lau, Christian; Liu, Yihang; Liu, Qingzhou; Zhou, Chongwu

    2017-02-28

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed thin-film transistors due to their excellent electrical performance and intrinsic printability with solution-based deposition. However, limited by resolution and registration accuracy of current printing techniques, previously reported fully printed nanotube transistors had rather long channel lengths (>20 μm) and consequently low current-drive capabilities (<0.2 μA/μm). Here we report fully inkjet printed nanotube transistors with dramatically enhanced on-state current density of ∼4.5 μA/μm by downscaling the devices to a sub-micron channel length with top-contact self-aligned printing and employing high-capacitance ion gel as the gate dielectric. Also, the printed transistors exhibited a high on/off ratio of ∼10(5), low-voltage operation, and good mobility of ∼15.03 cm(2) V(-1)s(-1). These advantageous features of our printed transistors are very promising for future high-definition printed displays and sensing systems, low-power consumer electronics, and large-scale integration of printed electronics.

  20. Magnetic and Mössbauer characterization of the magnetic properties of single-crystalline sub-micron sized Bi₂Fe₄O₉ cubes

    DOE PAGES

    Papaefthymiou, Georgia C.; Wong, Stanislaus S.; Viescas, Arthur J.; ...

    2014-11-25

    Magnetic and Mössbauer characterization of single crystalline, sub-micron sized Bi₂Fe₄O₉ cubes has been performed using SQUID magnetometry and transmission Mössbauer spectroscopy in the temperature range of 4.2 K ≤ T ≤ 300 K. A broad magnetic phase transition from the paramagnetic to the anti-ferromagnetic state is observed below 250 K, with the Mössbauer spectra exhibiting a superposition of magnetic, collapsed and quadrupolar spectra in the transition region of 200 K < T < 245 K. Room temperature Mössbauer spectra obtained in transmission geometry are identical to those recorded in back-scattering geometry via conversion electron Mössbauer spectroscopy, indicating the absence ofmore » strain at the surface. A small hysteresis loop is observed in SQUID measurements at 5 K, attributable to the presence of weak-ferromagnetism arising from the canting of Fe³⁺ ion sublattices in the antiferromagnetic matrix.« less

  1. Time-domain analysis of sub-micron transit region GaAs Gunn diodes for use in terahertz frequency multiplication chains

    NASA Astrophysics Data System (ADS)

    Amir, F.; Farrington, N.; Mitchell, C.; Missous, M.

    2010-10-01

    Simulated RF time-domain characteristics for advanced Gunn diodes with hot electron injection and sub-micron transit region lengths for use at frequencies over 100GHz are reported. The physical models used have been developed in SILVACO and are compared to measured results. The devices measured were originally fabricated to investigate the feasibility of GaAs Gunn diode oscillators capable of operating at D-band frequencies and ultimately intended for use in high power (multi-mW) Terahertz sources (~0.6THz) when used in conjunction with novel Schottky diode frequency multiplier technology. The device models created using SILVACO are described and the DC and time-domain results presented. The simulations were used to determine the shortest transit region length capable of producing sustained oscillation. The operation of resonant disk second harmonic Gunn diode oscillators is also discussed and accurate electromagnetic models created using Ansoft High Frequency Structure Simulator presented. Novel methods for combining small-signal frequency-domain electromagnetic simulations with time-domain device simulations in order to account for the significant interactions between the diode and oscillator circuit are described.

  2. Infrared-induced variation of the magnetic properties of a magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure

    PubMed Central

    Tian, Junlong; Zhang, Wang; Huang, Yiqiao; Liu, Qinglei; Wang, Yuhua; Zhang, Zhijian; Zhang, Di

    2015-01-01

    A carbon-matrix nickel composite magnetoplasmonic film with a 3D sub-micron periodic triangular roof-type antireflection structure (SPTAS) was fabricated via a simple and promising method that combines chemosynthesis with biomimetic techniques. The Troides helena (Linnaeus) forewing (T_FW) was chosen as the biomimetic template. The carbon-matrix Ni wing fabricated via electroless Ni deposition for 6 h (CNMF_6h) exhibits enhanced infrared absorption. Over a wavelength range (888–2500 nm), the enhancement of the infrared absorption of CNMF_6h is up to 1.85 times compared with the T_FW. Furthermore, infrared excitation induces a photothermal effect that results in variation in the magnetic properties of the carbon-matrix Ni wing. The magnetic properties were also confirmed using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The good correlation between the AFM and MFM images demonstrates that the surface of the SPTAS of CNMF_6h exhibits strong magnetic properties. The infrared induced photothermal effect that results in magnetic variation is promising for use in the design of novel magnetoplasmonic films with potential applications in infrared information recording and heat-assisted magnetic recording. PMID:25620787

  3. Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers.

    PubMed

    Kaltsa, O; Michon, C; Yanniotis, S; Mandala, I

    2013-05-01

    Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20wt%) were formulated (pH∼7) using whey protein (3wt%), three kinds of hydrocolloids (0.1-0.5wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5°C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool-heat cyclic method (40 to -40°C) was performed to examine stability via crystallization phenomena of the dispersed phase. Ultrasonication energy input duplication from 11kJ to 25kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS∼1% after 10days of storage) at 0.5wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D(50)=0.615μm compared to D(50)=1.3μm using method A) with narrower particle size distribution and in viscosity reduction. DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2009-01-01

    The article provides information on bauxite and alumina mining. U.S. states like Alabama, Arkansas and Georgia produced small amounts of bauxite and bauxitic clays for nonmetallurgical uses. Total metallurgical-grade bauxite imports in 2008 is cited. The leading suppliers of bauxite to the U.S. are Jamaica, Guinea and Brazil. The estimated domestic production of alumina in 2008 is mentioned. It also discusses consumption and prices of both bauxite and alumina.

  5. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    SciTech Connect

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; Mook, William M.; Bufford, Daniel Charles; Boyce, Brad L.; Hattar, Khalid Mikhiel; Kotula, Paul G.; Hall, Aaron Christopher

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containing numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.

  6. Room temperature deformation mechanisms of alumina particles observed from in situ micro-compression and atomistic simulations.

    DOE PAGES

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay D.; ...

    2015-09-22

    Aerosol deposition (AD) is a solid-state deposition technology that has been developed to fabricate ceramic coatings nominally at room temperature. Sub-micron ceramic particles accelerated by pressurized gas impact, deform, and consolidate on substrates under vacuum. Ceramic particle consolidation in AD coatings is highly dependent on particle deformation and bonding; these behaviors are not well understood. In this work, atomistic simulations and in situ micro-compressions in the scanning electron microscope, and the transmission electron microscope (TEM) were utilized to investigate fundamental mechanisms responsible for plastic deformation/fracture of particles under applied compression. Results showed that highly defective micron-sized alumina particles, initially containingmore » numerous dislocations or a grain boundary, exhibited no observable shape change before fracture/fragmentation. Simulations and experimental results indicated that particles containing a grain boundary only accommodate low strain energy per unit volume before crack nucleation and propagation. In contrast, nearly defect-free, sub-micron, single crystal alumina particles exhibited plastic deformation and fracture without fragmentation. Dislocation nucleation/motion, significant plastic deformation, and shape change were observed. Simulation and TEM in situ micro-compression results indicated that nearly defect-free particles accommodate high strain energy per unit volume associated with dislocation plasticity before fracture. As a result, the identified deformation mechanisms provide insight into feedstock design for AD.« less

  7. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, Marc A.; Sheng, Guangyao

    1993-01-01

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  8. Microporous alumina ceramic membranes

    DOEpatents

    Anderson, M.A.; Guangyao Sheng.

    1993-05-04

    Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.

  9. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters.

    PubMed

    Henry, John V L; Fryer, Peter J; Frith, William J; Norton, Ian T

    2009-10-01

    -Slesov-Wagner (LSW) theory. This ripening rate is the change in radius that results from movement of the oil through the continuous phase, taking into account the oil solubility in water and the diffusion coefficient of the decane-in-water. The ripening rate for Brij 96v was about three times larger than the calculated rate and there is an indication that the ripening rate increases slightly with increasing surfactant concentration, indicating that some enhancement due to the presence of micelles has occurred. With Tween 80 and 20 the ripening rates were 20 and 40 times, respectively, larger than those calculated using the solubility and diffusion coefficients. The increased rate has been shown to be first order with respect to the surfactant concentration indicating micelle mediated ripening. It is hypothesized that an optimum formulation for the sub-micron emulsion with these types of surfactant, will balance surfactant concentration to minimize droplet size during processing while aiming to minimize or prevent Ostwald ripening.

  10. Reuse of activated alumina

    SciTech Connect

    Hobensack, J.E.

    1991-12-31

    Activated alumina is used as a trapping media to remove trace quantities of UF{sub 6} from process vent streams. The current uranium recovery method employs concentrated nitric acid which destroys the alumina pellets and forms a sludge which is a storage and disposal problem. A recently developed technique using a distilled water rinse followed by three dilute acid rinses removes on average 97% of the uranium, and leaves the pellets intact with crush strength and surface area values comparable with new material. Trapping tests confirm the effectiveness of the recycled alumina as UF{sub 6} trapping media.

  11. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  12. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  13. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2011-01-01

    The article discusses the latest developments in the bauxite and alumina industry, particularly in the U.S., as of June 2011. It claims that the U.S. mainly relies on imports for its bauxite consumption. Several states, including Alabama, Arkansas and Georgia, however, produce small amounts of bauxite and bauxitic clays for nonmetallurgical purposes. The major exporters of alumina to the U.S. include Australia, Brazil and Jamaica.

  14. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  15. Preparation of Alumina Nanorods from Chromium-Containing Alumina Sludge

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Deng, Bin; Sun, Tong; Li, Wei; Duan, Chang-ping

    2017-06-01

    Alumina nanorods were prepared from chromium-containing alumina sludge, and the effects of doping elements, such as Cr, Fe, and Mg, were researched. The results show that the crystal transformation of alumina is restricted by the doped Cr and facilitated by the doped Fe and Mg, which is transformed from θ-Al2O3 to α-Al2O3 in the calcination process. Meanwhile, the crystal transformation of alumina is strongly restrained by co-doped elements from the chromium-containing alumina sludge. The doped elements change the course of phase structure transformation and slightly transform the chemical bond of the alumina nanorods. The impure elements are doped in the alumina crystal and restrain the crystalline growth of alumina nanorods according to the rules. In the sample prepared from chromium-containing alumina sludge, more Cr and Mg but fewer Fe are doped, and most Cr are existed as Cr(III). It is possible that the Fe-doping is confined by the competition of Cr and Mg. Moreover, the lattice imperfection of alumina is caused by doped ions, such as Cr, Fe, and Mg, and the chemical state of O and Al are affected. The findings by these experiments provide essential information for eliminating pollution and promoting comprehensive utilization of the chromium-containing alumina sludge.

  16. Bauxite and alumina

    USGS Publications Warehouse

    Bray, E.L.

    2010-01-01

    The article reports on the global market performance of bauxite and alumina in 2009 and presents an outlook for their 2010 performance. There were only several U.S. states that could produce bauxite and bauxitic clays including Georgia, Arkansas, and Alabama. The prices for imported refractory-grade calcined bauxite ranged between 426 U.S. dollars and 554 dollars per ton.

  17. Alumina Technology Roadmap

    SciTech Connect

    none,

    2002-02-01

    The Alumina Technology Roadmap outlines a comprehensive long-term research and development plan that defines the industry's collective future and establishes a clear pathway forward. It emphasizes twelve high-priority R&D areas deemed most significant in addressing the strategic goals.

  18. Prediction of alumina penetration

    SciTech Connect

    Mandell, D A

    1993-02-01

    The MESA hydrocode was used to predict two-dimensional tests of L/D 10 and L/D 15 tungsten rods impacting AD 90 alumina with a steel backing. The residual penetration into the steel is the measured quantity in these experiments conducted at the Southwest Research Institute (SWR). The interface velocity as a function of time between an alumina target and a lithium fluoride window, impacted by an alumina disk at velocities between 544 m/s and 2329 m/s, was also predicted. These one-dimensional flyer plate experiments were conducted at Sandia National Laboratories using Coors AD 995 alumina. The material strength and fracture models are important in the prediction of ceramic experiments. The models used in these predictions are discussed. The penetrations in the two-dimensional tests were predicted to 11.4 percent or better. In five of the six experiments, the predicted penetration depth was deeper than the measured value. This trend is expected since the calculation is based on ideal conditions. The results show that good agreement between the 1-D flyer plate data and the MESA predictions exists at the lower impact velocities, but the maximum velocity is overpredicted as the flyer plate velocity increases. At a flyer plate velocity of 2329 m/s the code overpredicted the data by 12.3 percent.

  19. Solid Lubricant For Alumina

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Pepper, Stephen V.; Honecy, Frank S.

    1993-01-01

    Outer layer of silver lubricates, while intermediate layer of titanium ensures adhesion. Lubricating outer films of silver deposited on thin intermediate films of titanium on alumina substrates found to reduce sliding friction and wear. Films provide effective lubrication for ceramic seals, bearings, and other hot sliding components in advanced high-temperature engines.

  20. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  1. Impact of smoking on guided tissue regeneration using a biocomposite poly (lactic-co-glycolic) acid/sub-micron size hydroxyapatite with a rubber dam as an alternative barrier.

    PubMed

    Stramazzotti, D; Coiana, C; Zizzi, A; Spazzafumo, L; Sauro, S; D'Angelo, A B; Rubini, C; Aspriello, S D

    2015-03-01

    The purpose of our study was to critically evaluate the results obtained from a guided tissue regeneration technique after 12 months using a bocomposite poly (lactic-co-glycolic) acid/sub-micron size hydroxyapatite (PLGA/HA) with a rubber dam as a barrier in smoking and non-smoking patients. We selected 36 patients (18 current smokers and 18 non-smokers) diagnosed with chronic advanced periodontitis with a periodontal site (probing depth [PD] >5) amenable to regenerative surgery. Twelve months after surgery, the periodontal parameters were found to have statistically improved, when non-smokers were compared with smokers, in: PD reduction (6.3 ± 2.1 mm vs. 3.6 ± 1.9 mm); CAL gain (4.4 ± 1.1 vs. 2.8 ± 2.2 mm); recession (1.8 ± 1.4 mm vs. 0.8 ± 0.9 mm); and hard tissue fill (4.7 ± 0.8 mm vs. 2.8 ± 2.1 mm). Furthermore, since we found PD baseline differences between groups, smoking seemed not to influence the outcomes achieved (CAL gain and ΔREC) 12 months post surgery with respect to PD baseline. The use of PLGA/HA with a rubber dam significantly improved the periodontal parameters in both smoking and non-smoking subjects. This improvement was nevertheless lower in smokers than the non-smokers, confirming the negative impact of smoking on periodontal regeneration.

  2. Removal of heavy metal ions from aqueous solution using Fe3O4-SiO2-poly(1,2-diaminobenzene) core-shell sub-micron particles.

    PubMed

    Zhang, Fan; Lan, Jing; Zhao, Zongshan; Yang, Ye; Tan, Ruiqin; Song, Weijie

    2012-12-01

    In this work, Fe(3)O(4)-SiO(2)-poly(1,2-diaminobenzene) sub-micron particles (FSPs) with high saturated magnetization of ∼60-70 emu/g were developed and utilized for the removal of As(III), Cu(II), and Cr(III) ions from aqueous solution. The isothermal results fitted well with the Freundlich model and the kinetic results fitted well with the two-site pseudo-second-order model, which indicated that multilayer adsorption of As(III), Cu(II), and Cr(III) ions on FSPs occurred at two sites with different energy of adsorption. The maximum adsorption capacities followed the order of As(III) (84±5 mg/g, pH=6.0)>Cr(III) (77±3 mg/g, pH=5.3)>Cu(II) (65±3 mg/g, pH=6.0). And the chelating interaction was considered as the main adsorption mechanism. The as-prepared materials were chemically stable with low leaching of Fe (≤1.7 wt.%) and poly(1,2-diaminobenzene) (≤4.9 wt.%) in tap water, sea water, and acidic/basic solutions. These metal-loaded FSPs could be easily recovered from aqueous solutions using a permanent magnet within 20s. They could also be easily regenerated with acid. The present work indicates that the FSPs are promising for removal of heavy metal ions in field application.

  3. Bauxite Mining and Alumina Refining

    PubMed Central

    Frisch, Neale; Olney, David

    2014-01-01

    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  4. Branchy alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Zou, Jianping; Pu, Lin; Bao, Ximao; Feng, Duan

    2002-02-01

    Branchy alumina nanotubes (bANTs) have been shown to exist in aluminum oxide. Electron-beam evaporated 400 nm Al film on Si substrate is stepwise anodized in dilute sulfuric acid under the constant dc voltage 40 V at 10.0 °C. This electrochemical-anodizing route resulted in the formation of individual bANTs. Transmission electron microscopy showed that the length of the bANTs was around 450 nm, and the inner diameter was around 10-20 nm. We deduced that the bANTs, the completely detached multibranchy cells of anodic porous alumina (APA) film, should be evolved from the stagnant cells of the APA mother film. The bANTs may be used as templates in fabrication of individual branchy nanoscale cables, jacks, and heterojunctions. The proposed formation mechanisms of the bANTs and the stagnant cells should give some insights into the long-standing problem of APA film, i.e., the self-ordering mechanism of the cells arrangement in porous anodization of aluminum.

  5. Adsorptive desulfurization by activated alumina.

    PubMed

    Srivastav, Ankur; Srivastava, Vimal Chandra

    2009-10-30

    This study reports usage of commercial grade activated alumina (aluminum oxide) as adsorbent for the removal of sulfur from model oil (dibenthiophene (DBT) dissolved in n-hexane). Bulk density of alumina was found to be 1177.77 kg/m(3). The BET surface area of alumina was found to decrease from 143.6 to 66.4 m(2)/g after the loading of DBT at optimum conditions. The carbon-oxygen functional groups present on the surface of alumina were found to be effective in the adsorption of DBT onto alumina. Optimum adsorbent dose was found to be 20 g/l. The adsorption of DBT on alumina was found to be gradual process, and quasi-equilibrium reached in 24 h. Langmuir isotherm best represented the equilibrium adsorption data. The heat of adsorption and change in entropy for DBT adsorption onto alumina was found to be 19.5 kJ/mol and 139.2 kJ/mol K, respectively.

  6. Sub-micron geochronology by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Williams, M. L.; Berman, R.

    2013-12-01

    Actinide-bearing, geochronologically applicable accessory phases can exhibit remarkably complex internal compositional structures, commonly revealing polygenesis and allowing timing constraints to be placed on the structural and metamorphic evolution of multiply tectonized terrains. These fine-scale mineral domains have been revealed by high resolution compositional mapping by EPMA of natural monazite (LREE PO4), and can exist at nearly all spatial scales, including domains substantially below 1 micron in width. Accurate compositional characterization of such domains by any technique is difficult, but hardware and software developments in EPMA offer some opportunities to approach these challenging but important targets accurately. In this regard, we have analyzed Paloeproterozoic (ca. 1.8 Ga) monazite domains which penetrate along cleavage planes in larger, older monazite grains (ca. 2.55 and 2.37 Ga) from the Boothia peninsula, Nanavut Canada. As such, this represents a successful nanogeochronologic analysis. The direct analytical volume, as defined by the convolution of the error functions resulting from primary (beam) electron scattering and characteristic X-ray generation volume dimensions, can be restricted to considerably less than 1 micron with the use of high brightness sources (LaB6, CeB6, or Schottky) and modest beam energy (15kV or less) in monazite (Z ca. 39). However, the analysis is rendered far more complex by the effects of boundary fluorescence and beam damage. For this analysis, we use a high thermal/electrical conductivity double coating of aluminum and carbon to mitigate sample damage at high current density. Although imperfect (there remains a net loss of P relative to REEs and actinides), this analysis results in relatively minor counting errors relative to the concentrations, and accuracy can be further improved by use of time-dependent count acquisition methods. Reduction of the beam energy substantially below 10kV results in extreme damage and very large errors at the very high current densities that result from the application of conditions necessary for high sensitivity along with high spatial resolution. Although this study benefits from fortuitous circumstances which serve to lessen the effects of boundary fluorescence, modeling and integration of these effects into the quantitative analysis further aids accuracy and allows a means to approach the analysis in more difficult scenarios, e.g., in micro-domains differing substantially in Th concentration.

  7. Transformation of γ-alumina to θ-alumina

    NASA Astrophysics Data System (ADS)

    Cai, Shuhui; Sohlberg, Karl; Rashkeev, Sergey; Pantelides, Sokrates T.

    2002-03-01

    γ- and θ-alumina are two metastable phases of aluminum oxide observed along the dehydration sequence of boehmite upon thermal treatment before conversion to the final product α-alumina. The transformation from the γ to the θ phase can best be studied by using Al_16O_24 cells. Motion of eight Al atoms from their γ-alumina positions to new positions and no O motions result in an approximate structure that, upon relaxation by first-principles calculations, becomes the known θ-alumina structure. Total-energy calculations along the paths of atomic motions have been used to map out possible synergistic transformation pathways. This work was supported in part by the USDoE and a NSF GOALI Grant with Alcoa, Inc.

  8. Alumina clay compositions

    SciTech Connect

    Holmgren, J.S.; Gembicki, S.A.; Schoonover, M.W.; Kocal, J.A.

    1992-05-19

    This patent describes a composition consisting essentially of a layered clay homogeneously dispersed in an inorganic oxide matrix, such that the clay layers are completely surrounded by the inorganic oxide matrix, the inorganic oxide selected from the group consisting of alumina, titania, silica, zirconia, P{sub 2}O{sub 5} and mixtures thereof. This patent also describes a process of preparing a composition consisting essentially of a layered clay homogeneously dispersed in an inorganic oxide matrix, the process comprising mixing a clay with a hydrosol of a precursor of the inorganic oxide, forming spherical particles from the clay containing hydrosol and calcining the particles to form a composition comprising a clay homogeneously dispersed in an inorganic oxide matrix, such that the clay layers are completely surrounded by the inorganic oxide matrix.

  9. Gelcasting Polycrystalline Alumina

    SciTech Connect

    Janney, M.A.; Zuk, K.J.; Wei, G.C.

    2000-01-01

    OSRAM SYLVANIA INC. is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux TM line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency ({approximately}97% total transmittance in the visible), their refractoriness (inner wall temperature can reach l2OOC), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, up to 100 initial lumens per watt. (Compare incandescent lamps 10-20 lumens per watt, fluorescent lamps 25-90 lumens per watt.)

  10. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  11. Gelcast zirconia-alumina composites

    SciTech Connect

    Omatete, O.O.; Bleier, A.; Westmoreland, C.G.; Young, A.C.

    1991-01-01

    Near net-shaped parts of zirconia-alumina composites have been successfully formed by gelcasting, a technique which utilizes in situ polymerization of acrylamide monomers. The high solids loading required for gelcasting ({approximately}50 vol %) was obtained by controlling the pH-dependent stability of the aqueous zirconia-alumina suspensions. A strong correspondence was found among the surface charges on the particles, colloidal stability, and the maximum solids loading. 14 refs., 3 figs., 2 tabs.

  12. Gelcasting polycrystalline alumina

    SciTech Connect

    Janney, M.A.

    1997-04-01

    This work is being done as part of a CRADA with Osram-Sylvania, Inc. (OSI) OSI is a major U.S. manufacturer of high-intensity lighting. Among its products is the Lumalux{reg_sign} line of high-pressure sodium vapor arc lamps, which are used for industrial, highway, and street lighting. The key to the performance of these lamps is the polycrystalline alumina (PCA) tube that is used to contain the plasma that is formed in the electric arc. That plasma consists of ionized sodium, mercury, and xenon vapors. The key attributes of the PCA tubes are their transparency (95% total transmittance in the visible region), their refractoriness (inner wall temperature can reach 1400{degrees}C), and their chemical resistance (sodium and mercury vapor are extremely corrosive). The current efficiency of the lamps is very high, on the order of several hundred lumens / watt. (Compare - incandescent lamps -13 lumens/watt fluorescent lamps -30 lumens/watt.) Osram-Sylvania would like to explore using gelcasting to form PCA tubes for Lumalux{reg_sign} lamps, and eventually for metal halide lamps (known as quartz-halogen lamps). Osram-Sylvania, Inc. currently manufactures PCA tubes by isostatic pressing. This process works well for the shapes that they presently use. However, there are several types of tubes that are either difficult or impossible to make by isostatic pressing. It is the desire to make these new shapes and sizes of tubes that has prompted Osram-Sylvania`s interest in gelcasting. The purpose of the CRADA is to determine the feasibility of making PCA items having sufficient optical quality that they are useful in lighting applications using gelcasting.

  13. Attrition resistant gamma-alumina catalyst support

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    2006-03-14

    A .gamma.-alumina catalyst support having improved attrition resistance produced by a method comprising the steps of treating a particulate .gamma.-alumina material with an acidic aqueous solution comprising water and nitric acid and then, prior to adding any catalytic material thereto, calcining the treated .gamma.-alumina.

  14. Precursor decay in several aluminas

    NASA Astrophysics Data System (ADS)

    Murray, N. H.; Bourne, N. K.; Rosenberg, Z.

    1996-05-01

    Plate impact experiments were performed on three ceramics with alumina content varying from 88 to 99.9% using a 50 mm single stage gas gun. Tiles of ceramic with thicknesses varying from 2 to 12 mm were impacted above their Hugoniot Elastic Limits (HELs) and the rate dependent strength was investigated by monitoring the variation in amplitude of the elastic precursor with propagation distance. Stress levels in the target were recorded using manganin stress transducers and a 1 GS s-1 storage oscilloscope. All grades of alumina were found to exhibit some elastic precursor decay indicating strain rate sensitivity.

  15. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  16. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    PubMed

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column.

  17. Alumina-Enhanced Thermal Barrier

    NASA Technical Reports Server (NTRS)

    Smith, Marnell; Leiser, Dan; Goldstein, Howard

    1989-01-01

    Rigid, fibrous ceramic tile material called "alumina-enhanced thermal barrier" (AETB) extends temperature capability of insulating materials. Material has obvious potential for terrestrial use in kilns, furnaces, heat engines, and other applications in which light weight and high operating temperature are specified. Three kinds of ceramic fibers are blended, molded, and sintered to make refractory tiles.

  18. Wettability of Aluminum on Alumina

    NASA Astrophysics Data System (ADS)

    Bao, Sarina; Tang, Kai; Kvithyld, Anne; Tangstad, Merete; Engh, Thorvald Abel

    2011-12-01

    The wettability of molten aluminum on solid alumina substrate has been investigated by the sessile drop technique in a 10-8 bar vacuum or under argon atmosphere in the temperature range from 1273 K to 1673 K (1000 °C to 1400 °C). It is shown that the reduction of oxide skin on molten aluminum is slow under normal pressures even with ultralow oxygen potential, but it is enhanced in high vacuum. To describe the wetting behavior of the Al-Al2O3 system at lower temperatures, a semiempirical calculation was employed. The calculated contact angle at 973 K (700 °C) is approximately 97 deg, which indicates that aluminum does not wet alumina at aluminum casting temperatures. Thus, a priming height is required for aluminum to infiltrate a filter. Wetting in the Al-Al2O3 system increases with temperature.

  19. Alumina as a Thermoluminescent Material

    SciTech Connect

    Uzun, Erdem; Yarar, Yasemin

    2007-04-23

    Thermoluminescence dosimeters are extensively used for quantitative dose measurements in various irradiation fields. They are also important for environmental monitoring after nuclear accident and weapon tests. In this work, the principles of TLD dosimeter and characteristics of several TLD materials are presented. Besides, taken into account the importance as a raw material, the utilization of domestic alumina (Al2O3) in TLDs as a thermoluminescent material is discussed.

  20. Packed Alumina Absorbs Hypergolic Vapors

    NASA Technical Reports Server (NTRS)

    Thomas, J. J.; Mauro, D. M.

    1984-01-01

    Beds of activated alumina effective as filters to remove hypergolic vapors from gas streams. Beds absorb such substances as nitrogen oxides and hydrazines and may also absorb acetylene, ethylene, hydrogen sulfide, benzene, butadiene, butene, styrene, toluene, and xoylene. Bed has no moving parts such as pumps, blowers and mixers. Reliable and energy-conservative. Bed readily adapted to any size from small portable units for use where little vapor release is expected to large stationary units for extensive transfer operations.

  1. Hypervelocity impact damage in alumina

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng

    2007-12-01

    Ceramics are important engineering materials for their outstanding hardness. One of the most widely used ceramics is alumina, a candidate for armor in defense and aerospace industry. Deformation and fracture mechanisms in alpha-alumina under hypervelocity impact up to 18km/s are investigated using molecular dynamics (MD) simulations containing 540-million atoms. Impacting projectile causes melting and local amorphization of the substrate in a spherical surrounding region. Away from the impact face, a wide range of deformations emerge and disappear under the influence of local stress fields, e.g., basal and pyramidal slips, basal and rhombohedral twins, which show good agreement with the experimental and theoretical results. Furthermore, new deformation modes such as twin along {01¯11} are observed, and the relation between deformation patterns and local stress levels are probed. During unloading, micro-cracks nucleate extensively at the intersections of previous deformations. These micro-cracks grow and coalesce to form fractures under tensile stresses by the unloading wave. The substrate eventually fails along the surface of an hourglass-shaped region, when spallation ejects clusters of substrate material into the vacuum. We also carried out planar shock simulations of alpha-alumina single crystal and nanophase systems. The results show correlations between the atomistic deformation mechanisms and the elastic-plastic response of ceramic material observed in shock loading experiments.

  2. MCP performance improvement using alumina thin film

    NASA Astrophysics Data System (ADS)

    Yang, Yuzhen; Yan, Baojun; Liu, Shulin; Zhao, Tianchi; Yu, Yang; Wen, Kaile; Li, Yumei; Qi, Ming

    2017-10-01

    The performance improvement using alumina thin film on a dual microchannel plate (MCP) detector for single electron counting was investigated. The alumina thin film was coated on all surfaces of the MCPs by atomic layer deposition method. It was found that the gain, the single electron resolution and the peak-to-valley ratio of the dual MCP detector were significantly enhanced by coating the alumina thin film. The optimum operating conditions of the new dual MCP detector have been studied.

  3. Method for preparing Pb-. beta. ''-alumina ceramic

    DOEpatents

    Hellstrom, E.E.

    1984-08-30

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-..beta..''-alumina ceramic from Na-..beta..''-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-..beta..''-alumina ceramic that is substantially crack-free.

  4. Synthesis of high porosity, monolithic alumina aerogels

    SciTech Connect

    Poco, J F; Satcher, J H; Hrubesh, L W

    2000-09-20

    Many non-silica aerogels are notably weak and fragile in monolithic form. Particularly, few monolithic aerogels with densities less than 50kg/m3 have any significant strength. It is especially difficult to prepare uncracked monoliths of pure alumina aerogels that are robust and moisture stable. In this paper, we discuss the synthesis of strong, stable, monolithic, high porosity (>98% porous) alumina aerogels, using a two-step sol-gel process. The alumina aerogels have a polycrystalline morphology that results in enhanced physical properties. Most of the measured physical properties of the alumina aerogels are superior to those for silica aerogels for equivalent densities.

  5. Structural Effects of Lanthanide Dopants on Alumina

    PubMed Central

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-01

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. PMID:28059121

  6. Physical chemistry of carbothermic reduction of alumina

    SciTech Connect

    Frank, Robert A.

    1985-09-01

    Production of aluminium, by means of carbothermic reduction of alumina, is discussed. By employing a solvent metal bath to absorb the alumina metal, carbothermic reduction of alumina was accomplished at temperatures 300/degree/C lower than the temperatures reported in the literature. Reduction occurred without the formation of intermediate compounds and without the high volatilization of aluminum bearing species. Reduction of alumina immersed in a solvent bath appeared to be rate limited by chemical reaction control. The rates seemed to be a function of the activity of aluminum in the solvent metal bath. Reduction of alumina particles, above the surface of the bath, seemed to occur via vapor transport with carbon in the particles or in the crucible walls. Mass transport in the gas phase appeared to be rate limiting. The rates seemed to be a function of the distance separating the alumina and carbon sources. With both submerged alumina and alumina particles, increasing the surface area of the alumina increased the rate of reduction. 58 refs., 65 figs., 9 tabs.

  7. Structural Effects of Lanthanide Dopants on Alumina

    DOE PAGES

    Patel, Ketan; Blair, Victoria; Douglas, Justin; ...

    2017-01-06

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α), and alteration of powdermore » morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less

  8. Structural Effects of Lanthanide Dopants on Alumina

    NASA Astrophysics Data System (ADS)

    Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond

    2017-01-01

    Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.

  9. Nanoparticle embedded chitosan film for agglomeration free TEM images.

    PubMed

    Dogan, Üzeyir; Çiftçi, Hakan; Cetin, Demet; Suludere, Zekiye; Tamer, Ugur

    2017-02-01

    Transmission electron microscopy (TEM) is a very useful and commonly used microscopy technique, used especially for the characterization of nanoparticles. However, the identification of the magnetic nanoparticle could be thought problematic in TEM analysis, due to the fact that the magnetic nanoparticles are usually form aggregates on the TEM grid to form bigger particles generating higher stability. This prevents to see exact shape and size of each nanoparticle. In order to overcome this problem, a simple process for the formation of well-dispersed nanoparticles was conducted, by covering chitosan film on the unmodified copper grid, it was said to result in aggregation-free TEM images. It is also important to fix the magnetic nanoparticles on the TEM grids, due to possible contamination of TEM filament which is operated under high vacuum conditions. The chitosan film matrix also helps to protect the TEM filament from contact with magnetic nanoparticles during the imaging process. The proposed procedure offers a quick method to fix the nanoparticles in a conventional copper TEM grid and chitosan matrix prevents agglomeration of nanoparticles, and thus getting TEM images showing well-dispersed individual nanoparticles. © 2016 Wiley Periodicals, Inc.

  10. Perfluoropolyalkylether decomposition on catalytic aluminas

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo

    1994-01-01

    The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.

  11. Formation of alumina-nickel-molybdenum catalysts

    SciTech Connect

    Erofeev, V.I.; Basov, V.G.; Vagin, A.I.; Kalechits, I.V.

    1982-06-01

    On the basis of the results obtained in physical and chemical studies of alumina-nickel-molybdenum oxide catalysts as well as binary system and the individual oxides, the conclusions show that the commercial catalyst consists mainly of nickel and aluminium molybdates, aluminium molybdates, molybdenum oxide, and the alumina support. 4 figures.

  12. Hydrogen and the structure of transition aluminas

    SciTech Connect

    Sohlberg, K.; Pennycook, S.J.; Pantelides, S.T.

