2009-01-01
We have developed a simple and scalable approach for fabricating sub-wavelength structures (SWS) on silicon nitride by means of self-assembled nickel nanoparticle masks and inductively coupled plasma (ICP) ion etching. Silicon nitride SWS surfaces with diameter of 160–200 nm and a height of 140–150 nm were obtained. A low reflectivity below 1% was observed over wavelength from 590 to 680 nm. Using the measured reflectivity data in PC1D, the solar cell characteristics has been compared for single layer anti-reflection (SLAR) coatings and SWS and a 0.8% improvement in efficiency has been seen. PMID:20596409
Sub-wavelength efficient polarization filter (SWEP filter)
Simpson, Marcus L.; Simpson, John T.
2003-12-09
A polarization sensitive filter includes a first sub-wavelength resonant grating structure (SWS) for receiving incident light, and a second SWS. The SWS are disposed relative to one another such that incident light which is transmitted by the first SWS passes through the second SWS. The filter has a polarization sensitive resonance, the polarization sensitive resonance substantially reflecting a first polarization component of incident light while substantially transmitting a second polarization component of the incident light, the polarization components being orthogonal to one another. A method for forming polarization filters includes the steps of forming first and second SWS, the first and second SWS disposed relative to one another such that a portion of incident light applied to the first SWS passes through the second SWS. A method for separating polarizations of light, includes the steps of providing a filter formed from a first and second SWS, shining incident light having orthogonal polarization components on the first SWS, and substantially reflecting one of the orthogonal polarization components while substantially transmitting the other orthogonal polarization component. A high Q narrowband filter includes a first and second SWS, the first and second SWS are spaced apart a distance being at least one half an optical wavelength.
Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate
NASA Astrophysics Data System (ADS)
Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting
2009-01-01
Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.
Reflective coherent spatial light modulator
Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.
2003-04-22
A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.
van Hazel, Ilke; Sabouhanian, Amir; Day, Lainy; Endler, John A; Chang, Belinda S W
2013-11-13
One of the most striking features of avian vision is the variation in spectral sensitivity of the short wavelength sensitive (SWS1) opsins, which can be divided into two sub-types: violet- and UV- sensitive (VS & UVS). In birds, UVS has been found in both passerines and parrots, groups that were recently shown to be sister orders. While all parrots are thought to be UVS, recent evidence suggests some passerine lineages may also be VS. The great bowerbird (Chlamydera nuchalis) is a passerine notable for its courtship behaviours in which males build and decorate elaborate bower structures. The great bowerbird SWS1 sequence possesses an unusual residue combination at known spectral tuning sites that has not been previously investigated in mutagenesis experiments. In this study, the SWS1 opsin of C. nuchalis was expressed along with a series of spectral tuning mutants and ancestral passerine SWS1 pigments, allowing us to investigate spectral tuning mechanisms and explore the evolution of UV/violet sensitivity in early passerines and parrots. The expressed C. nuchalis SWS1 opsin was found to be a VS pigment, with a λmax of 403 nm. Bowerbird SWS1 mutants C86F, S90C, and C86S/S90C all shifted λmax into the UV, whereas C86S had no effect. Experimentally recreated ancestral passerine and parrot/passerine SWS1 pigments were both found to be VS, indicating that UV sensitivity evolved independently in passerines and parrots from a VS ancestor. Our mutagenesis studies indicate that spectral tuning in C. nuchalis is mediated by mechanisms similar to those of other birds. Interestingly, our ancestral sequence reconstructions of SWS1 in landbird evolution suggest multiple transitions from VS to UVS, but no instances of the reverse. Our results not only provide a more precise prediction of where these spectral sensitivity shifts occurred, but also confirm the hypothesis that birds are an unusual exception among vertebrates where some descendants re-evolved UVS from a violet type ancestor. The re-evolution of UVS from a VS type pigment has not previously been predicted elsewhere in the vertebrate phylogeny.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao; Li, Yangmei
2015-06-15
In this paper, we present a novel compact P-band magnetically insulated transmission line oscillator (MILO) with specially inclined slow-wave-structure (SWS) vanes to decrease its total dimension and weight. The dispersion characteristics of the inclined SWS are investigated in detail and made comparisons with that of the traditional straight SWS. The results show that the inclined SWS is more advantageous in operating on a steady frequency in a wide voltage range and has a better asymmetric mode segregation and a relatively large band-gap between the TM{sub 00} and TM{sub 01} modes which are in favor of avoiding the asymmetric and transversemore » mode competition. Besides, the transverse dimension of the proposed novel inclined SWS with the same operation frequency is decreased by about 50%, and correspondingly the device volume shrinks remarkably to its 0.35 times. In particle-in-cell simulation, the electron bunching spokes are obviously formed in the inclined SWS, and a P-band high-power microwave with a power of 5.8 GW, frequency of 645 MHz, and efficiency of 17.2% is generated by the proposed device, which indicates the feasibility of the compact design with the inclined vanes at the P-band.« less
NASA Astrophysics Data System (ADS)
Benedik, Andrey I.; Karetnikova, Tatiana A.; Torgashov, Roman A.; Terentyuk, Artem G.; Rozhnev, Andrey G.; Torgashov, Gennadiy V.; Ryskin, Nikita M.
2018-04-01
Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.
Lord, Nathan P; Plimpton, Rebecca L; Sharkey, Camilla R; Suvorov, Anton; Lelito, Jonathan P; Willardson, Barry M; Bybee, Seth M
2016-05-18
Arthropods have received much attention as a model for studying opsin evolution in invertebrates. Yet, relatively few studies have investigated the diversity of opsin proteins that underlie spectral sensitivity of the visual pigments within the diverse beetles (Insecta: Coleoptera). Previous work has demonstrated that beetles appear to lack the short-wavelength-sensitive (SWS) opsin class that typically confers sensitivity to the "blue" region of the light spectrum. However, this is contrary to established physiological data in a number of Coleoptera. To explore potential adaptations at the molecular level that may compensate for the loss of the SWS opsin, we carried out an exploration of the opsin proteins within a group of beetles (Buprestidae) where short-wave sensitivity has been demonstrated. RNA-seq data were generated to identify opsin proteins from nine taxa comprising six buprestid species (including three male/female pairs) across four subfamilies. Structural analyses of recovered opsins were conducted and compared to opsin sequences in other insects across the main opsin classes-ultraviolet, short-wavelength, and long-wavelength. All nine buprestids were found to express two opsin copies in each of the ultraviolet and long-wavelength classes, contrary to the single copies recovered in all other molecular studies of adult beetle opsin expression. No SWS opsin class was recovered. Furthermore, the male Agrilus planipennis (emerald ash borer-EAB) expressed a third LWS opsin at low levels that is presumed to be a larval copy. Subsequent homology and structural analyses identified multiple amino acid substitutions in the UVS and LWS copies that could confer short-wavelength sensitivity. This work is the first to compare expressed opsin genes against known electrophysiological data that demonstrate multiple peak sensitivities in Coleoptera. We report the first instance of opsin duplication in adult beetles, which occurs in both the UVS and LWS opsin classes. Through structural comparisons of known insect opsins, we suggest that opsin duplication and amino acid variation within the chromophore binding pocket explains sensitivity in the short-wavelength portion of the visible light spectrum in these species. These findings are the first to reveal molecular complexity of the color vision system within beetles.
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.
1999-01-01
We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 micron grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power lambda/delat.lambda of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of approximately 25 solar luminosity . In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the (sup 2)product(sub 1/2) (J = 5/2) left arrow (sup 2)product(sub 3/2) (J = 3/2) OH feature near 34.6 micron in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 7(sub 25)-6(sub 16) line at 29.8367 micron, the 4(sub 41)-3(sub 12) line at 31.7721 micron, and the 4(sub 32)-3(sub 03) line at 40.6909 micron. The higher spectral resolving power lambda/delta.lambda of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the "P Cygni" profiles that are characteristic of emission from an outflowing envelope.
NASA Astrophysics Data System (ADS)
Graczyk, Piotr; Zelent, Mateusz; Krawczyk, Maciej
2018-05-01
The possibility to generate short spin waves (SWs) is of great interest in the field of magnonics nowadays. We present an effective and technically affordable way of conversion of long SWs, which may be generated by conventional microwave antenna, to the short, sub-micrometer waves. It is achieved by grating-assisted resonant dynamic dipolar interaction between two ferromagnetic layers separated by some distance. We analyze criteria for the optimal conversion giving a semi-analytical approach for the coupling coefficient. We show by the numerical calculations the efficient energy transfer between layers which may be either of co-directional or contra-directional type. Such a system may operate either as a short spin wave generator or a frequency filter, moving forward possible application of magnonics.
Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator
NASA Astrophysics Data System (ADS)
Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying
2017-06-01
In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.
Short-wavelength sensitive opsin (SWS1) as a new marker for vertebrate phylogenetics
van Hazel, Ilke; Santini, Francesco; Müller, Johannes; Chang, Belinda SW
2006-01-01
Background Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility. Results Phylogenetic analyses of vertebrate SWS1 genes produced topologies that were remarkably congruent with generally accepted hypotheses of vertebrate evolution at both higher and lower taxonomic levels. The few exceptions were generally associated with areas of poor taxonomic sampling, or relationships that have been difficult to resolve using other molecular markers. The SWS1 data set was characterized by a substantial amount of among-site rate variation, and a relatively unskewed substitution rate matrix, even when the data were partitioned into different codon sites and individual taxonomic groups. Although there were nucleotide biases in some groups at third positions, these biases were not convergent across different taxonomic groups. Conclusion Our results suggest that SWS1 may be a good marker for vertebrate phylogenetics due to the variable yet consistent patterns of sequence evolution exhibited across fairly wide taxonomic groups. This may result from constraints imposed by the functional role of SWS1 pigments in visual transduction. PMID:17107620
Bloch, Natasha I.; Morrow, James M.; Chang, Belinda S.W.; Price, Trevor D.
