Sub-millimeter wave frequency heterodyne detector system
NASA Technical Reports Server (NTRS)
Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)
2009-01-01
The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.
Sub-millimeter wave frequency heterodyne detector system
NASA Technical Reports Server (NTRS)
Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)
2010-01-01
The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.
Amplifier based broadband pixel for sub-millimeter wave imaging
NASA Astrophysics Data System (ADS)
Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.
2012-09-01
Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.
Demonstration of a Sub-Millimeter Wave Integrated Circuit (S-MMIC) using InP HEMT with a 35-nm Gate
NASA Technical Reports Server (NTRS)
Deal, W. R.; Din, S.; Padilla, J.; Radisic, V.; Mei, G.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Gaier, T.;
2006-01-01
In this paper, we present two single stage MMIC amplifiers with the first demonstrating a measured S21 gain of 3-dB at 280-GHz and the second demonstrating 2.5-dB gain at 300- GHz, which is the threshold of the sub-millimeter wave regime. The high-frequency operation is enabled by a high-speed InP HEMT with a 35-nm gate. This is the first demonstrated S21 gain at sub-millimeter wave frequencies in a MMIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, Liu, E-mail: liu.chao@tufts.edu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi
2015-05-07
In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the sol-gel method. The particlemore » sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G. Barratt, E-mail: barratt@mit.edu, E-mail: barratt.park@gmail.com; Womack, Caroline C.; Jiang, Jun
2015-04-14
Millimeter-wave detected, millimeter-wave optical double resonance (mmODR) spectroscopy is a powerful tool for the analysis of dense, complicated regions in the optical spectra of small molecules. The availability of cavity-free microwave and millimeter wave spectrometers with frequency-agile generation and detection of radiation (required for chirped-pulse Fourier-transform spectroscopy) opens up new schemes for double resonance experiments. We demonstrate a multiplexed population labeling scheme for rapid acquisition of double resonance spectra, probing multiple rotational transitions simultaneously. We also demonstrate a millimeter-wave implementation of the coherence-converted population transfer scheme for background-free mmODR, which provides a ∼10-fold sensitivity improvement over the population labeling scheme.more » We analyze perturbations in the C{sup ~} state of SO{sub 2}, and we rotationally assign a b{sub 2} vibrational level at 45 328 cm{sup −1} that borrows intensity via a c-axis Coriolis interaction. We also demonstrate the effectiveness of our multiplexed mmODR scheme for rapid acquisition and assignment of three predissociated vibrational levels of the C{sup ~} state of SO{sub 2} between 46 800 and 47 650 cm{sup −1}.« less
A Novel Split-Waveguide Mount Design For MM and SubMM wave frequency multipliers and Harmonic Mixers
NASA Technical Reports Server (NTRS)
Raisanen, Anti V.; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.
1993-01-01
A novel split-waveguide mount for millimeter and submillimeter wave frequency multipliers and harmonic mixers is presented. It consists of only two pieces, block halves, which are mirror images of each other.
Quantum-limited detection of millimeter waves using superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mears, Carl Atherton
1991-09-01
The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 ± 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less
Quantum-limited detection of millimeter waves using superconducting tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mears, C.A.
1991-09-01
The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit bymore » studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.« less
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.
Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef
2016-05-23
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.
Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies
Balal, Nezah; Pinhasi, Gad A.; Pinhasi, Yosef
2016-01-01
The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide “chirped” Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution. PMID:27223286
Detection of small metal particles by a quasi-optical system at sub-millimeter wavelength
NASA Astrophysics Data System (ADS)
Kitahara, Yasuyuki; Domier, C. W.; Ikeda, Makoto; Pham, Anh-Vu; Luhmann, Neville C.
2016-04-01
Inspection of alien metal particles in electronic materials such as glass fibers and resins is a critical issue to control the quality and guarantee the safety of products. In this paper, we present a new detection technique using sub-millimeter wave for films as electric materials in product lines. The advantage of using sub-millimeter wave frequency is that it is easy to distinguish conductive particles from a nonconductive material such as plastic films. Scattering of a submillimeter wave by a metal particle is used as the detection principle. By simulation, it is observed that the scattering pattern varies intricately as the diameter varies from 10 to 700 μm at 300 GHz. The demonstration system is composed of a Keysight performance network analyzer (N5247A PNA-X) with 150-330 GHz VDI extension modules, transmitting and receiving antennas, and focusing dielectric lens. An output signal is radiated via an antenna and focused onto a metal particle on a film. The wave scattered by the metal particle is detected by an identical antenna through a lens. The signal scattered from a metal particle is evaluated from the insertion loss between antennas (S21). The result shows that a particle of diameter 300 μm is detectable at 150-330 GHz through S21 in the experimental system that we prepared. Peaks calculated in simulation were detected in experimental data as well as in the curves of the particle diameter versus S21. It was shown that using this peak frequency could improve S21 level without higher frequency.
A Three-Frequency Feed for Millimeter-Wave Radiometry
NASA Technical Reports Server (NTRS)
Hoppe, Daniel J.; Khayatian, Behrouz; Sosnowski, John B.; Johnson, Alan K.; Bruneau, Peter J.
2012-01-01
A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies, including rivers, lakes, reservoirs, and wetlands. In this innovation, the feed provides three separate output ports in the 87-to- 97-GHz, 125-to-135-GHz, and 161-to-183- GHz bands; WR10 for the 90-GHz channel, WR8 for the 130-GHz channel, and WR5 for the 170-GHz channel. These ports are in turn connected to individual radiometer channels that will also demonstrate component technology including new PIN-diode switches and noise diodes for internal calibration integrated into each radiometer front end. For this application, a prime focus feed is required with an edge taper of approximately 20 dB at an illumination angle of 40 deg. A single polarization is provided in each band. Preliminary requirements called for a return loss of better than 15 dB, which is achieved across all three bands. Good pattern symmetry is also obtained throughout all three-frequency bands. This three-frequency broadband millimeter-wave feed also minimizes mass and provides a common focal point for all three millimeter-wave bands.
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.; Valco, G. J.
1989-01-01
Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
Zhang, Fangzheng; Pan, Shilong
2013-11-04
A novel scheme for photonic generation of a millimeter-wave ultra-wideband (MMW-UWB) signal is proposed and experimentally demonstrated based on a dual-parallel Mach-Zehnder modulator (DPMZM). In the proposed scheme, a single-frequency radio frequency (RF) signal is applied to one sub-MZM of the DPMZM to achieve optical suppressed-carrier modulation, and an electrical control pulse train is applied to the other sub-MZM biased at the minimum transmission point, to get an on/off switchable optical carrier. By filtering out the optical carrier with one of the first-order sidebands, and properly setting the amplitude of the control pulse, an MMW-UWB pulse train without the residual local oscillation is generated after photo-detection. The generated MMW-UWB signal is background-free, because the low-frequency components in the electrical spectrum are effectively suppressed. In the experiment, an MMW-UWB pulse train centered at 25 GHz with a 10-dB bandwidth of 5.5 GHz is successfully generated. The low frequency components are suppressed by 22 dB.
NASA Astrophysics Data System (ADS)
Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi
2015-11-01
An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.
Millimeter-wave generation and characterization of a GaAs FET by optical mixing
NASA Technical Reports Server (NTRS)
Ni, David C.; Fetterman, Harold R.; Chew, Wilbert
1990-01-01
Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.
NASA Astrophysics Data System (ADS)
McMahon, Jeff
Sub-millimeter observations are crucial for answering questions about star and galaxy formation; understanding galactic dust foregrounds; and for removing these foregrounds to detect the faint signature of inflationary gravitational waves in the polarization of the Cosmic Microwave Background (CMB). Achieving these goals requires improved, broad-band antireflection coated lenses and half-wave plates (HWPs). These optical elements will significantly boost the sensitivity and capability of future sub-millimeter and CMB missions. We propose to develop wide-bandwidth metamaterial antireflection coatings for silicon lenses and sapphire HWPs with 3:1 ratio bandwidth that are scalable across the sub-millimeter band from 300 GHz to 3 THz. This is an extension of our successful work on saw cut metamaterial AR coatings for silicon optics at millimeter wave lengths. These, and the proposed coatings consist of arrays of sub-wavelength scale features cut into optical surfaces that behave like simple dielectrics. We have demonstrated saw cut 3:1 bandwidth coatings on silicon lenses, but these coatings are limited to the millimeter wave band by the limitations of dicing saw machining. The crucial advance needed to extend these broad band coatings throughout the sub-millimeter band is the development of laser cut graded index metamaterial coatings. The proposed work includes developing the capability to fabricate these coatings, optimizing the design of these metamaterials, fabricating and testing prototype lenses and HWPs, and working with the PIPER collaboration to achieve a sub-orbital demonstration of this technology. The proposed work will develop potentially revolutionary new high performance coatings for the sub-millimeter bands, and cary this technology to TRL 7 paving the way for its use in space. We anticipate that there will be a wide range of applications for these coatings on future NASA balloons and satellites.
VizieR Online Data Catalog: Sub-millimeter spectra of 2-hydroxyacetonitrile (Margules+, 2017)
NASA Astrophysics Data System (ADS)
Margules, L.; McGuire, B. A.; Senent, M. L.; Motiyenko, R. A.; Remijan, A.; Guillemin, J. C.
2017-02-01
Measured frequencies and residuals from the global fit of the submillimeter-wave data for 2-hydroxyacetonitrile and files used for SPFIT. Detailled explanations on SPFIT could be found at https://www.astro.uni-koeln.de/cdms/pickett (4 data files).
NASA Astrophysics Data System (ADS)
Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.
2018-05-01
Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, Ivan R.; De Lucia, Frank C.; Herbst, Eric
Since methyl formate (HCOOCH{sub 3}) is found to have a high abundance in hot molecular cores and other types of clouds in the galactic center, it is reasonable to search among such sources for detectable abundances of the more complex analog ethyl formate (HCOOC{sub 2}H{sub 5}). Following a previous study of the millimeter-wave spectrum of ethyl formate, we have extended the analysis of the vibrational ground state of the trans and gauche conformers of ethyl formate into the submillimeter-wave range. Over 2200 new spectral lines have been measured and analyzed at frequencies up to 380 GHz. Fitting the data formore » each conformer to a Watson A-reduced asymmetric-top Hamiltonian has allowed us to predict the frequencies and intensities of many more transitions through 380 GHz.« less
Linearly Tapered Slot Antenna Radiation Characteristics at Millimeter-Wave Frequencies
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Lee, Richard Q.
1998-01-01
An endfire travelling wave antenna, such as, a linearly tapered slot antenna (LTSA) is a viable alternative to a patch antenna at millimeter-wave frequencies because of its simple design and ease of fabrication. This paper presents the radiation characteristics of LTSA at higher millimeter-wave frequencies. The measured radiation patterns are observed to be well behaved and symmetric with the main beam in the endfire direction. The measured gain is about 10 dB. The LTSAs have potential wireless applications at 50 GHz, 77 GHz, and 94 GHz.
Millimeter Wave Communication through Plasma
NASA Technical Reports Server (NTRS)
Bastin, Gary L.
2008-01-01
Millimeter wave communication through plasma at frequencies of 35 GHz or higher shows promise in maintaining communications connectivity during rocket launch and re-entry, critical events which are typically plagued with communication dropouts. Extensive prior research into plasmas has characterized the plasma frequency at these events, and research at the Kennedy Space Center is investigating the feasibility of millimeter communication through these plasma frequencies.
Microwave Remote Sensing of Falling Snow
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.
2005-01-01
This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.
Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar
2018-06-01
Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.
Performance Investigation of Millimeter Wave Generation Reliant on Stimulated Brillouin Scattering
NASA Astrophysics Data System (ADS)
Tickoo, Sheetal; Gupta, Amit
2018-04-01
In this work, photonic method of generating the millimeter waves has been done based on Brillouin scattering effect in optical fiber. Here different approaches are proposed to get maximum frequency shift in mm-wave region using only pumps, radio signals with Mach-Zehnder modulator. Moreover for generated signal validation, signals modulated and send to both wired and wireless medium in optical domain. It is observed that maximum shift of 300 GHz is realized using 60 GHz input sine wave. Basically a frequency doubler is proposed which double shift of input frequency and provide better SNR. For the future generation network system, the generation of millimeter waves makes them well reliable for the transmission of the data.
NASA Astrophysics Data System (ADS)
Cui, Tie Jun; Wu, Rui Yuan; Wu, Wei; Shi, Chuan Bo; Li, Yun Bo
2017-10-01
We propose fast and accurate designs to large-scale and low-profile transmission-type anisotropic coding metasurfaces with multiple functions in the millimeter-wave frequencies based on the antenna-array method. The numerical simulation of an anisotropic coding metasurface with the size of 30λ × 30λ by the proposed method takes only 20 min, which however cannot be realized by commercial software due to huge memory usage in personal computers. To inspect the performance of coding metasurfaces in the millimeter-wave band, the working frequency is chosen as 60 GHz. Based on the convolution operations and holographic theory, the proposed multifunctional anisotropic coding metasurface exhibits different effects excited by y-polarized and x-polarized incidences. This study extends the frequency range of coding metasurfaces, filling the gap between microwave and terahertz bands, and implying promising applications in millimeter-wave communication and imaging.
1991-09-01
nickel zinc ferrite films and (2) sputtering of barium hexaferrites with C-axis oriented normally to the film plane. The SSP tech- nique potential for...M-Wave, Components, Ferrites, Films , Yig, Nickel, Zinc , Hexagonal, R96E Measurements, Frequency, Magnetic, Barium Ferrite 17. SECURITY CLASSIFICATION...techniques to integrate millimeter-wave ferrite devices with GaAs VI&Cs. APPROACH Our approach was to deposit ferrite thin films on GaAs sub- strates in a
Design and construction of prototype radio antenna for shortest radio wavelengths
NASA Technical Reports Server (NTRS)
Leighton, R. B.
1975-01-01
A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.
A blind green bank telescope millimeter-wave survey for redshifted molecular absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanekar, N.; Gupta, A.; Carilli, C. L.
2014-02-10
We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has amore » total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.« less
Millimeter wave propagation measurements using the ATS 5 satellite
NASA Technical Reports Server (NTRS)
Ippolito, L. J.
1972-01-01
The ATS 5 millimeter wave propagation experiment determines long- and short-term attenuation statistics of operational millimeter wavelength earthspace links as functions of defined meteorological conditions. A preliminary analysis of results with 15 GHz downlink and 32 GHz uplink frequency bands indicates that both frequency bands exhibit an excellent potential for utilization in reliable high data rate earth-space communications systems.
[Acoustic detection of absorption of millimeter-band electromagnetic waves in biological objects].
Polnikov, I G; Putvinskiĭ, A V
1988-01-01
Principles of photoacoustic spectroscopy were applied to elaborate a new method for controlling millimeter electromagnetic waves absorption in biological objects. The method was used in investigations of frequency dependence of millimeter wave power absorption in vitro and in vivo in the commonly used experimental irradiation systems.
NASA Astrophysics Data System (ADS)
Zhou, Hui; Zeng, Yuting; Chen, Ming; Shen, Yunlong
2018-03-01
We have proposed a scheme of radio-over-fiber (RoF) system employing a dual-parallel Mach-Zehnder modulator (DP-MZM) based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this scheme, the pump and the signal are generated by properly adjusting the direct current bias, modulation index of the DP-MZM, and the phase difference between the sub-MZMs. Because of the pump and the signal deriving from the same optical wave, the polarization states of the two lightwaves are copolarized. The single-pump FWM is polarization insensitive. After FWM and optical filtering, the optical millimeter-wave with octuple frequency is generated. About 40-GHz RoF system with a 2.5-Gbit / s signal is implemented by numerical simulation; the result shows that it has a good performance after the signal is transmitted over 40-km single-mode fiber. Then, the effects of the SOA's injection current and the carrier-to-sideband ratio on the system performance are discussed by simulation, and the optimum value for the system is obtained.
Millimeter-wave spectroscopy of CoNO Produced by UV laser photolysis of Co(CO){sub 3}NO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Ai; Hayashi, Masato; Harada, Kensuke
2008-10-07
The rotational spectrum of cobalt mononitrosyl (CoNO) produced by ultraviolet photolysis of Co(CO){sub 3}NO was observed in the millimeter-wave region. Seven rotational transitions in the ground state ranging from J=6-5 to 12-11, with hyperfine splittings due to the Co nucleus (I=7/2), were detected in a supersonic jet environment, while higher-frequency transitions in the range from J=29-28 to 35-34 were measured in the ground, {nu}{sub 1}, {nu}{sub 2}, {nu}{sub 3}, and 2{nu}{sub 2} vibrational states using a free-space absorption cell. It was confirmed from the observed spectral pattern that the CoNO molecule has a linear structure with the electronic ground statemore » of {sup 1}{sigma}{sup +} symmetry. The rotational lines in the 2{nu}{sub 2}({sigma}) and {nu}{sub 3} states were observed to be perturbed by Fermi resonance. The equilibrium rotational constant B{sub e} is determined to be 4682.207(15) MHz. The CoN bond length is derived to be 1.5842 A assuming the NO bond length of 1.1823 A. A large nuclear spin-rotation interaction constant, C{sub I}=123.8(11) kHz, was determined, suggesting a {sup 1}{pi} electronic excited state lying close to the ground state.« less
Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
The design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator is presented. The intended applications of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.
Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37-43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.
Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.
Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same
NASA Technical Reports Server (NTRS)
Logan, Ronald T. (Inventor)
1997-01-01
The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.
First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies
NASA Technical Reports Server (NTRS)
Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.;
2008-01-01
Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.
Chirped-Pulse Millimeter-Wave Spectroscopy of Rydberg-Rydberg Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prozument, Kirill; Colombo, Anthony P.; Zhou Yan
2011-09-30
Transitions between Rydberg states of Ca atoms, in a pulsed, supersonic atomic beam, are directly detected by chirped-pulse millimeter-wave spectroscopy. Broadband, high-resolution spectra with accurate relative intensities are recorded instantly. Free induction decay (FID) of atoms, polarized by the chirped pulse, at their Rydberg-Rydberg transition frequencies, is heterodyne detected, averaged in the time domain, and Fourier transformed into the frequency domain. Millimeter-wave transient nutations are observed, and the possibility of FID evolving to superradiance is discussed.
1992-05-31
configuration. 25 We have tested it electronically to 26 GHz and found that the microwave loss is under 10 dB over the entire range. Our initial phase...UNION EFFORT 32 IEEE MICROWAVE AND GUIDED WAVE LETTERS. VOL. I. NO. 2. FEBRUARY 1991 Wide-Band Millimeter Wave Characterization of Sub-0.2 Micrometer...transistors (HEMT’s) ar nra- (over the frequency range of 1-26 GHz) and a network analyzer H ingly replacing GaAs MESFET’s in microwave and rail- als(ove r
Micro and nano devices in passive millimetre wave imaging systems
NASA Astrophysics Data System (ADS)
Appleby, R.
2013-06-01
The impact of micro and nano technology on millimetre wave imaging from the post war years to the present day is reviewed. In the 1950s whisker contacted diodes in mixers and vacuum tubes were used to realise both radiometers and radars but required considerable skill to realise the performance needed. Development of planar semiconductor devices such as Gunn and Schottky diodes revolutionised mixer performance and provided considerable improvement. The next major breakthrough was high frequency transistors based on gallium arsenide which were initially used at intermediate frequencies but later after further development at millimeter wave frequencies. More recently Monolithic Microwave Integrated circuits(MMICs) offer exceptional performance and the opportunity for innovative design in passive imaging systems. In the future the use of micro and nano technology will continue to drive system performance and we can expect to see integration of antennae, millimetre wave and sub millimetre wave circuits and signal processing.
Millimeter and Sub-millimeter High Resolution Spectroscopy: New Frontiers with ALMA
NASA Astrophysics Data System (ADS)
Ziurys, Lucy M.
2016-06-01
It is becoming increasingly clear that new laboratory data will be critical for the next decade of observations with the Atacama Large Millimeter Array (ALMA). The high spatial resolution offered by ALMA will probe new regions of molecular complexity, including the inner envelopes of evolved stars, regions dominated by UV radiation, and the densest cores of molecular clouds. New molecular lines will be discovered in the wide wavelength range covered by the ALMA bands, and high resolution, gas-phase spectroscopy are needed to provide crucial “rest frequencies.” In particular, highly accurate methods that measure millimeter and sub-millimeter rotational transitions, such as direct absorption and Fourier transform mm-wave techniques, are important, especially when coupled to exotic molecular production schemes. Recent ALMA studies of SH+ and larger organic species have already demonstrated the need for laboratory measurements. New laboratory work will likely be required for circumstellar refractory molecules, radicals and ions generated near photon-dominated regions (PDRs), and large, organic-type species. This talk will give an overview of current contributions of laboratory spectroscopy to ALMA observations, summarize relevant spectroscopic techniques, and provide input into future prospects and directions.
PNNL Expert Doug McMakin Discusses Millimeter Wave Technology
McMakin, Doug
2018-02-13
Electrical Engineer Doug McMakin discusses Millimeter Wave Holographic technology, which uses non-harmful, ultrahigh-frequency radio waves to penetrate clothing to detect and identify concealed objects, as well as obtain accurate body measurements.
Enhanced traveling wave amplification of co-planar slow wave structure by extended phase-matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palm, Andrew; Sirigiri, Jagadishwar; Shin, Young-Min, E-mail: yshin@niu.edu
2015-09-15
The electron beam co-propagating with slow waves in a staggered double grating array (SDGA) efficiently amplifies millimeter and sub-millimeter waves over a wide spectrum. Our theoretical and numerical analyses show that the power amplification in the fundamental passband is enhanced by the extended beam-wave phase-matching. Particle-in-cell simulations on the SDGA slow wave structure, designed with 10.4 keV and 50–100 mA sheet beam, indicate that maintaining beam-wave synchronization along the entire length of the circuit improves the gain by 7.3% leading to a total gain of 28 dB, corresponding to 62 W saturated power at the middle of operating band, and a 3-dB bandwidthmore » of 7 GHz with 10.5% at V-band (73.5 GHz center frequency) with saturated peak power reaching 80 W and 28 dB at 71 GHz. These results also show a reasonably good agreement with analytic calculations based on Pierce small signal gain theory.« less
High power broadband millimeter wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1999-05-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
High Power Broadband Millimeter Wave TWTs
NASA Astrophysics Data System (ADS)
James, Bill G.
1998-04-01
In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.
Stimulated Raman scattering of sub-millimeter waves in bismuth
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Tripathi, V. K.
2007-12-01
A high-power sub-millimeter wave propagating through bismuth, a semimetal with non-spherical energy surfaces, parametrically excites a space-charge mode and a back-scattered electromagnetic wave. The free carrier density perturbation associated with the space-charge wave couples with the oscillatory velocity due to the pump to derive the scattered wave. The scattered and pump waves exert a pondermotive force on electrons and holes, driving the space-charge wave. The collisional damping of the decay waves determines the threshold for the parametric instability. The threshold intensity for 20 μm wavelength pump turns out to be ˜2×1012 W/cm2. Above the threshold, the growth rate scales increase with ωo, attain a maximum around ωo=6.5ωp, and, after this, falls off.
Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logani, M.K.; Ziskin, M.C.
1996-02-01
The effect of millimeter waves on lipid peroxidation was studied in the presence and absence of melanin. Irradiation of liposomes with continuous millimeter electromagnetic waves at frequencies of 53.6, 61.2 and 78.2 GHz and incident power densities of 10, 1 and 500 mW/cm{sup 2}, respectively, did not show an enhancement in the formation of lipid peroxides compared to unirradiated samples. Liposomes exposed to 254 nm UVC radiation at 0.32 mW/cm{sup 2} and 302 nm UVB radiation at 1.12 mW/cm{sup 2} served as positive controls. No increment in the formation of lipid peroxides was observed when irradiation of liposomes was carriedmore » out in the presence of ADP-Fe{sup +3} and EDTA-Fe{sup +3}. Direct irradiation of melanin with millimeter waves did not exhibit an increased formation of superoxide or hydrogen peroxide. The present results indicate that millimeter waves of the above frequencies and intensities do not cause lipid peroxidation in liposomal membranes. 19 refs., 2 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi
2015-05-01
In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized, which have ferromagnetic resonant frequencies appearing over the frequency range of 30 GHz to 150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the sol-gel method. The particle sizes are observed to be smaller than 100 nm. In this paper, in-waveguide transmission and reflection method and the free space magneto-optical approach have been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. These techniques enable to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the microwave and millimeter wave frequency range from single set of direct measurements. The complex dielectric permittivity and magnetic permeability spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.
NASA Astrophysics Data System (ADS)
Benedik, Andrey I.; Karetnikova, Tatiana A.; Torgashov, Roman A.; Terentyuk, Artem G.; Rozhnev, Andrey G.; Torgashov, Gennadiy V.; Ryskin, Nikita M.
2018-04-01
Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.
On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Lee, Richard Q.
1998-01-01
The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Yao, Zhoushi; Tan, Qinggui; Li, Yongjun; Chu, Xingchun; Shi, Lei; Zhang, Xi
2012-06-01
We propose a novel approach to generate quadrupling-frequency optical millimeter-wave using a dual-drive Mach-Zehnder modulator (MZM) in radio-over-fiber system. By properly adjusting the phase difference in the two modulation arms of MZM, the direct current (DC) bias, the modulation index and the gain of base-band signal, the quadrupling-frequency optical millimeter-wave with signal only carried by one second-order sideband is generated. As the signal is transmitted along the fiber, there is no time shift of the codes caused by chromatic dispersion. Theoretical analysis and simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical millimeter-wave are transmitted over 110 km and the power penalty is about 0.45 dB after fiber transmission distance of 60 km. Furthermore, due to another second-order sideband carrying no signals, a full duplex radio-over-fiber link based on wavelength reuse is also built to simplify the base station. The bidirectional 2.5 Gbit/s data is successfully transmitted over 40 km standard single mode fiber with less than 0.6 dB power penalty in the simulation.
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.
Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H
2016-01-27
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul
Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa’at, A. S. M.; Ahmad, H.
2016-01-01
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated. PMID:26814621
Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul
NASA Astrophysics Data System (ADS)
Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa'At, A. S. M.; Ahmad, H.
2016-01-01
5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
NASA Technical Reports Server (NTRS)
Kharkovshy, S.; Zoughi, R.; Hepburn, F. L.
2007-01-01
Millimeter wave imaging techniques can provide high spatial-resolution images of various composites. Lens antennas may be incorporated into the imaging system to provide a small incident beam footprint. Another approach may involve the use of horn antennas, which if operating in their near-fields, images with reasonably high spatial-resolutions may also be obtained. This paper gives a comparison between such near-field and focused far-field imaging of the Space Shuttle Spray on Foam Insulation (SOFI) used in its external fuel tank at millimeter wave frequencies. Small horn antennas and lens antennas with relatively long depth of focus were used in this investigation.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a multi-band multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). These studies would enable the design of robust multi-Gbps data rate space-to-ground satellite communication links. Lastly, the architecture for a compact multi-tone beacon transmitter, which includes a high frequency synthesizer, a polarizer, and a conical horn antenna, has been investigated for a notional CubeSat based space-to-ground radio wave propagation experiment.
A millimeter-wave reflection-beam isolator
NASA Technical Reports Server (NTRS)
Kanda, M.; May, W. G.
1975-01-01
A new and simple type of millimeter-wave isolator using a solid-state magnetoplasma in a reflection-beam system is described. Some data are presented showing performance at 94 GHz. Practical considerations indicate that performance should be much closer to ideal at higher frequencies.
NASA Astrophysics Data System (ADS)
Austermann, Jason Edward
One of the primary drivers in the development of large format millimeter detector arrays is the study of sub-millimeter galaxies (SMGs) - a population of very luminous high-redshift dust-obscured starbursts that are widely believed to be the dominant contributor to the Far-Infrared Background (FIB). The characterization of such a population requires the ability to map large patches of the (sub-)millimeter sky to high sensitivity within a feasible amount of time. I present this dissertation on the design, integration, and characterization of the 144-pixel AzTEC millimeter-wave camera and its application to the study of the sub-millimeter galaxy population. In particular, I present an unprecedented characterization of the "blank-field" (fields with no known mass bias) SMG number counts by mapping over 0.5 deg^2 to 1.1mm depths of ~1mJy - a previously unattained depth on these scales. This survey provides the tightest SMG number counts available, particularly for the brightest and rarest SMGs that require large survey areas for a significant number of detections. These counts are compared to the predictions of various models of the evolving mm/sub-mm source population, providing important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation. I also present the results of an AzTEC 0.15 deg^2 survey of the COSMOS field, which uncovers a significant over-density of bright SMGs that are spatially correlated to foreground mass structures, presumably as a result of gravitational lensing. Finally, I compare the results of the available SMG surveys completed to date and explore the effects of cosmic variance on the interpretation of individual surveys.
Millimeter-wave detection using resonant tunnelling diodes
NASA Technical Reports Server (NTRS)
Mehdi, I.; Kidner, C.; East, J. R.; Haddad, G. I.
1990-01-01
A lattice-matched InGaAs/InAlAs resonant tunnelling diode is studied as a video detector in the millimeter-wave range. Tangential signal sensitivity and video resistance measurements are made as a function of bias and frequency. A tangential signal sensitivity of -37 dBm (1 MHz amplifier bandwidth) with a corresponding video resistance of 350 ohms at 40 GHz has been measured. These results appear to be the first millimeter-wave tangential signal sensitivity and video resistance results for a resonant tunnelling diode.
Development of a contrast phantom for active millimeter-wave imaging systems
NASA Astrophysics Data System (ADS)
Barber, Jeffrey; Weatherall, James C.; Brauer, Carolyn S.; Smith, Barry T.
2011-06-01
As the development of active millimeter wave imaging systems continues, it is necessary to validate materials that simulate the expected response of explosives. While physics-based models have been used to develop simulants, it is desirable to image both the explosive and simulant together in a controlled fashion in order to demonstrate success. To this end, a millimeter wave contrast phantom has been created to calibrate image grayscale while controlling the configuration of the explosive and simulant such that direct comparison of their respective returns can be performed. The physics of the phantom are described, with millimeter wave images presented to show successful development of the phantom and simulant validation at GHz frequencies.
NASA Technical Reports Server (NTRS)
Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.
2005-01-01
The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.
Modeling of a Compact Terahertz Source based on the Two-Stream Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svimonishvili, Tengiz
2016-05-17
THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less
Optical generation of millimeter-wave pulses using a fiber Bragg grating in a fiber-optics system.
Ye, Qing; Qu, Ronghui; Fang, Zujie
2007-04-10
A scheme is proposed to transform an optical pulse into a millimeter-wave frequency modulation pulse by using a weak fiber Bragg grating (FBG) in a fiber-optics system. The Fourier transformation method is used to obtain the required spectrum response function of the FBG for the Gaussian pulse, soliton pulse, and Lorenz shape pulse. On the condition of the first-order Born approximation of the weak fiber grating, the relation of the refractive index distribution and the spectrum response function of the FBG satisfies the Fourier transformation, and the corresponding refractive index distribution forms are obtained for single-frequency modulation and linear-frequency modulation millimeter-wave pulse generation. The performances of the designed fiber gratings are also studied by a numerical simulation method for a supershort pulse transmission.
Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert
2017-02-01
In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.
Integrated Millimeter-Wave Frequency Multiplers
NASA Astrophysics Data System (ADS)
Schoenthal, Gerhard S.; Deaver, B. S.; Crowe, T. W.; Bishop, W. L.; Saini, K.; Bradley, R. F.
2001-11-01
Many of the molecules of interest to radio astronomers and atmospheric chemists resonate at frequencies in the millimeter and submillimeter wavelength bands. To measure the spectra of these molecules scientists rely on heterodyne receivers that convert the high frequency signal to the GHz band where it is readily amplified and analyzed. One of the challenges of developing suitable receiver systems is the development of compact, reliable and affordable sources of local oscillator power at frequencies in excess of 100 GHz. One useful solution is to use GaAs Schottky diodes, in their varactor mode, to generate high frequency harmonics of lower frequency sources such as Gunn oscillators. As a part of a multi-national radio astronomy project, the Atacama Millimeter Large Array (ALMA), we have designed and fabricated a broadband frequency tripler with an output centered at 240 GHz. It is integrated on a quartz substrate to greatly reduce the parasitic capacitance and thereby improve electrical performance. The integrated circuit was designed to require no oxides or ohmic contacts, thereby easing fabrication. This talk will discuss the novel millimeter-wave integrated circuit fabrication process and the initial results.
The gyrotron - a natural source of high-power orbital angular momentum millimeter-wave beams
NASA Astrophysics Data System (ADS)
Thumm, M.; Sawant, A.; Choe, M. S.; Choi, E. M.
2017-08-01
Orbital angular momentum (OAM) of electromagnetic-wave beams provides further diversity to multiplexing in wireless communication. The present report shows that higher-order mode gyrotrons are natural sources of high-power OAM millimeter (mm) wave beams. The well-defined OAM of their rotating cavity modes operating at near cutoff frequency has been derived by photonic and electromagnetic wave approaches.
An Airborne Millimeter-Wave FM-CW Radar for Thickness Profiling of Freshwater Ice
1992-11-01
commercial and recreational application, including safety and trafficability surveys. A proto- type broadband millimeter wave (26.5 to 40 GHz) Frequency...and utility for ice safety and traffica- appropriate antenna for transmission. Morey (1974) bility studies. Other important applications include...resolution and a 2.7- which can provide reliable safety survey profiling for GHz center frequency, that is capable of airborne pro- the entire practical
Millimeter Wave Holographical Inspection of Honeycomb Composites
NASA Technical Reports Server (NTRS)
Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.
2007-01-01
Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.
Millimeter Wave Holographical Inspection of Honeycomb Composites
NASA Astrophysics Data System (ADS)
Case, J. T.; Kharkovsky, S.; Zoughi, R.; Steffes, G.; Hepburn, F. L.
2008-02-01
Multi-layered composite structures manufactured with honeycomb, foam, or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites, standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as isband, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz-300 GHz with corresponding wavelengths of 10-1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.
A compendium of millimeter wave propagation studies performed by NASA
NASA Technical Reports Server (NTRS)
Kaul, R.; Rogers, D.; Bremer, J.
1977-01-01
Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.
Advanced radiometric and interferometric milimeter-wave scene simulations
NASA Technical Reports Server (NTRS)
Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.
1993-01-01
Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.
Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert
2017-01-01
In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513
Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E
2014-03-01
Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
Producibility consideration for millimeter-wave transceivers
NASA Astrophysics Data System (ADS)
Seashore, Charles R.
1995-10-01
Considerable progress has been made in the development and demonstration of millimeter wave MMIC technology up to frequencies approaching 100 GHz. The recently completed multiyear, ARPA-sponsored, MIMIC program provided a considerable amount of funding and government-contractor team energy to advance the state-of-art with a number of important GaAs-based transceiver building blocks. Unfortuanely, producibility of millimeter wave MMIC transceiver modules has not been similarly addressed to provide a truly low cost, marketable product. This paper considers the module producibility problem and its various technological implications.
Soghomonyan, Diana; Trchounian, Karen; Trchounian, Armen
2016-06-01
Millimeter waves (MMW) or electromagnetic fields of extremely high frequencies at low intensity is a new environmental factor, the level of which is increased as technology advance. It is of interest that bacteria and other cells might communicate with each other by electromagnetic field of sub-extremely high frequency range. These MMW affected Escherichia coli and many other bacteria, mainly depressing their growth and changing properties and activity. These effects were non-thermal and depended on different factors. The significant cellular targets for MMW effects could be water, cell plasma membrane, and genome. The model for the MMW interaction with bacteria is suggested; a role of the membrane-associated proton FOF1-ATPase, key enzyme of bioenergetic relevance, is proposed. The consequences of MMW interaction with bacteria are the changes in their sensitivity to different biologically active chemicals, including antibiotics. Novel data on MMW effects on bacteria and their sensitivity to different antibiotics are presented and discussed; the combined action of MMW and antibiotics resulted with more strong effects. These effects are of significance for understanding changed metabolic pathways and distinguish role of bacteria in environment; they might be leading to antibiotic resistance in bacteria. The effects might have applications in the development of technique, therapeutic practices, and food protection technology.
NASA Technical Reports Server (NTRS)
Gustafson, T. K.
1982-01-01
Progress is reported in work towards the development of surface wave sources for the infrared and sub-millimeter portion of the spectrum to be based upon electron pumping by tunneling electrons in metal-barrier-metal or metal-barrier-semiconductor devices. Tunneling phenomena and the coupling of radiation to tunnel junctions were studied. The propagation characteristics of surface electro-magnetic modes in metal-insulator-p(++) semiconductor structures as a function of frequency were calculated. A model for the gain process based upon Tucker's formalism was developed and used to estimate what low frequency gain might be expected from such structures. The question of gain was addressed from a more fundamental viewpoint using the method of Lasher and Stern.
Millimeter wave micro-CPW integrated antenna
NASA Astrophysics Data System (ADS)
Tzuang, Ching-Kuang C.; Lin, Ching-Chyuan
1996-12-01
This paper presents the latest result of applying the microstrip's leaky mode for a millimeter-wave active integrated antenna design. In contrast to the use of the first higher-order leaky mode, the second higher-order leaky mode, the second higher-order leaky mode of even symmetry is employed in the new approach, which allows larger dimension for leaky-wave antenna design and thereby reduces its performance sensitivity to the photolithographic tolerance. The new active integrated antenna operating at frequency about 34 GHz comprises of a microstrip and a coplanar waveguide stacked on top of each other, named as the millimeter wave micro-CPW integrated antenna. The feed is through the CPW that would be connected to the active uniplanar millimeter-wave (M)MIC's. Our experimental and theoretical investigations on the new integrated antenna show good input matching characteristics for such a highly directed leaky-wave antenna with the first-pass success.
Majidi-Ahy, Gholamreza; Bloom, David M.
1991-01-01
A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.
Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection
NASA Astrophysics Data System (ADS)
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.
2000-07-01
A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.
Identifying explosives using broadband millimeter-wave imaging
NASA Astrophysics Data System (ADS)
Weatherall, James C.; Yam, Kevin; Barber, Jeffrey; Smith, Barry T.; Smith, Peter R.; Greca, Joseph
2017-05-01
Millimeter wave imaging is employed in Advanced Technology Imaging (AIT) systems to screen personnel for concealed explosives and weapons. AIT systems deployed in airports auto-detect potential threats by highlighting their location on a generic outline of a person using imaging data collected over a range of frequency. We show how the spectral information from the imaging data can be used to identify the composition of an anomalous object, in particular if it is an explosive material. The discriminative value of the technique was illustrated on military sheet explosive using millimeter-wave reflection data at frequencies 18 - 40 GHz, and commercial explosives using 2 - 18 GHz, but the free-space measurement was limited to a single horn with a large-area sample. This work extends the method to imaging data collected at high resolution with a 18 - 40 GHz imaging system. The identification of explosives is accomplished by extracting the dielectric constant from the free-space, multifrequency data. The reflection coefficient is a function of frequency because of propagation effects associated with the material's complex dielectric constant, which include interference from multiple reflections and energy loss in the sample. The dielectric constant is obtained by numerically fitting the reflection coefficient as a function of frequency to an optical model. In principal, the implementation of this technique in standoff imaging systems would allow threat assessment to be accomplished within the scope of millimeter-wave screening.
Bakry, Ahmed
2014-01-01
This paper presents modeling and simulation on the characteristics of semiconductor laser modulated within a strong optical feedback (OFB-)induced photon-photon resonance over a passband of millimeter (mm) frequencies. Continuous wave (CW) operation of the laser under strong OFB is required to achieve the photon-photon resonance in the mm-wave band. The simulated time-domain characteristics of modulation include the waveforms of the intensity and frequency chirp as well as the associated distortions of the modulated mm-wave signal. The frequency domain characteristics include the intensity modulation (IM) and frequency modulation (FM) responses in addition to the associated relative intensity noise (RIN). The signal characteristics under modulations with both single and two mm-frequencies are considered. The harmonic distortion and the third order intermodulation distortion (IMD3) are examined and the spurious free dynamic range (SFDR) is calculated. PMID:25383381
Millimeter wave transmission systems and related devices
NASA Technical Reports Server (NTRS)
Hebert, L. M.
1984-01-01
A survey was made of the state-of-the-art in millimeter (20 GHz to 300 GHz) wave transmission systems and related devices. The survey includes summaries of analytical studies and theoretical results that were obtained for various transmission line structures. This material was supplemented by further analysis where appropriate. The transmission line structures are evaluated in terms of electrical performance, ease of manufacture, usefulness for building other devices and compatibility with solid state devices. Descriptions of waveguide transmission lines which have commonly been used in the microwave frequency range are provided along with special attention given to the problems that these guides face when their use is extended into the millimeter wave range. Also, guides which have been introduced specifically to satisfy the requirements of millimeter wave transmission are discussed in detail.
Material fabrication using acoustic radiation forces
Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ
2015-12-01
Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.
24-71 GHz PCB Array for 5G ISM
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2017-01-01
Millimeter-wave 5G mobile architectures need to consolidate disparate frequency bands into a single, multifunctional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter wave array to operate across six 5G and ISM bands spanning 24-71 GHz. Importantly, the array is realized using low-cost PCB. The paper presents the design and optimized layout, and discusses fabrication and measurements.
Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2017-01-01
Next generation 5G mobile architectures will take advantage of the millimeter-wave spectrum to deliver unprecedented bandwidth. Concurrently, there is a need to consolidate numerous disparate allocations into a single, multi-functional array. Existing arrays are either narrow-band, prohibitively expensive or cannot be scaled to these frequencies. In this paper, we present the first ultra-wideband millimeter-wave array to operate across the six 5G and ISM bands spanning 24-71 GHz. Critically, the array is realized using low-cost PCB. The design concept and optimized layout are presented, and fabrication and measurement considerations are discussed.
Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2016-01-01
This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.
Millimeter wave sensor for monitoring effluents
Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.
1995-01-01
A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.
Millimeter wave generation by relativistic electron beams and microwave-plasma interaction
NASA Astrophysics Data System (ADS)
Kuo, Spencer
1990-12-01
The design and operation of a compact, high power, millimeter wave source (cusptron) has been completed and proven successful. Extensive theoretical analysis of cusptron beam and rf dynamics has been carried out and published. Theory agrees beautifully with experiment. Microwave Bragg scattering due to been achieved by using expanding plasmas to upshift rf signal frequencies.
A Robust Waveguide Millimeter-Wave Noise Source
NASA Technical Reports Server (NTRS)
Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward
2015-01-01
This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.
Investigation of radiant millimeter wave/terahertz radiation from low-infrared signature targets
NASA Astrophysics Data System (ADS)
Aytaç, B.; Alkuş, Ü.; Sivaslıgil, M.; Şahin, A. B.; Altan, H.
2017-10-01
Millimeter (mm) and sub-mm wave radiation is increasingly becoming a region of interest as better methods are developed to detect in this wavelength range. The development of sensitive focal plane array (FPA) architectures as well as single pixel scanners has opened up a new field of passive detection and imaging. Spectral signatures of objects, a long standing area of interest in the Short Wave Infrared (SWIR), Mid-Wave (MWIR) and Long Wave-IR (LWIR) bands can now be assessed in the mm-wave/terahertz (THz) region. The advantage is that this form of radiation is not as adversely affected by poor atmospheric conditions compared to other bands. In this study, a preliminary experiment in a laboratory environment is performed to assess the radiance from targets with low infrared signatures in the millimeter wave/terahertz (THz) band (<1 THz). The goal of this approach is to be able to model the experimental results to better understand the mm-wave/THz signature of targets with low observability in the IR bands.
A superconducting tunnel junction receiver for millimeter-wave astronomy
NASA Technical Reports Server (NTRS)
Pan, S. K.; Kerr, A. R.
1986-01-01
The development and construction of an ultralow noise heterodyne receiver for millimeter wave astronomy is described along with its use for 115.3 GHz Co line observations. The receiver uses a Superconductor-Insulator-Superconductor (SIS) quasiparticle tunnel junction mixer to convert the millimeter wave signal to a microwave intermediate frequency. Experiments aimed at quantitative verification of J. R. Tucker's quantum mixer theory are studied, to see whether it could be used as the basis for the design of a practical receiver. The experimental results were in excellent agreement with the theory, assuming the three frequency approximation. Infinite available gain and negative output resistance were observed for the first time, nonclassical effects which are not seen in conventional diode mixers. Using Tucker's theory, an SIS receiver was then designed and constructed. At 115 GHz, the single sideband receiver noise temperature is 83K, the lowest ever reported in this frequency range. A CO survey toward Cygnus-X region, using this SIS receiver on the Columbia-GISS 4 ft. telescope, is also described.
Astronomers Win Protection for Key Part of Radio Spectrum
NASA Astrophysics Data System (ADS)
2000-06-01
Astronomers using the millimeter-wave region of the radio spectrum have won crucial protection for their science. Dedicated allocations for radio astronomy have been given final approval by the 2,500 delegates to the World Radiocommunication Conference (WRC-00), which recently concluded a month of deliberations in Istanbul, Turkey. Radio services can transmit in these parts of the spectrum as long as they don't hinder astronomers' attempts to catch faint signals from the cosmos. The new allocations represent the culmination of more than three years of cooperative planning by radio astronomers in many countries. Millimeter waves -- high-frequency radio waves -- have come of age as an astronomical tool in the last ten years. They are one of the last technological frontiers for astronomers. WRC-00 has protected for science all the frequencies between 71 and 275 Gigahertz (GHz) that radio astronomers currently use, adding more than 90 GHz of spectrum to the 44 GHz already set aside in this frequency range. As a result, radio astronomy is now allocated most of the frequencies between 71 and 275 GHz that can get through the Earth's atmosphere. "We have formal access to all three atmospheric 'windows', apart from their very edges," said Dr. Tom Gergely of the National Science Foundation, one of the U.S. delegates to WRC-00. The WRC also changed most of the frequencies allocated to satellite downlinks within the 71-275 GHz range to frequencies not used for science. Since no satellites yet operate at these high frequencies, no equipment needs to be altered. "Commercial technologies are just starting to develop above 50 GHz," said Dr. Klaus Ruf, Chairman of the Inter-Union Commission for the Allocation of Frequencies. "The WRC's actions mean that, when they are, radio astronomers should be able to share this part of the spectrum with most terrestrial services." The World Radiocommunication Conference is held every two or three years. Here member countries of the International Telecommunication Union meet to painstakingly parcel out the radio frequency spectrum between radio-based applications such as personal communications, satellite broadcasting, GPS and amateur radio, and the sciences of radio astronomy, earth exploration and deep space research. The WRC also coordinates sharing between services in the same radio bands. WRC decisions are incorporated into the Radio Regulations that govern radio services worldwide. The new spectrum allocations for radio astronomy are the first since 1979. Millimeter-wave astronomy was then in its infancy and many of its needs were not yet known. As astronomers began to explore this region of the spectrum they found spectral lines from many interesting molecules in space. Many of those lines had not fallen into the areas originally set aside for astronomy, but most will be under the new allocations. "It's a win for millimeter-wave science," said Dr. John Whiteoak of the Australia Telescope National Facility, Australian delegate to WRC-00. "This secures its future." The protection is a significant step for both existing millimeter-wave telescopes and new ones such as the Atacama Large Millimeter Array (ALMA) now being planned by a U.S.-European consortium. Even at its isolated site in Chile's Atacama desert, ALMA would be vulnerable to interference from satellite emissions. Sensitive radio astronomy receivers are blinded by these emissions, just as an optical telescope would be by a searchlight. "There is more energy at millimeter and sub-millimeter wavelengths washing through the Universe than there is of light or any other kind of radiation," said ALMA Project Scientist, Dr. Al Wootten of the National Radio Astronomy Observatory. "Imaging the sources of this energy can tell us a great deal about the formation of stars and galaxies, and even planets." "But the Earth's atmosphere isn't very kind to us - it has only a few windows at these frequencies, and not very transparent ones at that. They are easily clogged up. It's very important that we keep them as free as possible from interference." The new spectrum allocations were welcomed by Dr Johannes Andersen, General Secretary of the International Astronomical Union, which represents astronomers worldwide. "Protecting our ability to observe the Universe is the top priority for the International Astronomical Union," he said. "This action shows that international bodies accept the need for environmental emission standards in space as well as on Earth, for the benefit of all."
MIMIC For Millimeter Wave Integrated Circuit Radars
NASA Astrophysics Data System (ADS)
Seashore, C. R.
1987-09-01
A significant program is currently underway in the U.S. to investigate, develop and produce a variety of GaAs analog circuits for use in microwave and millimeter wave sensors and systems. This represents a "new wave" of RF technology which promises to significantly change system engineering thinking relative to RF Architectures. At millimeter wave frequencies, we look forward to a relatively high level of critical component integration based on MESFET and HEMT device implementations. These designs will spawn more compact RF front ends with colocated antenna/transceiver functions and innovative packaging concepts which will survive and function in a typical military operational environment which includes challenging temperature, shock and special handling requirements.
A dual-polarized broadband planar antenna and channelizing filter bank for millimeter wavelengths
NASA Astrophysics Data System (ADS)
O'Brient, Roger; Ade, Peter; Arnold, Kam; Edwards, Jennifer; Engargiola, Greg; Holzapfel, William L.; Lee, Adrian T.; Myers, Michael J.; Quealy, Erin; Rebeiz, Gabriel; Richards, Paul; Suzuki, Aritoki
2013-02-01
We describe the design, fabrication, and testing of a broadband log-periodic antenna coupled to multiple cryogenic bolometers. This detector architecture, optimized here for astrophysical observations, simultaneously receives two linear polarizations with two octaves of bandwidth at millimeter wavelengths. The broad bandwidth signal received by the antenna is divided into sub-bands with integrated in-line frequency-selective filters. We demonstrate two such filter banks: a diplexer with two sub-bands and a log-periodic channelizer with seven contiguous sub-bands. These detectors have receiver efficiencies of 20%-40% and percent level polarization isolation. Superconducting transition-edge sensor bolometers detect the power in each sub-band and polarization. We demonstrate circularly symmetric beam patterns, high polarization isolation, accurately positioned bands, and high optical efficiency. The pixel design is applicable to astronomical observations of intensity and polarization at millimeter through sub-millimeter wavelengths. As compared with an imaging array of pixels measuring only one band, simultaneous measurements of multiple bands in each pixel has the potential to result in a higher signal-to-noise measurement while also providing spectral information. This development facilitates compact systems with high mapping speeds for observations that require information in multiple frequency bands.
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.
1994-12-31
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.
1995-01-01
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Analysis of different sub-carrier allocation of M-ary QAM-OFDM downlink in RoF system
NASA Astrophysics Data System (ADS)
Shao, Yu-feng; Chen, Luo; Wang, An-rong; Zhao, Yun-jie; Long, Ying; Ji, Xing-ping
2018-01-01
In this paper, the performance of a 60 GHz radio over fiber (RoF) system with 4/16/64 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) downstream signals is studied. Delivery of 10 Gbit/s M-ary QAM (MQAM) OFDM signals through the 20-km-long single-mode fiber (SMF) is complicated in terms of intensity modulation and direct detection (IM/DD). Using self-homodyne method, the beating of two independent light waves generating the millimeter-wave at the photodetector can be down-converted to baseband in the electrical domain. Meanwhile, three kinds of sub-carrier arrangement schemes are compared and discussed, and the simulation results show that lower peak-to-average power ratio ( PAPR) can be obtained adopting the adjacent scheme. At bit error rate ( BER) of 10-3, the receiver sensitivity using 4QAM-OFDM sub-carrier signal is almost enhanced by 4 dB and 9 dB compared with those of 16QAM-OFDM signal and 64QAM-OFDM signal.
NASA Astrophysics Data System (ADS)
Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain
2011-05-01
Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.
Precise Millimeter-Wave Laboratory Frequencies for CS and C34S
NASA Astrophysics Data System (ADS)
Gottlieb, C. A.; Myers, P. C.; Thaddeus, P.
2003-05-01
Nine successive rotational lines in the ground vibrational state of CS and C34S between 96 GHz (J=2-1) and 500 GHz (10-9) were measured in the laboratory to an accuracy of a few kHz. When our measurements are combined with the submillimeter-wave measurements of Ahrens & Winnewisser, the entire rotational spectrum of both isotopic species is predicted to an accuracy of about 1 part in 108 up to 500 GHz and 5 parts in 108 near 1000 GHz. These frequencies should be useful for quantitative studies of cloud core collapse and star formation in the millimeter- and submillimeter-wave bands.
Effects of Different Types of Burn Wounds and its Dressings on Millimeter-Wave Images
NASA Astrophysics Data System (ADS)
Daniel, Oppelt; Patrick, Korf; Julian, Adametz; Jannis, Groh; Martin, Vossiek; Kristina, Zhuravleva; Ole, Goertz
2018-03-01
Millimeter-wave imaging is a promising technology for diagnosing skin burns, that may make it easier to assess and determine the burn depth in the near future. However, up to now, it has not yet been brought to clinical use due to the lack of clinical trails on patients and a millimeter-wave-aided classification of skin burns. In this paper, in a preliminary step, ex-vivo burned porcine skin is utilized to visualize and quantify skin that has been burned in different ways, and to access its effect on millimeter-wave images. For the first time, a 24 hour study of in-vivo human skin visualizes the effect of wound dressings using a fast imaging system operating at frequencies from 70 to 80 GHz. For validation, the effective relative permittivity of the skin and the dressings are measured using a open-ended coaxial probe. An analytical model is applied to calculate the reflection coefficient which are compared to the intensity of the millimeter-wave images to validate the model.
Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization
NASA Technical Reports Server (NTRS)
Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.
1999-01-01
Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses tha_ may not be important in longer wavelength designs. This paper describes the design of multi-bandwidth filters operating in the I-5 micrometer wavelength range. This work follows on previous design [1,2]. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using micro-lithographic techniques and used ir spectral imaging applications will be presented.
Multi-Bandwidth Frequency Selective Surfaces for Near Infrared Filtering: Design and Optimization
NASA Technical Reports Server (NTRS)
Cwik, Tom; Fernandez, Salvador; Ksendzov, A.; LaBaw, Clayton C.; Maker, Paul D.; Muller, Richard E.
1998-01-01
Frequency selective surfaces are widely used in the microwave and millimeter wave regions of the spectrum for filtering signals. They are used in telecommunication systems for multi-frequency operation or in instrument detectors for spectroscopy. The frequency selective surface operation depends on a periodic array of elements resonating at prescribed wavelengths producing a filter response. The size of the elements is on the order of half the electrical wavelength, and the array period is typically less than a wavelength for efficient operation. When operating in the optical region, diffraction gratings are used for filtering. In this regime the period of the grating may be several wavelengths producing multiple orders of light in reflection or transmission. In regions between these bands (specifically in the infrared band) frequency selective filters consisting of patterned metal layers fabricated using electron beam lithography are beginning to be developed. The operation is completely analogous to surfaces made in the microwave and millimeter wave region except for the choice of materials used and the fabrication process. In addition, the lithography process allows an arbitrary distribution of patterns corresponding to resonances at various wavelengths to be produced. The design of sub-millimeter filters follows the design methods used in the microwave region. Exacting modal matching, integral equation or finite element methods can be used for design. A major difference though is the introduction of material parameters and thicknesses that may not be important in longer wavelength designs. This paper describes the design of multi- bandwidth filters operating in the 1-5 micrometer wavelength range. This work follows on a previous design. In this paper extensions based on further optimization and an examination of the specific shape of the element in the periodic cell will be reported. Results from the design, manufacture and test of linear wedge filters built using microlithographic techniques and used in spectral imaging applications will be presented.
Understanding the variation in the millimeter-wave emission of Venus
NASA Technical Reports Server (NTRS)
Fahd, Antoine K.; Steffes, Paul G.
1992-01-01
Recent observations of the millimeter-wave emission from Venus at 112 GHz (2.6 mm) have shown significant variations in the continuum flux emission that may be attributed to the variability in the abundances of absorbing constituents in the Venus atmosphere. Such constituents include gaseous H2SO4, SO2, and liquid sulfuric acid (cloud condensates). Recently, Fahd and Steffes have shown that the effects of liquid H, SO4, and gaseous SO2 cannot completely account for this measured variability in the millimeter-wave emission of Venus. Thus, it is necessary to study the effect of gaseous H2SO4 on the millimeter-wave emission of Venus. This requires knowledge of the millimeter-wavelength (MMW) opacity of gaseous H2SO4, which unfortunately has never been determined for Venus-like conditions. We have measured the opacity of gaseous H2SO4 in a CO2 atmosphere at 550, 570, and 590 K, at 1 and 2 atm total pressure, and at a frequency of 94.1 GHz. Our results, in addition to previous centimeter-wavelength results are used to verify a modeling formalism for calculating the expected opacity of this gaseous mixture at other frequencies. This formalism is incorporated into a radiative transfer model to study the effect of gaseous H2SO4 on the MMW emission of Venus.
NASA Astrophysics Data System (ADS)
Birch, James R.; Parker, Terence J.
Papers presented in these proceedings are grouped under the topics of FEL, detectors and sources, gas lasers, spectroscopy, windows for high-power applications, scattering, plasma diagnostics, waveguides, gyrotron, quasi-optical components, biological effects of IR and millimeter waves, and astronomical and atmospheric systems. Particular attention is given to the ENEA compact millimeter wave FEL, excitonic detectors of IR and submm waves, identification of submm CD2O lines, a two-frequency quasi-optical radiospectrometer for substance investigations, the effect of window tolerances on gyrotron performance, and analysis of scattering of the open resonator field from the cavity-backed aperture. Other papers are on submm laser interferometer-polarimeter for plasma diagnostics, the characteristics of the closed circular groove guide, a kW sixth-harmonic gyrofrequency multiplier, rugged FIR bandpass filters, millimeter waves and quantum medicines, and a horizontal atmospheric temperature sounder based on the 60-GHz oxygen absorptions.
High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.
Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua
2013-02-15
We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.
A practical double-sided frequency selective surface for millimeter-wave applications
NASA Astrophysics Data System (ADS)
Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook
2018-02-01
Analysis, design, and implementation of a practical, high-rejection frequency selective surface (FSS) are presented in this paper. An equivalent circuit model is introduced for predicting the frequency response of the FSS. The FSS consists of periodic square loop structures fabricated on both sides of the thin dielectric substrate by using the low-cost chemical etching technique. The proposed FSS possesses band-stop characteristics and is implemented to suppress the 170 GHz signal with attenuation of more than 45 dB with insensitivity to an angle of incident plane wave over 20°. Good agreement is observed among calculated, simulated, and measured results. The proposed FSS filter can be used in various millimeter-wave applications such as the protection of imaging diagnostic systems from high spurious input power.
Limits on Arcminute-Scale Cosmic Microwave Background Anisotropy at 28.5 GHz
NASA Technical Reports Server (NTRS)
Holzapfel, W. L.; Carlstrom, J. E.; Grego, L.; Holder, G.; Joy, M.; Reese, E. D.
2000-01-01
We have used the Berkeley-Illinois-Maryland Association (BIMA) millimeter array outfitted with sensitive centimeter-wave receivers to search for cosmic microwave background (CMB) anisotropies on arcminute scales. The interferometer was placed in a compact configuration that produces high brightness sensitivity, while providing discrimination against point sources. Operating at a frequency of 28.5 GHz, the FWHM primary beam of the instrument is approximately 6'.6. We have made sensitive images of seven fields, four of which where chosen specifically to have low infrared dust contrast and to be free of bright radio sources. Additional observations with the Owens Valley Radio Observatory (OVRO) millimeter array were used to assist in the location and removal of radio point sources. Applying a Bayesian analysis to the raw visibility data, we place limits on CMB anisotropy flat-band power of Q(sub flat) = 5.6(sub -5.6)(exp 3.0) microK and Q(sub flat) < 14.1 microK at 68% and 95% confidence, respectively. The sensitivity of this experiment to flat-band power peaks at a multipole of I = 5470, which corresponds to an angular scale of approximately 2'. The most likely value of Q(sub flat) is similar to the level of the expected secondary anisotropies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Zhen; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang
2016-04-15
An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM{sub 01}. The existence of TM{sub 01} mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension ofmore » coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.« less
Design and development of a multifunction millimeter wave sensor
NASA Astrophysics Data System (ADS)
Nadimi, Sayyid Abdolmajid
1998-11-01
The millimeter-wave (MMW) spectrum (30-300 GHz) offers a unique combination of features that are advantageous when retrieving information about the environment. Due to small wavelengths involved, physically small antennas may be used to obtain very high gains (>50 dB) and resulting high spatial resolutions. Moreover, some features have scattering and emission behaviors that are more sensitive at MMW wavelengths than at microwave wavelengths. Examples include, water vapor (H2O). fog, haze, clouds, ozone (O 3) molecules, and chlorine monoxide (ClO) have rotational spectra in this region. The 75-110 GHz (W-band) atmospheric window is relatively quiet, and it can supply spectral information that can be useful in identifying and quantifying pollutants. Information such as the size and concentration of particulate pollutants can be obtained using radar techniques at W-band. Although there have been some activities at millimeter wave frequencies over very narrow bandwidths, there is a great need for wider bandwidth instruments for studying scattering and emission behaviors. To address this need and provide a versatile system for laboratory studies of electromagnetic phenomena at millimeter-wave frequencies, a multifunctionmillimeter- wave sensor has been designed and developed. This instrument is an active/passive wide band sensor operating in the 75-110 GHz region of the millimeter wave spectrum in four primary modes: (1)As a spectrometer measuring absorption over the entire 75-110 GHz region. (2)As a radiometer measuring blackbody emissions over the entire 75-110 GHz region. (3)As a pulse radar over a 500 MHz bandwidth centered around 93.1 GHz with a peak power of 200 mW. (4)As a step frequency radar when used in combination with a network analyzer over selected 9 GHz bandwidth segments (75-84, 84-93, 93-102, and 102-110) of the 75-110 GHz region. Measurements were performed on two volume fraction (15% and 20%) dense random media targets using this system. The results for backscattering and transmission measurements are presented for both targets for the frequencies from 95.1 to 110.1 GHz.
Advanced Millimeter-Wave Imaging Enhances Security Screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-01-12
Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.
Advanced Millimeter-Wave Security Portal Imaging Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-04-01
Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surin, L. A., E-mail: surin@ph1.uni-koeln.de; Institute of Spectroscopy, Russian Academy of Sciences, Fizicheskaya Str. 5, 142190 Troitsk, Moscow; Potapov, A.
2015-03-21
The rotational spectrum of the van der Waals complex NH{sub 3}–CO has been measured with the intracavity OROTRON jet spectrometer in the frequency range of 112–139 GHz. Newly observed and assigned transitions belong to the K = 0–0, K = 1–1, K = 1–0, and K = 2–1 subbands correlating with the rotationless (j{sub k}){sub NH3} = 0{sub 0} ground state of free ortho-NH{sub 3} and the K = 0–1 and K = 2–1 subbands correlating with the (j{sub k}){sub NH3} = 1{sub 1} ground state of free para-NH{sub 3}. The (approximate) quantum number K is the projection of themore » total angular momentum J on the intermolecular axis. Some of these transitions are continuations to higher J values of transition series observed previously [C. Xia et al., Mol. Phys. 99, 643 (2001)], the other transitions constitute newly detected subbands. The new data were analyzed together with the known millimeter-wave and microwave transitions in order to determine the molecular parameters of the ortho-NH{sub 3}–CO and para-NH{sub 3}–CO complexes. Accompanying ab initio calculations of the intermolecular potential energy surface (PES) of NH{sub 3}–CO has been carried out at the explicitly correlated coupled cluster level of theory with single, double, and perturbative triple excitations and an augmented correlation-consistent triple zeta basis set. The global minimum of the five-dimensional PES corresponds to an approximately T-shaped structure with the N atom closest to the CO subunit and binding energy D{sub e} = 359.21 cm{sup −1}. The bound rovibrational levels of the NH{sub 3}–CO complex were calculated for total angular momentum J = 0–6 on this intermolecular potential surface and compared with the experimental results. The calculated dissociation energies D{sub 0} are 210.43 and 218.66 cm{sup −1} for ortho-NH{sub 3}–CO and para-NH{sub 3}–CO, respectively.« less
The Millimeter Sky Transparency Imager (MiSTI)
NASA Astrophysics Data System (ADS)
Tamura, Yoichi; Kawabe, Ryohei; Kohno, Kotaro; Fukuhara, Masayuki; Momose, Munetake; Ezawa, Hajime; Kuboi, Akihito; Sekiguchi, Tomohiko; Kamazaki, Takeshi; Vila-Vilaró, Baltasar; Nakagawa, Yuki; Okada, Norio
2011-04-01
The Millimeter Sky Transparency Imager (MiSTI) is a small millimeter-wave scanning telescope with a 25-cm diameter dish operating at 183 GHz. MiSTI is installed at Atacama, Chile, and it measures emission from atmospheric water vapor and its fluctuations to estimate atmospheric absorption in the millimeter to submillimeter range. MiSTI observes the water vapor distribution at a spatial resolution of 0.°5, and it is sensitive enough to detect an excess path length of lesssim0.05 mm for an integration time of 1 s. By comparing the MiSTI measurements with those by a 220 GHz tipper, we validated that the 183 GHz measurements of MiSTI are correct, down to the level of any residual systematic errors in the 220 GHz measurements. Since 2008, MiSTI has provided real-time (every 1 hr) monitoring of the all-sky opacity distribution and atmospheric transmission curves in the (sub)millimeter through the internet, allowing us to know the (sub)millimeter sky conditions at Atacama.
Study of transmission line attenuation in broad band millimeter wave frequency range.
Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F
2013-10-01
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.
Open nonradiative cavities as millimeter wave single-mode resonators
NASA Astrophysics Data System (ADS)
Annino, G.; Cassettari, M.; Martinelli, M.
2005-06-01
Open single-mode metallic cavities operating in nonradiative configurations are proposed and demonstrated. Starting from well-known dielectric resonators, possible nonradiative cavities have been established; their behavior on the fundamental TE011 mode has been predicted on the basis of general considerations. As a result, very efficient confinement properties are expected for a wide variety of open structures having rotational invariance. Test cavities realized having in mind practical millimeter wave constraints have been characterized at microwave frequencies. The obtained results confirm the expected high performances on widely open configurations. A possible excitation of the proposed resonators exploiting their nonradiative character is discussed, and the resulting overall ease of realization enlightened in view of millimeter wave employments.
RF to millimeter wave integration and module technologies
NASA Astrophysics Data System (ADS)
Vähä-Heikkilä, T.
2015-04-01
Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2017-03-01
We have proposed and demonstrated a scheme to generate a frequency-sextupling amplitude shift keying (ASK)-single sideband optical millimeter (mm)-wave signal with high dispersion tolerance based on an optical phase modulator (PM) by ably using the-4th-order and +2nd-order sidebands of the optical modulation. The ASK radio frequency signal, superposed by a local oscillator with the same frequency, modulates the lightwave via an optical PM with proper voltage amplitudes, the +2nd-order sideband carries the ASK signal with a constant slope while the -4th-order sideband maintains constant amplitude. These two sidebands can be abstracted by a wavelength selective switch to form a dual-tone optical mm-wave with only one tone carrying the ASK signal. As only one tone bears the ASK signal while the other tone is unmodulated, the generated dual-tone optical mm-wave signal has high dispersion tolerance.
Millimeter-wave reflectometry for electron density profile and fluctuation measurements on NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, S.; Nguyen, X. V.; Peebles, W. A.
2001-01-01
A millimeter-wave reflectometry system for electron density profile and fluctuation measurements is being developed and installed on the National Spherical Torus Experiment. The initial frequency coverage will be in the bands 12--18, 20--32, and 33--50 GHz, provided by frequency-tunable solid-state sources. These frequencies correspond to O-mode cutoff densities ranging from 1.8x10{sup 12} to 3.1x10{sup 13}cm{sup -3}, which will span both the plasma core ({rho}=r/a<0.8) and edge ({rho}>0.8) regions. Operated as a broadband swept-frequency (frequency-modulated continuous-wave) reflectometer, the diagnostic is expected to provide routine (shot-to-shot) time- ({<=}50 {mu}s) and spatially resolved ({approx}1 cm) density profiles. The previous hardware can be easilymore » reconfigured as a fixed-frequency reflectometer for density fluctuation measurements. The combination of measurements would be valuable for studying phenomena such as possible L- to H-mode transitions and edge-localized modes.« less
NASA Astrophysics Data System (ADS)
Tryon, Gary V.
2008-04-01
In the wake of the September 11, 2001 terrorist attack on America, our security and defense industry was instantly tasked with delivering technologies that could be used to help prevent future terrorist activities. The general public world wide is asking for solutions that will foster a safe society and travel environment. Our best defenses rest in our talents within a free open society to prevent dangerous individuals from boarding planes, entering buildings, courthouses, transportations hubs and military bases with weapons capable of causing damage and bodily harm in the first place. Passive millimeter wave (PMMW) whole body imaging systems are based upon the principle that every physical entity emits, reflects, and/or absorbs electromagnetic energy. The term "passive" means that this approach does not bombard the test subject with energy radiation to further induce the discovery of hidden objects. PMMW whole body imaging systems focus on the human body's natural emission and reflection of millimeter wavelength energy. In physics, "millimeter waves" (MMW) are defined as extremely high-frequency (30-300 GHz) electromagnetic oscillations. On the electromagnetic spectrum these waves are just larger than infrared waves, but smaller than radio waves. The wavelength of a MMW is between 1 millimeter and 10 millimeters. That is approximately the thickness of a large paperclip up to the diameter of an "AAA" battery.
Research in millimeter wave techniques
NASA Technical Reports Server (NTRS)
Mcmillan, R. W.
1978-01-01
During the past six months, efforts on this project have been devoted to: (1) continuation of construction and testing of a 6 GHz subharmonic mixer model with extension of the pumping frequency of this mixer to omega sub s/4, (2) construction of a 183 GHz subharmonic mixer based on the results of tests on this 6 GHz model, (3) ground-based radiometric measurements at 183 GHz, (4) fabrication and testing of wire grid interferometers, (5) calculations of reflected and lost power in these interferometers, and (6) calculations of the antenna temperature due to water vapor to be expected in down-looking radiometry as a function of frequency. Significant events during the past six months include: (1) Receipt of a 183 GHz single-ended fundamental mixer, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model by using a 1.5 GHz (omega sub s/4) pump frequency, (3) additional ground-based radiometric measurements and (4) derivation of equations for reflection and loss for wire grid interferometers.
Millimeter and submillimeter wave spectroscopy of propanal
NASA Astrophysics Data System (ADS)
Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan
2017-12-01
The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.
High power water load for microwave and millimeter-wave radio frequency sources
Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.
1999-01-01
A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.
Zhou, Wen; Li, Xinying; Yu, Jianjun
2017-10-30
We propose QPSK millimeter-wave (mm-wave) vector signal generation for D-band based on balanced precoding-assisted photonic frequency quadrupling technology employing a single intensity modulator without an optical filter. The intensity MZM is driven by a balanced pre-coding 37-GHz QPSK RF signal. The modulated optical subcarriers are directly sent into the single ended photodiode to generate 148-GHz QPSK vector signal. We experimentally demonstrate 1-Gbaud 148-GHz QPSK mm-wave vector signal generation, and investigate the bit-error-rate (BER) performance of the vector signals at 148-GHz. The experimental results show that the BER value can be achieved as low as 1.448 × 10 -3 when the optical power into photodiode is 8.8dBm. To the best of our knowledge, it is the first time to realize the frequency-quadrupling vector mm-wave signal generation at D-band based on only one MZM without an optical filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.
2013-06-12
Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The lateral resolution, depth resolution, clothing penetration, and image illumination quality obtained from next-generation systems can be significantly enhanced through the selection the aperture size, antenna beamwidth, center frequency, and bandwidth. In this paper, the results of an extensive imaging trade study are presented using both planar and cylindrical three-dimensional imaging techniques at frequency ranges of 10-20 GHz, 10 – 40 GHz, 40 – 60 GHz, and 75 – 105 GHz
NASA Astrophysics Data System (ADS)
Weatherall, James C.; Barber, Jeffrey; Smith, Barry T.
2015-05-01
A method for extracting dielectric constant from free-space 18 - 40 GHz millimeter-wave reflection data is demonstrated. The reflection coefficient is a function of frequency because of propagation effects, and numerically fitting data to a theoretical model based on geometric optics gives a solution for the complex dielectric constant and target thickness. The discriminative value is illustrated with inert substances and military sheet explosive. In principle, the measurement of reflectivity across multiple frequencies can be incorporated into Advanced Imaging Technology (AIT) systems to automatically identify the composition of anomalies detected on persons at screening checkpoints.
A Practical Millimeter-Wave Holographic Imaging System with Tunable IF Attenuator
NASA Astrophysics Data System (ADS)
Zhu, Yu-Kun; Yang, Ming-Hui; Wu, Liang; Sun, Yun; Sun, Xiao-Wei
2017-10-01
A practical millimeter-wave (mmw) holographic imaging system with tunable intermediate frequency (IF) attenuator has been developed. It can be used for the detection of concealed weapons at security checkpoints, especially the airport. The system is utilized to scan the passenger and detect the weapons hidden in the clothes. To reconstruct the three dimensions (3-D) image, a holographic mmw imaging algorithm based on aperture synthesis and back scattering is presented. The system is active and works at 28-33 GHz. Tunable IF attenuator is applied to compensate the intensity and phase differences between multi-channels and multi-frequencies.
NASA Technical Reports Server (NTRS)
Allen, Kenneth C.
1988-01-01
Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.
Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond
NASA Astrophysics Data System (ADS)
Austermann, J. E.; Beall, J. A.; Bryan, S. A.; Dober, B.; Gao, J.; Hilton, G.; Hubmayr, J.; Mauskopf, P.; McKenney, C. M.; Simon, S. M.; Ullom, J. N.; Vissers, M. R.; Wilson, G. W.
2018-05-01
Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ˜ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10^5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.
NASA Astrophysics Data System (ADS)
Apponi, A. J.; Sun, M.; Halfen, D. T.; Ziurys, L. M.; Müller, H. S. P.
2008-02-01
The pure rotational spectrum of the lowest energy (anti-) conformer of ethylamine (CH3CH2NH2) has been measured in the frequency range of 10-270 GHz. The spectrum was recorded using both millimeter-wave absorption spectroscopy and Fourier transform microwave (FTMW) techniques. Ten rotational transitions of this molecule were recorded in the frequency range of 10-40 GHz using FTMW methods, resulting in the assignment of 53 quadrupole-resolved hyperfine lines; in the millimeter-wave region (48-270 GHz), nearly 600 transitions were assigned to the ground (anti-) state. The amine group in CH3CH2NH2 undergoes inversion, resulting in a doubling that is frequently small and most apparent in the low-frequency K-doubling transitions. In addition, seemingly random rotational levels of this molecule were found to be significantly perturbed. The cause of these perturbations is presently uncertain, but torsion-rotation interactions with the higher lying gauche conformers seem to be a likely explanation. An astronomical search was conducted for ethylamine toward Sgr B2(N) using the Kitt Peak 12 m antenna and the Sub-Millimeter Telescope (SMT) of the Arizona Radio Observatory. Frequencies of 70 favorable rotational transitions were observed in this search, which covered the range 68-263 GHz. Ethylamine was not conclusively detected in Sgr B2(N), with an upper limit to the column density of (1-8) × 1013 cm-2 with f(CH3CH2NH2/H2) ~ (0.3-3) × 10-11, assuming a rotational temperature of 50-220 K. These observations indicate a gas-phase CH3CH2NH2/CH3NH2 ratio of <0.001-0.01, in contrast to the nearly equal ratio suggested by the acid hydrolysis of cometary solids from the Stardust mission.
Millimeter wave front-end figure of merit, part 2
NASA Astrophysics Data System (ADS)
Silberman, Gabriel G.
1995-09-01
This report presents a practical approach for defining and calculating a meaningful figure of merit for frequency modulated continuous wave radar systems with separate receive and transmit (bistatic) antennas.
NASA Technical Reports Server (NTRS)
Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.
Millimeter-Wave GaN MMIC Integration with Additive Manufacturing
NASA Astrophysics Data System (ADS)
Coffey, Michael
This thesis addresses the analysis, design, integration and test of microwave and millimeter-wave monolithic microwave integrated circuits (MMIC or MMICs). Recent and ongoing progress in semiconductor device fabrication and MMIC processing technology has pushed the upper limit in MMIC frequencies from millimeter-wave (30-300 GHz) to terahertz (300-3000 GHz). MMIC components operating at these frequencies will be used to improve the sensitivity and performance of radiometers, receivers for communication systems, passive remote sensing systems, transceivers for radar instruments and radio astronomy systems. However, a serious hurdle in the utilization of these MMIC components, and a main topic presented in this thesis, is the development and reliable fabrication of practical packaging techniques. The focus of this thesis is the investigation of first, the design and analysis of microwave and millimeter-wave GaN MMICs and second, the integration of those MMICs into usable waveguide components. The analysis, design and testing of various X-band (8-12 GHz) thru H-band (170-260 GHz) GaN MMIC power amplifier (PA or PAs), including a V-band (40-75 GHz) voltage controlled oscillator, is the majority of this work. Several PA designs utilizing high-efficiency techniques are analyzed, designed and tested. These examples include a 2nd harmonic injection amplifier, a Class-E amplifier fabricated with a GaN-on-SiC 300 GHz fT process, and an example of the applicability of supply-modulation with a Doherty power amplifier, all operating at 10 GHz. Two H-band GaN MMIC PAs are designed, one with integrated CPW-to-waveguide transitions for integration. The analysis of PA stability is especially important for wideband, high- fT devices and a new way of analyzing stability is explored and experimentally validated. Last, the challenges of integrating MMICs operating at millimeter-wave frequencies are discussed and assemblies using additive and traditional manufacturing are demonstrated.
Millimeter-wave monolithic diode-grid frequency multiplier
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.
Ground station hardware for the ATS-F millimeter wave experiment
NASA Technical Reports Server (NTRS)
Duffield, T. L.
1973-01-01
The results are presented of a program to design, fabricate, test, and install a primary ATS-F millimeter wave ground receiving station. Propagation parameters at millimeter waves are discussed along with the objective of the overall experiment. A general description is given of the receiving system and its function in the experiment. Typical receiver characteristics are presented which show that the experiment is entirely feasible from a link SNR standpoint. The receiving system hardware designs are discussed with separate treatment given to the propagation and the radiometer receiver designs. The modification and relocation are described of an existing 15-ft antenna to meet the ATS-F requirements. The design of a dual frequency feed subsystem and self calibration equipment is included.
Integrated focal plane arrays for millimeter-wave astronomy
NASA Astrophysics Data System (ADS)
Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas
2002-02-01
We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .
Yang, L G; Sung, J Y; Chow, C W; Yeh, C H; Cheng, K T; Shi, J W; Pan, C L
2014-10-20
We demonstrate experimentally Manchester (MC) coding based W-band (75 - 110 GHz) radio-over-fiber (ROF) system to reduce the low-frequency-components (LFCs) signal distortion generated by two independent low-cost lasers using spectral shaping. Hence, a low-cost and higher performance W-band ROF system is achieved. In this system, direct-beating of two independent low-cost CW lasers without frequency tracking circuit (FTC) is used to generate the millimeter-wave. Approaches, such as delayed self-heterodyne interferometer and heterodyne beating are performed to characterize the optical-beating-interference sub-terahertz signal (OBIS). Furthermore, W-band ROF systems using MC coding and NRZ-OOK are compared and discussed.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee N.
2014-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from two dissimilar waveguides is capable of isolating the power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT). In addition to accurate power measurements at harmonic frequencies, a potential application of the MDC is in the design of a beacon source for atmospheric propagation studies at millimeter-wave frequencies.
Guzmán, R; Carpintero, G; Gordon, C; Orbe, L
2016-10-15
We demonstrate and compare two different photonic-based signal sources for generating the carrier wave in a wireless communication link operating in the millimeter-wave range. The first signal source uses the optical heterodyne technique to generate a 113 GHz carrier wave frequency, while the second employs a different technique based on a pulsed mode-locked source with 100 GHz repetition rate frequency. The two optical sources were fabricated in a multi-project wafer run from an active/passive generic integration platform process using standardized building blocks, including multimode interference reflectors which allow us to define the structures on chip, without the need for cleaved facet mirrors. We highlight the superior performance of the mode-locked sources over an optical heterodyne technique. Error-free transmission was achieved in this experiment.
Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo
2017-04-15
This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.
Numerical modeling of heat and mass transfer in the human eye under millimeter wave exposure.
Karampatzakis, Andreas; Samaras, Theodoros
2013-05-01
Human exposure to millimeter wave (MMW) radiation is expected to increase in the next several years. In this work, we present a thermal model of the human eye under MMW illumination. The model takes into account the fluid dynamics of the aqueous humor and predicts a frequency-dependent reversal of its flow that also depends on the incident power density. The calculated maximum fluid velocity in the anterior chamber and the temperature rise at the corneal apex are reported for frequencies from 40 to 100 GHz and different values of incident power density. Copyright © 2013 Wiley Periodicals, Inc.
Study of transmission line attenuation in broad band millimeter wave frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.
2013-10-15
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less
Millimeter wave attenuation prediction using a piecewise uniform rain rate model
NASA Technical Reports Server (NTRS)
Persinger, R. R.; Stutzman, W. L.; Bostian, C. W.; Castle, R. E., Jr.
1980-01-01
A piecewise uniform rain rate distribution model is introduced as a quasi-physical model of real rain along earth-space millimeter wave propagation paths. It permits calculation of the total attenuation from specific attenuation in a simple fashion. The model predications are verified by comparison with direct attenuation measurements for several frequencies, elevation angles, and locations. Also, coupled with the Rice-Holmberg rain rate model, attenuation statistics are predicated from rainfall accumulation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina
2015-06-10
The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hfmore » splittings in astronomical spectra has been discussed.« less
NASA Astrophysics Data System (ADS)
Poojali, Jayaprakash; Ray, Shaumik; Pesala, Bala; Chitti, Krishnamurthy V.; Arunachalam, Kavitha
2016-10-01
A substrate-backed frequency selective surface (FSS) is presented for diplexing the widely separated frequency spectrum centered at 55, 89, and 183 GHz with varying bandwidth for spatial separation in the quasi-optical feed network of the millimeter wave sounder. A unit cell composed of a crossed dipole integrated with a circular ring and loaded inside a square ring is optimized for tri-band frequency response with transmission window at 89 GHz and rejection windows at 55 and 183 GHz. The reflection and transmission losses predicted for the optimized unit cell (728 μm × 728 μm) composed of dissimilar resonant shapes is less than 0.5 dB for transverse electric (TE) and transverse magnetic (TM) polarizations and wide angle of incidence (0°-45°). The FSS is fabricated on a 175-μm-thick quartz substrate using microfabrication techniques. The transmission characteristics measured with continuous wave (CW) terahertz transmit receive system are in good agreement with the numerical simulations.
NASA Astrophysics Data System (ADS)
Rappaport, Theodore S.; Xing, Yunchou; MacCartney, George R.; Molisch, Andreas F.; Mellios, Evangelos; Zhang, Jianhua
2017-12-01
This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5-100 GHz range.
Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin
2015-11-10
A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal.