    1999-08-25

    {alpha}-Alumina results from the complete dehydration of several minerals of the form Al{sub 2}O{sub 3}{center{underscore}dot}nH{sub 2}O. The ``transition'' aluminas, {gamma}-alumina, {eta}-alumina, and {delta}-alumina are known to have a spinel structure but the possibility that they contain hydrogen (H) has been the subject of debate. The authors present a series of density-functional theory calculations which, together with available experimental data, show that the spinel aluminas exist over a range of hydrogen content captured by the empirical formula H{sub 3m}Al{sub 2{minus}m}O{sub 3}, with a different greek-letter phases corresponding to different distributions of the Aluminum (Al) ions on the two cation sublattices. Calculations of densities and vibrational frequencies of bulk OH bonds are in excellent agreement with available data. The theory reconciles seemingly inconsistent data and reveals a remarkable property of the spinel aluminas: They are ``reactive sponges'' in that they can store and release water in a reactive way. This chemical activity offers a basis for understanding long-standing puzzles in the behavior of aluminas in catalytic systems.

  13. Effects of Impurities on Alumina-Niobium InterfacialMicrostructures

    SciTech Connect

    McKeown, Joseph T.; Sugar, Joshua D.; Gronsky, Ronald; Glaeser,Andreas M.

    2005-06-20

    Optical microscopy, scanning electron microscopy, and transmission electron microscopy were employed to examine the interfacial microstructural effects of impurities in alumina substrates used to fabricate alumina-niobium interfaces via liquid-film-assisted joining. Three types of alumina were used: undoped high-purity single-crystal sapphire; a high-purity, high-strength polycrystalline alumina; and a lower-purity, lower-strength polycrystalline alumina. Interfaces formed between niobium and both the sapphire and high-purity polycrystalline alumina were free of detectable levels of impurities. In the lower-purity alumina, niobium silicides were observed at the alumina-niobium interface and on alumina grain boundaries near the interface. These silicides formed in small-grained regions of the alumina and were found to grow from the interface into the alumina along grain boundaries. Smaller silicide precipitates found on grain boundaries are believed to form upon cooling from the bonding temperature.

  14. Photolytic effects in alumina chlorination

    NASA Astrophysics Data System (ADS)

    Soleiman, M. K.; Rao, Y. K.

    1987-06-01

    The temperature dependence of the rate of chlorination of α-alumina with CO/Cl2 gas mixtures exhibits an anomaly, a departure from the normal Arrhenius behavior, in the range 650 to 850°C; it is manifested as a local maximum in the Arrhenius plot at 670°C followed by a local minimum in the range 770 to 850°C. By carefully studying the effect of irradiation of the CO/Cl2 gas mixtures on the rate of chlorination of α-alumina, it is shown that such an anomaly, which has been observed in the chlorination of various metallic oxides, is most likely due to the photochemical formation of phosgene (COCl2) by ambient light incident on the reactant gas mixture during its transport to the main reactor. Phosgene is a better chlorinating agent than a CO/Cl2 mixture. The mechanism of chlorination of α-Al2O3 by CO/Cl2 mixtures subjected to the light emitted by a high-pressure Hg-vapor lamp is elucidated.

  15. Characterization and application of electrospun alumina nanofibers

    PubMed Central

    2014-01-01

    Alumina nanofibers were prepared by a technique that combined the sol–gel and electrospinning methods. The solution to be electrospun was prepared by mixing aluminum isopropoxide (AIP) in ethanol, which was then refluxed in the presence of an acid catalyst and polyvinylpyrolidone (PVP) in ethanol. The characterization results showed that alumina nanofibers with diameters in the range of 102 to 378 nm were successfully prepared. On the basis of the results of the XRD and FT-IR, the alumina nanofibers calcined at 1,100°C were identified as comprising the α-alumina phase, and a series of phase transitions such as boehmite → γ-alumina → α-alumina were observed from 500°C to 1,200°C. The pore size of the obtained γ-alumina nanofibers is approximately 8 nm, and it means that they are mesoporous materials. The kinetic study demonstrated that MO adsorption on alumina nanofibers can be seen that the pseudo-second-order kinetic model fits better than the pseudo-first-order kinetic model. PMID:24467944

  16. Fabrication of thin layer beta alumina

    NASA Technical Reports Server (NTRS)

    Tennenhouse, G. J.

    1977-01-01

    Beta alumina tubes having walls 700 microns, 300 microns, and 140 microns were processed by extrusion and sintering utilizing Ford proprietary binder and fabrication systems. Tubes prepared by this method have properties similar to tubes prepared by isostatic pressing and sintering, i.e. density greater than 98% of theoretical and a helium leak rate less than 3 x 10 to the -9th power cc/sq cm/sec. Ford ultrasonic bonding techniques were used for bonding beta alumina end caps to open ended beta -alumina tubes prior to sintering. After sintering, the bond was hermetic, and the integrity of the bonded area was comparable to the body of the tube.

  17. Alumina Concentration Gradients in Aluminium Reduction Cells

    NASA Astrophysics Data System (ADS)

    Lavoie, Pascal; Taylor, Mark P.

    The length of aluminium electrolysis cells have constantly increased over the last decades. The drive to increase productivity resulted in the need to feed and dissolve more alumina in less electrolyte. There is mounting evidence that these two trends are pushing the electrolysis cells above their capability to maintain alumina concentration, through time and space, at levels preventing both conventional and non-propagating anode effects. Alumina concentration gradient measurements were performed within large industrial cells and showed that large gradients occurred between locations in cells.

  18. Noise in Sodium Beta Alumina Crystals.

    DTIC Science & Technology

    1985-09-01

    Washington, D.C. 20375 .I- 7. 7- NOISE INI SODIUM r ALUMINA SINGLE CRYSTALS James J. Brophy and Steven W. Smith University of Utah Salt Lake City, Utah 84112...RD-Ai56 025 NOISE IN SODiUN BETA ALUMINA CRYSTALS(U) UTAH UNIV SALT II LAKE CITY DEPT OF PHYSICS J J BROPHY ET AL. SEP 85 TR-7 N88814-82-K-e603...h.0- "bf’ ; -28242 ’ITLE (andSubsist&) S. TYPE OF REPORT & PERIOD COVERED L Noise in Sodium B" Alumina Crystals Technical Report #7 CJ S. PERFORMING

  19. Alumina forming iron base superalloy

    DOEpatents

    Yamamoto, Yukinori; Muralidharan, Govindarajan; Brady, Michael P.

    2014-08-26

    An austenitic stainless steel alloy, consists essentially of, in weight percent 2.5 to 4 Al; 25 to 35 Ni; 12 to 19 Cr; at least 1, up to 4 total of at least one element selected from the group consisting of Nb and Ta; 0.5 to 3 Ti; less than 0.5 V; 0.1 to 1 of at least on element selected from the group consisting of Zr and Hf; 0.03 to 0.2 C; 0.005 to 0.1 B; and base Fe. The weight percent Fe is greater than the weight percent Ni. The alloy forms an external continuous scale including alumina, and contains coherent precipitates of .gamma.'-Ni.sub.3Al, and a stable essentially single phase FCC austenitic matrix microstructure. The austenitic matrix is essentially delta-ferrite-free and essentially BCC-phase-free.

  20. Dissolution Kinetics of Alumina Calcine

    SciTech Connect

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  1. Crack healing in alumina bioceramics.

    PubMed

    Fischer, H; Weiss, R; Telle, R

    2008-03-01

    Microscopic cracks can occur at the surface of oxide ceramic restorations as a result of the manufacturing process and mainly due to the final mechanical preparation in the dental laboratory. A method is presented to heal up such microscopic cracks by a glass infiltration process. Bar specimens made of high purity bio-alumina were manufactured. On two batches of specimens microscopic cracks were induced using the Vickers indentation technique. The small microscopic cracks at the tip of the resulting half-penny-shape cracks were extended by the bridge loading method. The indentation pattern of the specimens of one batch was subsequently glass-infiltrated. The surface layers of the specimens with the Vickers indentation were removed by grinding as far as only the extended microscopic cracks (with and without glass) remained at the surface. The strengths of untreated, micro-damaged, and micro-damaged and glass-infiltrated specimens were determined. The microstructure of the fracture surfaces was analyzed using SEM. The characteristic strength of the specimens decreased from sigma(0)=378 to 196 MPa and the Weibull modulus from m=13.7 to 2.3 due to the micro-damaging. The strength and the scatter-in-strength were significantly improved by the glass infiltration process. The strength of the "healed" specimens (sigma(0)=434 MPa, m=17.3) was even better than that of the untreated samples. Microscopic cracks that can occur at the surface of dental restorations made of alumina like abutments or cores of crowns and bridges during the manufacturing and preparation process could reliably be healed by a glass infiltration process.

  2. Loss tangent measurements on unirradiated alumina

    SciTech Connect

    Zinkle, S.J.; Goulding, R.H.

    1996-04-01

    Unirradiated room temperature loss tangent for sapphire and several commercial grades of polycrystalline alumina are complied for frequencies between 10{sup 5} and 4x10{sup 11} Hz. Sapphire exhibits significantly lower values for the loss tangent at frequencies up to 10{sup 11} Hz. The loss tangents of 3 different grades of Wesgo alumina (AL300, AL995, AL998) and 2 different grades of Coors alumina (AD94, AD995) have typical values near {approx}10{sup -4} at a frequency of 10{sup 8} Hz. On the other hand, the loss tangent of Vitox alumina exhibits a large loss peak tan d{approx} 5x10{sup -3} at this frequency.

  3. Joining of alumina ceramics and nickel alloy

    SciTech Connect

    Ariga, Tadashi; Nitta, Yuji; Miyazawa, Yasuyuki

    1994-12-31

    Joining of alumina ceramics to nickel alloy was made using the various types of Ag-Cu-Ti brazing filler metal. Ti-containing brazing filler metal was produced by physical vapor deposition (PVD) method on the joining area of the alumina ceramics. The joinability of the brazing filler metal was estimated by its mechanical properties. And the composition and structure of the ceramic-metal bond zone in the alumina ceramics-nickel alloy joints were analyzed by SEM, EPMA and X-ray diffraction examinations. Some of brazing filler metal achieved the highest shear strength 100 MPa at room temperature. The elemental distributions of the interface between alumina ceramics and Ag-Cu-Ti brazing filler metal was shown to form the reaction layer consisting titanium oxide.

  4. TENORM: Bauxite and Alumina Production Wastes

    EPA Pesticide Factsheets

    Bauxite is used to produce alumina, which is then used to produce aluminum. Naturally-occurring radioactivity in bauxite ores is concentrated during the refining process, creating TENORM in bauxite refining residuals.

  5. Alcoa Pressure Calcination Process for Alumina

    NASA Astrophysics Data System (ADS)

    Sucech, S. W.; Misra, C.

    A new alumina calcination process developed at Alcoa Laboratories is described. Alumina is calcined in two stages. In the first stage, alumina hydrate is heated indirectly to 500°C in a decomposer vessel. Released water is recovered as process steam at 110 psig pressure. Partial transformation of gibbsite to boehmite occurs under hydrothermal conditions of the decomposer. The product from the decomposer containing about 5% LOI is then calcined by direct heating to 850°C to obtain smelting grade alumina. The final product is highly attrition resistant, has a surface area of 50-80 m2/g and a LOI of less than 1%. Accounting for the recovered steam, the effective fuel consumption for the new calcination process is only 1.6 GJ/t A12O3.

  6. Electrical Properties of Thin Films of Alumina.

    DTIC Science & Technology

    The report consists of a literature survey on the electrical properties of alumina and aluminum oxide thin films . A bibliographic listing of reports is included along with abstracts from most of them.

  7. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  8. Sorption of metal ions on alumina

    SciTech Connect

    Baumgarten, E.; Kirchhausen-Duesing, U.

    1997-10-01

    The adsorption of metal ions on aluminas is of great interest in different fields such as geochemistry, oceanography, limnology, and pollution control. Precipitation and adsorption of metal ions (Co(II), Ni(II), Cu(II), and Cr(III)) on {gamma}-alumina were investigated experimentally. A surface chemical reaction model to calculate concentrations of aluminum ions, metal ions, and pH as variables depending on amount of alumina, volume of liquid and gas phase, initial metal concentration, and amount of acid or base added is presented. In the case of Co(II) the pH dependence of rest concentrations with and without alumina is equal; adsorption may be disregarded. For the other ions adsorption is important. Considering the charge of the surface does not improve the fit. In the pH region, where adsorption leads to lower rest concentrations than precipitation, adsorption may be described by a Henry isotherm.

  9. Preparation and Characterization of Electrospun Alumina Nanofibers

    NASA Astrophysics Data System (ADS)

    Pinti, Marie J.; Tacastacas, Stephen N.; Stojilovic, Nenad; O'Brien, John P.; Pischera, Anna; Espe, Matthew P.

    2008-10-01

    Alumina nanofibers are promising materials for use in high- temperature applications since they are chemically inert up to very high temperatures. Applications include use as catalyst support in high-temperature chemical reactions, fire protection materials, and as a high-temperature insulator. Electrospinning is a relatively simple and inexpensive method for obtaining nanometer-size fibers and has become a popular technique for producing metal-oxide nanofibers in recent years. The electrospinning mixture for the production of alumina nanofibers typically contains aluminum acetate stabilized with boric acid as the alumina precursor; but the observed presence of boron and sodium on the surface of these nanofibers may affect their use as catalytic supports. We have produced alumina nanofibers from an aluminum reagent devoid of the boric acid stabilizer and calcined the fibers at different temperatures to produce nanofibers with different phases of alumina. Characterization of the fibers by TGA, FE-SEM equipped with the XEDS, powder XRD, DRIFTS, and SSNMR methods to determine the fate of the precursors, fiber morphology and the composition and structure of the calcined alumina nanofibers.

  10. Thirty years of experience with alumina-on-alumina bearings in total hip arthroplasty

    PubMed Central

    Zaoui, Amine; Zadegan, Frédéric; Sedel, Laurent; Nizard, Rémy

    2010-01-01

    Alumina-on-alumina bearings in total hip arthroplasty have been developed in an attempt to minimise debris and the occurrence of osteolytic lesions. The outstanding tribological properties of this bearing system are explained by low surface roughness, high hardness for major scratch resistance, and high wettability. Since the 1970s, technological improvements in the manufacturing process of alumina components together with a better understanding of Morse taper technology have provided a surgical grade material with high density, high purity and small grains. Published studies on the outcome of total hip arthroplasty performed with this new generation of implants showed high survivorship especially in young and active patients, with survival rates free of revision of 90.8% to 97.4% at ten years. However, concern remains over ceramic liner fracture and squeaking, which has been noted recently with increasing prevalence. This review will discuss the current knowledge on the use of alumina-on-alumina bearings. PMID:21191579

  11. Synthesis of high thermally-stable mesoporous alumina particles.

    PubMed

    Song, Lee-Hwa; Park, Seung Bin

    2010-01-01

    The mesoporous undoped and Si-doped alumina were prepared with an ultrasonic spray process, and found to have well-developed mesopore structures and large surface areas. The mesoporous Si-doped alumina has a high thermal stability up to 1473 K. Its surface area and pore volume were found to slowly decrease with increasing temperature. Mesoporous undoped alumina is transformed to gamma-alumina at 1073 K, whereas the amorphous nature of the pore walls of the Si-doped alumina is maintained up to 1073 K. When heat treatment was carried out at 1473 K for 2 h, the mesopore-networks of the undoped alumina collapsed, and then all the pore walls were converted into the alpha-alumina phase. In contrast, the mesoporosity of the Si-doped alumina persisted during heat treatment, and its pore walls were transformed to gamma-alumina. The decreases in the pore volume of the undoped alumina at 1073 K and 1473 K were found to be 36% and 99% respectively, but for the Si-doped alumina were only 24% and 36% respectively. The surface area of the undoped alumina at 1473 K was found to be 11 m2/g but that of the Si-doped samples at the same temperature is higher than 100 m2/g. Thus this mesoporous Si-doped alumina can be used as a catalytic support in reactions at high temperatures.

  12. Characterization of Alumina Interfaces in TBC Systems

    SciTech Connect

    Pint, Bruce A; More, Karren Leslie

    2009-01-01

    Interfacial segregants in thermally grown {alpha}-Al{sub 2}O{sub 3} scales formed during high temperature exposure of thermal barrier coating systems reflect the oxygen-active dopants present in the bond coating and substrate, such as Y and Hf. These dopants diffuse outward and segregate to the substrate-alumina interface and the alumina grain boundaries. Related studies suggest that these segregants affect the growth and mechanical properties of the alumina-scale; however, the characterization of segregation in alumina formed on coated superalloy systems has been limited. Segregation examples evaluated using analytical transmission electron microscopy are given from traditional Pt-modified aluminide coatings and newer Pt diffusion coatings. Model systems are used to illustrate that grain boundary segregants on the columnar alumina boundaries are not because of the reverse diffusion of cations from the Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} top coating, and that interstitial elements in the substrate likely affect the outward flux of cation dopants. The dynamic nature of this segregation and oxygen-potential gradient-driven diffusion is discussed in light of observations of substrate dopant and interstitial contents affecting coating performance.

  13. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu

    2014-01-01

    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  14. Iron films deposited on porous alumina substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Yasuhiro; Tanabe, Kenichi; Nishida, Naoki; Kobayashi, Yoshio

    2016-12-01

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 - 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  15. Bioactivation of inert alumina ceramics by hydroxylation.

    PubMed

    Fischer, Horst; Niedhart, Christopher; Kaltenborn, Nadine; Prange, Andreas; Marx, Rudolf; Niethard, Fritz Uwe; Telle, Rainer

    2005-11-01

    Alumina ceramics (Al(2)O(3)) are frequently used for medical implants and prostheses because of the excellent biocompatibility, and the high mechanical reliability of the material. Inauspiciously alumina is not suitable for implant components with bone contact, because the material is bioinert and thereby no bony ongrowth, and subsequently loosening of the implant occurs. Here, we present a new method to bioactivate the surface of the material. Specimens made of high purity alumina were treated in sodium hydroxide. Cell culture tests with osteoblast-like cells as well as spectroscopical and mechanical tests were performed. Aluminium hydroxide groups were detected on the surface of the treated specimens. Enhanced cell adhesion, proliferation and secretion of osteocalcin were determined after hydroxylation. The bioactivating treatment had no deteriorating effect on the short- and long-term strength behaviour. Our results indicate that the described surface technique could be used to develop a new class of osseointegrative high-strength ceramic implants.

  16. Ceramic failure after total hip arthroplasty with an alumina-on-alumina bearing.

    PubMed

    Park, Youn-Soo; Hwang, Sung-Kwan; Choy, Won-Sik; Kim, Yong-Sik; Moon, Young-Wan; Lim, Seung-Jae

    2006-04-01

    The mechanical properties of alumina ceramic, now in its third generation, have been markedly improved through the evolution of design features and manufacturing processes and the introduction of proof-testing. Nonetheless, because of the lack of ductility of alumina ceramic, there is concern regarding the risk of fracture during insertion or in vivo use. The purpose of the present study was to present a multicenter review of primary total hip arthroplasties performed with use of a polyethylene-ceramic composite liner combined with a ceramic femoral head, with particular attention to failure of the ceramic bearing. We evaluated 357 primary total hip arthroplasties that had been performed in 319 patients with use of a contemporary alumina-on-alumina bearing design incorporating a polyethylene-ceramic composite liner within a titanium-alloy shell coupled with a 28-mm-diameter ceramic femoral head. The procedures were performed at four participating centers from 1998 to 2001. Ceramic failure without trauma occurred in six hips (1.7%). All of these hips were revised, and the retrieved alumina implants were examined by means of visual inspection and scanning electron microscopy equipped with energy-dispersive x-ray spectrometry. Two femoral heads fractured during the first postoperative year, and four alumina liners fractured after an average of 36.8 months in vivo. All four of the explanted alumina liners revealed evidence of rim contact with the metal neck of the femoral component. Composition analysis confirmed that surface-stain materials were titanium particles transferred from the femoral component. Despite the theoretical improvement in the fracture toughness of a polyethylene-alumina composite liner, a relatively high rate of catastrophic ceramic bearing surface failure was still observed at the time of short-term follow-up. This finding prompted us to discontinue the use of this type of alumina bearing design.

  17. REMOVING RADIUM FROM WATER BY PLAIN AND TREATED ACTIVATED ALUMINA

    EPA Science Inventory

    The research determined the feasibility of using BaSO4-impregnated activated alumina and plain activated alumina for radium removal from groundwater by fixed-bed adsorption. The major factors influencing radium adsorption onto the two types of alumina were identified. The radium ...

  18. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  19. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  20. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  1. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  2. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  3. REMOVING RADIUM FROM WATER BY PLAIN AND TREATED ACTIVATED ALUMINA

    EPA Science Inventory

    The research determined the feasibility of using BaSO4-impregnated activated alumina and plain activated alumina for radium removal from groundwater by fixed-bed adsorption. The major factors influencing radium adsorption onto the two types of alumina were identified. The radium ...

  4. Thermal radiation shielding by nanoporous membranes based on anodic alumina

    NASA Astrophysics Data System (ADS)

    Muratova, E. N.; Matyushkin, L. B.; Moshnikov, V. A.; Chernyakova, K. V.; Vrublevsky, I. A.

    2017-07-01

    The paper is devoted to infrared thermography studies of nanoporous alumina membranes with various geometric parameters of the porous layer: its thickness and average pore diameter. Thermal radiation shielding by anodic alumina membranes is presented. The result obtained showed that nanoporous alumina membranes can be used as heat shields to smooth contrast of thermal radiation of the object and the surrounding background.

  5. Scanning Electron Microscope Studies on Aggregation Characteristics of Alumina Nanofluids

    DTIC Science & Technology

    2013-08-01

    UNCLASSIFIED SCANNING ELECTRON MICROSCOPE STUDIES ON AGGREGATION CHARACTERISTICS OF ALUMINA NANOFLUIDS INTERIM REPORT TFLRF No. 443...UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SCANNING ELECTRON MICROSCOPE STUDIES ON AGGREGATION CHARACTERISTICS OF ALUMINA NANOFLUIDS INTERIM REPORT TFLRF...Aggregation Characteristics of Alumina Nanofluids 5a. CONTRACT NUMBER W56HZV-09-C-0100 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  6. Delayed Failure in a Shock Loaded Alumina

    SciTech Connect

    Cooper, G. A.; Millett, J. C. F.; Bourne, N. K.; Dandekar, D. P.

    2006-07-28

    Manganin stress gauges have been used to measure the lateral stress in a shock-loaded alumina. In combination with known longitudinal stresses, these have been used to determine the shear strength of this material, behind the shock front. The two-step nature of the lateral stress traces shows a slow moving front behind the main shock, behind which shear strength undergoes a significant decrease. Results also show that this front decreases markedly in velocity as the HEL is crossed, suggesting that limited plasticity occurs during inelastic deformation. Finally, comparison of measured shear strengths with other aluminas shows a high degree of agreement.

  7. Chlorination of alumina in kaolinitic clay

    NASA Astrophysics Data System (ADS)

    Grob, B.; Richarz, W.

    1984-09-01

    The chlorination of alumina in kaolinitic clay with Cl2 and CO gas mixtures was studied gravimetrically. The effects of the calcination method and of NaCl addition on the reactivity of the clay were examined. Fast reaction rates were achieved only with samples previously exposed to a sulfating treatment. Optimum conditions, with maximum yield and selectivity to A1C13 and minimum SiO2 conversion, were found between 770 and 970 K. At higher temperatures the SiCl4 formed poisons the reactive alumina surface by selective chemisorption with a marked decrease of the reaction rate.

  8. Interface Engineering in Alumina/Glass Composites

    DTIC Science & Technology

    1992-02-29

    BN coating applied to the fibers disappeared during the fabrication process. Coating thicknesses as much as 0.3 jim was found to be assimilated during...E-200 Alumina Fiber Tin Dioxide ’ -300 - PD - 166 coating,30 -1(0.8 un) -400 00, -600 " 9.4 9.6 9.S 10.0 10.2 r ( jim ) Fig. 2. Fracture surface of...of the specimens Chemical composition’(wt.%) were polished, with 0.5 jim alumina powder, to mini- .i. 71 mize surface flaw effects. Strengih

  9. Contact Noise in Sodium Beta Alumina.

    DTIC Science & Technology

    1987-05-01

    AD-Al~i 128 CONTACT NOISE IN SODIUM BETA ALUMINA(U) UTANHUNIV SALT i/i LAKE CITY DEPT OF PHYSICS C K KUD ET AL MAY 87 UN SLR55IF IED FG 1,b2 NL UN...by Chu Kun Kuo* and James J. Brophy Physics Department University of Utah Salt Lake City, Utah 84112 ABSTRACT/ Contact noise in sodium 0alumina cells...ZIPCo*I) UNIVERSITY OF UTAH UNIVERISTY OF NEW MEXICO SALT LAKE CITY UT 84112 Bandelier Hall West Alhkq..u u. m (1 71-11 so NAME of FUNDING /SPONSORING Sb

  10. Current Noise in Sodium Beta Alumina Ceramic.

    DTIC Science & Technology

    1983-11-01

    7 ’FD-i49 549 CURRENT NOISE IN SODIUM BET ALUMINA CERAIC(U) UTAH i/iUNIV SALT LAKE CITY DEPT OF PHYSICS J J BROPHY ET AL.NOV 83 TR-5 N08814-82-K...REPORT NO. 5 CURRENT NOISE IN SODIUM 0" ALUMINA CERAMIC ID by James J. Brophy and Steven W. Smith * Prepared for Publication in the Journal of Applied...Physics D T IC ELECTE JAIN 1 Department of Physics $ ) University of Utah Salt Lake City, Utah 84112 November 1983 Reproduction in whole or in part is

  11. Alumina-on-alumina total hip arthroplasty. A five-year minimum follow-up study.

    PubMed

    Yoo, Jeong Joon; Kim, Young-Min; Yoon, Kang Sup; Koo, Kyung-Hoi; Song, Won Seok; Kim, Hee Joong

    2005-03-01

    Ceramic-on-ceramic couplings are attractive alternative bearing surfaces that have been reported to eliminate or reduce problems related to polyethylene wear debris. Disappointing experiences with alumina ceramic bearings in the past have led to many improvements in the manufacture and design of ceramic implants. The purpose of the present study was to report the results of contemporary alumina-on-alumina total hip arthroplasties with regard to wear, osteolysis, and fracture of the ceramic after a minimum duration of follow-up of five years. We evaluated the results of a consecutive series of 100 primary alumina-on-alumina total hip arthroplasties that had been performed with use of a metal-backed socket and a cementless stem in eighty-four patients. All of the patients were sixty-five years of age or younger (mean age, forty-one years), and a single surgeon performed all of the procedures. After a minimum duration of follow-up of sixty months, one patient (one hip) had died and four patients (six hips) had been lost to follow-up, leaving a total of seventy-nine patients (ninety-three hips) available for study. All of these patients were evaluated clinically and radiographically with special attention to wear, periprosthetic osteolysis, and ceramic failure. The mean Harris hip score was 97 points at the time of the latest follow-up evaluation. All prostheses demonstrated radiographic evidence of bone ingrowth. No implant was loose radiographically, and no implant was revised. Ceramic wear was not detectable in the thirty-seven hips in which the femoral head could be differentiated from the cup on radiographs. Periprosthetic osteolysis was not observed in any hip. A fracture of the alumina femoral head and a peripheral chip fracture of the alumina insert occurred in one hip following a motor-vehicle accident. The results of contemporary alumina-on-alumina total hip arthroplasty with a metal-backed socket and a cementless stem were encouraging after a minimum

  12. Thermal Conductivity of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Zhu, Dong-Ming

    2003-01-01

    10-mol% yttria-stabilized zirconia (10YSZ)-alumina composites containing 0 to 30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity of the composites, determined at various temperatures using a steady-state laser heat flux technique, increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from simple rule of mixtures.

  13. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  14. Yield stress of alumina-zirconia suspensions

    SciTech Connect

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-10-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data.

  15. Dielectric Performance of High Purity HTCC Alumina at High Temperatures - A Comparison Study with Other Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    A very high purity (99.99+) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this co-fired material. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96 polycrystalline alumina (96 Al2O3), where 96 alumina was used as the benchmark. A prototype packaging system based on regular 96 alumina with Au thick-film metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500C. In order to evaluate this new HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96 alumina and a LTCC alumina from room temperature to 550C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96 alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  16. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  17. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2011-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  18. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor); Amarie, Dragos (Inventor)

    2010-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  19. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2011-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multichannel sensor for detecting the presence of several targets with a single microchip sensor is described. A multichannel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  20. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2012-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single microchip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  1. Sub-Micron Carbon Filaments for Optical Applications

    DTIC Science & Technology

    1987-11-01

    research at this stage, t grow straight, submicroii, high aspect ratio filaments, has not yet bet achievcd. A ,ariety of groi .-th conditions have bee...however, produced very little filament groi .-th and quilt a lot of carbon deposits on the reactor walls. The deposits ranged from .ell.uwish-brown...arranged across the fiber section varies considerably from one fiber type to another. Ex- PAIN fibers are characteristically disordered in this section

  2. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Dragnea, Bogdan (Inventor); Amarie, Dragos (Inventor)

    2010-01-01

    A sensor for detecting the presence of a target analyte, ligand or molecule in a test fluid, comprising a light transmissive substrate on which an array of surface plasmon resonant (SPR) elements is mounted is described. A multi-channel sensor for detecting the presence of several targets with a single micro-chip sensor is described. A multi-channel sensor including collections of SPR elements which are commonly functionalized to one of several targets is also described. The detectors sense changes in the resonant response of the SPR elements indicative of binding with the targets.

  3. Sub-micron surface plasmon resonance sensor systems

    NASA Technical Reports Server (NTRS)

    Glazier, James A. (Inventor); Amarie, Dragos (Inventor)

    2013-01-01

    Wearable or implantable devices combining microfluidic control of sample and reagent flow and micro-cavity surface plasmon resonance sensors functionalized with surface treatments or coatings capable of specifically binding to target analytes, ligands, or molecules in a bodily fluid are provided. The devices can be used to determine the presence and concentration of target analytes in the bodily fluids and thereby help diagnose, monitor or detect changes in disease conditions.

  4. Nano-ring arrays for sub-micron particle trapping

    NASA Astrophysics Data System (ADS)

    Han, Xue; Truong, Viet Giang; Nic Chormaic, Síle

    2017-04-01

    Plasmonic tweezers based on nano-ring arrays on gold thin film are demonstrated. A cylindrical surface plasmon resonance is generated in the aperture of a nano-ring and a transmission peak results. When nano-slits are included to connect the nano-rings, the transmission peak becomes narrower. When the size of the aperture of the nano-ring is reduced, this peak is red-shifted. Both 0.5 μm and 1 μm polystyrene particles are trapped successfully by nano-ring arrays. A self-induced back-action effect is observed when a red-shifted laser beam is used. With multiple trapping sites provided by the nano-ring array, this type of plasmonic tweezers has huge potential to be integrated in lab-on-a-chip systems for life sciences research.

  5. Physics of sub-micron cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Roy, N. L.

    1974-01-01

    Laboratory tests with simulated micrometeoroids to measure the heat transfer coefficient are discussed. Equations for ablation path length for electrically accelerated micrometeoroids entering a gas target are developed which yield guidelines for the laboratory measurement of the heat transfer coefficient. Test results are presented for lanthanum hexaboride (LaB sub 6) microparticles in air, argon, and oxygen targets. The tests indicate the heat transfer coefficient has a value of approximately 0.9 at 30 km/sec, and that it increases to approximately unity at 50 km/sec and above. Test results extend to over 100 km/sec. Results are also given for two types of small particle detectors. A solid state capacitor type detector was tested from 0.61 km/sec to 50 km/sec. An impact ionization type detector was tested from 1.0 to 150 km/sec using LaB sub 6 microparticles.

  6. Sub-micron scale conduction processes on clean surfaces

    SciTech Connect

    Kimberlin, K.

    1995-06-19

    Electrical conductance has been measured in-situ in two dimensions in the Ag/Si(111) system as a function of incident adatom flux rate with a 4-probe method. A conductance study in a 3-D conical structure was also made using field emission. For the 2-D study, the origin of conduction is still unclear, as transport by percolating Ag clusters and conduction through the substrate lvia electrons from the film have both been suggested. Experiments varying the flux rate were conducted to decide between the two. Smoother films are expected at lower growth rates which would result in faster drops in the 4-probe voltage; however the 4-probe voltage vs deposition time for various flux rates collapse into a universal curve which indicates that the morphology is not relevant and supports through the substrate. In the 3-D conductance study, a single, lateral micromachined W protrusion on a silica substrate is examined to identify the factors controlling emission in micromachined structures. The I-V characteristics and emission pattern indicate that miniprotrusions of a few hundred Angstroms, much smaller than the nominal radius of the tip, exist on the tip and are responsible for the emission. Adsorption-desorption events from the background environment are the cause of large fluctuations in the emitting current. Comparison of the emission of a single tip to gated arrays suggest that only a fraction of the tips in the array are emitting.

  7. The Columbia University Sub-micron Charged Particle Beam

    PubMed Central

    Randers-Pehrson, Gerhard; Johnson, Gary W.; Marino, Stephen A.; Xu, Yanping; Dymnikov, Alexander D.; Brenner, David J.

    2009-01-01

    A lens system consisting of two electrostatic quadrupole triplets has been designed and constructed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The lens system has been used to focus 6-MeV 4He ions to a beam spot in air with a diameter of 0.8 µm. The quadrupole electrodes can withstand voltages high enough to focus 4He ions up to 10 MeV and protons up to 5 MeV. The quadrupole triplet design is novel in that alignment is made through precise construction and the relative strengths of the quadrupoles are accomplished by the lengths of the elements, so that the magnitudes of the voltages required for focusing are nearly identical. The insulating sections between electrodes have had ion implantation to improve the voltage stability of the lens. The lens design employs Russian symmetry for the quadrupole elements. PMID:20161365

  8. Sub-Micron Long HTS Ho Electron Mixers

    NASA Technical Reports Server (NTRS)

    Harnack, 0.; Karasik, B. S.; McGrath, W. R.; Kleinsasser, A. W.; Barner, J. B.

    2000-01-01

    The hot-electron bolometer mixer made from a high-T, superconductor (HTS) was introduced recently as an alternative to a Schottky mixer at THz frequencies. The performance of the mixer depends on the total thermal conductance for heat removal from the phonon sub-system due to either length-dependent phonon diffusion or phonon escape to the substrate. We have measured both the length and temperature dependencies of the IF bandwidth of the mixers fabricated from 25-35 mn thick YBCO films on MgO and sapphire substrates. The films were grown by a laser deposition technique and electron-beam lithography was used to define bridge lengths down to 50 nm. Mixer measurements were done using signal frequencies in the range of 1-100 GHz. For 50 nm and 400 nm long devices on MgO, the 3-dB bandwidth was about 100 MHz. At temperatures below 60 K, the hot-electron plateau was clearly seen starting around 2-3 GHz. At temperatures above 70 K, the flux-flow effects begin to dominate and the IF bandwidth increases to 1-8 GHz, while the conversion efficiency drops by several dB. This temperature dependence of the IF bandwidth can account for previously reported unexpectedly high bandwidth of HTS mixers.

  9. Sub-Micron Long HTS Ho Electron Mixers

    NASA Technical Reports Server (NTRS)

    Harnack, 0.; Karasik, B. S.; McGrath, W. R.; Kleinsasser, A. W.; Barner, J. B.