2014-01-01
Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors – historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20Ma. During this process the SWS2 gene accumulated 6 substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. PMID:25496318
Bloch, Natasha I; Morrow, James M; Chang, Belinda S W; Price, Trevor D
2015-02-01
Distantly related clades that occupy similar environments may differ due to the lasting imprint of their ancestors-historical contingency. The New World warblers (Parulidae) and Old World warblers (Phylloscopidae) are ecologically similar clades that differ strikingly in plumage coloration. We studied genetic and functional evolution of the short-wavelength-sensitive visual pigments (SWS2 and SWS1) to ask if altered color perception could contribute to the plumage color differences between clades. We show SWS2 is short-wavelength shifted in birds that occupy open environments, such as finches, compared to those in closed environments, including warblers. Phylogenetic reconstructions indicate New World warblers were derived from a finch-like form that colonized from the Old World 15-20 Ma. During this process, the SWS2 gene accumulated six substitutions in branches leading to New World warblers, inviting the hypothesis that passage through a finch-like ancestor resulted in SWS2 evolution. In fact, we show spectral tuning remained similar across warblers as well as the finch ancestor. Results reject the hypothesis of historical contingency based on opsin spectral tuning, but point to evolution of other aspects of visual pigment function. Using the approach outlined here, historical contingency becomes a generally testable theory in systems where genotype and phenotype can be connected. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
ISO observations of Titan with SWS/grating
NASA Technical Reports Server (NTRS)
Coustenis, A.; Encrenaz, T.; Salama, A.; Lellouch, E.; Gautier, D.; Kessler, M. F.; deGraauw, T.; Samuelson, R. E.; Bjoraker, G.; Orton, G.
1997-01-01
The observations of Titan performed by the Infrared Space Observatory (ISO) short wavelength spectrometer (SWS), in the 2 micrometer to 45 micrometer region using the grating mode, are reported on. Special attention is given to data from Titan concerning 7 micrometer to 45 micrometer spectral resolution. Future work for improving Titan's spectra investigation is suggested.
Emerling, Christopher A; Huynh, Hieu T; Nguyen, Minh A; Meredith, Robert W; Springer, Mark S
2015-11-22
Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. © 2015 The Author(s).
Emerling, Christopher A.; Huynh, Hieu T.; Nguyen, Minh A.; Meredith, Robert W.; Springer, Mark S.
2015-01-01
Retinal opsin photopigments initiate mammalian vision when stimulated by light. Most mammals possess a short wavelength-sensitive opsin 1 (SWS1) pigment that is primarily sensitive to either ultraviolet or violet light, leading to variation in colour perception across species. Despite knowledge of both ultraviolet- and violet-sensitive SWS1 classes in mammals for 25 years, the adaptive significance of this variation has not been subjected to hypothesis testing, resulting in minimal understanding of the basis for mammalian SWS1 spectral tuning evolution. Here, we gathered data on SWS1 for 403 mammal species, including novel SWS1 sequences for 97 species. Ancestral sequence reconstructions suggest that the most recent common ancestor of Theria possessed an ultraviolet SWS1 pigment, and that violet-sensitive pigments evolved at least 12 times in mammalian history. We also observed that ultraviolet pigments, previously considered to be a rarity, are common in mammals. We then used phylogenetic comparative methods to test the hypotheses that the evolution of violet-sensitive SWS1 is associated with increased light exposure, extended longevity and longer eye length. We discovered that diurnal mammals and species with longer eyes are more likely to have violet-sensitive pigments and less likely to possess UV-sensitive pigments. We hypothesize that (i) as mammals evolved larger body sizes, they evolved longer eyes, which limited transmittance of ultraviolet light to the retina due to an increase in Rayleigh scattering, and (ii) as mammals began to invade diurnal temporal niches, they evolved lenses with low UV transmittance to reduce chromatic aberration and/or photo-oxidative damage. PMID:26582021
Sturge-Weber syndrome type II treated with PDL 595 nm laser.
Kowalska-Brocka, Joanna; Brocki, Maciej; Uczniak, Sebastian; Uczniak, Kamila; Kaszuba, Andrzej; Jurowski, Piotr
2015-02-01
Sturge-Weber syndrome (SWS) is rare congenital disorder presenting facial port-wine stains (PWS) eye abnormalities and cerebrovascular malformations. The frequency of SWS is estimated at 1 in 50 000. Cerebrovascular abnormalities can be responsible for seizures, hemiparesis, mental retardation and ophthalmologic abnormalities cause intraocular pressure, glaucoma. Etiopathogenesis of SWS remains elusive. We present a case of a 7-year-old girl with SWS type II. A port-wine stain involves the upper right part of half face and has been associated with glaucoma of both eyes. In the Department of Dermatology in 2009-2012 we performed 23 procedures within 2 months. We have been using PDL laser at wavelength 595 nm and very good cosmetic results were achieved. Given positive treatment effects, the laser therapy of port-wine stains is a method of selection. Port-wine stains in the course of SWS requires a large number of laser treatment.
Sturge-Weber syndrome type II treated with PDL 595 nm laser
Brocki, Maciej; Uczniak, Sebastian; Uczniak, Kamila; Kaszuba, Andrzej; Jurowski, Piotr
2015-01-01
Sturge-Weber syndrome (SWS) is rare congenital disorder presenting facial port-wine stains (PWS) eye abnormalities and cerebrovascular malformations. The frequency of SWS is estimated at 1 in 50 000. Cerebrovascular abnormalities can be responsible for seizures, hemiparesis, mental retardation and ophthalmologic abnormalities cause intraocular pressure, glaucoma. Etiopathogenesis of SWS remains elusive. We present a case of a 7-year-old girl with SWS type II. A port-wine stain involves the upper right part of half face and has been associated with glaucoma of both eyes. In the Department of Dermatology in 2009–2012 we performed 23 procedures within 2 months. We have been using PDL laser at wavelength 595 nm and very good cosmetic results were achieved. Given positive treatment effects, the laser therapy of port-wine stains is a method of selection. Port-wine stains in the course of SWS requires a large number of laser treatment. PMID:25821431
NASA Technical Reports Server (NTRS)
Roelfsema, P. R.; Kester, D. J. M.; Wesselius, P. R.; Wieprech, E.; Sym, N.
1992-01-01
The software which is currently being developed for the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO) is described. The spectrometer has a wide range of capabilities in the 2-45 micron infrared band. SWS contains two independent gratings, one for the long and one for the short wavelength section of the band. With the gratings a spectral resolution of approximately 1000 to approximately 2500 can be obtained. The instrument also contains two Fabry-Perault's yielding a resolution between approximately 1000 and approximately 20000. Software is currently being developed for the acquisition, calibration, and analysis of SWS data. The software is firstly required to run in a pipeline mode without human interaction, to process data as they are received from the telescope. However, both for testing and calibration of the instrument as well as for evaluation of the planned operating procedures the software should also be suitable for interactive use. Thirdly the same software will be used for long term characterization of the instrument. The software must work properly within the environment designed by the European Space Agency (ESA) for the spacecraft operations. As a result strict constraints are put on I/O devices, throughput etc.
Design and status of the detector block for the ISO-SWS
NASA Technical Reports Server (NTRS)
Luinge, W.; Beintema, D. A.; Haser, L.; Katterloher, R.; Ploeger, G.
1989-01-01
The Short Wave Spectrometer (SWS) is one of the two spectrometers for the Infrared Space Observatory (ISO). It consists of a pair of grating spectrometers and a Fabry-Perot interferometer. Together, the grating spectrometers cover the wavelength range 2.4 to 45 microns, at a resolution between 1000 and 2000. The Fabry-Perot interferometer, in series with one of the grating spectrometers, provides a resolution of about 20,000 at the wavelengths between 15 and 35 microns. The SWS is being built by the Space Research Organization of the Netherlands and the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. The spectrometer has 52 discrete detectors, most of which are bulk detectors. In the design of the spectrometer, the main emphasis is on the sensitivity of the individual channels, rather than on the number of detectors. This was one of the main reasons to select non-destructive read-out circuits, with a separate heated-JFET pre-amplifier for each individual detector. The signals are amplified and filtered in parallel. The engineering tests on the SWS detector block have not yet been completed. The design of the detector block is described and the present problem areas are indicated.
Weadick, Cameron J; Loew, Ellis R; Rodd, F Helen; Chang, Belinda S W
2012-10-01
The Trinidadian pike cichlid (Crenicichla frenata) is a major predator of the guppy (Poecilia reticulata), a model system for visual ecology research, and visual predation by the pike cichlid is known to select for male guppies with reduced short-wavelength reflectance. However, an early study of the pike cichlid's visual system suggested a lack of short-wavelength-sensitive cone photoreceptors, a surprising finding as many African cichlids have highly developed short-wavelength vision. In this study, we found evidence for only four expressed cone opsins (LWS, RH2a, SWS2a, and SWS2b), plus one pseudogene (RH2b). Taken together with our microspectrophotometry data, which revealed the presence of three types of cone photoreceptor, including one sensitive to short-wavelength light, this would indicate a broader spectral capacity than previously believed from earlier visual studies of this fish. Relative to the highly diverse African cichlids, however, this Neotropical cichlid appears to have a greatly reduced opsin complement, reflecting both gene loss along the Neotropical lineage (lacking functional RH2b and, possibly, SWS1 opsins) and gene duplication within the African clade (which possesses paralogous RH2aα and RH2aβ opsins). Molecular evolutionary analyses show that positive selection has shaped the SWS2b and RH1 opsins along the Neotropical lineage, which may be indicative of adaptive evolution to alter nonspectral aspects of opsin biology. These results represent the first molecular evolutionary study of visual pigments in a Neotropical cichlid and thus provide a foundation for further study of a morphologically and ecologically diverse clade that has been understudied with respect to the link between visual ecology and diversification.