A novel optical millimeter-wave signal generation approach to overcome chromatic dispersion
NASA Astrophysics Data System (ADS)
Liang, Dong; Jiang, Wei; Tan, Qinggui; Zhu, Zhongbo; Liu, Feng
2014-06-01
In this paper, a novel frequency octupling approach for optical millimeter-wave signal generation to overcome chromatic dispersion is proposed and demonstrated. The frequency octupling mm-wave with the baseband signal carried only by -4th order sideband is generated by properly adjusting a series of parameters, which are the modulation constant, the gain of baseband signal, the direct current bias and the different phase of the modulation arms. As the optical millimeter-wave signal is transmitted along the fiber, there is no time shift caused by chromatic dispersion. Theoretical analyses and simulated results show that when the optical mm-wave carrying 2.5 Gbps baseband signal transmits a distance of over 110 km, the eye diagram still keeps open and clear. The power penalty is about 0.4 dB after the optical signal transmits over 40 km. In additions, given the +4th order sideband carries no data, a full-duplex RoF link based on wavelength reuse is built for the uplink. The bidirectional 2.5 Gbps baseband signal could successfully transmit over 40 km with about 0.8 dB power penalty in the simulation. Both theoretical analyses and simulation results show that the full-duplex RoF link has good performance.
1984-05-01
decrease in millimeter wave dielectric losses at low temperatures now makes it imperitive to examine the value of dn/dE from liquid nitrogen up to and...and dielectric losses, with both / decreasing at low temperatures down to 77K for the electric field parallel to the polar axis. The observed changes in...xSrxK -vNa Nb501 5 Crystals at RF and Millimeter Wave Frqutncies ................................. 30 APPENDIX 2 Low and High Frequency Dielectric
The influence of polarization on millimeter wave propagation through rain. [radio signals
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.
1973-01-01
The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.
Biological Effects of Millimeter-Wave Irradiation.
1982-12-01
With the recent advances in millimeter-wave technology, including the availability of high - power transmitters in this band , the interaction of fields at... power was 14 mW for E- band , 10 mW for U- band ; and the frequency increment was 0.5 GHz. The mean values and the SD for the number of revertant colonies... high stability for short periods (i.e., about 30 minutes). We are now evaluating electronic means of stabilizing the klystron so that a ±1-MHz
The influence of polarization on millimeter wave propagation through rain
NASA Technical Reports Server (NTRS)
Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.
1974-01-01
The limitations which precipitation depolarization will place on future millimeter wave earth-satellite communications systems employing orthogonal-polarization frequency sharing was studied and the possibility of improving the fade resistance of such systems either through polarization diversity operation or by the choice of the polarization(s) least subject to attenuation was examined. Efforts were confined largely to ground-based communications systems investigated during a twenty-seven month period. Plans to extend the theoretical results to satellite systems are discussed.
NASA Technical Reports Server (NTRS)
Kharkovsky, S.; Case, J. T.; Zoughi, R.; Hepburn, F.
2005-01-01
The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI) and its protective acreage heat tiles. Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing millimeter wave images of the anomalies in SOFI panel and heat tiles. This paper presents the results of an investigation for the purpose of detecting localized anomalies in two SOFI panels and a set of heat tiles. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The results clearly illustrate the utility of these methods for this purpose.
NASA Astrophysics Data System (ADS)
Chen, Daming; Chen, Zhuo; Wang, Guijuan; Chen, Yong; Li, Yuanxun; Liu, Yingli
2017-12-01
The microstructure, magnetic and millimeter-wave properties of high oriented barium hexaferrite (BaAlxFe12-xO19) thin films with Al doping level x from 0 to 2 are reported. The films were grown on Pt/TiO2/SiO2/Si substrate by Sol-gel method. It is found that with increasing x from 0 to 2 the hexagonal grain disappear, together with Curie temperature dropped from 449 °C to 332 °C and saturated magnetization (4πMs) decreased from 3.8 kG to 1.9 kG, it is attributed to the fact that the Fe ions were substituted by non-magnetic Al ions, leading to the Fe3+-O-Fe3+ super-exchange interaction became weak. The ferromagnetic resonance (FMR) measurement showed that the FMR linewidths is as low as 113 Oe @ 58 GHz, and the FMR frequency shifted to higher frequency range when increasing Al doping level. These result offer the potential application of barium ferrite thin films in tunable millimeter wave devices such as filter, circulator and isolator.
Self-calibrated active pyrometer for furnace temperature measurements
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1998-01-01
Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.
Zoned near-zero refractive index fishnet lens antenna: Steering millimeter waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacheco-Peña, V., E-mail: victor.pacheco@unavarra.es; Orazbayev, B., E-mail: b.orazbayev@unavarra.es; Beaskoetxea, U., E-mail: unai.beaskoetxea@unavarra.es
2014-03-28
A zoned fishnet metamaterial lens is designed, fabricated, and experimentally demonstrated at millimeter wavelengths to work as a negative near-zero refractive index lens suitable for compact lens antenna configurations. At the design frequency f = 56.7 GHz (λ{sub 0} = 5.29 mm), the zoned fishnet metamaterial lens, designed to have a focal length FL = 9λ{sub 0}, exhibits a refractive index n = −0.25. The focusing performance of the diffractive optical element is briefly compared with that of a non-zoned fishnet metamaterial lens and an isotropic homogeneous zoned lens made of a material with the same refractive index. Experimental and numerically-computed radiation diagrams of the fabricated zoned lens are presentedmore » and compared in detail with that of a simulated non-zoned lens. Simulation and experimental results are in good agreement, demonstrating an enhancement generated by the zoned lens of 10.7 dB, corresponding to a gain of 12.26 dB. Moreover, beam steering capability of the structure by shifting the feeder on the xz-plane is demonstrated.« less
Wang, Yiqun; Pei, Li; Li, Jing; Li, Yueqin
2017-06-10
A full-duplex radio-over-fiber system is proposed, which provides both the generation of a millimeter-wave (mm-wave) signal with tunable frequency multiplication factors (FMFs) and wavelength reuse for uplink data. A dual-driving Mach-Zehnder modulator and a phase modulator are cascaded to form an optical frequency comb. An acousto-optic tunable filter based on a uniform fiber Bragg grating (FBG-AOTF) is employed to select three target optical sidebands. Two symmetrical sidebands are chosen to generate mm waves with tunable FMFs up to 16, which can be adjusted by changing the frequency of the applied acoustic wave. The optical carrier is reused at the base station for uplink connection. FBG-AOTFs driven by two acoustic wave signals are experimentally fabricated and further applied in the proposed scheme. Results of the research indicate that the 2-Gbit/s data can be successfully transmitted over a 25-km single-mode fiber for bidirectional full-duplex channels with power penalty of less than 2.6 dB. The feasibility of the proposed scheme is verified by detailed simulations and partial experiments.
NASA Astrophysics Data System (ADS)
Mizuno, M.; Hirata, A.; Kawase, K.; Otani, C.; Nagatsuma, T.
2004-08-01
Non-thermal effects of millimeter wave (MMW) on Pheochromocytoma (PC12) were studied by potential measurement with a voltage sensitive dye (DiBAC4(3)). Cells were irradiated at fixed frequencies of 30, 40, 60, 76GHz as well as sweeping frequency between 10 and 100 GHz by an MMW generator based on a uni-traveling-carrier photodiode (UTC-PD), the most widely tunable MMW source. However there were no significant changes in membrane potential between MMW-irradiated and control cells. The results suggest that MMW irradiation in the range from 10 to 100GHz appears to be safe for ordinary PC12 cells under non-thermal conditions.
NASA Astrophysics Data System (ADS)
Hung, Hing-Loi A.; Smith, Thane; Huang, Ho C.; Polak-Dingels, Penny; Webb, Kevin J.
1989-08-01
The characterization of microwave and millimeter-wave monolithic integrated circits (MIMICs) using picosecond pulse-sampling techniques is developed with emphasis on improving broadband coverage and measurement accuracy. GaAs photoconductive swithces are used for signal generation and sampling operations. The measured time-domain response allows the spectral transfer function of the MIMIC to be obtained. This measurement technique is verified by characterization of the frequency response (magnitude and phase) of a reference 50-ohm microstrip line and a two-stage Ka-band MIMIC amplifier. The measured broadband results agree with those obtained from conventional frequency-domain measurements using a network analyzer. The application of this optical technique to on-wafer MIMIC characterization is described.
Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques
NASA Technical Reports Server (NTRS)
Case, Joseph Tobias
2005-01-01
Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).
Pavone, Santi C; Mazzinghi, Agnese; Freni, Angelo; Albani, Matteo
2017-08-07
In this paper, a comparison is presented between Bessel beam launchers at millimeter waves based on either a cylindrical standing wave (CSW) or a cylindrical inward traveling wave (CITW) aperture distribution. It is theoretically shown that CITW launchers are better suited for the generation of electromagnetic short pulses because they maintain their performances over a larger bandwidth than those realizing a CSW aperture distribution. Moreover, the wavenumber dispersion of both the launchers is evaluated both theoretically and numerically. To this end, two planar Bessel beam launchers, one enforcing a CSW and the other enforcing a CITW aperture distribution, are designed at millimeter waves with a center operating frequency of f¯=60GHz and analyzed in the bandwidth 50 - 70 GHz by using an in-house developed numerical code to solve Maxwell's equations based on the method of moments. It is shown that a monochromatic Bessel beam can be efficiently generated by both the launchers over a wide fractional bandwidth. Finally, we investigate the generation of limited-diffractive electromagnetic pulses at millimeter waves, up to a certain non-diffractive range. Namely, it is shown that by feeding the launcher with a Gaussian short pulse, a spatially confined electromagnetic pulse can be efficiently generated in front of the launcher.
NASA Astrophysics Data System (ADS)
Wu, Tonggen; Ma, Jianxin
2017-12-01
This paper proposes an original scheme to generate the photonic dual-tone optical millimeter wave (MMW) carrying the 16-star quadrature-amplitude-modulation (QAM) signal via an optical phase modulator (PM) and an interleaver with adaptive photonic frequency-nonupling without phase precoding. To enable the generated optical vector MMW signal to resist the power fading effect caused by the fiber chromatic dispersion, the modulated -5th- and +4th-order sidebands are selected from the output of the PM, which is driven by the precoding 16-star QAM signal. The modulation index of the PM is optimized to gain the maximum opto-electrical conversion efficiency. A radio over fiber link is built by simulation, and the simulated constellations and the bit error rate graph demonstrate that the frequency-nonupling 16-star QAM MMW signal has good transmission performance. The simulation results agree well with our theoretical results.
Sub-millimeter Spectroscopy of Astrophysically Interesting Metal-Containing Molecules
NASA Technical Reports Server (NTRS)
Ziurys, L. M.; Brewster, M. A.; Sheridan, P. M.; Savage, C.; Halfen, D. T.; Apponi, A. J.
2002-01-01
With the advent of SOFIA and Herschel, new spectral windows will be opened for spectroscopy in the sub-millimeter region. To conduct science in this band, laboratory measurements must be carried out to provide accurate transition frequencies for molecular identification and physical interpretation. We are presently conducting such measurements using gas-phase submm direct absorption techniques. Of particular interest are simple molecules containing iron-peak elements, including carbides, and metal hydride ions (MH+), both which possess favorable transitions at submm wavelengths.
A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode
NASA Astrophysics Data System (ADS)
Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.
2017-10-01
In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1-10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.
Millimeter-wave spectroscopy of hydantoin, a possible precursor of glycine
NASA Astrophysics Data System (ADS)
Ozeki, Hiroyuki; Miyahara, Rio; Ihara, Hiroto; Todaka, Satoshi; Kobayashi, Kaori; Ohishi, Masatoshi
2017-04-01
Context. Hydantoin (Imidazolidine-2, 4-dione, C3H4N2O2) is a five-membered heterocyclic compound that is known to arise from prebiotic molecules such as glycolic acid and urea, and to give the simplest amino acid, glycine, by hydrolysis under acidic condition. The gas chromatography combined with the mass spectrometry of carbonaceous chondrites lead to the detection of this molecule as well as several kinds of amino acids. Aims: The lack of spectroscopic information, especially on the rotational constants, has prevented us from conducting a search for hydantoin in interstellar space. If a rotational temperature of 100 K is assumed as the kinetic temperature of a star-forming region, the spectral intensity is expected to be at its maximum in the millimeter-wave region. Laboratory spectroscopy of hydantoin in the millimeter-wave region is the most important in providing accurate rest frequencies to be used for astronomical research. Methods: Pure rotational spectra of hydantoin were observed in the millimeter-wave region using the frequency modulated microwave spectrometer at Toho University. Solid hydantoin was heated to around 150 °C to provide appropriate vapor pressure. Quantum chemical calculations suggest that the permanent dipole moment of this molecule lies almost along the b-molecular axis, so that spectral search for b-type R-branch transition has been conducted. Results: Rotational and centrifugal distortion constants up to the fourth order for the ground vibrational state of hydantoin were accurately determined by measuring 161 b-type transitions in the frequency range between 90 and 370 GHz. In addition, we succeeded in assigning 230 satellite lines, which were attributed to the two vibrationally excited states. The spectral intensity ratio of these lines indicates that these states correspond to the low-lying (approximately 150 cm-1 above the ground state) vibrational modes. Conclusions: The frequency catalog of hydantoin in the millimeter-wave range was created for the ground state and for the two low-lying excited states, and are ideal for a future astronomical research. The 1σ frequency accuracy is lower than 100 kHz for the lines with upper-state energy below 200 cm-1, corresponding to a velocity resolution of 0.1 km s-1 at 300 GHz The spectral line list of hydantoin is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A44
Tunable infrared source employing Raman mixing
Byer, Robert L.; Herbst, Richard L.
1980-01-01
A tunable source of infrared radiation is obtained by irradiating an assemblage of Raman active gaseous atoms or molecules with a high intensity pumping beam of coherent radiation at a pump frequency .omega..sub.p to stimulate the generation of Stokes wave energy at a Stokes frequency .omega..sub.s and to stimulate the Raman resonant mode at the Raman mode frequency .omega..sub.R within the irradiated assemblage where the pump frequency .omega..sub.p minus the Stokes frequency .omega..sub.s is equal to the Raman mode frequency .omega..sub.R. The stimulated assemblage is irradiated with a tunable source of coherent radiation at a frequency .omega..sub.i to generate the output infrared radiation of the frequency .omega..sub.0 which is related to the Raman mode frequency .omega..sub.R and the input wave .omega..sub.i by the relation .omega..sub.0 =.omega..sub.i .+-..omega..sub.R. In one embodiment the interaction between the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i is collinear and the ratio of the phase velocity mismatch factor .DELTA.k to the electric field exponential gain coefficient T is within the range of 0.1 to 5. In another embodiment the pump wave energy .omega..sub.p and the tunable input wave energy .omega..sub.i have velocity vectors k.sub.p and k.sub.i which cross at an angle to each other to compensate for phase velocity mismatches in the medium. In another embodiment, the Stokes wave energy .omega..sub.s is generated by pump energy .omega..sub.p in a first Raman cell and .omega..sub.s, .omega..sub.i and .omega..sub.p are combined in a second Raman mixing cell to produce the output at .omega..sub.i.
NASA Astrophysics Data System (ADS)
Bandurkin, I. V.; Kaminsky, A. K.; Perelstein, E. A.; Peskov, N. Yu.; Savilov, A. V.; Sedykh, S. N.
2012-08-01
The possibility of using frequency multiplication in order to obtain high-power short-wavelength radiation from a free-electron maser (FEM) with a Bragg resonator has been studied. Preliminary experiments with an LIU-3000 (JINR) linear induction accelerator demonstrate the operation of a frequency-multiplying FEM at megawatt power in the 6- and 4-mm wave bands on the second and third harmonic, respectively.
NASA Astrophysics Data System (ADS)
Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao
2018-04-01
We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.
Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar
NASA Astrophysics Data System (ADS)
Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken
1997-02-01
On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.
Millimeter-Wave Chemical Sensor Using Substrate-Integrated-Waveguide Cavity
Memon, Muhammad Usman; Lim, Sungjoon
2016-01-01
This research proposes a substrate-integrated waveguide (SIW) cavity sensor to detect several chemicals using the millimeter-wave frequency range. The frequency response of the presented SIW sensor is switched by filling a very small quantity of chemical inside of the fluidic channel, which also causes a difference in the effective permittivity. The fluidic channel on this structure is either empty or filled with a chemical; when it is empty the structure resonates at 17.08 GHz. There is always a different resonant frequency when any chemical is injected into the fluidic channel. The maximum amount of chemical after injection is held in the center of the SIW structure, which has the maximum magnitude of the electric field distribution. Thus, the objective of sensing chemicals in this research is achieved by perturbing the electric fields of the SIW structure. PMID:27809240
Characterization and Applications of Micro- and Nano- Ferrites at Microwave and Millimeter Waves
NASA Astrophysics Data System (ADS)
Chao, Liu
Ferrite materials are one of the most widely used magnetic materials in microwave and millimeter wave applications such as radar, wireless communication. They provide unique properties for microwave and millimeter wave devices especially non-reciprocal devices. Some ferrite materials with strong magnetocrystalline anisotropy fields can extend these applications to tens of GHz range while reducing the size, weight and cost. This thesis focuses on characterization of such ferrite materials as micro- and nano-powder and the fabrication of the devices. The ferrite materials with strong magnetocrystalline anisotropy field are metal/non-metal substituted iron oxides oriented in low crystal symmetry. The ferrite materials characterized in this thesis include M-type hexagonal ferrites such as barium ferrite (BaFe12O19), strontium ferrite (SrFe12O19), epsilon phase iron oxide (epsilon-Fe 2O3), substituted epsilon phase iron oxide (epsilon-Ga xFe2-xO3, epsilon-AlxFe2-xO 3). These ferrites exhibit great anisotropic magnetic fields. A transmission-reflection based in-waveguide technique that employs a vector network analyzer was used to determine the scattering parameters for each sample in the microwave bands (8.2--40 GHz). From the S-parameters, complex dielectric permittivity and complex magnetic permeability are evaluated by an improved algorithm. The millimeter wave measurement is based on a free space quasi-optical spectrometer. Initially precise transmittance spectra over a broad millimeter wave frequency range from 40 GHz to 120 GHz are acquired. Later the transmittance spectra are converted into complex permittivity and permeability spectra. These ferrite powder materials are further characterized by x-ray diffraction (XRD) to understand the crystalline structure relating to the strength and the shift of the ferromagnetic resonance affected by the particle size. A Y-junction circulator working in the 60 GHz frequency band is designed based on characterized M-type barium micro- and nano-ferrite. A new fabrication process using ferrite composite is proposed to integrate the Y-junction circulator into the semiconductor substrate. Theoretical design of a high gain Traveling Wave Tube (TWT) amplifier using a metamaterial (MTM) structure and cold-test of the MTM structure are also included in this dissertation. An SWS working around 6 GHz below the X-band waveguide TE10 cutoff frequency is fabricated.
An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)
NASA Technical Reports Server (NTRS)
Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.;
2001-01-01
An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.
Apparatus for millimeter-wave signal generation
Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.
1999-01-01
An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).
High temperature superconductor analog electronics for millimeter-wavelength communications
NASA Technical Reports Server (NTRS)
Romanofsky, R. R.; Bhasin, K. B.
1991-01-01
The performance of high temperature superconductor (HTS) passive microwave circuits up to X-band was encouraging when compared to their metallic counterparts. The extremely low surface resistance of HTS films up to about 10 GHz enables a reduction in loss by as much as 100 times compared to copper when both materials are kept at about 77 K. However, a superconductor's surface resistance varies in proportion to the frequency squared. Consequently, the potential benefit of HTS materials to millimeter-wave communications requires careful analysis. A simple ring resonator was used to evaluate microstrip losses at Ka-band. Additional promising components were investigated such as antennas and phase shifters. Prospects for HTS to favorable impact millimeter-wave communications systems are discussed.
Millimeter-wave and terahertz integrated circuit antennas
NASA Technical Reports Server (NTRS)
Rebeiz, Gabriel M.
1992-01-01
This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.
Millimeter and Submillimeter Wave Spectroscopy of Higher Energy Conformers of 1,2-PROPANEDIOL
NASA Astrophysics Data System (ADS)
Zakharenko, Olena; Bossa, Jean-Baptiste; Lewen, Frank; Schlemmer, Stephan; Müller, Holger S. P.
2017-06-01
We have performed a study of the millimeter/submillimeter wave spectrum of four higher energy conformers of 1,2-propanediol (continuation of the previous study on the three lowest energy conformers. The present analysis of rotational transitions carried out in the frequency range 38 - 400 GHz represents a significant extension of previous microwave work. The new data were combined with previously-measured microwave transitions and fitted using a Watson's S-reduced Hamiltonian. The final fits were within experimental accuracy, and included spectroscopic parameters up to sixth order of angular momentum, for the ground states of the four higher energy conformers following previously studied ones: g'Ga, gG'g', aGg' and g'Gg. The present analysis provides reliable frequency predictions for astrophysical detection of 1,2-propanediol by radio telescope arrays at millimeter wavelengths. J.-B. Bossa, M.H. Ordu, H.S.P. Müller, F. Lewen, S. Schlemmer, A&A 570 (2014) A12)
NASA Astrophysics Data System (ADS)
Zhou, Wen; Qin, Chaoyi
2017-09-01
We demonstrate multi-frequency QPSK millimeter-wave (mm-wave) vector signal generation enabled by MZM-based optical carrier suppression (OCS) modulation and in-phase/quadrature (I/Q) modulation. We numerically simulate the generation of 40-, 80- and 120-GHz vector signal. Here, the three different signals carry the same QPSK modulation information. We also experimentally realize 11Gbaud/s QPSK vector signal transmission over 20 km fiber, and the generation of the vector signals at 40-GHz, 80-GHz and 120-GHz. The experimental results show that the bit-error-rate (BER) for all the three different signals can reach the forward-error-correction (FEC) threshold of 3.8×10-3. The advantage of the proposed system is that provide high-speed, high-bandwidth and high-capacity seamless access of TDM and wireless network. These features indicate the important application prospect in wireless access networks for WiMax, Wi-Fi and 5G/LTE.
NASA Astrophysics Data System (ADS)
Chaudhary, Sushank; Amphawan, Angela
2017-11-01
In an attempt to meet the goal of distributing millimeter-wave (mm-wave) signals, recent years have witnessed significant relevance being given to combining radio frequency with optical fiber technologies. The future of radio-over-free-space-optics technology aims to build a universal platform for distributing millimeter waves for wireless local area networks without using expensive optical fibers. This work is focused on simultaneous transmission of four independent OFDM-based channels, each carrying 20 Gbps to 40 GHz data, by mode-division multiplexing of Laguerre-Gaussian mode with vortex lens and Hermite-Gaussian mode to realize a total transmission of 80 Gbps to 160 GHz data over 50-km free-space optical link. Moreover, the performance of the proposed system is also evaluated under the influence of various atmospheric turbulences, such as light fog, thin fog, and thick fog.
Calabrese, Camilla; Vigorito, Annalisa; Maris, Assimo; Mariotti, Sergio; Fathi, Pantea; Geppert, Wolf D; Melandri, Sonia
2015-12-03
The weakly bound 1:1 complex between acrylonitrile (CH2═CHCN) and water has been characterized spectroscopically in the millimeter wave range (59.6-74.4 GHz) using a Free Jet Absorption Millimeter Wave spectrometer. Precise values of the rotational and quartic centrifugal distortion constants have been obtained from the measured frequencies of the normal and isotopically substituted water moiety (DOH, DOD, H(18)OH). Structural parameters have been estimated from the rotational constants and their differences among isotopologues: the complex has a planar structure with the two subunits held together by a O-H···N (2.331(3) Å) and a C-H···O (2.508(4) Å) interaction. The ab initio intermolecular binding energy, obtained at the counterpoise corrected MP2/aug-cc-pVTZ level of calculation, is De = 24.4 kJ mol(-1).
Low loss millimeter-wave switches based on the Vanadium Dioxide Metal - Insulator - Transition
NASA Astrophysics Data System (ADS)
Field, Mark; Hillman, Christopher; Stupar, Philip; Griffith, Zachary; Rodwell, Mark
2014-03-01
A new ultra-low-loss and broad band millimeter wave switch technology based on the reversible metal / insulator phase transition of vanadium dioxide has been developed. We report having fabricated series configured, single-pole single-throw (SPST) switches having measured S-parameters from DC to 110 GHz. The on-state insertion loss is 0.2 dB and off-state isolation is 21 dB at 50 GHz. The resulting impedance contrast ratio, ZOFF / ZON, is greater than 500:1 at 50 GHz (i.e. cut-off frequency fc ~ 40 THz). As a demonstration of the technology's utility, we also present the results of a 2-bit real time delay phase shifter incorporating a pair of VO2 SP4T switches. This switch technology's high impedance contrast ratio combined with its compactness, ease of integration, and low voltage operation make it an enabler of previously unachievable high-performance millimeter wave FPGAs.
NASA Technical Reports Server (NTRS)
Zoughi, R.
2005-01-01
Microwave and millimeter wave nondestructive testing and evaluation methods, have shown great potential for inspecting the Space Shuttle s external tank spray on foam insulation (SOFI) and acreage heat tiles. These methods are capable of producing high-resolution images of et interior of these structures. To this end, several different microwave and millimeter wave nondestructive testing methods have been investigated for this purpose. These methods have included near-field as well as focused approaches ranging in frequency from 10 GHz to beyond 100 GHz. Additionally, synthetic aperture focusing methods have also been developed in this regime for obtaining high-resolution images of the interior of these critical structures. These methods possess the potential for producing 3D images of these structures in a relatively short amount of time. This paper presents a summary of these activities in addition to providing examples of images produced using these diverse methods.
Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision
NASA Astrophysics Data System (ADS)
Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.
1995-06-01
Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.
Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Wang, Li Xian; Zhu, Ning Hua
2014-03-01
We propose a novel photonic approach for generating a background-free millimeter-wave (MMW) ultra-wideband (UWB) signal based on a conventional dual-drive Mach-Zehnder modulator (DMZM). One arm of the DMZM is driven by a local oscillator (LO) signal. The LO power is optimized to realize optical carrier suppressed modulation. The other arm is fed by a rectangular signal. The MMW UWB pulses are generated by truncating the continuous wave LO signal into a pulsed one in a photodetector (PD). The generated MMW UWB signal is background-free by eliminating the baseband frequency components because the optical power launched to the PD keeps constant all the time. The proposed method is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at a frequency of 26 GHz meets the Federal Communications Commission spectral mask very well.
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
NASA Technical Reports Server (NTRS)
Khatun, Mahfuza; Mehrpouyan, Hani; Matolak, David; Guvenc, Ismail
2017-01-01
Millimeter-wave (mmWave) communications will play a key role in enhancing the throughput, reliability, and security of next generation wireless networks. These advancements are achieved through the large bandwidth available in this band and through the use of highly directional links that will be used to overcome the large pathloss at these frequencies. Although the terrestrial application of mmWave systems is advancing at a rapid pace, the use of mmWave communication systems in aviation systems or airports is still in its infancy. This can be attributed to the challenges related to radio technology and lack of development, and characterization of mmWave wireless channels for the aviation field and the airport environment. Consequently, one of our goals is to develop methodologies that support mmWave air to ground links, and various links at airports, by applying new localization schemes that allow for application of highly directional links that can be deployed over longer distances despite the high path loss at mmWave frequencies. However, a very thorough understanding of the mmWave channel models are needed to enable such new applications. To this end, in this paper, we present a survey of the current channel models in the mmWave band. The 3-dimensional statistical channel model is also reviewed and its parameters and typical characteristics for this model are identified and computed through simulation for the Boise metropolitan area.
THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro
2013-01-10
We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less
Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures
NASA Technical Reports Server (NTRS)
Jackson, Gail Skofronick
2006-01-01
Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow in the cloud for 166, and 183 plus or minus 7 GHz for the heavy and medium snow rates. For submm-wave channels, there is no contribution from the surface because these channels cannot probe through clouds, nor normal water vapor amounts in clear air regions. This work is extremely valuable in physically-based retrieval algorithm development research.
Commercial applications of the ACTS mobile terminal millimeter-wave antennas
NASA Technical Reports Server (NTRS)
Densmore, Arthur C.; Crist, Rick A.; Jamnejad, Vahraz; Tulintseff, Ann N.
1991-01-01
NASA's Jet Propulsion Laboratory is currently developing the Advanced Communications Technology Satellite (ACTS) Mobile Terminal (AMT), which will provide voice, data, and video communications to and from a vehicle (van, truck, or car) via NASA's geostationary ACTS satellite using the K- and K(sub a)-band frequency bands. The AMT is already planned to demonstrate a variety of communications from within the mobile vehicular environment, and within this paper a summary of foreseen commercial application opportunities is given. A critical component of the AMT is its antenna system, which must establish and maintain the basic RF link with the satellite. Two versions of the antenna are under development, each incorporating different technologies and offering different commercial applications.
NASA Astrophysics Data System (ADS)
Luukanen, A.; Grönberg, L.; Helistö, P.; Penttilä, J. S.; Seppä, H.; Sipola, H.; Dietlein, C. R.; Grossman, E. N.
2006-05-01
The temperature resolving power (NETD) of millimeter wave imagers based on InP HEMT MMIC radiometers is typically about 1 K (30 ms), but the MMIC technology is limited to operating frequencies below ~ 150 GHz. In this paper we report the first results from a pixel developed for an eight pixel sub-array of superconducting antenna-coupled microbolometers, a first step towards a real-time imaging system, with frequency coverage of 0.2 - 3.6 THz. These detectors have demonstrated video-rate NETDs in the millikelvin range, close to the fundamental photon noise limit, when operated at a bath temperature of ~ 4K. The detectors will be operated within a turn-key cryogen-free pulse tube refrigerator, which allows for continuous operation without the need for liquid cryogens. The outstanding frequency agility of bolometric detectors allows for multi-frequency imaging, which greatly enhances the discrimination of e.g. explosives against innoncuous items concealed underneath clothing.
Quad-channel beam switching WR3-band transmitter MMIC
NASA Astrophysics Data System (ADS)
Müller, Daniel; Eren, Gülesin; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar
2017-05-01
Millimeter wave radar systems offer several advantages such as the combination of high resolution and the penetration of adverse atmosphere like smoke, dust or rain. This paper presents a monolithic millimeter wave integrated circuit (MMIC) transmitter which offers four channel beam steering capabilities and can be used as a radar or communication system transmitter. At the local oscillator input, in order to simplify packaging, a frequency tripler is used to multiply the 76.6 - 83.3 GHz input signal to the intended 230 - 250 GHz output frequency range. A resistive mixer is used for the conversion of the intermediate frequency signal into the RF domain. The actual beam steering network is realized using an active single pole quadruple throw (SP4T) switch, which is connected to a integrated Butler matrix. The MMIC was fabricated in a 35 nm InGaAs mHEMT process and has a size of 4.0 mm × 1.5 mm
Low-Noise Amplifier for 100 to 180 GHz
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William
2009-01-01
A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, G.; Johnson, B. R.; Abitbol, M. H.
Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less
Jones, G.; Johnson, B. R.; Abitbol, M. H.; ...
2017-05-29
Aluminum lumped-element kinetic inductance detectors (LEKIDs) sensitive to millimeter-wave photons have been shown to exhibit high quality factors, making them highly sensitive and multiplexable. The superconducting gap of aluminum limits aluminum LEKIDs to photon frequencies above 100 GHz. Manganese-doped aluminum (Al-Mn) has a tunable critical temperature and could therefore be an attractive material for LEKIDs sensitive to frequencies below 100 GHz if the internal quality factor remains sufficiently high when manganese is added to the film. To investigate, we measured some of the key properties of Al-Mn LEKIDs. A prototype eight-element LEKID array was fabricated using a 40 nm thickmore » film of Al-Mn deposited on a 500 μm thick high-resistivity, float-zone silicon substrate. The manganese content was 900 ppm, the measured T c = 694 ± 1mK, and the resonance frequencies were near 150 MHz. Using measurements of the forward scattering parameter S 21 at various bath temperatures between 65 and 250 mK, we determined that the Al-Mn LEKIDs we fabricated have internal quality factors greater than 2 × 10 5, which is high enough for millimeter-wave astrophysical observations. In the dark conditions under which these devices were measured, the fractional frequency noise spectrum shows a shallow slope that depends on bath temperature and probe tone amplitude, which could be two-level system noise. In conclusion, the anticipated white photon noise should dominate this level of low-frequency noise when the detectors are illuminated with millimeter-waves in future measurements. The LEKIDs responded to light pulses from a 1550 nm light-emitting diode, and we used these light pulses to determine that the quasiparticle lifetime is 60 μs.« less
338-GHz Semiconductor Amplifier Module
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin;
2010-01-01
Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.
A Study of the Interaction of Millimeter Wave Fields with Biological Systems.
1984-07-01
structurally complex proteins . The third issue is the relevance of the parameters used in previous modeling efforts. The strength of the exciton-phonon...modes of proteins in the millimeter and submillimeter regions of the electromagnetic spectrum. Specifically: o " Four separate groups of frequencies...Rhodopseudomonas Sphaeroides (4). In industrial or military environments a significant number of personnel are exposed to electromagnetic fields
Characteristics of enhanced-mode AlGaN/GaN MIS HEMTs for millimeter wave applications
NASA Astrophysics Data System (ADS)
Lee, Jong-Min; Ahn, Ho-Kyun; Jung, Hyun-Wook; Shin, Min Jeong; Lim, Jong-Won
2017-09-01
In this paper, an enhanced-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMT) was developed by using 4-inch GaN HEMT process. We designed and fabricated Emode HEMTs and characterized device performance. To estimate the possibility of application for millimeter wave applications, we focused on the high frequency performance and power characteristics. To shift the threshold voltage of HEMTs we applied the Al2O3 insulator to the gate structure and adopted the gate recess technique. To increase the frequency performance the e-beam lithography technique was used to define the 0.15 um gate length. To evaluate the dc and high frequency performance, electrical characterization was performed. The threshold voltage was measured to be positive value by linear extrapolation from the transfer curve. The device leakage current is comparable to that of the depletion mode device. The current gain cut-off frequency and the maximum oscillation frequency of the E-mode device with a total gate width of 150 um were 55 GHz and 168 GHz, respectively. To confirm the power performance for mm-wave applications the load-pull test was performed. The measured power density of 2.32 W/mm was achieved at frequencies of 28 and 30 GHz.
Banerjee, Bhadrani; Tripathi, Anvita; Das, Adrija; Singh, Kumari Alka; Banerjee, J. P.
2015-01-01
The authors have carried out the large-signal (L-S) simulation of double-drift region (DDR) impact avalanche transit time (IMPATT) diodes based on 〈111〉, 〈100〉, and 〈110〉 oriented GaAs. A nonsinusoidal voltage excited (NSVE) L-S simulation technique is used to investigate both the static and L-S performance of the above-mentioned devices designed to operate at millimeter-wave (mm-wave) atmospheric window frequencies, such as 35, 94, 140, and 220 GHz. Results show that 〈111〉 oriented GaAs diodes are capable of delivering maximum RF power with highest DC to RF conversion efficiency up to 94 GHz; however, the L-S performance of 〈110〉 oriented GaAs diodes exceeds their other counterparts while the frequency of operation increases above 94 GHz. The results presented in this paper will be helpful for the future experimentalists to choose the GaAs substrate of appropriate orientation to fabricate DDR GaAs IMPATT diodes at mm-wave frequencies. PMID:27347524
A Sub-millimeter, Inductively Powered Neural Stimulator
Freeman, Daniel K.; O'Brien, Jonathan M.; Kumar, Parshant; Daniels, Brian; Irion, Reed A.; Shraytah, Louis; Ingersoll, Brett K.; Magyar, Andrew P.; Czarnecki, Andrew; Wheeler, Jesse; Coppeta, Jonathan R.; Abban, Michael P.; Gatzke, Ronald; Fried, Shelley I.; Lee, Seung Woo; Duwel, Amy E.; Bernstein, Jonathan J.; Widge, Alik S.; Hernandez-Reynoso, Ana; Kanneganti, Aswini; Romero-Ortega, Mario I.; Cogan, Stuart F.
2017-01-01
Wireless neural stimulators are being developed to address problems associated with traditional lead-based implants. However, designing wireless stimulators on the sub-millimeter scale (<1 mm3) is challenging. As device size shrinks, it becomes difficult to deliver sufficient wireless power to operate the device. Here, we present a sub-millimeter, inductively powered neural stimulator consisting only of a coil to receive power, a capacitor to tune the resonant frequency of the receiver, and a diode to rectify the radio-frequency signal to produce neural excitation. By replacing any complex receiver circuitry with a simple rectifier, we have reduced the required voltage levels that are needed to operate the device from 0.5 to 1 V (e.g., for CMOS) to ~0.25–0.5 V. This reduced voltage allows the use of smaller receive antennas for power, resulting in a device volume of 0.3–0.5 mm3. The device was encapsulated in epoxy, and successfully passed accelerated lifetime tests in 80°C saline for 2 weeks. We demonstrate a basic proof-of-concept using stimulation with tens of microamps of current delivered to the sciatic nerve in rat to produce a motor response. PMID:29230164
Towards Breath Gas Analysis Based on Millimeter-Wave Molecular Spectroscopy
NASA Astrophysics Data System (ADS)
Rothbart, Nick; Hübers, Heinz-Wilhelm; Schmalz, Klaus; Borngräber, Johannes; Kissinger, Dietmar
2018-03-01
Breath gas analysis is a promising non-invasive tool for medical diagnosis as there are thousands of Volatile Organic Compounds (VOCs) in human breath that can be used as health monitoring markers. Millimeter-wave/terahertz molecular spectroscopy is highly suitable for breath gas analysis due to unique fingerprint spectra of many VOCs in that frequency range. We present our recent work on sensor systems for gas spectroscopy based on integrated transmitters (TX) and receivers (RX) fabricated in IHP's 0.13 μm SiGe BiCMOS technology. For a single-band system, spectroscopic measurements and beam profiles are presented. The frequency is tuned by direct voltage-frequency tuning and by a fractional-n PLL, respectively. The spectroscopic system includes a folded gas absorption cell with gas pre-concentration abilities demonstrating the detection of a 50 ppm mixture of ethanol in ambient air corresponding to a minimum detectable concentration of 260 ppb. Finally, the design of a 3-band system covering frequencies from 225 to 273 GHz is introduced.
NASA Astrophysics Data System (ADS)
Klimov, Konstantin N.; Epaneshnikova, Irina K.; Belevtsev, Andrey M.; Godin, Andrey S.; Drize, Artemiy D.
2017-10-01
The usage of impedance matching materials for millimeters waves in antenna systems is a promising direction in the development of modern radar stations that allows unifying nomenclature of radiating elements. One of possible appliances of impedance matching materials is transfer of working frequencies of radiating elements to bands with greater wavelength. The usage of several impedance matching mediums, for example, with ɛr=μr=2, ɛr=μr=4, ɛr=μr=8, ɛr=μr=10 allows to extend waveband of the radiating element by 2, 4, 8 and 10 times.
Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials
NASA Astrophysics Data System (ADS)
Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.
1993-07-01
The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.
NASA Astrophysics Data System (ADS)
Padmanabhan, S.; Gaier, T.; Reising, S. C.; Lim, B.; Stachnik, R. A.; Jarnot, R.; Berg, W. K.; Kummerow, C. D.; Chandrasekar, V.
2016-12-01
The TEMPEST-D radiometer is a five-frequency millimeter-wave radiometer at 89, 165, 176, 180, and 182 GHz. The direct-detection architecture of the radiometer reduces its power consumption and eliminates the need for a local oscillator, reducing complexity. The Instrument includes a blackbody calibrator and a scanning reflector, which enable precision calibration and cross-track scanning. The MMIC-based millimeter-wave radiometers take advantage of the technology developed under extensive investment by the NASA Earth Science Technology Office (ESTO). The five-frequency millimeter-wave radiometer is built by Jet Propulsion Laboratory (JPL), which has produced a number of state-of-the-art spaceborne microwave radiometers, such as the Microwave Limb Sounder (MLS), Advanced Microwave Radiometer (AMR) for Jason-2/OSTM, Jason-3, and the Juno Microwave Radiometer (MWR). The TEMPEST-D Instrument design is based on a 165 to 182 GHz radiometer design inherited from RACE and an 89 GHz receiver developed under the ESTO ACT-08 and IIP-10 programs at Colorado State University (CSU) and JPL. The TEMPEST reflector scan and calibration methodology is adapted from the Advanced Technology Microwave Sounder (ATMS) and has been validated on the Global Hawk unmanned aerial vehicle (UAV) using the High Altitude MMIC Sounding radiometer (HAMSR) instrument. This presentation will focus on the design, development and performance of the TEMPEST-D radiometer instrument. The flow-down of the TEMPEST-D mission objectives to instrument level requirements will also be discussed.
Millimeter Wave Generation by Relativistic Electron Beams.
1984-12-01
frequency and wave vector matching relations for influence of various nonlinear effects on this instability is this four-wave interaction require...following coupled mode equations _ 6 = 6 _ (14)-- v vx (14) ." .’ for the lower hybrid sidebands: v - V 2 - The x component of the resultant vector equation...involves a purely growing modte, a four-wave interaction plitoces is analysed, including a u ap ti wave- vector up-shifted and ilown-shiftes upper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Hu; Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an Shaanxi 710024
2015-06-15
A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over themore » other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.« less
Joint Analysis of the Full AzTEC Sub-Millimeter Galaxy Data Set
NASA Astrophysics Data System (ADS)
Wilson, Grant; Ade, P.; Aretxaga, I.; Austermann, J.; Bock, J.; Hughes, D.; Kang, Y.; Kim, S.; Lowenthal, J.; Mauskopf, P.; Perera, T.; Scott, K.; Yun, M.