    2000-01-01

    The hot-electron bolometer mixer made from a high-T, superconductor (HTS) was introduced recently as an alternative to a Schottky mixer at THz frequencies. The performance of the mixer depends on the total thermal conductance for heat removal from the phonon sub-system due to either length-dependent phonon diffusion or phonon escape to the substrate. We have measured both the length and temperature dependencies of the IF bandwidth of the mixers fabricated from 25-35 mn thick YBCO films on MgO and sapphire substrates. The films were grown by a laser deposition technique and electron-beam lithography was used to define bridge lengths down to 50 nm. Mixer measurements were done using signal frequencies in the range of 1-100 GHz. For 50 nm and 400 nm long devices on MgO, the 3-dB bandwidth was about 100 MHz. At temperatures below 60 K, the hot-electron plateau was clearly seen starting around 2-3 GHz. At temperatures above 70 K, the flux-flow effects begin to dominate and the IF bandwidth increases to 1-8 GHz, while the conversion efficiency drops by several dB. This temperature dependence of the IF bandwidth can account for previously reported unexpectedly high bandwidth of HTS mixers.

  10. Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies

    PubMed Central

    Stankus, John J.; Guan, Jianjun; Wagner, William R.

    2010-01-01

    The native extracellular matrix (ECM) of elastic tissues is strong and flexible and supports cell adhesion and enzymatic matrix remodeling. In an attempt to convey these ECM properties to a synthetic scaffold appropriate for soft tissue engineering applications, a biodegradable, elastomeric poly(ester urethane)urea (PEUU) was combined with type I collagen at various ratios (2.5, 5, 10, 20, 50, 60, 70, 80, and 90 wt% collagen) and electrospun to construct elastic matrices. Randomly orientated fibers in the electrospun matrices ranged in diameter from 100–900 nm, dependent on initial polymer concentration. Picrosirius red staining of matrices and CD spectroscopy of released collagen confirmed collagen incorporation and preservation of collagen structure at the higher collagen mass fractions. Matrices were strong and distensible possessing strengths of 2–13 MPa with breaking strains of 160–280% even with low PEUU content. Collagen incorporation significantly enhanced smooth muscle cell adhesion onto electrospun scaffolds. An approach has been demonstrated that mimics elastic extracellular matrices by using a synthetic component to provide mechanical function together with a biomacromolecule, collagen. Such matrices may find application in engineering soft tissue. PMID:15307165

  11. Multifractal analysis of atmospheric sub-micron particle data

    NASA Astrophysics Data System (ADS)

    Arizabalo, Rubén Darío; González-Ávalos, Eugenio; Korvin, Gabor

    2015-03-01

    Multifractal analysis was used to describe air pollution by sub-micrometric atmospheric particles. Atmospheric particle concentrations were studied from March 31 to April 21, 2006, as part of the MILAGRO campaign at the Jasso Station by means of an SMPS. Sixteen campaign days were selected to carry out the multifractal analysis of the experimental data through Singularity Spectra f(α). In this work, the roughness/smoothness feature of atmospheric particle distributions was studied by means of the Hölder exponent (α), which can be associated with the intensity of particle emissions through time and the randomness of the external emission sources. Multifractal analysis has been found to be a useful tool to establish intensity fluctuations of atmospheric data.

  12. Peltier Effect in Sub-micron-Size Metallic Junctions

    NASA Astrophysics Data System (ADS)

    Fukushima, Akio; Yagami, Kojiro; Tulapurkar, Ashwin A.; Suzuki, Yoshishige; Kubota, Hitoshi; Yamamoto, Atsushi; Yuasa, Shinji

    2005-01-01

    Resistance (R)-current (I) curves in trilayer CPP-GMR (current perpendicular to plane-giant magnetoresistance) elements show a parabolic baseline because of Joule heating, and abrupt jumps due to magnetization reversals. The bottom of the parabolic baseline shifts in one current direction for reasons that were previously unclear. Our study of the R-I characteristics of CPP elements with various structures showed (i) the shift in the R-I curve originates from Peltier cooling in the CPP elements; (ii) the cooling power per unit area of the CPP elements (˜105 W/cm2) is much greater than that of conventional thermoelectric materials (˜5 W/cm2).

  13. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    SciTech Connect

    Li, Chuanping

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  14. Mesoscale Modelling of the Response of Aluminas

    SciTech Connect

    Bourne, N. K.

    2006-07-28

    The response of polycrystalline alumina to shock is not well addressed. There are several operating mechanisms that only hypothesized which results in models which are empirical. A similar state of affairs in reactive flow modelling led to the development of mesoscale representations of the flow to illuminate operating mechanisms. In this spirit, a similar effort is undergone for a polycrystalline alumina. Simulations are conducted to observe operating mechanisms at the micron scale. A method is then developed to extend the simulations to meet response at the continuum level where measurements are made. The approach is validated by comparison with continuum experiments. The method and results are presented, and some of the operating mechanisms are illuminated by the observed response.

  15. Activation of consolidation processes of alumina ceramics

    NASA Astrophysics Data System (ADS)

    Matrenin, S. V.; Zenin, B. S.; Tayukin, R. V.

    2016-02-01

    The methods for activating sintering ceramics based on Al2O3 by mechanical activation in the planetary mill, by adding in the mixture of nanopowders (NP) Al, Al2O3, and submicron powder TiO2, and by applying the technology of spark plasma sintering (SPS) are developed. It has been shown that adding the nanopowder up to 20 wt. % Al2O3 in a coarse powder α-Al2O3 activates the sintering process resulting in increased density and hardness of the sintered alumina ceramics. Substantial effect of increasing density of alumina ceramics due to adding the submicron powder TiO2 in the compound of initial powder mixtures has been established.

  16. Li + ion diffusion in nanoscale alumina coatings

    NASA Astrophysics Data System (ADS)

    Johannes, Michelle; Bernstein, Noam

    Nanoscale coatings of alumina are used to stabilize surfaces for a variety of technologies. Diffusion of ions through these coatings is of primary importance: in some cases, diffusion is unwanted (e.g. corrosion) and in others (e.g. electrode materials), it is necessary. In this work DFT and AIMD calculations are used to investigate Li+ ion diffusion through a nano-layer of alumina, examining the phase (alpha, gamma, and amorphous), ion concentration, and electron count dependence. We look at the role of the surface itself in promoting diffusion. One of our main findings is that as the number of ions or charge increases, the diffusivity rises. We show how our data can explain electrochemical data from coated LiCoO2 cathodes and may point toward better and more efficient coatings for stabilizing electrodes.

  17. Health Risk Assessments for Alumina Refineries

    PubMed Central

    Coffey, Patrick S.

    2014-01-01

    Objective: To describe contemporary air dispersion modeling and health risk assessment methodologies applied to alumina refineries and to summarize recent results. Methods: Air dispersion models using emission source and meteorological data have been used to assess ground-level concentrations (GLCs) of refinery emissions. Short-term (1-hour and 24-hour average) GLCs and annual average GLCs have been used to assess acute health, chronic health, and incremental carcinogenic risks. Results: The acute hazard index can exceed 1 close to refineries, but it is typically less than 1 at neighboring residential locations. The chronic hazard index is typically substantially less than 1. The incremental carcinogenic risk is typically less than 10−6. Conclusions: The risks of acute health effects are adequately controlled, and the risks of chronic health effects and incremental carcinogenic risks are negligible around referenced alumina refineries. PMID:24806721

  18. Nanoparticles in alumina: Microscopy and Theory

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan C.; Halabica, Andrej; Rashkeev, Sergey; Glazoff, Michael V.; Boatner, Lynn A.; Haglund, Richard F.; Pennycook, Stephen. J.; Pantelides, Sokrates T.

    2007-03-01

    Transition-metal nanoparticles formed by ion implantation in alumina can be used to modify the optical properties of naturally oxidized and anodized aluminum. Here, we report atomic-resolution Z-contrast images using a scanning transmission electron microscope (STEM) of CoFe and other metal nanoparticles in alumina. We also report electron energy loss spectra (EELS) and relate them to visual appearance and optical properties. Finally, we report first-principles density- functional calculations of nucleation mechanisms for these nanoparticles. This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05- 00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, by NSF grant No. DMR-0513048, and by Alcoa Inc.

  19. Health risk assessments for alumina refineries.

    PubMed

    Donoghue, A Michael; Coffey, Patrick S

    2014-05-01

    To describe contemporary air dispersion modeling and health risk assessment methodologies applied to alumina refineries and to summarize recent results. Air dispersion models using emission source and meteorological data have been used to assess ground-level concentrations (GLCs) of refinery emissions. Short-term (1-hour and 24-hour average) GLCs and annual average GLCs have been used to assess acute health, chronic health, and incremental carcinogenic risks. The acute hazard index can exceed 1 close to refineries, but it is typically less than 1 at neighboring residential locations. The chronic hazard index is typically substantially less than 1. The incremental carcinogenic risk is typically less than 10(-6). The risks of acute health effects are adequately controlled, and the risks of chronic health effects and incremental carcinogenic risks are negligible around referenced alumina refineries.

  20. Microwave joining of high-purity alumina

    SciTech Connect

    Cozzi, A.D.; Clark, D.E.; Ferber, M.K.

    1996-12-31

    Microwave hybrid heating (MHH) was used to join 99.5% pure alumina pieces 25 mm diameter and 25 mm long using 94% pure alumina as the interlayer material. The interlayer material was cut from a rod into discs approximately 2 mm thick. Joining was performed in a home model microwave oven. Temperatures for joining ranged from 1450{degrees}C to 1550{degrees}C and pressures from 1-3 MPa. For comparison, similar joints were made in a conventional furnace. Joined specimens were tested using four-point bend at room temperature. Statistical analysis was utilized to determine the relative effect of the different processing parameters on the strength of the joint.

  1. Silica containing highly porous alumina ceramic

    NASA Astrophysics Data System (ADS)

    Svinka, R.; Svinka, V.; Zake, I.

    2011-04-01

    Porous alumina ceramic were produced by slip casting of aqueous alumina slurry with added small amount of metallic aluminium powder. Pores form in result of chemical reaction of aluminum with water by hydrogen gas evolution reaction and solidification of suspension. Porosity of such materials sintered at a temperature of 1600 - 1750°C varies from 60 to 90%. Pore size distribution and mechanical strength of these materials depend largely on the grain size of used raw materials. The major part of pores in the materials produced without additive of silica are larger than 10 ±m, but with 5 - 10 wt.% additive of silica in the raw mix pore size decreases considerably. The sintering shrinkage decreases to 2.5%. Coefficient of thermal expansion equally decreases from 8.9-10-6 K-1 to 7.1 10-6 K-1 and classification temperature increases to 1600°C, while deformation at high temperature decreases considerably.

  2. Improvement in nanoscale contact resistance of alumina

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Manjima; Chakraborty, Riya; Dey, Arjun; Mandal, Ashok Kumar; Mukhopadhyay, Anoop Kumar

    2012-06-01

    In all contact-related applications such as the wear-resistant inserts, biomedical implants, high strain rate impact-resistant plates, etc., nanohardness, i.e. the intrinsic contact resistance at the nano scale, plays a major role. In spite of the wealth of literature, the studies on nanohardness of dense, coarse-grain alumina ceramics which represent many commercial varieties; have reasonably good hardness at the macro scale and characteristically exhibit R-curve behaviour, are far from significant. Here, to the best of our knowledge, we report for the first time the experimental observations of the increase in intrinsic contact resistance at the nano scale with the loading rate applied to a high-density (˜95 % of theoretical) coarse-grain (˜20 µm) alumina ceramics. These observations were explained in terms of the initiation of nanoscale plasticity and maximum shear stress generated just underneath the nanoindenter.

  3. Luminescence of Cu+ Beta’ Alumina.

    DTIC Science & Technology

    1987-07-01

    the ion exchange procedure using melts of pure cuprous salts often resulted in crystals which were discolored and which lumi- nesced only weakly...importance is the stabil- ity of the cuprous ions in the fil-alumina host. We have begun to explore some of these questions. Very high intensity UV radia...SCHEDULE dis tribut ion is unlimited 4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) Technical Report No. 12 Ga

  4. Decay of elastic waves in alumina

    NASA Astrophysics Data System (ADS)

    Marom, H.; Sherman, D.; Rosenberg, Z.

    2000-11-01

    The dynamic response of alumina under shock compression was studied using planar impact experiments with different tile thicknesses. Stress-time measurements were made with manganin gauges backed by different backing materials in order to optimize gauge response. The results show an apparent decay in the Hugoniot elastic limit with propagation distance. However, further analysis reveals that this phenomenon is probably a measurement artifact, resulting from the relatively slow response times of manganin gauges.

  5. Tribology of alumina-graphite composites

    NASA Astrophysics Data System (ADS)

    Yu, Chih-Yuan

    Alumina-graphite composites, which combine high wear resistance and self-lubricity, are a potential and promising candidate for advanced tribological applications. The processing, mechanical properties and tribology of alumina-graphite composites are discussed. Full density is difficult to achieve by a pressureless sintering route. Porosity of the composites increases with graphite content which causes the strength, modulus of elasticity, and hardness of the composites to decrease. The increased porosity does cause the fracture toughness to slightly increases. Tribology of alumina-graphite composites was studied with a pin-on-disk tribometer with emphasis on the following aspects: the graphite content in both pin and disk, the graphite flake size and the orientation of the graphite flakes. Scan electronic microscopy (SEM) and X-ray diffraction are utilized to examine and characterize the wear debris and the worn surface. Results confirmed that it is necessary to optimize the structure and the supply of lubricant to improve the tribological behavior and that the arrangements of sliding couples also affect the tribology of self-lubricated ceramic composites. Continuous measurements of the friction coefficients were collected at high frequency in an attempt to correlate the tribology of alumina-graphite composites to vibrations introduced by friction. While these measurements indicate that the time frequency behavior of tribology is an important area of study, conclusions regarding the frequency response of different sliding couples could not be definitively stated. Finally, a new concept connecting instantaneous wear coefficient and instantaneous contact stress is proposed for prediction of wear behavior of brittle materials.

  6. High contrast laser marking of alumina

    NASA Astrophysics Data System (ADS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  7. Compression Testing of Alumina Fiber Insulation

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.

    2006-01-01

    A series of tests were conducted to measure the response of alumina fiber insulation to compression loading. The alumina fiber insulation is a candidate gasket material for the Space Shuttle Government Furnished Equipment (GFE) Tile Overlay Repair. Tests were conducted at room temperature and 2300 F. The alumina fiber insulation is a fibrous insulation blanket which was supplied to Langley in two forms, a nominal 3 lb/ft3 version and a nominal 9 lb/ft3 version. The 3 lb/ft3 material was tested as sheets 0.15 and 0.25 inches thick and the 9 lb/ft3 material in sheets 1 inch thick. The material showed very non-linear compression behavior with the compressive resistance of the material increasing as the material was compressed. The 3 lb/ft3 0.15-inch thick material required 4.1 psi to reach the nominal installation thickness of 0.045 inches and retain a load of 2.1 lbs during unloading. Testing at 2300 F resulted in a stiffer more board-like material. The 3 lb/ft3 0.15-inch thick material retained 1 psi of compressive resistance after a 10 minute hold at 2300 F and 0.045 inches thickness.

  8. Role of alumina phase and size in tungsten CMP

    SciTech Connect

    STEIN,DAVID J.; HER,ROBERT Y.-S.

    2000-02-01

    The role of the alumina particle phase and size on polish rate and process temperature was studied to elucidate removal mechanisms involved in tungsten CMP using potassium iodate-based slurries. Additional work including polishing of blanket PETEOS and titanium films, and polishing of M1 to V1 to M2 electrical test structures was performed to determine the performance of the various aluminas in production CMP. The polish rate of tungsten was highest with alpha alumina. Delta/theta and gamma alumina showed lower polish rates. Tungsten and PETEOS polish rates increased with particle size. Only alpha alumina was able to clear the titanium barrier stack. The size of the alpha alumina did not effect the electrical characteristics of short loop electrical test structures.

  9. [Pathological observation on five autopsies of the alumina pneumoconiosis].

    PubMed

    Li, Yi; Wang, Hongyuan

    2002-04-01

    To study the pathological characteristics and the morphological changes of alumina pneumoconiosis. The pathological observation and analysis were performed in lungs of five autopsies with alumina pneumoconiosis. The early common pathological change of alumina pneumoconiosis was the dust spots. The dust fibrosis had two forms, one was the non-focal fibrous proliferation of interstitial space, the other was the proliferation of inner-dust-spot fibrosis that finally developed into non-typical pneumoconiosis nodules. The pathological characteristics of the alumina pneumoconiosis may not be all the same to those of aluminium and aluminium oxide pneumoconiosis. Alumina pneumoconiosis is a complex pneumoconiosis. The typical pathological changes are the dust-spot emphysema and dust fibrosis of interstitial tissue. Infection in lung and complication of lung tumor, especially pneumo-tubercolosis would promote dust fibrosis. The pleural thickening, the relationship between lung cancer and alumina dust should be taken seriously.

  10. Divalent beta aluminas: High conductivity solid electrolytes for divalent cations

    NASA Astrophysics Data System (ADS)

    Farrington, G. C.; Dunn, B.

    1982-10-01

    The Na(+) content of beta alumina can be replaced by a variety of divalent cations in simple ion exchange reactions. The resulting divalent beta' aluminas are the first family of high conductivity solid electrolytes for divalent cations. Divalent beta' aluminas which have been prepared so far include conductors of Ca(2+), Sr(2+), Ba(2+), Zn(2+), Cd(2+), Pb(2+), Hg(2+), and Mn(2+). Most have conductivities of about 0.1/(ohm-cm) at 300-400 C. However, the conductivity of Pb(++) beta alumina is 0.0046/(ohm-cm) at 40 C, nearly equal to that of Na(+) beta alumina. Preliminary structure studies indicate that order-disorder reactions among the divalent cations and vacancies in the conduction region of beta alumina critically influence conductivity in the structure.

  11. A simple procedure to prepare spherical {alpha}-alumina powders

    SciTech Connect

    Liu Hongyu; Ning Guiling Gan Zhihong; Lin Yuan

    2009-04-02

    Spherical {alpha}-alumina powders were prepared by the controlled hydrolysis of aluminum isopropoxide in a hydrolysis system consisting of octanol and acetonitrile. Diverse solvents to dissolve reactant formed diverse hydrolysis systems and affected particle shape of {alpha}-alumina powders. The precursors crystallized to {gamma}-alumina at 1000 deg. C and converted to {alpha}-alumina at 1150 deg. C without intermediate phases. The particle morphology of precursor was retained after it crystallized to {alpha}-alumina. The heating rate influenced the particle shape and the state of agglomeration during calcination process. The thermal properties of the precursors were characterized by thermal gravimetric and differential thermal analysis. X-ray diffraction technique was used to confirm the conversion of crystalline phase of alumina powders from amorphous to {alpha}-phase. Transmission electron microscopy was used to investigate the morphologies and size of the precursors and products.

  12. Free-standing alumina nanobottles and nanotubes pre-integrated into nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Fang, Jinghua; Levchenko, Igor; (Ken Ostrikov, Kostya

    2014-08-01

    A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.

  13. Method for preparing Pb-.beta."-alumina ceramic

    DOEpatents

    Hellstrom, Eric E.

    1986-01-01

    A process is disclosed for preparing impermeable, polycrystalline samples of Pb-.beta."-alumina ceramic from Na-.beta."-alumina ceramic by ion exchange. The process comprises two steps. The first step is a high-temperature vapor phase exchange of Na by K, followed by substitution of Pb for K by immersing the sample in a molten Pb salt bath. The result is a polycrystalline Pb-.beta."-alumina ceramic that is substantially crack-free.

  14. Plasma sintering of beta″-alumina

    NASA Astrophysics Data System (ADS)

    Henrichsen, Matthew

    Sintering and phase conversion of beta″-alumina were investigated with static and ultra-rapid passthrough plasma firing. Ultra-rapid passthrough induction firing was used to differentiate the effects of rapid heating rates from plasma effects. Static plasma sintering at low pressures resulted in excessive sodium loss which prohibited the use of dilatometry. Sintering was characterized using the diameter profiles of partially fired tubes. Phase conversion was examined with x-ray diffraction of powdered sections of partially fired tubes. Ultra-rapid passthrough firing speeds ranged from 8 to ˜240 mm/min. Instantaneous shrinkage rates as large as 8%/sec were measured. Phase conversion and sintering were both rapid, and were complete in seconds. Tubes with densities above 97%, beta″-phase content above 98%, and ionic resistivity as low as 13.8 Ocm were produced. Two modes of cracking were identified for tubes in ultra-rapid firing. Both were related to the thickness of the tube wall and sinterability of the powder being fired. A finite element model of sintering and heat transfer was developed to aid in determining the causes of cracking. Cracks formed because of mechanical stress rather than thermal shock. Low levels of cobalt in the precursor materials greatly reduced specimen heating in the plasma. The surface of beta″-alumina, like that of alpha-alumina, is catalytic for recombination of ions and radical components from the plasma. Induction furnace firing produced heating rates lower than those in plasma heating. Fired tubes were oversintered and had duplex microstructures. Some specimens fired in the induction furnace were contaminated by carbon from the graphite susceptor. Two peaks were observed in shrinkage rate profiles of some tubes. A model of dimensional change from simultaneous sintering and phase conversion was constructed. The model produced shrinkage rate profiles similar to those observed in both plasma and induction firing. The multiple peaks

  15. Sintering of beta-type alumina bodies using alpha-alumina encapsulation

    DOEpatents

    McEntire, Bryan J.; Virkar, Anil V.

    1981-01-01

    A method of sintering a shaped green, beta-type alumina body comprising: (A) inserting said body into an open chamber prepared by exposing the interior surface of a container consisting essentially of at least about 50 weight percent of alpha-alumina and a remainder of other refractory material to a sodium oxide or sodium oxide producing environment; (B) sealing the chamber; and heating the chamber with the shaped body encapsulated therein to a temperature and for a time necessary to sinter said body to the desired density. The encapsulation chamber prepared as described above is also claimed.

  16. Samarium and europium beta”-alumina derivatives characterized by XPS

    DOE PAGES

    Myhre, Kristian; Meyer, Harry; Du, Miting

    2017-01-04

    Characterization of sodium, samarium and europium beta -alumina derivatives has been carried out using X-ray photoelectron spectroscopy. Beta -alumina has been widely studied as a material capable of incorporating many different cations into its lattice structure, such as sodium and many of the lanthanide elements. The X-ray photoelectron spectra of samarium and europium in the beta -alumina structure are reported here. Additionally, the spectra of the precursor sodium beta -alumina as well as the europium and samarium trichloride starting materials are presented.

  17. The effect of different powder particle size on mechanical properties of sintered alumina, resin- and glass-infused alumina.

    PubMed

    Chaiyabutr, Yada; Giordano, Russell; Pober, Richard

    2009-02-01

    In this study, the compaction and sintering behavior of fine alumina powders of different particle sizes and the effect of matrix particle size on biaxial strength and fracture toughness of infused matrices were investigated. Three different alumina powders, In-Ceram alumina, A16SG, and RC172 were selected, representing a range of particle size and shape. RC172 and A16SG were dry-pressed. In-Ceram alumina was slip-cast following manufacturer's recommendations. Dry-pressed ceramic blocks were sectioned into disks with a thickness of 1.5-mm. Uninfused disks were sintered at four temperatures between 1250 degrees C and 1400 degrees C. For glass or resin infused specimens, alumina disks were sintered at 1250 degrees C for 2 h and separated into two groups for glass infusion and resin (UDMA/TEGDMA) infusion. Disks were tested for biaxial flexural strength with a universal testing machine (Instron) at 0.5-mm/min crosshead speeds. One-way ANOVA and Duncan's multiple range tests revealed that alumina disks with different smaller particle sizes have significantly higher biaxial strength (p < 0.05). The strength of the alumina matrix was greatly increased by glass and resin infusion. The biaxial strength of resin-infused alumina increased as particle size decreased, whereas strength of glass-infused alumina was constant.

  18. Solar Carboreduction of Alumina Under Vacuum

    NASA Astrophysics Data System (ADS)

    Vishnevetsky, Irina; Ben-Zvi, Rami; Epstein, Michael; Barak, Shmuel; Rubin, Rachamim

    2013-12-01

    A preliminary study on carboreduction of alumina under vacuum, which was necessary before the solar reactor design, has been performed using an induction heater equipped with a graphite susceptor as the sample holder surrounded by a ceramic tube serving as the metal vapor deposit site. The primary objective was to study the forward and backward reactions as a function of temperature and CO partial pressure. It was concluded that at reaction temperatures above 1600°C and at an average CO partial pressure below 0.2 mbar, the amount of residual by-products in the graphite crucible was negligible, whereas tests with an average CO partial pressure of 2.6 mbar required temperatures above 1800°C to convert the stoichiometric reactants pellets fully. It was concluded that pure aluminum can be found only at deposit sites with temperatures below 600-700°C in tests with temperature and pressure suitable to prevent the volatile suboxide formation in the forward reaction. Based on these results, the solar reactor was designed with a sharp temperature drop from the hot to the cold area. The results of solar tests with different levels of CO partial pressure and temperature conditions reveal that the alumina to aluminum conversion is about 90% for reaction temperatures above the minimum temperature required for full conversion as predicted by the thermodynamic calculations at the appropriate pressure. However, at lower temperatures, a significant amount of solid Al4C3, Al4CO4, and volatile Al2O can be formed in the forward reaction, leading to an increase of the residual by-product in the reactant holder as well as lower purity of the aluminum product and an increase of the alumina content in the deposits at the cold reactor's zone. The observed nanocrystalline and amorphous morphology of the deposits caused by fast cooling in the cold zone will also be discussed.

  19. Improved Synthesis Of Potassium Beta' '-Alumina

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  20. Quantum dots confined in nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2006-09-01

    CdSe /ZnS core/shell quantum dots (QDs) were filled into porous alumina membranes (PAMs) by dip coating. The deposition of QDs induced changes in the refractive index of the PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of the PAMs.

  1. Intercalation of water into lithium. beta. -alumina

    SciTech Connect

    Dudney, N J; Bates, J B; Wang, J C; Brown, G M; Larson, B C; Engstrom, H

    1981-01-01

    Infrared absorption, neutron diffraction and weight loss techniques have been used to investigate the hydration of single crystals of Li ..beta..-alumina. The hydration is a reversible intercalation reaction. Up to approximately two water molecules per formula unit can penetrate the conduction plane. Other protonated species are formed from the dissociation of the molecular water. The rate of hydration is controlled by the diffusion of water in the conduction plane. A likely diffusion mechanism requires dissociation of the water and an interstitialcy motion of the oxygen.

  2. Laser Surface Treatment of Sintered Alumina

    NASA Astrophysics Data System (ADS)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  3. On the inelastic shock profile in alumina

    NASA Astrophysics Data System (ADS)

    Marom, H.; Sherman, D.; Rosenberg, Z.; Murray, N.

    2002-11-01

    The dynamic response of alumina specimens, above their elastic limits, was studied using planar impact experiments with different tile thickness. Stress-time measurements with manganin gauges show a steady spreading of the inelastic portion of the shock profile with increasing tile thickness. Such behavior is typical of elastic waves moving at a constant speed that depends on their amplitude. This finding supports recent interpretations of the failure ramp, by which the elastic response of these materials should be extended to higher stresses than the initial jump. However, further analysis of these profiles raises some questions regarding the exact determination of the Hugoniot elastic limit.

  4. Current distribution modeling for novel alumina electrolysis

    SciTech Connect

    Ziegler, D.P. . Alcoa Labs.)

    1991-01-01

    One-, two- and three-dimensional secondary current distributions are calculated for anode designs and electrolysis being investigated for a novel alumina electrolysis process using a three dimensional or extended area anode design. Agreement with measured polarization is good. The results indicate that for a particular configuration and electrolyte, the maximum local current density will be 28% of the superficial current density. An alternative design giving a maximum of 15% of the superficial current density was also investigated with the models. Evaluation of some other electrolyte systems indicates that they will not be suitable for use in the high surface area configuration. 18 refs., 15 figs., 3 tabs.

  5. Anisotropic shrinkage characteristics of tape cast alumina

    NASA Astrophysics Data System (ADS)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  6. Trivalent Ion Exchange in Beta’ Alumina.

    DTIC Science & Technology

    1984-07-06

    halide salt. required higher aticmp I We hew fotat t bet ain synthesis tempratures then wm usned for the are apale f mqporingtrivlen caion divalent...s a dni Table I . Trivalent, Zen Exchngeondiion ion Halt Coqoition ToW (OC) time(h) lexcdwmge Gd3 Gda1 615 5 100 Nd3+ dr 2 . 95 i1d3 45 MM /AS umcl...properties The fluorescence spectra of kUd’* exchanged Ita mtdctivity for Gd3 + beta" aluina Wben" alumina are ganerally similar to that of was masurd

  7. Conduction mechanism of single-crystal alumina

    NASA Technical Reports Server (NTRS)

    Will, Fritz G.; Delorenzi, Horst G.; Janora, Kevin H.

    1992-01-01

    The fully guarded three-terminal technique was used to perform conductivity measurements on single-crystal alumina at temperatures of 400-1300 C. The conductivity was also determined as a function of time at various temperatures and applied fields. Further, the fractions of the current carried by Al and O ions (ionic transference numbers) were determined from long-term transference experiments in the temperature range 1100-1300 C. A mathematical model of the conduction mechanism is proposed, and model predictions are compared with experimental results.

  8. Process for the recovery of alumina from fly ash

    DOEpatents

    Murtha, M.J.

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  9. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this...

  10. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    SciTech Connect

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-28

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  11. Treatment of chrome plating wastewater (Cr+6) using activated alumina.

    PubMed

    Sarkar, Sudipta; Gupta, Anirban

    2003-01-01

    Suitability of activated alumina for removal of hexavalent chromium from electroplating wastewater has been investigated. Activated alumina exhibited good sorption capacity for hexavalent chromium and pH has no pronounced effect on the sorption capacity. Both batch and column adsorption studies have been carried out and an adsorption column design indicated reasonable depth of column for practical application.

  12. Microstructural and Mechanical Characterization of Actively Brazed Alumina Specimens

    SciTech Connect

    Hosking, F.M.; Cadden, C.H.; Stephens, J.J.; Glass, S.J.; Yang, N.Y.C.; Vianco, P.V.; Walker, C.A.

    1999-08-26

    Alumina (94 and 99.8% grade compositions) was brazed directly to itself with gold-based active brazing alloys (ABA's) containing vanadium additions of 1,2 and 3 weight percent. The effects of brazing conditions on the joint properties were investigated. Wetting behavior, interfacial reactions, microstructure, hermeticity and tensile strength were determined. Wetting was fair to good for the ABA and base material combinations. Microanalysis identified a discontinuous Al-V-O spinel reaction product at the alumina-braze interface. Tensile strength results for 94% alumina were uniformly good and generally not sensitive to the vanadium concentration, with tensile values of 85-105 MPa. There was more variability in the 99.8% alumina strength results, with values ranging from 25-95 MPa. The highest vanadium concentration (3 wt. %) yielded the highest joint strength for the brazed 99.8% alumina. Failures in the 99.8% alumina samples occurred at the braze-alumina interface, while the 94% alumina specimens exhibited fracture of the ceramic substrate.

  13. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-01

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100-1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr2O3 decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  14. Conversion of Conventional Rotary Kiln Into Effective Sandy Alumina Calciner

    NASA Astrophysics Data System (ADS)

    Ishihara, M.; Hirano, T.; Yajima, H.

    Using conventional rotary kiln for calcining sandy alumina in potlines, remakable heat-saving and capacity-improving can be achieved. 83 liters of oil per tonne of alumina (3200MJ/tonne) were required for calcining 800 m.t.p.d. of sandy alumina in the rotary kiln at Shimizu Works. The kiln is installed with two stages of flash dryers and planetary coolers, and was originally designed for calcining floury alumina at 550 m.t.p.d. This improvement in capacity and unit oil consumption was achieved mainly through shortening the flame by using a special burner and effective heat recovery. The quality of sandy alumina calcined by the kiln is good enough for potlines.

  15. Experimental study of 248nm excimer laser etching of alumina

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Shao, Jingzhen; Wang, Xi; Fang, Xiaodong

    2016-10-01

    The 248 nm excimer laser etching characteristic of alumina ceramic and sapphire had been studied using different laser fluence and different number of pulses. And the interaction mechanism of 248 nm excimer laser with alumina ceramic and sapphire had been analyzed. The results showed that when the laser fluence was less than 8 J/cm2, the etching depth of alumina ceramic and sapphire were increased with the increase of laser fluence and number of pulses. At the high number pulses and high-energy, the surface of the sapphire had no obvious melting phenomenon, and the alumina ceramic appeared obvious melting phenomenon. The interaction mechanism of excimer laser with alumina ceramics and sapphire was mainly two-photon absorption. But because of the existence of impurities and defects, the coupling between the laser radiation and ceramic and sapphire was strong, and the thermal evaporation mechanism was also obvious.

  16. Removal of impurities from dry scrubbed fluoride enriched alumina

    SciTech Connect

    Schuh, L.; Wedde, G.

    1996-10-01

    The pot-gas from an aluminum electrolytic cell is cleaned by a dry scrubbing process using fresh alumina as a scrubbing agent. This alumina is enriched with fluorides and trace impurities in a closed loop system with the pots. The only significant removal of the impurities is due to metal tapping. An improved technique has been developed that is more effective than earlier stripper systems. The impurity-rich fine fraction (< 10 {micro}m) of the enriched alumina is partly attached to the coarser alumina. That attachment has to be broken. Selective impact milling under special moderate conditions and air classifying have shown to be a cost effective process for the removal of impurities. For iron (Fe) and phosphorus (P) about 30--70% can be removed by the separation of 0.5--1% of the alumina. Full scale tests have successfully confirmed these results.

  17. Thermal Conductivity of Alumina-reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2005-01-01

    10-mol% yttria-stabilized zirconia (10SZ) - alumina composites containing 0-30 mol% alumina were fabricated by hot pressing at 1500 C in vacuum. Thermal conductivity was determined at various temperatures using a steady-state laser heat flux technique. Thermal conductivity of the composites increased with increase in alumina content. Composites containing 0, 5, and 10-mol% alumina did not show any change in thermal conductivity with temperature. However, those containing 20 and 30-mol% alumina showed a decrease in thermal conductivity with increase in temperature. The measured values of thermal conductivity were in good agreement with those calculated from the Maxwell-Eucken model where one phase is uniformly dispersed within a second major continuous phase.