Jacobs, Gerald H
2013-03-01
All mammalian cone photopigments are derived from the operation of representatives from two opsin gene families (SWS1 and LWS in marsupial and eutherian mammals; SWS2 and LWS in monotremes), a process that produces cone pigments with respective peak sensitivities in the short and middle-to-long wavelengths. With the exception of a number of primate taxa, the modal pattern for mammals is to have two types of cone photopigment, one drawn from each of the gene families. In recent years, it has been discovered that the SWS1 opsin genes of a widely divergent collection of eutherian mammals have accumulated mutational changes that render them nonfunctional. This alteration reduces the retinal complements of these species to a single cone type, thus rendering ordinary color vision impossible. At present, several dozen species from five mammalian orders have been identified as falling into this category, but the total number of mammalian species that have lost short-wavelength cones in this way is certain to be much larger, perhaps reaching as high as 10% of all species. A number of circumstances that might be used to explain this widespread cone loss can be identified. Among these, the single consistent fact is that the species so affected are nocturnal or, if they are not technically nocturnal, they at least feature retinal organizations that are typically associated with that lifestyle. At the same time, however, there are many nocturnal mammals that retain functional short-wavelength cones. Nocturnality thus appears to set the stage for loss of functional SWS1 opsin genes in mammals, but it cannot be the sole circumstance.
Deering, Kathleen N; Shaw, Souradet Y; Thompson, Laura H; Ramanaik, Satyanarayana; Raghavendra, T; Doddamane, Mahesh; Bhattacharjee, Parinita; Moses, Stephen; Lorway, Robert
2015-01-01
This study aimed to: (1) examine the relationship between interpersonal as well as social-demographic, cultural and structural factors, and condom non-use by sex workers' main intimate or other non-paying male sex partners (NPPs), as reported by a sample of sex workers (SWs); and (2) understand HIV/sexually transmitted infections (STIs) risk (e.g., numbers of sexual partners; condom use with different partners) among couples comprised of a sub-set of SWs and their NPPs. Bivariate and multivariable logistic regression was used to identify factors associated with condom non-use at last sex by the main NPP, as reported by SWs. Adjusted odds ratios and 95% confidence intervals are reported (AOR[95%CIs]). Data were drawn from cross-sectional surveys in Bagalkot District, Karnataka State, South India. Responses by SWs whose main NPPs agreed to enrol in the study and the main NPP enroled were linked; these responses by couples (pairs of SWs and NPPs) were examined to assess sexual risk for HIV/STIs. Overall, this study included 257 SWs and 76 NPPs. The data from 67 couples (88.2%) could be linked. In over a quarter of partnerships, at least one (SW or NPP) partner reported having another type of partner besides each other (and clients of SWs). In multivariable analysis, significantly increased odds of condom non-use at last sex with the main NPP were found for the following key factors: planning to have a child with their main NPP (AOR = 3.71[1.44-9.58]); and having decisions about condom use made by their main NPP (AOR = 9.87[4.03-24.16]) or both equally (AOR = 3.18[1.39-7.80]) (versus by the SWs herself). Our study highlights the potential risk for HIV/STI acquisition and transmission between NPPs and SWs, and between NPPs and their non-SWs wives and other sex partners. Study results underscore the need for HIV/STI prevention approaches that incorporate informed decision-making about childbearing and parenting, and empowerment strategies for SWs in the context of their relationships with NPPs.
Experimental Testing of a Metamaterial Slow Wave Structure for High-Power Microwave Generation
NASA Astrophysics Data System (ADS)
Shipman, K.; Prasad, S.; Andreev, D.; Fisher, D. M.; Reass, D. B.; Schamiloglu, E.; Gilmore, M.
2017-10-01
A high-power L band source has been developed using a metamaterial (MTM) to produce a double negative slow wave structure (SWS) for interaction with an electron beam. The beam is generated by a 700 kV, 6 kA short pulse (10 ns) accelerator. The design of the SWS consists of a cylindrical waveguide, loaded with alternating split-rings that are arrayed axially down the waveguide. The beam is guided down the center of the rings, where electrons interact with the MTM-SWS producing radiation. Power is extracted axially via a circular waveguide, and radiated by a horn antenna. Microwaves are characterized by an external detector placed in a waveguide. Mode characterization is performed using a neon bulb array. The bulbs are lit by the electric field, resulting in an excitation pattern that resembles the field pattern. This is imaged using an SLR camera. The MTM structure has electrically small features so breakdown is a concern. In addition to high speed cameras, a fiber-optic-fed, sub-ns photomultiplier tube array diagnostic has been developed and used to characterize breakdown light. Work supported by the Air Force Office of Scientific Research, MURI Grant FA9550-12-1-0489.
NASA Astrophysics Data System (ADS)
Wang, Yu; Wang, Min; Jiang, Jingfeng
2017-02-01
Shear wave elastography is increasingly being used to non-invasively stage liver fibrosis by measuring shear wave speed (SWS). This study quantitatively investigates intrinsic variations among SWS measurements obtained from heterogeneous media such as fibrotic livers. More specifically, it aims to demonstrate that intrinsic variations in SWS measurements, in general, follow a non-Gaussian distribution and are related to the heterogeneous nature of the medium being measured. Using the principle of maximum entropy (ME), our primary objective is to derive a probability density function (PDF) of the SWS distribution in conjunction with a lossless stochastic tissue model. Our secondary objective is to evaluate the performance of the proposed PDF using Monte Carlo (MC)-simulated shear wave (SW) data against three other commonly used PDFs. Based on statistical evaluation criteria, initial results showed that the derived PDF fits better to MC-simulated SWS data than the other three PDFs. It was also found that SW fronts stabilized after a short (compared with the SW wavelength) travel distance in lossless media. Furthermore, in lossless media, the distance required to stabilize the SW propagation was not correlated to the SW wavelength at the low frequencies investigated (i.e. 50, 100 and 150 Hz). Examination of the MC simulation data suggests that elastic (shear) wave scattering became more pronounced when the volume fraction of hard inclusions increased from 10 to 30%. In conclusion, using the principle of ME, we theoretically demonstrated for the first time that SWS measurements in this model follow a non-Gaussian distribution. Preliminary data indicated that the proposed PDF can quantitatively represent intrinsic variations in SWS measurements simulated using a two-phase random medium model. The advantages of the proposed PDF are its physically meaningful parameters and solid theoretical basis.
Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2009-01-01
The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.
Goldenberg, Shira M; Duff, Putu; Krusi, Andrea
2015-12-16
Sex workers (SWs) experience a disproportionately high burden of HIV, with evidence indicating that complex and dynamic factors within work environments play a critical role in mitigating or producing HIV risks in sex work. In light of sweeping policy efforts to further criminalize sex work globally, coupled with emerging calls for structural responses situated in labour and human-rights frameworks, this meta-synthesis of the qualitative and ethnographic literature sought to examine SWs' narratives to elucidate the ways in which physical, social and policy features of diverse work environments influence SWs' agency to engage in HIV prevention. We conducted a meta-synthesis of qualitative and ethnographic studies published from 2008 to 2014 to elucidate SWs' narratives and lived experiences of the complex and nuanced ways in which physical, social, and policy features of indoor and outdoor work environments shape HIV prevention in the sex industry. Twenty-four qualitative and/or ethnographic studies were included in this meta-synthesis. SWs' narratives revealed the nuanced ways that physical, social, and policy features of work environments shaped HIV risk and interacted with macrostructural constraints (e.g., criminalization, stigma) and community determinants (e.g., sex worker empowerment initiatives) to shape SWs' agency in negotiating condom use. SWs' narratives revealed the ways in which the existence of occupational health and safety standards in indoor establishments, as well as protective practices of third parties (e.g., condom promotion) and other SWs/peers were critical ways of enhancing safety and sexual risk negotiation within indoor work environments. Additionally, working in settings where negative interactions with law enforcement were minimized (e.g., working in decriminalized contexts or environments in which peers/managers successfully deterred unjust policing practices) was critical for supporting SWs' agency to negotiate HIV prevention. Policy reforms to remove punitive approaches to sex work, ensure supportive workplace standards and policies, and foster SWs' ability to work collectively are recommended to foster the realization of SWs' health and human rights across diverse settings. Future qualitative and mixed-methods research is recommended to ensure that HIV policies and programmes are grounded in SWs' voices and realities, particularly in more under-represented regions such as Eastern Europe and Sub-Saharan Africa.
Oxygen in the stratospheres of the giant planets and Titan
NASA Astrophysics Data System (ADS)
Feuchtgruber, H.; Lellouch, E.; Encrenaz, Th.; Bezard, B.; Coustenis, A.; Drossart, P.; Salama, A.; de Graauw, Th.; Davis, G. R.
1999-03-01
Infrared spectra of the Short-Wavelength Spectrometer (SWS) of ISO at wavelengths between 25 - 45 μm have provided the first detection of stratospheric H2O on all four giant planets and Titan. Together with SWS observations of CO2 at 14.98 μm, leading to first detections on Neptune, Saturn and Jupiter an external source of oxygen is required to explain the derived upper stratospheric mixing ratios of up to several ppb at mbar-μbar levels. We provide an overview on the required amounts of external oxygen fluxes and a detailed discussion on the various scenarios for the origin of CO2 in the stratospheres of the giant planets.
Multi-wavelength lenses for terahertz surface wave.
Wei, Minggui; Yang, Quanlong; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili
2017-10-16
Metasurface-based surface wave (SW) devices working at multi-wavelength has been continuously arousing enormous curiosity recently, especially in the terahertz community. In this work, we propose a multi-layer metasurface structure composed of metallic slit pairs to build terahertz SW devices. The slit pair has a narrow bandwidth and its response frequency can be altered by its geometric parameter, thereby suppressing the frequency crosstalk and reducing the difficulty of design. By elaborately tailoring the distribution of the slit pairs, a series of achromatic SW lenses (SWLs) working at 0.6, 0.75 and 1 THz are experimentally demonstrated by the near field scanning terahertz microscope (NSTM) system. In addition, a wavelength-division-multiplexer (WDM) is further designed and implemented, which is promising in building multiplexed devices for plasmonic circuits. The structure proposed here cannot only couple the terahertz wave from free space to SWs, but also control its propagation. Moreover, our findings demonstrate the great potential to design multi-wavelength plasmonic metasurface devices, which can be extended to microwave and visible frequencies as well.