2006-12-01
Using the new AzTEC millimeter-wave camera on the James Clerk Maxwell Telescope (JCMT) in winter 2005/06, we conducted several surveys of the submm galaxy (SMG) population. The AzTEC 1.1 millimeter surveys include both blank-fields (no significant bias or foreground contamination) and regions of known over-densities, and are both large (100-1000 sq. arcmin.) and sensitive ( 1 mJy rms). The unique power of the AzTEC data set lies not only in the size and depth of the individual fields, but in the combined surveyed area that totals over 1 square degree. Hundreds of new sub-millimeter sources have been detected. A joint analysis of all AzTEC surveys will provide important new constraints on many characteristics of the SMG population, including number counts, clustering, and variance. In particular, the large area of the full AzTEC data set provides the first significant measurement of the brightest and most rare of the SMG population. Herein we present the initial combined results and explore the future potential of a complete joint analysis of the full AzTEC SMG data set.
Wu, Guangwen; Chen, Xuzheng; Peng, Jun; Cai, Qiaoyan; Ye, Jinxia; Xu, Huifeng; Zheng, Chunsong; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang
2012-05-01
Millimeter wave (MW) is an electromagnetic wave with a wavelength between 1 and 10 mm and a frequency of 30-300 GHz that causes multiple biological effects and has been used as a major component in physiotherapies for the clinical treatment of various types of diseases including cancers. However, the precise molecular mechanism of the anticancer activity of millimeter wave remains to be elucidated. In the present study, we investigated the cellular effects of the MW in the U-2OS human osteosarcoma cell line. Our results showed that MW induced cell morphological changes and reduced cell viability in a dose- and time-dependent manner suggesting that MW inhibited the growth of U-2OS cells as demonstrated. Hoechst 33258 staining and Annexin V/propidium iodide double staining exhibited the typical nuclear features of apoptosis and increased the proportion of apoptotic Annexin V-positive cells in a dose-dependent manner, respectively. In addition, MW treatment caused loss of plasma membrane asymmetry, release of cytochrome c, collapse of mitochondrial membrane potential, activation of caspase-9 and -3, and increase of the ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2. Taken together, the results indicate that the U-2OS cell growth inhibitory activity of MW was due to mitochondrial-mediated apoptosis, which may partly explain the anticancer activity of millimeter wave treatment.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee N.
2015-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).
Millimeter wave spectra of carbonyl cyanide ⋆
Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.
2016-01-01
Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349
Millimeter wave coherent synchrotron radiation in a compact electron storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.B.; Blum, E.; Heese, R.
1998-01-01
Installation of a 2,856 MHz RF system into the XLS compact electron storage ring would allow the generation of millimeter wave coherent synchrotron radiation. Operating at 150 MeV, one could produce bunches containing on the order of 2 {times} 10{sup 7} electrons with a bunch length {sigma}{sub L0} = 0.3 mm, resulting in coherent emission at wavelengths above 0.8 mm. The characteristics of the source and the emitted radiation are discussed. In the case of 100 mrad horizontal collection angle, the average power radiated in the wavelength band 1 mm {le} {lambda} {le} 2 mm is 0.3 mW for singlemore » bunch operation and 24 mW for 80 bunch operation. The peak power in a single pulse of a few picosecond duration is on the order of one watt. By reducing the momentum compaction, the bunch length could be reduced to {sigma}{sub L0} = 0.15 mm, resulting in coherent synchrotron radiation down to 500 {micro}m.« less
Millimeter-wave MMIC technology for smart weapons
NASA Astrophysics Data System (ADS)
Seashore, Charles R.
1994-12-01
Millimeter wave MMIC component technology has made dramatic progress over the last ten years largely due to funding stimulation received under the ARPA Tri-Service MIMIC program. In several smart weapon systems, MMIC components are now specified as the baseline approach for millimeter wave radar transceiver hardware. Availability of this new frontier in microelectronics has also enabled realization of sensor fusion for multispectral capability to defeat many forms of known countermeasures. The current frequency range for these MMIC-based components is approximately 30 to 100 GHz. In several cases, it has been demonstrated that the MMIC component performance has exceeded that available from hybrid microstrip circuits using selected discrete devices. However, challenges still remain in chip producibility enhancement and cost reduction since many of the essential device structure candidates are themselves emerging technologies with a limited wafer fabrication history and accumulated test databases. It is concluded that smart weapons of the future will rely heavily on advanced microelectronics to satisfy performance requirements as well as meeting stringent packaging and power source constraints.
Towards Terahertz MMIC Amplifiers: Present Status and Trends
NASA Technical Reports Server (NTRS)
Samoska, Lorene
2006-01-01
This viewgraph presentation surveys the fastest Monolithic Millimeter-wave Integrated Circuit (MMIC) amplifiers to date; summarize previous solid state power amp results to date; reviews examples of MMICs, reviews Power vs. Gate periphery and frequency; Summarizes previous LNA results to date; reviews Noise figure results and trends toward higher frequency
Laboratory measurements of the millimeter-wave spectra of calcium isocyanide
NASA Astrophysics Data System (ADS)
Steimle, Timothy C.; Saito, Shuji; Takano, Shuro
1993-06-01
The ground state of CaNC is presently characterized by mm-wave spectroscopy, using a standard Hamiltonian linear molecule model to analyze the spectrum. The resulting spectroscopic parameters were used to predict the transition frequencies and Einstein A-coefficients, which should make possible a quantitative astrophysical search for CaNC.
Nutating subreflector for a millimeter wave telescope
NASA Astrophysics Data System (ADS)
Radford, Simon J. E.; Boynton, Paul; Melchiorri, Francesco
1990-03-01
Nutating a Cassegrain telescope's secondary mirror is a convenient method of steering the telescope beam through a small angle. This principle has been used to construct a high-performance beam switch for a millimeter wave telescope. A low mass, graphite-epoxy laminate secondary mirror is driven by linear electric motors operated in a frequency compensated control loop. By design, the nutator exerts little net oscillating torque on the telescope structure, resulting in virtually vibration free operation. The inherent versatility of beam switching by subreflector nutation permits a variety of switching waveforms to be tested without making any hardware changes. The nutator can shift the telescope beam by 10 arcminutes, a 1.25 deg rotation of the 75-cm-diam secondary mirror, in an interval of 8 ms and it can sustain a switching frequency of 10 Hz.
155- and 213-GHz AlInAs/GaInAs/InP HEMT MMIC oscillators
NASA Technical Reports Server (NTRS)
Rosenbaum, Steven E.; Kormanyos, Brian K.; Jelloian, Linda M.; Matloubian, Mehran; Brown, April S.; Larson, Lawrence E.; Nguyen, Loi D.; Thompson, Mark A.; Katehi, Linda P. B.; Rebeiz, Gabriel M.
1995-01-01
We report on the design and measurement of monolithic 155- and 213-GHz quasi-optical oscillators using AlInAs/GaInAs/InP HEMTs (high-electron mobility transistors). These results are believed to be the highest frequency three-terminal oscillators reported to date. The indium concentration in the channel was 80% for high sheet charge and mobility. The HEMT gates were fabricated with self-aligned sub-tenth-micrometer electron-beam techniques to achieve gate lengths on the order of 50 nm and drain-source spacing of 0.25 micron. Planar antennas were integrated into the fabrication process resulting in a compact and efficient quasi-optical Monolithic Millimeter-wave Integrated Circuit (MMIC) oscillator.
Low frequency piezoresonance defined dynamic control of terahertz wave propagation
NASA Astrophysics Data System (ADS)
Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan
2016-11-01
Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.
Low frequency piezoresonance defined dynamic control of terahertz wave propagation.
Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G; Bhalla, Amar S; Guo, Ruyan
2016-11-30
Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO 3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.
Standoff concealed weapon detection using a 350-GHz radar imaging system
NASA Astrophysics Data System (ADS)
Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.
2010-04-01
The sub-millimeter (sub-mm) wave frequency band from 300 - 1000 GHz is currently being developed for standoff concealed weapon detection imaging applications. This frequency band is of interest due to the unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff detection. Standoff concealed weapon and explosive detection is a pressing national and international need for both civilian and military security, as it may allow screening at safer distances than portal screening techniques. PNNL has developed a prototype active wideband 350 GHz radar imaging system based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. This prototype system operates at ranges up to 10+ meters, and can acquire an image in 10 - 20 seconds, which is fast enough to scan cooperative personnel for concealed weapons. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. During the past year, several improvements to the system have been designed and implemented, including increased imaging speed using improved balancing techniques, wider bandwidth, and improved image processing techniques. In this paper, the imaging system is described in detail and numerous imaging results are presented.
Kervella, Gaël; Van Dijk, Frederic; Pillet, Grégoire; Lamponi, Marco; Chtioui, Mourad; Morvan, Loïc; Alouini, Mehdi
2015-08-01
We report on the stabilization of a 90-GHz millimeter-wave signal generated from a fully integrated photonic circuit. The chip consists of two DFB single-mode lasers whose optical signals are combined on a fast photodiode to generate a largely tunable heterodyne beat note. We generate an optical comb from each laser with a microwave synthesizer, and by self-injecting the resulting signal, we mutually correlate the phase noise of each DFB and stabilize the beatnote on a multiple of the frequency delivered by the synthesizer. The performances achieved beat note linewidth below 30 Hz.
Millimeter-wave surface resistance of laser-ablated YBa2Cu3O(7-delta) superconducting films
NASA Technical Reports Server (NTRS)
Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Warner, J. D.
1990-01-01
The millimeter-wave surface resistance of YBa2Cu3O(7-delta) superconducting films was measured in a gold-plated copper host cavity at 58.6 GHz between 25 and 300 K. High-quality laser-ablated films of 1.2-micron thickness were deposited on SrTiO3 and LaGaO3 substrates. Their transition temperatures were 90.0 and 88.9 K, with a surface resistance at 70 K of 82 and 116 milliohms, respectively. These values are better than the values for the gold-plated cavity at the same temperature and frequency.
CdTe-based Light-Controllable Frequency-Selective Photonic Crystal Switch for Millimeter Waves
2011-09-01
position (magenta curves with circular points which correspond to different light pulses) 23 Fig. 11.3. (a) Phase of transmission wave (in...11.4. Transmission spectra of plastic-air PC with CdTe-coated triple -quartz-wafer insertion of the kind ‘6t-qvqvqs-6t’ (computed yellow and measured...experimental requirements of matching the frequency band of VNA facility (f = 75–110 GHz), PC structures with triple -wafer insertion layers
Heterodyne Detection in MM & Sub-mm Waves Developed at Paris Observatory
NASA Astrophysics Data System (ADS)
Beaudin, G.; Encrenaz, P.
Millimeter and submillimeter-wave observations provide important informations for the studies of atmospheric chemistry and of astrochemistry (molecular clouds, stars formation, galactic study, comets and cosmology). But, these observations depend strongly on instrumentation techniques and on the site quality. New techniques or higher detector performances result in unprecedented observations and sometimes, the observational needs drive developments of new detector technologies, for example, superconducting junctions (SIS mixers) because of its high sensitivity in heterodyne detection in the millimeter and submillimeter wave range (100 GHz - 700 GHz), HEB (Hot Electron Bolometer) mixers which are being developed by several groups for application in THz observations. For the submillimetre wavelengths heterodyne receivers, the local oscillator (LO) is still a critical element. So far, solid state sources are often not powerful enough for most of the applications at millimetre or sub-millimetre wavelengths: large efforts using new planar components and integrated circuits on membrane substrate or new techniques (photomixing, QCL) are now in progress in few groups. The new large projects as SOFIA, Herschel, ALMA and the post-Herschel missions for astronomy, the other projects for aeronomy, meteorology (Megha-tropiques-Saphir) and for planetary science (ROSETTA, Mars exploration, ...), will benefit from the new developments to hunt more molecules.
Millimeter Wave Radar Applications to Weapons Systems
1976-06-01
meter wave region compared with the high attenuation in the optical region. It is this unique characteristic of millimeter waves to penetrate fog...miiliaeter wave radars in graund-to-- air , ground-to-ground, and air -to-ground weapons systems aye presented. The advantages and limitation~s¶ of operating...MILLIMETER WAVE RADAR CHARACTERISTICS ..... ............ .. 27 A, General ................ ......................... ... 27 B. Ground-to- Air Millimeter
Communications and logic systems at millimeter wave frequencies
NASA Technical Reports Server (NTRS)
1983-01-01
Activities in materials development, lithography, FET experiments, and mixer diode fabrication are reported. In addition, articles are presented which address leakage effects in n-GaAs MESFET's and lateral nonuniform doping in GaAs MESFET's.
High-speed digital fiber optic links for satellite traffic
NASA Technical Reports Server (NTRS)
Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.
1989-01-01
Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.
A Novel Unit Cell for Active Switches in the Millimeter-Wave Frequency Range
NASA Astrophysics Data System (ADS)
Müller, Daniel; Scherer, Gunnar; Lewark, Ulrich J.; Massler, Hermann; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar
2018-02-01
This paper presents a novel transistor unit cell which is intended to realize compact active switches in the high millimeter-wave frequency range. The unit cell consists of the combination of shunt and common gate transistor within a four-finger transistor cell, achieving gain in the amplifying state as well as good isolation in the isolating state. Gate width-dependent characteristics of the unit cell as well as the design of actual switch implementations are discussed in detail. To verify the concept, two switches, a single pole double throw (SPDT) switch and single pole quadruple throw (SP4T) switch, intended for the WR3 frequency range (220-325 GHz) were manufactured and characterized. The measured gain at 250 GHz is 4.6 and 2.2 dB for the SPDT and SP4T switch, respectively. An isolation of more than 24 dB for the SPDT switch and 12.8 dB for the SP4T switch was achieved.
A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance
NASA Technical Reports Server (NTRS)
Steffes, Paul G.; DeBoer, David R.
1994-01-01
The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.
Diagnosis and Treatment of Neurological Disorders by Millimeter-Wave Stimulation
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Pikov, Victor
2011-01-01
Increasingly, millimeter waves are being employed for telecomm, radar, and imaging applications. To date in the U.S, however, very few investigations on the impact of this radiation on biological systems at the cellular level have been undertaken. In the beginning, to examine the impact of millimeter waves on cellular processes, researchers discovered that cell membrane depolarization may be triggered by low levels of integrated power at these high frequencies. Such a situation could be used to advantage in the direct stimulation of neuronal cells for applications in neuroprosthetics and diagnosing or treating neurological disorders. An experimental system was set up to directly monitor cell response on exposure to continuous-wave, fixed-frequency, millimeter-wave radiation at low and modest power levels (0.1 to 100 safe exposure standards) between 50 and 100 GHz. Two immortalized cell lines derived from lung and neuronal tissue were transfected with green fluorescent protein (GFP) that locates on the inside of the cell membrane lipid bi-layer. Oxonol dye was added to the cell medium. When membrane depolarization occurs, the oxonal bound to the outer wall of the lipid bi-layer can penetrate close to the inner wall where the GFP resides. Under fluorescent excitation (488 nm), the normally green GFP (520 nm) optical signal quenches and gives rise to a red output when the oxonol comes close enough to the GFP to excite a fluorescence resonance energy transfer (FRET) with an output at 620 nm. The presence of a strong FRET signature upon exposures of 30 seconds to 2 minutes at 5-10 milliwatts per square centimeter RF power at 50 GHz, followed by a return to the normal 520-nm GFP signal after a few minutes indicating repolarization of the membrane, indicates that low levels of RF energy may be able to trigger non-destructive membrane depolarization without direct cell contact. Such a mechanism could be used to stimulate neuronal cells in the cortex without the need for invasive electrodes as millimeter waves penetrate skin and bone on the order of 15 mm in depth. Although 50 GHz could not readily penetrate from the outer skull to the center of the cortex, implants on the outer skull or even on the scalp could reach the outer layer of the cerebral cortex where substantial benefit could be realized from such non-contact type excitation.
Image fusion based on millimeter-wave for concealed weapon detection
NASA Astrophysics Data System (ADS)
Zhu, Weiwen; Zhao, Yuejin; Deng, Chao; Zhang, Cunlin; Zhang, Yalin; Zhang, Jingshui
2010-11-01
This paper describes a novel multi sensors image fusion technology which is presented for concealed weapon detection (CWD). It is known to all, because of the good transparency of the clothes at millimeter wave band, a millimeter wave radiometer can be used to image and distinguish concealed contraband beneath clothes, for example guns, knives, detonator and so on. As a result, we adopt the passive millimeter wave (PMMW) imaging technology for airport security. However, in consideration of the wavelength of millimeter wave and the single channel mechanical scanning, the millimeter wave image has law optical resolution, which can't meet the need of practical application. Therefore, visible image (VI), which has higher resolution, is proposed for the image fusion with the millimeter wave image to enhance the readability. Before the image fusion, a novel image pre-processing which specifics to the fusion of millimeter wave imaging and visible image is adopted. And in the process of image fusion, multi resolution analysis (MRA) based on Wavelet Transform (WT) is adopted. In this way, the experiment result shows that this method has advantages in concealed weapon detection and has practical significance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, Joel H.; Punzi, Kristina; Hily-Blant, Pierre
2014-09-20
We have conducted the first comprehensive millimeter-wave molecular emission line surveys of the evolved circumstellar disks orbiting the nearby, roughly solar-mass, pre-main-sequence (T Tauri) stars, TW Hya (D = 54 pc) and V4046 Sgr AB (D = 73 pc). Both disks are known to retain significant residual gaseous components despite the advanced ages of their host stars (∼8 Myr and ∼21 Myr, respectively). Our unbiased broadband radio spectral surveys of the TW Hya and V4046 Sgr disks were performed with the Atacama Pathfinder Experiment 12 m telescope, and are intended to yield a complete census of the bright molecular emissionmore » lines in the range 275-357 GHz (1.1-0.85 mm). We find that lines of {sup 12}CO, {sup 13}CO, HCN, CN, and C{sub 2}H, all of which lie in the higher frequency (>330 GHz) range, constitute the strongest molecular emission from both disks in the spectral region surveyed. The molecule C{sub 2}H is detected here for the first time in both disks, as is CS in the TW Hya disk. The survey results also include the first measurements of the full suite of the hyperfine transitions of CN N = 3 → 2 and C{sub 2}H N = 4 → 3 in both disks. Modeling of these CN and C{sub 2}H hyperfine complexes in the spectrum of TW Hya indicates that the emission from both species is optically thick and may originate from very cold (≲10 K) disk regions. The latter result, if confirmed, would suggest the efficient production of CN and C{sub 2}H in the outer disk and/or near the disk midplane. It furthermore appears that the fractional abundances of CN and C{sub 2}H are significantly enhanced in these evolved protoplanetary disks, relative to the fractional abundances of the same molecules in the environments of deeply embedded protostars. These results, combined with previous determinations of the enhanced abundances of other species (such as HCO{sup +}) in T Tauri star disks, underscore the importance of properly accounting for high-energy (FUV and X-ray) radiation from the central T Tauri star when modeling protoplanetary disk gas chemistry and physical conditions.« less
NASA Astrophysics Data System (ADS)
Various papers on antennas and propagation are presented. The general topics addressed include: phased arrays; reflector antennas; slant path propagation; propagation data for HF radio systems performance; satellite and earth station antennas; radio propagation in the troposphere; propagation data for HF radio systems performance; microstrip antennas; rain radio meteorology; conformal antennas; horns and feed antennas; low elevation slant path propagation; radio millimeter wave propagation; array antennas; propagation effects on satellite mobile, satellite broadcast, and aeronautical systems; ionospheric irregularities and motions; adaptive antennas; transient response; measurement techniques; clear air radio meteorology; ionospheric and propagation modeling; millimeter wave and lens antennas; electromagnetic theory and numerical techniques; VHF propagation modeling, system planning methods; radio propagation theoretical techniques; scattering and diffraction; transhorizon rain scatter effects; ELF-VHF and broadcast antennas; clear air millimeter propagation; scattering and frequency-selective surfaces; antenna technology; clear air transhorizon propagation.
Ultrafast Narrow Band Modulation of VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Multimode beating was greatly enhanced by taking output from part (e.g., half) of the output facet. Simpler sources of microwaves and millimeter waves of various frequencies were generated by varying the VCSEL diameter in a single multimode VCSEL our coupling of a few VCSELs. Breathing frequency in multi-mode operations affects modulation response and bandwidth. Optimizing RO frequency and mode beating frequency could potentially expand bandwidths suitable for wide band digital communications.
Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator
NASA Astrophysics Data System (ADS)
Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.
2015-05-01
Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.
Millimeter Wave Spectrum of Nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, V.
2016-06-01
A new study of the millimeter wave spectrum of nitromethane CH_3NO_2 is reported. The new measurements covering the frequency range from 49 GHz to 236 GHz have been carried out using spectrometer in IRA NASU (Ukraine). The transitions belonging to the m ≤ 8 torsional states have been analyzed using the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. The dataset consisting of 5838 microwave line frequencies and including transitions with J up to 50 was fit using a model consisting of 93 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, Z. Kisiel, L. Pszczólkowski, H. Mäder, J. T. Hougen J. Mol. Spectrosc. 259 (2010) 26-38.
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics
NASA Astrophysics Data System (ADS)
Nagayama, Y.; Ito, N.; Kuwahara, D.; Tsuchiya, H.; Yamaguchi, S.
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 1019 m-3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
Development of 2-D horn-antenna millimeter-wave imaging device (HMID) for the plasma diagnostics.
Nagayama, Y; Ito, N; Kuwahara, D; Tsuchiya, H; Yamaguchi, S
2017-04-01
The two-dimensional (2-D) Horn-antenna Millimeter-wave Imaging Device (HMID) has been developed for the O-mode Microwave Imaging Reflectometry (O-MIR) in the Large Helical Device (LHD). The detectable frequency range of the HMID is 23-33 GHz, which corresponds to the cutoff electron density of 0.8-1.5 × 10 19 m -3 in the O-MIR. The HMID is a 2-D imaging device that improves on the horn-antenna mixer array, which had been developed for the X-mode MIR in the LHD. In the HMID, the signal (RF) wave from the horn antenna is transmitted to the microstrip line by the finline transmitter, and this is mixed by the double-balanced-mixer with the local oscillation wave that is fed by a coaxial cable. By using the HMID, the MIR optical system can be significantly simplified.
[Collective movement of ions in cytoplasm].
Sizonenko, V L
2012-01-01
Theoretical model of transmission in cytoplasm of self consistent electric-and magnetic waves of millimeter-infrared range have been developed; cytoplasm ions surrounded by water molecule "fur-coats" being the main carriers of these waves. It has been discovered that not only own long-wave transverse waves, but also linear waves which are not able to leave cytoplasm can exist in tissues of living organisms. Frequencies and logarithmic decrements of such perturbation have been found, and it has been shown that these frequencies approach the ion fluctuation frequencies inside the "fur-coats". Laser radiation movement in bioobjects on the indicated frequencies has been analyzed, and it was detected the existence of no penetrative stripes of waves into bodies. The new mechanism of swinging of cytoplasm own fluctuation based on the existence of the extreme border of the ion movement area has been proposed. It has been shown that having this mechanism the electric field magnitude of linear waves is six-seven degrees larger than Plank fluctuation level.
NASA Astrophysics Data System (ADS)
Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi
2015-04-01
In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.
Estimation of physiological sub-millimeter displacement with CW Doppler radar.
Jia Xu; Xiaomeng Gao; Padasdao, Bryson E; Boric-Lubecke, Olga
2015-01-01
Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. It is intended for estimating small displacements on the body surface resulting from physiological activity. A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.
Millimeter waves: acoustic and electromagnetic.
Ziskin, Marvin C
2013-01-01
This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Roux, A.; Pellat, R.
1978-01-01
The propagation of electrostatic plasma waves in an inhomogeneous and magnetized plasma was studied. These waves, which are driven unstable by auroral beams of electrons, are shown to suffer a further geometrical amplification while they propagate towards resonances. Simultaneously, their group velocities tend to be aligned with the geomagnetic field. It is shown that the electrostatic energy tends to accumulate at, or near omega sub LH and omega sub UH, the local lower and upper hybrid frequencies. Due to this process, large amplitude electrostatic waves with very narrow spectra are observed near these frequencies at any place along the auroral field lines where intense beam driven instability takes place. These intense quasi-monochromatic electrostatic waves are shown to give rise to an intense electromagnetic radiation. Depending upon the ratio omega sub pe/omega sub ce between the electron plasma frequency and the electron gyro-frequency the electromagnetic wave can be radiated in the ordinary mode (at omega sub UH), or in the extraordinary (at 2 omega sub UH). As the ratio omega sub pe/omega sub ce tends to be rather small, it is shown that the most intense radiation should be boserved at 2 omega sub UH in the extraordinary mode.
Millimeter wave imaging: a historical review
NASA Astrophysics Data System (ADS)
Appleby, Roger; Robertson, Duncan A.; Wikner, David
2017-05-01
The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.
VizieR Online Data Catalog: The mm and sub-mm spectra of 13C-glycolaldehydes (Haykal+, 2013)
NASA Astrophysics Data System (ADS)
Haykal, I.; Motiyenko, R. A.; Margules, L.; Huet, T. R.
2012-11-01
To allow the detection of the 13C-isotopologues of glycolaldeh the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with accuracy, better than 30kHz up to 700GHz and 50kHz above. The analysis was performed using a standard Watson Hamiltonian. Around 10000 new lines were identified for each isotopologue. The spectroscopic parameters were determined for the ground and the three lowest vibrational states, respectively up to 945 and 630GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. (2 data files).
Growth and spin-wave properties of thin Y{sub 3}Fe{sub 5}O{sub 12} films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stognij, A. I.; Novitskii, N. N.; Lutsev, L. V., E-mail: l-lutsev@mail.ru
2015-07-14
We describe synthesis of submicron Y{sub 3}Fe{sub 5}O{sub 12} (YIG) films sputtered on Si substrates and present results of the investigation of ferromagnetic resonance (FMR) and spin waves in YIG/SiO{sub 2}/Si structures. It is found that decrease of the annealing time leads to essential reduction of the FMR linewidth ΔH and, consequently, to reduction of relaxation losses of spin waves. Spin-wave propagation in in-plane magnetized YIG/SiO{sub 2}/Si structures is studied. We observe the asymmetry of amplitude-frequency characteristics of the Damon-Eshbach spin waves caused by different localizations of spin waves at the free YIG surface and at the YIG/SiO{sub 2} interface.more » Growth of the generating microwave power leads to spin-wave instability and changes amplitude-frequency characteristics of spin waves.« less
Multilevel photonic modules for millimeter-wave phased-array antennas
NASA Astrophysics Data System (ADS)
Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.
2000-09-01
Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.
Damping of surface waves due to oil emulsions in application to ocean remote sensing
NASA Astrophysics Data System (ADS)
Sergievskaya, I.; Ermakov, S.; Lazareva, T.; Lavrova, O.
2017-10-01
Applications of different radar and optical methods for detection of oil pollutions based on the effect of damping of short wind waves by surface films have been extensively studied last decades. The main problem here is poor knowledge of physical characteristics of oil films, in particular, emulsified oil layers (EOL). The latter are ranged up to 70% of all pollutants. Physical characteristics of EOL which are responsible for wave damping and respectively for possibilities of their remote sensing depend on conditions of emulsification processes, e.g., mixing due to wave breaking, on percentage of water in the oil, etc. and are not well studied by now. In this paper results of laboratory studies of damping of gravity-capillary waves due to EOL on water are presented and compared to oil layers (OL). A laboratory method used previously for monomolecular films and OL, and based on measuring the damping coefficient and wavelength of parametrically generated standing waves has been applied for determination of EOL characteristics. Investigations of characteristics of crude oil, oil emulsions and crude OL and EOL have been carried out in a wide range of surface wave frequencies (from 10 to 25 Hz) and OL and EOL film thickness (from hundredths of millimeter to a few millimeters. The selected frequency range corresponds to Bragg waves for microwave, X- to Ka-band radars typically used for ocean remote sensing. An effect of enhanced wave damping due to EOL compared to non emulsified crude OL is revealed.
A Millimeter-Wave Digital Link for Wireless MRI
Aggarwal, Kamal; Joshi, Kiran R.; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M.; Poon, Ada S. Y.; Scott, Greig
2017-01-01
A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI. PMID:27810803
A Millimeter-Wave Digital Link for Wireless MRI.
Aggarwal, Kamal; Joshi, Kiran R; Rajavi, Yashar; Taghivand, Mazhareddin; Pauly, John M; Poon, Ada S Y; Scott, Greig
2017-02-01
A millimeter (mm) wave radio is presented in this work to support wireless MRI data transmission. High path loss and availability of wide bandwidth make mm-waves an ideal candidate for short range, high data rata communication required for wireless MRI. The proposed system uses a custom designed integrated chip (IC) mm-wave radio with 60 GHz as radio frequency carrier. In this work, we assess performance in a 1.5 T MRI field, with the addition of optical links between the console room and magnet. The system uses ON-OFF keying (OOK) modulation for data transmission and supports data rates from 200 Mb/s to 2.5 Gb/s for distances up-to 65 cm. The presence of highly directional, linearly polarized, on-chip dipole antennas on the mm-wave radio along with the time division multiplexing (TDM) circuitry allows multiple wireless links to be created simultaneously with minimal inter-channel interference. This leads to a highly scalable solution for wireless MRI.
Development of Novel RF and Millimeter Wave Structures by Laser Direct-Write
2009-06-01
layers of patterned dielectric or conductor can be stacked or laminated to form multi-layer FSSs. A FSS is designed to perform at a specific frequency...in millimeters) a) b) c) a) b) Fig. 2 Schematic representations of a) a “traditional” FSS, b) a Fresnel zone plate, and c) a convolution of...cannot be predicted so easily. Even in cases where a “ convolution of models” allows one to pre- dict the performance of a “non-traditional” FSS, it
Detecting Extrasolar Planets With Millimeter-Wave Observatories
NASA Astrophysics Data System (ADS)
1996-01-01
Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system. Another important advantage is that, at millimeter wavelengths, the star's brightness poses less of a problem for observers because, while it is still brighter than a planet, the difference in brightness between the two is far less. Because of the physical nature of the objects themselves, protoplanets in different stages of formation could readily be detected by advanced millimeter-wave observatories. The observatories that could provide these advantages are the Millimeter Array (MMA), a proposed 40-antenna millimeter-wave telescope that could be operational by 2005, and an upgraded version of the existing Very Large Array (VLA), a 27-antenna radio telescope in New Mexico. The MMA is a radio telescope designed to operate at wavelengths from 11.5 millimeters down to 0.5 millimeters, or frequencies from 26 to 650 GHz. It will use 40 precision antennas, each 8 meters in diameter, all operating in concert to produce extremely high- resolution images. As is done with the existing VLA and VLBA radio telescopes, the signals from all the MMA antennas will be processed in a special-purpose computer called a correlator. The processing of the signals corrects for atmospheric propagation effects and for the fact that the "synthesized telescope" is in fact made up of individual antennas. Planning for the MMA began as early as 1983, and a number of scientific workshops have allowed U.S. researchers to make known their needs for a millimeter-wave observatory to serve a wide variety of specialties. The National Science Foundation (NSF) provided initial design funding to NRAO in 1995 for MMA studies. Currently, MMA efforts are centered on selecting an appropriate site, which must be very high, dry and flat. A site at 16,500 feet elevation in northern Chile is now being tested. Hawaii's Mauna Kea is also under consideration. If funding is approved for the MMA, the instrument could be in operation by the year 2005. The MMA is expected to be an international instrument, with funding from both U.S. and foreign sources. The MMA will be capable of imaging planetary systems in the earliest stages of their formation. The MMA will be able to detect many more young, low-mass stellar systems and to examine them to determine if they have the disks from which planetary systems are formed. In addition, the MMA could be used to examine the properties of these disks in detail. The properties that could be examined include size, temperature, dust density and chemistry. A number of enhancements have been proposed to the MMA, including longer baselines for greater resolution, the ability to observe at higher frequencies, and greater signal bandwidth. This enhanced MMA would have the sensitivity to directly detect very young giant planets in the nearest star-forming regions, the resolving power to distinguish them from their central stars, and the ability to detect giant planets by measuring their gravitational effect upon their parent stars and thus determine their masses. The VLA, dedicated in 1980, also could contribute to the search for extrasolar planets if proposed upgrades are implemented. Though originally designed to operate at a highest frequency of 24 GHz, the VLA recently has been equipped with receivers for 40-50 GHz. Funding for receivers in this range, at a wavelength of 7 millimeters, was provided in 1993 by the government of Mexico. The VLA now has 13 of its 27 antennas equipped with these 40-50 GHz receivers. Plans for upgrading the VLA include equipping all remaining antennas with such receivers, improving its electronics, and improving its resolution by adding antennas at extended distances. The upgraded VLA will be able to study the inner parts of the dust disks surrounding young stars -- disks that are believed to be the precursors to planetary systems. The inner parts of such disks are obscured at shorter wavelengths. The enhanced VLA will be able to reveal processes occurring in these disks at scales comparable to the size of our own Solar System. "The reason we hope to search for extrasolar planets with millimeter-wave telescopes is that we can build on the experience U.S. astronomers have gained with both millimeter observing and aperture-synthesis telescopes such as the VLA over the past two or three decades," said Brown. He added, "We look forward to applying this expertise to the challenge of answering one of mankind's oldest questions."
NASA Astrophysics Data System (ADS)
Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.
2016-07-01
The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.
MMIC Replacement for Gunn Diode Oscillators
NASA Technical Reports Server (NTRS)
Crowe, Thomas W.; Porterfield, David
2011-01-01
An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.
Amin Nili, Vahid; Mansouri, Ehsan; Kavehvash, Zahra; Fakharzadeh, Mohammad; Shabany, Mahdi; Khavasi, Amin
2018-01-01
In this paper, a closed-form two-dimensional reconstruction technique for hybrid frequency and mechanical scanning millimeter-wave (MMW) imaging systems is proposed. Although being commercially implemented in many imaging systems as a low-cost real-time solution, the results of frequency scanning systems have been reconstructed numerically or have been reported as the captured raw data with no clear details. Furthermore, this paper proposes a new framework to utilize the captured data of different frequencies for three-dimensional (3D) reconstruction based on novel proposed closed-form relations. The hybrid frequency and mechanical scanning structure, together with the proposed reconstruction method, yields a low-cost MMW imaging system with a satisfying performance. The extracted reconstruction formulations are validated through numerical simulations, which show comparable image quality with conventional MMW imaging systems, i.e., switched-array (SA) and phased-array (PA) structures. Extensive simulations are also performed in the presence of additive noise, demonstrating the acceptable robustness of the system against system noise compared to SA and comparable performance with PA. Finally, 3D reconstruction of the simulated data shows a depth resolution of better than 10 cm with minimum degradation of lateral resolution in the 10 GHz frequency bandwidth.
NASA Astrophysics Data System (ADS)
Marzano, F. S.; Cimini, D.; Montopoli, M.; Rossi, T.; Mortari, D.; di Michele, S.; Bauer, P.
2009-04-01
Millimeter-wave observation of the atmospheric parameters is becoming an appealing goal within satellite radiometry applications. The major technological advantage of millimeter-wave (MMW) radiometers is the reduced size of the overall system, for given performances, with respect to microwave sensor. On the other hand, millimeter-wave sounding can exploit window frequencies and various gaseous absorption bands at 50/60 GHz, 118 GHz and 183 GHz. These bands can be used to estimate tropospheric temperature profiles, integrated water vapor and cloud liquid content and, using a differentia spectral mode, light rainfall and snowfall. Millimeter-wave radiometers, for given observation conditions, can also exhibit relatively small field-of-views (FOVs), of the order of some kilometers for low-Earth-orbit (LEO) satellites. However, the temporal resolution of LEO millimeter-wave system observations remains a major drawback with respect to the geostationary-Earth-orbit (GEO) satellites. An overpass every about 12 hours for a single LEO platform (conditioned to a sufficiently large swath of the scanning MMW radiometer) is usually too much when compared with the typical temporal scale variation of atmospheric fields. This feature cannot be improved by resorting to GEO platforms due to their high orbit altitude and consequent degradation of the MMW-sensor FOVs. A way to tackle this impasse is to draw our attention at the regional scale and to focus non-circular orbits over the area of interest, exploiting the concept of micro-satellite flower constellations. The Flower Constellations (FCs) is a general class of elliptical orbits which can be optimized, through genetic algorithms, in order to maximize the revisiting time and the orbital height, ensuring also a repeating ground-track. The constellation concept nicely matches the choice of mini-satellites as a baseline choice, due to their small size, weight (less than 500 kilograms) and relatively low cost (essential when deploying several identical speceborne platforms). Moreover, the micro-satellite solution clearly addresses the choice of small passive sensors with small size, low weight and power consumption, features which cannot be usually satisfied by active sensors. In this respect, MMW technology is the most compatible with the specifications and constraints of micro-satellites. In this work, we will discuss the numerical results of a feasibility study aimed at designing a Flower elliptical constellation of 3 micro-satellite millimeter-wave radiometers for pseudo-geostationary atmospheric observations over the Mediterranean region. The Flower constellation will be optimized in such a way to simulate a pseudo-geostationary observation of the Mediterranean area with an observation repetition time less than 2 hours. The mission requirements request the retrieval of thermodinamical and hydrological properties of the troposphere, specifically temperature profiles, integrated water vapor and cloud liquid content, rainfall and snowfall. Several configurations of the MMW radiometer multi-band channels will be discussed, pointing out the trade-off between performances and complexity. Integrated estimation algorithms, based on a Bayesian approache, will be illustrated to retrieve the requested atmospheric parameters, discussing its sensitivity to sensor radiometric precision and accuracy within each frequency-set configuration. After this numerical study, a review of the mission requirements and specifications will be also proposed.
NASA Astrophysics Data System (ADS)
Petito, F. C.; Wentworth, E. W.
1980-05-01
Recently there has been much interest expressed to determine the ability of millimeter wave radar to perform target acquisition during degraded visibility conditions. In this regard, one of the primary issues of concern has been the potential of high-explosive artillery barrages to obscure the battlefield from millimeter wave radar systems. To address this issue 95 GHz millimeter wave radar measurements were conducted during the Dusty Infrared Test 2 (DIRT 2). This test was held at White Sands Missile Range, NM, 18-28 July 1979. Millimeter wave transmission and backscatter measurements were performed during singular live firings and static detonations of 155 mm and 105 mm high-explosive artillery rounds in addition to static detonations of C-4 explosives. A brief description of the millimeter wave portion of the test and instrumentation is given. The data along with some preliminary conclusions are presented.
Interferometric millimeter wave and THz wave doppler radar
Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas
2015-08-11
A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.
An optical mm-wave generation scheme by frequency octupling using a nested MMI
NASA Astrophysics Data System (ADS)
Shang, Lei; Wen, Aijun; Li, Bo; Wang, Tonggang; Chen, Yang; Li, Ming'an
2011-12-01
A novel method of a filterless optical millimeter-wave (MMW) signal generation with frequency octupling via a nested multimode interference (MMI) coupler is proposed for Radio-over-fiber systems. By setting the DC bias voltage applied to the central arms of MMI-b and MMI-c accurately, the optical carrier can be completely suppressed. The OSSR can be as high as about 58 dB without optical filter and the radio frequency spurious suppression ratio (RFSSR) exceeds 32 dB, which is the best result as we know. Simulation results suggest that when the generated optical mm-wave signal is transmitted along the standard single-mode fiber, the eye diagram is still opened after being transmitted over a 50 km fiber.
Modeling and characterization of shielded low loss CPWs on 65 nm node silicon
NASA Astrophysics Data System (ADS)
Hongrui, Wang; Dongxu, Yang; Li, Zhang; Lei, Zhang; Zhiping, Yu
2011-06-01
Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results.
Hasan, Mehedi; Guemri, Rabiaa; Maldonado-Basilio, Ramón; Lucarz, Frédéric; de Bougrenet de la Tocnaye, Jean-Louis; Hall, Trevor
2015-12-15
A novel photonic circuit design for implementing frequency 8-tupling and 24-tupling was presented [Opt. Lett.39, 6950 (2014)10.1364/OL.39.006950OPLEDP0146-9592], and although its key message remains unaltered, there were typographical errors in the equations that are corrected in this erratum.
Near millimeter wave bandpass filters
NASA Technical Reports Server (NTRS)
Timusk, T.; Richards, P. L.
1981-01-01
The properties of bandpass filters for broadband photometry are reported in the 3-12/cm frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.
Advanced millimeter-wave security portal imaging techniques
NASA Astrophysics Data System (ADS)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-03-01
Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Khazanov, George; Mukhter, Ali
2007-01-01
We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.
Precise Laboratory Measurement of Line Frequencies Useful to Studies of Star and Planet Formation
NASA Technical Reports Server (NTRS)
Myers, Philip C.; Gottlieb, Carl A.
2005-01-01
In March 2002, we began a program in laboratory spectroscopy to provide accurate molecular line frequencies essential to studies of the motions and abundance in star-forming dense cores and planet-forming circumstellar disks. Summarized here is the progress that has been made in Year 3 of this grant. Work included measurement of 10 successive rotational lines in the ground vibrational state of SiO between 86 and 500 GHz, and two lines near 800 GHz to an accuracy of a few kHz; conducting pilot experiments on molecular ions in collision-free supersonic beams, including HCO+, N2H+, and H2D+; measurement of 22 lines of CN between 113 and 340 GHz; and setting up an experiment that would allow us to refine earlier measurements of the neutral species such as C3H2, CCS, H2CS, and SO by observing the very narrow sub-Doppler (Lamb dip) features in the millimeter-wave spectra of these species.
A Josephson radiation comb generator.