  18. Adsorption of carboxymethyl cellulose on alumina particles.

    PubMed

    Zhivkov, Alexandar M; Hristov, Rosen P

    2015-06-01

    The polyelectrolyte adsorption on colloid particles is often used for stabilization or flocculation of water suspensions. The aim of this work is to study the adsorption of carboxymethyl cellulose (CMC) on alumina (γ-Al2O3) colloid particles. The particles and polymer are chosen because of the capability of the metal-oxide ampholyte surface and the weak polyelectrolytes to alter their charge by pH. The measurements are done at pH 6.0 where the CMC carboxylic gropes are almost fully dissociated and the alumina surface is positively charged. The high linear charge density of the polyelectrolyte chain provides Na(+) counterions condensation on the COO(-) groups. The main employed method is the electric light scattering based on particle orientation in sinusoidal electric field. The electric polarizability and the relaxation time after field switching off (both depending on the particle charge and size) are used as criteria for polymer adsorption and particle aggregation. Micro-electrophoresis is applied as additional techniques indicating the sign and density of the surface charge. The results obtained give the conditions (time dependence, particle and polymer concentrations) where the CMC adsorption is complete and the suspension is stable.

  19. Lightweight alumina refractory aggregate. Final report

    SciTech Connect

    Swansiger, T.G.; Pearson, A.

    1996-07-16

    Objective was to develop a lightweight, high alumina refractory aggregate for use in various high performance insulating (low thermal conductivity) refractory applications (e.g., in the aluminium, glass, cement, and iron and steel industries). A new aggregate process was developed through bench and pilot-scale experiments involving extrusion of a blend of calcined and activated alumina powders and organic extrusion aids and binders. The aggregate, with a bulk density approaching 2.5 g/cc, exhibited reduced thermal conductivity and adequate fired strength compared to dense tabular aggregate. Refractory manufacturers were moderately enthusiastic over the results. Alcoa prepared an economic analysis for producing lightweight aggregate, based on a retrofit of this process into existing Alcoa production facilities. However, a new, competing lightweight aggregate material was developed by another company; this material (Plasmal{trademark})had a significantly more favorable cost base than the Alcoa/DOE material, due to cheap raw materials and fewer processing steps. In late 1995, Alcoa became a distributor of Plasmal. Alcoa estimated that {ge}75% of the market originally envisioned for the Alcoa/DOE aggregate would be taken by Plasmal. Hence, it was decided to terminate the contract without the full- scale demonstration.

  20. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  1. Properties of Transition Metal Doped Alumina

    NASA Astrophysics Data System (ADS)

    Nykwest, Erik; Limmer, Krista; Brennan, Ray; Blair, Victoria; Ramprasad, Rampi

    Crystallographic texture can have profound effects on the properties of a material. One method of texturing is through the application of an external magnetic field during processing. While this method works with highly magnetic systems, doping is required to couple non-magnetic systems with the external field. Experiments have shown that low concentrations of rare earth (RE) dopants in alumina powders have enabled this kind of texturing. The magnetic properties of RE elements are directly related to their f orbital, which can have as many as 7 unpaired electrons. Since d-block elements can have as many as 5 unpaired electrons the effects of substitutional doping of 3d transition metals (TM) for Al in alpha (stable) and theta (metastable) alumina on the local structure and magnetic properties, in addition to the energetic cost, have been calculated by performing first-principles calculations based on density functional theory. This study has led to the development of general guidelines for the magnetic moment distribution at and around the dopant atom, and the dependence of this distribution on the dopant atom type and its coordination environment. It is anticipated that these findings can aid in the selection of suitable dopants help to guide parallel experimental efforts. This project was supported in part by an internship at the Army Research Laboratory, administered by the Oak Ridge Institute for Science and Education, along with a grant of computer time from the DoD High Performance Computing Modernization Program.

  2. Parsing abnormal grain growth in specialty aluminas

    NASA Astrophysics Data System (ADS)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  3. Terbium luminescence in alumina xerogel fabricated in porous anodic alumina matrix under various excitation conditions

    SciTech Connect

    Gaponenko, N. V.; Kortov, V. S.; Orekhovskaya, T. I.; Nikolaenko, I. A.; Pustovarov, V. A.; Zvonarev, S. V.; Slesarev, A. I.; Prislopski, S. Ya.

    2011-07-15

    Terbium-doped alumina xerogel layers are synthesized by the sol-gel method in pores of a porous anodic alumina film 1 {mu}m thick with a pore diameter of 150-180 nm; the film is grown on a silicon substrate. The fabricated structures exhibit terbium photoluminescence with bands typical of trivalent terbium terms. Terbium X-ray luminescence with the most intense band at 542 nm is observed for the first time for such a structure. Morphological analysis of the structure by scanning electron microscopy shows the presence of xerogel clusters in pore channels, while the main pore volume remains unfilled and pore mouths remain open. The data obtained confirm the promising applications of fabricated structures for developing matrix converters of X-rays and other ionizing radiations into visible light. The possibilities of increasing luminescence intensity in the matrix converter are discussed.

  4. Fabrication of Alumina Nanowires from Porous Alumina Membranes by Etching in Phosphoric Acid Solution

    NASA Astrophysics Data System (ADS)

    Wang, Xuehua; Li, Chengyong; Ma, Lianjiao; Cao, Hong; Zhang, Baohua

    Alumina nanowires (ANWs) with high aspect ratios were synthesized by the chemical etching of porous alumina membranes (PAMs) in phosphoric acid solution. The morphology and structure of ANWs were analyzed by SEM and XRD, respectively. The results showed that the typical features of ANWs are around 35 nm in diameter and around 20 μm in length, the crystalline structure of the ANWs was amorphous, which was in accordance with that of the PAMs. Furthermore, the morphology of the PAMs was characterized by AFM and SEM in detail. On the basis of AFM and SEM observations, a possible formation mechanism of ANWs was discussed, and the inhomogeneous of the dissolution between the triple points and the side walls was considered to be the essential factor deciding the formation of ANWs.

  5. Deformation Behaviour of Coarse Grain Alumina under Shock Loading

    NASA Astrophysics Data System (ADS)

    Gupta, Satish

    2013-06-01

    To develop better understanding of the shock wave induced deformation behavior of coarse grain alumina ceramics, and for measurement of its Hugoniot Elastic Limit (HEL), in-situ and recovery gas gun experiments have been carried out on coarse grain alumina (grain size ~ 10 μm), prepared in the form of discs (>99.9% TMD) by pressure-less sintering of alpha alumina powder at 1583 K. The HEL value of 1.9 GPa has been determined from the kink in the pressure history recorded using piezoresistance gauge and also from the free surface velocity history of the sample shocked to 9 GPa. The nano-indentation measurements on the alumina samples shocked to 6.5 GPa showed hardness value 15% lower than 21.3 GPa for unshocked alumina, and strong Indentation Size Effect (ISE); the hardness value was still lower and the ISE was stronger for the sample shocked to 12 GPa. The XRD measurements showed reduced particle size and increased microstrains in the shocked alumina fragments. SEM, FESEM and TEM measurements on shock treated samples showed presence of grain localized micro- and nano-scale deformations, micro-cleavages, grain-boundary microcracks, extensive shear induced deformations, and localized micro-fractures, etc. These observations led to the development of a qualitative model for the damage initiation and its subsequent growth mechanisms in shocked alumina. The work performed in collaboration with K.D. Joshi of BARC and A.K. Mukhopadhyay of CGCRI.

  6. Fracture of the alumina-bearing couple delta ceramic liner.

    PubMed

    Taheriazam, Afshin; Mohajer, Mohammad Azizbaig; Aboulghasemian, Mansoour; Hajipour, Babak

    2012-01-16

    The fracture rate of third-generation ceramic liners is greatly reduced compared with first- and second-generation liners because of improvements in the design and manufacturing process. Fractures of the alumina-bearing couple are rare for the same reason.This article describes a case of a fracture of an alumina-bearing couple delta ceramic liner without trauma history that was treated with ceramic-on-polyethylene revision total hip arthroplasty. A 57-year-old man was admitted to the hip ward because of an alumina-bearing couple delta ceramic liner fracture. He underwent hip replacement by anterior approach 18 months previously in the same center because of left hip primary osteoarthritis. He received a 54×36-mm modular press-fit cup ceramic alumina-bearing couple delta insert. Probable causes of such fractures are manufacture production failure and edge loading based on cup inclination, but in our patient, inacceptable range of motion, failure of the locking mechanism during implantation insertion, or cracking were possible causes of fracture.Although the fracture rate of third-generation alumina-bearing couples is low, we believe that it may not be possible to eliminate the actual risk of alumina head fracture. Patients should be informed about the potential for this complication before receiving an alumina-bearing couple. Copyright 2012, SLACK Incorporated.

  7. Processing and mechanical characterization of alumina laminates

    NASA Astrophysics Data System (ADS)

    Montgomery, John K.

    2002-08-01

    Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces

  8. Reactions of benzene and alkylbenzenes with deuterium over molybdena-alumina and alumina catalysts

    SciTech Connect

    Redey, A.; Hall, W.K.

    1987-11-01

    The reactions of D/sub 2/ with aromatic systems were studied. Benzene did not hydrogenate at atmospheric pressure. On the other hand, exchange between benzene-d/sub 0/ and D/sub 2/ was facile at 70/sup 0/C and 1 atm over reduced (eMo approx. = 1.7) and at 200/sup 0/C over sulfided (eMo approx. = 3.0) catalysts. The exchange reaction also occurred over the alumina support at an intermediate rate. Over alumina the exchange at 70/sup 0/C was stepwise (M = k/sub theta/k/sub 0/ approx. = 1.0), but as the temperature and hence k/sub 0/ increased, multiple exchange (M greater than or equal to 2.0) set in. The usual tests showed that this was not a result of a pore diffusion limitation. The rate of exchange of C/sub 6/D/sub 6/ with the alumina hydroxyl groups increased sharply as the temperature was increased to near 200/sup 0/C in a way which mimicked the increase in M. Thus, the increase in multiplicity may be ascribed to the opening of new pathways for exchange. The much faster rates and higher values of M obtained over the reduced catalysts than over the sulfided ones, coupled with the results of poisoning experiments using NO and CO/sub 2/ (both of which drastically reduced the rates and returned the exchange process to M approx. = 1.0), demonstrated that with the reduced catalyst both portions of the surface act synergistically. The results may be rationalized by the supposition that exchange occurs on the alumina support and that hydrogen may spill-over on reduced catalysts, but not on sulfided ones. In the exchange reactions, alkylaromatics were found to have higher rates for ring than for side chain hydrogens

  9. Is wear debris responsible for failure in alumina-on-alumina implants?

    PubMed

    Savarino, Lucia; Baldini, Nicola; Ciapetti, Gabriela; Pellacani, Andrea; Giunti, Armando

    2009-04-01

    Ceramic-on-ceramic articulation is an attractive alternative to metal-on-polyethylene (PE) bearings, but little is known about the in vivo effects induced by dissemination of alumina wear debris in the periprosthetic tissues. We hypothesized that wear debris is not the main factor responsible for loosening and failure of the implant but that mechanical problems caused by incorrect surgical technique, prosthetic design, or trauma, may cause instability of the implants and result in production of wear debris. Clinical, radiographic, laboratory, and microbiological data from 30 consecutive patients with failed alumina-on-alumina arthroplasties, 19 with screwed socket and 11 with press-fit socket, were systematically collected and evaluated. Retrieved peri-implant tissues and prosthesis wear were also analyzed. Loosening was due to malpositioning, primary mechanical instability, trauma, or infection. Bone stock was generally preserved, even if screwed implants showed higher levels of osteolysis. Variable implant wear and tissue macrophage reaction were present but activation of giant cells/osteoclasts was not induced, and no correlation between histocytic reaction and the level of osteolysis was found. These findings indicate that, in contrast to the situation with metal-on-PE bearings, wear debris and occasional osteolysis were the effect rather than the cause of failure of ceramic-on-ceramic implants, and that press-fit socket fixation was the socket fixation design of preference.

  10. Fabrication of alumina films with laminated structures by ac anodization.

    PubMed

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  11. Alumina Paste Sublimation Suppression Barrier for Thermoelectric Device

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah (Inventor); Caillat, Thierry (Inventor)

    2014-01-01

    Alumina as a sublimation suppression barrier for a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000K, is disclosed. The Zintl thermoelectric material may comprise Yb.sub.14MnSb.sub.11. The alumina may be applied as an adhesive paste dried and cured on a substantially oxide free surface of the Zintl thermoelectric material and polished to a final thickness. The sublimation suppression barrier may be finalized by baking out the alumina layer on the Zintl thermoelectric material until it becomes substantially clogged with ytterbia.

  12. Processing of silicon nitride and alumina nanosize powders

    SciTech Connect

    Gonzalez, E.J.; Piermarini, G.; Hockey, B.; Malghan, S.G.

    1995-08-01

    The effects of pressure on the compaction and subsequent processing of nanosize {gamma} alumina powders were studied. A 3 mm diameter piston/cylinder die was used to compact the nanosize powders to pressures of 1 and 2.5 GPa. The green bodies were sintered at temperatures up to 1600{degrees}C. Results show that green body density can be increased by higher compaction pressures. It appears that as a result of the {gamma}-to-{alpha} transformation in alumina, higher green density does not necessarily produce a higher density sintered alumina body. The microstructures of the sintered bodies are described in terms of porosity and phase content.

  13. Porous alumina based ordered nanocomposite coating for wear resistance

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  14. Effects of long term inhalation of alumina fibres in rats.

    PubMed Central

    Pigott, G. H.; Gaskell, B. A.; Ishmael, J.

    1981-01-01

    Groups of rats were exposed by inhalation to atmospheres containing a refractory alumina fibre (Saffil Fibres, I.C.I.) either as manufactured or in a thermally aged form. Similar groups were exposed to UICC chrysotile A asbestos or clean air to serve as positive and negative controls respectively. Exposures continued for 86 weeks after which the animals were maintained to 85% mortality. Pulmonary reaction to both forms of alumina fibre was minimal; chrysotile asbestos provoked the expected progressive fibrosis. Pulmonary tumours (both benign and malignant) were confined to rats dosed with asbestos. The results support the predicted inert nature of these alumina fibres. Images Fig. 2 PMID:7248173

  15. Boria modified alumina probed by methanol dehydration and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    de Farias, Andréa M. Duarte; Esteves, Angela M. Lavogade; Ziarelli, Fabio; Caldarelli, Stefano; Fraga, Marco A.; Appel, Lucia G.

    2004-04-01

    Al 2O 3·B 2O 3 catalysts were synthesized by co-precipitation and impregnation methods applying two calcination temperatures and boria loadings. Catalysts were analyzed by IR spectroscopy of pyridine and CO 2 adsorption and were evaluated in methanol dehydration. Results showed that boron addition to alumina causes a decrease of the number of basic and Lewis acid sites on alumina surface. It could also be observed an enhancement in acid strength of Lewis sites for impregnated samples. The results of methanol dehydration show that strong Brönsted sites are not formed on borate alumina.

  16. Self-diffusion of oxygen in single crystal alumina

    NASA Astrophysics Data System (ADS)

    Oishi, Y.; Ando, Ken; Kubota, Y.

    1980-08-01

    The self-diffusion coefficient of oxygen in (polished slices of a Verneuil) single-crystal alumina was determined in the temperature range 1500-1770 °C by means of the gas-solid isotope exchange technique. The results were represented by D=1.12×103 exp (-155×103/RT) cm2/s. The activation energy was interpreted to be for intrinsic diffusion. By comparison of the results with the oxygen self-diffusion coefficients previously reported for crushed particles of a Verneuil alumina and a vapor-grown alumina, the extrinsic diffusion exhibited by the crushed particles was confirmed to be due to a dislocation enhancement process.

  17. Fabrication of alumina films with laminated structures by ac anodization

    NASA Astrophysics Data System (ADS)

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-02-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50-200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials.

  18. Quantum Dots Confined in Nanoporous Alumina Membranes

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Xia, Jianfeng; Wang, Jun; Shinar, Joseph; Lin, Zhiqun

    2007-03-01

    Precise control over the dispersion and lateral distribution of quantum dots (QDs) within nanoscopic porous media provides a unique route to manipulate the optical and/or electronic properties of QDs in a very simple and controllable manner for applications related to light emitting, optoelectronic, and sensor devices. Here we filled nanoporous alumina membranes (PAMs) with CdSe/ZnS core/shell QDs by dip coating. The deposition of QDs induced changes in the refractive index of PAMs. The amount of absorbed QDs was quantified by fitting the reflection and transmission spectra observed experimentally with one side open and freestanding (i.e., with two sides open) PAMs employed, respectively. The fluorescence of the QDs was found to be retained within the cylindrical nanopores of PAMs.

  19. Microstructure and creep properties of alumina.

    SciTech Connect

    Moreno, J. M. C.; Lopez, A. R.; Rodriguez, A. D.; Routbort, J. L.; Materials Science Division; Univ. of Seville

    1995-01-01

    High temperature creep of two zirconia toughened alumina ceramics, fabricated by powder processing and sol-gel precursors processing, has been studied in order to determine plastic deformation mechanisms. Compressive creep tests were carried out between 1300 and 1450 C, under stresses from 10 to 150 MPa. For the sample fabricated from powders, a stress exponent of 1.4 and an activation energy of 580 kJ/mol were found below a critical stress of 40 MPa. For larger stresses, accelerated creep rates developed. In the specimens processed from precursors, values of 1.8 for the stress exponent and 540 kJ/mol for the activation energy, over the entire range of stresses have been determined. Creep parameters and microstructural evolution of the samples during the experiments have been correlated with models to establish the dominant creep mechanism.

  20. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  1. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  2. Optimized alumina coagulants for water treatment

    DOEpatents

    Nyman, May D [Albuquerque, NM; Stewart, Thomas A [Albuquerque, NM

    2012-02-21

    Substitution of a single Ga-atom or single Ge-atom (GaAl.sub.12 and GeAl.sub.12 respectively) into the center of an aluminum Keggin polycation (Al.sub.13) produces an optimal water-treatment product for neutralization and coagulation of anionic contaminants in water. GaAl.sub.12 consistently shows .about.1 order of magnitude increase in pathogen reduction, compared to Al.sub.13. At a concentration of 2 ppm, GaAl.sub.12 performs equivalently to 40 ppm alum, removing .about.90% of the dissolved organic material. The substituted GaAl.sub.12 product also offers extended shelf-life and consistent performance. We also synthesized a related polyaluminum chloride compound made of pre-hydrolyzed dissolved alumina clusters of [GaO.sub.4Al.sub.12(OH).sub.24(H.sub.2O).sub.12].sup.7+.

  3. Preparation ways and photoluminescence of mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Liu, J.; Zhao, X.; Wu, G.

    2010-12-01

    High specific surface area (SSA) mesoporous alumina (MA) is synthesized by a sol-gel method using pelagic clay as the raw material. The MA synthesized with a (1-hexadecyl) trimethylammonium bromide (CTAB): utea mixed template shows a SSA of 385.56 m2/g and a mean pore size of 3.6 nm. And the SSA of the MA synthesized with the mixed template is increased compared with the MA synthesized with a CTAB single template. Simultaneously, the MA exhibits a blue photoluminescence which come from the defect F+ and F centers, and the higher PL emission of the MA synthesized with a CTAB: utea mixed template is attributed to the high defect center density in the MA.

  4. Compositional characterization of atomic layer deposited alumina

    SciTech Connect

    Philip, Anu; Thomas, Subin; Kumar, K. Rajeev

    2014-01-28

    As the microelectronic industry demands feature size in the order of few and sub nanometer regime, the film composition and other film properties become critical issues and ALD has emerged as the choice of industry. Aluminum oxide is a material with wide applications in electronic and optoelectronic devices and protective and ion barrier layers. Al{sub 2}O{sub 3} is an excellent dielectric because of its large band gap (8.7eV), large band offsets with silicon. We have deposited thin layers of alumina on silicon wafer (p-type) for gate dielectric applications by ALD technique and compositional characterizations of the deposited thin films were done using EDS, XPS and FTIR spectra.

  5. Electrostatic-based model for alumina surfaces

    NASA Astrophysics Data System (ADS)

    Streitz, F. H.; Mintmire, J. W.

    1994-12-01

    As most technologically important metals will form oxides readily, any complete study of adhesion at real metal surfaces must include the metal-oxide interface. The role of this ubiquitous oxide layer cannot be overlooked, as the adhesive properties of the oxide or oxide-metal system can be expected to differ profoundly from the adhesive properties of a bare metal surface. We report on the development of a novel computational method for molecular dynamics simulations which explicitly includes variable charge transfer between anions and cations. This method is found to be capable of describing the elastic properties, surface energies, and surface relaxation of crystalline metal-oxides accurately. We discuss in detail results using this method of alpha-alumina and several of its low index faces.

  6. Alumina strength degradation in the elastic regime

    SciTech Connect

    Furnish, M.D.; Chhabildas, L.C.

    1997-08-01

    Measurements of Kanel et. al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic limit (HEL) relax over a time span of microseconds after initial loading. Failure (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study the authors have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime.

  7. Alumina strength degradation in the elastic regime

    SciTech Connect

    Furnish, Michael D.; Chhabildas, Lalit C.

    1998-07-10

    Measurements of Kanel et al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. 'Failure' (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime.

  8. Alumina strength degradation in the elastic regime

    SciTech Connect

    Furnish, M.D.; Chhabildas, L.C.

    1998-07-01

    Measurements of Kanel {ital et al.} [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic Limit (HEL) relax over a time span of microseconds after initial loading. {open_quotes}Failure{close_quotes} (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study we have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime. {copyright} {ital 1998 American Institute of Physics.}

  9. Nanoporous alumina as templates for multifunctional applications

    NASA Astrophysics Data System (ADS)

    Sousa, C. T.; Leitao, D. C.; Proenca, M. P.; Ventura, J.; Pereira, A. M.; Araujo, J. P.

    2014-09-01

    Due to its manufacturing and size tailoring ease, porous anodic alumina (PAA) templates are an elegant physical-chemical nanopatterning approach and an emergent alternative to more sophisticated and expensive methods currently used in nanofabrication. In this review, we will describe the ground work on the fabrication methods of PAA membranes and PAA-based nanostructures. We will present the specificities of the electrochemical growth processes of multifunctional nanomaterials with diversified shapes (e.g., nanowires and nanotubes), and the fabrication techniques used to grow ordered nanohole arrays. We will then focus on the fabrication, properties and applications of magnetic nanostructures grown on PAA and illustrate their dependence on internal (diameter, interpore distance, length, composition) and external (temperature and applied magnetic field intensity and direction) parameters. Finally, the most outstanding experimental findings on PAA-grown nanostructures and their trends for technological applications (sensors, energy harvesting, metamaterials, and biotechnology) will be addressed.

  10. The Effect of Fine Alumina Type on Composition of in Situ Spinel Formation in Alumina-Magnesia Castables

    NASA Astrophysics Data System (ADS)

    Paghandeh, M.; Monshi, A.; Emadi, R.

    Three types of low cement castables (LCC) were prepared from 5% reactive alumina (R5), 5% calcined alumina (A5) and equal proportions of 2.5% (AR). The nest of the composition was fine bauxite (0-1 mm, 57%), coarse bauxite (1-3 mm, 20%), calcined magnesia (5%), secar 71 refractory cemet (7%) and microsilica (1%). By the addition of 5% water, castables were moulded, aged, dried and fired to 1400°C for 2 h. XRD studies showed higher amount of in situ spinel formation in A5. The lattice constants of spinels in A5, AR and R5 were, respectively, 8.0348, 8.0688 and 8.0847 Å. This accounted for respectively alumina rich, stochiometry and magnesia rich spinels. Since calcined alumina is cheaper, produce higher amounts of spinel with the aid of alumina from the aggregate of bauxite and the binder of cement, and alumina rich spinel has better corrosion resistance properties, use of calcined alumina is recommended in LCC.

  11. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  12. Effects of ball milling and sintering on alumina and alumina-boron compounds

    NASA Astrophysics Data System (ADS)

    Cross, Thomas

    Alumina has a wide variety of applications, but the processing of alumina based materials can be costly. Mechanically milling alumina has been shown to enhance the sintering properties while decreasing the sintering temperature. Additions of boron have also proven to increase sintering properties of alumina. These two processes, mechanical milling and boron additions, will be combined to test the sintering properties and determine if they are improved upon even further compared to the individual processes. Multiple samples of pure alumina, 0.2 weight percent boron, and 1.0 weight percent boron are batched and processed in a ball mill for different time intervals. These samples are then characterized to observe the structure and properties of the samples after milling but before sintering. Pellets are dry pressed from the milled powders, sintered at 1200°C for one to 10 hours, and characterized to determine the impact of processing. X-ray diffractometry (XRD) was used on each sample to determine crystallite size and lattice parameters at different stages throughout the experiment. XRD was also used to identify any samples with an aluminum borate phase. Scanning electron microscopy (SEM) was used to observe the powder and pellet morphology and to measure bulk chemical composition. Samples were sputter coated with an Au-Pd coating observed in the SEM to characterize the topography as a function of variables such as milling time, boron composition, and sintering time. Additionally, porosity and change in diameter were measured to track the sintering process. Milling sample for longer periods of time would be unnecessary due to the crystallite size leveling off between 10 and 12 hours of milling time. Samples of alumina with 0.2 weight percent boron prove to have very little effect on the sintering properties. At 1.0 weight percent boron, there are changes in diffraction patterns and topography after being sintered for one hour. The porosities of all of the sintered

  13. Alumina Inlay Failure in Cemented Polyethylene-backed Total Hip Arthroplasty

    PubMed Central

    Iwaki, Hiroyoshi; Minoda, Yukihide; Ohashi, Hirotsugu; Takaoka, Kunio

    2008-01-01

    Alumina-on-alumina bearings for THA have markedly improved in mechanical properties through advances in technology; however, alumina fracture is still a concern. We retrospectively reviewed 77 patients (82 hips) with cemented alumina-on-alumina THAs to identify factors relating to alumina failure. The mean age of the patients at surgery was 63 years. The prostheses had a cemented polyethylene-backed acetabular component with an alumina inlay and a 28-mm alumina head. Revision surgery was performed because of alumina inlay failure in four hips (three fractures and one dissociation; 5.6%), deep infection in two, and recurrent dislocation in one. The 8-year survival rate was 90.7% with revision for any reason and 94.4% with revision for alumina failure as the end point. There were no differences in age, body mass index, gender, mobility, function, abduction angle, or size of component among the four hips with alumina failure and the remaining 68 hips without it; however, radiolucent lines in the sockets were more apparent in four cases with alumina inlay failure. This alumina-on-alumina THA thus yielded unsatisfactory medium-term results because we observed a high rate of catastrophic alumina inlay failure. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18288546

  14. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  15. Removing Fluoride Ions with Continously Fed Activated Alumina.

    ERIC Educational Resources Information Center

    Wu, Yeun C.; Itemaking, Isara Cholapranee

    1979-01-01

    Discussed is the mathematical basis for determining fluoride removal during water treatment with activated alumina. The study indicates that decreasing particle size decreases the pore diffusion effect and increases fluoride removal. (AS)

  16. Fabrication method produces high-grade alumina crucibles

    NASA Technical Reports Server (NTRS)

    Palmour, H.

    1965-01-01

    Alumina-binder mixture, which has been dry pressed in a die using a mating punch, forms crucibles of various configurations and after firing results in a ceramic structure for use in diffusion experiments.

  17. Removing Fluoride Ions with Continously Fed Activated Alumina.

    ERIC Educational Resources Information Center

    Wu, Yeun C.; Itemaking, Isara Cholapranee

    1979-01-01

    Discussed is the mathematical basis for determining fluoride removal during water treatment with activated alumina. The study indicates that decreasing particle size decreases the pore diffusion effect and increases fluoride removal. (AS)

  18. Method for producing graphite and alumina thin films

    NASA Astrophysics Data System (ADS)

    Makhanov, K. M.; Ermaganbetov, K. T.; Chirkova, L. V.; Maukebaeva, M. A.

    2017-07-01

    A simple comprehensible method for producing graphite and alumina films has been suggested. The optical properties of a graphite suspension in toluene and a suspension of natural clay with a high content of alumina particles in water have been studied. It has been found that the optical density of the suspensions varies from layer to layer, and the lowest optical density has been observed in upper layers. Graphite and aluminum films have been prepared by taking samples from different depths. The microstructure of the films has been examined. It has turned out that alumina particles coalesce into regularly shaped objects in the form of snowflakes. In addition, alumina films obtained from samples taken from different depths of the suspension have different thicknesses. In thin and thick films, the particle size is 0.29 and 2.81 μm or more, respectively.

  19. Development of new alumina precipitation routes for catalysis applications

    NASA Astrophysics Data System (ADS)

    Lafficher, Robin; Digne, Mathieu; Salvatori, Fabien; Boualleg, Malika; Colson, Didier; Puel, François

    2017-06-01

    γ-Alumina is a widely used porous material for catalytic application. Possible routes for alumina improvement can be the use of alternative precursors as well as innovative precipitation technologies. In this study, we compare the influence of both precursor chemistry and mixing efficiency on γ-alumina properties. The conventionally used boehmite and the NH4-dawsonite precursors were precipitated using three mixing technologies: a conventional stirred-tank reactor, a rotor-stator mixer and a sliding surface mixing device. It was observed that, in the study conditions, γ-alumina mean pore diameter and porous volume were particularly sensitive to both precursor and mixing technology, while specific surface area was rather precursor dependent. A wide porosity range can thus be covered at isospecific surface area, using several precursor/mixing technology systems.

  20. Growth of Zircone on Nanoporous Alumina Using Molecular Layer Deposition

    NASA Astrophysics Data System (ADS)

    Hall, Robert A.; George, Steven M.; Kim, Yeongae; Hwang, Woonbong; Samberg, Meghan E.; Monteiro-Riviere, Nancy A.; Narayan, Roger J.

    2014-04-01

    Molecular layer deposition (MLD) is a sequential and self-limiting process that may be used to create hybrid organic/inorganic thin films from organometallic precursors and organic alcohol precursors. In this study, films of a zirconium-containing hybrid organic/inorganic polymer known as zircone were grown on nanoporous alumina using MLD. Scanning electron microscopy data showed obliteration of the pores in zircone-coated nanoporous alumina. An in vitro cell viability study indicated that the growth of human epidermal keratinocytes was the greatest on zircone-coated nanoporous alumina than on uncoated nanoporous alumina. Our results suggest that MLD may be used to create biocompatible coatings for use in many types of medical devices.

  1. Antibacterial Activity of Zinc Oxide-Coated Nanoporous Alumina

    DTIC Science & Technology

    2012-05-17

    Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram...Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity...evaluated using several microorganisms found on the surface of the skin, including B. subtilis [26] (a Gram-positive bacterium), Candida albi- cans [27] (a

  2. Voltage Fluctuations at Sodium Beta Alumina/Mercury Electrodes.

    DTIC Science & Technology

    1987-06-01

    008 VOLTAGE FLUCTUATIONS AT SODIUM 0" ALUMINA/MERCURY ELECTRODES by Chu Kun Kuo* and James J. Brophy Physics Department University of Utah Salt Lake...ADDRESS (Cty. State, and ZIP Code) 7b. ADDRESS (City. State, and ZIP Code) UNIVERSITY OF UTAH UNIVERSITY OF NEW MEXICO SALT LAKE CITY, UTAH 84112...Include Security Classification) VOLTAGE FLUCTUATIONS AT SODIUM BETA" ALUMINA/MERCURY ELECTRODES -, J l.. 0 12 PERSONAL AUTHOR(S) Chu Kun Kuo and James

  3. New Phenomena Observed in Plate Impacts onto Alumina Bars

    SciTech Connect

    Beno, T.; Bless, S.; Nichols, S.

    2006-07-28

    Steel flyer plates were used to impact alumina bars at 275 m/s, nominally. Manganin gauges were used to monitor stress waves in the bars. Geometry of the impact was varied in an attempt to extend gauge records. Gauge life was best improved by careful alignment. The longest gauge records indicated that alumina retains a strength level of about 2 GPa after initial failure. Stress levels of over 5 GPa were obtained with impact-zone confinement.

  4. Wetting and strength issues at Al/alpha-alumina interfaces

    SciTech Connect

    Saiz, Eduardo; Tomsia, Antoni P.; Suganuma, Katsuaki

    2003-04-15

    The wetting behavior and strength at aluminum/alumina interfaces has been an active subject of research. Al/alumina applications include ceramic-metal composites and several applications for electronic industries. In this paper the interface strength and microstructure of Al/alpha-alumina was investigated. We discovered that in a solid-state joining, the strength of the joint increases with increasing joining temperature. In a liquid-state joining, the strength of the joint gradually decreases due to the formation of unbonded areas. The strength, sigma sub b, is expressed by the following equation as a function of unbonded area, A: sigma sub b = 2.22 A + 143 (70 percent {le} A {le} 100 percent). The highest strength reached 400 MPa when the interface was formed at around the melting temperature of aluminum. An aluminum layer close to the interface became a single crystal when it was bonded to a sapphire. The following crystallographic orientation relationship is established: (1{bar 1}1){sub Al}//(001){sub {alpha}}-Al{sub 2} O{sub 3}, (110){sub Al}//<100>{sub {alpha}}-Al{sub 2}O{sub 3}. Amorphous alumina islands were formed at the interface. In the amorphous alumina, gamma-alumina nanocrystals grew from the sapphire, with the same orientation relationship to sapphire as above.

  5. The microstructure and mechanical reliability of alumina scales and coatings

    SciTech Connect

    Alexander, K.B.; Pruessner, K.; Tortorelli, P.F.

    1997-09-01

    Alumina scales on iron-aluminides (Fe{sub 3}Al-based) and NiCrAl- based alloys were characterized in order to develop the knowledge to control the oxidation performance of alloys by controlling the microstructure and microchemistry of their scales. Plasma-deposited amorphous alumina coatings on iron-aluminides were used to study phase transformations, transport processes in the scales, and S segregation to the scale/metal interface. It was found that during heat treatment in absence of oxidation, amorphous coatings first transform to {gamma}-Al{sub 2}O{sub 3} and eventually {alpha}-Al{sub 2}O{sub 3} nucleates at the scale/metal interface. Sulfur from the Zr- free alloy segregates to the scale/metal interface during heat treatment. Thermally grown scales on Zr-doped iron-aluminides were compared to those formed after oxidation of a specimen with an alumina coating. Microstructural and gravimetric results showed that the primarily amorphous alumina coating promoted the nucleation and growth of metastable alumina phases, which resulted in more rapid oxidation. The thermally grown oxide was found on top of the coating. The NiCrAl-based alloys formed columnar alumina scales underneath a layer of mixed oxides. Segregation of alloying elements like Y, Hf, and At was found at both oxide grain boundaries and scale/metal interfaces.

  6. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, T.R.; Golden, T.C.; Mayorga, S.G.; Brzozowski, J.R.; Taylor, F.W.

    1999-06-29

    A pressure swing adsorption process for absorbing CO[sub 2] from a gaseous mixture containing CO[sub 2] comprises introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100 C and 500 C to adsorb CO[sub 2] to provide a CO[sub 2] laden alumina adsorbent and a CO[sub 2] depleted gaseous mixture and contacting the CO[sub 2] laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO[sub 2] from the CO[sub 2] laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100 C and 600 C, is not degraded by high concentrations of water under process operating conditions. 1 fig.