Rod Monochromacy and the Coevolution of Cetacean Retinal Opsins
Meredith, Robert W.; Gatesy, John; Emerling, Christopher A.; York, Vincent M.; Springer, Mark S.
2013-01-01
Cetaceans have a long history of commitment to a fully aquatic lifestyle that extends back to the Eocene. Extant species have evolved a spectacular array of adaptations in conjunction with their deployment into a diverse array of aquatic habitats. Sensory systems are among those that have experienced radical transformations in the evolutionary history of this clade. In the case of vision, previous studies have demonstrated important changes in the genes encoding rod opsin (RH1), short-wavelength sensitive opsin 1 (SWS1), and long-wavelength sensitive opsin (LWS) in selected cetaceans, but have not examined the full complement of opsin genes across the complete range of cetacean families. Here, we report protein-coding sequences for RH1 and both color opsin genes (SWS1, LWS) from representatives of all extant cetacean families. We examine competing hypotheses pertaining to the timing of blue shifts in RH1 relative to SWS1 inactivation in the early history of Cetacea, and we test the hypothesis that some cetaceans are rod monochomats. Molecular evolutionary analyses contradict the “coastal” hypothesis, wherein SWS1 was pseudogenized in the common ancestor of Cetacea, and instead suggest that RH1 was blue-shifted in the common ancestor of Cetacea before SWS1 was independently knocked out in baleen whales (Mysticeti) and in toothed whales (Odontoceti). Further, molecular evidence implies that LWS was inactivated convergently on at least five occasions in Cetacea: (1) Balaenidae (bowhead and right whales), (2) Balaenopteroidea (rorquals plus gray whale), (3) Mesoplodon bidens (Sowerby's beaked whale), (4) Physeter macrocephalus (giant sperm whale), and (5) Kogia breviceps (pygmy sperm whale). All of these cetaceans are known to dive to depths of at least 100 m where the underwater light field is dim and dominated by blue light. The knockout of both SWS1 and LWS in multiple cetacean lineages renders these taxa rod monochromats, a condition previously unknown among mammalian species. PMID:23637615
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Zhen; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang
2016-04-15
An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM{sub 01}. The existence of TM{sub 01} mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension ofmore » coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.« less
Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C
2016-07-12
Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.
Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy: Chapter 12
Johnson, Jessica H.; Swanson, Donald; Roman, Diana C.; Poland, Michael P.; Thelen, Weston A.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
Seismic anisotropy, measured through shear wave splitting (SWS) analysis, can be indicative of the state of stress in Earth's crust. Changes in SWS at Kīlauea Volcano, Hawai‘i, associated with the onset of summit eruptive activity in 2008 hint at the potential of the technique for tracking volcanic activity. To use SWS observations as a monitoring tool, however, it is important to understand the cause of seismic anisotropy at the volcano throughout the eruptive cycle. To address this need, we analyzed SWS results from across Kīlauea in combination with macroscopic surface structures (mapped fractures, faults, and fissures) and stress orientations inferred from fault plane solutions. Seismic anisotropy seems to be due to pervasive aligned structures in most regions of the volcano. The upper East and Southwest Rift Zones, however, show a bimodality in stress and SWS, suggesting a stress discontinuity with depth, perhaps related to magma conduits that trend obliquely to the dominant structure. Other areas in and around Kīlauea Caldera display principal stresses of similar magnitudes, indicating that small stress perturbations can rotate the maximum horizontal compressive stress direction by up to 90°. In these locations, static structures generally control SWS, but dynamic conditions due to magmatic activity can override the structural control. Monitoring of SWS may therefore provide important signs of impending volcanism.
Photonic surface waves on metamaterial interfaces
NASA Astrophysics Data System (ADS)
Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.
2017-11-01
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.
Kawamura, Shoji; Kasagi, Satoshi; Kasai, Daisuke; Tezuka, Ayumi; Shoji, Ayako; Takahashi, Akiyoshi; Imai, Hiroo; Kawata, Masakado
2016-10-01
The guppy (Poecilia reticulata) shows remarkable variation of photoreceptor cells in the retina, especially those sensitive to middle-to-long wavelengths of light. Microspectrophotometry (MSP) has revealed varying "green", "green-yellow" and "yellow" cone cells among guppies in Trinidad and Venezuela (Cumana). In the guppy genome, there are four "long-wave" opsin loci (LWS-1, -2, -3 and -4). Two LWS-1 alleles have potentially differing spectral sensitivity (LWS-1/180Ser and LWS-1/180Ala). In addition, two "middle-wave" loci (RH2-1 and -2), two "short-wave" loci (SWS2-A and -B), and a single "ultraviolet" locus (SWS1) as well as a single "rhodopsin" locus (RH1) are present. However, the absorption spectra of these photopigments have not been measured directly and the association of cell types with these opsins remains speculative. In the present study, we reconstituted these opsin photopigments in vitro. The wavelengths of maximal absorbance (λmax) were 571nm (LWS-1/180Ser), 562nm (LWS-1/180Ala), 519nm (LWS-3), 516nm (LWS-2), 516nm (RH2-1), 476nm (RH2-2), 438nm (SWS2-A), 408nm (SWS2-B), 353nm (SWS1) and 503nm (RH1). The λmax of LWS-3 is much shorter than the value expected (560nm) from the "five-sites" rule. The two LWS-1 alleles could explain difference of the reported MSP λmax values for the yellow cone class between Trinidad and Cumana guppies. Absence of the short-wave-shifted LWS-3 and the green-yellow cone in the green swordtail supports the hypothesis that this cell class of the guppy co-expresses the LWS-1 and LWS-3. These results reveal the basis of variability in the guppy visual system and provide insight into the behavior and ecology of these tropical fishes. Copyright © 2016. Published by Elsevier Ltd.
Toomey, Matthew B; Lind, Olle; Frederiksen, Rikard; Curley, Robert W; Riedl, Ken M; Wilby, David; Schwartz, Steven J; Witt, Christopher C; Harrison, Earl H; Roberts, Nicholas W; Vorobyev, Misha; McGraw, Kevin J; Cornwall, M Carter; Kelber, Almut; Corbo, Joseph C
2016-01-01
Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination. DOI: http://dx.doi.org/10.7554/eLife.15675.001 PMID:27402384
Highly Efficient Wave-Front Reshaping of Surface Waves with Dielectric Metawalls
NASA Astrophysics Data System (ADS)
Dong, Shaohua; Zhang, Yu; Guo, Huijie; Duan, Jingwen; Guan, Fuxin; He, Qiong; Zhao, Haibin; Zhou, Lei; Sun, Shulin
2018-01-01
Controlling the wave fronts of surface waves (including surface-plamon polaritons and their equivalent counterparts) at will is highly important in photonics research, but the available mechanisms suffer from the issues of low efficiency, bulky size, and/or limited functionalities. Inspired by recent studies of metasurfaces that can freely control the wave fronts of propagating waves, we propose to use metawalls placed on a plasmonic surface to efficiently reshape the wave fronts of incident surface waves (SWs). Here, the metawall is constructed by specifically designed meta-atoms that can reflect SWs with desired phases and nearly unit amplitudes. As a proof of concept, we design and fabricate a metawall in the microwave regime (around 12 GHz) that can anomalously reflect the SWs following the generalized Snell's law with high efficiency (approximately 70%). Our results, in excellent agreement with full-wave simulations, provide an alternative yet efficient way to control the wave fronts of SWs in different frequency domains. We finally employ full-wave simulations to demonstrate a surface-plasmon-polariton focusing effect at telecom wavelength based on our scheme.
Ye, Xin; Jiang, Xiaodong; Huang, Jin; Geng, Feng; Sun, Laixi; Zu, Xiaotao; Wu, Weidong; Zheng, Wanguo
2015-01-01
Fused silica subwavelength structures (SWSs) with an average period of ~100 nm were fabricated using an efficient approach based on one-step self-masking reactive ion etching. The subwavelength structures exhibited excellent broadband antireflection properties from the ultraviolet to near-infrared wavelength range. These properties are attributable to the graded refractive index for the transition from air to the fused silica substrate that is produced by the ideal nanocone subwavelength structures. The transmittance in the 400–700 nm range increased from approximately 93% for the polished fused silica to greater than 99% for the subwavelength structure layer on fused silica. Achieving broadband antireflection in the visible and near-infrared wavelength range by appropriate matching of the SWS heights on the front and back sides of the fused silica is a novel strategy. The measured antireflection properties are consistent with the results of theoretical analysis using a finite-difference time-domain (FDTD) method. This method is also applicable to diffraction grating fabrication. Moreover, the surface of the subwavelength structures exhibits significant superhydrophilic properties. PMID:26268896
Photonics surface waves on metamaterials interfaces.
Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V
2017-09-12
A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.
S cones: Evolution, retinal distribution, development, and spectral sensitivity.
Hunt, David M; Peichl, Leo
2014-03-01
S cones expressing the short wavelength-sensitive type 1 (SWS1) class of visual pigment generally form only a minority type of cone photoreceptor within the vertebrate duplex retina. Hence, their primary role is in color vision, not in high acuity vision. In mammals, S cones may be present as a constant fraction of the cones across the retina, may be restricted to certain regions of the retina or may form a gradient across the retina, and in some species, there is coexpression of SWS1 and the long wavelength-sensitive (LWS) class of pigment in many cones. During retinal development, SWS1 opsin expression generally precedes that of LWS opsin, and evidence from genetic studies indicates that the S cone pathway may be the default pathway for cone development. With the notable exception of the cartilaginous fishes, where S cones appear to be absent, they are present in representative species from all other vertebrate classes. S cone loss is not, however, uncommon; they are absent from most aquatic mammals and from some but not all nocturnal terrestrial species. The peak spectral sensitivity of S cones depends on the spectral characteristics of the pigment present. Evidence from the study of agnathans and teleost fishes indicates that the ancestral vertebrate SWS1 pigment was ultraviolet (UV) sensitive with a peak around 360 nm, but this has shifted into the violet region of the spectrum (>380 nm) on many separate occasions during vertebrate evolution. In all cases, the shift was generated by just one or a few replacements in tuning-relevant residues. Only in the avian lineage has tuning moved in the opposite direction, with the reinvention of UV-sensitive pigments.
Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna
Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Tashiro, Kosuke; Ikeo, Kazuho; Hattori, Masahira; Kuhara, Satoru; Gojobori, Takashi; Inouye, Kiyoshi
2013-01-01
Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes: red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management. PMID:23781100
Nakamura, Yoji; Mori, Kazuki; Saitoh, Kenji; Oshima, Kenshiro; Mekuchi, Miyuki; Sugaya, Takuma; Shigenobu, Yuya; Ojima, Nobuhiko; Muta, Shigeru; Fujiwara, Atushi; Yasuike, Motoshige; Oohara, Ichiro; Hirakawa, Hideki; Chowdhury, Vishwajit Sur; Kobayashi, Takanori; Nakajima, Kazuhiro; Sano, Motohiko; Wada, Tokio; Tashiro, Kosuke; Ikeo, Kazuho; Hattori, Masahira; Kuhara, Satoru; Gojobori, Takashi; Inouye, Kiyoshi
2013-07-02
Tunas are migratory fishes in offshore habitats and top predators with unique features. Despite their ecological importance and high market values, the open-ocean lifestyle of tuna, in which effective sensing systems such as color vision are required for capture of prey, has been poorly understood. To elucidate the genetic and evolutionary basis of optic adaptation of tuna, we determined the genome sequence of the Pacific bluefin tuna (Thunnus orientalis), using next-generation sequencing technology. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified five common fish visual pigment genes: red-sensitive (middle/long-wavelength sensitive; M/LWS), UV-sensitive (short-wavelength sensitive 1; SWS1), blue-sensitive (SWS2), rhodopsin (RH1), and green-sensitive (RH2) opsin genes. Sequence comparison revealed that tuna's RH1 gene has an amino acid substitution that causes a short-wave shift in the absorption spectrum (i.e., blue shift). Pacific bluefin tuna has at least five RH2 paralogs, the most among studied fishes; four of the proteins encoded may be tuned to blue light at the amino acid level. Moreover, phylogenetic analysis suggested that gene conversions have occurred in each of the SWS2 and RH2 loci in a short period. Thus, Pacific bluefin tuna has undergone evolutionary changes in three genes (RH1, RH2, and SWS2), which may have contributed to detecting blue-green contrast and measuring the distance to prey in the blue-pelagic ocean. These findings provide basic information on behavioral traits of predatory fish and, thereby, could help to improve the technology to culture such fish in captivity for resource management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, T. K.; Gillessen, S.; Dodds-Eden, K.
We derive the extinction curve toward the Galactic center (GC) from 1 to 19 {mu}m. We use hydrogen emission lines of the minispiral observed by ISO-SWS and SINFONI. The extinction-free flux reference is the 2 cm continuum emission observed by the Very Large Array. Toward the inner 14'' x 20'', we find an extinction of A{sub 2.166{mu}m} = 2.62 {+-} 0.11, with a power-law slope of {alpha} = -2.11 {+-} 0.06 shortward of 2.8 {mu}m, consistent with the average near-infrared slope from the recent literature. At longer wavelengths, however, we find that the extinction is grayer than shortward of 2.8more » {mu}m. We find that it is not possible to fit the observed extinction curve with a dust model consisting of pure carbonaceous and silicate grains only, and the addition of composite particles, including ices, is needed to explain the observations. Combining a distance-dependent extinction with our distance-independent extinction, we derive the distance to the GC to be R{sub 0} = 7.94 {+-} 0.65 kpc. Toward Sgr A* (r < 0.''5), we obtain A{sub H} = 4.21 {+-} 0.10, A{sub Ks} = 2.42 {+-} 0.10, and A{sub L'} = 1.09 {+-} 0.13.« less
Zhang, Yaxin; Zhou, Y; Dong, L
2013-09-23
Two electron-beams' interaction in a sandwich structure composed of a bi-grating and a sub-wavelength holes array is suggested to generate THz radiation in this paper. It shows that this system takes advantage of both bi-grating and sub-wavelength holes array structures. The results demonstrate that surface waves on a bi-grating can couple with mimicking surface plasmons of a sub-wavelength holes array so that the wave-coupling is strong and the field intensity is high in this structure. Moreover, compared with the interaction in the bi-grating structure and sub-wavelength holes array structure, respectively, it shows that in this composite system the two electron-beams' interaction is more efficient and the modulation depth and radiation intensity have been enhanced significantly. The modulation depth and efficiency can reach 22% and 4%, respectively, and the starting current density is only 12 A/cm². This radiation system may provide good opportunities for development of multi-electron beam-driven THz radiation sources.
An Extreme-ultraviolet Wave Generating Upward Secondary Waves in a Streamer-like Solar Structure
NASA Astrophysics Data System (ADS)
Zheng, Ruisheng; Chen, Yao; Feng, Shiwei; Wang, Bing; Song, Hongqiang
2018-05-01
Extreme-ultraviolet (EUV) waves, spectacular horizontally propagating disturbances in the low solar corona, always trigger horizontal secondary waves (SWs) when they encounter the ambient coronal structure. We present the first example of upward SWs in a streamer-like structure after the passing of an EUV wave. This event occurred on 2017 June 1. The EUV wave happened during a typical solar eruption including a filament eruption, a coronal mass ejection (CME), and a C6.6 flare. The EUV wave was associated with quasi-periodic fast propagating (QFP) wave trains and a type II radio burst that represented the existence of a coronal shock. The EUV wave had a fast initial velocity of ∼1000 km s‑1, comparable to high speeds of the shock and the QFP wave trains. Intriguingly, upward SWs rose slowly (∼80 km s‑1) in the streamer-like structure after the sweeping of the EUV wave. The upward SWs seemed to originate from limb brightenings that were caused by the EUV wave. All of the results show that the EUV wave is a fast-mode magnetohydrodynamic (MHD) shock wave, likely triggered by the flare impulses. We suggest that part of the EUV wave was probably trapped in the closed magnetic fields of the streamer-like structure, and upward SWs possibly resulted from the release of slow-mode trapped waves. It is believed that the interplay of the strong compression of the coronal shock and the configuration of the streamer-like structure is crucial for the formation of upward SWs.
Nandamuri, Sri Pratima; Dalton, Brian E; Carleton, Karen L
2017-06-01
African cichlids are an exemplary system to study organismal diversity and rapid speciation. Species differ in external morphology including jaw shape and body coloration, but also differ in sensory systems including vision. All cichlids have 7 cone opsin genes with species differing broadly in which opsins are expressed. The differential opsin expression results in closely related species with substantial differences in spectral sensitivity of their photoreceptors. In this work, we take a first step in determining the genetic basis of opsin expression in cichlids. Using a second generation cross between 2 species with different opsin expression patterns, we make a conservative estimate that short wavelength opsin expression is regulated by a few loci. Genetic mapping in 96 F2 hybrids provides clear evidence of a cis-regulatory region for SWS1 opsin that explains 34% of the variation in expression between the 2 species. Additionally, in situ hybridization has shown that SWS1 and SWS2B opsins are coexpressed in individual single cones in the retinas of F2 progeny. Results from this work will contribute to a better understanding of the genetic architecture underlying opsin expression. This knowledge will help answer long-standing questions about the evolutionary processes fundamental to opsin expression variation and how this contributes to adaptive cichlid divergence. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Melin, Amanda D; Moritz, Gillian L; Fosbury, Robert A E; Kawamura, Shoji; Dominy, Nathaniel J
2012-03-01
The capacity for cone-mediated color vision varies among nocturnal primates. Some species are colorblind, having lost the functionality of their short-wavelength-sensitive-1 (SWS1) opsin pigment gene. In other species, such as the aye-aye (Daubentonia madagascariensis), the SWS1 gene remains intact. Recent studies focused on aye-ayes indicate that this gene has been maintained by natural selection and that the pigment has a peak sensitivity (lambda(max)) of 406 nm, which is -20 nm closer to the ultraviolet region of the spectrum than in most primates. The functional significance behind the retention and unusual lambda(max) of this opsin pigment is unknown, and it is perplexing given that all mammals are presumed to be colorblind in the dark. Here we comment on this puzzle and discuss recent findings on the color vision intensity thresholds of terrestrial vertebrates with comparable optics to aye-ayes. We draw attention to the twilight activities of aye-ayes and report that twilight is enriched in short-wavelength (bluish) light. We also show that the intensity of twilight and full moonlight is probably sufficient to support cone-mediated color vision. We speculate that the intact SWS1 opsin pigment gene of aye-ayes is a crepuscular adaptation and we report on the blueness of potential visual targets, such as scent marks and the brilliant blue arils of Ravenala madagascariensis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuladeep, Rajamudili; Sahoo, Chakradhar; Narayana Rao, Desai, E-mail: dnrsp@uohyd.ernet.in, E-mail: dnr-laserlab@yahoo.com
Laser-induced ripples or uniform arrays of continuous near sub-wavelength or discontinuous deep sub-wavelength structures are formed on single-crystalline silicon (Si) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Si wafers at normal incidence in air and by immersing them in dimethyl sulfoxide using linearly polarized Ti:sapphire fs laser pulses of ∼110 fs pulse duration and ∼800 nm wavelength. Morphology studies of laser written surfaces reveal that sub-wavelength features are oriented perpendicular to laser polarization, while their morphology and spatial periodicity depend on the surrounding dielectric medium. The formation mechanism of the sub-wavelength features is explained by interferencemore » of incident laser with surface plasmon polaritons. This work proves the feasibility of fs laser direct writing technique for the fabrication of sub-wavelength features, which could help in fabrication of advanced electro-optic devices.« less
Detection of Thermal Water Vapor Emission from W Hydrae
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Chen, Wesley; Melnick, Gary J.; DeGraauw, Thijs; Feuchtgruber, Helmut; Harwitt, Martin
1997-01-01
We have detected four far-infrared emission lines of water vapor toward the evolved star W Hydrae, using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO). This is the first detection of thermal water vapor emission from a circumstellar outflow.