Solinas, P; Gasparinetti, S; Golubev, D; Giazotto, F
2015-07-20
We propose the implementation of a Josephson Radiation Comb Generator (JRCG) based on a dc superconducting quantum interference device (SQUID) driven by an external magnetic field. When the magnetic flux crosses a diffraction node of the critical current interference pattern, the superconducting phase undergoes a jump of π and a voltage pulse is generated at the extremes of the SQUID. Under periodic drive this allows one to generate a sequence of sharp, evenly spaced voltage pulses. In the frequency domain, this corresponds to a comb-like structure similar to the one exploited in optics and metrology. With this device it is possible to generate up to several hundreds of harmonics of the driving frequency. For example, a chain of 50 identical high-critical-temperature SQUIDs driven at 1 GHz can deliver up to a 0.5 nW at 200 GHz. The availability of a fully solid-state radiation comb generator such as the JRCG, easily integrable on chip, may pave the way to a number of technological applications, from metrology to sub-millimeter wave generation.
Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device
Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.
2016-01-01
We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doménech, J. L.; Herrero, V. J.; Tanarro, I.
The chloroniumyl cation, HCl{sup +}, has been recently identified in space from Herschel 's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimeter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration–rotation data. Furthermore, with the end of the Herschel mission, IR observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers, as well as a new andmore » improved global fit of vis-UV, IR, and millimeter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.« less
NASA Astrophysics Data System (ADS)
Chen, Z.; Harris, V. G.
2012-10-01
It is widely recognized that as electronic systems' operating frequency shifts to microwave and millimeter wave bands, the integration of ferrite passive devices with semiconductor solid state active devices holds significant advantages in improved miniaturization, bandwidth, speed, power and production costs, among others. Traditionally, ferrites have been employed in discrete bulk form, despite attempts to integrate ferrite as films within microwave integrated circuits. Technical barriers remain centric to the incompatibility between ferrite and semiconductor materials and their processing protocols. In this review, we present past and present efforts at ferrite integration with semiconductor platforms with the aim to identify the most promising paths to realizing the complete integration of on-chip ferrite and semiconductor devices, assemblies and systems.
Fly Eye radar: detection through high scattered media
NASA Astrophysics Data System (ADS)
Molchanov, Pavlo; Gorwara, Ashok
2017-05-01
Longer radio frequency waves better penetrating through high scattered media than millimeter waves, but imaging resolution limited by diffraction at longer wavelength. Same time frequency and amplitudes of diffracted waves (frequency domain measurement) provides information of object. Phase shift of diffracted waves (phase front in time domain) consists information about shape of object and can be applied for reconstruction of object shape or even image by recording of multi-frequency digital hologram. Spectrum signature or refracted waves allows identify the object content. Application of monopulse method with overlap closely spaced antenna patterns provides high accuracy measurement of amplitude, phase, and direction to signal source. Digitizing of received signals separately in each antenna relative to processor time provides phase/frequency independence. Fly eye non-scanning multi-frequency radar system provides simultaneous continuous observation of multiple targets and wide possibilities for stepped frequency, simultaneous frequency, chaotic frequency sweeping waveform (CFS), polarization modulation for reliable object detection. Proposed c-band fly eye radar demonstrated human detection through 40 cm concrete brick wall with human and wall material spectrum signatures and can be applied for through wall human detection, landmines, improvised explosive devices detection, underground or camouflaged object imaging.
On the mechanisms of interaction of low-intensity millimeter waves with biological objects
NASA Astrophysics Data System (ADS)
Betskii, O. V.
1994-01-01
The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.
EEG changes as heat stress reactions in rats irradiated by high intensity 35 GHz millimeter waves.
Xie, Taorong; Pei, Jian; Cui, Yibin; Zhang, Jie; Qi, Hongxing; Chen, Shude; Qiao, Dengjiang
2011-06-01
As the application of millimeter waves for civilian and military use increases, the possibility of overexposure to millimeter waves will also increase. This paper attempts to evaluate stress reactions evoked by 35 GHz millimeter waves. The stress reactions in Sprague-Dawley (SD) rats were quantitatively studied by analyzing electroencephalogram (EEG) changes induced by overexposure to 35 GHz millimeter waves. The relative changes in average energy of the EEG and its wavelet decompositions were used for extracting the stress reaction indicators. Incident average power densities (IAPDs) of 35 GHz millimeter waves from 0.5 W cm(-2) to 7.5 W cm(-2) were employed to investigate the relation between irradiation dose and the stress reactions in the rats. Different stress reaction periods evoked by irradiation were quantitatively evaluated by EEG results. The results illustrate that stress reactions are more intense during the first part of the irradiation than during the later part. The skin temperature increase produced by millimeter wave irradiation is the principle reason for stress reactions and skin injuries. As expected, at the higher levels of irradiation, the reaction time decreases and the reaction intensity increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remya, B.; Reddy, R. V.; Lakhina, G. S.
2014-09-20
During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf}more » > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua, E-mail: nevin@mit.edu
2013-06-01
A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω {sub a} excites a pair of secondary waves of frequency ω {sub b} + ω {sub c} ≅ ω {sub a}. Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω {sub b} + ω {sub c} >> ω {sub a}. We show that a p-mode can couple so stronglymore » to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f {sub gw} ≳ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δφ ≳ 1 radian) that accumulate primarily at low frequencies (f {sub gw} ≲ 50 Hz) and (2) heat the neutron star core to a temperature of T ∼ 10{sup 10} K. Since there are at least ∼100 unstable p-g daughter pairs, Δφ and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star binaries at much larger orbital separations than previously thought.« less
Printed circuit board impedance matching step for microwave (millimeter wave) devices
Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul
2013-10-01
An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.
Development of Leaky Wave Antennas for Layered Ridge Dielectric Waveguide
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Katehi, Linda P. B.
1993-01-01
The millimeter wave, especially above 100 GHz, and the submillimeter wave frequency spectrum offers the possibility for narrow-beam, high-resolution antennas which are critical for high definition radars required for space debris tracking, airport ground avoidance radars, and missile tracking. In addition, the frequency which most atmospheric constituents may be detected lie in this part of the frequency spectrum. Therefore, the development of electronic components for millimeter/submillimeter wave passive sensors is required for environmental monitoring of the Earth's atmosphere. Typical microwave transmission lines such as microstrip and coplanar waveguide rely on two or more electrical conductors to concentrate and guide the electromagnetic energy. Unfortunately, the surface resistance of the conductors increases as the square root of frequency. In addition, the circuit dimensions must be decreased with increasing frequency to maintain a single mode transmission line which further increases the conductor loss. An alternative family of transmission lines are formed from two or more insulating materials and rely on the differences in the permittivities between the two materials to guide the wave. No metal conductors are required although some dielectric waveguides do utilize a metallic ground plane to facilitate the interconnections of active electrical elements or to reduce the transmission line size. Examples of such transmission lines are image guides, insulated image guides, trapped image guides, ridge guide, and layered ridge dielectric waveguide (LRDW). Although most dielectric waveguides have dimensions on the order of lambda to provide sufficient field confinement, the LRDW has been shown to provide good field confinement for electrically small lines. This offers an advantage in circuit integration. It has been shown that a periodic array of metallic strips placed either along or on top of a dielectric waveguide forms an effective radiator. This antenna is easy to fabricate and there is good background of microstrip type antenna design information in the literature. This paper reports the development of the first frequency scanning antenna fed by a LRDW.
Millimeter wave spectrum of nitromethane
NASA Astrophysics Data System (ADS)
Ilyushin, Vadim
2018-03-01
A new study of the millimeter wave spectrum of nitromethane, CH3NO2, is reported. The new measurements covering the frequency range from 49 GHz to 237 GHz have been carried out using the spectrometer in IRA NASU (Ukraine). Transitions belonging to the |m| ≤ 8 torsional states have been analyzed using the Rho-axis-method and the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. A data set consisting of 5925 microwave line frequencies and including transitions with J up to 55 was fit using a model consisting of 97 parameters, and a weighted root-mean-square deviation of 0.84 was achieved. The analysis of the spectrum covers the m torsional states lying below the lowest small amplitude vibration in nitromethane molecule, which is the NO2 in plane rock at 475 cm-1. It serves as a preparatory step in further studies of intervibrational interactions in this molecule.
Free-space microwave-to-optical conversion via six-wave mixing in Rydberg atoms
NASA Astrophysics Data System (ADS)
Han, Jingshan; Vogt, Thibault; Gross, Christian; Jaksch, Dieter; Kiffner, Martin; Li, Wenhui
2017-04-01
The interconversion of millimeter waves and optical fields is an important and highly topical subject for classical and quantum technologies. In this talk, we report an experimental demonstration of coherent and efficient microwave-to-optical conversion in free space via six-wave mixing in Rydberg atoms. Our scheme utilizes the strong coupling of millimeter waves to Rydberg atoms as well as the frequency mixing based on electromagnetically induced transparency (EIT) that greatly enhances the nonlinearity for the conversion process. We achieve a free-space conversion efficiency of 0.25% with a bandwidth of about 4 MHz in our experiment. Optimized geometry and energy level configurations should enable the broadband interconversion of microwave and optical fields with near-unity efficiency. These results indicate the tremendous potential of Rydberg atoms for the efficient conversion between microwave and optical fields, and thus paves the way to many applications. This work is supported by Singapore Ministry of Education Academic Research Fund Tier 2 (Grant No. MOE2015-T2-1-085).
Submillimeter Laboratory Investigations: Spectroscopy and Collisions
NASA Technical Reports Server (NTRS)
Herbst, Eric; DeLucia, Frank C.
2002-01-01
Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.
NASA Astrophysics Data System (ADS)
Colin, Angel
2014-03-01
This paper describes an experimental setup for the spectral calibration of bolometric detectors used in radioastronomy. The system is composed of a Martin-Puplett interferometer with two identical artificial blackbody sources operating in the vacuum mode at 77 K and 300 K simultaneously. One source is integrated into a liquid nitrogen cryostat, and the other one into a vacuum chamber at room temperature. The sources were designed with a combination of conical with cylindrical geometries thus forming an orthogonal configuration to match the internal optics of the interfermometer. With a simple mathematical model we estimated emissivities of ε 0.995 for each source.
Compressive passive millimeter wave imager
Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C
2015-01-27
A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.
Fabrication of Compact Superconducting Lowpass Filters for Ultrasensitive Detectors
NASA Technical Reports Server (NTRS)
Brown, Ari; Chervenak, James; Chuss, David; Mikula, Vilem; Ray, Christopher; Rostem, Karwan; U-Yen, Kongpop; Wassell, Edward; Wollack, Edward
2012-01-01
It is extremely important for current and future far-infrared and sub-millimeter ultrasensitive detectors, which include transition edge sensors (TES) and microwave kinetic inductance detectors, to be adequately filtered from stray electromagnetic radiation in order to achieve their optimal performance. One means of filtering stray radiation is to block leakage associated with electrical connections in the detector environment. Here we discuss a fabrication methodology for realizing non-dissipative planar filters imbedded in the wall of the detector enclosure to limit wave propagation modes up to far-infrared frequencies. Our methodology consists of fabricating a boxed stripline transmission line, in which a superconducting (Nb, Mo, or Al) transmission line is encased in a silicon dioxide dielectric insulator coated with a metallic shell. We report on achieved attenuation and return loss and find that it replicates the simulated data to a high degree.
NASA Technical Reports Server (NTRS)
Fischer, M. L.; Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Gundersen, J. O.; Koch, T. C.; Kreysa, E.; Meinhold, P. R.; Lange, A. E.
1992-01-01
We report the performance of a bolometric system designed to measure the anisotropy of the cosmic microwave background (CMB) radiation on angular scales from 0 deg 3 min to 3 deg. The system represents a collaborative effort combining a low-background 1 m diameter balloon-borne telescope with new multimode feed optics, a beam modulation mechanism with high stability, and a four-channel bolometric receiver with passbands centered near frequencies of 3 (90), 6 (180), 9 (270), and 12 (360) cm(exp -1) (GHz). The telescope was flown three times with the bolometric receiver and has demonstrated detector noise limited performance capable of reaching sensitivity levels of Delta(T)/T(sub CMB) is approximately equal to 10(exp -5) with detectors operated at T = 0.3 K.
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Hospodarsky, George B.; Kletzing, Craig A.; Engebretson, Mark J.; Pfaff, Robert F.; Wygant, John R.; Kurth, William S.; Averkamp, Terrance F.; Bounds, Scott R.; Green, Jim L.;
2016-01-01
We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 21 September 2012 to 1 August 2014. We show that statistically, the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (f(sub cP)) has a distinct funnel-shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extra-ordinary (whistler) mode at wave normal angles (theta(sub k)) near 90 deg. Performing polarization analysis on synthetic waveforms composed from a superposition of extra-ordinary mode plane waves with theta(sub k) randomly chosen between 87 and 90 deg, we show that the uncertainty in the derived wave normal is substantially broadened, with a tail extending down to theta(sub k) of 60 deg, suggesting that another approach is necessary to estimate the true distribution of theta(sub k). We find that the histograms of the synthetically derived ellipticities and theta(sub k) are consistent with the observations of ellipticities and theta(sub k) derived using polarization analysis.We make estimates of the median equatorial theta(sub k) by comparing observed and model ray tracing frequency-dependent probability occurrence with latitude and give preliminary frequency dependent estimates of the equatorial theta(sub k) distribution around noon and 4 R(sub E), with the median of approximately 4 to 7 deg from 90 deg at f/f(sub cP) = 2 and dropping to approximately 0.5 deg from 90 deg at f/f(sub cP) = 30. The occurrence of waves in this mode peaks around noon near the equator at all radial distances, and we find that the overall intensity of these waves increases with AE*, similar to findings of other studies.
Split-Waveguide Mounts For Submillimeter-Wave Multipliers And Harmonic Mixers
NASA Technical Reports Server (NTRS)
Raisanen, Antti; Choudhury, Debabani; Dengler, Robert J.; Oswald, John E.; Siegel, Peter H.
1996-01-01
Novel variation of split-waveguide mount for millimeter-and submillimeter-wavelength frequency multipliers and harmonic mixers developed. Designed to offer wide range of available matching impedances, while maintaining relatively simple fabrication sequence. Wide tuning range achieved with separate series and parallel elements, consisting of two pairs of noncontacting sliding backshorts, at fundamental and harmonic frequencies. Advantages include ease of fabrication, reliability, and tunability.
A millimeter wave quasi-optical mixer and multiplier
NASA Technical Reports Server (NTRS)
1977-01-01
The results of an experimental study of a biconical quasi-optical Schottky barrier diode mount design which could be used for mixing and multiplying in the frequency range 200-1000 Ghz are reported. The biconical mount is described and characteristics measured at 185 Ghz are presented. The use of the mount for quasi-optical frequency doubling from 56 to 112 Ghz is described and efficiency estimates given.
Theoretical and experimental investigation of millimeter-wave TED's in cross-waveguide oscillators
NASA Astrophysics Data System (ADS)
Rydberg, A.
1985-07-01
Theoretical and experimental investigations of millimeterwave GaAs second harmonic transferred electron device (TED) oscillators using separate circuits for frequency and power optimization, are described. The theory predicts the oscillation frequency with less than 2 percent error for the second harmonic. Apart from the 2d and 3d, a 4th harmonic from the TED was observed up to 130 GHz.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, A. J.; Adelberg, L. K.; Kunkee, D. B.; Jackson, D. M.
1993-01-01
Progress by investigators at the Georgia Institute of Technology in the development of techniques for passive microwave retrieval of water vapor, cloud, and precipitation parameters using millimeter- and sub-millimeter wavelength channels is reviewed. Channels of particular interest are in the tropospheric transmission windows at 90, 166, 220, 340, and 410 GHz and centered around the water vapor lines at 183 and 325 GHz. Collectively, these channels have potential application in high-resolution mapping (e.g., from geosynchronous orbit), remote sensing of cloud and precipitation parameters, and retrieval of water vapor profiles. During the period from 1 Jan. 1993 through 30 Jun. 1993 the Millimeter-wave Imaging Radiometer (MIR) completed data flights during a two-month long deployment in conjunction with TOGA/COARE. Coincident data was collected from several other ground-based, airborne, and satellite sensors, including the NASA/MSFC AMPR, MIT MTS, DMSP SSM/T-2 satellite, collocated radiosondes, ground- and aircraft-based radiometers and cloud lidars, airborne infrared imagers, solar flux probes, and airborne cloud particle sampling probes.
Microfabricated Millimeter-Wave High-Power Vacuum Electronic Amplifiers
2015-01-01
Applications filed 2012). In spite of the challenges, high power sources of electromagnetic radiation are needed in the mmW bands for advanced DoD...Research Laboratory is demonstrating and developing millimeter-wave vacuum electronic traveling wave tube amplifiers at W- and G- band in the 10’ s to 100... s of watts power range at several percent instantaneous bandwidth. Keywords: Traveling wave tube; millimeter wave; vacuum electron device
NASA Astrophysics Data System (ADS)
Slovinsky, William Stanley
A "millimeter wave" (MMW) is an electromagnetic oscillation with a wavelength between 1 and 10 mm, and a corresponding frequency of 30 to 300 GHz. In the spectrum of electromagnetic radiation, this band falls above the frequencies of radio waves and microwaves, and below that of infrared radiation. Since the 1950s, frequencies in this regime have been used for short range communications and beginning in the 1970s, a form of therapy known as "millimeter wave therapy" (MWT) , or microwave resonance therapy, in some publications. This form of therapy has been widely used in the republics of the former Soviet Union (FSU). As of 1995, it is estimated that more than one thousand medical centers in the FSU have performed MWT and more than three million patients have received this method of treatment. Despite the abundant use of this form of medicine, very little is known about the mechanisms by which it works. Early accounts of use are limited to Soviet government documents, largely unavailable to the scientific public, and limited translations and oral accounts from FSU scientists and literature reviews . This anecdotal body of evidence lacks the scrutiny of peer-reviewed journal publications. In order to gain more widespread acceptance in Western medicine, the pathway through which this regime of the electromagnetic radiation spectrum affects the human body must be rigorously mapped and quantified. Despite the anecdotal nature of a large portion of the existing research on biological MMW effects, a common link is the idea of an interaction occurring at the skin level, which is transduced into a signal used at a remote location in the body. This study explores a possible mechanism for the generation of this signal. The effects of therapeutic frequency MMW on the ionic currents through two different types of ion transport channels were studied, and the results are discussed with emphasis on how they relate to possible changes in nerve signals used by the body for communication between tissues in remote locations.
Embedding impedance approximations in the analysis of SIS mixers
NASA Technical Reports Server (NTRS)
Kerr, A. R.; Pan, S.-K.; Withington, S.
1992-01-01
Future millimeter-wave radio astronomy instruments will use arrays of many SIS receivers, either as focal plane arrays on individual radio telescopes, or as individual receivers on the many antennas of radio interferometers. Such applications will require broadband integrated mixers without mechanical tuners. To produce such mixers, it will be necessary to improve present mixer design techniques, most of which use the three-frequency approximation to Tucker's quantum mixer theory. This paper examines the adequacy of three approximations to Tucker's theory: (1) the usual three-frequency approximation which assumes a sinusoidal LO voltage at the junction, and a short-circuit at all frequencies above the upper sideband; (2) a five-frequency approximation which allows two LO voltage harmonics and five small-signal sidebands; and (3) a quasi five-frequency approximation in which five small-signal sidebands are allowed, but the LO voltage is assumed sinusoidal. These are compared with a full harmonic-Newton solution of Tucker's equations, including eight LO harmonics and their corresponding sidebands, for realistic SIS mixer circuits. It is shown that the accuracy of the three approximations depends strongly on the value of omega R(sub N)C for the SIS junctions used. For large omega R(sub N)C, all three approximations approach the eight-harmonic solution. For omega R(sub N)C values in the range 0.5 to 10, the range of most practical interest, the quasi five-frequency approximation is a considerable improvement over the three-frequency approximation, and should be suitable for much design work. For the realistic SIS mixers considered here, the five-frequency approximation gives results very close to those of the eight-harmonic solution. Use of these approximations, where appropriate, considerably reduces the computational effort needed to analyze an SIS mixer, and allows the design and optimization of mixers using a personal computer.
Millimeter wave detection of nuclear radiation: an alternative detection mechanism.
Gopalsami, N; Chien, H T; Heifetz, A; Koehl, E R; Raptis, A C
2009-08-01
We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.
NASA Astrophysics Data System (ADS)
Ye, Shu-qin; Zhu, Chen-guang; Wang, Li-hong; Ou'yang, De-hua; Pan, Gong-pei
2016-10-01
Copper-plated and silver-plated cellulose nitrate flakes, which were prepared by using chemical plating technology, were used to jam infrared detector and millimeter-wave radar. It was tested for the conductivity and infrared jamming performance of plating and also the RCS (Radar Cross Section) performance of millimeter-wave radar. Test results showed that the prepared metal-plated cellulose nitrate flakes have obvious conductivity, and infrared total radiation energy of silver plating and copper plating had approximately increased 32% and 21% respectively. Through determination, the millimeter-wave reflecting property and RCS of silver-plated cellulose nitrate flakes were higher than that of copper-plated cellulose nitrate flakes. Therefore, silver-plated cellulose nitrate flakes can be used as an effective infrared / millimeter wave composite jamming material.
NASA Technical Reports Server (NTRS)
Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.
2012-01-01
This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.
Digital Refractometry of Piezoelectric Crystalline Media
1988-11-01
Research and Development Technical Report SLCET-TR-87-0727-1 III DIGITAL REFRACTOMETRY OF PIEZOELECTRIC CRYSTALLINE MEDIA CD Dr. Edward Collett...1L 1 DA313485 11. TITLE (include Security Classification) DIGITAL REFRACTOMETRY OF PIEZOELECTRIC CRYSTALLINE MEDIA (U) 12. PERSONAL AUTHOR(S) Dr...GROUP SUB-GROUP Lasers; quartz; dielectrics; permittivity; refractometry 9 U-1optics; millimeter waves; microwaves; crystals. ,. ABSTRACT (Continue on
Broadband notch filter design for millimeter-wave plasma diagnostics.
Furtula, V; Michelsen, P K; Leipold, F; Salewski, M; Korsholm, S B; Meo, F; Nielsen, S K; Stejner, M; Moseev, D; Johansen, T
2010-10-01
Notch filters are integrated in plasma diagnostic systems to protect millimeter-wave receivers from intensive stray radiation. Here we present a design of a notch filter with a center frequency of 140 GHz, a rejection bandwidth of ∼900 MHz, and a typical insertion loss below 2 dB in the passband of ±9 GHz. The design is based on a fundamental rectangular waveguide with eight cylindrical cavities coupled by T-junction apertures formed as thin slits. Parameters that affect the notch performance such as physical lengths and conductor materials are discussed. The excited resonance mode in the cylindrical cavities is the fundamental TE(11). The performance of the constructed filter is measured using a vector network analyzer monitoring a total bandwidth of 30 GHz. We compare the measurements with numerical simulations.
Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2016-01-01
Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.
2010-01-01
We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and far-infrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5 micrometer thick silicon membrane, and 380 micrometer thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.
NASA Technical Reports Server (NTRS)
Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.
2010-01-01
We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.
Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare
NASA Astrophysics Data System (ADS)
Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.
2018-03-01
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.
Xiang, Yu; Chen, Chen; Zhang, Chongfu; Qiu, Kun
2013-01-14
In this paper, we propose and demonstrate a novel integrated radio-over-fiber passive optical network (RoF-PON) system for both wired and wireless access. By utilizing the polarization multiplexed four-wave mixing (FWM) effect in a semiconductor optical amplifier (SOA), scalable generation of multi-frequency millimeter-waves (MMWs) can be provided so as to assist the configuration of multi-frequency wireless access for the wire/wireless access integrated ROF-PON system. In order to obtain a better performance, the polarization multiplexed FWM effect is investigated in detail. Simulation results successfully verify the feasibility of our proposed scheme.
High Power K Sub a -band Transmitter for Planetary Radar and Spacecraft Uplink
NASA Technical Reports Server (NTRS)
Bhanji, A. M.; Hoppe, D. J.; Hartop, R. W.; Stone, E. W.; Imbriale, W. A.; Stone, D.; Caplan, M.
1984-01-01
A proposed conceptual design of a 400 kW continuous wave (CW)K sub a band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter wave tube, the gyroklystron is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission line components consisting of signal monitoring devices, signal filtering devices, and an overmoded corrugated feed are discussed. Finally, an assessment of the state of the art technology to meet the system requirements is given and possible areas of difficulty are summarized.
NASA Astrophysics Data System (ADS)
Temkin, Richard J.
Recent advances in IR and mm-wave (MMW) physics, astrophysics, devices, and applications are examined in reviews and reports. Sections are devoted to MMW sources, MMW modulation of light, MMW antennas, FELs, MMW optical technology, astronomy, MMW systems, microwave-optical interactions, MMW waveguides, MMW detectors and mixers, plasma diagnostics, and atmospheric physics. Also considered are gyrotrons, guided propagation, high-Tc superconductors, sub-MMW detectors and related devices, ICs, near-MMW measurements and techniques, lasers, material characterization, semiconductors, and atmospheric propagation.
NASA Astrophysics Data System (ADS)
Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco
2017-07-01
In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.
Alexander, K. D.; Berger, E.; Fong, W.; ...
2017-10-16
Here, we present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, K. D.; Berger, E.; Fong, W.
Here, we present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less
NASA Astrophysics Data System (ADS)
Reising, S. C.; Kangaslahti, P.; Schlecht, E.; Bosch-Lluis, X.; Ogut, M.; Padmanabhan, S.; Cofield, R.; Chahat, N.; Brown, S. T.; Jiang, J. H.; Deal, W.; Zamora, A.; Leong, K.; Shih, S.; Mei, G.
2015-12-01
Measurements of upper-tropospheric water vapor and cloud ice at a variety of local times are critically needed to provide information not currently available from microwave sensors in sun-synchronous orbits. Such global measurements would enable increasingly accurate cloud and moisture simulations in global circulation models, improving both climate predictions and knowledge of their uncertainty. In addition, this capability would address the need for measurements of cloud ice particle size distribution and water content in both clean and polluted environments. Complementary measurements of aerosol pollution would allow investigation of its effects on cloud properties and climate. This is particularly important since the uncertainty in the aerosol effect on climate is at least four times as great as the uncertainty in greenhouse gas effects. To address this unmet need, a collaborative team among Colorado State University, Caltech Jet Propulsion Laboratory and Northrop Grumman Corporation is developing and fabricating the Tropospheric Water and Cloud ICE (TWICE) radiometer instrument. TWICE is designed with size, mass, power consumption and downlink data rate compatible with deployment aboard a 6U-Class nanosatellite. TWICE is advancing the state of the art of spaceborne millimeter- and submillimeter-wave radiometers by transitioning from Schottky mixer-based front ends to InP HEMT MMIC low-noise amplifier front ends, substantially reducing the radiometer's mass, volume and power consumption. New low-noise amplifiers and related front-end components are being designed and fabricated by JPL and Northrop Grumman based on InP HEMT MMIC technology up to 670 GHz. The TWICE instrument will provide 16 radiometer channels, including window frequencies near 240, 310 and 670 GHz to perform ice particle sizing and determine total ice water content, as well as four sounding channels each near 118 GHz for temperature sounding and near 183 GHz and 380 GHz for water vapor sounding during nearly all weather conditions, particularly useful in the upper troposphere in the presence of ice clouds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, K. D.; Berger, E.; Fong, W.
2017-10-16
We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\\gtrsim 20^{\\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\\sim 20^{\\circ}-40^{\\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.« less
Orr, Vanessa L; Esselman, Brian J; Dorman, P Matisha; Amberger, Brent K; Guzei, Ilia A; Woods, R Claude; McMahon, Robert J
2016-10-06
The pure rotational spectrum of diketene has been studied in the millimeter-wave region from ∼240 to 360 GHz. For the ground vibrational state and five vibrationally excited satellites (ν 24 , 2ν 24 , 3ν 24 , 4ν 24 , and ν 16 ), the observed spectrum allowed for the measurement, assignment, and least-squares fitting a total of more than 10 000 distinct rotational transitions. In each case, the transitions were fit to single-state, complete or near-complete sextic centrifugally distorted rotor models to near experimental error limits using Kisiel's ASFIT. Additionally, we obtained less satisfactory least-squares fits to single-state centrifugally distorted rotor models for three additional vibrational states: ν 24 + ν 16 , ν 23 , and 5ν 24 . The structure of diketene was optimized at the CCSD(T)/ANO1 level, and the vibration-rotation interaction (α i ) values for each normal mode were determined with a CCSD(T)/ANO1 VPT2 anharmonic frequency calculation. These α i values were helpful in identifying the previously unreported ν 16 and ν 23 fundamental states. We obtained a single-crystal X-ray structure of diketene at -173 °C. The bond distances are increased in precision by more than an order of magnitude compared to those in the 1958 X-ray crystal structure. The improved accuracy of the crystal structure geometry resolves the discrepancy between previous computational and experimental structures. The rotational transition frequencies provided herein should be useful for a millimeter-wave or terahertz search for diketene in the interstellar medium.
NASA Astrophysics Data System (ADS)
Ju, Yang; Inoue, Kojiro; Saka, Masumi; Abe, Hiroyuki
2002-11-01
We present a method for quantitative measurement of electrical conductivity of semiconductor wafers in a contactless fashion by using millimeter waves. A focusing sensor was developed to focus a 110 GHz millimeter wave beam on the surface of a silicon wafer. The amplitude and the phase of the reflection coefficient of the millimeter wave signal were measured by which electrical conductivity of the wafer was determined quantitatively, independent of the permittivity and thickness of the wafers. The conductivity obtained by this method agrees well with that measured by the conventional four-point-probe method.
The Millimeter- and Submillimeter-Wave Spectrum of Gauche-Ethyl Alcohol
NASA Technical Reports Server (NTRS)
Pearson, J. C.; Sastry, K. V. L. N.; Herbst, Eric; DeLucia, Frank C.
1996-01-01
We report an investigation of the rotational-torsional spectrum of the gauche rotational isomers of ethyl alcohol in the 51-505 GHz frequency region. Over a thousand transitions between rotational levels in the gauche substates of the ground OH torsional state have been measured and assigned. These transitions involve rotational quantum numbers J and K(sub a) up to 30 and 15, respectively, and are of two types: alpha-type transitions between levels in either the gauche+ or the gauche-substate, and c-type transitions between rotational levels in the different substates. The majority of these transitions have been fit satisfactorily using a two-state Hamiltonian based on the Fixed Framework Axis Method (FFAM). The rotation, distortion, and interaction constants have been determined along with the energy difference between the two gauche substates. The derived constants can be used to predict many more transitions accurately for astronomical purposes. The J and K(sub a) region where the two-state analysis can be used has been determined. The basis for a three-state analysis including the trans substate is presented and the applicability of the FFAM approach is discussed.
NASA Astrophysics Data System (ADS)
Takan, Taylan; Özkan, Vedat A.; Idikut, Fırat; Yildirim, Ihsan Ozan; Şahin, Asaf B.; Altan, Hakan
2014-10-01
In this work sub-terahertz imaging using Compressive Sensing (CS) techniques for targets placed behind a visibly opaque barrier is demonstrated both experimentally and theoretically. Using a multiplied Schottky diode based millimeter wave source working at 118 GHz, metal cutout targets were illuminated in both reflection and transmission configurations with and without barriers which were made out of drywall. In both modes the image is spatially discretized using laser machined, 10 × 10 pixel metal apertures to demonstrate the technique of compressive sensing. The images were collected by modulating the source and measuring the transmitted flux through the apertures using a Golay cell. Experimental results were compared to simulations of the expected transmission through the metal apertures. Image quality decreases as expected when going from the non-obscured transmission case to the obscured transmission case and finally to the obscured reflection case. However, in all instances the image appears below the Nyquist rate which demonstrates that this technique is a viable option for Through the Wall Reflection Imaging (TWRI) applications.
Magnetosheath electrostatic turbulence
NASA Technical Reports Server (NTRS)
Rodriquez, P.
1977-01-01
The spectrum of electrostatic plasma waves in the terrestrial magnetosheath was studied using the plasma wave experiment on the IMP-6 satellite. Electrostatic plasma wave turbulence is almost continuously present throughout the magnetosheath with broadband (20 Hz- 70 kHz) r.m.s. field intensities typically 0.01 - 1.0 millivolts/m. Peak intensities of about 1.0 millivolts/m near the electron plasma frequency (30 - 60 kHz) were detected occasionally. The components usually identified in the spectrum of magnetosheath electrostatic turbulence include a high frequency ( or = 30 kHz) component peaking at the electron plasma frequency f sub pe, a low frequency component with a broad intensity maximum below the nominal ion plasma frequency f sub pi (approximately f sub pe/43), and a less well defined intermediate component in the range f sub pi f f sub pe. The intensity distribution of magnetosheath electrostatic turbulence clearly shows that the low frequency component is associated with the bow shock, suggesting that the ion heating begun at the shock continues into the downstream magnetosheath.
Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.
2015-01-01
A photonic choke joint structure with a wide-stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm that the structure can provide broadband suppression of more than 56dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.
Waveguide Photonic Choke Joint with Wide Out-of-Band Rejection
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Wollack, Edward J.
2015-01-01
A photonic choke joint structure with a wide- stop-band is proposed for use as a waveguide flange interface. The structure consists of arrays of square metal pillars arranged in a periodic pattern to suppress the dominant-mode wave propagation in parallel-plate waveguide over a wide frequency bandwidth. The measurement results at microwave frequencies confirm the structure can provide broadband suppression, more than 56 dB over 6.25 times its operating frequency. Applications at millimeter wavelength are discussed.
A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.
NASA Astrophysics Data System (ADS)
Ishikawa, Yuya; Ohya, Kenta; Fujii, Yutaka; Fukuda, Akira; Miura, Shunsuke; Mitsudo, Seitaro; Yamamori, Hidetomo; Kikuchi, Hikomitsu
2018-04-01
We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value ( Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.
Beat note stabilization of a 10-60 GHz dual-polarization microlaser through optical down conversion.
Rolland, A; Brunel, M; Loas, G; Frein, L; Vallet, M; Alouini, M
2011-02-28
Down-conversion of a high-frequency beat note to an intermediate frequency is realized by a Mach-Zehnder intensity modulator. Optically-carried microwave signals in the 10-60 GHz range are synthesized by using a two-frequency solid-state microchip laser as a voltage-controlled oscillator inside a digital phase-locked loop. We report an in-loop relative frequency stability better than 2.5×10⁻¹¹. The principle is applicable to beat notes in the millimeter-wave range.
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.
1996-01-01
This report summarizes progress made during the period from July 1, 1994 through June 30, 1996 on the development of satellite-based observational techniques for high resolution imaging of precipitation and sounding of atmospheric ice and water vapor using passive microwave radiometers in the millimeter (MMW)- and submillimeter (SMMW)-wavelength. This is being achieved by radiative transfer modeling a millimeter and submillimeter wave frequencies and by the development and operation of an airborne millimeter wave imaging radiometer (MIR). The MIR has been used in both airborne and ground-based experiments. Its primary application is to provide calibrated radiometric imagery to verify MMW and SMMW radiative transfer models in clear air, cloud, and precipitation and to develop retrieval techniques using MMW and SMMW channels. The MIR imagery over convective storm cells has been used to illustrate the potentially useful cloud and water vapor sensing and storm-cell mapping capabilities of SMMW channels. The radiometric data has also been used to analyze radiative transfer model discrepancies caused by water vapor errors in radiosondes. The MMW and SMMW channels can be used to extend the altitude that water vapor sounding can be performed up into the lower stratosphere. Together, the use of both SMMW and MMW channels are expected to provide additional observational degrees of freedom related to cloud ice particle size.
Argus: a 16-pixel millimeter-wave spectrometer for the Green Bank Telescope
NASA Astrophysics Data System (ADS)
Sieth, Matthew; Devaraj, Kiruthika; Voll, Patricia; Church, Sarah; Gawande, Rohit; Cleary, Kieran; Readhead, Anthony C. S.; Kangaslahti, Pekka; Samoska, Lorene; Gaier, Todd; Goldsmith, Paul F.; Harris, Andrew I.; Gundersen, Joshua O.; Frayer, David; White, Steve; Egan, Dennis; Reeves, Rodrigo
2014-07-01
We report on the development of Argus, a 16-pixel spectrometer, which will enable fast astronomical imaging over the 85-116 GHz band. Each pixel includes a compact heterodyne receiver module, which integrates two InP MMIC low-noise amplifiers, a coupled-line bandpass filter and a sub-harmonic Schottky diode mixer. The receiver signals are routed to and from the multi-chip MMIC modules with multilayer high frequency printed circuit boards, which includes LO splitters and IF amplifiers. Microstrip lines on flexible circuitry are used to transport signals between temperature stages. The spectrometer frontend is designed to be scalable, so that the array design can be reconfigured for future instruments with hundreds of pixels. Argus is scheduled to be commissioned at the Robert C. Byrd Green Bank Telescope in late 2014. Preliminary data for the first Argus pixels are presented.
Passive millimeter-wave imaging for concealed article detection
NASA Astrophysics Data System (ADS)
Lovberg, John A.; Galliano, Joseph A., Jr.; Clark, Stuart E.
1997-02-01
Passive-millimeter-wave imaging (PMI) provides a powerful sensing tool for law enforcement, allowing an unobtrusive means for detecting concealed weapons, explosives, or contraband on persons or in baggage. Natural thermal emissions at millimeter wavelengths from bodies, guns, explosives, and other articles pass easily through clothing or other concealment materials, where they can be detected and converted into conventional 2-dimensional images. A new implementation of PMI has demonstrated a large-area, near- real-time staring capability for personnel inspection at standoff ranges of greater than 10 meters. In this form, PMI does not require operator cuing based on subjective 'profiles' of suspicious appearance or behaviors, which may otherwise be construed as violations of civil rights. To the contrary, PMI detects and images heat generated by any object with no predisposition as to its nature or function (e.g. race or gender of humans). As a totally passive imaging tool, it generates no radio-frequency or other radiation which might raise public health concerns. Specifics of the new PMI architecture are presented along with a host of imaging data representing the current state- of-the-art.
1980-08-01
an audio oscillator , speaker, frequency counter, and oscilloscope the spheres could be driven into resonance. This procedure was first done for the...cavity, some of the electromagnetic energy is absorbed by an absorbing media. Heating of the gas occurs with the resultant pressure change creating an...acoustic wave. Due to the double open-ended organ pipe design, a pressure maximum occurs midway down the cavity. Because of the symetric placement of the
NASA Technical Reports Server (NTRS)
Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.
1991-01-01
Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.
NASA Technical Reports Server (NTRS)
Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.
Reflective measurement of water concentration using millimeter wave illumination
NASA Astrophysics Data System (ADS)
Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren
2011-04-01
THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.
ATS-5 millimeter wave propagation measurements
NASA Technical Reports Server (NTRS)
Ippolito, L. J.
1973-01-01
Long term experimental measurements to determine the propagation characteristics of 15 and 32 GHz earth-space links and to evaluate performance characteristics of operational millimeter wave systems are reported. The ATS 5 millimeter wave experimental link experienced attenuation and fading characteristics as a function of rainfall rate and other meteorological parameters. A method of site selection for the lowest attenuation rainfall rate improved reception tremendously.
Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2017-01-01
Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Indranuj; Bhattacharjee, Sudeep
2011-02-15
The question of electromagnetic wave penetration and screening by a bounded supercritical ({omega}{sub p}>{omega} with {omega}{sub p} and {omega} being the electron-plasma and wave frequencies, respectively) plasma confined in a minimum B multicusp field, for waves launched in the k perpendicular B{sub o} mode, is addressed through experiments and numerical simulations. The scale length of radial plasma nonuniformity (|n{sub e}/({partial_derivative}n{sub e}/{partial_derivative}r)|) and magnetostatic field (B{sub o}) inhomogeneity (|B{sub o}/({partial_derivative}B{sub o}/{partial_derivative}r)|) are much smaller than the free space ({lambda}{sub o}) and guided wavelengths ({lambda}{sub g}). Contrary to predictions of plane wave dispersion theory and the Clemow-Mullaly-Allis (CMA) diagram, for a boundedmore » plasma a finite propagation occurs through the central plasma regions where {alpha}{sub p}{sup 2}={omega}{sub p}{sup 2}/{omega}{sup 2}{>=}1 and {beta}{sub c}{sup 2}={omega}{sub ce}{sup 2}/{omega}{sup 2}<<1({approx}10{sup -4}), with {omega}{sub ce} being the electron cyclotron frequency. Wave screening, as predicted by the plane wave model, does not remain valid due to phase mixing and superposition of reflected waves from the conducting boundary, leading to the formation of electromagnetic standing wave modes. The waves are found to satisfy a modified upper hybrid resonance (UHR) relation in the minimum B field and are damped at the local electron cyclotron resonance (ECR) location.« less
NASA Technical Reports Server (NTRS)
Karp, A.
1980-01-01
A low-cost, narrowband, millimeter wave space communications TWT design was studied. Cold test interaction structure scale models were investigated and analyses were undertaken to predict the electrical and thermal response of the hypothetical 200 W TWT at 42 GHz and 21 kV beam voltage. An intentionally narrow instantaneous bandwidth (1%, with the possibility of electronic tuning of the center frequency over several percent) was sought with a highly dispersive, high impedance "forward wave' interaction structure based on a ladder (for economy in fabrication) and nonspace harmonic interaction, for a high gain rate and a short, economically focused tube. The "TunneLadder' interaction structure devised combines ladder properties with accommodation for a pencil beam. Except for the impedance and bandwidth, there is much in common with the millimeter wave helix TWTs which provided the ideal of diamond support rods. The benefits of these are enhanced in the TunneLadder case because of spatial separation of beam interception and RF current heating.
Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.
2013-01-01
Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffractionmore » to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.« less
NASA Technical Reports Server (NTRS)
Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru
1991-01-01
Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.