  7. Carbon dioxide pressure swing adsorption process using modified alumina adsorbents

    DOEpatents

    Gaffney, Thomas Richard; Golden, Timothy Christopher; Mayorga, Steven Gerard; Brzozowski, Jeffrey Richard; Taylor, Fred William

    1999-01-01

    A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.

  8. Porous alumina and zirconia ceramics with tailored thermal conductivity

    NASA Astrophysics Data System (ADS)

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, J.

    2012-11-01

    The thermal conductivity of porous ceramics can be tailored by slip casting and uniaxial dry pressing, using either fugitive pore formers (saccharides) or partial sintering. Porous alumina and zirconia ceramics have been prepared using appropriate powder types (ungranulated for casting, granulated for pressing) and identical firing regimes (but different maximum temperatures in the case of partial sintering). Thermal diffusivities have been measured by the laser- and xenon-flash method and transformed into relative thermal conductivities, which enable a temperature-independent comparison between different materials. While the porosity can be controlled in a similar way for both materials when using pore formers, partial sintering exhibits characteristic differences between alumina and zirconia (for alumina porosities below 45 %, full density above 1600 °C, for zirconia porosities below 60 %, full density above 1300 °C). The different compaction behavior of alumina and zirconia (porosity after pressing 0.465 and 0.597, respectively) is reflected in the fact that for alumina the relative conductivity data of partially sintered materials are below the exponential prediction, while for zirconia they coincide with the latter. Notwithstanding these characteristic differences, for both alumina and zirconia it is possible to tailor the thermal conductivity from 100 % down to approx. 15 % of the solid phase value.

  9. Production and characterization of alumina-titania biocomposite

    NASA Astrophysics Data System (ADS)

    Cetiner, B. N.; Erkmen, Z. E.

    2015-03-01

    Alumina is a biomaterial of choice for more than 20 years due to its high hardness accompanied by low friction, wear and inertness to in vivo environment. It has been reported that titanium oxidized to the rutile phase is bioactive. This is a property discovered for certain ceramics such as Bioglass and sintered hydroxylapatite (HA). But the combination of alumina and titania forming tialite (Aluminium titanate-50 mol % Al2O3 and 50 mol % TiO2) is a new challenge. In this work we made firstly the beneficiation of the Seydişehir alumina by leaching it in the acidic solution "the Aqua Regia" followed by preparation of batches containing 2,5 wt %, 3,5 wt % and 4,5 wt % of MgO as the sintering aid, 1 wt % of SiO2 and the balance; the alumina and titania powder mixture (1:1 mole). After sintering these batches at 1600°C for about 12 h, their mechanical properties (the compression and hardness testings) and phase ratios (the XRD analysis) were analyzed and compared with the control group containing the laboratory scale alumina instead of the Seydişehir alumina. Following the characterization (the SEM and the EDS analysis) of the substrate material, the comparison of two different materials was carried out.

  10. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine.

    PubMed

    Zhang, Sen; Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-09-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM.

  11. Characteristics of Cement Concrete with Nano Alumina Particles

    NASA Astrophysics Data System (ADS)

    Jaishankar, P.; Karthikeyan, C.

    2017-07-01

    Concrete can be nano-engineered by incorporating nano sized building blocks or objects (e.g., nano particles and nano tubes) to control material behaviour and add novel properties. In this work an attempt has been made to study the effect of nano alumina on the properties of concrete composite. In order to investigate the effect of nano-alumina on the mechanical strength of cement composite, the specimens with different volume percentages (0%, 0.5%, 0.75% and 1%) nano-alumina, in each proportion three sample were cast totally making 58 specimens and after 28 days of curing they were tested. Based on experiment, the compressive strength of concrete cubes was all increased by incorporating nano alumina into matrix, when the fraction of nano alumina was 1% of the cement by weight the compressive strength of composites increased by 33.14% at 28 days. The test results showed that addition of nano alumina enhanced the compressive strength and reduced the initial setting time of concrete composite. Micro analysis was carried out by Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS).The studies indicated that nano particle was uniformly distributed by improving the microstructure of concrete.

  12. Superhydrophobic surfaces fabricated by surface modification of alumina particles

    NASA Astrophysics Data System (ADS)

    Richard, Edna; Aruna, S. T.; Basu, Bharathibai J.

    2012-10-01

    The fabrication of superhydrophobic surfaces has attracted intense interest because of their widespread potential applications in various industrial fields. Recently, some attempts have been carried out to prepare superhydrophobic surfaces using metal oxide nanoparticles. In the present work, superhydrophobic surfaces were fabricated with low surface energy material on alumina particles with different sizes. It was found that particle size of alumina is an important factor in achieving stable superhydrophobic surface. It was possible to obtain alumina surface with water contact angle (WCA) of 156° and a sliding angle of <2°. Superhydrophobicity of the modified alumina is attributed to the combined effect of the micro-nanostructure and low surface energy of fatty acid on the surface. The surface morphology of the alumina powder and coatings was determined by FESEM. The stability of the coatings was assessed by conducting water immersion test. Effect of heat treatment on WCA of the coating was also studied. The transition of alumina from hydrophilic to superhydrophobic state was explained using Wenzel and Cassie models. The method is shown to have potential application for creating superhydrophobic surface on cotton fabrics.

  13. Alumina Concentration Detection Based on the Kernel Extreme Learning Machine

    PubMed Central

    Zhang, Tao; Yin, Yixin; Xiao, Wendong

    2017-01-01

    The concentration of alumina in the electrolyte is of great significance during the production of aluminum. The amount of the alumina concentration may lead to unbalanced material distribution and low production efficiency and affect the stability of the aluminum reduction cell and current efficiency. The existing methods cannot meet the needs for online measurement because industrial aluminum electrolysis has the characteristics of high temperature, strong magnetic field, coupled parameters, and high nonlinearity. Currently, there are no sensors or equipment that can detect the alumina concentration on line. Most companies acquire the alumina concentration from the electrolyte samples which are analyzed through an X-ray fluorescence spectrometer. To solve the problem, the paper proposes a soft sensing model based on a kernel extreme learning machine algorithm that takes the kernel function into the extreme learning machine. K-fold cross validation is used to estimate the generalization error. The proposed soft sensing algorithm can detect alumina concentration by the electrical signals such as voltages and currents of the anode rods. The predicted results show that the proposed approach can give more accurate estimations of alumina concentration with faster learning speed compared with the other methods such as the basic ELM, BP, and SVM. PMID:28862685

  14. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2014-05-01

    Fully dense alumina samples with 0.6 μm grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to a velocity of about 1 km/s. These tests were aimed to study the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with propagation distance. In the second type of test the samples of ~3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s. These tests were aimed to study the dynamic tensile (spall) strength of the alumina. The data on tensile fracture of the alumina demonstrate a monotonic decline of the spall strength with the amplitude of the loading stress pulse. The data on the decay of the elastic precursor wave allows for determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of shock-induced inelastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation.

  15. Dynamic yield and tensile strengths of spark plasma sintered alumina

    NASA Astrophysics Data System (ADS)

    Girlitsky, Inna; Zaretsky, E.; Kalabukhov, S.; Dariel, M.; Frage, N.

    2013-06-01

    Fully dense alumina samples with 0.6- μ grain size were produced from alumina powder using Spark Plasma Sintering and tested in two types of VISAR-instrumented planar impact tests.. In the tests of the first type the samples of 0.28 to 6-mm thickness were loaded by 1-mm tungsten impactors accelerated up to velocity of about 1 km/s. These tests were aimed to study of the Hugoniot elastic limit (HEL) of the SPS-processed alumina and the decay of the elastic precursor wave with the propagation distance. In the second type of the tests the samples of ~ 3-mm thickness were loaded by 1-mm copper impactors accelerated up to velocities 100-1000 m/s was. These tests were aimed to the study of the dynamic tensile (spall) strength of the alumina. The data on the decay of the elastic precursor wave allow determining the rates of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced plastic deformation and, thus, to derive some conclusions concerning the mechanisms responsible of the deformation. The data on the tensile fracture of the alumina demonstrate a monotonous decline of the spall strength with the amplitude of the loading stress pulse.

  16. Effects of Etching Time and NaOH Concentration on the Production of Alumina Nanowires Using Porous Anodic Alumina Template

    NASA Astrophysics Data System (ADS)

    Sadeghpour-Motlagh, M.; Mokhtari-Zonouzi, K.; Aghajani, H.; Kakroudi, M. Ghassemi

    2014-06-01

    In this work, two-step anodizing of commercial aluminum foil in acid oxalic solution was applied for producing alumina film. Then the anodic alumina film was etched in sodium hydroxide (NaOH) solution resulting dense and aligned alumina nanowires. This procedure leads to splitting of alumina nanotubes. Subsequently nanowires are produced. The effects of NaOH solution concentration (0.2-1 mol/L) and etching time (60-300 s) at constant temperature on characteristic of nanotubes and produced nanowires were investigated using scanning electron microscopy. The results show that an increase in NaOH solution concentration increases the rate of nanowires production and in turn the manipulation process will be more specific.

  17. Edge-defined film-fed growth of beta-alumina and Mg-substituted beta-alumina

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.; Stormont, R. W.; Cocks, F. H.

    1975-01-01

    High Na vapor pressure, peritectic decomposition, and high reactivity of the melt complicate the growth of beta-alumina crystals. These difficulties were overcome by using a high-pressure (300 psig) growth chamber, Na2O-rich melts, and Ir for all surfaces in contact with the melt. These procedures were combined with the edge-defined film-fed growth technique to produce single-crystal beta-alumina tubes and ribbons.

  18. Effect of alumina composition and surface integrity in alumina/epoxy composites on the ultrasonic attenuation properties.

    PubMed

    Cho, Eikhyun; Park, Gwanwoo; Lee, Jae-Wan; Cho, Sung-Min; Kim, Taekyung; Kim, Joongeok; Choi, Wonjoon; Ohm, Won-Suk; Kang, Shinill

    2016-03-01

    We report a method of fabricating backing blocks for ultrasonic imaging transducers, using alumina/epoxy composites. Backing blocks contain scatterers such as alumina particles interspersed in the epoxy matrix for the effective scattering and attenuation of ultrasound. Here, the surface integrity can be an issue, where the composite material may be damaged during machining because of differences in strength, hardness and brittleness of the hard alumina particles and the soft epoxy matrix. Poor surface integrity results in the formation of air cavities between the backing block and the piezoelectric element upon assembly, hence the increased reflection off the backing block and the eventual degradation in image quality. Furthermore, with an issue of poor surface integrity due to machining, it is difficult to increase alumina as scatterers more than a specific mass fraction ratio. In this study, we increased the portion of alumina within epoxy matrix by obtaining an enhanced surface integrity using a net shape fabrication method, and verified that this method could allow us to achieve higher ultrasonic attenuation. Backing blocks were net-shaped with various mass fractions of alumina to characterize the formability and the mechanical properties, including hardness, surface roughness and the internal micro-structure, which were compared with those of machined backing blocks. The ultrasonic attenuation property of the backing blocks was also measured.

  19. Processing, characterization and mechanical properties of alumina-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Thomson, Katherine E.

    2007-12-01

    The present study focuses on improving the fracture toughness of nanocrystalline alumina by incorporating second phases---specifically niobium and carbon nanotubes. Ceramics have many properties that lend themselves well to load bearing and armor applications. Chemical inertness, high hardness and strength, low wear rates and low densities are examples of these properties that warrant potential substitution of metals and their alloys. In this study, nanocrystalline alumina was investigated based on its impressive elevated temperature properties and high hardness. Despite these promising structural properties, pure nanocrystalline alumina has low fracture toughness (˜2.5 MPa*m1/2) and is thus limited to non-structural applications. Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering (˜1200°C, 4 min). Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNTs) begin to break down at sintering temperatures above 1150°C. Nuclear magnetic resonance (NMR) showed that, although thermodynamically unlikely, no Al4C3 was formed in the CNT-alumina nanocomposites. Thus, the nanocomposite is purely a physical mixture and no chemical bond was formed between the nanotubes and matrix. In addition, in-situ 3-pt and standard 4-pt bend tests were conducted on niobium and/or carbon nanotube-reinforced alumina nanocomposites in order to assess their toughness. Although stable crack growth was not achieved in the 3-pt bend testing, average fracture toughness vales of 6.1 and 3.3 MPa·m 1/2 were measured for 10 vol%Nb and 10 vol%Nb-5 vol%SWCNT-alumina, respectively. The 4-pt bend testing measured average intrinsic fracture toughness of 2.95, 2.76, 3.33 and 3.95 MPa·m1/2 for alumina nanocomposites containing 5 vol%SWCNT, 10 vol%SWCNT, 5 vol%DWCNT and 10 vol% Nb, respectively. Although nanocrystalline alumina will never be able to compete with

  20. Microstructure evolution and densification of alumina in liquid phase sintering

    NASA Astrophysics Data System (ADS)

    Dong, Weimin

    The microstructure evolution and densification of alumina during liquid phase sintering were quantified. Quantification included the evolution of pore-size distribution, the redistribution of liquid phase, the densification kinetics, and the fraction of closed and open pores. The results revealed that the small and large pores were filled simultaneously. This is inconsistent with Shaw's model in which liquid fills preferentially the smaller low-coordination-number pores in order to reach a low-energy configuration. The results also recommended that the pressure build-up of the trapped gases in pores due to the closure of open pores might have a significantly negative contribution to the driving force, and consequently cause the termination of the densification of alumina. To demonstrate whether the trapped gases played an important role in the microstructure evolution and the densification of alumina during liquid phase sintering, the following two experiments have been conducted. First, alumina preforms containing artificial pores were penetrated by glass. The results indicated that the trapped gases in pores had a considerable influence on the pore filling process, and ultimately caused the termination of the densification of the alumina preforms. Second, alumina compacts containing different amount of glass were sintered in vacuum. The alumina compact containing 20 vol. % reached full density during vacuum sintering, indicating that the pressure build-up of the trapped gases in pores was the main factor causing the termination of the densification of alumina in the final stage of liquid phase sintering. The limiting relative densities of compacts were calculated theoretically on the basis of a comprehensive analysis of the variation of the capillary pressure and gas pressure in pores with pore size and pore number. The capillary pressure and gas pressure in alumina compact during liquid phase sintering were analyzed on the basis of the above theoretical models

  1. Filter-pressing of alumina dispersions

    SciTech Connect

    Fries, R.; Rand, B.

    1996-06-01

    The filter-pressing characteristics of aqueous alumina dispersions containing either submicron or nano-sized particles have been compared with respect to ionic strength. The highest green densities for both systems were achieved at electrolyte concentrations < 0.01 mol dm{sup -3} where long-range repulsive interparticle forces stabilize the slips. A slight increase in density with ionic strength in this range was attributed to an increase in the ratio of particle radius-to-double layer thickness, Ka. At higher electrolyte concentrations, above the critical coagulation concentration, the green densities dropped to significantly lower values due to the onset of flocculation and the formation of open particle networks characterized by strong attraction which resisted rearrangement into a dense green microstructure. The green densities of the compacts consolidated from the submicron dispersions at ionic strength > 1 mol dm{sup -3} were significantly higher than those prepared close to the critical coagulation concentration although the slips exhibited properties typical for a flocculated structure. The results may indicate the presence of short-range repulsive forces at high salt concentration for the submicron slips not accounted for by the classical DLVO-theory. In order to characterize the early stages of filter-cake consolidation the initial cake permeability was determined from the compaction curves.

  2. Thermal Conductivity of Alumina and Silica Nanofluids

    NASA Astrophysics Data System (ADS)

    Castellanos, Julian G. Bernal

    This thesis studies the effects of the base fluid, particle type/size, and volumetric concentration on the thermal conductivity of Alumina and Silica nanofluids. The effects of base fluid were observed by preparing samples using ethylene glycol (EG), water, and mixtures of EG/water as the base fluid and Al2O3 (10 nm) nanoparticles. The particles type/size and volumetric concentration effects were tested by preparing samples of nanofluids using Al2O3 (10nm), Al2O3 (150nm), SiO2 (15 nm), and SiO2 (80 nm) nanoparticles and ionized water as base fluid at different volumetric concentrations. All samples were mixed using a sonicator for 30 minutes and a water circulator to maintain the sample at room temperature. The thermal conductivity was measured using a Thermtest Transient Plane Source TPS 500S. The effects of gravity, Brownian motion and thermophoresis were also studied. EG produced the highest thermal conductivity enhancement out of all base fluids tested. Smaller particle size produced a higher enhancement of thermal conductivity, while the volumetric concentration did not have a significant effect in the thermal conductivity enhancement. Finally, gravity, Brownian diffusion and thermophoresis effects played a role in the total enhancement of the thermal conductivity. The nanoparticles were observed to settle rapidly after sonication suggesting gravity effects may play a significant role.

  3. Cast alumina forming austenitic stainless steels

    DOEpatents

    Muralidharan, Govindarajan; Yamamoto, Yukinori; Brady, Michael P

    2013-04-30

    An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.

  4. Mechanical properties of alumina porcelain during heating

    NASA Astrophysics Data System (ADS)

    Šín, Peter; Podoba, Rudolf; ŠtubÅa, Igor; Trník, Anton

    2014-11-01

    The mechanical strength and Young's modulus of green alumina porcelain (50 wt. % of kaolin, 25 wt. % of Al2O3, and 25 wt. % of feldspar) were measured during heating up to 900 °C and 1100 °C, respectively. To this end, we used the three point-bending method and modulated force thermomechanical analysis (mf-TMA). The loss liberation - of the physically bound water (20 - 250 °C) strengthens the sample and Young's modulus increases its values significantly. The dehydroxylation that takes place in the range of 400 - 650 °C causes a slight decrease in Young's modulus. On the other hand, the mechanical strength slightly increases in this temperature range, although it has a sudden drop at 420 °C. Beyond the dehydroxylation range, above 650 °C, both Young's modulus and mechanical strength increase. Above 950 °C, a sharp increase of Young's modulus is caused by the solid-state sintering and the new structure created by the high-temperature reactions in metakaolinite.

  5. Joining of alumina by vacuum brazing

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Liisa; Siren, Mika; Kauppinen, Pentti

    1993-08-01

    The active brazing method for diffusion bonding of ceramics to metals is addressed. This method is very flexible compared to the traditional Mo-manganese coating with subsequent brazing that includes four process steps: in active brazing the process is done in one step. The joint properties are favorable, the residual stress build up is limited if the braze is correctly selected and the thermal cycle is controlled, and the resulting strength and leak tightness are good. In experimental work the joinability of alumina to titanium and Ni superalloys was studied by wetting experiments, nondestructive test and shear strength measurements. The spreading of the braze is affected not only by the surface conditions of mating materials but also by the type of the brazing alloy. The Ag-Cu base alloys give better wetting, strength and leak tightness properties than the Ag base alloys. A shear test method was developed for the mechanical testing of metal-ceramic joints. However, the sample geometry affects the measured values, namely a smaller specimen size provides better results. The correlation between the C-SAM results, which describe the ratio between the true bonded area and unbonded area, and measured shear strength values is presented. The dependence between the measured strength and the area of the joint defects becomes obvious and should be studied in more detail.

  6. Annealing Would Improve beta" - Alumina Solid Electrolyte

    NASA Technical Reports Server (NTRS)

    Williams, Roger; Homer, Margie; Ryan, Margaret; Cortez, Roger; Shields, Virgil; Kisor, Adam

    2003-01-01

    A pre-operational annealing process is under investigation as a potential means of preventing a sudden reduction of ionic conductivity in a Beta"-alumina solid electrolyte (BASE) during use. On the basis of tests, the sudden reduction of ionic conductivity, followed by a slow recovery, has been found to occur during testing of the solid electrolyte and electrode components of an alkali metal thermal-to-electric converter (AMTEC) cell. At this time, high-temperature tests of limited duration have indicated the superiority of the treated BASE, but reproducible tests over thousands of hours are necessary to confirm that microcracking has been eliminated. The ionic conductivity of the treated BASE is also measured to be higher than untreated BASE at 1,073 K in low-pressure sodium vapor. Microcracking resulting in loss of conductivity was not observed with treated BASE in one high-temperature experiment, but this result must be duplicated over very long testing times to be sure of the effect. Shorter annealing times (10 to 20 hours) were found to result in significantly less loss of mass; it may be necessary for the packed powder mixture to evolve some Na2O before the Na2O can leave the ceramic.

  7. Ion polarization behavior in alumina under pulsed gate bias stress

    SciTech Connect

    Liu, Yu; Diallo, Abdou Karim; Katz, Howard E.

    2015-03-16

    Alkali metal ion incorporation in alumina significantly increases alumina capacitance by ion polarization. With high capacitance, ion-incorporated aluminas become promising high dielectric constant (high-k) gate dielectric materials in field-effect transistors (FETs) to enable reduced operating voltage, using oxide or organic semiconductors. Alumina capacitance can be manipulated by incorporation of alkali metal ions, including potassium (K{sup +}), sodium (Na{sup +}), and lithium (Li{sup +}), having different bond strengths with oxygen. To investigate the electrical stability of zinc tin oxide-based transistors using ion incorporated alumina as gate dielectrics, pulsed biases at different duty cycles (20%, 10%, and 2% representing 5 ms, 10 ms, and 50 ms periods, respectively) were applied to the gate electrode, sweeping the gate voltage over series of these cycles. We observed a particular bias stress-induced decrease of saturation field-effect mobility accompanied by threshold voltage shifts (ΔV{sub th}) in potassium and sodium-incorporated alumina (abbreviated as PA and SA)-based FETs at high duty cycle that persisted over multiple gate voltage sweeps, suggesting a possible creation of new defects in the semiconductor. This conclusion is also supported by the greater change in the mobility-capacitance (μC) product than in capacitance itself. Moreover, a more pronounced ΔV{sub th} over shorter times was observed in lithium-incorporated alumina (abbreviated as LA)-based transistors, suggesting trapping of electrons in existing interfacial states. ΔV{sub th} from multiple gate voltage sweeps over time were fit to stretched exponential forms. All three dielectrics show good stability using 50-ms intervals (20-Hz frequencies), corresponding to 2% duty cycles.

  8. Ion polarization behavior in alumina under pulsed gate bias stress

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Diallo, Abdou Karim; Katz, Howard E.

    2015-03-01

    Alkali metal ion incorporation in alumina significantly increases alumina capacitance by ion polarization. With high capacitance, ion-incorporated aluminas become promising high dielectric constant (high-k) gate dielectric materials in field-effect transistors (FETs) to enable reduced operating voltage, using oxide or organic semiconductors. Alumina capacitance can be manipulated by incorporation of alkali metal ions, including potassium (K+), sodium (Na+), and lithium (Li+), having different bond strengths with oxygen. To investigate the electrical stability of zinc tin oxide-based transistors using ion incorporated alumina as gate dielectrics, pulsed biases at different duty cycles (20%, 10%, and 2% representing 5 ms, 10 ms, and 50 ms periods, respectively) were applied to the gate electrode, sweeping the gate voltage over series of these cycles. We observed a particular bias stress-induced decrease of saturation field-effect mobility accompanied by threshold voltage shifts (ΔVth) in potassium and sodium-incorporated alumina (abbreviated as PA and SA)-based FETs at high duty cycle that persisted over multiple gate voltage sweeps, suggesting a possible creation of new defects in the semiconductor. This conclusion is also supported by the greater change in the mobility-capacitance (μC) product than in capacitance itself. Moreover, a more pronounced ΔVth over shorter times was observed in lithium-incorporated alumina (abbreviated as LA)-based transistors, suggesting trapping of electrons in existing interfacial states. ΔVth from multiple gate voltage sweeps over time were fit to stretched exponential forms. All three dielectrics show good stability using 50-ms intervals (20-Hz frequencies), corresponding to 2% duty cycles.

  9. Alumina Delta-on-Alumina Delta Bearing in Cementless Total Hip Arthroplasty in Patients Aged <50 Years.

    PubMed

    Kim, Young-Hoo; Park, Jang-Won; Kim, Jun-Shik

    2016-10-01

    There are limited studies to evaluate long-term clinical and radiographic outcomes of alumina delta ceramic-on-ceramic bearings in cementless total hip arthroplasty (THA). The purpose of this study was to evaluate the clinical and radiographic results, prevalence of osteolysis, squeaking, and fracture of ceramic material associated with the use of the alumina delta ceramic-on-alumina delta ceramic bearing in cementless THA in patients aged <50 years. We reviewed the cases of 277 patients (334 hips) who underwent a cementless THA using alumina delta ceramic-on-alumina delta ceramic when they were 50 years or younger at the time of surgery. Demographic data; Harris Hip Score; Western Ontario McMaster Universities Osteoarthritis Index; and University of California, Los Angeles activity score were recorded. Radiographic and computerized tomographic evaluations were used to evaluate implant fixation and osteolysis. Squeaking sound and ceramic fracture were documented. The mean follow-up was 13.1 years (range, 10-14). The mean postoperative Harris Hip Score, Western Ontario and McMaster Universities Osteoarthritis Index score, University of California, Los Angeles activity score were 93 points, 15 points, and 8.6 points, respectively. Two patients had thigh pain (grade 7 points). All acetabular components and all but 2 femoral components were well fixed. Thirty-three hips (10%) exhibited clicking sound, and 2 hips (0.6%) exhibited squeaking sound. No hip had osteolysis or ceramic head or liner fracture. Our minimum 10-year follow-up results with the use of alumina delta ceramic-on-alumina delta ceramic bearings in patients aged <50 years suggest that cementless THA provides a high rate of survivorship without evidence of osteolysis or fracture of ceramic material. Copyright © 2016. Published by Elsevier Inc.

  10. Biocompatibility of atomic layer-deposited alumina thin films.

    PubMed

    Finch, Dudley S; Oreskovic, Tammy; Ramadurai, Krishna; Herrmann, Cari F; George, Steven M; Mahajan, Roop L

    2008-10-01

    Presented in this paper is a study of the biocompatibility of an atomic layer-deposited (ALD) alumina (Al2O3) thin film and an ALD hydrophobic coating on standard glass cover slips. The pure ALD alumina coating exhibited a water contact angle of 55 degrees +/- 5 degrees attributed, in part, to a high concentration of -OH groups on the surface. In contrast, the hydrophobic coating (tridecafluoro-1,1,2,2-tetrahydro-octyl-methyl-bis(dimethylamino)silane) had a water contact angle of 108 degrees +/- 2 degrees. Observations using differential interference contrast microscopy on human coronary artery smooth muscle cells showed normal cell proliferation on both the ALD alumina and hydrophobic coatings when compared to cells grown on control substrates. These observations suggested good biocompatibility over a period of 7 days in vitro. Using a colorimetric assay technique to assess cell viability, the cellular response between the three substrates can be differentiated to show that the ALD alumina coating is more biocompatible and that the hydrophobic coating is less biocompatible when compared to the control. These results suggest that patterning a substrate with hydrophilic and hydrophobic groups can control cell growth. This patterning can further enhance the known advantages of ALD alumina, such as conformality and excellent dielectric properties for bio-micro electro mechanical systems (Bio-MEMS) in sensors, actuators, and microfluidics devices.

  11. The nature of hydrogen in γ-alumina

    SciTech Connect

    Li, Yunguo Lousada, Cláudio M. Korzhavyi, Pavel A.

    2014-05-28

    Gibbs free energy models are derived from the calculated electronic and phonon structure of two possible models of γ-alumina, a defective spinel phase and a hydrogenated spinel phase. The intrinsic vacancies and hydrogen in the two structural models give rise to a considerable configurational (residual) entropy and significantly contribute to thermodynamic stability and physical-chemical properties of γ-alumina, which was neglected in previous studies but considered in this work. The electronic densities of states, calculated using a hybrid functional for the two structural models of γ-alumina, are presented. The dynamic stability of the two phases is confirmed by full-spectrum phonon calculations. The two phases share many similarities in their electronic structure, but can be distinguished by their vibrational spectra and specific heat. The defective spinel is found to be the ground state of γ-alumina, while the hydrogenated spinel to be a metastable phase. However, dehydration of the metastable phase into the ground state is expected to be slow due to the low diffusion rate of H, which leaves hydrogen as a locked-in impurity in γ-alumina.

  12. The mechanical reliability of alumina scales and coatings

    SciTech Connect

    Alexander, K.B.; Pruebner, K.; Tortorelli, P.F.

    1996-08-01

    The mechanical integrity of oxide scales ultimately determines their ability to protect materials from corrosion and other environmental effects arising from deleterious reactions with gases and condensable products. The microstructure and mechanical behavior of alumina products thermally grown or deposited on Fe-28 at.% Al intermetallic alloys are being characterized in order to develop the knowledge and means to control the mechanical reliability of alumina scales by microstructural manipulation through design and processing. Mechanical characterization involved gravimetric data from cyclic oxidation experiments, in-situ observation of oxidized specimens undergoing flexural loading in a scanning electron microscope, and measurements of hardness, elastic modulus and cracking resistance by nanoindentation. Values of cracking thresholds for Al{sub 2}O{sub 3} scales were consistent with other measurements for surface and bulk alumina. The oxidation behavior of Fe{sub 3}Al alloys coated with a thin (0.5 - 1 {mu}m) alumina film deposited by plasma synthesis has been studied. During exposure in the oxidizing environment, new oxide was formed between the coating and the substrate. The presence of the deposited amorphous oxide inhibited the subsequent thermal oxidation of the metal. Because the thermally grown alumina forms under the deposit, the adherence of the coating is controlled by the strength of the metal/oxide interface that develops during oxidation.

  13. Corrosion resistance characterization of porous alumina membrane supports

    SciTech Connect

    Dong Yingchao; Lin Bin; Zhou Jianer; Zhang Xiaozhen; Ling Yihan; Liu Xingqin; Meng Guangyao; Hampshire, Stuart

    2011-04-15

    Tubular porous alumina ceramic membrane supports were fabricated by an extrusion-drying-sintering process and then characterized in detail in terms of corrosion resistance in both H{sub 2}SO{sub 4} and NaOH aqueous solutions. Variations in the properties of the alumina supports such as mass loss percent, mechanical strength, open porosity and pore size distribution were studied before and after corrosion under different conditions. In addition, the microstructures were analyzed using scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction before and after corrosion. The fabricated porous alumina supports offer possibilities for some potential applications as micro-filtration or ultra-filtration membrane supports, as well as in the pre-treatment of strongly acidic industrial waste-liquids. - Research highlights: {yields} Porous alumina membrane supports fabricated by extrusion-drying-sintering process. {yields} Corrosion resistance in 20 wt.% H{sub 2}SO{sub 4} and 1, 5, 10 wt.% NaOH aqueous solutions. {yields} Rapid mass loss and loss of flexural strength occurred in hot NaOH solution. {yields} Resistant to strong acid corrosion with low mass loss, low flexural strength loss. {yields} Porous alumina supports have potential for treatment of strong acid waste liquids.

  14. Enriched fluoride sorption using alumina/chitosan composite.

    PubMed

    Viswanathan, Natrayasamy; Meenakshi, S

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F(-)/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F(-)/kg than the alumina and chitosan (52 mg F(-)/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Emergence of the alumina matrix composite in total hip arthroplasty

    PubMed Central

    2007-01-01

    Pure alumina ceramic has been in clinical use in orthopaedics since 1971 and, currently, up to 5 million components have been implanted. Alumina offers advantages like stability, biocompatibility and low wear; however, it has limited strength. Applications are limited by design considerations. Engineers in biomaterials have worked on improving the performance of the material by optimising the manufacturing process. To fulfil surgeons’ and patients’ increasingly exacting requirements, ceramists have also developed a new ceramic composite, the alumina matrix composite (AMC). This material combines the great principles of the reinforcement of ceramics with its tribological qualities and presents a better mechanical resistance than alumina. The examination of the tribological situation of AMC, especially under the challenging conditions of hydrothermal ageing, shows the aptitude of this material in wear applications. The US Food and Drug Administration (FDA) has approved ceramic ball heads articulating against polyethylene inserts. Since its introduction, more than 65,000 ball heads and 40,000 inserts of AMC have been implanted. With a 6-year follow up, no complication has been reported to the manufacturer. Improved toughness and the excellent wear of AMC makes it a potentially more flexible alternative to the more traditional alumina for hip prostheses. PMID:18043920

  16. Peltier heats in cryolite melts with alumina

    SciTech Connect

    Flem, B.E.; Ratkje, S.K.; Sterten, A.

    1996-10-01

    The Seebeck coefficient was measured for cells with electrolytes of molten mixtures of sodium fluoride and aluminum fluoride saturated with alumina. The electrodes were either a pair of oxygen electrodes or a pair of aluminum electrodes. For the molar ratio NaF/AlF{sub 3} equal to 1.8, 1.2 and 1.0, the authors obtained the Seebeck coefficients {minus}1.80 mV K{sup {minus}1} at 971 C, {minus}1.63 mV K{sup {minus}1} at 813.6 C and {minus}0.583 mV K{sup {minus}1} at 758 C, respectively, for the oxygen electrodes. For the aluminum electrodes, the authors obtained the Seebeck coefficient {minus}1.23 mV K{sup {minus}1} at 962 C, for the molar ratio NaF/AlF{sub 3} equal to 1.8. The results suggest that there is a substantial reversible heat consumption at the anode during aluminum electrolysis and a large reversible heat production at the cathode. The highest temperature in the Hall-Heroult cell is then closer to the cathode than the anode. The transported entropies of Al{sup 3+} and O{sup 2{minus}} were calculated to be 77 J mol{sup {minus}1} K{sup {minus}1} and 10 J mol{sup {minus}1} K{sup {minus}1}, respectively, when the molar ratio NaF/AlF{sub 3} was equal to 1.0.

  17. A facile synthesis of cubic (Im3m) alumina films on glass with potential catalytic activity.

    PubMed

    Mitra, Anuradha; Jana, Debrina; De, Goutam

    2012-04-04

    Thermally stable phase pure mesoporous cubic (Im3m) alumina films were synthesized on glass substrates under ambient conditions. These cubic alumina films incorporated with Au NPs exhibited excellent catalytic property.

  18. Effect of humic acid on sorption of technetium by alumina.

    PubMed

    Kumar, S; Rawat, N; Kar, A S; Tomar, B S; Manchanda, V K

    2011-09-15

    Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using (95)Tc(m) as a tracer. Measurements were carried out at fixed ionic strength (0.1M NaClO(4)) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10(-6)M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  19. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  20. Sodium-beta Alumina Batteries: Status and Challenges

    SciTech Connect

    Lu, XC; Lemmon, JP; Sprenkle, V; Yang, ZG

    2010-09-01

    This paper provides a review of materials and designs for sodium-beta alumina battery technology and discusses the challenges ahead for further technology improvement. Sodium-beta alumina batteries have been extensively developed in recent years and encouraging progress in performance and cycle life has been achieved. The battery is composed of an anode, typically molten sodium, and a cathode that can be molten sulfur (Na-S battery) or a transition metal halide incorporated with a liquid phase secondary electrolyte (e.g.. ZEBRA battery). In most cases the electrolyte is a dense solid beta ''-Al(2)O(3), sodium ion-conducting membrane. The issues' prohibiting widespread commercialization of sodium-beta alumina technology are rekited to the materials and methods of manufacturing that impact cost, safety, and performance characteristics.