Studies on omnidirectional enhancement of giga-hertz radiation by sub-wavelength plasma modulation
NASA Astrophysics Data System (ADS)
Fanrong, KONG; Qiuyue, NIE; Shu, LIN; Zhibin, WANG; Bowen, LI; Shulei, ZHENG; Binhao, JIANG
2018-01-01
The technology of radio frequency (RF) radiation intensification for radio compact antennas based on modulation and enhancement effects of sub-wavelength plasma structures represents an innovative developing strategy. It exhibits important scientific significance and promising potential of broad applications in various areas of national strategic demands, such as electrical information network and microwave communication, detection and control technology. In this paper, laboratory experiments and corresponding analyses have been carried out to investigate the modulation and enhancement technology of sub-wavelength plasma structure on the RF electromagnetic radiation. An application focused sub-wavelength plasma-added intensification up to ∼7 dB higher than the free-space radiation is observed experimentally in giga-hertz (GHz) RF band. The effective radiation enhancement bandwidth covers from 0.85 to 1.17 GHz, while the enhanced electromagnetic signals transmitted by sub-wavelength plasma structures maintain good communication quality. Particularly, differing from the traditional RF electromagnetic radiation enhancement method characterized by focusing the radiation field of antenna in a specific direction, the sub-wavelength plasma-added intensification of the antenna radiation presents an omnidirectional enhancement, which is reported experimentally for the first time. Corresponding performance characteristics and enhancement mechanism analyses are also conducted in this paper. The results have demonstrated the feasibility and promising potential of sub-wavelength plasma modulation in application focused RF communication, and provided the scientific basis for further research and development of sub-wavelength plasma enhanced compact antennas with wide-range requests and good quality for communication.
Stieb, Sara M; Cortesi, Fabio; Sueess, Lorenz; Carleton, Karen L; Salzburger, Walter; Marshall, N J
2017-03-01
Coral reefs belong to the most diverse ecosystems on our planet. The diversity in coloration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and examined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, convergent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long-wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Interestingly, not only did all species express SWS1 - a UV-sensitive opsin - and possess UV-transmitting lenses, most species also feature UV-reflective body parts. This suggests that damsels might benefit from a close-range UV-based 'private' communication channel, which is likely to be hidden from 'UV-blind' predators. Finally, we found that LWS expression is highly correlated to feeding strategy in damsels with herbivorous feeders having an increased LWS expression, possibly enhancing the detection of benthic algae. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rahman, B. M. Farid
Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter wavelength has been reduced from 14.86mm to 4.7mm at 2GHz. DC current which is the most convenient and available tuning parameter in a practical circuit board has been used, the developed SWS can function as quarter wave transmission line from 2GHz to 1.80GHz (i.e. 10%). Lead Zirconium Titanate (PZT) is grown and patterned on top of the section with standard sol-gel method to increase capacitance value. The inter digit capacitor type structure along with PZT thin film has been adopted and results showed capacitance value increment by 36%. An electric field between signal and ground has been applied to change the polarization of the thin film which resulted in a tuning of center frequency by 15% (1.75GHz to 2GHz). In addition, a novel approach has been implemented by integrating both the ferromagnetic and the ferroelectric thin films simultaneously to achieve higher slow wave effect, wider tuning range and smaller variation in Characteristics Impedance. The size of the final structure for a quarter wavelengths has been reduced from 14.86mm to 3.98mm while the center frequency has been tuned from 2GHz to 1.5GHz (i.e. 25%). Tunable RF applications of the ferro-magnetic thin films are also demonstrated as a DC current band pass filter, tunable noise suppressor and meander line inductor. A well designed frequency tunable band pass filter (BPF) is implemented at 4GHz with patterned Permalloy. The pass band frequency of a band pass filter has been tuned from 4GHz to 4.02GHz by applying a DC current. The suppression frequency of the developed noise suppressor is tuned from 4.8GHz to 6GHz and 4GHz to 6GHz by changing the aspect ratio of the Py bars and the gap in between them. Moreover, a novel way of tuning the stop band frequency of the noise suppressor by using an external direct current changed the suppression frequency from 6GHz to 4.3GHz. A pass band loss of 1.5%, less than 2° transmitted signal phase distortion, and 3 dB extra return loss of the designed noise suppressor showed the promise the noise suppressors. The increase in the number of turns of a meander line inductor has increased the inductance density from 2565nH/m to 3396nH/m while application of the patterned Py has increased the inductance density from 2565nH/m to 3060nH/m. The tuning of the meander line inductor has been performed by applying DC current until the FMR frequency 4.51GHz.
Karagic, Nidal; Härer, Andreas; Meyer, Axel; Torres-Dowdall, Julián
2018-06-14
During early ontogeny, visual opsin gene expression in cichlids is influenced by prevailing light regimen. Red light, for example, leads to an early switch from the expression of short-wavelength sensitive to long-wavelength sensitive opsins. Here, we address the influence of light deprivation on opsin expression. Individuals reared in constant darkness during the first 14 days post-hatching (dph) showed a general developmental delay compared with fish reared under a 12:12 hr light-dark cycle (control group). Several characters including pigmentation patterns and eye development, appeared later in dark-reared individuals. Quantitative real-time PCR and fluorescent in situ hybridization at six time points during the 14 days period revealed that fish from the control group expressed opsin genes from 5 dph on and maintained a short-wavelength sensitive phenotype (sws1, rh2b, and rh2a). Onset of opsin expression in dark-reared Midas cichlids was delayed by 4 days and visual sensitivity rapidly progressed toward a long-wavelength sensitive phenotype (sws2b, rh2a, and lws). Shifts in visual sensitivities toward longer wavelengths are mediated by thyroid hormone (TH) in many vertebrates. Compared to control fish, dark-reared individuals showed elevated dio3 expression levels - a validated proxy for TH concentration - suggesting higher circulating TH levels. Despite decelerated overall development, ontogeny of opsin gene expression was accelerated, resulting in retinae with long-wavelength shifted predicted sensitivities compared to light-reared individuals. Indirect evidence suggests that this was due to altered TH metabolism. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlov, D. V., E-mail: dvkoz@ipmras.ru; Rumyantsev, V. V.; Morozov, S. V.
A long-wavelength band caused by transitions between states related to the valence band is detected in the photoconductivity spectra of Hg{sub y}Te{sub 1–y}/Cd{sub x}Hg{sub 1–x}Te (CMT) structures with quantum wells. The energy states of mercury vacancies in quantum wells of CMT structures is calculated taking into account a chemical shift. It is shown that the long-wavelength band observed in the photoconductivity spectra of these structures is associated with the ionization of divalent acceptor centers which are such vacancies.
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, C.; Wiscombe, W.
2010-01-01
The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets.
Slow Wave Sleep and Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Whitmire, Alexandra; Orr, Martin; Arias, Diana; Rueger, Melanie; Johnston, Smith; Leveton, Lauren
2012-01-01
While ground research has clearly shown that preserving adequate quantities of sleep is essential for optimal health and performance, changes in the progression, order and /or duration of specific stages of sleep is also associated with deleterious outcomes. As seen in Figure 1, in healthy individuals, REM and Non-REM sleep alternate cyclically, with stages of Non-REM sleep structured chronologically. In the early parts of the night, for instance, Non-REM stages 3 and 4 (Slow Wave Sleep, or SWS) last longer while REM sleep spans shorter; as night progresses, the length of SWS is reduced as REM sleep lengthens. This process allows for SWS to establish precedence , with increases in SWS seen when recovering from sleep deprivation. SWS is indeed regarded as the most restorative portion of sleep. During SWS, physiological activities such as hormone secretion, muscle recovery, and immune responses are underway, while neurological processes required for long term learning and memory consolidation, also occur. The structure and duration of specific sleep stages may vary independent of total sleep duration, and changes in the structure and duration have been shown to be associated with deleterious outcomes. Individuals with narcolepsy enter sleep through REM as opposed to stage 1 of NREM. Disrupting slow wave sleep for several consecutive nights without reducing total sleep duration or sleep efficiency is associated with decreased pain threshold, increased discomfort, fatigue, and the inflammatory flare response in skin. Depression has been shown to be associated with a reduction of slow wave sleep and increased REM sleep. Given research that shows deleterious outcomes are associated with changes in sleep structure, it is essential to characterize and mitigate not only total sleep duration, but also changes in sleep stages.
Subwavelength structured surfaces and their applications
NASA Technical Reports Server (NTRS)
Raguin, Daniel H.; Morris, G. Michael
1993-01-01
The term subwavelength structured (SWS) surface describes any surface that contains a subwavelength-period grating or gratings. The grating may be of any type provided the period is sufficiently fine so that, unlike conventional gratings, no diffraction orders propagate other than the zeroth orders. Because of the fine periods involved, the fabrication of such surfaces for applications in the visible and infrared portions of the spectral regime have only recently been considered. With refinements in holographic procedures and the push of the semiconductor industry for submicron lithography, production of SWS surfaces is becoming increasingly viable. The topics covered include the following: analytic approaches to analyze SWS surfaces, 1D periodic stratification and effective medium theory, design of waveplates using form birefringence, and 2D binary antireflection structured surfaces.