AIN-Coated Al(2)O(3) Substrates For Electronic Circuits
NASA Technical Reports Server (NTRS)
Kolawa, Elzbieta; Lowry, Lynn; Herman, Martin; Lee, Karen
1996-01-01
Type of improved ceramic substrate for high-frequency, high-power electronic circuits combines relatively high thermal conductivity of aluminum nitride with surface smoothness of alumina. Consists of 15-micrometer layer of AIN deposited on highly polished alumina. Used for packaging millimeter-wave gallium arsenide transmitter chips, power silicon chips, and like.
Schuder, Michael D.; Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David J.
2017-01-01
The sub-Doppler CH-symmetric stretch (ν3) infrared absorption spectrum of a hydroxymethyl (CH2OH) radical is observed and analyzed with the radical formed in a slit-jet supersonic discharge expansion (Trot = 18 K) via Cl atom mediated H atom abstraction from methanol. The high sensitivity of the spectrometer and reduced spectral congestion associated with the cooled expansion enable first infrared spectroscopic observation of hydroxymethyl transitions from both ± symmetry tunneling states resulting from large amplitude COH torsional motion. Nuclear spin statistics due to exchange of the two methyl H-atoms aid in unambiguous rovibrational assignment of two A-type Ka = 0 ← 0 and Ka = 1 ← 1 bands out of each ± tunneling state, with additional spectral information obtained from spin-rotation splittings in P, Q, and R branch Ka = 1 ← 1 transitions that become resolved at low N. A high level ab initio potential surface (CCSD(T)-f12b/cc-pvnzf12 (n = 2,3)/CBS) is calculated in the large amplitude COH torsional and CH2 wag coordinates, which in the adiabatic approximation and with zero point correction predicts ground state tunneling splittings in good qualitative agreement with experiment. Of particular astrochemical interest, a combined fit of the present infrared ground state combination differences with recently reported millimeter-wave frequencies permits the determination of improved accuracy rotational constants for the ground vibrational state, which will facilitate ongoing millimeter/microwave searches for a hydroxymethyl radical in the interstellar medium. PMID:28527463
Rodilla, H.; Kim, A. A.; Jeffries, G. D. M.; Vukusic, J.; Jesorka, A.; Stake, J.
2016-01-01
Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz – 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively. PMID:26786983
Rodilla, H; Kim, A A; Jeffries, G D M; Vukusic, J; Jesorka, A; Stake, J
2016-01-20
Studies of biological and artificial membrane systems, such as niosomes, currently rely on the use of fluorescent tags, which can influence the system under investigation. For this reason, the development of label-free, non-invasive detection techniques is of great interest. We demonstrate an open-volume label-free millimeter-wave sensing platform based on a coplanar waveguide, developed for identification and characterization of niosome constituents. A design based on a λ/2-line resonator was used and on-wafer measurements of transmission and reflection parameters were performed up to 110 GHz. Our sensor was able to clearly distinguish between common niosome constituents, non-ionic surfactants Tween 20 and Span 80, measuring a resonance shift of 3 GHz between them. The complex permittivities of the molecular compounds have been extracted. Our results indicate insignificant frequency dependence in the investigated frequency range (3 GHz - 110 GHz). Values of permittivity around 3.0 + 0.7i and 2.2 + 0.4i were obtained for Tween 20 and Span 80, respectively.
Ryan, K L; D'Andrea, J A; Jauchem, J R; Mason, P A
2000-02-01
Currently, technology is being developed that makes use of the millimeter wave (MMW) range (30-300 GHz) of the radio frequency region of the electromagnetic spectrum. As more and more systems come on line and are used in everyday applications, the possibility of inadvertent exposure of personnel to MMWs increases. To date, there has been no published discussion regarding the health effects of MMWs; this review attempts to fill that void. Because of the shallow depth of penetration, the energy and, therefore, heat associated with MMWs will be deposited within the first 1-2 mm of human skin. MMWs have been used in states of the former Soviet Union to provide therapeutic benefit in a number of diverse disease states, including skin disorders, gastric ulcers, heart disease and cancer. Conversely, the possibility exists that hazards might be associated with accidental overexposure to MMWs. This review attempts to critically analyze the likelihood of such acute effects as burn and eye damage, as well as potential long-term effects, including cancer.
Kink Waves in Non-isothermal Stratified Solar Waveguides: Effect of the External Magnetic Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopin, I.; Nagorny, I., E-mail: lopin78@mail.ru
We study the effect of an external magnetic field on the properties of kink waves, propagating along a thin non-isothermal stratified and diverging magnetic flux tube. A wave equation, governing the propagation of kink waves under the adopted model is derived. It is shown that the vertical gradient of temperature introduces a spatially local cut-off frequency ω {sub c}. The vertical distribution of the cut-off frequency is calculated for the reference VAL-C model of the solar atmosphere and for different values of a ratio of external to internal magnetic fields. The results show that the cut-off frequency is negative belowmore » the temperature minimum due to the negative temperature gradient. In the chromosphere the cut-off frequency at a given height is smaller for a stronger external magnetic field. For the appropriate range of a ratio B{sub e} / B{sub i} ≈ 0–0.8, the cutoff lies in the range ω{sub c} ≈ 0.003–0.010 s{sup −1} (periods 600 < P{sub c} < 2000 s). The estimate of the cut-off frequency in the transition region is provided as well. In the propagating wave regime, the effective wave energy flux in the non-isothermal diverging flux tubes is the same as in the straight and homogeneous cylindrical waveguides. The obtained wave equation in the limit β = 0 is used to study the kink oscillations of non-isothermal coronal loops. It is found that the gradient of temperature along the coronal loops reduces the frequency ratio of the first overtone to the fundamental mode, i.e., ω{sub 2}/ ω{sub 1} < 2. This reduction grows for a larger ratio of temperature at the loop top to the temperature at the footpoints. Moreover, the effect of reduction is most pronounced for the steeper temperature profiles.« less
146-GHz millimeter-wave radio-over-fiber photonic wireless transmission system.
Fice, M J; Rouvalis, E; van Dijk, F; Accard, A; Lelarge, F; Renaud, C C; Carpintero, G; Seeds, A J
2012-01-16
We report the experimental implementation of a wireless transmission system with a 146-GHz carrier frequency which is generated by optical heterodyning the two modes from a monolithically integrated quantum dash dual-DFB source. The monolithic structure of the device and the inherent low noise characteristics of quantum dash gain material allow us to demonstrate the transmission of a 1 Gbps ON-OFF keyed data signal with the two wavelengths in a free-running state at 146-GHz carrier wave frequency. The tuning range of the device fully covers the W-band (75 - 110 GHz) and the F-band (90 - 140 GHz).
NASA Astrophysics Data System (ADS)
Jiang, Zhi Hao; Kang, Lei; Hong, Wei; Werner, Douglas H.
2018-06-01
Structured electromagnetic waves carrying nonvanishing orbital angular momentum (OAM) have recently opened up alternative frontiers in the field of wave physics, holding great promise for a wide range of potential applications. By leveraging geometric phases originating from spin-to-orbital interactions, spin-dependent wave phenomena can be created, leading to a more versatile realm of dispersionless wave-front manipulation. However, the currently available transmissive vortex-beam generators suffer from a narrow bandwidth, require an optically thick device profile, or are limited by a low efficiency, severely restricting their integration into systems and/or widespread usage for practical applications. We present the design methodology and a physical analysis and complete experimental characterization of a class of millimeter-wave Pancharatnam-Berry transmit-arrays with a thickness of about λ0/3 , which enables highly efficient generation and separation of spin-controlled vortex beams over a broad bandwidth, achieving an unprecedented peak efficiency of 88% for a single vortex beam and 71% for dual vortex beams. The proposed transmit-array, which is capable of providing two-dimensional OAM multiplexing and demultiplexing without normal-mode background interference, overcomes all previous roadblocks and paves the way for high-efficiency electromagnetic vortex-beam generation as well as other wave-front-shaping devices from microwave frequencies to optical wavelengths.
Stimulated Brillouin Scatter in a Magnetized Ionospheric Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhardt, P. A.; Selcher, C. A.; Lehmberg, R. H.
2010-04-23
High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f{sub CI}) or an electrostatic ion cyclotron (EIC) wave just above f{sub CI} can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves aremore » excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.« less
NASA Astrophysics Data System (ADS)
Sheen, David M.; Fernandes, Justin L.; Tedeschi, Jonathan R.; McMakin, Douglas L.; Jones, A. Mark; Lechelt, Wayne M.; Severtsen, Ronald H.
2013-05-01
Active millimeter-wave imaging is currently being used for personnel screening at airports and other high-security facilities. The cylindrical imaging techniques used in the deployed systems are based on licensed technology developed at the Pacific Northwest National Laboratory. The cylindrical and a related planar imaging technique form three-dimensional images by scanning a diverging beam swept frequency transceiver over a two-dimensional aperture and mathematically focusing or reconstructing the data into three-dimensional images of the person being screened. The resolution, clothing penetration, and image illumination quality obtained with these techniques can be significantly enhanced through the selection of the aperture size, antenna beamwidth, center frequency, and bandwidth. The lateral resolution can be improved by increasing the center frequency, or it can be increased with a larger antenna beamwidth. The wide beamwidth approach can significantly improve illumination quality relative to a higher frequency system. Additionally, a wide antenna beamwidth allows for operation at a lower center frequency resulting in less scattering and attenuation from the clothing. The depth resolution of the system can be improved by increasing the bandwidth. Utilization of extremely wide bandwidths of up to 30 GHz can result in depth resolution as fine as 5 mm. This wider bandwidth operation may allow for improved detection techniques based on high range resolution. In this paper, the results of an extensive imaging study that explored the advantages of using extremely wide beamwidth and bandwidth are presented, primarily for 10-40 GHz frequency band.
A technique to measure the thermal diffusivity of high Tc superconductors
NASA Technical Reports Server (NTRS)
Powers, Charles E.
1991-01-01
High T(sub c) superconducting electrical current leads and ground straps will be used in cryogenic coolers in future NASA Goddard Space Flight Center missions. These superconducting samples are long, thin leads with a typical diameter of two millimeters. A longitudinal method is developed to measure the thermal diffusivity of candidate materials for this application. This technique uses a peltier junction to supply an oscillatory heat wave into one end of a sample and will use low mass thermocouples to follow the heat wave along the sample. The thermal diffusivity is calculated using both the exponential decay of the heat wave and the phase shift to the wave. Measurements are performed in a cryostat between 10 K and room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golubkov, A A; Makarov, Vladimir A
The possibility of unique reconstruction of the spatial profile of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}) of a one-dimensionally inhomogeneous plate whose medium has a symmetry plane m{sub y} perpendicular to its surface is proved for the first time and the unique reconstruction algorithm is proposed. The amplitude complex coefficients of reflection and transmission (measured in some range of angles of incidence) as well as of conversion of an s-polarised plane signal monochromatic wave into two waves propagating on both sides of the plate make it possible to reconstruct the profile. These twomore » waves result from nonlinear interaction of a signal wave with an intense plane wave incident normally on the plate. All the waves under consideration have the same frequency {omega}, and so its variation helps study the frequency dispersion of the cubic nonlinear susceptibility tensor component {chi}-hat{sub yyyy}{sup (3)}(z, {omega}, -{omega}, {omega}, {omega}). For media with additional symmetry axes 2{sub z}, 4{sub z}, 6{sub z}, or {infinity}{sub z} that are perpendicular to the plate surface, the proposed method can be used to reconstruct the profile and to examine the frequency dispersion of about one third of all independent complex components of the tensor {chi}-hat{sup (3)}. (nonlinear-optics phenomena)« less
NASA Astrophysics Data System (ADS)
Murugapandiyan, P.; Ravimaran, S.; William, J.
2017-08-01
The DC and RF performance of 30 nm gate length enhancement mode (E-mode) InAlN/AlN/GaN high electron mobility transistor (HEMT) on SiC substrate with heavily doped source and drain region have been investigated using the Synopsys TCAD tool. The proposed device has the features of a recessed T-gate structure, InGaN back barrier and Al2O3 passivated device surface. The proposed HEMT exhibits a maximum drain current density of 2.1 A/mm, transconductance {g}{{m}} of 1050 mS/mm, current gain cut-off frequency {f}{{t}} of 350 GHz and power gain cut-off frequency {f}\\max of 340 GHz. At room temperature the measured carrier mobility (μ), sheet charge carrier density ({n}{{s}}) and breakdown voltage are 1580 cm2/(V \\cdot s), 1.9× {10}13 {{cm}}-2, and 10.7 V respectively. The superlatives of the proposed HEMTs are bewitching competitor or future sub-millimeter wave high power RF VLSI circuit applications.
NASA Astrophysics Data System (ADS)
Vahidi, Alireza; Rajabalipanah, Hamid; Abdolali, Ali; Cheldavi, Ahmad
2018-04-01
Achieving wideband absorption via three-dimensional (3D) metamaterials has revealed as a new emerging innovative field of research, especially in recent years. Here, a novel 3D metamaterial absorber (MA) having a sixfold symmetry is designed which consists of periodic resistive honeycomb-like units. The proposed 3D MA exhibits a strong absorptivity above 90% in the widest bandwidth ever reported to the authors' knowledge from 50 to 460 GHz (the bandwidth ratio larger than 1:9), covering both millimeter wave and low -terahertz spectra. To understand the physical mechanism of absorption, the electric field and surface current distributions, the power loss density as well as the deteriorating effects of the high-order Floquet modes are monitored and discussed. As a distinctive feature in comparison to the similar 3D MAs, our engineered absorber provides multiple resonances, contributing to further broadening of the operating bandwidth. In addition, it is shown that the honeycomb-like MA retains its polarization-insensitive absorption in a wide range of incident wave angles and polarization angles. Due to flexibility of the design, these superior performances can be simply extended to terahertz, infrared and visible frequencies, potentially leading to many promising applications in imaging, sensing, and camouflage technology.
Capability of long distance 100 GHz FMCW using a single GDD lamp sensor.
Levanon, Assaf; Rozban, Daniel; Aharon Akram, Avihai; Kopeika, Natan S; Yitzhaky, Yitzhak; Abramovich, Amir
2014-12-20
Millimeter wave (MMW)-based imaging systems are required for applications in medicine, homeland security, concealed weapon detection, and space technology. The lack of inexpensive room temperature imaging sensors makes it difficult to provide a suitable MMW system for many of the above applications. A 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The radar system requires that the millimeter wave detector will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the 2D image. New experiments show the capability of long distance FMCW detection by using a large scale Cassegrain projection system, described first (to our knowledge) in this paper. The system presents the capability to employ a long distance of at least 20 m with a low-cost plasma-based glow discharge detector (GDD) focal plane array (FPA). Each point on the object corresponds to a point in the image and includes the distance information. This will enable relatively inexpensive 3D MMW imaging.
Optical heterodyne detection for cavity ring-down spectroscopy
Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.
2000-07-25
A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.
Built-in self-test (BIST) techniques for millimeter wave CMOS transceivers
NASA Astrophysics Data System (ADS)
Mahzabeen, Tabassum
The seamless integration of complementary metal oxide semiconductor (CMOS) transceivers with a digital CMOS process enhances on-chip testability, thus reducing production and testing costs. Built in self testability also improves yield by offering on-chip compensation. This work focuses on built in self test techniques for CMOS based millimeter wave (mm-wave) transceivers. Built-in-self-test (BIST) using the loopback method is one cost-effective method for testing these transceivers. Since the loopback switch is always present during the normal operation of the transceiver, the requirement of the switch is different than for a conventional switch. The switch needs to have high isolation and high impedance during its OFF period. Two 80 GHz single pole single throw (SPST) switches have been designed, fabricated in standard CMOS process, and measured to connect the loopback path for BIST applications. The loopback switches in this work provide the required criteria for loopback BIST. A stand alone 80 GHz low noise amplifier (LNA) and the same LNA integrated with one of the loopback switches have been fabricated, and measured to observe the difference in performance when the loopback switch is present. Besides the loopback switch, substrate leakage also forms a path between the transmitter and receiver. Substrate leakage has been characterized as a function of distance between the transmitter and receiver for consideration in using the BIST method. A BIST algorithm has been developed to estimate the process variation in device sizes by probing a low frequency ring oscillator to estimate the device variation and map this variation to the 80 GHz LNA. Probing a low frequency circuit is cheaper compared to the probing of a millimeter wave circuit and reduces the testing costs. The performance of the LNA degrades due to variation in device size. Once the shift in the device size is being estimated (from the ring oscillator's shifted frequency), the LNA's performance can be recovered using several methods; for example, using tunable transmission line lengths in the amplifier or using a variable supply voltage. This concept of estimating process variation has been demonstrated in Agilent Design System (ADS).
Laboratory detection and millimeter spectrum of the MgCCH radical
NASA Technical Reports Server (NTRS)
Anderson, M. A.; Ziurys, L. M.
1995-01-01
The pure rotational spectrum of the magnesium monoacetylide radical, MgCCH, has been recorded in the laboratory using millimeter/sub-mm direct absorption spectroscopy. These measurements constitute the first time this molecule has been observed in the laboratory by any spectroscopic method. Seventeen rotational transitions were observed in the frequency range 210-370 GHz for MgCCH, which appears to be a linear molecule with a (sup 2)Sigma ground electronic state. Rotational and fine structure constants were determined for this radical from a nonlinear least squares fit to the data. The rotational rest frequencies measured here will enable astronomical observations to be carried out for MgCCH towards IRC +10216, where the magnesium compounds MgCN and MgNC, as well as many acetylide species, are present.
Microwave corrosion detection using open ended rectangular waveguide sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qaddoumi, N.; Handjojo, L.; Bigelow, T.
The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulatesmore » the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.« less
NASA Astrophysics Data System (ADS)
Matthews, L. D.; Crew, G. B.; Doeleman, S. S.; Lacasse, R.; Saez, A. F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J. M.; Barkats, D. A.; Baudry, A.; Broguière, D.; Escoffier, R.; Fish, V. L.; Greenberg, J.; Hecht, M. H.; Hiriart, R.; Hirota, A.; Honma, M.; Ho, P. T. P.; Impellizzeri, C. M. V.; Inoue, M.; Kohno, Y.; Lopez, B.; Martí-Vidal, I.; Messias, H.; Meyer-Zhao, Z.; Mora-Klein, M.; Nagar, N. M.; Nishioka, H.; Oyama, T.; Pankratius, V.; Perez, J.; Phillips, N.; Pradel, N.; Rottmann, H.; Roy, A. L.; Ruszczyk, C. A.; Shillue, B.; Suzuki, S.; Treacy, R.
2018-01-01
The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub)millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.
Measurements of the millimeter-wave spectrum of interstellar dust emission
NASA Technical Reports Server (NTRS)
Fischer, M. L.; Clapp, A.; Devlin, M.; Gundersen, J. O.; Lange, A. E.; Lubin, P. M.; Meinhold, P. R.; Richards, P. L.; Smoot, G. F.
1995-01-01
We report measurements of the differential brightness of interstellar dust emission near the Galactic plane and at high Galactic latitudes. The data were obtained as part of a program to measure anisotropy in the cosmic microwave background (CMB). The measurements were made with a 0.5 deg beam size and a 1.3 deg sinusoidal chop, in broad bands (Delta nu/nu approximately 0.3) centered near frequencies of 6, 9, and 12 cm(exp -1). A measurement made toward the Galactic plane, at longitude 1 = 23.7 deg, is compared with the contrast observed in the 100 micrometers IRAS data. Assuming the dust emission has a brightness I(sub nu) proportional to nu(sup n)B(sub nu)(T(sub d)), where B(sub nu) is the Planck function, a best fit yields n = 1.6 +/- 0.4, T(sub d) = 24 +/- 5 K. In a region near the star mu Pegasi (mu PEG l = 91 deg, b = -31 deg), the comparison of our data with the 100 micrometers IRAS data yields n = 1.4 +/- 0.4, and T(sub d) = 18 +/- 3 K. In a second region near the star gamma Ursa Minoris (GUM l = 108 deg, b = 41 deg), an upper limit is placed on contrast in dust emission. This upper limit is consistent with spectrum measured at mu PEG and the IRAS 100 micrometer emission contrast at GUM, which is approximately 8 times lower than mu PEG.
Broadband millimeter-wave GaAs transmitters and receivers using planar bow-tie antennas
NASA Technical Reports Server (NTRS)
Konishi, Y.; Kamegawa, M.; Case, M.; Yu, R.; Rodwell, M. J. W.; York, R. A.; Rutledge, D. B.
1992-01-01
We report broadband monolithic transmitters and receivers IC's for mm-wave electromagnetic measurements. The IC's use nonlinear transmission lines (NLTL) and sampling circuits as picosecond pulse generators and detectors. The pulses are radiated and received by planar monolithic bow-tie antennas, collimated with silicon substrate lenses and off-axis parabolic reflectors. Through Fourier transformation of the received pulse, 30-250 GHz free space gain-frequency measurements are demonstrated with an accuracy approximately = 0.17 dB, RMS.
Applications of Submillimeter Wave Technology for SDI,
1992-05-21
equivalent to the center frequency (in GHz) divided by 2. If we allow a 13 dB "rule of thumb" signal-to- noise ratio (S/N) to account for such items as...suited for low - noise heterodyne mixing. This has led to the rapid development of SIS mixers for use in low - noise millimeter wave receivers for radio...JPL is building a 630 GHz SIS receiver13 for astrophysical remote-sensing applications. Preliminary measurements show its noise temperature to be a
NASA Technical Reports Server (NTRS)
Brown, Elliott R.; Parker, Christopher D.; Molvar, Karen M.; Stephan, Karl D.
1992-01-01
A semiconfocal open-cavity resonator has been used to stabilize a resonant-tunneling-diode waveguide oscillator at frequencies near 100 GHz. The high quality factor of the open cavity resulted in a linewidth of approximately 10 kHz at 10 dB below the peak, which is about 100 times narrower than the linewidth of an unstabilized waveguide oscillator. This technique is well suited for resonant-tunneling-diode oscillators in the submillimeter-wave region.
A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.
New instrumentation for the 1.2m Southern Millimeter Wave Telescope (SMWT)
NASA Astrophysics Data System (ADS)
Vasquez, P.; Astudillo, P.; Rodriguez, R.; Monasterio, D.; Reyes, N.; Finger, R.; Mena, F. P.; Bronfman, L.
2016-07-01
Here we describe the status of the upgrade program that is being performed to modernize the Southern 1.2m Wave Telescope. The Telescope was built during early ´80 to complete the first Galactic survey of Molecular Clouds in the CO(1-0) line. After a fruitful operation in CTIO the telescope was relocated to the Universidad de Chile, Cerro Calán Observatory. The new site has an altitude of 850m and allows observations in the millimeter range throughout the year. The telescope was upgraded, including a new building to house operations, new control system, and new receiver and back-end technologies. The new front end is a sideband-separating receiver based on a HEMT amplifier and sub-harmonic mixers. It is cooled with Liquid Nitrogen to diminish its noise temperature. The back-end is a digital spectrometer, based on the Reconfigurable Open Architecture Computing Hardware (ROACH). The new spectrometer includes IF hybridization capabilities to avoid analog hybrids and, therefore, improve the sideband rejection ratio of the receiver.
Effects of millimeter wave carbon fibers on filter-feeding freshwater invertebrates.
Soucek, David J; Dickinson, Amy; Cropek, Donald M
2010-05-01
The purpose of our study was to investigate the sub-lethal effects of millimeter wave carbon fibers (MWCF), a military obscurant, on filter-feeding freshwater invertebrates. We observed decreased survival, reproduction, and oxygen consumption in Daphnia magna at realistic loading rates. In experiments with the Asiatic clam (Corbicula fluminea), soft tissue dry weight and tissue condition index were not significantly different among control and MWCF exposed treatments; however, using a (15)N labeled alga as food, we observed decreased nitrogen turnover in tissues of clams exposed to MWCF, suggesting lower filtering or ingestion rates. Our findings combined with previous demonstrations of MWCF toxicity to green algae suggest that over a period of several months, bivalve growth may be inhibited, and cladoceran populations may be even more strongly affected by MWCF. Given that these fibers are persistent, further experiments should be conducted to determine the longer-term effects of contamination of water bodies with MWCF. Copyright 2009 Elsevier Inc. All rights reserved.
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Y. L.; Xie, J. L., E-mail: jlxie@ustc.edu.cn; Yu, C. X.
2016-11-15
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This “4th generation” MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven bymore » fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy “general optics structure” has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.« less
Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)
NASA Astrophysics Data System (ADS)
Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.
2016-11-01
Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.
Fractional Whirl Motion in Wave Journal Bearings
NASA Technical Reports Server (NTRS)
Dimofte, Florin; Hendricks, Robert C.
1996-01-01
Unloaded gas, plain journal bearings experience sub-synchronous whirl motion due to fluid film instabilities and wall contact usually occurs immediately after the onset of the whirl motion. An alternative is the wave journal bearing which significantly improves bearing stability. The predicted threshold where the sub-synchronous whirl motion starts was well confirmed by the experimental observation. In addition, both a two-wave and a three-wave journal bearing can operate free of sub-synchronous whirl motion over a large range in speeds. When the sub-synchronous whirl motion occurs, both the two-wave and three-wave bearing can run in a whirl orbit well within the bearing clearance. At large clearances and wave amplitudes a two-wave bearing, unliKe other bearings, can exhibit a sub-synchronous whirl movement at both low and high speeds, but can run extremely stable and without whirl at intermediate speeds. Moreover, in these cases, the whirl frequencies are close to a quarter of the synchronous speed. The three-wave bearing can exhibit sub-synchronous whirl motion only after a specific threshold when the speed increases and the whirl frequencies are close to half of the synchronous speed.
Plasma Physics Challenges of MM-to-THz and High Power Microwave Generation
NASA Astrophysics Data System (ADS)
Booske, John
2007-11-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave to terahertz regime electromagnetic radiation, from 0.1 to 10 THz. While sources at the low frequency end, i.e., the gyrotron, have been deployed or are being tested for diverse applications such as WARLOC radar and active denial systems, the challenges for higher frequency sources have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, and high resolution spectroscopy and atmospheric sensing. The compact size requirements for many of these high frequency sources requires miniscule, micro-fabricated slow wave circuits with high rf ohmic losses. This necessitates electron beams with not only very small transverse dimensions but also very high current density for adequate gain. Thus, the emerging family of mm-to-THz e-beam-driven vacuum electronics devices share many of the same plasma physics challenges that currently confront ``classic'' high power microwave (HPM) generators [1] including bright electron sources, intense beam transport, energetic electron interaction with surfaces and rf air breakdown at output windows. Multidimensional theoretical and computational models are especially important for understanding and addressing these challenges. The contemporary plasma physics issues, recent achievements, as well as the opportunities and outlook on THz and HPM will be addressed. [1] R.J. Barker, J.H. Booske, N.C. Luhmann, and G.S. Nusinovich, Modern Microwave and Millimeter-Wave Power Electronics (IEEE/Wiley, 2005).
Absorption band Q model for the Earth
NASA Technical Reports Server (NTRS)
Anderson, D. L.; Given, J. W.
1981-01-01
Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.
An Ultra-Wideband Millimeter-Wave Phased Array
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Miranda, Felix A.; Volakis, John L.
2016-01-01
Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.
Wide-field-of-view millimeter-wave telescope design with ultra-low cross-polarization
NASA Astrophysics Data System (ADS)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David; Hatchell, Brian; Valdez, Patrick; Tedeschi, Jonathan; Hall, Thomas; McMakin, Douglas
2012-06-01
As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone's graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone's geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone's design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low cross-polarization and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.
Millimeter-Wave Gyroklystron Amplifier Experiment Using a Relativistic Electron Beam
1990-03-08
Qint to 400 for the TE1 l1 mode, while assisting in suppressing other competing modes [7]. The length of these slots is three times the nominal cavity...frequency by tranverse compression by means of separate clamps. However, cavity deformation affects both the center frequency and the value 5 of Q...amplifier operation was limited by the excitation of parasitic oscillation of the competing TE1 12 mode, as predicted by theory [7]. Despite this
NASA Astrophysics Data System (ADS)
Gitlin, M. S.; Glyavin, M. Yu.; Fedotov, A. E.; Tsvetkov, A. I.
2017-07-01
The paper presents the second part of the review on a high-sensitive technique for time-resolved imaging and measurements of the 2D intensity profiles of millimeter-wave radiation by means of Visible Continuum Radiation emitted by the positive column of a medium-pressure Cs-Xe DC Discharge (VCRD method). The first part of the review was focused on the operating principles and fundamentals of this new technique [Plasma Phys. Rep. 43, 253 (2017)]. The second part of the review focuses on experiments demonstrating application of this imaging technique to measure the parameters of radiation at the output of moderate-power millimeter-wave sources. In particular, the output waveguide mode of a moderate-power W-band gyrotron with a pulsed magnetic field was identified and the relative powers of some spurious modes at the outputs of this gyrotron and a pulsed D-band orotron were evaluated. The paper also reviews applications of the VCRD technique for real-time imaging and nondestructive testing with a frame rate of higher than 10 fps by using millimeter waves. Shadow projection images of objects opaque and transparent for millimeter waves have been obtained using pulsed watt-scale millimeter waves for object illumination. Near video frame rate millimeter-wave shadowgraphy has been demonstrated. It is shown that this technique can be used for single-shot screening (including detection of concealed objects) and time-resolved imaging of time-dependent processes.
NASA Technical Reports Server (NTRS)
Thejappa, G.; MacDowall, R. J.; Bergamo, M.
2012-01-01
The four wave interaction process, known as the oscillating two stream instability (OTSI) is considered as one of the mechanisms responsible for stabilizing the electron beams associated with solar type III radio bursts. It has been reported that (1) an intense localized Langmuir wave packet associated with a type III burst contains the spectral characteristics of the OTSI: (a) a resonant peak at the local electron plasma frequency, f(sub pe), (b) a Stokes peak at a frequency slightly lower than f(sub pe), (c) anti-Stokes peak at a frequency slightly higher than f(sub pe), and (d) a low frequency enhancement below a few hundred Hz, (2) the frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI, and (3) the peak intensity of the wave packet is well above the thresholds for the OTSI as well as spatial collapse of envelope solitons. Here, for the first time, applying the trispectral analysis on this wave packet, we show that the tricoherence, which measures the degree of coherent four-wave coupling amongst the observed spectral components exhibits a peak. This provides an additional evidence for the OTSI and related spatial collapse of Langmuir envelope solitons in type III burst sources.
Exchange interaction effects on waves in magnetized quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trukhanova, Mariya Iv., E-mail: mar-tiv@yandex.ru; Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
2015-02-15
We have applied the many-particle quantum hydrodynamics that includes the Coulomb exchange interaction to magnetized quantum plasmas. We considered a number of wave phenomena that are affected by the Coulomb exchange interaction. Since the Coulomb exchange interaction affects the longitudinal and transverse-longitudinal waves, we focused our attention on the Langmuir waves, the Trivelpiece-Gould waves, the ion-acoustic waves in non-isothermal magnetized plasmas, the dispersion of the longitudinal low-frequency ion-acoustic waves, and low-frequency electromagnetic waves at T{sub e} ≫ T{sub i}. We have studied the dispersion of these waves and present the numeric simulation of their dispersion properties.
1987-01-07
Excimer-Laser Projection Lithography 38 4.5 Observation of Millimeter-Wave Oscillations from Resonant- Tunneling Diodes and Some Theroretical...and SIMOX Circuits 32 4-1 Resonant Tunneling Diode Parameters 41 XI INTRODUCTION 1. SOLID STATE DEVICE RESEARCH Optoelectronic switches have...radiation and reflective optics. Oscillation frequencies as high as 56 GHz have been observed from resonant- tunneling double- barrier diodes. Recent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haoting; Liao, Qilong, E-mail: liaoqilong@swust.edu.cn; Dai, Yunya
2016-04-15
Highlights: • Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} hollow spheres have been prepared. • The diameters of the prepared hollow spheres are 500–1300μm. • The degree of sphericity for the prepared hollow spheres is above 98%. • The mechanisms of transparency are discussed. - Abstract: Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} ceramic hollow spheres have been successfully prepared using the oil-in-water (paraffin-in-alumina sol) droplets as precursors made by self-made T-shape micro-emulsion device. The main crystalline phase of the obtained hollow sphere is alpha alumina. The prepared translucent La{sub 2}O{sub 3}-containing Al{sub 2}O{sub 3} ceramic hollow spheresmore » have diameters of 500–1300 μm, wall thickness of about 23 μm and the degree of sphericity of above 98%. With the increase of the La{sub 2}O{sub 3} content, grains and grain-boundaries of the alumina spherical shell for the prepared millimeter-scale hollow spheres become regular and clear gradually. When the La{sub 2}O{sub 3} content is 0.1 wt.%, the crystal surface of the obtained Al{sub 2}O{sub 3} spherical shell shows optimal grains and few pores, and its transmittance reaches 42% at 532 nm laser light. This method provides a promising technique of preparing millimeter-scale translucent ceramic hollow spheres for laser inertial confined fusion.« less
NASA Technical Reports Server (NTRS)
Clapp, A. C.; Devlin, M. J.; Gundersen, J. O.; Hagmann, C. A.; Hristov, V. V.; Lange, A. E.; Lim, M.; Lubin, P. M.; Mauskopf, P. D.; Meinhold, P. R.
1994-01-01
We present results from two four-frequency observations centered near the stars Sigma Herculis and Iota Draconis during the fourth flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 deg x 0.6 deg strips of the sky with a 1.4 deg peak to peak sinusoidal chop in all bands. The full width at half maximum (FWHM) beam sizes were calculated 0.55 deg +/- 0.05 deg at 3.5/cm and a 0.75 deg +/- 0.05 deg at 6, 9, and 14/cm. Significant correlated structures were observed at 3.5, 6, and 9/cm. The spectra of these signals are inconsistent with thermal emission from known interstellar dust populations. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structures. If the observed structures are attributed to cosmic microwave background (CMB) anisotropy with a Gaussian autocorrelation function and a coherence angle of 25 min, then the most probable values at Delta T/T(sub CMB) = 3.1 (sup +1.7 sub -1.3) x 10(exp -5) for the Sigma Herculis scan, and Delta T/T(sub CMB) = 3.3(sup +1.1 sub -1.1) x 10(exp -5) for the Iota Draconis scan (95% confidence upper, lower limits).
Pisano, Giampaolo; Savini, Giorgio; Ade, Peter A R; Haynes, Vic; Gear, Walter K
2006-09-20
An achromatic half-wave plate (HWP) to be used in millimeter cosmic microwave background (CMB) polarization experiments has been designed, manufactured, and tested. The design is based on the 5-plates Pancharatnam recipe and it works in the frequency range 85-185 GHz. A model has been used to predict the transmission, reflection, absorption, and phase shift as a function of frequency. The HWP has been tested by using coherent radiation from a back-wave oscillator to investigate its modulation efficiency and with incoherent radiation from a polarizing Fourier transform spectrometer (FTS) to explore its frequency behavior. The FTS measurements have been fitted with an optical performance model which is in excellent agreement with the data. A detailed analysis of the data also allows a precise determination of the HWP fast and slow axes in the frequency band of operation. A list of the HWP performance characteristics is reported including estimates of its cross polarization.
30-100-GHz inductors and transformers for millimeter-wave (Bi)CMOS integrated circuits
NASA Astrophysics Data System (ADS)
Dickson, T. O.; Lacroix, M.-A.; Boret, S.; Gloria, D.; Beerkens, R.; Voinigescu, S. P.
2005-01-01
Silicon planar and three-dimensional inductors and transformers were designed and characterized on-wafer up to 100 GHz. Self-resonance frequencies (SRFs) beyond 100 GHz were obtained, demonstrating for the first time that spiral structures are suitable for applications such as 60-GHz wireless local area network and 77-GHz automotive RADAR. Minimizing area over substrate is critical to achieving high SRF. A stacked transformer is reported with S21 of -2.5 dB at 50 GHz, and which offers improved performance and less area (30 μm × 30 μm) than planar transformers or microstrip couplers. A compact inductor model is described, along with a methodology for extracting model parameters from simulated or measured y-parameters. Millimeter-wave SiGe BiCMOS mixer and voltage-controlled-oscillator circuits employing spiral inductors are presented with better or comparable performance to previously reported transmission-line-based circuits.
The laboratory millimeter-wave spectrum of methyl formate in its ground torsional E state
NASA Technical Reports Server (NTRS)
Plummer, G. M.; Herbst, E.; De Lucia, F. C.; Blake, G. A.
1986-01-01
Over 250 rotational transitions of the internal rotor methyl formate (HCOOCH3) in its ground v(t) = 0 degenerate (E) torsional substate have been measured in the millimeter-wave spectral region. These data and a number of E-state lines identified by several other workers have been analyzed using an extension of the classical principal-axis method in the high barrier limit. The resulting rotational constants allow accurate prediction of the v(t) = 0 E substate methyl formate spectrum below 300 GHz between states with angular momentum J not greater than 30 and rotational energy of not more than 350/cm. The calculated transition frequencies for the E state, when combined with the results of the previous analysis of the ground-symmetric, nondegenerate state, account for over 200 of the emission lines observed toward Orion in a recent survey of the 215-265 GHz band.
Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung
2016-05-01
We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.
Multilevel photonic modules for millimeter-wave phased-array antennas
NASA Astrophysics Data System (ADS)
Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.
1998-11-01
Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.
Passive millimeter-wave concealed weapon detection
NASA Astrophysics Data System (ADS)
Sinclair, Gordon N.; Anderton, Rupert N.; Appleby, Roger
2001-02-01
A method of detecting weapons concealed under clothing using passive millimeter wave imaging is described. The optical properties of clothing are discussed and examples given of the spectral reflectivity and transmission. The transmission tends to be constant from 60 to 150 GHz above which it decreases for some clothing materials. The transmission of a cotton T-shirt is typically 95% and of a leather jacket up to 85% at lower frequencies. A model is presented for calculating the contrast of a metallic concealed weapon when hidden under clothing and it indicates contrasts as large as 200 K can be realized outdoors. The advantages of real time over static frame imagery are discussed. It is concluded that real time imagery offers considerable advantages as weapons can be very varied in size, position and orientation and movement offers vital clues to the human observer which aid the recognition process.
Transmission characteristic of graphene/TiO2 paper measured at Ka-band
NASA Astrophysics Data System (ADS)
Agusu, La; Mitsudo, Seitaro; Ahmad, La Ode; Herdianto, Fujii, Yutaka; Ishikawa, Yuya; Furuya, Takahashi; Ramadhan, La Ode Ahmad Nur
2017-01-01
The commercial telecommunication system in future would explore the electromagnetic spectrum with higher frequency than used now, because it requires higher speed of transmission data. Using the millimeter waves (mmW) with frequency ranging from 30 to 300 GHz, such requirement could be fulfilled. The upcoming 5G cellular technology is expected to use frequency 30 GHz or higher. Then materials with a specific characteristic at the mmW range are interesting to be explored and investigated. Here, we report the synthesis process of graphene/TiO2 deposited on paper and their transmission characteristics to the electromagnetic energy at frequency 27-40 GHz (Ka-Band). The reduced graphene oxide (rGO) was synthesized by a modified Hummers method with introduction of microwave irradiation in the process. rGO and TiO2 were mixed in ethanol solution and deposited on the paper by a spraying technique. Transmission coefficient of electromagnetic wave energy at Ka-Band was measured by using the millimeter vector network analyzer. Conductivity of rGO is 1.89 Scm-1 and for the graphene/TiO2 with TiO2 content is up to 50%, conductivity is down to Scm-1 Graphene/TiO2 layer with thickness of 60).lm and TiO2 loading up to 25% can has the transmission coefficient of -4 dB at the middle frequency of 31 GHz and bandwidth of 2.2 GHz. This can be useful as the electromagnetic interference shielding material at Ka-band.
A silicon technology for millimeter-wave monolithic circuits
NASA Astrophysics Data System (ADS)
Stabile, P. J.; Rosen, A.
1984-12-01
A silicon millimeter-wave integrated-circuit (SIMMWIC) technology that includes high-energy ion implantation and pulsed-laser annealing, secondary ion mass spectrometry (SIMS) profile diagnostics, and novel wafer thinning has been developed. This technology has been applied to a SIMMWIC single-pole single-throw (SPST) switch and to IMPATT and p-i-n diode fabrication schemes. Thus, the SIMMWIC technology is a proven base for monolithic millimeter-wave sources and control circuit applications.
The Coupled Roles of Dust and Clouds in the Mars Climate
NASA Technical Reports Server (NTRS)
Clancy, R. Todd
2000-01-01
During the period October 1997 to September 1999 we obtained and analyzed over 100 millimeter-wave observations of Mars atmospheric CO line absorption for atmospheric temperature profiles. These measurements extend through one full Mars year (solar longitudes L(sub S) of 190 deg in 1997 to 180 deg in 1999) and coincide with atmospheric temperature profile and dust column measurements front the Thermal Emission Spectrometer (TES) experiment on board the Mars Global Surveyor (MGS) spacecraft. A comparison of Mars atmospheric temperatures retrieved by these distinct methods provides the first opportunity to place the long-term (1982-1999) millimeter retrievals of Mars atmospheric temperatures within the context of contemporaneous, spatially mapped spacecraft, observations. Profile comparisons of 0-30 km altitude atmospheric temperatures retrieved with the two techniques agree typically to within the 5 K calibration accuracy of the millimeter observations. At the 0.5 mbar pressure level (approximately 25 km altitude) the 30N/30S average for TES infrared temperatures and the disk-averaged millimeter temperatures are also well correlated in their seasonal and dust-storm-related variations over the 1997-1999 period. This period includes the Noachis Terra regional dust storm, which led to very abrupt heating (approximately 15 K at 0.5 mbar) of the global Mars atmosphere at L(sub S)=224 deg in 1997 [Christensen et al., 1998; Conrath et al., this issue; Smith et al., this issue]. Much colder (10-20 K) global atmospheric temperatures were observed during the 1997 versus 1977 perihelion periods (L(sub S)=200 deg-330 deg), consistent with the much (2 to 8 times) lower global dust loading of the atmosphere during the 1997 perihelion dust storm season versus the Viking period of the 1977a,b storms. The 1998-1999 Mars atmosphere revealed by both the millimeter and TES observations is also 10-15 K colder than presented by the Viking climatology during the aphelion season (L(sub S)=0 deg-180 deg, northern spring/summer) of Mars. We reassess the observational basis of the Viking dusty-warm climatology for this season to conclude that the global aphelion atmosphere of Mars is colder, less dusty, and cloudier than indicated by the established Viking climatology even for the Viking period. We also conclude that Mars atmospheric temperatures exhibit their most significant interannual variations during the perihelion dust storm season (10-20 K for L(sub S)=200 deg-340 deg) and during the post-aphelion northern summer season (5-10 K for L(sub S)=100 deg-200 deg).