  1. Characteristics of alumina particles in dispersion-strengthened copper alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-hui; Li, Xiao-xian

    2014-11-01

    Two types of alumina dispersion-strengthened copper (ADSC) alloys were fabricated by a novel in-situ reactive synthesis (IRS) and a traditional internal oxidation (IO) process. The features of alumina dispersoids in these ADSC alloys were investigated by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. It is found that nano-sized γ-Al2O3 particles of approximately 10 nm in diameter are homogeneously distributed in the IRS-ADSC composites. Meanwhile, larger-sized, mixed crystal structure alumina with rod-shaped morphology is embedded in the IO-ADSC alloy. The IRS-ADSC composites can obtain better mechanical and physical properties than the IO-ADSC composites; the tensile strength of the IRS-ADSC alloy can reach 570 MPa at room temperature, its electrical conductivity is 85% IACS, and the Rockwell hardness can reach 86 HRB.

  2. Thermal and Electrical Characterization of Alumina Substrate for Microelectronic Applications

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ibrahim, A.; Alias, R.; Shapee, S. M.; Ambak, Z.; Zakaria, S. Z.; Yahya, M. R.; Mat, A. F. A.

    2010-03-01

    This paper reports the effect of sintering temperature on thermal and electrical properties of alumina material as substrate for microelectronic devices. Alumina materials in the form of green sheet with 1 mm thickness were sintered at 1100° C, 1300° C and 1500° C for about 20 hours using heating and cooling rates of 2° C/min. The densities were measured using densitometer and the microstructures of the samples were analyzed using SEM micrographs. Meanwhile thermal and electrical properties of the samples were measured using flash method and impedance analyzer respectively. It was found that thermal conductivity and thermal diffusivity of the substrate increases as sintering temperature increases. It was found also that the dielectric constant of alumina substrate increases as the sintering temperature increases.

  3. Fabrication of alumina films with laminated structures by ac anodization

    PubMed Central

    Segawa, Hiroyo; Okano, Hironaga; Wada, Kenji; Inoue, Satoru

    2014-01-01

    Anodization techniques by alternating current (ac) are introduced in this review. By using ac anodization, laminated alumina films are fabricated. Different types of alumina films consisting of 50–200 nm layers were obtained by varying both the ac power supply and the electrolyte. The total film thickness increased with an increase in the total charge transferred. The thickness of the individual layers increased with the ac voltage; however, the anodization time had little effect on the film thickness. The laminated alumina films resembled the nacre structure of shells, and the different morphologies exhibited by bivalves and spiral shells could be replicated by controlling the rate of increase of the applied potentials. PMID:27877636

  4. The surface reaction kinetics of salicylate on alumina

    SciTech Connect

    Wang, Z.; Ainsworth, C.C.; Friedrich, D.M.; Joly, A.G.; Gassman, P.L.

    1997-12-31

    The kinetics of reaction of salicylate with colloidal alumina in aqueous suspension and with Al(III) in homogeneous aqueous solution were studied by stopped-flow laser fluorescence spectroscopy. The emission spectra confirmed the formation of both monodentate complexes and more stable bidentate chelates. Temporal evolution of the spectra indicated that the reaction was fast (within first few minutes) for both the homogeneous and heterogeneous reactions but slowed down afterwards for the latter. Reactions completed within 10 minutes in homogeneous phase at pH 3.3 but took more than 12 hours in alumina suspension. Analysis of the fluorescence intensity within first four minutes showed that in homogeneous phase the reaction followed a single pseudo-first-order kinetics. In alumina suspension log plots were nonlinear and characteristic of multiple heterogeneous reaction paths. The kinetics are interpreted in terms of the simultaneous formation of multiple species as well as subsequent conversion between species.

  5. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  6. Modifying alumina red mud to support a revegetation cover

    NASA Astrophysics Data System (ADS)

    Xenidis, A.; Harokopou, A. D.; Mylona, E.; Brofas, G.

    2005-02-01

    Alumina red mud, a fine-textured, iron-rich, alkaline residue, is the major waste product of bauxite digestion with caustic soda to remove alumina. The high alkalinity and salinity as well as the poor nutrient status are considered to be the major constraints of red mud revegetation. This research was conducted to evaluate the ameliorating effect of gypsum, sewage sludge, ferrous sulfate, ammonium sulfate, ammonium nitrate, and calcium phosphate on alumina red mud. The effectiveness of the mixtures was evaluated by applying extraction tests and performing experiments using six plant species. Gypsum amendment significantly reduced the pH, electrical conductivity, and sodium and aluminum content of red mud. Sewage sludge application had an extended effect in improving both the soil structure and the nutrient status of the gypsum-amended red mud. Together with the gypsum and sewage sludge, calcium phosphate application into red mud enhanced plant growth and gave the most promising results.

  7. Alumina composites for oxide/oxide fibrous monoliths

    SciTech Connect

    Cruse, T. A.; Polzin, B. J.; Picciolo, J. J.; Singh, D.; Tsaliagos, R. N.; Goretta, K. C.

    2000-03-01

    Most work on ceramic fibrous monoliths (FMs) has focused on the Si{sub 3}N{sub 4}/BN system. In an effort to develop oxidation-resistant FMs, several oxide systems have recently been examined. Zirconia-toughened alumina and alumina/mullite appear to be good candidates for the cell phase of FMs. These composites offer higher strength and toughness than pure alumina and good high-temperature stability. By combining these oxides, possibly with a weaker high-temperature oxide as the cell-boundary phase, it should be possible to product a strong, resilient FM that exhibits graceful failure. Several material combinations have been examined. Results on FM fabrication and microstructural development are presented.

  8. Silica behavior in the alumina carbothermic reduction-chlorination process

    NASA Astrophysics Data System (ADS)

    Zhu, Fulong; Yang, Bin; Yuan, Haibin; Yu, Qingchun; Xu, Baoqiang; Dai, Yongnian

    2011-08-01

    The behavior of silica was investigated experimentally in an alumina carbothermic reduction process and chlorination process in vacuum. The results showed that, first, SiC was produced by SiO2 and C, and then Al4SiC4 was produced by Al4C3, Al4O4C, C, and SiC during the alumina carbothermic reduction process at about 1,763 K. C, Al3C4 and Al4O4C decreased and Al4SiC4 increased as content of SiO2 increased. The following chlorination process was blocked, and the recovery rate of aluminum decreased quickly compared with that without silica. It was inferred that silica might be unfavorable for aluminum extracted from alumina by carbothermic reductionchlorination process in vacuum at about 1763 K.

  9. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  10. Effects of atmospheres on bonding characteristics of silver and alumina

    SciTech Connect

    Kim, Jin Yong; Engelhard, Mark H.; Choi, Jung-Pyung; Weil, K. Scott

    2008-03-12

    Joints prepared using a silver-copper oxide based reactive air brazing (RAB) technique is known to experience a significant decrease in joint strength when exposed in a reducing atmosphere at high temperature. To investigate the effects of atmospheres on the bonding characteristics of ceramic joints brazed with Ag-CuO braze filler metals, alumina joints prepared using a series of Ag-CuO compositions were exposed to a reducing atmosphere in hydrogen and also reoxidized in air at 800°C. All the brazed joints exposed to hydrogen revealed significant reduction in flexural strength and exhibited debonding of the interface between the braze filler and the alumina substrate. In the case of the joints brazed with a braze filler containing a high copper content of 8 mol%, the formation of interfacial porosity caused by the reduction of interfacial oxide phases led to an extremely weak interface, which was not recovered after subsequent reoxidation in air at 800°C. However, no significant microstructural change or interfacial porosity formation was observed in the braze filler metals containing no or low copper contents, and the interface remained intact even though interfacial strength was weak. Subsequent reoxidation of the joints with these filler materials resulted in the recovery of interfacial strength and flexural strength. This result clearly indicates that the bonding characteristics of the silver/alumina interface are by and large influenced by atmospheres of high temperature exposure. XPS analysis conducted on the in-situ¬ fractured surfaces of as-brazed and hydrogen-treated samples prepared using a braze filler with 2 mol% Cu indicated that oxygen in the silver matrix plays a critical role in bond strength between silver and alumina. The sample exposed in inert atmosphere also revealed low flexural strength and debonding of the silver/alumina interface, confirming the role of oxygen on the bond strength between silver and alumina.

  11. Factors contributing to the breakdown of sodium beta-alumina

    SciTech Connect

    Buechele, A.C.

    1982-05-01

    Clarification of the breakdown process occurring during charge transfer in sodium beta alumina solid electrolytes was derived from: (1) studying the effects of molten sodium contact at 350/sup 0/C on single crystal sodium beta alumina and polycrystalline sodium beta alumina; (2) determination of critical current density by monitoring acoustic emissions accompanying crack growth in sodium/sodium beta alumina/sodium cells subjected to linear current ramping at 1 mA cm/sup -2/ sec/sup -1/; (3) failure analysis conducted on cycled electrolytes, some from commercial sodium/sulfur cells, which had been subjected to up to 703 Ahr cm/sup -2/ of charge transfer. Gray coloration developing in beta aluminas in contact with molten sodium was found to be a consequence of formation, through reduction by sodium, of oxygen vacancies charge compensated by electrons. Electronic conductivity of the electrolyte increases as a result. No second phase formation was detected. Colored electrolytes from sodium/sulfur cells show evidence of a newly recognized degradation mechanism in which fracture occurs when sodium is reduced and deposited internally under pressure as metal in regions where an electronic conductivity gradient exists. Heating colored beta aluminas in air produces reoxidation and bleaching. Kinetics and other properties of the coloration and bleaching processes were determined. Critical current density was found to bear an inverse relation to average electrolyte grain size. Evidence was found in the cycled electrolytes for a slow crack growth mechanism and a progressive mode of degradation advancing from the sulfur electrode interface. Implications of the findings for the construction and operation of sodium/sulfur battery systems are discussed.

  12. Preparation of agglomeration-free hematite particles coated with silica and their reduction behavior in hydrogen.

    PubMed

    Iijima, Motoyuki; Yonemochi, Yuichi; Kimata, Mitsumasa; Hasegawa, Masahiro; Tsukada, Mayumi; Kamiya, Hidehiro

    2005-07-15

    To prepare silica-coated hematite particles without agglomeration, the effects of solid fraction, ion content in solution, and designed layer thickness on agglomeration and dispersion behavior after silica coating were examined. Since the ion concentration remained high in suspension after the hematite particles were prepared, these particles formed aggregates by the compression of an electric double layer on the hematite and silica layer produced a solid bridge between primary hematite particles. Silica bridge formation and agglomeration were almost completely prevented by decreasing the ion concentration and solid fraction of the hematite particles. Furthermore, the effects of the silica-layer thickness and structure on the reduction of hematite to iron under hydrogen gas flow and the iron core stability under air were discussed. When the solid fraction was low in suspension to prevent agglomeration during coating, a densely packed structure of nanoparticles formed by heterogeneous nucleation was observed on the silica-layer surface. Since this structure could not completely prevent oxide diffusion, the layer thickness was increased to 40 nm to obtain a stable iron core under air. Although a dense uniform layer was produced at a high solid fraction during coating, its thickness was reduced to 20 nm to completely reduce hematite to iron.

  13. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  14. Study on surface properties of gamma-alumina catalytic membrane

    SciTech Connect

    Mengchenu Lu; Guoxing Xiong; Bauser, H.

    1994-12-31

    In recent years, preparation and separation applications of gamma-alumina membranes have been extensively studied. In catalysis research field, this membrane can be used not only as a separating medium but also as a catalyst or catalyst support. In this paper, a gamma-alumina catalytic membrane was prepared by a sol-gel technique, then special attention was paid to its surface properties related to catalysis, its surface acidity, hydroxyl, microstructure and pore properties was studied by IR with pyridine adsorption, XRD and N{sub 2} adsorption at low temperature, 1-butanol dehydration as a probe reaction was used to study its reaction property.

  15. Fabrication and characterization of alumina tube by thermal spray forming

    NASA Astrophysics Data System (ADS)

    Mohammed, M. A.; Zaidan, Sh. A.; Smich, H. E.

    2017-02-01

    In the present study spray forming of alumina tube with a wall thickness of 0.4-0.6 mm and the diameter of 38-62 mm on graphite substrate with two different sizes of alumina feedstock powders was used for flame spraying to form matrix of Al2O3 structures which have been fabricated. A detailed characterization of the spray-formed Al2O3 structure has been performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), (AFM) and Micro Hardness measurements. This study proves that a variety of structured materials and their combinations can be fabricated to near net shapes.

  16. Directional melting of alumina via polarized microwave heating

    NASA Astrophysics Data System (ADS)

    Hu, Yuan; Nakano, Aiichiro; Wang, Joseph

    2017-01-01

    Dynamical instabilities and melting of crystals upon heating are fundamental problems in physics and materials science. Using molecular dynamics simulations, we found that drastically different melting temperatures and behaviors can be achieved in α-alumina using microwave heating, where the electric field is aligned with different crystallographic orientations. Namely, alumina melts much earlier at lower temperatures when the electric field is parallel to the c-axis. The atomistic mechanism was identified as selective liberation of the Al sublattice due to the shear instability along the c-axis. This directional melting concept may be used for triggering distinct dynamical instabilities and melting of dielectric crystals using polarized microwave fields.

  17. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    PubMed

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2017-10-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( TIT) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured TIT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the TIT, TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size <1 µm coupled with a porosity level <0.7% could yield translucency values ( TIT, TP, CR) similar to those of the commercial high-translucency porcelains. These values are far superior to the high-translucency lithium disilicate glass-ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high

  18. Mechanical properties of tricalcium phosphate-alumina composites

    NASA Astrophysics Data System (ADS)

    Sakka, S.; Ben Ayed, F.; Bouaziz, J.

    2012-02-01

    Tricalcium phosphate and alumina powder were mixed in order to elaborate biphasic ceramics composites. This study deals to produce bioceramics composites sintered at various temperatures for differents times. The characterization of samples, before and after the sintering process was investigated, using X-Ray diffraction, scanning electronic microscopy, 31P and 27Al nuclear magnetic resonance and differential thermal analysis. Mechanical properties of biphasic composites were studied using Brazilian test. The tricalcium phosphate - 75 wt% alumina composites mechanical resistance increased with sintered temperature. The mechanical resistance reach it's optimum value (8.6 MPa) at 1550°C for two hours.

  19. Atomistic force field for alumina fit to density functional theory

    SciTech Connect

    Sarsam, Joanne; Finnis, Michael W.; Tangney, Paul

    2013-11-28

    We present a force field for bulk alumina (Al{sub 2}O{sub 3}), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.

  20. Current Noise in Sodium Beta Alumina Ceramics and Single Crystals.

    DTIC Science & Technology

    1986-08-01

    AD-Ai7O 412 CURRENT NOISE IN SODIUM BETA ALUMINA CERAMICS AIND t/l SINGLE CRYSTALS(U) UTAH UNIV SALT LAKE CITY DEPT OF PHYSICS J J BROPHY’ 81 AUG 86...ZIP C-0- UNIVERSITY OF UTAH UNIVERSITY OF NEW MEXICO SALT LAKE CITY, UTAH 84112 Bandelier Hall West Albuquerque, NM 87131 go NAME OF FUNDING...bloeS nIumbe Conductivity fluctuations and contact noise observed in ceramic and single crystal silver 811 alumina are very pilar to those in sodium 8

  1. Comparison of marginal fit between all-porcelain margin versus alumina-supported margin on Procera Alumina crowns.

    PubMed

    Limkangwalmongkol, Penwadee; Kee, Edwin; Chiche, Gerard J; Blatz, Markus B

    2009-02-01

    Procera Alumina crowns are widely used; however, the effect of crown margin design on marginal fit is unknown. This study measured and compared the precision of fit of Procera Alumina crowns with two crown margin designs: all-porcelain versus alumina-supported margins. Sixteen noncarious extracted human premolars were prepared for Procera((R)) Alumina crowns with an internally rounded shoulder preparation. Impressions were made from all teeth, and master dies were poured with type IV dental stone. The specimens were randomly divided into two groups. Procera Alumina crowns were fabricated: eight crowns with circumferential porcelain-butt (all-porcelain) margins and eight crowns with coping (alumina-supported) margins (control). Precision of fit was measured at six points on each crown with a profilometer (profile projector). The data were statistically analyzed with an independent-samples t-test (alpha < 0.05). The mean marginal gap size (microm) of coping margins was 68.07 +/- 16.08 and of porcelain-butt margins was 101.29 +/- 43.71. There was no statistically significant difference (p= 0.065) of the marginal gap size between coping margins and porcelain-butt margins. The results of this study demonstrate that there was no statistically significant difference in the marginal fit of coping and porcelain-butt margins. Both margin designs are within clinically acceptable ranges. Therefore, clinicians may choose to use a coping margin, as it is less labor intensive and requires less time for fabrication, unless there is a specific high esthetic need for a porcelain-butt margin.

  2. Densification forming of alumina powder -- Effects of power law creep and friction

    SciTech Connect

    Kwon, Y.S.; Kim, K.T.

    1996-10-01

    High temperature forming processes of alumina powder compacts were analyzed by using constitutive equations which are capable of predicting densification and grain growth under diffusional creep and power law creep. Experimental results for alumina powder compacts were compared with finite element calculations by using the constitutive equations. The effects of friction between alumina powder compact and punches during sinter forging of alumina powder compacts were also investigated. Densification mechanism maps of alumina powder, which can be used for the optimization of various process variables, were constructed under hot pressing and general states of stresses.

  3. Formation of {gamma}-alumina nanorods in presence of alanine

    SciTech Connect

    Dabbagh, Hossein A.; Rasti, Elham; Yalfani, Mohammad S.; Medina, Francesc

    2011-02-15

    Graphical abstract: Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. Research highlights: {yields} Research highlights {yields} Boehmite was prepared using a green sol-gel process in the presence of alanine. {yields} Nanorod aluminas with a high surface area were obtained. {yields} Addition of alanine would shape the size of the holes and crevices. {yields} The morphologies of the nanorods were revealed by transmission electron microscope. -- Abstract: Boehmite and alumina nanostructures were prepared using a simple green sol-gel process in the presence of alanine in water medium at room temperature. The uncalcined (dried at 200 {sup o}C) and the calcined materials (at 500, 600 and 700 {sup o}C for 4 h) were characterized using XRD, TEM, SEM, N{sub 2} physisorption and TGA. Nanorod aluminas with a possible hexagonal symmetry, high surface area and relatively narrow pore size distribution were obtained. The surface area was enhanced and crystallization was retarded as the alanine content increased. The morphologies of the nanoparticles and nanorods were revealed by a transmission electron microscope (TEM).

  4. Nanocomposite formed by titanium ion implantation into alumina

    SciTech Connect

    Spirin, R. E.; Salvadori, M. C. Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-11-14

    Composites of titanium nanoparticles in alumina were formed by ion implantation of titanium into alumina, and the surface electrical conductivity measured in situ as the implantation proceeded, thus generating curves of sheet conductivity as a function of dose. The implanted titanium self-conglomerates into nanoparticles, and the spatial dimensions of the buried nanocomposite layer can thus be estimated from the implantation depth profile. Rutherford backscattering spectrometry was performed to measure the implantation depth profile, and was in good agreement with the calculated profile. Transmission electron microscopy of the titanium-implanted alumina was used for direct visualization of the nanoparticles formed. The measured conductivity of the buried layer is explained by percolation theory. We determine that the saturation dose, φ{sub 0}, the maximum implantation dose for which the nanocomposite material still remains a composite, is φ{sub 0} = 2.2 × 10{sup 16 }cm{sup −2}, and the corresponding saturation conductivity is σ{sub 0} = 480 S/m. The percolation dose φ{sub c}, below which the nanocomposite still has basically the conductivity of the alumina matrix, was found to be φ{sub c} = 0.84 × 10{sup 16 }cm{sup −2}. The experimental results are discussed and compared with a percolation theory model.

  5. Synthesis and textural evolution of alumina particles with mesoporous structures

    SciTech Connect

    Liu Xun; Peng Tianyou; Yao Jinchun; Lv Hongjin; Huang Cheng

    2010-06-15

    Alumina particles with mesostructures were synthesized through a chemical precipitation method by using different inorganic aluminum salts followed by a heterogeneous azeotropic distillation and calcination process. The obtained mesoporous {gamma}-alumina particles were systematically characterized by the X-ray diffraction, transmission electron microscopy and nitrogen adsorption-desorption measurement. Effects of the aluminum salt counter anion, pH value and the azeotropic distillation process on the structural or textural evolution of alumina particles were investigated. It is found that Cl{sup -} in the reaction solution can restrain the textural evolution of the resultant precipitates into two-dimensional crystallized pseudoboehmite lamellae during the heterogeneous azeotropic distillation, and then transformed into {gamma}-Al{sub 2}O{sub 3} particles with mesostructures after further calcination at 1173 K, whereas coexisting SO{sub 4}{sup 2-} can promote above morphology evolution and then transformed into {gamma}-Al{sub 2}O{sub 3} nanofibers after calcination at 1173 K. Moreover nearly all materials retain relatively high specific surface areas larger than 100 m{sup 2} g{sup -1} even after calcinations at 1173 K. - Graphical abstract: Co-existing Cl{sup -} is beneficial for the formation of {gamma}-alumina nanoparticles with mesostructures during the precipitation process. Interparticle and intraparticle mesopores can be derived from acidic solution and near neutral solution, respectively.

  6. Methane conversation on the oxidized platinum-rhenium-alumina crystals

    SciTech Connect

    Abasov, S.I.; Babaeva, F.A.; Dadashev, B.A.

    1995-05-01

    The conversion of methane on the oxidized platinum-rhenium-alumina catalysts is studied. The catalytic dehydrocyclohexamerization to benzene is found to proceed on the catalyst after its partial reduction with methane and subsequent coke deposition on the catalyst surface. The effect of both the framework oxygen and coke deposition on the dehydrocyclohexamerization process is discussed.

  7. Tritiated alumina serves as reagent for self-labeling analysis

    NASA Technical Reports Server (NTRS)

    Erenrich, E. H.; Klein, P. D.

    1967-01-01

    Tritiated alumina, prepared by exchange of the surface hydroxyl groups with tritiated water, is a suitable reagent for exchange-labeling of specific compounds in low concentrations prior to chromatographic analysis. In a chromatographic column, it detects and measures submicrogram quantities of material.

  8. Osseointegration of alumina bioceramic granules: A comparative experimental study

    NASA Astrophysics Data System (ADS)

    Rerikh, V. V.; Avetisyan, A. R.; Zaydman, A. M.; Anikin, K. A.; Bataev, V. A.; Nikulina, A. A.; Sadovoy, M. A.; Aronov, A. M.; Semantsova, E. S.

    2016-08-01

    To perform a comparative analysis of osseointegration of bioceramic alumina-based granules, hydroxyapatite-based granules, and deproteinized bone granules. The experiment was conducted on 52 adult male Kyoto-Wistar rats weighing 350 to 520 g. The animals were divided into five matched groups that differed only in the type of an implanted material. The granules were implanted in the lumbar vertebral bodies and in the distal right femur of each laboratory animal. Two months after surgery, the animals were euthanized, followed by tissue sampling for morphological studies. An examination of specimens from the groups with implanted alumina granules revealed the newly formed trabecular bone with remodeling signs. The bone tissue filled the intragranular space, tightly adhering to the granule surface. There was no connective tissue capsule on the border between bone tissue and alumina granules. Cylindrical bioceramic alumina-based granules with an open internal channel have a higher strength surpassing than that of analogs and the osseointegration ability close to that of hydroxyapatite and deproteinized bone granules.

  9. Structure factor changes in supercooled yttria-alumina

    SciTech Connect

    Wilding, Martin C.; Greaves, G. Neville; Quang Vu Van; Majerus, Odile; Hennet, Louis

    2009-01-29

    Changes in the structure factor of yttria-alumina liquids have been identified in the supercooled range. Different inter-polyhedral configurations between AlO{sub 4} and YO{sub 6} groups distinguish low density and high density liquid phases. The coexistence of phases at high temperatures have been identified in simultaneous measurements of small angle x-ray scattering.

  10. On the electrical conductivity of Ti-implanted alumina

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Cattani, M.; Nikolaev, A.; Savkin, K. P.; Oks, E. M.; Park, H.-K.; Phillips, L.; Yu, K. M.; Brown, I. G.

    2012-03-15

    Ion implantation of metal species into insulators provides a tool for the formation of thin, electrically conducting, surface layers with experimenter-controlled resistivity. High energy implantation of Pt and Ti into alumina accelerator components has been successfully employed to control high voltage surface breakdown in a number of cases. In the work described here we have carried out some basic investigations related to the origin of this phenomenon. By comparison of the results of alumina implanted with Ti at 75 keV with the results of prior investigations of polymers implanted with Pt at 49 eV and Au at 67 eV, we describe a physical model of the effect based on percolation theory and estimate the percolation parameters for the Ti-alumina composite. We estimate that the percolation dose threshold is about 4 x 10{sup 16} cm{sup -2} and the maximum dose for which the system remains an insulator-conductor composite is about 10 x 10{sup 16} cm{sup -2}. The saturation electrical conductivity is estimated to be about 50 S/m. We conclude that the observed electrical conductivity properties of Ti-implanted alumina can be satisfactorily described by percolation theory.

  11. The role of alumina nanoparticles in epoxy adhesives

    NASA Astrophysics Data System (ADS)

    Dorigato, Andrea; Pegoretti, Alessandro

    2011-06-01

    Both untreated and calcined fumed alumina nanoparticles were dispersed into an epoxy-based adhesive at various percentages. The glass transition temperature of the nanofilled adhesives increased up to an optimal filler loading and then decreased, probably due to concurrent and contrasting effects of chain blocking and reduction of the crosslinking degree. Tensile modulus, stress at break, and fracture toughness of bulk adhesive were positively affected by the presence of untreated alumina nanoparticles at an optimal filler content. Mechanical tests on single-lap aluminum bonded joints indicated that untreated alumina nanoparticles markedly improved both the shear strength and fatigue life of the bonded joints. In particular, the shear strength increased by about 60% for an optimal filler content of 1 vol.%, and an adhesive failure mechanism was evidenced for all the tested specimens. Concurrently, a relevant decrease of the equilibrium contact angle with water was observed for nanofilled bulk adhesives. In summary, alumina nanoparticles can effectively improve the mechanical performances of epoxy structural adhesives, both by increasing their mechanical properties and by enhancing the interfacial wettability with an aluminum substrate.

  12. Development of cast alumina-forming austenitic stainless steels

    SciTech Connect

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer III, H. M.; Leonard, D. N.

    2016-09-06

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt. % are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt. % Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800 C - 850 C in H2O-, S-, and C- containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloy along with improved oxidation resistance typical of alumina-forming alloys. Lastly, challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  13. Viscosity of alumina nanoparticles dispersed in car engine coolant

    SciTech Connect

    Kole, Madhusree; Dey, T.K.

    2010-09-15

    The present paper, describes our experimental results on the viscosity of the nanofluid prepared by dispersing alumina nanoparticles (<50 nm) in commercial car coolant. The nanofluid prepared with calculated amount of oleic acid (surfactant) was tested to be stable for more than 80 days. The viscosity of the nanofluids is measured both as a function of alumina volume fraction and temperature between 10 and 50 C. While the pure base fluid display Newtonian behavior over the measured temperature, it transforms to a non-Newtonian fluid with addition of a small amount of alumina nanoparticles. Our results show that viscosity of the nanofluid increases with increasing nanoparticle concentration and decreases with increase in temperature. Most of the frequently used classical models severely under predict the measured viscosity. Volume fraction dependence of the nanofluid viscosity, however, is predicted fairly well on the basis of a recently reported theoretical model for nanofluids that takes into account the effect of Brownian motion of nanoparticles in the nanofluid. The temperature dependence of the viscosity of engine coolant based alumina nanofluids obeys the empirical correlation of the type: log ({mu}{sub nf}) = A exp(BT), proposed earlier by Namburu et al. (author)

  14. Experiments on individual alumina-supported adatoms and clusters

    NASA Astrophysics Data System (ADS)

    Nilius, N.; Cörper, A.; Bozdech, G.; Ernst, N.; Freund, H.-J.

    2001-08-01

    To contribute to an understanding of growth conditions and electronic properties of metal clusters on technologically relevant oxides we have examined the mobility of individual, alumina-supported Pt-adatoms and the optical properties of single supported Ag-clusters. Using field-ion microscopy (FIM) we have prepared and imaged an individual Pt-adatom at approximately 40 K, both on the apex plane of a [1 1 0]-oriented NiAl tip and on a thin alumina film, grown on the same NiAl specimen by oxidation. On the alumina film, the onset temperature for Pt surface diffusion approaches 100 K being distinctively lower than the value 165 K measured on NiAl(1 1 0). Employing the tip of a scanning tunneling microscope (STM) as a local electron source, photon emission from individual, alumina-supported Ag-clusters was spectroscopically analyzed. The occurrence of a distinct emission line is explained by the decay of a collective electron oscillation (Mie-plasmon resonance). For decreasing Ag-cluster diameter, the emission lines (i) shift to higher energies and (ii) their widths increase. To explain these observations, we discuss (i) the reduced screening of the plasmon oscillation due to the Ag 4d electrons and (ii) an enhanced electron surface scattering rate in small clusters.

  15. Development of cast alumina-forming austenitic stainless steels

    DOE PAGES

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; ...

    2016-09-06

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt. % are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt. % Ni with good creep strength and the ability to form a protective alumina scale for use atmore » temperatures up to 800 C - 850 C in H2O-, S-, and C- containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloy along with improved oxidation resistance typical of alumina-forming alloys. Lastly, challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.« less

  16. Template synthesis of gold nanotubes in an anodic alumina membrane.

    PubMed

    Kohli, Punit; Wharton, John E; Braide, Otonye; Martin, Charles R

    2004-07-01

    Nanotube-containing membranes prepared by the template method show promise for use as highly selective filters for membrane-based chemical and biological separations. Most of the work to date has been done on gold nanotubes prepared by electroless deposition of Au within the pores of polymeric filtration membranes. These polymeric filters have very low porosities (< 1%), and, as a result, the flux through Au nanotube membranes based on these templates is very low. In contrast, the other popular template membranes-anodic aluminas-have high porosities-30% to 50%. In spite of this potential advantage of anodic alumina templates, there have been no reports of electrolessly plated Au nanotubes within the pores of these templates. This is because the electroless plating method used to deposit Au nanotubes in polymeric templates does not work in aluminas. We have developed a modified electroless plating strategy that can be used to deposit high-quality Au nanotubes within the pores of the alumina templates. We describe this new plating method here.

  17. Development of Cast Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-11-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  18. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  19. Influence of Alumina Additions on the Physical and Chemical Properties of Lithium-iron-phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Liu, Huali; Yang, Ruijuan; Wang, Yinghui; Liu, Shiquan

    Alumina improves the properties and depresses the devitrification of soda-lime-silicate glasses. Herein, the influence of alumina on the glass transition temperature, density, chemical durability, crystallization of lithium-iron-phosphate (LIP) glass has been investigated. As alumina was added to replace the iron oxide in a base LIP glass with the molar composition of Li2O:Fe2O3:P2O5=30:20:50, the alumina-containing glasses have increased Tg, densities and chemical stabilities than the base glass. When the amount of alumina is increased from 2 to 6 mol, the Tg value slightly increases, whereas the density decreases. However, the smallest weight loss is shown for the glass containing 3.2 mol of alumina. The variations of the properties with alumina are explained based on the infrared structure analysis results. In addition, it is found the either the base or the alumina-containing glasses have surface crystallization upon heat-treatments. Under the same treatment conditions, the base glass exhibits a thin layer of crystallization with LiFeP2O7 as the main phase. In contrast, alumina-containing glasses show much higher degree of crystallization, which is further increased with the amount of alumina. This trend is opposite to that of silicate glass. Besides the LiFeP2O7 main phase, Fe7(PO4) phase is also identified in the crystallized alumina-containing glasses.

  20. Grafting PMMA Brushes from α-Alumina Nanoparticles via SI-ATRP.

    PubMed

    Khabibullin, Amir; Bhangaonkar, Karan; Mahoney, Clare; Lu, Zhao; Schmitt, Michael; Sekizkardes, Ali Kemal; Bockstaller, Michael R; Matyjaszewski, Krzysztof

    2016-03-02

    Alumina nanoparticles are widely used as nanofillers for polymer nanocomposites. Among several different polymorphs of alumina, α-alumina has the most desirable combination of physical properties. Hence, the attachment of polymer chains to α-alumina to enhance compatibility in polymeric matrixes is an important goal. However, the chemical inertness and low concentration of surface hydroxyl groups have rendered polymer modification of α-alumina a long-standing challenge. Herein, we report that activation of α-alumina in concentrated or molten NaOH as well as in molten K2S2O7 increased polymer graft density up to 50%, thereby facilitating the synthesis of α-alumina brush particles with uniform grafting density of 0.05 nm(-2) that are readily miscible or dispersible in organic solvents or in chemically compatible polymeric hosts.

  1. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    PubMed

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  2. Processing and Mechanical Properties of Various Zirconia/Alumina Composites for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2002-01-01

    Various electrolyte materials for solid oxide fuel cells were fabricated by hot pressing 10 mol% yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina, particulates and platelets, each containing 0 to 30 mol% alumina. Flexure strength and fracture toughness of both particulate and platelet composites at ambient temperature increased with increasing alumina content, reaching a maximum at 30 mot% alumina. For a given alumina content, strength of particulate composites was greater than that of platelet composites, whereas, the difference in fracture toughness between the two composite systems was negligible. No virtual difference in elastic modulus and density was observed for a given alumina content between particulate and platelet composites. Thermal cycling up to 10 cycles between 200 to 1000 C did not show any effect on strength degradation of the 30 mol% platelet composites, indicative of negligible influence of CTE mismatches between YSZ matrix and alumina grains.

  3. Interactions of dispersants and binders with {alpha}-alumina in aqueous suspensions

    SciTech Connect

    Hidber, P.; Graule, T.; Gauckler, L.

    1995-12-31

    Citric acid and poly(vinyl alcohol) (PVA) are commonly used as dispersant and binder for aqueous alumina slurries. The interaction of citric acid and PVA with the alumina surface as well as the competitive reaction of these two additives on the alumina surface have been studied by measurements of the adsorption density and electrophoretic mobility. By variation of the citric acid concentration, it is possible to adjust the isoelectric point (IEP) of alumina to any pH-value between 9 and 3. For citric acid, a high adsorption density on alumina was measured over a broad pH range, whereas the adsorption of PVA is very low. The adsorption density of citric acid on alumina is not influenced by the presence of PVA, whereas the polymer is displaced by citric acid from the alumina surface. Enhanced binder migration in wet green bodies during the drying process is a consequence of this displacement.

  4. Advanced morphological analysis of patterns of thin anodic porous alumina

    SciTech Connect

    Toccafondi, C.; Stępniowski, W.J.; Leoncini, M.; Salerno, M.