Frattaroli, Shannon; Pollack, Keshia M; Jonsberg, Karen; Croteau, Gregg; Rivera, JuanCarlos; Mendel, Jennifer S
2010-01-01
Communities across the United States are using street outreach workers (SWs) to prevent violence. SW programs are generally recognized as a promising model, particularly in light of a 2008 evaluation that demonstrated positive impacts associated with one well-known program. The United Teen Equality Center (UTEC) includes an SW program. Through this paper we aim to (1) document the work of the UTEC SWs, (2) describe UTEC's approach to training SWs and managing the program, and (3) understand interviewees' perspectives (including UTEC managers, SWs and partners) on how the SWs impact youth violence in Lowell. We designed a single-site observational study using qualitative methods to address our study aims. We collected data from in-person, semistructured interviews with the two UTEC SW program managers, the six SWs employed during the study period, and 17 representatives from partner agencies. UTEC SWs outreach to youth, respond to crises in the lives of youth as opportunity, work to facilitate access to resources for youth, and engage in intensive follow-up with youth when needed. These findings are consistent with UTEC's pyramid model of SW outreach. The program emphasizes peacemaking (not only preventing violence) and partnerships as priorities. SWs participate in structured training, receive a comprehensive benefits package, and have opportunities for professional development. Several aspects of UTEC's program may be useful for other SW programs: Involve youth in hiring SWs, invest in SW training, incorporate peacemaking strategies into outreach, and partner with agencies that also serve youth.
Duff, Putu; Birungi, Josephine; Dobrer, Sabina; Akello, Monika; Muzaaya, Godfrey; Shannon, Kate
2018-06-01
While sex workers (SWs) bear the brunt of the epidemic in Uganda, there remains a dearth of empirical research on the structural drivers of HIV prevention among SWs. This study examined the drivers of inconsistent condom use by one-time and regular clients of young women SWs in Gulu, Northern Uganda. Data were drawn from the Gulu Sexual Health Study, a cross-sectional study of young SWs, aged 14 years and older (2011-2012). SWs were recruited using peer/SW-led outreach, in partnership with The AIDS Support Organization and other CBOs. Multivariable logistic regression was used to examine the correlates of inconsistent condom use by one-time and regular clients. In total, 84.5% of the 381 SWs servicing regular clients and 76.8% of the 393 SWs servicing one-time clients reported inconsistent client condom use. In multivariable analysis, physical/sexual violence by clients (AOR = 5.39; 95%CI 3.05-9.49), low sexual control by workers (measured by the validated Pulweritz scale) (AOR = 2.86; 95%CI 1.47-5.58), alcohol/drug use while working (AOR = 1.98; 95%CI 1.17-3.35) and migration to Gulu for sex work (AOR = 1.73; 95%CI 0.95-3.14) were positively correlated with inconsistent condom use by one-time clients. Correlates of inconsistent condom use by regular clients included: low sexual control by workers (AOR = 4.63; 95%CI 2.32-9.23); physical/sexual violence by clients (AOR = 3.48; 95%CI 1.85-6.53); police harassment (AOR = 2.57; 95%CI 1.17-5.65); and being a single mother (AOR = 2.07; 95%CI 1.09-3.93). Structural and interpersonal factors strongly influence inconsistent condom use by clients, with violence by clients and police, low sexual control by workers, migration and single-parenthood all linked to non-condom use. There is a need for peer-led structural interventions that improve access to occupational health and safety standards (e.g., violence prevention and alcohol/drug harm reduction policies/programming). Shifts away from the current punitive approaches towards SWs are integral to the success of such interventions, as they continue to undermine HIV prevention efforts.
An experimental study: evaluating the tissue structure of penis with 2D-ShearWave™ Elastography.
Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Liu, Y; Xing, L-X; Du, L-F; Xing, J-F
2017-01-01
The aim of this study was to investigate the feasibility of two-dimensional-ShearWave™ Elastography (2D-SWE) on evaluating the change of tissue structure of penis. Twenty healthy male Sprague Dawley rats were divided into penis-developed group (PDG, 52 weeks) and penis-underdeveloped group (PUDG, 5 weeks). The ultrafast ultrasound device-Aixplorer® (SuperSonic Imagine) was used for 2D-SWE imaging of the penis, the measurement index was shear wave stiffness (SWS, kPa). All rat penises were cut off immediately after ultrasonic examination. After paraffin embedding, slicing and hematoxylin-eosin staining, the tissue structure of the penis was observed under light microscope. SWS of all rat penises were measured successfully. The results showed that SWS of PDG was significantly lower than PUDG (P=0.008). At the same time, the pathological results found that there were significant differences in the tissue structures (sinusoids, smooth muscle cells and fibrocytes) of the penises between the two groups. These results suggest that there are significant differences in SWS between different tissue structures of penis. 2D-SWE is expected to be used on the etiological diagnosis of erectile dysfunction by serving as a new noninvasive method of evaluating the change of tissue structure of penis.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, Sumanth; Stallard, Brian R.
1998-01-01
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.
Optical filter including a sub-wavelength periodic structure and method of making
Kaushik, S.; Stallard, B.R.
1998-03-10
An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.
SWS grating for UV band filter by nano-imprint
NASA Astrophysics Data System (ADS)
Lin, Jian-Shian; Liao, Ke-Hao; Chen, Chang-Tai; Lai, Chieh-Lung; Ko, Cheng-Hao
2009-05-01
Regarding to researches on manufacturing process, the fabrication of nano structures on SWS (subwavelength structured) grating are mainly produced by photo lithography. We find that UV light transmission efficiency of PET film significantly drops 50% when we put nano structures on the surface of material. In this paper, we add nano structures on the surface of PET film and create a UV band filter. Decent optical filtering effects can be achieved by combining the characteristics of PET materials with nano structures on their surfaces.
Multiple Genetic Mechanisms Contribute to Visual Sensitivity Variation in the Labridae
Phillips, Genevieve A.C.; Carleton, Karen L.; Marshall, N. Justin
2016-01-01
Coral reefs are one of the most spectrally diverse environments, both in terms of habitat and animal color. Species identity, sex, and camouflage are drivers of the phenotypic diversity seen in coral reef fishes, but how the phenotypic diversity is reflected in the genotype remains to be answered. The labrids are a large, polyphyletic family of coral reef fishes that display a diverse range of colors, including developmental color morphs and extensive behavioral ecologies. Here, we assess the opsin sequence and expression diversity among labrids from the Great Barrier Reef, Australia. We found that labrids express a diverse palette of visual opsins, with gene duplications in both RH2 and LWS genes. The majority of opsins expressed were within the mid-to-long wavelength sensitive classes (RH2 and LWS). Three of the labrid species expressed SWS1 (ultra-violet sensitive) opsins with the majority expressing the violet-sensitive SWS2B gene and none expressing SWS2A. We used knowledge about spectral tuning sites to calculate approximate spectral sensitivities (λmax) for individual species’ visual pigments, which corresponded well with previously published λmax values for closely related species (SWS1: 356–370 nm; SWS2B: 421–451 nm; RH2B: 452–492 nm; RH2A: 516–528 nm; LWS1: 554–555 nm; LWS2: 561–562 nm). In contrast to the phenotypic diversity displayed via color patterns and feeding ecology, there was little amino acid diversity within the known opsin sequence tuning sites. However, gene duplications and differential expression provide alternative mechanisms for tuning visual pigments, resulting in variable visual sensitivities among labrid species. PMID:26464127
Deering, Kathleen N; Lyons, Tara; Feng, Cindy X; Nosyk, Bohdan; Strathdee, Steffanie A; Montaner, Julio S G; Shannon, Kate
2013-08-01
Among sex workers (SWs) in Vancouver, Canada, this study identified social, drug use, sex work, environmental-structural, and client-related factors associated with being offered and accepting more money after clients' demand for sex without a condom. Cross-sectional study using baseline (February 2010 to October 2011) data from a longitudinal cohort of 510 SWs. A 2-part multivariable regression model was used to identify factors associated with 2 separate outcomes: (1) being offered more money for sex without a condom in the last 6 months; and (2) accepting more money, among those who had been offered more money. The sample included 490 SWs. In multivariable analysis, being offered more money for sex without a condom was more likely for SWs who used speedballs, had higher average numbers of clients per week, had difficulty accessing condoms, and had clients who visited other SWs. Accepting more money for sex without a condom was more likely for SWs self-reporting as a sexual minority and who had experienced client violence and used crystal methamphetamine less than daily (versus none) and less likely for SWs who solicited mainly indoors for clients (versus outdoor/public places). These results highlight the high demand for sex without a condom by clients of SWs. HIV prevention efforts should shift responsibility toward clients to reduce offers of more money for unsafe sex. Programs that mitigate the social and economic risk environments of SWs alongside the removal of criminal sanctions on sex work to enable condom use within safer indoor workspaces are urgently required.
Shao, Yongni; Li, Yuan; Jiang, Linjun; Pan, Jian; He, Yong; Dou, Xiaoming
2016-11-01
The main goal of this research is to examine the feasibility of applying Visible/Near-infrared hyperspectral imaging (Vis/NIR-HSI) and Raman microspectroscopy technology for non-destructive identification of pesticide varieties (glyphosate and butachlor). Both mentioned technologies were explored to investigate how internal elements or characteristics of Chlorella pyrenoidosa change when pesticides are applied, and in the meantime, to identify varieties of the pesticides during this procedure. Successive projections algorithm (SPA) was introduced to our study to identify seven most effective wavelengths. With those wavelengths suggested by SPA, a model of the linear discriminant analysis (LDA) was established to classify the pesticide varieties, and the correct classification rate of the SPA-LDA model reached as high as 100%. For the Raman technique, a few partial least squares discriminant analysis models were established with different preprocessing methods from which we also identified one processing approach that achieved the most optimal result. The sensitive wavelengths (SWs) which are related to algae's pigment were chosen, and a model of LDA was established with the correct identification reached a high level of 90.0%. The results showed that both Vis/NIR-HSI and Raman microspectroscopy techniques are capable to identify pesticide varieties in an indirect but effective way, and SPA is an effective wavelength extracting method. The SWs corresponding to microalgae pigments, which were influenced by pesticides, could also help to characterize different pesticide varieties and benefit the variety identification. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; de Ceglia, Domenico; Centini, Marco; Mandatori, Antonio; Sibilia, Concita; Akozbek, Neset; Cappeddu, Mirko G; Fowler, Mark; Haus, Joseph W
2007-01-22
We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed. From a practical point of view, our findings point to a simpler way to fabricate a material that exhibits negative refraction and maintains high transparency across a broad wavelength range. Transparent metallo-dielectric stacks also provide an opportunity to expand the exploration of wave propagation phenomena in metals, both in the linear and nonlinear regimes.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
NASA Astrophysics Data System (ADS)
Yu, Haiming; Kelly, O. D'allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.