Terahertz wave parametric oscillations at polariton resonance using a MgO:LiNbO3 crystal.
Li, Zhongyang; Bing, Pibin; Yuan, Sheng; Xu, Degang; Yao, Jianquan
2015-06-20
Terahertz wave (THz-wave) parametric oscillations with a noncollinear phase-matching scheme at polariton resonance using a MgO:LiNbO3 crystal with a surface-emitted configuration are investigated. We investigate frequency tuning characteristics of a THz-wave via varying the wavelength of the pump wave and phase-matching angle. The effective parametric gain length under the noncollinear phase-matching condition is calculated. Parametric gain and absorption characteristics of a THz-wave in the vicinity of polariton resonances are analyzed.
NASA Astrophysics Data System (ADS)
Tokizane, Yu; Nawata, Kouji; Han, Zhengli; Koyama, Mio; Notake, Takashi; Takida, Yuma; Minamide, Hiroaki
2017-02-01
We developed a widely tunable terahertz (THz)-wave source covering the sub-THz frequency by difference frequency generation using a 4-dimethylamino-N‧-methyl-4‧-stibazolium tosylate (DAST) crystal. Near-infrared waves generated by dual-wavelength injection-seeded β-BaB2O4 optical parametric generation (is-BBO-OPG) were used for pumping the DAST crystal, which had separated wavelengths in the spectrum with a difference frequency of sub-THz. Furthermore, the non-collinear phase-matching condition was designed to compensate the walk-off effect of the BBO crystal. Consequently, tunable THz-waves from 0.3 to 4 THz were generated by tuning the wavelength of one of the seeding beams. The generated sub-THz-waves were monochromatic (dν < 33 GHz) with a maximum energy of 80 pJ at 0.65 THz.
NASA Technical Reports Server (NTRS)
Kwon, Youngwoo; Pavlidis, Dimitris; Tutt, Marcel N.
1991-01-01
A large-signal analysis method based on an harmonic balance technique and a 2-D cubic spline interpolation function has been developed and applied to the prediction of InP-based HEMT oscillator performance for frequencies extending up to the submillimeter-wave range. The large-signal analysis method uses a limited number of DC and small-signal S-parameter data and allows the accurate characterization of HEMT large-signal behavior. The method has been validated experimentally using load-pull measurement. Oscillation frequency, power performance, and load requirements are discussed, with an operation capability of 300 GHz predicted using state-of-the-art devices (fmax is approximately equal to 450 GHz).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saigusa, M.; Atsumi, K.; Yamaguchi, T.
2014-02-12
The wideband high power diplexer has been developed for combining and fast switching of high power millimeter waves generated by a dual frequency gyrotron. The actual diplexer was tested at the frequency band of 170 GHz in low power. After adjusting a resonant frequency of diplexer for the gyrotron frequency, the evacuated wideband diplexer with short-slotted metal half mirrors was tested at an incident power of about 150 kW, a pulse duration of 30 ms and a frequency band of 170.2–170.3 GHz. Any discharge damage was not observed in the diplexer.
NASA Technical Reports Server (NTRS)
Kharkovsky, S.; Hepburn, F.; Walker, J.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia's catastrophic failure has been attributed to a piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Subsequently, several nondestructive testing (NDT) techniques have been considered for inspecting the external tank. One such method involves using millimeter waves which have been shown to easily penetrate through the foam and provide high resolution images of its interior structures. This paper presents the results of inspecting three different SOFI covered panels by reflectometers at millimeter wave frequencies, specifically at 100 GHz. Each panel was fitted with various embedded anomalies/inserts representing voids and unbonds of diferent shapes, sizes and locations within each panel. In conjunction with these reJqectome&rs, radiators including a focused lens antenna and a small horn antenna were used. The focused lens antenna provided for a footprint diameter of approximately 1.25 cm (0.5") at 25.4 cm (10") away from the lens surface. The horn antenna was primarily operated in its near-field for obtaining relatively high resolution images. These images were produced using 2 0 scanning mechanisms. Discussions of the difference between the capabilities of these two types of antennas (radiators) for the purpose of inspecting the SOFI as it relates to the produced images are also presented.
RF wave observations in beam-plasma discharge
NASA Technical Reports Server (NTRS)
Bernstein, W.
1986-01-01
The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.
Critical object recognition in millimeter-wave images with robustness to rotation and scale.
Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi
2017-06-01
Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.
NASA Astrophysics Data System (ADS)
McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P. A. R.; Bryan, S.; Day, P.; Essinger-Hileman, T.; Flanigan, D.; Leduc, H. G.; Limon, M.; Mauskopf, P.; Miller, A.; Tucker, C.
2018-02-01
Aims: Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations in a single spectral band centered on 150 GHz with Δν/ν = 0.2. The 65 × 65 mm square arrays are designed to be tiled into the focal plane of an optical system. We demonstrate the viability of these dual-polarization LEKIDs with laboratory measurements. Methods: The LEKID modules are tested with an FPGA-based readout system in a sub-kelvin cryostat that uses a two-stage adiabatic demagnetization refrigerator. The devices are characterized using a blackbody and a millimeter-wave source. The polarization properties are measured with a cryogenic stepped half-wave plate. We measure the resonator parameters and the detector sensitivity, noise spectrum, dynamic range, and polarization response. Results: The resonators have internal quality factors approaching 1 × 106. The detectors have uniform response between orthogonal polarizations and a large dynamic range. The detectors are photon-noise limited above 1 pW of absorbed power. The noise-equivalent temperatures under a 3.4 K blackbody load are <100 μK √s. The polarization fractions of detectors sensitive to orthogonal polarizations are >80%. The entire array is multiplexed on a single readout line, demonstrating a multiplexing factor of 128. The array and readout meet the requirements for 4 arrays to be read out simultaneously for a multiplexing factor of 512. Conclusions: This laboratory study demonstrates the first dual-polarization LEKID array optimized specifically for CMB polarimetry and shows the readiness of the detectors for on-sky observations.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1987-01-01
Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.
Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.
2012-05-01
As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degreesmore » of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposti, Claudio Degli; Dore, Luca; Melosso, Mattia
It is important to study possible precursors of amino acids such as glycine to enable future searches in interstellar space. Aminoacetonitrile (NH{sub 2}CH{sub 2}CN) is one of the most feasible molecules for this purpose. This molecule was already detected toward Sgr B2(N). Aminoacetonitrile has a few low-lying vibrational excited states, and transitions within these states may be found in space. In this study, the pure-rotational transitions in the three lowest vibrational states in the 80–450 GHz range have been assigned and analyzed. It was found to be very important to include Coriolis coupling between the two lowest vibrational fundamentals, whilemore » the third one was unperturbed. The partition function was evaluated considering these new results.« less
NASA Astrophysics Data System (ADS)
Karisan, Yasir; Caglayan, Cosan; Sertel, Kubilay
2018-02-01
We present a novel distributed equivalent circuit that incorporates a three-way-coupled transmission line to accurately capture the external parasitics of double-finger high electron mobility transistor (HEMT) topologies up to 750 GHz. A six-step systematic parameter extraction procedure is used to determine the equivalent circuit elements for a representative device layout. The accuracy of the proposed approach is validated in the 90-750 GHz band through comparisons between measured data (via non-contact probing) and full-wave simulations, as well as the equivalent circuit response. Subsequently, a semi-distributed active device model is incorporated into the proposed parasitic circuit to demonstrate that the three-way-coupled transmission line model effectively predicts the adverse effect of parasitic components on the sub-mmW performance in an amplifier setting.
Testing Fixture For Microwave Integrated Circuits
NASA Technical Reports Server (NTRS)
Romanofsky, Robert; Shalkhauser, Kurt
1989-01-01
Testing fixture facilitates radio-frequency characterization of microwave and millimeter-wave integrated circuits. Includes base onto which two cosine-tapered ridge waveguide-to-microstrip transitions fastened. Length and profile of taper determined analytically to provide maximum bandwidth and minimum insertion loss. Each cosine taper provides transformation from high impedance of waveguide to characteristic impedance of microstrip. Used in conjunction with automatic network analyzer to provide user with deembedded scattering parameters of device under test. Operates from 26.5 to 40.0 GHz, but operation extends to much higher frequencies.
NASA Astrophysics Data System (ADS)
Ohmichi, Eiji; Miki, Toshihiro; Horie, Hidekazu; Okamoto, Tsubasa; Takahashi, Hideyuki; Higashi, Yoshinori; Itoh, Shoichi; Ohta, Hitoshi
2018-02-01
We developed piezoresistive microcantilevers for mechanically detected electron spin resonance (ESR) in the millimeter-wave region. In this article, fabrication process and device characterization of our self-sensing microcantilevers are presented. High-frequency ESR measurements of a microcrystal of paramagnetic sample is also demonstrated at multiple frequencies up to 160 GHz at liquid helium temperature. Our fabrication is based on relatively simplified processes with silicon-on-insulator (SOI) wafers and spin-on diffusion doping, thus enabling cost-effective and time-saving cantilever fabrication.
Semiconductor millimeter wavelength electronics
NASA Astrophysics Data System (ADS)
Rosenbaum, F. J.
1985-12-01
This final report summarizes the results of research carried out on topics in millimeter wavelength semiconductor electronics under an ONR Selected Research Opportunity program. Study areas included III-V compound semiconductor growth and characterization, microwave and millimeter wave device modeling, fabrication and testing, and the development of new device concepts. A new millimeter wave mixer and detector, the Gap diode was invented. Topics reported on include ballistic transport, Zener oscillations, impurities in GaAs, electron velocity-electric field calculation and measurements, etc., calculations.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.; Adelberg, L. K.; Kunkee, D. B.; Jackson, D. M.
1993-01-01
Activities within the period from July 1, 1992 through December 31, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the calibration of the Millimeter-wave Imaging Radiometer (MIR), preliminary flight data analysis, and preparation for TOGA/COARE. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. In the current configuration, the MIR has channels at 90, 150, 183(+/-1,3,7), and 220 GHz. Provisions for three additional channels at 325(+/-1,3) and 8 GHz have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. Past Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design, in-flight software, and post-flight data display software. The combination of the above millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide unique radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been published, and is included as an appendix.
Toward milli-Newton electro- and magneto-static microactuators
NASA Technical Reports Server (NTRS)
Fan, Long-Sheng
1993-01-01
Microtechnologies can potentially push integrated electro- and magnetostatic actuators toward the regime where constant forces in the order of milli-Newton (or torques in the order of micro-Newton meter) can be generated with constant inputs within a volume of 1.0 x 1.0 x 0.02 mm with 'conventional' technology. 'Micro' actuators are, by definition, actuators with dimensions confined within a millimeter cube. Integrated microactuators based on electrostatics typically have force/torque in the order of sub-micro-Newton (sub-nano-Newton meter). These devices are capable of moving small objects at MHz frequencies. On the other hand, suppose we want to move a one cubic millimeter object around with 100 G acceleration; a few milli-Newton force will be required. Thus, milli-Newton microactuators are very desirable for some immediate applications, and it challenges micromechanical researchers to develop new process technologies, designs, and materials toward this goal.
Dielectric Waveguides Splitter and Hybrid/Isolator for Bidirectional Link
NASA Technical Reports Server (NTRS)
Tang, Adrian Joseph (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer E. (Inventor); Decrossas, Emmanuel (Inventor)
2016-01-01
A system, method, device, and apparatus provide a dielectric waveguide splitter/bi-directional link. A dielectric substrate fabricated into a first Y-junction waveguide with a first port splitting into a first branch leading to a second port and a second branch leading to a third port. An angle between the first branch and the second branch is below ninety degrees (90.degree.). The dielectric waveguide splitter enables millimeter-wave (mmWave) transmission between the first port and the second port while reducing feedback of the mmWave between the second and third port. Two Y-junction waveguides may be fabricated back-to-back to provide simultaneous bidirectional mmWave transmission at a single frequency.
NASA Astrophysics Data System (ADS)
Baik, Chan-Wook; Ahn, Ho Young; Kim, Yongsung; Lee, Jooho; Hong, Seogwoo; Lee, Sang Hun; Choi, Jun Hee; Kim, Sunil; Jeon, So-Yeon; Yu, SeGi; Collins, George; Read, Michael E.; Lawrence Ives, R.; Kim, Jong Min; Hwang, Sungwoo
2015-11-01
In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baik, Chan-Wook, E-mail: cw.baik@samsung.com; Ahn, Ho Young; Kim, Yongsung
2015-11-09
In our earlier paper dealing with dispersion retrieval from ultra-deep, reactive-ion-etched, slow-wave circuits on silicon substrates, it was proposed that splitting high-aspect-ratio circuits into multilevels enabled precise characterization in sub-terahertz frequency regime. This achievement prompted us to investigate beam-wave interaction through a vacuum-sealed integration with a 15-kV, 85-mA, thermionic, electron gun. Our experimental study demonstrates sub-terahertz, backward-wave amplification driven by an external oscillator. The measured output shows a frequency downshift, as well as power amplification, from beam loading even with low beam perveance. This offers a promising opportunity for the development of terahertz radiation sources, based on silicon technologies.
Millimeter wavelength observations of solar flares for Max 1991
NASA Technical Reports Server (NTRS)
Kundu, M. R.; Gopalswamy, N.; Nitta, N.; Schmahl, E. J.; White, S. M.; Welch, W. J.
1988-01-01
The Hat Creek millimeter-wave interferometer (to be known as the Berkeley-Illinois-Maryland Array, BIMA) is being upgraded. The improved array will become available during the coming solar maximum, and will have guaranteed time for solar observing. The Hat Creek millimeter-wave interferometer is described along with the improvements. The scientific objectives are briefly discussed.
Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere
NASA Technical Reports Server (NTRS)
Horne, Richard B.; Thorne, Richard M.
1994-01-01
The path-integrated linear growth of electromagnetic ion cyclotron waves in the outer (L is greater than or equal to 7) magnetosphere is investigated using a realistic thermal plasma distribution with an additional anisotropic energetic ring current H(+) to provide free energy for instability. The results provide a realistic simulation of the recent Active Magneto- spheric Particle Tracer Explorers (AMPTE) observations. For conditions typical of the dayside magnetosphere, high plasma beta effects reduce the group velocity and significantly increase the spatial growth rates for left-handed polarized instabilities just below the helium gyrofrequency Omega(sub He(+)), and on the guided mode above Omega(sub He(+)) but below the cross over frequency omega(sub cr). Relatively high densities, typical of the afternoon local time sector, favor these low group velocity effects for predominantly field-aligned waves. Lower densities, typical of those found in the early morning local time sector, increase the group velocity but allow strong convective instabilities at high normalized frequencies well above Omega(sub He(+)). These waves are reflected in the magnetosphere and can exist for several equatorial transits without significant damping. They are left-handed polarized only on the first equatorial crossing and become linearly polarized for the remainder of the ray path. Consequently, these waves should be observed with basically linear polarization at all frequencies and all latitudes in the early morning local time sector. Wave growth below Omega(sub He(+)) is severely limited owing to the narrow bandwidth for instability and the small resonant path lengths. In the afternoon sector, where plasma densities can exceed 10(exp 7)/cu m, intense convective amplification is possible both above and below Omega(sub He(+)). Waves below Omega(sub He(+)) are not subject to reflection when the O(+) concentration is small and therefore should be observed with left-handed polarization near the equator and essentially linear polarization at higher latitudes. Since the He(+) concentration is usually large in the afternoon sector, guided mode waves above Omega(sub He(+)) reflect to form a background distribution with basically linear polarization. We suggest that the strong left-handed polarized emissions observed by AMPTE in the afternoon sector near the equator are probably due to strongly growing low group velocity waves at frequencies just below Omega(sub He(+)), and on the guided mode above Omega(sub He(+)).
Guided waves and ultrasonic characterization of three-dimensional composites
NASA Astrophysics Data System (ADS)
Leymarie, Nicolas; Baste, Stéphane
2000-05-01
Ultrasonic NDE of anisotropic media appears nowadays as one of the best experimental approaches in studying mechanical properties. A complete identification of stiffness tensor can be performed with phase velocity measurements of obliquely incidence ultrasonic bulk waves from water onto a plate. The medium considered, however, has to be homogeneous with respect to wavelength used. In the case of 3D-composites, textures scales may reach one millimeter and their cut-off frequency is less than MHz. The dispersion curves observed in the considered range of frequencies are often very close and sometimes may be overlapped. Experimental studies show complex signals, which are due to a combination of both bulk and guided waves. Wave-speed measurements of the bulk wave and its detection become unreliable with classical techniques of signal processing (simple time or spectral analysis). Moreover, even if the coupled time-frequency analysis with wavelet transforms allows a better interpretation of the signal, the time delay estimation for the bulk wave and so the characterization of the material remains uncertain. To understand blended signals more accurately, different analytical and numerical models are proposed to show the advantages and disadvantages of methods used in NDE.
Dual-surface dielectric depth detector for holographic millimeter-wave security scanners
NASA Astrophysics Data System (ADS)
McMakin, Douglas L.; Keller, Paul E.; Sheen, David M.; Hall, Thomas E.
2009-05-01
The Transportation Security Administration (TSA) is presently deploying millimeter-wave whole body scanners at over 20 airports in the United States. Threats that may be concealed on a person are displayed to the security operator of this scanner. "Passenger privacy is ensured through the anonymity of the image. The officer attending the passenger cannot view the image, and the officer viewing the image is remotely located and cannot see the passenger. Additionally, the image cannot be stored, transmitted or printed and is deleted immediately after being viewed. Finally, the facial area of the image has been blurred to further ensure privacy." Pacific Northwest National Laboratory (PNNL) originated research into this novel security technology which has been independently commercialized by L-3 Communications, SafeView, Inc. PNNL continues to perform fundamental research into improved software techniques which are applicable to the field of holographic security screening technology. This includes performing significant research to remove human features from the imagery. Both physical and software imaging techniques have been employed. The physical imaging techniques include polarization diversity illumination and reception, dual frequency implementation, and high frequency imaging at 100 GHz. This paper will focus on a software privacy technique using a dual surface dielectric depth detector method.
High-performance packaging for monolithic microwave and millimeter-wave integrated circuits
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Li, K.; Shih, Y. C.
1992-01-01
Packaging schemes were developed that provide low-loss, hermetic enclosure for advanced monolithic microwave and millimeter-wave integrated circuits (MMICs). The package designs are based on a fused quartz substrate material that offers improved radio frequency (RF) performance through 44 gigahertz (GHz). The small size and weight of the packages make them appropriate for a variety of applications, including phased array antenna systems. Packages were designed in two forms; one for housing a single MMIC chip, the second in the form of a multi-chip phased array module. The single chip array module was developed in three separate sizes, for chips of different geometry and frequency requirements. The phased array module was developed to address packaging directly for antenna applications, and includes transmission line and interconnect structures to support multi-element operation. All packages are fabricated using fused quartz substrate materials. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices. The package and test fixture designs were both developed in a generic sense, optimizing performance for a wide range of possible applications and devices.
Low-latency fiber-millimeter-wave system for future mobile fronthauling
NASA Astrophysics Data System (ADS)
Tien Dat, Pham; Kanno, Atsushi; Yamamoto, Naokatsu; Kawanishi, Tetsuya
2016-02-01
A seamless combination of fiber and millimeter-wave (MMW) systems can be very attractive for future heterogeneous mobile networks such as 5G because of its flexibility and high bandwidth. Analog mobile signal transmission over seamless fiber-MMW systems is very promising to reduce the latency and the required band-width, and to simplify the systems. However, stable and high-performance seamless systems are indispensable to conserve the quality of the analog signal transmission. In this paper, we present several technologies to develop such seamless fiber-MMW systems. In the downlink direction, a high-performance system can be realized using a high-quality optical MMW signal generator and a self-homodyne MMW signal detector. In the uplink direction, a cascade of radio-on-radio and radio-over-fiber systems using a burst-mode optical amplifier can support bursty radio signal transmission. A full-duplex transmission with negligible interference effects can be realized using frequency multiplexing in the radio link and wavelength-division multiplexing in the optical link. A high-spectral efficiency MMW-over-fiber system using an intermediate frequency-over-fiber system and a high-quality remote delivery of a local oscillator signal is highly desirable to reduce the costs.
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1984-01-01
Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.
Popenko, Oleksandr
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects. PMID:25435859
Kuzkova, Nataliia; Popenko, Oleksandr; Yakunov, Andrey
2014-01-01
Temperature sensitivity of the fluorescence intensity of the organic dyes solutions was used for noncontact measurement of the electromagnetic millimeter wave absorption in water. By using two different dyes with opposite temperature effects, local temperature increase in the capillary that is placed inside a rectangular waveguide in which millimeter waves propagate was defined. The application of this noncontact temperature sensing is a simple and novel method to detect temperature change in small biological objects.
Computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems
NASA Astrophysics Data System (ADS)
Ku, Walter H.; Gang, Guan-Wan; He, J. Q.; Ichitsubo, I.
1988-05-01
This final technical report presents results on the computer aided design of monolithic microwave and millimeter wave integrated circuits and subsystems. New results include analytical and computer aided device models of GaAs MESFETs and HEMTs or MODFETs, new synthesis techniques for monolithic feedback and distributed amplifiers and a new nonlinear CAD program for MIMIC called CADNON. This program incorporates the new MESFET and HEMT model and has been successfully applied to the design of monolithic millimeter-wave mixers.
Advanced density profile reflectometry; the state-of-the-art and measurement prospects for ITER
NASA Astrophysics Data System (ADS)
Doyle, E. J.
2006-10-01
Dramatic progress in millimeter-wave technology has allowed the realization of a key goal for ITER diagnostics, the routine measurement of the plasma density profile from millimeter-wave radar (reflectometry) measurements. In reflectometry, the measured round-trip group delay of a probe beam reflected from a plasma cutoff is used to infer the density distribution in the plasma. Reflectometer systems implemented by UCLA on a number of devices employ frequency-modulated continuous-wave (FM-CW), ultrawide-bandwidth, high-resolution radar systems. One such system on DIII-D has routinely demonstrated measurements of the density profile over a range of electron density of 0-6.4x10^19,m-3, with ˜25 μs time and ˜4 mm radial resolution, meeting key ITER requirements. This progress in performance was made possible by multiple advances in the areas of millimeter-wave technology, novel measurement techniques, and improved understanding, including: (i) fast sweep, solid-state, wide bandwidth sources and power amplifiers, (ii) dual polarization measurements to expand the density range, (iii) adaptive radar-based data analysis with parallel processing on a Unix cluster, (iv) high memory depth data acquisition, and (v) advances in full wave code modeling. The benefits of advanced system performance will be illustrated using measurements from a wide range of phenomena, including ELM and fast-ion driven mode dynamics, L-H transition studies and plasma-wall interaction. The measurement capabilities demonstrated by these systems provide a design basis for the development of the main ITER profile reflectometer system. This talk will explore the extent to which these reflectometer system designs, results and experience can be translated to ITER, and will identify what new studies and experimental tests are essential.
Ebbers, Christopher A.; Davis, Laura E.; Webb, Mark
1992-01-01
In a laser system for converting infrared laser light waves to visible light comprising a source of infrared laser light waves and means of harmoic generation associated therewith for production of light waves at integral multiples of the frequency of the original wave, the improvement of said means of harmonic generation comprising a crystal having the chemical formula X.sub.2 Y(NO.sub.3).sub.5 .multidot.2 nZ.sub.2 o wherein X is selected from the group consisting of Li, Na, K, Rb, Cs, and Tl; Y is selected from the group consisting of Sc, Y, La, Ce, Nd, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Ga, and In; Z is selected from the group consisting of H and D; and n ranges from 0 to 4.
High-frequency plasma-heating apparatus
Brambilla, Marco; Lallia, Pascal
1978-01-01
An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.
2004-11-04
A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope willmore » be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.« less
NASA Astrophysics Data System (ADS)
Siegel, Peter H.; Pikov, Victor
2010-02-01
As the application and commercial use of millimeter- and submillimeter-wavelength radiation become more widespread, there is a growing need to understand and quantify both the coupling mechanisms and the impact of this long wavelength energy on biological function. Independent of the health impact of high doses of radio frequency (RF) energy on full organisms, which has been extensively investigated, there exists the potential for more subtle effects, which can best be quantified in studies which examine real-time changes in cellular functions as RF energy is applied. In this paper we present the first real time examination of RF induced changes in cellular activity at absorbed power levels well below the existing safe exposure limits. Fluorescence microscopy imaging of immortalized epithelial and neuronal cells in vitro indicate increased cellular membrane permeability and nanoporation after short term exposure to modest levels (10-50 mW/cm2) of RF power at 60 GHz. Sensitive patch clamp measurements on pyramidal neurons in cortical slices of neonatal rats showed a dramatic increase in cellular membrane permeability resulting either in suppression or facilitation of neuronal activity during exposure to sub-μW/cm2 of RF power at 60 GHz. Non-invasive modulation of neuronal activity could prove useful in a variety of health applications from suppression of peripheral neuropathic pain to treatment of central neurological disorders.
Extremely high frequency RF effects on electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale
The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less
Planar Monolithic Schottky Varactor Diode Millimeter-Wave Frequency Multipliers
1992-06-01
wave applications", IEEE Trans on Microwave Theory and Tech., vol. 39, no. 12, Dec. 1991 , pp. 1964-1971. A copy of this paper is 35 included in...Watts to Bulky 1991 spectral HV DC Power line Pwr Very Inguscio varies Massive 1986 with Vac.:um line Very low Gas noise Supply Ledatron Up to 1 W at...PULSED Band up to 1985 HV DC 10 GHz Massive Pwr Magnetic V?4MA > 100 GHz > 1 Watt Wide Cooling Research Quasi- McGruer Theory Theory Band Planar 1991
Electrostatic instability of ring current protons beyond the plasmapause during injection events
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Fredricks, R. W.; White, R.
1972-01-01
The stability of ring current protons with an injection spectrum modeled by an m = 2 mirror distribution function was examined for typical ring current parameters. It was found that the high frequency loss cone mode can be excited at wave numbers K lambda sub Di about = to 0.1 to 0.5, at frequencies omega about = to (0.2 to 0.6) omega sub pi and with growth rates up to gamma/omega about = to 0.03. These waves interact with the main body of the proton distribution and propagate nearly perpendicular to the local magnetic field. Cold particle partial densities tend to reduce the growth rate so that the waves are quenched at or near to the plasmapause boundary. Wave e-folding lengths are comparable to 0.1 R sub e, compared to the value of about 4 R sub e found for ion cyclotron waves at the same plasma conditions.
Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.;
2011-01-01
Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.
1999-01-01
A low cost, small size and mass, low heater power, durable high-performance barium dispenser thermionic cathode has been developed that offers significant advancements in the design, manufacture, and performance of the electron sources used in vacuum electronic devices--such as microwave (and millimeter wave) traveling-wave tubes (TWT's)--and in display devices such as high-brightness, high-resolution cathode ray tubes (CRT's). The lower cathode heater power and the reduced size and mass of the new cathode are expected to be especially beneficial in TWT's for deep space communications, where future missions are requiring smaller spacecraft, higher data transfer rates (higher frequencies and radiofrequency output power), and greater electrical efficiency. Also expected to benefit are TWT's for commercial and government communication satellites, for both low and geosynchronous Earth orbit, with additional benefits offered by lower cost and potentially higher cathode current loading. A particularly important TWT application is in the microwave power module (MPM), which is a hybrid microwave (or millimeter wave) amplifier consisting of a low-noise solid state driver, a vacuum power booster (small TWT), and an electronic power conditioner integrated into a single compact package. The attributes of compactness and potentially high electrical efficiency make the MPM very attractive for many commercial and government (civilian and defense) applications in communication and radar systems. The MPM is already finding application in defense electronic systems and is under development by NASA for deep space communications. However, for the MPM to become competitive and commercially successful, a major reduction in cost must be achieved.
NASA Technical Reports Server (NTRS)
Ziurys, L. M.; Flory, M. A.; Halfen, D. T.
2006-01-01
With the advent of SOFIA, Herschel, and SAFIR, new wavelength regions will become routinely accessible for astronomical spectroscopy, particularly at submm frequencies (0.5-1.1 THz). Molecular emission dominates the spectra of dense interstellar gas at these wavelengths. Because heterodyne detectors are major instruments of these missions, accurate knowledge of transition frequencies is crucial for their success. The Ziurys spectroscopy laboratory has been focusing on the measurement of the pure rotational transitions of astrophysically important molecules in the sub-mm regime. Of particular interest have been metal hydride species and their ions, as well as metal halides and cyanides. A new avenue of study has included metal bearing molecular ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergin, Edwin A.; Du, Fujun; Schwarz, K.
We report observations of resolved C{sub 2}H emission rings within the gas-rich protoplanetary disks of TW Hya and DM Tau using the Atacama Large Millimeter Array. In each case the emission ring is found to arise at the edge of the observable disk of millimeter-sized grains (pebbles) traced by submillimeter-wave continuum emission. In addition, we detect a C{sub 3}H{sub 2} emission ring with an identical spatial distribution to C{sub 2}H in the TW Hya disk. This suggests that these are hydrocarbon rings (i.e., not limited to C{sub 2}H). Using a detailed thermo-chemical model we show that reproducing the emission frommore » C{sub 2}H requires a strong UV field and C/O > 1 in the upper disk atmosphere and outer disk, beyond the edge of the pebble disk. This naturally arises in a disk where the ice-coated dust mass is spatially stratified due to the combined effects of coagulation, gravitational settling and drift. This stratification causes the disk surface and outer disk to have a greater permeability to UV photons. Furthermore the concentration of ices that transport key volatile carriers of oxygen and carbon in the midplane, along with photochemical erosion of CO, leads to an elemental C/O ratio that exceeds unity in the UV-dominated disk. Thus the motions of the grains, and not the gas, lead to a rich hydrocarbon chemistry in disk surface layers and in the outer disk midplane.« less
Millimeter-wave spectra of the Jovian planets
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Steffes, Paul G.
1991-01-01
The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets.
Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation
NASA Astrophysics Data System (ADS)
Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.
2017-12-01
In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellat, R.; Roux, A.
1979-09-01
The propagation of electrostatic plasma waves in an inhomogeneous and magnetized plasma is studied analytically. These waves, which are driven unstable by auroral beams of electrons, are shown to suffer a further geometrical amplification while they propagate toward cut-off. Simultaneously their group velocities tend to be aligned with the geomagnetic field. Then it is shown that the electrostatic energy tends to accumulate at or near ..omega../sub L/H and ..omega../sub U/H, the local lower and upper hybrid frequencies. Due to this process, large amplitude electrostatic waves with very narrow spectra should be observed near these frequencies at any place along themore » auroral field lines where intense beam driven instability takes place. These intense quasi-monochromatic electrostatic waves are then shown to give rise by a coherent nonlinear three wave process to an intense electromagnetic radiation. Provided that the ratio ..omega../sub p/e/..omega../sub c/e tends to be smaller than unity, it is shown that the most intense radiation should be observed at 2..omega../sub U/H in the extraordinary mode.« less
NASA Astrophysics Data System (ADS)
Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Yoshihisa, Irimajiri; Donal, Murtagh; Yoshinori, Uzawa; Satoshi, Ochiai; Masato, Shiotani; Makoto, Suzuki
2016-04-01
In a near future, ESA will launch the Atmospheric Dynamics Mission (ADM) equipped with a lidar for measuring tropospheric and lower stratospheric winds. NASA will continue a long-term series of upper atmospheric wind measurements (altitudes >80 km) with the new Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) satellite. No mission is planned to observe winds in the middle atmosphere (30-80 km), though they are recognized as essential parameters for understanding atmospheric dynamics and the vertical coupling between atmospheric regions. They are also promising data for improving long-term weather forecast and climate modelling. It has been demonstrated with the Superconducting Submillimeter Wave Limb Emission Sounder (SMILES, Oct 2009 - Apr 2010) that a 4-K cooled microwave radiometer can provide data to fill the altitude gap in the wind measurements. Its possible successor named SMILES-2, is being designed in Japan for the study of the middle and upper atmospheric chemistry and dynamics (O3, H2O, T, atomic O, OH, HO2, ClO, BrO, ...). If realized, the instrument will measure sub-millimeter and THz molecular spectral lines (616-150 μm) with high sensitivity and frequency resolution. The SMILES-2 characteristics are very well suited for horizontal wind observations between 20 km to more than 160 km. The best performances are found between 35-90 km where the retrieval precision is better than 3 m/s for a vertical resolution of 2-3 km [1]. In this presentation, we summarize the results obtained from SMILES and assess the measurement performances of SMILES-2 to measure horizontal winds. [1] P. Baron, N. Manago, H. Ozeki, Y. Irimajiri, D. Murtagh, Y. Uzawa, S. Ochiai, M. Shiotani, M. Suzuki: "Measurement of stratospheric and mesospheric winds with a SubMillimeter wave limb sounder: Results from JEM/SMILES and simulation study for SMILES-2"; Proc. of SPIE Remote sensing, 96390N-96390N-20, 2015
Tipikin, D. S.; Earle, K. A.; Freed, J. H.
2010-01-01
The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356
Power Amplifier Module with 734-mW Continuous Wave Output Power
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara
2010-01-01
Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.
Millimeter wave radar for automobile crash avoidance systems
NASA Astrophysics Data System (ADS)
Huguenin, G. Richard
1994-08-01
Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.
Millimeter and submillimeter wave spectra of 13C methylamine
NASA Astrophysics Data System (ADS)
Motiyenko, R. A.; Margulès, L.; Ilyushin, V. V.; Smirnov, I. A.; Alekseev, E. A.; Halfen, D. T.; Ziurys, L. M.
2016-03-01
Context. Methylamine (CH3NH2) is a light molecule of astrophysical interest, which has an intensive rotational spectrum that extends in the submillimeter wave range and far beyond, even at temperatures characteristic for the interstellar medium. It is likely for 13C isotopologue of methylamine to be identified in astronomical surveys, but there is no information available for the 13CH3NH2 millimeter and submillimeter wave spectra. Aims: In this context, to provide reliable predictions of 13CH3NH2 spectrum in millimeter and submillimeter wave ranges, we have studied rotational spectra of the 13C methylamine isotopologue in the frequency range from 48 to 945 GHz. Methods: The spectrum of 13C methylamine was recorded using conventional absorption spectrometers. The analysis of the rotational spectrum of 13C methylamine in the ground vibrational state was performed on the basis of the group-theoretical high-barrier tunneling Hamiltonian that was developed for methylamine. The available multiple observations of the parent methylamine species toward Sgr B2(N) at 1, 2, and 3 mm using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory were used to make a search for interstellar 13CH3NH2. Results: In the recorded spectra, we have assigned 2721 rotational transitions that belong to the ground vibrational state of the 13CH3NH2. These measurements were fitted to the Hamiltonian model that uses 75 parameters to achieve an overall weighted rms deviation of 0.73. On the basis of these spectroscopic results, predictions of transition frequencies in the frequency range up to 950 GHz with J ≤ 50 and Ka ≤ 20 are presented. The search for interstellar 13C methylamine in available observational data was not successful and therefore only an upper limit of 6.5 × 1014 cm-2 can be derived for the column density of 13CH3NH2 toward Sgr B2(N), assuming the same source size, temperature, linewidth, and systemic velocity as for parent methylamine isotopic species. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A152
Wide extragalactic (sub-)millimeter surveys with SCUBA and AzTEC
NASA Astrophysics Data System (ADS)
Aretxaga, I.; Hughes, D. H.; SHADES Collaboration; AzTEC Collaboration
2009-05-01
We summarize the present status of our knowledge of the millimeter galaxy population derived from extensive (sub-) millimeter extragalactic surveys like the SCUBA HAlf Degree Survey (SHADES), and the current status of the next generation of surveys traced with the AzTEC camera, that has, so far, surveyed more than 2 degrees at 1.1wavelengths.
MILLIMETER WAVE SPECTRUM AND ASTRONOMICAL SEARCH FOR VINYL FORMATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, E. R.; Kolesniková, L.; Cabezas, C.
2016-11-20
Previous detections of methyl and ethyl formate make other small substituted formates potential candidates for observation in the interstellar medium. Among them, vinyl formate is one of the simplest unsaturated carboxylic ester. The aim of this work is to provide direct experimental frequencies of the ground vibrational state of vinyl formate in a large spectral range for astrophysical use. The room-temperature rotational spectrum of vinyl formate has been measured from 80 to 360 GHz and analyzed in terms of Watson’s semirigid rotor Hamiltonian. Two thousand six hundred transitions within J = 3–88 and K {sub a} = 0–28 were assignedmore » to the most stable conformer of vinyl formate and a new set of spectroscopic constants was accurately determined. Spectral features of vinyl formate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of vinyl formate are provided.« less
Structural and magnetic properties of Ni-doped SnO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Sonam, E-mail: vdinesh33@rediffmail.com, E-mail: sonam.dwivedi88@gmail.com; Kumar, Ashwini; Dar, Mashkoor A.
2015-06-24
Samples of Ni doped SnO{sub 2} nanocrystalline were successfully prepared by chemical co-precipitation method. X-ray diffraction pattern infers that Sn{sub 1-x}Ni{sub x}O{sub 2} (x=0.00, 0.10, 0.15 and 0.20) samples are in single phase with tetragonal structure (P4{sub 2}/mnm). Raman spectroscopy reveals the observed phonon modes of SnO{sub 2} are at about 387-397, and 559 - 572 cm{sup −1}. For Sn{sub 0.9}Ni{sub 0.1}O{sub 2}, these peaks are shifted to higher wave numbers, while to that for Sn{sub 0.85}Ni{sub 0.15}O{sub 2} and Sn{sub 0.8}Ni{sub 0.2}O{sub 2}, peaks are shifted to the lower wave numbers. The frequency dependent dielectric constant decreases with the increasemore » in the frequency and becomes constant at high frequencies for all compositions of Ni substituted SnO{sub 2}. The magnetization curve confirms the paramagnetic nature of all Ni doped SnO{sub 2} samples.« less
Conversion loss and noise of microwave and millimeter-wave mixers. I - Theory. II - Experiment
NASA Technical Reports Server (NTRS)
Held, D. N.; Kerr, A. R.
1978-01-01
The conversion loss and noise of microwave and millimeter-wave mixers are analyzed. Nonlinear capacitance, arbitrary embedding impedances, as well as shot, thermal and scattering noise arising in the diode, figure in the analysis. The anomalous mixer noise noted in millimeter-wave mixers by Kerr (1975) is shown to be explainable in terms of the correlation of down-converted components of the time-varying shot noise. A digital computer analysis of the conversion loss, noise, and output impedance of an 80-120-GHz mixer is also conducted.
Millimeter Wave Spectroscopy in a Semi-Confocal Fabry-Perot Cavity
NASA Astrophysics Data System (ADS)
Drouin, Brian; Tang, Adrian; Reck, Theodore J.; Nemchick, Deacon J.; Cich, Matthew J.; Crawford, Timothy J.; Raymond, Alexander W.; Chang, M.-C. Frank; Kim, Rod M.
2017-06-01
A new generation of CMOS circuits operating at 89-104 GHz with improved output power and pulse switch isolation have enhanced the performance of the miniaturized pulsed-echo Fourier transform spectrometer under development for planetary exploration at the Jet Propulsion laboratory. Additional progress has been made by creating a waveguide-fed structure for the novel planar coupler design. This structure has enabled characterization of each component in the system and enabled spectroscopy to be done with conventional millimeter hardware that enables (1) direct comparisons to the CMOS components, (2) enhanced bandwidth of 74-109 GHz, and (3) amplification of the transmitter prior to cavity injection. We have now demonstrated the technique with room temperature detections on multiple species including N_2O, OCS, CH_3CN, CH_3OH, CH_3NH_2, CH_3CHO, CH_3Cl, HDO, D_2O, CH_3CH_2CN and CH_3CH_2OH. Of particular interest to spectroscopic work in the millimeter range is the ongoing incorporation of a ΔΣ radio-frequency source into the millimeter-wave lock-loop - this has improved the phase-noise of the tunable CMOS transceiver to better than the room-temperature Doppler limit and provides a promising source for general use that may replace the high end microwave synthesizers. We are in the process of building a functional interface to the various subsystems. We will present a trade-space study to determine the optimal operating conditions of the pulse-echo system.
Studies on the transmission of sub-THz waves in magnetized inhomogeneous plasma sheath
NASA Astrophysics Data System (ADS)
Yuan, Kai; Shen, Linfang; Yao, Ming; Deng, Xiaohua; Chen, Zhou; Hong, Lujun
2018-01-01
There have been many studies on the sub-terahertz (sub-THz) wave transmission in reentry plasma sheaths. However, only some of them have paid attention to the transmission of sub-THz waves in magnetized plasma sheaths. In this paper, the transmission of sub-THz waves in both unmagnetized and magnetized reentry plasma sheaths was investigated. The impacts of temporal evolution of the plasma sheath on the wave transmission were studied. The transmission of "atmospheric window" frequencies in a magnetized plasma sheath was discussed in detail. According to the study, the power transmission rates (Tp) for the left hand circular (LHC) and the right hand circular modes in the magnetized plasma sheath are obviously higher and lower than those in the unmagnetized plasma sheath, respectively. The Tp of LHC mode increases with both wave frequency and external magnetic field strength. Also, the Tp of LHC mode in both magnetized and unmagnetized plasma sheaths varies with time due to the temporal evolution of the plasma sheath. Moreover, the performance of sub-THz waves in magnetized plasma sheath hints at a new approach to the "blackout" problem. The new approach, which is in the capability of modern technology, is to utilize the communication system operating at 140 GHz with an onboard magnet installed near the antenna.