    2014-08-15

    Different conditions of fabrication of thin anodic porous alumina on glass substrates have been explored, obtaining two sets of samples with varying pore density and porosity, respectively. The patterns of pores have been imaged by high resolution scanning electron microscopy and analyzed by innovative methods. The regularity ratio has been extracted from radial profiles of the fast Fourier transforms of the images. Additionally, the Minkowski measures have been calculated. It was first observed that the regularity ratio averaged across all directions is properly corrected by the coefficient previously determined in the literature. Furthermore, the angularly averaged regularity ratio for the thin porous alumina made during short single-step anodizations is lower than that of hexagonal patterns of pores as for thick porous alumina from aluminum electropolishing and two-step anodization. Therefore, the regularity ratio represents a reliable measure of pattern order. At the same time, the lower angular spread of the regularity ratio shows that disordered porous alumina is more isotropic. Within each set, when changing either pore density or porosity, both regularity and isotropy remain rather constant, showing consistent fabrication quality of the experimental patterns. Minor deviations are tentatively discussed with the aid of the Minkowski measures, and the slight decrease in both regularity and isotropy for the final data-points of the porosity set is ascribed to excess pore opening and consequent pore merging. - Highlights: • Thin porous alumina is partly self-ordered and pattern analysis is required. • Regularity ratio is often misused: we fix the averaging and consider its spread. • We also apply the mathematical tool of Minkowski measures, new in this field. • Regularity ratio shows pattern isotropy and Minkowski helps in assessment. • General agreement with perfect artificial patterns confirms the good manufacturing.

  5. Unoxidized Graphene/Alumina Nanocomposite: Fracture- and Wear-Resistance Effects of Graphene on Alumina Matrix

    PubMed Central

    Kim, Hyo Jin; Lee, Sung-Min; Oh, Yoon-Suk; Yang, Young-Hwan; Lim, Young Soo; Yoon, Dae Ho; Lee, Changgu; Kim, Jong-Young; Ruoff, Rodney S.

    2014-01-01

    It is of critical importance to improve toughness, strength, and wear-resistance together for the development of advanced structural materials. Herein, we report on the synthesis of unoxidized graphene/alumina composite materials having enhanced toughness, strength, and wear-resistance by a low-cost and environmentally benign pressure-less-sintering process. The wear resistance of the composites was increased by one order of magnitude even under high normal load condition (25 N) as a result of a tribological effect of graphene along with enhanced fracture toughness (KIC) and flexural strength (σf) of the composites by ~75% (5.60 MPa·m1/2) and ~25% (430 MPa), respectively, compared with those of pure Al2O3. Furthermore, we found that only a small fraction of ultra-thin graphene (0.25–0.5 vol%, platelet thickness of 2–5 nm) was enough to reinforce the composite. In contrast to unoxidized graphene, graphene oxide (G-O) and reduced graphene oxide (rG-O) showed little or less enhancement of fracture toughness due to the degraded mechanical strength of rG-O and the structural defects of the G-O composites. PMID:24898792

  6. Processing and properties of an alumina composite fiber

    NASA Astrophysics Data System (ADS)

    Cantonwine, Paul Everett, II

    1999-11-01

    High temperature metal matrix composites have superior properties to many of the metal alloys currently used in high temperature aerospace structures. However, because of the high cost of their fiber reinforcements, these high temperature composites have not been widely used to date. Here a composite fiber processing approach has been developed to create a low cost oxide reinforcement for high temperature composites. The composite fiber developed consisted of a high strength NextelTM 610 alumina fiber tow and a highly porous alumina matrix. A slurry casting process was used to incorporate the matrix into the fiber tow. Composite fiber processing consisted of four stages; slurry infiltration, fiber shaping, solvent evaporation and sintering. Using an alumina slurries with carefully tailored viscosities and particle volume fractions (d = 0.5 mum), two methods for infiltration were successfully developed. During the evaporation of the slurry solvent, shrinkage pores were identified as a significant problem and resulted in large voids within the porous alumina matrix. A systematic process development effort resulted in methods for avoiding these voids, but at the expense of a reduced filament packing density (34%). During this sintering stage, filament grain growth, filament-to-filament, particle-to-filament and particle-to-particle contact growth all occurred. The role of grain growth and each bond-mechanism upon the stress/strain response and ultimate strength of the alumina composite fiber was investigated. It was found that grain growth and filament-to-filament sintering caused a decrease in the single filament and bundle strength. Filament-to-filament sintering had an especially strong effect on the bundle strength because bonded filament clusters failed when the weakest filament within the cluster failed and because shear stresses were induced at the filament-to-filament bond-line. Finite element modeling was used to confirm the presence of these shear stresses

  7. The effect of grain shape on strength variability of alumina ceramics

    SciTech Connect

    Readey, M.J.

    1995-10-01

    Fine-grained and coarse-grained aluminas containing either equiaxed or elongated grain structures were fabricated from commercial-purity and high-purity alumina powders. Compared to the high-purity aluminas, the commercial-purity aluminas having a coarse grain size and elongated grain structures exhibited significantly more pronounced flaw tolerance and T-curve behavior. T-curve behavior determined from indentation strength tests suggested that only the coarse- grained, elongated-grain alumina had a T-curve sufficient to cause stable crack extension prior to failure, a requirement for any observable improvement in reliability. In the high-purity aluminas as well as the fine-grained commercial-purity aluminas, however, it is likely that little or no stable extension occurs prior failure, suggesting that strength in these materials is dependent on the critical flaw size. Strength tests on polished specimens showed the commercial-purity aluminas had a lower means strength than the high- purity aluminas and the coarse-grained aluminas exhibited a lower mean strength compared to the fine-grained aluminas. An analysis of the mean strength versus grain size revealed that the differences in critical flaw size alone could not account for the differences in mean strength. Instead, a combination of changes in flaw size as well as T-curve behavior were shown to be responsible for the differences in strength and flaw tolerance. T-curve behavior was also found to have a profound influence on the strength variability of alumina. For example, the Weibull modulus for the coarse-grained, commercial- purity alumina was almost twice that of the fine-grained, high-purity material. Tests with indented specimens conclusively demonstrated that improvements in reliability in these materials are not due solely to changes in the critical flaw size distribution but rather a combination of flaw size distribution and T-curve behavior.

  8. Process for High-Rate Fabrication of Alumina Nanotemplates

    NASA Technical Reports Server (NTRS)

    Myung, Nosang; Fleurial, Jean-Pierre; Yun, Minhee; West, William; Choi, Daniel

    2007-01-01

    An anodizing process, at an early stage of development at the time of reporting the information for this article, has shown promise as a means of fabricating alumina nanotemplates integrated with silicon wafers. Alumina nanotemplates are basically layers of alumina, typically several microns thick, in which are formed approximately regular hexagonal arrays of holes having typical diameters of the order of 10 to 100 nm. Interest in alumina nanotemplates has grown in recent years because they have been found to be useful as templates in the fabrication of nanoscale magnetic, electronic, optoelectronic, and other devices. The present anodizing process is attractive for the fabrication of alumina nanotemplates integrated with silicon wafers in two respects: (1) the process involves self-ordering of the holes; that is, the holes as formed by the process are spontaneously arranged in approximately regular hexagonal arrays; and (2) the rates of growth (that is, elongation) of the holes are high enough to make the process compatible with other processes used in the mass production of integrated circuits. In preparation for fabrication of alumina nanotemplates in this process, one first uses electron-beam evaporation to deposit thin films of titanium, followed by thin films of aluminum, on silicon wafers. Then the alumina nanotemplates are formed by anodizing the aluminum layers, as described below. In experiments in which the process was partially developed, the titanium films were 200 A thick and the aluminum films were 5 m thick. The aluminum films were oxidized to alumina, and the arrays of holes were formed by anodizing the aluminum in aqueous solutions of sulfuric and/or oxalic acid at room temperature (see figure). The diameters, spacings, and rates of growth of the holes were found to depend, variously, on the composition of the anodizing solution, the applied current, or the applied potential, as follows: In galvanostatically controlled anodizing, regardless of the

  9. Optical characterization of gold coated over nanostructured alumina films

    NASA Astrophysics Data System (ADS)

    Aslan, Mustafa M.

    2014-02-01

    The gold coated over nanostructured alumina (GCON-A) films were investigated for layers' thicknesses and optical properties between 400 and 800 nm wavelength. First GCON-A films were fabricated in three steps: atomic layer deposition of alumina, hot water treatment, and gold deposition. Then, polarization maintained angular reflectance measurements were taken with a spectroscopic ellipsometry. Layer thicknesses, effective refractive indices, and absorption coefficients of films were determined through regression analysis on the ellipsometry data. To investigate the optical properties of the GCON-A films further, reflection measurements were taken by the visible spectroscopy. All these results verify that it is feasible to tune optical properties of the GCON-A films.

  10. Measurements of prompt radiation induced conductivity of alumina and sapphire

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  11. Capillarity in isothermal infiltration of alumina fiber preforms with aluminum

    SciTech Connect

    Michaud, V.J.; Mortensen, A. . Dept. of Materials Science); Compton, L.M. )

    1994-10-01

    Models derived in petroleum engineering and soil science for flow of two immiscible fluids in a porous medium are extended to the infiltration of ceramic preforms by a liquid metal. SAFFIL alumina fiber preforms are infiltrated with an aluminum matrix in a series of interrupted unidirectional and isothermal experiments at various low applied pressures, to measure profiles of the volume fraction of metal along the length of the preforms. Comparison of experimental data with theory reveals the existence of a pressure-dependent incubation time for wetting of the alumina preforms by molten aluminum at 973 K. If this incubation time is taken into account, experimental curves of metal distribution are well predicted by theory, confirming the validity of the models after initiation of flow.

  12. Melt processing of Bi--2212 superconductors using alumina

    DOEpatents

    Holesinger, Terry G.

    1999-01-01

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  13. Strain-Induced Deformation in Magnesia-Alumina Layered Composites

    SciTech Connect

    Kim, Chang Soo; Lombardo, Stephen J; Winholtz, Robert A

    2008-06-18

    Ceramic beams are induced in situ to form complex shapes at elevated temperature without the application of an external stress. This process has been demonstrated for thin alumina substrates coated with a layer of magnesia. The internal strain causing the substrates to deform at elevated temperature arises as a consequence of strain mismatch accompanying the penetration of the coating into the substrate. The magnitude of the deformation depends on the amount of coating applied, on the thickness of the substrate, on the density of the substrate, and on the temperature. During exposure of the beams to elevated temperature, the magnesia coating reacts with the alumina substrate to form the spinel phase; the resulting volume change accompanying the phase transformation is likely the predominant driving force for deformation.

  14. Protective coating for alumina-silicon carbide whisker composites

    DOEpatents

    Tiegs, Terry N.

    1989-01-01

    Ceramic composites formed of an alumina matrix reinforced with silicon carbide whiskers homogenously dispersed therein are provided with a protective coating for preventing fracture strength degradation of the composite by oxidation during exposure to high temperatures in oxygen-containing atmospheres. The coating prevents oxidation of the silicon carbide whiskers within the matrix by sealing off the exterior of the matrix so as to prevent oxygen transport into the interior of the matrix. The coating is formed of mullite or mullite plus silicon oxide and alumina and is formed in place by heating the composite in air to a temperature greater than 1200.degree. C. This coating is less than about 100 microns thick and adequately protects the underlying composite from fracture strength degradation due to oxidation.

  15. A sodium/beta-alumina/nickel chloride secondary cell

    NASA Astrophysics Data System (ADS)

    Galloway, R. C.

    1987-01-01

    Nickel chloride has been studied in a cell system, sodium/beta alumina/sodium tetrachloroaluminate/nickel chloride, which is analogous to two existing rechargeable high energy density cells based on iron chloride and sodium sulfur. The cell reaction can be written as: 2Na + NiCl2 yields on discharge Ni + 2NaCl. The positive electrode, conveniently assembled in the discharged state, was a nickel/sodium choride sinter. Molten sodium tetrachloroaluminate electrolyte (NaAlCl4) acted as intermediate between electrode and beta alumina tube. Encouraging results were obtained in terms of low resistances and rates of discharge for cells up to 20-Ah capacity. Cells were operated over the temperature range from 230 to 400 C where the OCV of the cell reaction varied from 2.60 V to 2.56 V.

  16. Structural transitions in alumina nanoparticles by heat treatment

    SciTech Connect

    Kaur, Nirmal; Khanna, Atul; Chen, Banghao; González, Fernando

    2016-05-23

    γ-alumina nanoparticles were annealed sequentially at 800°C, 950°C and 1100°C and structural transitions as a function of heat treatment were studied by X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC) and {sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) methods.. XRD studies found that γ-Al{sub 2}O{sub 3} is stable upto a temperature of at least 950°C and transforms to the thermodynamically stable α-phase after annealing at 1100°C. MAS-NMR revealed that γ-alumina contains AlO{sub 4} and AlO{sub 6} structural units in the ratio 1: 2, while α-phase contains only AlO{sub 6} units. DSC confirmed that γ → α transition initiates at 1060°C.

  17. Conduction in alumina with atomic scale copper filaments

    SciTech Connect

    Xu, Xu; Liu, Jie; Anantram, M. P.

    2014-10-28

    The conductance of atomic scale filaments with three and seven Cu atoms in α-alumina are calculated using ab initio density functional theory. We find that the filament with 3 Cu atoms is sufficient to increase the conductance of 1.3 nm thick alumina film by more than 10{sup 3} times in linear response. As the applied voltage increases, the current quickly saturates and differential resistance becomes negative. Compared to the filament with three Cu atoms, while the conductance of the filament with seven Cu atoms is comparable in linear response, they carry as much as twenty times larger current at large biases. The electron transport is analyzed based on local density of states, and the negative differential resistance in the seven Cu filaments occurs due to their narrow bandwidth.

  18. Real-time polarimetric biosensing using macroporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Álvarez, Jesús; Sola, Laura; Platt, Geoff; Cretich, Marina; Swann, Marcus; Chiari, Marcella; Hill, Daniel; Martínez-Pastor, Juan

    2013-05-01

    We report the first demonstration of real-time biosensing in free standing macroporous alumina membranes. The membranes with their 200 nm diameter pores are ideal candidates for biosensing applications where fast response times for small sample volumes are needed as they allow analytes to flow through the pores close to the bioreceptors immobilized on the pores walls. A bulk refractive index sensitivity of 5.2x10-6 refractive index units was obtained from signal responses to different concentrations of NaCl solutions flowing through the pores. Finally, after functionalizing the alumina pore surfaces with an epoxysilane and then spotting it with β-Lactoglobulin protein, the interactions between the β-lactoglobulin and rabbit anti-β-lactoglobulin, as well as the interaction between the rabbit anti-β-lactoglobulin and a secondary antibody anti-rabbit Immunoglobulin G were monitored in real-time.

  19. Alumina lightweight ceramics modified with plasma synthesized nanopowders

    NASA Astrophysics Data System (ADS)

    Zake, I.; Svinka, R.; Svinka, V.; Palcevskis, E.

    2011-12-01

    The aim of this study is to clarify possibilities of using plasma synthesized Al2O3 and SiC nanopowders as additives in alumina lightweight ceramics prepared by slip casting. Each plasma synthesized nanopowder (PSNP) was incorporated in the material by a different method, because of their diverse influence on the properties of slip. Al2O3 PSNP was introduced in the matrix in form of aqueous suspension. SiC nanopowder was added directly to raw materials. Bending strength, bulk density, apparent porosity and thermal shock resistance were determined to evaluate the influence of these additives. The effect of Al2O3 PSNP addition on the properties of material depends on the initial sintering temperature. SiC particles during sintering oxidize into SiO2 and then in the reaction with alumina form mullite. Addition of SiC considerably improves bending strength and thermal shock resistance.

  20. Deterministic processing of alumina with ultra-short laser pulses

    SciTech Connect

    Furmanski, J; Rubenchik, A M; Shirk, M D; Stuart, B C

    2007-06-27

    Ultrashort pulsed lasers can accurately ablate materials which are refractory, transparent, or are otherwise difficult to machine by other methods. The typical method of machining surfaces with ultrashort laser pulses is by raster scanning, or the machining of sequentially overlapping linear trenches. Experiments in which linear trenches were machined in alumina at various pulse overlaps and incident fluences are presented, and the dependence of groove depth on these parameters established. A model for the machining of trenches based on experimental data in alumina is presented, which predicts and matches observed trench geometry. This model is then used to predict optimal process parameters for the machining of trenches for maximal material removal rate for a given laser.

  1. Adsorption of copper on a γ-alumina support

    NASA Astrophysics Data System (ADS)

    Papas, Brian N.; Whitten, Jerry L.

    2016-09-01

    The interaction of a Cu atom with two model γ-alumina surfaces was examined using configuration interaction theory. These two surfaces are centered on Td and Oh coordinated Al atoms near the surface, with both surfaces fully hydroxylated. Copper was found to bind to non-hydrogenated oxygen atoms in the surface by 25 kcal/mol, with the possibility that an under coordinated aluminum site may bind copper much more strongly. Vacancies formed by the removal of hydrogen atoms, or by removal of OH groups, were found to bind Cu by values ranging from 40 to 98 kcal/mol. The interaction of a planar Cu7 particle with an exposed Td coordinated Al atom at an OH vacancy site was found to lead to decomposition of the particle and partial absorption of the Cu into the alumina surface.

  2. Diffusion bonding of titanium-titanium aluminide-alumina sandwich

    SciTech Connect

    Wickman, H.A.; Chin, E.S.C.; Biederman, R.R.

    1995-12-31

    Diffusion bonding of a metallic-intermetallic-ceramic sandwich is of interest for potential armor applications. Low cost titanium, titanium diboride reinforced titanium aluminide (Ti-48at.%Al), and aluminum oxide are diffusion bonded in a vacuum furnace between 1,000 C and 1,400 C. Metallographic examination of the prior bonding interface showed excellent metallurgical coupling between the Ti-48at.%Al composite and the low cost Ti. A series of microstructures representative of phases consistent with a hypothetical Ti-Al-B phase diagram is visible. The alumina-Ti-48at.%Al interfacial bond is achieved through penetration of titanium-aluminum phases into the existing alumina porosity. A detailed microstructural analysis identifying mechanisms of interfacial bonding will be presented for each interfacial zone.

  3. Interfacial characterization of alumina-to-alumina joints fabricated using silver–copper–titanium interlayers

    SciTech Connect

    Lin, Kun-Lin; Singh, Mrityunjay; Asthana, Rajiv

    2014-04-01

    Two Ag–Cu–Ti interlayers with different compositions (Ag–35.3Cu–1.75Ti and Ag–26.7Cu–4.5Ti) were used to join sintered polycrystalline Al{sub 2}O{sub 3} having different amounts of porosity to investigate the effect of titanium and porosity contents on evolution of interfacial chemistry and microstructures. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) were used to characterize the interfacial microstructure. Two reaction layers, Ti{sub 2}O and Cu{sub 3}Ti{sub 3}O, were found at the interface of Ag–Cu–Ti interlayers and Al{sub 2}O{sub 3} using a series of simulated and experimental selected area diffraction patterns (SADP) of TEM and EDS. The total thickness of Ti{sub 2}O and Cu{sub 3}Ti{sub 3}O reaction layers at the interfaces increases with increasing amounts of Ti in the Ag–Cu–Ti interlayers but is independent of the porosity content in the Al{sub 2}O{sub 3}. Two possible formation mechanisms of Ti{sub 2}O and Cu{sub 3}Ti{sub 3}O reaction layers at the interface of Ag–Cu–Ti interlayers and Al{sub 2}O{sub 3} have been proposed based on the interfacial characterization performed in the present study. - Highlights: • Effect of alumina porosity and % Ti in interlayer on interface structure delineated • SEM, EDS, XRD, TEM with SADP used to delineate phases, compositions, crystallography • Ti{sub 2}O and Cu{sub 3}Ti{sub 3}O reaction layers identified and their formation mechanisms proposed.

  4. Conditions to obtain reliable high strength alumina via centrifugal casting

    SciTech Connect

    Huisman, W.; Graule, T.; Gauckler, L.J.

    1995-09-01

    Electrostatically stabilized alumina suspensions with high solids content of up to 58 vol% were consolidated into near-net-shape parts via centrifugal casting. High density green bodies showed excellent sintering kinetics leading to {ge} 99.5% of theoretical density (TD) at lowered temperatures compared to isostatic pressing. Four point bend strengths of 540 MPa with Weibull moduli of up to 24 were achieved using commercial {alpha}-alurnina powders.

  5. Probing the improbable: imaging carbon atoms in alumina

    SciTech Connect

    Marquis, E A; Yahia, Noor; Larson, David J.; Miller, Michael K; Todd, Richard

    2010-01-01

    Atom-probe tomography has proven very powerful to analyze the detailed structure and chemistry of metallic alloys and semiconductor structures while ceramic materials have remained outside its standard purview. In the current work, we demonstrate that bulk alumina can be quantitatively analyzed and microstructural features observed. The analysis of grain boundary carbon segregation - barely achievable by electron microscopy - opens the possibility of understanding the mechanistic effects of dopants on mechanical properties, fracture and wear properties of bulk oxides.

  6. Single Crystal Structure Determination of Alumina to 1 Mbar

    NASA Astrophysics Data System (ADS)

    Dong, H.; Zhang, L.; Prakapenka, V.; Mao, H.

    2014-12-01

    Aluminum oxide (Al2O3) is an important ceramic material and a major oxide in the earth. Additionally, alumina is a widely used pressure standard in static high-pressure experiments (Cr3+-bearing corundum, ruby). The changes of its crystal structure with pressure (P) and temperature (T) are important for its applications and understanding its physical properties in the deep Earth. There have been numerous reports on the high P-T polymorphs of alumina. Previous theoretical calculations and experiments suggest that the crystal structure of Al2O3 evolves greatly at high P-T. In this study, we used the newly developed multigrain crystallography method combined with single-crystal x-ray diffraction analysis technique for the structure determination of alumina at high P-T to provide single-crystal structure refinement for high-pressure phases of Al2O3. Alumina powder was mixed with ~10% Pt and Ne was used as both pressure transmitting media and thermal insulating layers during laser-heating. Coarse-grained aggregates of Al2O3 were synthesized in a laser-heated diamond anvil cell. The structure change of Al2O3 was monitored by in situ x-ray diffraction at ~1 Mbar and 2700 K. The results allow us to distinguish the structural differences between the Rh2O3 (II) structure (space group Pbcn) and perovskite structure (space group Pbnm) for the first high-pressure phase of Al2O3. More detailed results will be discussed in the later work.

  7. Directional solidification of the alumina-zirconia ceramic eutectic system

    SciTech Connect

    Boldt, Christopher

    1994-07-27

    It is possible to produce alumina-zirconia ceramic samples through existing solidification techniques. The resulting microstructures typically consist of rods of zirconia in an alumina matrix, although a lamellar structure has been noted in some cases. In nearly all cases, colony growth was present which may possibly result from grain size, repeated nucleation events, and lamellar oscillations. In the same vein, it appears that the amount of impurities within the system might be the underlying cause for the colony growth. Colony growth was diminished through impurity control as the higher purity samples exhibited colony free behavior. In addition to colony formations, faceted alumina dendrites or nonfaceted zirconia dendrites may result in the ceramic if the sample is solidified out of the coupled zone. In all cases, for larger-sized Bridgman samples, a lower limit in the eutectic spacing was noted. The solidification model which includes the kinetic effect has been developed, although the effect appears to be negligible under present experimental conditions. A spacing limit might also occur due to the result of heat flow problems. Heat flow out of the ceramic is difficult to control, often causing radial and not axial growth. This behavior is exaggerated in the presence of impurities. Thus, higher purity powders should always be used. Higher purity samples, in addition to yielding a more microstructurally uniform ceramic, also showed increased directionality. In the future, the kinetic model needs to be examined in more detail, and further research needs to be accomplished in the area of molten ceramics. Once better system constants are in place, the kinetic model will give a better indication of the behavior in the alumina-zirconia system.

  8. Characterization of glass-infiltrated alumina-based ceramics

    PubMed Central

    Bona, Alvaro Della; Mecholsky, John J; Barrett, Allyson A; Griggs, Jason A

    2010-01-01

    Objective characterize the microstructure, composition, and important properties of glass-infiltrated alumina-based ceramics similar to the In-Ceram system. Methods Materials used were: IA- In-Ceram Alumina (Vita); IAE- IA electrophoretically deposited (Vita); AEM- IA using a vacuum driven method (Vita); VC- Vitro-Ceram (Angelus); TC- Turkom-Cera (Turkom-Ceramic); CC- Ceramcap (Foto-Ceram); and AG- Alglass (EDG). Ceramic specimens were fabricated following manufacturers’ instructions and ISO6872 standard and polished successively through 1μm alumina abrasive. Semi-quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and stereology (Vv). The elastic modulus (E) and Poisson’s ratio (ν) were determined using time-of-flight data measured in an ultrasonic pulser/receiver and the density (ρ) was determined using a helium pycnometer. Vicker’s indentation was used to calculate hardness (H). Bar specimens (25×4×1.2mm3) were loaded in three-point bending to fracture using a universal testing machine with cross-head speed of 1mm/min. Flexural strength (σ3P) was calculated and statistically analyzed using ANOVA, Tukey (α=0.05) and Weibull (m= modulus, σ0= characteristic strength). Results SEM and EDS analyses revealed similar microstructure for all ceramics, except for a lead-based matrix in CC and a zirconia phase in VC. TC, AG and CC showed significantly lower mean σ3P values than the other ceramics (p 0.05). AEM showed the greatest m (16). Conclusion Despite few differences in microstructure and composition, the IA, IAE, AEM and VC ceramics have similar properties. Significance The glass-infiltrated alumina-based ceramics from different manufacturers presented distinct characteristics. It is necessary to characterize new commercially available materials to understand their properties. PMID:18692231

  9. The multiple applications of hydrocyclones in alumina production

    SciTech Connect

    Oeberg, N.; Kelton, G.P.; Rawlins, C.H.

    1996-10-01

    Hydrocyclones are used in many alumina refineries to enhance efficiency. A partial list of applications includes bauxite grinding, bauxite refinement sands separations from red muds, sand washing, hydrate classification and product size control, seed size control, hydrate thickening and deliquoring, agglomeration, preferential separation/reduction of oxalates, spent liquor solids recovery, cooling tower water clean-up, and lime slurry degritting. This paper reviews these applications including viable flowsheets and operating experience; and summarizes basic hydrocyclone selection including the main factors affecting performance.

  10. Proton adsorption onto alumina: extension of multisite complexation (MUSIC) theory

    SciTech Connect

    Nagashima, K.; Blum, F.D.

    1999-09-01

    The adsorption isotherm of protons onto a commercial {gamma}-alumina sample was determined in aqueous nitric acid with sodium nitrate as a background electrolyte. Three discrete regions could be discerned in the log-log plots of the proton isotherm determined at the solution pH 5 to 2. The multisite complexation (MUSIC) model was modified to analyze the simultaneous adsorption of protons onto various kinds of surface species.

  11. Resid hydrotreating process using lanthana-alumina-aluminum phosphate catalyst

    SciTech Connect

    Absil, R.P.L.; Angevine, P.J.; Chester, A.W.; Kirker, G.W.

    1989-03-07

    A process is described for upgrading a petroleum residual feedstock which comprises contacting the feedstock under hydrotreating conditions with hydrogen and a catalyst composition comprising a catalytic component selected from the group consisting of metals of groups IIIB, IVBVB, VIB, VIIB and VII of the Periodic Table of Elements, copper, zinc, and combinations thereof, and a catalyst support comprising precipitated amorphous combination of lanthana, alumina and aluminum phosphate.

  12. Increasing productivity during grinding of high-alumina ceramics

    SciTech Connect

    Belous, K.P.; Leptukha, V.P.

    1984-01-01

    The grinding of high-alumina ceramics involves specific problems as the effectiveness of the grinding is affected by the rate of material removal to ensure high productivity, the surface roughness, and the wear of the diamond tool. This study of the cutting processes in cylindrical and internal grinding was done to determine the optimum cutting parameters and specifications of the diamond grinding wheels, and the results helped increase productivity and reduce wheel consumption.

  13. Joining Alumina to Sapphire for Copper Vapor Laser Tubes

    DTIC Science & Technology

    1990-09-10

    alumina after bonding at 1600"C, different surface finishes were used to see whether the degree of polish was an important factor affecting bond...bonds produced. For selected samples, bend beams could be produced,U and four-point bend strength was determined. For samples bonded with metallic...assess the thermal shock resistance of the bonded interfaces. Collectively, these results indicate the relative strengths and weaknesses of the four

  14. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  15. Advances in Zirconia Toughened Alumina Biomaterials for Total Joint Replacement

    PubMed Central

    Kurtz, Steven M.; Kocagöz, Sevi; Arnholt, Christina; Huet, Roland; Ueno, Masaru; Walter, William L.

    2014-01-01

    The objective of this article is to provide an up-to-date overview of zirconia-toughened alumina (ZTA) components used in total hip arthroplasties. The structure, mechanical properties, and available data regarding the clinical performance of ZTA are summarized. The advancements that have been made in understanding the in vivo performance of ZTA are investigated. This article concludes with a discussion of gaps in the literature related to ceramic biomaterials and avenues for future research. PMID:23746930

  16. Process Control in Alumina Refining, Review and Prospects

    NASA Astrophysics Data System (ADS)

    Riffaud, Jean-Pierre

    This paper will review the evolution of process control in the alumina industry. The comparison with others such as Oil and Gas will be useful to measure where we are now and what other steps, particularly in advanced control, we can envisage to bring value to our business. We will look at what this might (and will) imply both in terms of equipment infrastructure and development of the organization.

  17. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.

    PubMed

    Mu, Dashuai; Mu, Xin; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2015-12-01

    In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. EFFECT OF GRAIN SIZE ON DYNAMIC SCRATCH RESPONSE IN ALUMINA

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lance, Michael J

    2006-01-01

    The machining and wear of ceramics and ceramic components are obviously influenced by abrasive damage. One parameter that can affect the abrasion process is the grain size of the ceramic material. To investigate this, single-grit pendulum scratch testing was used to investigate the dynamic scratch response in three 99.9% aluminas that each had a tight size distribution about mean grain sizes of 2, 15, or 25 m, respectively. The scratch speeds generated had an order of magnitude of ~ 1 m/s and the maximum scratch depths were several tens of micrometers. Tangential and normal scratch forces were monitored during each test and interpreted in conjunction with postmortem SEM and profilometry results. It was observed that both plastic deformation and brittle fracture participated in the scratching process and the relative activity of each was dependent on depth of penetration. At a specific depth of penetration, the material removal of alumina prevailingly relies on the generation and interaction of oblique radial and lateral cracks. Chip formation is greatly enhanced when the created cracks interact and that interaction itself depends on grain size. Larger grain size gives rise to larger lateral cracks, more severe fracture at the groove's bottom, and larger amplitude of scratch force oscillation. Lastly, the cutting pressure and the scratch hardness of alumina exhibit sensitivity to both grain size and the groove depth.

  19. Porous Alumina as a Promising Biomaterial for Public Health.

    PubMed

    Bragazzi, Nicola Luigi; Gasparini, Roberto; Amicizia, Daniela; Panatto, Donatella; Larosa, Claudio

    2015-01-01

    Porous aluminum is a nanostructured material characterized by unique properties, such as chemical stability, regular uniformity, dense hexagonal porous lattice with high aspect ratio nanopores, excellent mechanical strength, and biocompatibility. This overview examines how the structure and properties of porous alumina can be exploited in the field of public health. Porous alumina can be employed for fabricating membranes and filters for bioremediation, water ultrafiltration, and microfiltration/nanofiltration, being a promising technique for having clean and fresh water, which is essential for human health. Porous alumina-based nanobiosensor coated with specific antibodies or peptides seem to be a useful tool to detect and remove pathogens both in food and in water, as well as for environmental monitoring. Further, these applications, being low-energy demanding and cost-effective, are particularly valuable in resource-limited settings and contexts, and can be employed as point of use devices in developing countries, where there is an urgent need of hygiene and safety assurance. © 2015 Elsevier Inc. All rights reserved.

  20. Mechanics in alumina ceramics modified by ultradispersed diamonds

    NASA Astrophysics Data System (ADS)

    Kireitseu, Maksim V.; Yerakhavets, Sergey G.; Basenuk, Vladimir L.; Jornik, Victor

    2003-10-01

    Alumina coating modified by ultra-dispersed diamonds (UDD) have been produced by combination of thermal flame spraying and micro arc oxidizing technologies on sprayed aluminum substrate was. Structures of alumina-based ultra dispersed diamond particles composite coatings were investigated in detail by transmission electron microscopy and SEM imaging. The particles were deposited with alumina layer on aluminum substrates under various conditions and have different levels of strength, hardness and internal stresses. It was revealed that by UDD strengthening the coating is to have high microhardness of 22 - 26 GPa, fine structure and smooth surface. Diamonds was found to be conglomerated in clusters along the interface obtained with high current density, but it disappeared when deposited with lower current regimes of alternating pulse current. On the other hand, the failure of crystal diamonds became smaller with decreasing current density concentrations. From the correspondence between the structures and the hardness of the composite, it was suggested that the effect of ultra dispersed diamonds resulted in the complicated trend of hardness, strength and fine structure with respect to current density and diamonds concentration in the electrolyte. In view of technological setup pulse current regime at high current frequency improve microhardness and roughness of the coatings. Potential application of the coating is sliding bearings, insulators, aerospace units.

  1. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications

    PubMed Central

    Ferré-Borrull, Josep; Pallarès, Josep; Macías, Gerard; Marsal, Lluis F.

    2014-01-01

    Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration). We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters. PMID:28788127

  2. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  3. Refractive index of infrared-transparent polycrystalline alumina

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.; Johnson, Linda F.; Cambrea, Lee R.; Baldwin, Lawrence; Baronowski, Meghan; Zelmon, David E.; Poston, William B.; Kunkel, John D.; Parish, Mark; Pascucci, Marina R.; Gannon, John J.; Wen, Tzu-Chien

    2017-05-01

    The refractive index of polycrystalline α-alumina prisms with an average grain size of 0.6 μm is reported for the wavelength range 0.9 to 5.0 and the temperature range 293 to 498K. Results agree within 0.0002 with the refractive index predicted for randomly oriented grains of single-crystal aluminum oxide. This paper provides tutorial background on the behavior of birefringent materials and explains how the refractive index of polycrystalline alumina can be predicted from the ordinary and extraordinary refractive indices of sapphire. The refractive index of polycrystalline alumina is described by 𝑛𝑛2 - 1 = (A+B [𝑇𝑇2-𝑇𝑇20]) +Dλ2 /λ2-(λ1+C [𝑇𝑇2-𝑇𝑇20])2 + λ2-λ22 where wavelength λ is expressed in μm, To = 295.15 K, A = 2.07156, B = 6.273× 10-8, λ1 = 0.091293, C = -1.9516 × 10-8, D = 5.62675, and λ2 = 18.5533. The slope dn/dT varies with λ and T, but has the approximate value 1.4 × 10-5 K-1 in the range 296-498 K.

  4. Granulation of sol-gel-derived nanostructured alumina

    SciTech Connect

    Deng, S.G.; Lin, Y.S.

    1997-02-01

    A sol-gel granulation process was developed to prepare porous nanostructured {gamma}-alumina granules as supports for catalysts and adsorbents. The process, which starts with an aqueous sol of gelatinous boehmite, involves droplet formation, gelation in paraffin oil, conditioning in ammonia solution, and drying and calcination in air under controlled conditions. The {gamma}-Al{sub 2}O{sub 3} granules prepared are 1--3 mm-dia. spherical particles with large surface area (380 m{sup 2}/g) and pore volume (0.5 cm{sup 3}/g), uniform pore-size distribution (20--60 {angstrom}), and controllable average pore size (35 {angstrom}). These sol-gel-derived granules have excellent mechanical properties with crush strength (>100 N per granule) and attrition resistance (<0.01 wt.%/h), much better than the commercial alumina and zeolite granules. Supported CuO sorbents were prepared on these granules for SO{sub 2} removal applications. The alumina-supported CuO sorbents contain higher loading of well-dispersed CuO and better sulfation properties than similar sorbents reported in the literature.

  5. Alumina Based 500 C Electronic Packaging Systems and Future Development

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2012-01-01

    NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.

  6. Thermochemical Analysis of Molybdenum Thin Films on Porous Alumina.

    PubMed

    Lee, Kyoungjin; de Lannoy, Charles-François; Liguori, Simona; Wilcox, Jennifer

    2017-01-12

    Molybdenum (Mo) thin films (thickness <100 nm) were physically deposited by e-beam evaporation on a porous alumina substrate and were analyzed for their stability and reactivity under various thermal and gas conditions. The Mo thin-film composites were stable below 300 °C but had no reactivity toward gases. Mo thin films showed nitrogen incorporation on the surface as well as in the subsurface at 450 °C, as confirmed by X-ray photoelectron spectroscopy. The reactivity toward nitrogen was diminished in the presence of CO2, although no carbon species were detected either on the surface or in the subsurface. The Mo thin films have a very stable native oxide layer, which may further oxidize to higher oxidation states above 500 °C due to the reaction with the porous anodized alumina substrate. The oxidation of Mo thin films was accelerated in the presence of oxidizing gases. At 600 °C in N2, the Mo thin film on anodized alumina was completely oxidized and may also have been volatilized. The results imply that choosing thermally stable and inactive porous supports and operating in nonoxidizing conditions below 500 °C will likely maintain the stability of the Mo composite. This study provides key information about the chemical and structural stability of a Mo thin film on a porous substrate for future membrane applications and offers further insights into the integrity of thin-film composites when exposed to harsh conditions.

  7. Liquid permeation and chemical stability of anodic alumina membranes

    PubMed Central

    Buldakov, Dmitrii A; Tishkin, Alexey A; Lukashin, Alexey V; Eliseev, Andrei A

    2017-01-01

    A study on the chemical stability of anodic alumina membranes and their performance in long-term water and organic solvent permeation experiments is reported. Anodic alumina possesses high stability for both protonic and aprotonic organic solvents. However, serious degradation of the membrane occurs in pure water, leading to a drastic decrease of permeance (over 20% of the initial value after the passing of 0.250 m3/m2 of pure water). The drying of the membrane induces further permeance drop-off. The rate of membrane degradation strongly depends on the pH of the penetrant solution and increases in basic media. According to 27Al NMR and thermogravimetry results, the degradation of the membranes is associated with the dissolution of water-soluble [Al13O4(OH)24(H2O)12]7+ polyhydroxocomplexes and their further redeposition in the form of [Al(OH)4]−, resulting in channels blocking. This process intensifies in basic pH due to the high positive charge of the anodic alumina surface. An approach for improving anodic aluminum oxide stability towards dissolution in water by carbon CVD coating of the membrane walls is suggested. PMID:28382245

  8. Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor.

    PubMed

    Nguyen, Binh Thi Thanh; Peh, Alister En Kai; Chee, Celine Yue Ling; Fink, Katja; Chow, Vincent T K; Ng, Mary M L; Toh, Chee-Seng

    2012-12-01

    The Faradaic electrochemical impedance technique is employed to characterize the impedance change of a nanoporous alumina biosensor in response towards the specific binding of dengue serotype 2 (Denv2) viral particles to its serotype 2-specific immunoglobulin G antibody within the thin alumina layer. The optimal equivalent circuit model that matches the impedimetric responses of the sensor describes three distinct regions: the electrolyte solution (R(s)), the porous alumina channels (including biomaterials) (Q(1), R(1)) and the conductive electrode substrate layer (Q(2), R(2)). Both channel resistance R(1) and capacitance Q(1) change in response to the increase of the Denv2 virus concentration. A linear relationship between R(1) and Denv2 concentration from 1 to 900 plaque forming unit per mL (pfu mL(-1)) can be derived using Langmuir-Freundlich isotherm model. At 1pfu mL(-1) Denv2 concentration, R(1) can be distinguished from that of the cell culture control sample. Moreover, Q(1) doubles when Denv2 is added but remains unchanged in the presence of two other non-specific viruses - West Nile virus and Chikungunya virus indicates biosensor specificity can be quantitatively measured using channel capacitance. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Zirconia-alumina-nanodiamond composites with gemological properties

    NASA Astrophysics Data System (ADS)

    Díaz, Luis A.; Montes-Morán, Miguel A.; Peretyagin, Pavel Y.; Vladimirov, Yuriy G.; Okunkova, Anna; Moya, José S.; Torrecillas, Ramón

    2014-02-01

    Nanodiamonds have excellent mechanical and optical properties with a wide range of potential applications as a filler material for nanocomposites. Here, we present a new family of zirconia-alumina-nanodiamond composites using two main processing routes: (1) a colloidal method, and (2) power mixing homogenization. Composites with detonation nanodiamonds quantities ranging within 0.3-5 vol.% followed by a pulsed electrical current sintering at a temperature range from 1,200 to 1,500 °C have been analyzed, and a significant enhancement in mechanical properties, i.e., indentation hardness (16.17 GPa), fracture toughness (15.5 MPa m1/2), and bending strength (1,600 MPa), could be observed. To support these excellent properties, TEM, color, reflectivity, and Raman spectroscopy measurements were also carried out. The microstructure of the composites is very homogeneous with average grain sizes between 200 and 500 nm depending on the processing temperature. Two morphologies are present: (a) intergranular dispersion of alumina grains and nanodiamonds distributed along the grain boundaries of the ZrO2 matrix, and (b) intragranular nano-dispersion of ZrO2 particles with sizes 20-80 nm located inside the alumina grains. In the present article, we show, for the first time in the scientific literature, a continuous palette of gray color gradation of new ceramic materials of metalized colors (white index L* 98-40) for gemological applications.

  10. Development of Alumina-Forming Austenitic Stainless Steels

    SciTech Connect

    Brady, Michael P; Yamamoto, Yukinori; Bei, Hongbin; Santella, Michael L; Maziasz, Philip J

    2009-01-01

    This paper presents the results of the continued development of creep-resistant, alumina-forming austenitic (AFA) stainless steel alloys, which exhibit a unique combination of excellent oxidation resistance via protective alumina (Al2O3) scale formation and high-temperature creep strength through the formation of stable nano-scale MC carbides and intermetallic precipitates. Efforts in fiscal year 2009 focused on the characterization and understanding of long-term oxidation resistance and tensile properties as a function of alloy composition and microstructure. Computational thermodynamic calculations of the austenitic matrix phase composition and the volume fraction of MC, B2-NiAl, and Fe2(Mo,Nb) base Laves phase precipitates were used to interpret oxidation behavior. Of particular interest was the enrichment of Cr in the austenitic matrix phase by additions of Nb, which aided the establishment and maintenance of alumina. Higher levels of Nb additions also increased the volume fraction of B2-NiAl precipitates, which served as an Al reservoir during long-term oxidation. Ageing studies of AFA alloys were conducted at 750 C for times up to 2000 h. Ageing resulted in near doubling of yield strength at room temperature after only 50 h at 750 C, with little further increase in yield strength out to 2000 h of ageing. Elongation was reduced on ageing; however, levels of 15-25% were retained at room temperature after 2000 h of total ageing.

  11. Wear and flexural strength comparisons of alumina/feldspar resin infiltrated dental composites.

    PubMed

    Le Roux, A R; Lachman, N; Walker, M; Botha, T

    2008-11-01

    Incorporating a feldspar chemical bond between alumina filler particles is expected to increase the wear-resistant and flexural strength properties. An investigation was carried out to evaluate the influence of the feldspar chemical bonding between alumina filler particles on wear and flexural strength of experimental alumina/feldspar dental composites. It was hypothesized that wear resistance and flexural strength would be significantly increased with increased feldspar mass. Alumina was chemically sintered and bonded with 30% and 60% feldspar mass, silanized and infiltrated with UDMA resin to prepare the dental restorative composite material. Higher wear-resistant characteristics resulted with increased feldspar mass of up to 60% (p < 0.05). Higher flexural strength characteristics resulted as the feldspar mass was increased up to 60% (p > 0.05). Feldspar chemical bonding between the alumina particles may improve on the wear-resistance and flexural strength of alumina/feldspar composites.

  12. Formation process of a strong water-repellent alumina surface by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Feng, Libang; Li, Hui; Song, Yongfeng; Wang, Yulong

    2010-03-01

    A novel strong water-repellent alumina thin film is fabricated by chemically adsorbing stearic acid (STA) layer onto the porous and roughened aluminum film coated with polyethyleneimine (PEI). The formation process and the structure of the strong water-repellent alumina film are investigated by means of contact angle measurement and atomic force microscope (AFM). Results show that the water contact angles for the alumina films increase with the increase of the immersion time in the boiling water, and meanwhile, the roughness of the alumina films increases with the dissolution of the boehmite in the boiling water. Finally, the strong water-repellent film with a high water contact angle of 139.1° is obtained when the alumina films have distinct roughened morphology with some papillary peaks and porous structure. Moreover, both the roughened structure and the hydrophobic materials of the STA endow the alumina films with the strong water-repellence.

  13. Role of metal oxides in chemical evolution: interaction of ribose nucleotides with alumina.

    PubMed

    Arora, Avnish Kumar; Kamaluddin

    2009-03-01

    Interaction of ribonucleotides--namely, 5'-AMP, 5'-GMP, 5'-CMP, and 5'-UMP--with acidic, neutral, and basic alumina has been studied. Purine nucleotides showed higher adsorption on alumina in comparison with pyrimidine nucleotides under acidic conditions. Adsorption data obtained followed Langmuir adsorption isotherm, and X(m) and K(L) values were calculated. On the basis of infrared spectral studies of ribonucleotides, alumina, and ribonucleotide-alumina adducts, we propose that the nitrogen base and phosphate moiety of the ribonucleotides interact with the positive charge surface of alumina. Results of the present study may indicate the importance of alumina in concentrating organic molecules from dilute aqueous solutions in primeval seas in the course of chemical evolution on Earth.

  14. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina

    PubMed Central

    Song, Yuanhui; Ju, Yang; Song, Guanbin; Morita, Yasuyuki

    2013-01-01

    Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering. PMID:23935364

  15. The Effect of Alumina Dispersant Powder on the Workability of Chromia Based Refractory for IGCC Application

    NASA Astrophysics Data System (ADS)

    Ming, Zhao Jing; Xun, Yang Zheng; Hong, Hwang Kyu; Hwan, Park Sang

    2011-10-01

    The quality of refractory applied on IGCC is a key factor that affects the cost of production. The workability and microstructure of chromia based castable are varied by introducing different type of alumina dispersant powder, such as active alumina powder. In this study, three types of active alumina powder are added to improve the workability. It's proved that the specific surface area and particle size distribution of fine powders in matrix part greatly affect the flow values and microstructures.

  16. Recovery of Alumina From Non-Bauxite Aluminum-Bearing Raw Materials

    NASA Astrophysics Data System (ADS)

    Cohen, Joseph; Mercier, Henri

    The present world production of aluminum amounts to about 14 million metric tons per year. This production is obtained by electrolysis of alumina which represents the raw material of this industry. Nearly the whole of the alumina produced is extracted from rich ores : bauxites and laterites. Taking into account that part of the alumina produced is used for other purposes than the production of aluminum, the consumption of bauxites and laterites amounts, at present, to about 100 million tons per year.

  17. Lifetime of Sodium Beta-Alumina Membranes in Molten Sodium Hydroxide

    DTIC Science & Technology

    2008-07-01

    Report 3. DATES COVERED (From – To) 1 April 2007 – 01 April 2008 4. TITLE AND SUBTITLE Lifetime of Sodium Beta-alumina Membranes in Molten Sodium ...ABSTRACT Summary: Sodium metal can be made by electrolysis of molten sodium hydroxide in sodium beta-alumina membrane electrolysis cells...However, there are some uncertainties about the lifetime of the sodium beta-alumina membranes in contact with molten sodium hydroxide. The main objective

  18. Structural and Acidic Properties of Niobia-Silica and Niobia-Alumina Aerogels

    DTIC Science & Technology

    1991-05-06

    objective is to develop a comparative set of samples of known structure for chemical characterization . Bulk oxide aerogels of niobia, alumina, and silica ...objective is to develop a comparative set of samples of known structure for chemical characterization . Bulk oxide aerogels of niobia, alumina, and silica were...properties and the developed structures caused by the thermal treatment or increased concentration of niobia on the silica and alumina aerogel

  19. Alumina surfaces and interfaces under non-ultrahigh vacuum conditions

    NASA Astrophysics Data System (ADS)

    Kelber, Jeffry A.

    2007-07-01

    This paper is a review of studies of the structures and reactivities of ordered alumina surfaces under ultrahigh vacuum (UHV; < 10 -8 Torr), ambient (>1 Torr), and intermediate (10 -7-10 -1 Torr) pressure conditions. Most ordered alumina films—including α- Al 2O 3(0001) and transitional phase thin films grown on single-crystal substrates, are Al-terminated, but do not dissociate H 2O or many other small molecules (e.g., CH 3OH, NH 3) at room temperature under UHV conditions. Under ambient conditions, the α- Al 2O 3(0001) surface becomes OH-terminated, with an overlayer of physisorbed molecular H 2O stabilized by hydrogen bonding interactions with the OH substrate layer. The reactivity under ambient conditions is consistent with theoretical predictions of cooperative dissociation pathways for H 2O on this surface with low activation barriers, and is also consistent with desorption studies indicating that high fractional surface coverages of H 2O ( θO˜1) should only be observed at pressures of ˜1 Torr or higher. Surprisingly, cooperative H 2O interactions have also been observed at the surfaces of ordered films grown on Ni 3Al(111) and (110), and on NiAl(100) substrates at intermediate pressures orders of magnitude below ambient; PH 2O >10 -7 Torr, 300 K. Under these conditions, a cooperative reaction is apparently initiated at defect sites, resulting in strong surface rearrangement. NO appears to exhibit analogous behavior to H 2O, albeit at UHV pressures and at 100 K, where NO dimers form at surface defect sites. These data indicate that cooperative surface reactions occur at transitional phase alumina surfaces at pressures that are orders of magnitude below what one would expect based on straightforward thermodynamics and kinetics calculations, and point to the importance of surface defect sites for initiating reactions that eventually affect the entire surface. There is suggestive evidence that H 2O exposure also leads to the incorporation of interstitial

  20. Coking Resistance of Alumina Forming Cast Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ortiz Reyes, Lizeth Nayibe

    Coking is the process of carbon deposition from a gas phase that is encountered in many reforming, cracking and other high temperature processes. Coking in certain petrochemical processes can lead to carbon build up causing reduced process efficiency, corrosive attack and degradation of the alloy. Steam cracking of hydrocarbons is one of the most important process for manufacturing many base chemicals such as ethene, propene and other. A major influence on the energy efficiency and economics is the formation of coke on the inner wall of the reactors. With the accumulation of coke on the walls, eventually metallurgic constraints of the reactor material will force to stop the process and de-coke the reactors resulting in loss of efficiency with negative effect on the economics of the process. Materials used in these processes are fabricated from HP alloys that rely on the formation of a chromium oxide (chromia) layer as a protective layer between the bulk material and chemical byproducts. However, strong oxidation, carburization, sulfidation or nitriding can occur if the environment does not promote chromium oxide formation or if the protectivity of the scale is destroyed by other mechanisms. More recent alloys that form an alumina-based oxide layer have been recently developed for structural use in aggressive oxidizing environments. These alloys, commonly known as AFA alloys, form a protective layer of aluminum oxide (alumina) showing a promising combination of oxidation resistance, creep resistance, tensile properties, and potential for good welding behavior. An experimental high temperature coking atmosphere was constructed and used to evaluate the effects of temperature, time and metal surface roughness on the carbon deposition of two alumina forming alloys (2.6% and 3.7% Al content each). Coking conditions were simulated with multiple atmospheres including CO-H2 mixtures at moderate temperatures and ethane at higher temperatures. Carbon deposition was tracked

  1. Effects of particle size and coating on decomposition of alumina-extracted residue from high-alumina fly ash.

    PubMed

    Wang, Zehua; Ma, Shuhua; Tang, Zhenhua; Wang, Xiaohui; Zheng, Shili

    2016-05-05

    The effective removal of alkali in the alumina-extracted reside (AER) obtained by extracting alumina from high-alumina fly ash is the premise for realizing the utilization of the silicon component in the fly ash. Sodium was removed from the AER by a decomposition reaction. The effects of the particle size and reactant coating on the decomposition reaction of AER were studied, and the results showed that by decreasing the particle size, the decomposition reaction rate of AER could be enhanced obviously and the Na2O content of the products could be decreased effectively. In addition, the process and mechanism of the decomposition reaction of AER and the reaction kinetics were investigated. The results revealed that the decomposition reaction of AER started from the outer surface of the AER particles. The reaction kinetics corresponded with shrinking unreacted core models. Furthermore, the decomposition reaction rate of AER could be enhanced obviously by decreasing the particle size because the effect of product layer diffusion was weakened when the particle size of AER was decreased. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Surface insulating properties of titanium implanted alumina ceramics by plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Zhu, Mingdong; Song, Falun; Li, Fei; Jin, Xiao; Wang, Xiaofeng; Wang, Langping

    2017-09-01

    The insulating property of the alumina ceramic in vacuum under high voltage is mainly limited by its surface properties. Plasma immersion ion implantation (PIII) is an effective method to modify the surface chemical and physical properties of the alumina ceramic. In order to improve the surface flashover voltage of the alumina ceramic in vacuum, titanium ions with an energy of about 20 keV were implanted into the surface of the alumina ceramic using the PIII method. The surface properties of the as-implanted samples, such as the chemical states of the titanium, morphology and surface resistivity, were characterized by X-ray photoelectron spectroscopy, scanning electron microscope and electrometer, respectively. The surface flashover voltages of the as-implanted alumina samples were measured by a vacuum surface flashover experimental system. The XPS spectra revealed that a compound of Ti, TiO2 and Al2O3 was formed in the inner surface of the alumina sample. The electrometer results showed that the surface resistivity of the implanted alumina decreased with increased implantation time. In addition, after the titanium ion implantation, the maximum hold-off voltage of alumina was increased to 38.4 kV, which was 21.5% higher than that of the unimplanted alumina ceramic.

  3. The Effect of Novel Synthetic Methods and Parameters Control on Morphology of Nano-alumina Particles

    NASA Astrophysics Data System (ADS)

    Xie, Yadian; Kocaefe, Duygu; Kocaefe, Yasar; Cheng, Johnathan; Liu, Wei

    2016-05-01

    Alumina is an inorganic material, which is widely used in ceramics, catalysts, catalyst supports, ion exchange and other fields. The micromorphology of alumina determines its application in high tech and value-added industry and its development prospects. This paper gives an overview of the liquid phase synthetic method of alumina preparation, combined with the mechanism of its action. The present work focuses on the effects of various factors such as concentration, temperature, pH, additives, reaction system and methods of calcination on the morphology of alumina during its preparation.

  4. Method to produce alumina aerogels having porosities greater than 80 percent

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2003-09-16

    A two-step method for producing monolithic alumina aerogels having porosities of greater than 80 percent. Very strong, very low density alumina aerogel monoliths are prepared using the two-step sol-gel process. The method of preparing pure alumina aerogel modifies the prior known sol method by combining the use of substoichiometric water for hydrolysis, the use of acetic acid to control hydrolysis/condensation, and high temperature supercritical drying, all of which contribute to the formation of a polycrystalline aerogel microstructure. This structure provides exceptional mechanical properties of the alumina aerogel, as well as enhanced thermal resistance and high temperature stability.

  5. DFT study of Au adsorption on pure and Pt-decorated γ-alumina (110) surface

    NASA Astrophysics Data System (ADS)

    Sharifi, N.; Falamaki, C.; Ahangari, M. Ghorbanzadeh

    2017-09-01

    In this study, the adsorption properties of a Pt-decorated γ-Al2O3 (110) surface (Pt-alumina) were investigated to determine the favorable sublayer for Au adsorption using first principles calculations. After full structural relaxation of various configurations, our calculated results indicated that the lowest binding energy and the distance between the Pt atom and the nearest atoms in the alumina (O atom) were -1.87 eV and 2.36 Å, respectively. Finally, the adsorption energy, geometry, and electronic structure for the adsorption of an Au atom onto pure (Au-alumina) and Pt-decorated alumina (Au/Pt-alumina) were examined. The binding energy for the Au/Pt-alumina system was -3.06 eV, which is more than that for the Au-alumina system (-1.40 eV). Therefore, the results from our first principles calculations predict that the Au atom adsorptive capability on Pt-alumina is better than that of pure alumina.

  6. Acoustic properties of alumina colloidal/polymer nano-composite film on silicon.

    PubMed

    Zhang, Rui; Cao, Wenwu; Zhou, Qifa; Cha, Jung Hyui; Shung, K Kirk; Huang, Yuhong

    2007-03-01

    Alumina colloidal/polymer composite films on silicon substrates have been successfully fabricated using the sol-gel method, in which the crystallite sizes of alumina are between 20 and 50 nm. The density and ultrasonic phase velocities in these films with different alumina ratios from 14% to 32% were measured at the desired operating frequency. We have proved that the density, acoustic phase velocities, and hence the acoustic impedance of the nano-composite films increase with the alumina content, which gives us another option of tailoring the acoustic impedance of the nano-composite film for making the matching layer of high-frequency medical ultrasonic transducers.

  7. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, Shari Hanayo

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  8. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  9. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    NASA Technical Reports Server (NTRS)

    Choudhury, N. S.

    1973-01-01

    Open-circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta-alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two-phase solid electrolyte may be used to monitor oxygen chemical potentials as low as that corresponding to Al and Al2O3 coexistence (potentials of about 10 to the minus 47th power atm at 1000 K). The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  10. Electromotive force measurements on cells involving beta-alumina solid electrolyte

    NASA Technical Reports Server (NTRS)

    Choudhury, N.

    1973-01-01

    Open circuit emf measurements have been made to demonstrate that a two-phase, polycrystalline mixture of beta- alumina and alpha-alumina could be used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or aluminum chemical potentials. These measurements indicate that such a two phase solid electrolyte can be used to monitor oxygen chemical potentials as low as that corresponding to Al, Al2O3 coexistence. The activity of Na2O in beta-alumina in coexistence with alpha-alumina was also determined by emf measurements.

  11. Viscosity of aqueous and cyanate ester suspensions containing alumina nanoparticles

    SciTech Connect

    Lawler, Katherine

    2009-01-01

    The viscosities of both aqueous and cyanate ester monomer (BECy) based suspensions of alumina nanoparticle were studied. The applications for these suspensions are different: aqueous suspensions of alumina nanoparticles are used in the production of technical ceramics made by slip casting or tape casting, and the BECy based suspensions are being developed for use in an injection-type composite repair resin. In the case of aqueous suspensions, it is advantageous to achieve a high solids content with low viscosity in order to produce a high quality product. The addition of a dispersant is useful so that higher solids content suspensions can be used with lower viscosities. For BECy suspensions, the addition of nanoparticles to the BECy resin is expected to enhance the mechanical properties of the cured composite. The addition of saccharides to aqueous suspensions leads to viscosity reduction. Through DSC measurements it was found that the saccharide molecules formed a solution with water and this resulted in lowering the melting temperature of the free water according to classic freezing point depression. Saccharides also lowered the melting temperature of the bound water, but this followed a different rule. The shear thinning and melting behaviors of the suspensions were used to develop a model based on fractal-type agglomeration. It is believed that the structure of the particle flocs in these suspensions changes with the addition of saccharides which leads to the resultant viscosity decrease. The viscosity of the BECy suspensions increased with solids content, and the viscosity increase was greater than predicted by the classical Einstein equation for dilute suspensions. Instead, the Mooney equation fits the viscosity behavior well from 0-20 vol% solids. The viscosity reduction achieved at high particle loadings by the addition of benzoic acid was also investigated by NMR. It appears that the benzoic acid interacts with the surface of the alumina particle which may

  12. Alumina-alumina artificial hip joints. Part II: characterisation of the wear debris from in vitro hip joint simulations.

    PubMed

    Tipper, J L; Hatton, A; Nevelos, J E; Ingham, E; Doyle, C; Streicher, R; Nevelos, A B; Fisher, J

    2002-08-01

    Until recently it was not possible to reproduce clinically relevant wear rates and wear patterns in in vitro hip joint simulators for alumina ceramic-on-ceramic hip prostheses. The introduction of microseparation of the prosthesis components into in vitro wear simulations produced clinically relevant wear rates and wear patterns for the first time. The aim of this study was to characterise the wear particles generated from standard simulator testing and microseparation simulator testing of hot isostatically pressed (HIPed) and non-HIPed alumina ceramic-on-ceramic hip prostheses, and compare these particles to those generated in vivo. Standard simulation conditions produced wear rates of approximately 0.1 mm3 per million cycles for both material types. No change in surface roughness was detected and very few wear features were observed. In contrast, when microseparation was introduced into the wear simulation, wear rates of between 1.24 (HIPed) and 1.74 mm3 per million cycles (non-HIPed) were produced. Surface roughness increased and a wear stripe often observed clinically on retrieved femoral heads was also reproduced. Under standard simulation conditions only nanometre-sized wear particles (2-27.5 nm) were observed by TEM, and it was thought likely that these particles resulted from relief polishing of the alumina ceramic. However, when microseparation of the prosthesis components was introduced into the simulation, a bi-modal distribution of particle sizes was observed. The nanometre-sized particles produced by relief polishing were present (1-35nm). however, larger micrometre-sized particles were also observed by both transmission electron microscopy (TEM) (0.021 microm) and scanning electron microscopy (SEM) (0.05-->10 microm). These larger particles were thought to originate from the wear stripe and were produced by trans-granular fracture of the alumina ceramic. In Part I of this study, alumina ceramic wear particles were isolated from the periprosthetic

  13. Interaction of hydrogen chloride with alumina. [atmospheric effluent concentrations and interaction of solid rocket propellants used in space shuttle

    NASA Technical Reports Server (NTRS)

    Bailey, R. R.; Wightman, J. P.

    1978-01-01

    The influence of temperature, pressure, and outgas conditions on the absorption of hydrogen chloride and water vapor on both alpha and gamma alumina was studied. Characterization of the adsorbents was performed using X-ray powder diffraction, scanning electron microscopy (SEM), low temperature nitrogen adsorption desorption measurements, BET nitrogen surface area measurements and electron spectroscopy for chemical analysis (ESCA). Water vapor adsorption isotherms at 30, 40, and 50 C were measured on alpha and gamma alumina after outgassing at 80, 200, and 400 C. Both outgas temperature and adsorption temperature influenced the adsorption of water vapor on the aluminas. The water vapor adsorption was completely reversible. Alpha alumina absorbed more water per unit area than gamma alumina. Differences in the adsorption capacity for water vapor of the two aluminas were explained on the basis of ideal surface models of alpha and gamma alumina. Isosteric heats of adsorption for water vapor on the aluminas were determined over a limited range of surface coverage.

  14. Near-field radiative heat transfer in mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Jing, Li; Yan-Hui, Feng; Xin-Xin, Zhang; Cong-Liang, Huang; Ge, Wang

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2˜4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. Project supported by the National Natural Science Foundation of China (Grant No. 51422601), the National Basic Research Program of China (Grant No. 2012CB720404), and the National Key Technology Research and Development Program of China (Grant No. 2013BAJ01B03).

  15. Kinetic studies of the sucrose adsorption onto an alumina interface

    NASA Astrophysics Data System (ADS)

    Singh, Kaman; Mohan, Sudhanshu

    2004-01-01

    An account is given of an experimental kinetic study of adsorption of analar reagent sucrose (ARS) onto an alumina interface spectrometrically ( λmax=570 nm) at pH 8.0 and at room temperature. The adsorption isotherm is a typical Langmuirian isotherm (S-type) and adsorption parameters have been deduced according to the Langmuir's model. The adsorption coefficient evaluated from the Langmuir's equation was found to be 2.52×10 2 l mol -1. Adsorption mechanism has been interpreted on the basis of metal-saccharide interaction as found in organometallic compounds and interaction due to negatively charged ends on the disaccharide molecules and positively charge groups on the surface on alumina which depends on the pH value. The effects of variation in experimental conditions of the adsorption system have also been investigated. The adsorption exhibited a typical response to the pH effect and on going towards the PZC the net charge decreases and any reaction making dependence on charge and maximum adsorption (amount) was found near the isoelectric point of alumina (pH 9.0). The presence of ions like Cl -, SO 42- and PO 43- affect the adsorbed amount quantitatively and it seems that these anions compete with sucrose for the positively charged surface sites. The addition of similar concentration of cations was found to reduce the adsorbed amount. The temperature was found to have an inverse effect on adsorption. The additions of catonic and anionic detergents influence both the adsorbed amount and the adsorption rate. The thermodynamics of the titled adsorption model indicates the spontaneous and exothermic nature. The negative value of entropy is an indication of probability of favorable and complex nature of the adsorption.

  16. Characterization of ultrafast microstructuring of alumina (Al2O3)

    NASA Astrophysics Data System (ADS)

    Perrie, Walter; Rushton, Anne; Gill, Matthew; Fox, Peter; O'Neill, William

    2005-03-01

    Alumina ceramic, Al2O3, presents a challenge to laser micro-structuring due to its neglible linear absorption coefficient in the optical region coupled with its physical properties such as extremely high melting point and high thermal conductivity. In this work, we demonstrate clean micro-structuring of alumina using NIR (λ=775 nm) ultrafast optical pulses with 180 fs duration at 1kHz repetition rate. Sub-picosecond pulses can minimise thermal effects along with collateral damage when processing conditions are optimised, consequently, observed edge quality is excellent in this regime. We present results of changing micro-structure and morphology during ultrafast processing along with measured ablation rates and characteristics of developing surface relief. Initial crystalline phase (alpha Al2O3) is unaltered by femtosecond processing. Multi-pulse ablation threshold fluence Fth ~ 1.1 Jcm-2 and at low fluence ~ 3 Jcm-2, independent of machined depth, there appears to remain a ~ 2μm thick rapidly re-melted layer. On the other hand, micro-structuring at high fluence F ~ 21 Jcm-2 shows no evidence of melting and the machined surface is covered with a fine layer of debris, loosely attached. The nature of debris produced by femtosecond ablation has been investigated and consists mainly of alumina nanoparticles with diameters from 20 nm to 1 micron with average diameter ~ 300 nm. Electron diffraction shows these particles to be essentially single crystal in nature. By developing a holographic technique, we have demonstrated periodic micrometer level structuring on polished samples of this extremely hard material.

  17. Intermetallic strengthened alumina-forming austenitic steels for energy applications

    NASA Astrophysics Data System (ADS)

    Hu, Bin

    In order to achieve energy conversion efficiencies of >50 % for steam turbines/boilers in power generation systems, materials required are strong, corrosion-resistant at high temperatures (>700°C), and economically viable. Austenitic steels strengthened with Laves phase and Ni3Al precipitates, and alloyed with aluminum to improve oxidation resistance, are potential candidate materials for these applications. The creep resistance of these alloys is significantly improved through intermetallic strengthening (Laves-Fe 2Nb + L12-Ni3Al precipitates) without harmful effects on oxidation resistance. This research starts with microstructural and microchemical analyses of these intermetallic strengthened alumina-forming austenitic steels in a scanning electron microscope. The microchemistry of precipitates, as determined by energy-dispersive x-ray spectroscopy and transmission electron microscope, is also studied. Different thermo-mechanical treatments were carried out to these stainless steels in an attempt to further improve their mechanical properties. The microstructural and microchemical analyses were again performed after the thermo-mechanical processing. Synchrotron X-ray diffraction was used to measure the lattice parameters of these steels after different thermo-mechanical treatments. Tensile tests at both room and elevated temperatures were performed to study mechanical behaviors of this novel alloy system; the deformation mechanisms were studied by strain rate jump tests at elevated temperatures. Failure analysis and post-mortem TEM analysis were performed to study the creep failure mechanisms of these alumina-forming austenitic steels after creep tests. Experiments were carried out to study the effects of boron and carbon additions in the aged alumina-forming austenitic steels.

  18. Specific heat capacity of molten salt-based alumina nanofluid

    PubMed Central

    2013-01-01

    There is no consensus on the effect of nanoparticle (NP) addition on the specific heat capacity (SHC) of fluids. In addition, the predictions from the existing model have a large discrepancy from the measured SHCs in nanofluids. We show that the SHC of the molten salt-based alumina nanofluid decreases with reducing particle size and increasing particle concentration. The NP size-dependent SHC is resulted from an augmentation of the nanolayer effect as particle size reduces. A model considering the nanolayer effect which supports the experimental results was proposed. PMID:23800321

  19. Preparation Of Strong, Dense Potassium Beta''-Alumina Ceramic

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Kikkert, Stanley J.; Losey, Robert; Suitor, Jerry W.

    1995-01-01

    Improved process for making mechanically strong, dense, phase-pure potassium beta''-alumina solid electrolyte (K-BASE) results in material superior to all previous K-BASE preparations and similar to commercial Na-BASE in strength, phase purity and high-temperature ionic conductivity. Potassium-based alkali-metal thermal-to-electric conversion (AMTEC) cells expected to operate efficiently at lower heat-input temperatures and lower rejection temperatures than sodium-based AMTEC cells, making them appropriate for somewhat different applications.

  20. Screen-Cage Ion Plating Of Silver On Polycrystalline Alumina

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis; Sliney, Harold E.; Deadmore, Daniel L.

    1995-01-01

    Screen-cage ion plating (SCIP) cost-effective technique offering high throwing power for deposition of adherent metal films on ceramic substrates. Applies silver films to complexly shaped substrates of polycrystalline alumina. Silver adheres tenaciously and reduces friction. SCIP holds promise for applying lubricating soft metallic films to high-temperature ceramic components of advanced combustion engines. Other potential uses include coating substrates with metal for protection against corrosion, depositing electrical conductors on dielectric substrates, making optically reflective or electrically or thermally conductive surface layers, and applying decorative metal coats to ceramic trophies or sculptures.