RLE progress report no. 133, 1 January - 31 December 1990
NASA Technical Reports Server (NTRS)
Allen, Jonathan; Kleppner, Daniel; Ziegler, Mary J. (Editor); Passero, Barbara (Editor)
1990-01-01
Activities of the Research Laboratory of Electronics at MIT are summarized. NASA-sponsored research in the area of synthetic aperture radar image interpretation and simulation is described. Other government-sponsored and industry-sponsored studies are also described which address the following topics: microwave and millimeter wave integrated circuits, high-speed integrated circuit interconnects, Instrument Landing System/Microwave Landing System frequency management assessment, and superconducting electronics.
Depolarization on Earth-space paths
NASA Technical Reports Server (NTRS)
1981-01-01
Sources of depolarization effects on the propagation paths of orthogonally-polarized information channels are considered. The main sources of depolarization at millimeter wave frequencies are hydrometeor absorption and scattering in the troposphere. Terms are defined. Mathematical formulations for the effects of the propagation medium characteristics and antenna performance on signals in dual polarization Earth-space links are presented. Techniques for modeling rain and ice depolarization are discussed.
Focusing Leaky Waves: A Class of Electromagnetic Localized Waves with Complex Spectra
NASA Astrophysics Data System (ADS)
Fuscaldo, Walter; Comite, Davide; Boesso, Alessandro; Baccarelli, Paolo; Burghignoli, Paolo; Galli, Alessandro
2018-05-01
Localized waves, i.e., the wide class of limited-diffraction, limited-dispersion solutions to the wave equation are generally characterized by real wave numbers. We consider the role played by localized waves with generally complex "leaky" wave numbers. First, the impact of the imaginary part of the wave number (i.e., the leakage constant) on the diffractive (spatial broadening) features of monochromatic localized solutions (i.e., beams) is rigorously evaluated. Then general conditions are derived to show that only a restricted class of spectra (either real or complex) allows for generating a causal localized wave. It turns out that backward leaky waves fall into this category. On this ground, several criteria for the systematic design of wideband radiators, namely, periodic radial waveguides based on backward leaky waves, are established in the framework of leaky-wave theory. An effective design method is proposed to minimize the frequency dispersion of the proposed class of devices and the impact of the "leakage" on the dispersive (temporal broadening) features of polychromatic localized solutions (i.e., pulses) is accounted for. Numerical results corroborate the concept, clearly highlighting the advantages and limitations of the leaky-wave approach for the generation of localized pulses at millimeter-wave frequencies, where energy focusing is in high demand in modern applications.
Millimeter and submillimeter wave spectra of mono-13C-acetaldehydes
NASA Astrophysics Data System (ADS)
Margulès, L.; Motiyenko, R. A.; Ilyushin, V. V.; Guillemin, J. C.
2015-07-01
Context. The acetaldehyde molecule is ubiquitous in the interstellar medium of our galaxy, and due to its dense and complex spectrum, large dipole moment, and several low-lying torsional states, acetaldehyde is considered to be a "weed" molecule for radio astronomy observations. Mono-13C acetaldehydes 13CH3CHO and CH313CHO are likely to be identified in astronomical surveys, such as those available with the very sensitive ALMA telescope. Laboratory measurements and analysis of the millimeter and submillimeter-wave spectra are the prerequisites for the successful radioastronomical search for the new interstellar molecular species, as well as for new isotopologs of already detected interstellar molecules. Aims: In this context, to provide reliable predictions of 13CH3CHO and CH313CHO spectra in millimeter and submillimeter wave ranges, we study rotational spectra of these species in the frequency range from 50 to 945 GHz. Methods: The spectra of mono-13C acetaldehydes were recorded using the spectrometer based on Schottky-diode frequencymultiplication chains in the Lille laboratory. The rotational spectra of 13CH3CHO and CH313CHO molecules were analyzed using the Rho axis method. Results: In the recorded spectra we have assigned 6884 for the 13CH3CHO species and 6458 for CH313CHO species new rotational transitions belonging to the ground, first, and second excited torsional states. These measurements were fitted together with previously published data to the Hamiltonian models that use 91 and 87 parameters to achieve overall weighted rms deviations 0.88 for the 13CH3CHO species and 0.95 for CH313CHO. On the basis of the new spectroscopic results, predictions of transition frequencies in the frequency range up to 1 THz with J ≤ 60 and Ka ≤ 20 are presented for both isotopologs. Full Tables 3-6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/579/A46
Wideband monolithically integrated front-end subsystems and components
NASA Astrophysics Data System (ADS)
Mruk, Joseph Rene
This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.
NASA Astrophysics Data System (ADS)
Reising, S. C.; Gaier, T.; Kummerow, C. D.; Chandra, C. V.; Padmanabhan, S.; Lim, B.; Heneghan, C.; Berg, W. K.; Olson, J. P.; Brown, S. T.; Carvo, J.; Pallas, M.
2016-12-01
The Temporal Experiment for Storms and Tropical Systems (TEMPEST) mission concept consists of a constellation of 5 identical 6U-Class nanosatellites observing at 5 millimeter-wave frequencies with 5-minute temporal sampling to observe the time evolution of clouds and their transition to precipitation. The TEMPEST concept is designed to improve the understanding of cloud processes, by providing critical information on the time evolution of cloud and precipitation microphysics and helping to constrain one of the largest sources of uncertainty in climate models. TEMPEST millimeter-wave radiometers are able to make observations in the cloud to observe changes as the cloud begins to precipitate or ice accumulates inside the storm. Such a constellation deployed near 400 km altitude and 50°-65° inclination is expected to capture more than 3 million observations of precipitation during a one-year mission, including over 100,000 deep convective events. The TEMPEST Technology Demonstration (TEMPEST-D) mission will be deployed to raise the TRL of the instrument and key satellite systems as well as to demonstrate measurement capabilities required for a constellation of 6U-Class nanosatellites to directly observe the temporal development of clouds and study the conditions that control their transition from non-precipitating to precipitating clouds. A partnership among Colorado State University (Lead Institution), NASA/Caltech Jet Propulsion Laboratory and Blue Canyon Technologies, TEMPEST-D will provide observations at five millimeter-wave frequencies from 89 to 183 GHz using a single compact instrument that is well suited for the 6U-Class architecture. The top-level requirements for the 90-day TEMPEST-D mission are to: (1) demonstrate precision inter-satellite calibration between TEMPEST-D and one other orbiting radiometer (e.g. GPM or MHS) measuring at similar frequencies; and (2) demonstrate orbital drag maneuvers to control altitude, as verified by GPS, sufficient to achieve relative positioning in a constellation of 6U-Class nanosatellites. The TEMPEST-D 6U-Class satellite is planned to be delivered in July 2017 for launch through NASA CSLI no later than March 2018.
Low-Cost Enclosure For The Sub-Millimeter Telescope
NASA Astrophysics Data System (ADS)
Ulich, Bobby L.; Hoffmann, William F.; Davison, Warren B.; Baars, Jacob W. M.; Mezger, Peter G.
1983-11-01
The University of Arizona and the Max-Planck-Institut fur Radioastronomie are collaborating to construct a sub-millimeter wavelength radio telescope facility at the summit of Mt. Lemmon (2791 m above sea level) near Tucson, Arizona. We have designed a corotating building to protect the 10 m diameter Sub-Millimeter Telescope (SMT) against storm damage, to provide large instrumentation rooms at the Nasmyth foci, and to minimize degradation of the reflector profile accuracy and pointing errors caused by wind forces and solar radiation.
Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces
Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona
2016-01-01
Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471
Millimeter-wave technology advances since 1985 and future trends
NASA Astrophysics Data System (ADS)
Meinel, Holger H.
1991-05-01
The author focuses on finline or E-plane technology. Several examples, including AVES, a 61.5-GHz radar sensor for traffic data acquisition, are included. Monolithic integrated 60- and 94-GHz receiver circuits composed of a mixer and IF amplifier in compatible FET technology on GaAs are presented to show the state of the art in this area. A promising approach to the use of silicon technology for monolithic millimeter-wave integrated circuits, called SIMMWIC, is described as well. As millimeter-wave technology has matured, increased interest has been generated for very specific applications: (1) commercial automotive applications such as intelligent cruise control and enhanced vision have attracted great interest, calling for a low-cost design approach; and (2) an almost classical application of millimeter-wave techniques is the field of radar seekers, e.g., for intelligent ammunitions, calling for high performance under extreme environmental conditions. Two examples fulfilling these requirements are described.
Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Fukunari, Masafumi; Wongsuryrat, Nat; Yamaguchi, Toshikazu; Nakamura, Yusuke; Komurasaki, Kimiya; Koizumi, Hiroyuki
2017-02-01
This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.
Millimeter-wave micro-Doppler measurements of small UAVs
NASA Astrophysics Data System (ADS)
Rahman, Samiur; Robertson, Duncan A.
2017-05-01
This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.
Discovering CO and other Interstellar Molecules with the NRAO 36 Foot Antenna
NASA Astrophysics Data System (ADS)
Wilson, R. W.
2008-08-01
Bell Labs was an early developer of millimeter-wave technology. In the 60's there was a big push to develop a millimeter wave long-distance communications system to do what ultimately fiber optics has accomplished. As part of this system, Charles Burrus at Crawford Hill developed millimeter-wave receivers by making Schottky-barrier diodes using modern photolithography. Arno Penzias and I recognized that these had a potential use in radio astronomy and with Ken Kellermann proposed to build a receiver with them for use on the then-new 36 foot antenna. Unfortunately this attempt was premature and not successful. In 1970 Arno, Keith Jefferts, and I---with much help from Sandy Weinreb---put together a spectral-line receiver. This was done with the hope of detecting rotational transitions of simple molecules in interstellar space. Since, at the time, only a few people (like Phil Solomon) had any idea that molecular clouds existed, we prepared to detect a weak signal. Our backup strategy, suggested by Pat Thaddeus, was to look for CN, which had been known to exist since the late 1930s. If neither line had been detected, we would have observed the H38α recombination line which is close in frequency to the CO J=1-0 line. As we all know now, however, the signal from carbon monoxide (and even its less abundant isotopes) was remarkably strong. Such measurements have since transformed our ideas of star formation.
Custom chipset and compact module design for a 75-110 GHz laboratory signal source
NASA Astrophysics Data System (ADS)
Morgan, Matthew A.; Boyd, Tod A.; Castro, Jason J.
2016-12-01
We report on the development and characterization of a compact, full-waveguide bandwidth (WR-10) signal source for general-purpose testing of mm-wave components. The monolithic microwave integrated circuit (MMIC) based multichip module is designed for compactness and ease-of-use, especially in size-constrained test sets such as a wafer probe station. It takes as input a cm-wave continuous-wave (CW) reference and provides a factor of three frequency multiplication as well as amplification, output power adjustment, and in situ output power monitoring. It utilizes a number of custom MMIC chips such as a Schottky-diode limiter and a broadband mm-wave detector, both designed explicitly for this module, as well as custom millimeter-wave multipliers and amplifiers reported in previous papers.
NASA Astrophysics Data System (ADS)
Carter, Evan; Hughes, A. Meredith; Daley, Cail; Flaherty, Kevin; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; MacGregor, Meredith Ann; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; Moor, Attila; Kospal, Agnes
2018-01-01
Debris disks are hallmarks of mature planetary systems, with second-generation dust produced via collisions between pluto-like planetesimals. The vertical structure of a debris disk encodes unique information about the dynamical state of the system, particularly at millimeter wavelengths where gravitational effects dominate over the effects of stellar radiation. We present 450 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the edge-on debris disk around AU Mic, a nearby (d = 9.91 ± 0.10 pc) M1-type star. The 0.3'' angular resolution of the data allows us to spatially resolve the scale height of the disk, complementing previous observations at a wavelength of 1.3 mm. By resolving the vertical structure of the disk at these two widely-separated frequencies, we are able to spatially resolve the spectral index and study variations in the grain size distribution as a function of disk radius. The comparison of scale heights for two different wavelengths and therefore particle sizes also constrains the velocity dispersion as a function of grain size, which allows us to probe the strengths of bodies in the collisional cascade for the first time outside the Solar System.
Properties of barium strontium titanate at millimeter wave frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Nurul; Free, Charles
2015-04-24
The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangentmore » for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.« less
NASA Astrophysics Data System (ADS)
Rendina, Ivo; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G.; Iodice, Mario
2000-03-01
A new type of non-perturbing electromagnetic power sensor for microwaves and millimeter-waves, based on the thermo- optical effect in a silicon interferometric etalon cavity is presented. The incident field power is partially dissipated into the all-silicon metal-less etalon, constituting the sensing element of the detector, so causing its temperature increase. This, in turn, induces the intensity modulation of a probe laser beam reflected by the cavity after a multiple beam interference process. The sensing element is directly connected to an optical fiber for remote interrogation, so avoiding the use of perturbing coaxial cables. The performances of such a new class of non-perturbing and wideband probes, in terms of sensitivity and resolution are discussed in detail. The experimental results concerning the characterization of a preliminary prototype sensor are presented and compared with theoretical data. The dependence of the sensor response on the electromagnetic frequency and on the sensing element characteristics is finally discussed.
Passive millimeter wave simulation in blender
NASA Astrophysics Data System (ADS)
Murakowski, Maciej
Imaging in the millimeter wave (mmW) frequency range is being explored for applications where visible or infrared (IR) imaging fails, such as through atmospheric obscurants. However, mmW imaging is still in its infancy and imager systems are still bulky, expensive, and fragile, so experiments on imaging in real-world scenarios are difficult or impossible to perform. Therefore, a simulation system capable of predicting mmW phenomenology would be valuable in determining the requirements (e.g. resolution or noise floor) of an imaging system for a particular scenario and aid in the design of such an imager. Producing simulation software for this purpose is the objective of the work described in this thesis. The 3D software package Blender was modified to simulate the images produced by a passive mmW imager, based on a Geometrical Optics approach. Simulated imagery was validated against experimental data and the software was applied to novel imaging scenarios. Additionally, a database of material properties for use in the simulation was collected.
Real-time millimeter-wave imaging radiometer for avionic synthetic vision
NASA Astrophysics Data System (ADS)
Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.
1994-07-01
ThermoTrex Corporation (TTC) has developed an imaging radiometer, the passive microwave camera (PMC), that uses an array of frequency-scanned antennas coupled to a multi-channel acousto-optic (Bragg cell) spectrum analyzer to form visible images of a scene through acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output of the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. One application of this system could be its incorporation into an enhanced vision system to provide pilots with a clear view of the runway during fog and other adverse weather conditions. The unique PMC system architecture will allow compact large-aperture implementations because of its flat antenna sensor. Other potential applications include air traffic control, all-weather area surveillance, fire detection, and security. This paper describes the architecture of the TTC PMC and shows examples of images acquired with the system.
The millimeter wave spectrum of methyl cyanate: a laboratory study and astronomical search in space.
Kolesniková, L; Alonso, J L; Bermúdez, C; Alonso, E R; Tercero, B; Cernicharo, J; Guillemin, J-C
2016-07-01
The recent discovery of methyl isocyanate (CH 3 NCO) in Sgr B2(N) and Orion KL makes methyl cyanate (CH 3 OCN) a potential molecule in the interstellar medium. The aim of this work is to fulfill the first requirement for its unequivocal identification in space, i.e. the availability of transition frequencies with high accuracy. The room-temperature rotational spectrum of methyl cyanate was recorded in the millimeter wave domain from 130 to 350 GHz. All rotational transitions revealed A - E splitting owing to methyl internal rotation and were globally analyzed using the ERHAM program. The data set for the ground torsional state of methyl cyanate exceeds 700 transitions within J″ = 10 - 35 and [Formula: see text] and newly derived spectroscopic constants reproduce the spectrum close to the experimental uncertainty. Spectral features of methyl cyanate were then searched for in Orion KL, Sgr B2(N), B1-b, and TMC-1 molecular clouds. Upper limits to the column density of methyl cyanate are provided.
The Astrophysical Weeds: Rotational Transitions in Excited Vibrational States
NASA Astrophysics Data System (ADS)
Alonso, José L.; Kolesniková, Lucie; Alonso, Elena R.; Mata, Santiago
2017-06-01
The number of unidentified lines in the millimeter and submillimeter wave surveys of the interstellar medium has grown rapidly. The major contributions are due to rotational transitions in excited vibrational states of a relatively few molecules that are called the astrophysical weeds. necessary data to deal with spectral lines from astrophysical weeds species can be obtained from detailed laboratory rotational measurements in the microwave and millimeter wave region. A general procedure is being used at Valladolid combining different time and/or frequency domain spectroscopic tools of varying importance for providing the precise set of spectroscopic constants that could be used to search for this species in the ISM. This is illustrated in the present contribution through its application to several significant examples. Fortman, S. M., Medvedev, I. R., Neese, C.F., & De Lucia, F.C. 2010, ApJ,725, 1682 Rotational Spectra in 29 Vibrationally Excited States of Interstellar Aminoacetonitrile, L. Kolesniková, E. R. Alonso, S. Mata, and J. L. Alonso, The Astrophysical Journal Supplement Series 2017, (in press).
Research in millimeter wave techniques
NASA Technical Reports Server (NTRS)
Mcmillan, R. W.
1977-01-01
The following is investigated; (1) the design of a 183 GHz single ended fundamental mixer to serve as a back up mixer to the subharmonic mixer for airborne applications, (2) attainment of 6 db single sideband conversion loss with the 6 GHz subharmonic mixer model, together with initial tests to determine the feasibility of pumping the mixer at w sub s/4, (3) additional ground based radiometric measurements, and (4) derivation of equations for power transmission of wire grid interferometers, and initial tests to verify these equations.
NASA Astrophysics Data System (ADS)
McQuiddy, David N., Jr.; Sokolov, Vladimir
1990-12-01
The present conference discusses microwave filters, lightwave technology for microwave antennas, planar and quasi-planar guides, mixers and VCOs, cavity filters, discontinuity and coupling effects, control circuits, power dividers and phase shifters, microwave ICs, biological effects and medical applications, CAD and modeling for MMICs, directional couplers, MMIC design trends, microwave packaging and manufacturing, monolithic ICs, and solid-state devices and circuits. Also discussed are microwave and mm-wave superconducting technology, MICs for communication systems, the merging of optical and microwave technologies, microwave power transistors, ferrite devices, network measurements, advanced transmission-line structures, FET devices and circuits, field theory of IC discontinuities, active quasi-optical techniques, phased-array techniques and circuits, nonlinear CAD, sub-mm wave devices, and high power devices.
Inverse multipath fingerprinting for millimeter wave V2I beam alignment.
DOT National Transportation Integrated Search
2017-05-01
Efficient beam alignment is a crucial component in millimeter wave systems with analog beamforming, especially in fast-changing vehicular settings. This paper uses the vehicles position (e.g., available via GPS) to query the multipath fingerprint ...
Formation of Ion Beam from High Density Plasma of ECR Discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izotov, I.; Razin, S.; Sidorov, A.
2005-03-15
One of the most promising directions of ECR multicharged ion sources evolution is related with increase in frequency of microwave pumping. During last years microwave generators of millimeter wave range - gyrotrons have been used more frequently. Creation of plasma with density 1013 cm-3 with medium charged ions and ion flux density through a plug of a magnetic trap along magnetic field lines on level of a few A/cm2 is possible under pumping by powerful millimeter wave radiation and quasigasdynamic (collisional) regime of plasma confinement in the magnetic trap. Such plasma has great prospects for application in plasma based ionmore » implantation systems for processing of surfaces with complicated and petit relief. Use it for ion beam formation seams to be difficult because of too high ion current density. This paper continues investigations described elsewhere and shows possibility to arrange ion extraction in zone of plasma expansion from the magnetic trap along axis of system and magnetic field lines.Plasma was created at ECR gas discharge by means of millimeter wave radiation of a gyrotron with frequency 37.5 GHz, maximum power 100 kW, pulse duration 1.5 ms. Two and three electrode quasi-Pierce extraction systems were used for ion beam formation.It is demonstrated that there is no changes in ion charge state distribution along expansion routing of plasma under collisional confinement. Also ion flux density decreases with distance from plug of the trap, it allows to control extracting ion current density. Multicharged ion beam of Nitrogen with total current up to 2.5 mA at diameter of extracting hole 1 mm, that corresponds current density 320 mA/cm2, was obtained. Magnitude of total ion current was limited due to extracting voltage (60 kV). Under such conditions characteristic transversal dimension of plasma equaled 4 cm, magnetic field value in extracting zone was about 0.1 T at axisymmetrical configuration.« less
Compact Radiative Control Structures for Millimeter Astronomy
NASA Technical Reports Server (NTRS)
Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.
2010-01-01
We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.
High Resolution Rotational Spectroscopy of Hcssh: a CS_{2} Proxy in the ISM
NASA Astrophysics Data System (ADS)
Prudenzano, Domenico; Laas, Jacob; Palumbo, Maria Elisabetta; Caselli, Paola
2017-06-01
In the last few decades sulfur bearing molecules have become a relevant topic in astrochemistry. The observed overall abundances of these compounds in the dense gas and around young stellar objects is indeed not in agreement with the estimated cosmic abundance of sulfur (Tieftrunk et al. 1994; Palumbo et al. 1997). Many studies point to polysulphanes and sulphur polymers, mainly S_{8}, as possible sulfur reservoirs, which from solid phase might be released into gas phase as simpler sulfur compounds, e.g. in shocked or hot environments (Wakelam et al. 2004; Laas, in prep.). Laboratory studies on dust and ice analogues indicate CS_{2} as a potential decomposition product of the sulfur residue (Jiménez-Escobar et al. 2014 and references therein). Nevertheless, this species is not detectable by radio-telescopes due to lack of permanent dipole moment. Dithioformic acid (HCSSH), a possible byproduct of interstellar CS_{2}, may thus serve as a proxy for this non-polar S-bearing molecule. Millimeter and sub-millimeter spectra have been recorded and analyzed for the trans and cis conformers of HCSSH, up to 478 GHz. We employed the frequency modulation sub-millimeter absorption spectrometer recently developed at the Center for Astrochemical Studies (CAS) in Garching. HCSSH was produced by a glow discharge mixture of CS_{2} and H_{2} diluted in Ar. Accurate rest frequencies, which might serve as guidance for astronomical searches have been obtained thanks to our recent experiment. In particular trans-HCSSH, the lowest-energy conformer, is the best candidate for a potential detection.
THE REMARKABLE MOLECULAR CONTENT OF THE RED SPIDER NEBULA (NGC 6537)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J. L.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu
2013-06-10
Millimeter and sub-millimeter molecular-line observations of planetary nebula (PN) NGC 6537 (Red Spider) have been carried out using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory in the frequency range 86-692 GHz. CN, HCN, HNC, CCH, CS, SO, H{sub 2}CO, HCO{sup +} and N{sub 2}H{sup +}, along with the J = 3 {yields} 2 and 6 {yields} 5 lines of CO and those of several isotopologues, were detected toward the Red Spider, estimated to be {approx}1600 yr old. This extremely high excitation PN evidently fosters a rich molecular environment. The presence of CS and SOmore » suggest that sulfur may be sequestered in molecular form in such nebulae. A radiative transfer analysis of the CO and CS spectra indicate a kinetic temperature of T{sub K} {approx} 60-80 K and gas densities of n(H{sub 2}) {approx} 1-8 Multiplication-Sign 10{sup 5} cm{sup -3} in NGC 6537. Column densities of the molecules in the nebula and their fractional abundances relative to H{sub 2} ranged from N{sub tot} {approx} 10{sup 16} cm{sup -2} and f {approx} 10{sup -4} for CO, to {approx}7 Multiplication-Sign 10{sup 11} cm{sup -2} and f {approx} 8 Multiplication-Sign 10{sup -9} for the least abundant species, N{sub 2}H{sup +}. For SO and CS, N{sub tot} {approx} 2 Multiplication-Sign 10{sup 12} cm{sup -2} and 10{sup 13} cm{sup -2}, respectively, with f {approx} 10{sup -7} and 2 Multiplication-Sign 10{sup -8}. It was also found that HCN/HNC Almost-Equal-To 2. A low {sup 12}C/{sup 13}C ratio of {approx}4 was measured, indicative of hot-bottom burning. These results, coupled with past observations, suggest that molecular abundances in PNe are governed principally by the physical and chemical properties of the individual object and its progenitor star, rather than nebular age.« less
Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1994-01-01
Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are identified. Empirically, the observed fine structures appear very similar to those in split bnad and multiple-lane type II solar radio bursts; interpretation of both these type II fine structures in terms of f(sub ce)/2 splitting is suggested, thereby supporting and generalizing a suggestion by Wild (1950). A possible application to continuum radiation is mentioned. The ubiquity of these fine structures in the Earth's f(sub p) radiation and foreshock waves remains unknown. Only the ISEE 1 wideband receiver has sufficient frequency resolution (approximately less than or equal to 100 Hz) to perform a dedicated search. Further study of the ubiquity of these fine structures, of how reliably the splitting corresponds to f(sub ce)/2, and of the other interpretations above is necessary.
Millimeter-Wave Generation with Spiraling Electron Beams
DOT National Transportation Integrated Search
1971-02-01
An investigation has been carried out of the feasibility : of using the interaction between a thin, solid, : spiraling electron beam of 10-20kV energy and a microwave : cavity to generate watts of CW millimeter-wave power. : Experimental results are ...
Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation
Gopalsami, Nachappa; Raptis, Apostolos C.
1991-01-01
A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.
Modern Microwave and Millimeter-Wave Power Electronics
NASA Astrophysics Data System (ADS)
Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.
2005-04-01
A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.
Spatially Resolved Sub-millimeter Continuum Imaging of Neptune with ALMA
NASA Astrophysics Data System (ADS)
Iino, Takahiro; Yamada, Takayoshi
2018-02-01
This paper reports the result of spatially resolved 646 GHz sub-millimeter imaging observation of Neptune obtained by the Atacama Large Millimeter and sub-millimeter Array. The observation was performed in 2012 August as the flux calibration and synthesized beam size were small enough to resolve Neptune’s disk at this time. This analysis aims to constrain the vertical structure of deep and upper-tropospheric South polar hot spot detected previously with mid-IR, millimeter, and centimeter wavelength. The probed atmospheric pressure region estimated by the radiative-transfer method was between 1.0 and 0.6 bar for the nadir and South pole views, respectively. The South polar hot spot was not detected clearly with an uncertainty of 2.1 K. The apparent discontinuity of tropospheric and stratospheric hot spot may be caused by the vertical wind shear of South polar zonal jet.
Millimeter- and Submillimeter-Wave Remote Sensing Using Small Satellites
NASA Technical Reports Server (NTRS)
Ehsan, N.; Esper, J.; Piepmeier, J.; Racette, P.; Wu, D.
2014-01-01
Cloud ice properties and processes play fundamental roles in atmospheric radiation and precipitation. Limited knowledge and poor representation of clouds in global climate models have led to large uncertainties about cloud feedback processes under climate change. Ice clouds have been used as a tuning parameter in the models to force agreement with observations of the radiation budget at the top of the atmosphere, and precipitation at the bottom. The lack of ice cloud measurements has left the cloud processes at intermediate altitudes unconstrained. Millimeter (mm) and submillimeter (submm)-wave radiometry is widely recognized for its potential to fill the cloud measurement gap in the middle and upper troposphere. Analyses have shown that channels from 183900 GHz offer good sensitivity to ice cloud scattering and can provide ice water path (IWP) products to an accuracy of 25 by simultaneously retrieving ice particle size (Dme) and IWP. Therefore, it is highly desirable to develop a cost-effective, compact mm/submm-wave instrument for cloud observations that can be deployed on future small satellites.This paper presents a conceptual study for a mm/submm-wave instrument for multispectral measurements of ice clouds. It discusses previous work at these frequencies by NASA Goddard Space Flight Center (GSFC) and the current instrument study, as well as receiver architectures and their anticipated performance. And finally, it describes a microsatellite prototype intended for use with this mm/submm-wave instrument.
Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru
2016-08-08
A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of <1.5 dB. After remotely self-beating for wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.
Drift-Alfven wave mediated particle transport in an elongated density depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincena, Stephen; Gekelman, Walter
Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii {rho}{sub s}=c{sub s}/{omega}{sub ci}. The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function ofmore » frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k{sub perpendicular}{rho}{sub s}{approx}0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.
2016-08-15
Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.
On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers
NASA Technical Reports Server (NTRS)
Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)
2015-01-01
A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.
Atmospheric microwave refractivity and refraction
NASA Technical Reports Server (NTRS)
Yu, E.; Hodge, D. B.
1980-01-01
The atmospheric refractivity can be expressed as a function of temperature, pressure, water vapor content, and operating frequency. Based on twenty-year meteorological data, statistics of the atmospheric refractivity were obtained. These statistics were used to estimate the variation of dispersion, attenuation, and refraction effects on microwave and millimeter wave signals propagating along atmospheric paths. Bending angle, elevation angle error, and range error were also developed for an exponentially tapered, spherical atmosphere.
New technologies for the detection of millimeter and submillimeter waves
NASA Technical Reports Server (NTRS)
Richards, P. L.; Clarke, J.; Gildemeister, J. M.; Lanting, T.; Lee, A. T.
2001-01-01
Voltage-biased superconducting bolometers have many operational advantages over conventional bolometer technology including sensitivity, linearity, speed, and immunity from environmental disturbance. A review is given of the Berkeley program for developing this new technology. Developments include fully lithographed individual bolometers in the spiderweb configuration, arrays of 1024 close-packed absorber-coupled bolometers, antenna-coupled bolometers, and a frequency-domain SQUID (superconducting quantum interference device) readout multiplexer.
Evaluation of DCS III Transmission Alternatives, Phase 1B.
1980-09-30
Most commonly used measure are straight and precision tubing, dielectric lining, and helix construction. These measures make the millimeter waveguide...channel tran- sistorized and microprocessor-controlled L5E. The broadband signal, either analog or digital, can be transmitted over a coaxial cable...kilowatts. One kind of mm source is travelling wave tubes ( TWT ) which are currently under development in the frequency range from 20 to 50 GHz with
Overmoded W-Band Traveling Wave Tube Amplifier
2014-11-24
developing high power tubes for use in that frequency range. In addition , there is a window at 220 GHz which is also an area of large development for...equipment. operation. Figure 1-4 shows electronic warfare applications, which involve disrupting electronic systems with high power microwave and millimeter...requiring gyrotrons to power the high -energy beam and a large transport vehicle. In addition to being difficult to transport, it is currently incapable
CARMA Observations of PTF10vdl
NASA Astrophysics Data System (ADS)
Carpenter, John M.
2010-09-01
We used the Combined Array for Research in Millimeter-wave Astronomy (CARMA) to observe the field of view toward PTF10vdl (ATEL#2862), discovered by the Palomar Transient Factory . The observations began at September 18, 2010 04:18 UT and continued for 4.9 hours. The mean frequency of the observations was 97.5 GHz with a total bandwidth of 8 GHz.
Millimeter Wave Radio Frequency Propagation Model Development
2014-08-28
two. According to the Beer - Lambert law , this term is defined as the absorption coefficient. When n’’ is positive, radiation is absorbed. If it is...4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply...size distribution has a power- law relationship to rainfall rate. From this knowledge, coefficients were developed based on Marshall and Palmer, Laws
W-Band InP Wideband MMIC LNA with 30K Noise Temperature
NASA Technical Reports Server (NTRS)
Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.
2000-01-01
This paper describe a millimeter wave low noise amplifier with extraordinary low noise, low consumption, and wide frequency range. These results are achieved utilizing state-of-the-art InP HEMT transistors coupled with CPW circuit design. The paper describes the transistor models, modeled and measured on-wafer and in-module results at both 300K am 24K operating temperatures for many samples of the device.
Integrated Radial Probe Transition From MMIC to Waveguide
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Chattopadhyay, Goutam
2007-01-01
A radial probe transition between a monolithic microwave integrated circuit (MMIC) and a waveguide has been designed for operation at frequency of 340 GHz and to be fabricated as part of a monolithic unit that includes the MMIC. Integrated radial probe transitions like this one are expected to be essential components of future MMIC amplifiers operating at frequencies above 200 GHz. While MMIC amplifiers for this frequency range have not yet been widely used because they have only recently been developed, there are numerous potential applications for them-- especially in scientific instruments, test equipment, radar, and millimeter-wave imaging systems for detecting hidden weapons.
NASA Astrophysics Data System (ADS)
Dinger, R.; Kinzel, G.; Lam, W.; Jones, S.
1993-01-01
Studies were conducted of the enhanced radar cross section (RCS) and improved inverse synthetic aperture radar (ISAR) image quality that may result at millimeter-wave (mmw) frequencies. To study the potential for mmw radar in these areas, a program was initiated in FY-90 to design and fabricate a 49.0- to 49.5-GHz stepped-frequency radar. After conducting simultaneous measurements of the RCS of an airborne Piper Navajo twin-engine aircraft at 9.0 and 49.0 GHz, the RCS at 49.0 GHz was always found to be higher than at 9.0 GHz by an amount that depended on the target aspect angle. The largest increase was 19 dB and was measured at nose-on incidence; at other angles of incidence, the increase ranged from 3 to 10 dB. The increase averaged over a 360-degree aspect-angle change was 7.2 dB. The 49.0-GHz radar has demonstrated a capability to gather well-calibrated millimeter-wave RCS data of flying targets. In addition, the successful ISAR images obtainable with short aperture time suggest that 49.0-GHz radar may have a role to play in noncooperative target identification (NCTI).
Millimeter wave spectra of carbonyl cyanide
NASA Astrophysics Data System (ADS)
Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.
2016-07-01
Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).The full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A43
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.;
2012-01-01
A stochastic background of gravitational waves is expected to arise from a superposition of many incoherent sources of gravitational waves, of either cosmological or astrophysical origin. This background is a target for the current generation of ground-based detectors. In this article we present the first joint search for a stochastic background using data from the LIGO and Virgo interferometers. In a frequency band of 600-1000 Hz, we obtained a 95% upper limit on the amplitude of omega(sub GW)(f) = omega(sub 3) (f/900Hz)3, of omega(sub 3) < 0.33, assuming a value of the Hubble parameter of h(sub 100) = 0.72. These new limits are a factor of seven better than the previous best in this frequency band.
Specific NIST projects in support of the NIJ Concealed Weapon Detection and Imaging Program
NASA Astrophysics Data System (ADS)
Paulter, Nicholas G.
1998-12-01
The Electricity Division of the National Institute of Standards and Technology is developing revised performance standards for hand-held (HH) and walk-through (WT) metal weapon detectors, test procedures and systems for these detectors, and a detection/imaging system for finding concealed weapons. The revised standards will replace the existing National Institute of Justice (NIJ) standards for HH and WT devices and will include detection performance specifications as well as system specifications (environmental conditions, mechanical strength and safety, response reproducibility and repeatability, quality assurance, test reporting, etc.). These system requirements were obtained from the Law Enforcement and corrections Technology Advisory Council, an advisory council for the NIJ. Reproducible and repeatable test procedures and appropriate measurement systems will be developed for evaluating HH and WT detection performance. A guide to the technology and application of non- eddy-current-based detection/imaging methods (such as acoustic, passive millimeter-wave and microwave, active millimeter-wave and terahertz-wave, x-ray, etc.) Will be developed. The Electricity Division is also researching the development of a high- frequency/high-speed (300 GH to 1 THz) pulse-illuminated, stand- off, video-rate, concealed weapons/contraband imaging system.
NASA Astrophysics Data System (ADS)
Booske, John H.
2008-05-01
Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.
Millimeter-Wave Propagation and Remote Sensing of the Atmosphere,
1983-12-01
tool to probe lower atmospheric structure. The principal applications of millimeter waves have been in the areas of communications, radar, and remote ... sensing . The availability of large bandwidths makes this region of the spectrum particularly attractive for high data rate communications. Because
NASA Astrophysics Data System (ADS)
Harris, Brent; Fields, Shelby S.; Neill, Justin L.; Pulliam, Robin; Muckle, Matt; Pate, Brooks
2016-06-01
Recent advances in Fourier transform millimeter-wave spectroscopy techniques have renewed the application reach of molecular rotational spectroscopy for analytical chemistry. We present a sampling method for sub ppm analysis of low volatility impurities by thermal evolution from solid powders using a millimeter-wave Fourier transform molecular rotational resonance (FT-MRR) spectrometer for detection. This application of FT-MRR is relevant to the manufacturing of safe oral pharmaceuticals. Low volatility impurities can be challenging to detect at 1 ppm levels with chromatographic techniques. One such example of a potentially mutagenic impurity is acetamide (v.p. 1 Torr at 40 C, m.p. 80 C). We measured the pure reference spectrum of acetamide by flowing the sublimated vapor pressure of acetamide crystals through the FT-MRR spectrometer. The spectrometer lower detection level (LDL) for a broadband (> 20 GHz, 10 min.) spectrum is 300 nTorr, 30 pmol, or 2 ng. For a 50 mg powder, perfect sample transfer efficiency can yield a w/w % detection limit of 35 ppb. We extended the sampling method for the acetamide reference measurement to an acetaminophen sample spiked with 5000 ppm acetamide in order to test the sample transfer efficiency when liberated from an pharmaceutical powder. A spectral reference matching algorithm detected the presence of several impurities including acetaldehyde, acetic acid, and acetonitrile that evolved at the melting point of acetaminophen, demonstrating the capability of FT-MRR for identification without a routine chemical standard. The method detection limit (MDL) without further development is less than 10 ppm w/w %. Resolved FT-MRR mixture spectra will be presented with a description of sampling methods.
High performance millimeter-wave microstrip circulators and isolators
NASA Technical Reports Server (NTRS)
Shih, Ming; Pan, J. J.
1990-01-01
Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.
The mm-wave compact component of an AGN
NASA Astrophysics Data System (ADS)
Behar, Ehud; Vogel, Stuart; Baldi, Ranieri D.; Smith, Krista L.; Mushotzky, Richard F.
2018-07-01
mm-wave emission from active galactic nuclei (AGNs) may hold the key to understanding the physical origin of their radio cores. The correlation between radio/mm and X-ray luminosity may suggest a similar physical origin of the two sources. Since synchrotron self-absorption decreases with frequency, mm-waves probe smaller length-scales than cm-waves. We report on 100 GHz (3 mm) observations with the Combined Array for Research in Millimeter-wave Astronomy of 26 AGNs selected from the hard X-ray Swift/Burst Alert Telescope survey. 20/26 targets were detected at 100 GHz down to the 1 mJy (3σ) sensitivity, which corresponds to optically thick synchrotron source sizes of 10-4-10-3 pc. Most sources show a 100 GHz flux excess with respect to the spectral slope extrapolated from low frequencies. This mm spectral component likely originates from smaller scales than the few-GHz emission. The measured mm sources lie roughly around the Lmm (100 GHz) ˜10-4LX (2-10 keV) relation, similar to a few previously published X-ray selected sources, and hinting perhaps at a common coronal origin.
NASA Astrophysics Data System (ADS)
Siegrist, M. R.; Tran, T. M.; Tran, M. Q.
1991-10-01
Consideration is given to millimeter waves (MMW), submillimeter waves, materials properties, and gyrotrons/FEL. Particular attention is given to MMW sources, detectors and mixers; MMW systems, devices and antennas; guided propagation; high Tc superconductors; semiconductors; MMW astronomy and atmospheric physics; lasers, submillimeter devices, and plasma diagnostics; and submillimeter detectors.
Millimeter Wave Radar Clutter Program
1989-10-30
conduct experimental measurments and develop theoretical models to Improve our understanding of electromagnetic wave interaction with terrain at...various types of terrain under a variety of conditions. The experimental data servos to guide the development of the models as well as to verify their... experimental measurement. Task 4 - Examination of Bistatic Scattering from Surfaces and Volumes: Prior to this program, no millimeter-wave bistatic
Study of 42 and 85 GHz coupled cavity traveling-wave tubes for space use
NASA Technical Reports Server (NTRS)
Kennedy, J. B.; Tammaru, I.; Wolcott, P. S.
1977-01-01
Designs were formulated for four CW, millimeter wavelength traveling-wave tubes having high efficiency and long life. Three of these tubes, in the 42 to 44 GHz frequency region, develop power outputs of 100 to 300 watts with overall efficiencies of typically 45 percent. Another tube, which covers the frequency range of 84 to 86 GHz, provides a power output of 200 watts at 25 percent efficiency. The cathode current density in each design was 1A/sq cm. Each tube includes: metal-ceramic construction, periodic permanent magnet focusing, a two step velocity taper, an electron beam refocusing section, and a radiation cooled three-stage depressed collector. The electrical and mechanical design for each tube type is discussed in detail. The results of thermal and mechanical analyses are presented.
Millimeter Wave Nonreciprocal Devices.
1983-01-03
measures microwave magnetic field patterns of magnetostatic waves in LPE -YIG thin films has been developed. The probe’s sensing element is either a...Morgenthaler, "Workshop on Application of Garnet and Ferrite Thin Films to Microwave Devices," Session FC, Third Joint Intermag - Magnetism and...thin films Li... millimeter waves magnetostati c waves i A TRAC" =CmE4 F*91040 eEp y mnenu -d Dfenvely by Noek n.m--) The Microwave and Quantum
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.
Analytical approximations for spiral waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less