2014-10-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition.
Evolutionary replacement of UV vision by violet vision in fish.
Tada, Takashi; Altun, Ahmet; Yokoyama, Shozo
2009-10-13
The vertebrate ancestor possessed ultraviolet (UV) vision and many species have retained it during evolution. Many other species switched to violet vision and, then again, some avian species switched back to UV vision. These UV and violet vision are mediated by short wavelength-sensitive (SWS1) pigments that absorb light maximally (lambda(max)) at approximately 360 and 390-440 nm, respectively. It is not well understood why and how these functional changes have occurred. Here, we cloned the pigment of scabbardfish (Lepidopus fitchi) with a lambda(max) of 423 nm, an example of violet-sensitive SWS1 pigment in fish. Mutagenesis experiments and quantum mechanical/molecular mechanical (QM/MM) computations show that the violet-sensitivity was achieved by the deletion of Phe-86 that converted the unprotonated Schiff base-linked 11-cis-retinal to a protonated form. The finding of a violet-sensitive SWS1 pigment in scabbardfish suggests that many other fish also have orthologous violet pigments. The isolation and comparison of such violet and UV pigments in fish living in different ecological habitats will open an unprecedented opportunity to elucidate not only the molecular basis of phenotypic adaptations, but also the genetics of UV and violet vision.
Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
Yu, Haiming; Kelly, O. d'Allivy; Cros, V.; Bernard, R.; Bortolotti, P.; Anane, A.; Brandl, F.; Huber, R.; Stasinopoulos, I.; Grundler, D.
2014-01-01
Wave control in the solid state has opened new avenues in modern information technology. Surface-acoustic-wave-based devices are found as mass market products in 100 millions of cellular phones. Spin waves (magnons) would offer a boost in today's data handling and security implementations, i.e., image processing and speech recognition. However, nanomagnonic devices realized so far suffer from the relatively short damping length in the metallic ferromagnets amounting to a few 10 micrometers typically. Here we demonstrate that nm-thick YIG films overcome the damping chasm. Using a conventional coplanar waveguide we excite a large series of short-wavelength spin waves (SWs). From the data we estimate a macroscopic of damping length of about 600 micrometers. The intrinsic damping parameter suggests even a record value about 1 mm allowing for magnonics-based nanotechnology with ultra-low damping. In addition, SWs at large wave vector are found to exhibit the non-reciprocal properties relevant for new concepts in nanoscale SW-based logics. We expect our results to provide the basis for coherent data processing with SWs at GHz rates and in large arrays of cellular magnetic arrays, thereby boosting the envisioned image processing and speech recognition. PMID:25355200
Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.
2014-01-01
Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane Grus americana (Gruiformes, Gruidae), which is one of only two North American crane species. It is a large, long-lived bird in which UV sensitivity might be reduced by chromatic aberration and entrance of UV radiation into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate whether the ocular media (i.e. the lens and cornea) absorb UV radiation. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, whereas the cone visual pigment λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2) and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cut-off wavelength (λcut) values similarly fell within ranges recorded in other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type) and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system; however, as a consequence of the λmax of the SWS1 visual pigment (404 nm), it might also have some UV sensitivity. PMID:25267845
Porter, Megan L.; Kingston, Alexandra C. N.; McCready, Robert; Cameron, Evan G.; Hofmann, Christopher M.; Suarez, Lauren; Olsen, Glenn H.; Cronin, Thomas W.; Robinson, Phyllis R.
2014-01-01
Vision has been investigated in many species of birds, but few studies have considered the visual systems of large birds and the particular implications of large eyes and long-life spans on visual system capabilities. To address these issues we investigated the visual system of the whooping crane, Grus americana (Gruiformes: Gruidae). G. americana (an endangered species) is one of only two North American crane species and represents a large, long-lived bird where ultraviolet sensitivity may be degraded by chromatic aberrations and entrance of ultraviolet light into the eye could be detrimental to retinal tissues. To investigate the whooping crane visual system we used microspectrophotometry to determine the absorbance spectra of retinal oil droplets and to investigate if the ocular media (i.e., the lens and cornea) absorbs UV light. In vitro expression and reconstitution was used to determine the absorbance spectra of rod and cone visual pigments. The rod visual pigments had wavelengths of peak absorbance (λmax) at 500 nm, while the cone visual pigments λmax values were determined to be 404 nm (SWS1), 450 nm (SWS2), 499 nm (RH2), and 561 nm (LWS), similar to other characterized bird visual pigment absorbance values. The oil droplet cutoff wavelength (λcut) values similarly fell within ranges recorded from other avian species: 576 nm (R-type), 522 nm (Y-type), 506 nm (P-type), and 448 nm (C-type). We confirm that G. americana has a violet-sensitive visual system, although based on the λmax of the SWS1 visual pigment (404 nm) may also have some ability for UV sensitivity.
DEERING, Kathleen N; LYONS, Tara; FENG, Cindy X; NOSYK, Bohdan; STRATHDEE, Steffanie A; MONTANER, Julio SG; SHANNON, Kate
2013-01-01
Objective Among sex workers (SWs) in Vancouver, Canada, this study identified social, drug use, sex work, environmental-structural and client-related factors associated with being offered and accepting more money after clients' demand for sex without a condom. Design Cross-sectional study using baseline (February/10-October/11) data from a longitudinal cohort of 510 SWs. Methods A two-part multivariable regression model was used to identify factors associated with two separate outcomes: (1) being offered and (2) accepting more money for sex without a condom in the last six months, among those who had been offered more money. Results The sample included 490 SWs. In multivariable analysis, being offered more money for sex without a condom was more likely for SWs who used speedballs, had higher average numbers of clients per week, had difficulty accessing condoms and had clients who visited other SWs. Accepting more money for sex without a condom was more likely for SWs self-reporting as a sexual minority and who had experienced client violence and used crystal methamphetamine use less than daily (vs. none), and less likely for SWs who solicited for clients mainly indoors (vs. outdoor/public places). Conclusions These results highlight the high demand for sex without a condom by clients of SWs. HIV prevention efforts should shift responsibility toward clients to reduce offers of more money for unsafe sex. Programs that mitigate the social and economic risk environments of SWs alongside the removal of criminal sanctions on sex work to enable condom use within safer indoor work spaces are urgently required. PMID:23614990
NASA Astrophysics Data System (ADS)
Zhang, Xiaoping; Dang, Fangchao; Li, Yangmei; Jin, Zhenxing
2015-06-01
In this paper, we present a novel compact P-band magnetically insulated transmission line oscillator (MILO) with specially inclined slow-wave-structure (SWS) vanes to decrease its total dimension and weight. The dispersion characteristics of the inclined SWS are investigated in detail and made comparisons with that of the traditional straight SWS. The results show that the inclined SWS is more advantageous in operating on a steady frequency in a wide voltage range and has a better asymmetric mode segregation and a relatively large band-gap between the TM00 and TM01 modes which are in favor of avoiding the asymmetric and transverse mode competition. Besides, the transverse dimension of the proposed novel inclined SWS with the same operation frequency is decreased by about 50%, and correspondingly the device volume shrinks remarkably to its 0.35 times. In particle-in-cell simulation, the electron bunching spokes are obviously formed in the inclined SWS, and a P-band high-power microwave with a power of 5.8 GW, frequency of 645 MHz, and efficiency of 17.2% is generated by the proposed device, which indicates the feasibility of the compact design with the inclined vanes at the P-band.
Superradiant Ka-band Cherenkov oscillator with 2-GW peak power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.
The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ∼1.5 GW/cm{sup 2} required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due tomore » time delay in the development of the breakdown phenomena.« less
Adriaensens, Stefanie; Van Waes, Sara; Struyf, Elke
2017-06-01
Recent work has reported adverse effects of students' stuttering on their social and emotional functioning at school. Yet, few studies have provided an in-depth examination of classroom interaction of students who stutter (SWS). The current study uses a network perspective to compare acceptance and rejection in the classroom interaction between SWS and their peers in secondary education. The sample comprised 22 SWS and 403 non-stuttering peers (22 classes) of secondary education in Flanders (Belgium). Students' nominations regarding three acceptance and three rejection criteria were combined. Social network analysis offered procedures that considered direct and indirect interaction between all classmates. We found few significant differences: SWS and their peers were distributed similarly across positive and negative status groups. Both considered and were considered by, on average, six or seven classmates as 'a friend', who they liked and could count on, and nominated or were nominated by one or two classmates as 'no friend', somebody who they disliked and could not count on. On average, SWS and their classmates also did not differ in terms of structural position in the class group (degree, closeness and betweenness), reciprocated rejection, and clique size. However, SWS do tend to be slightly more stringent or more careful in nominating peers, which led to fewer reciprocated friendships. Our results suggest that SWS are quite accepted by peers in secondary education in Flanders. Such positive peer interaction can create a supportive and encouraging climate for SWS to deal with specific challenges. Copyright © 2017 Elsevier Inc. All rights reserved.
Tunable sub-wavelength acoustic energy harvesting with a metamaterial plate
NASA Astrophysics Data System (ADS)
Oudich, Mourad; Li, Yong
2017-08-01
We report theoretically on sub-wavelength acoustic energy harvesting (AEH) using a thin acoustic metamaterial (AM) made of spring-mass resonators attached to the surface of a homogeneous elastic thin plate. Considering an incident acoustic wave hitting the AM plate, tunable and highly efficient AEH is achieved by introducing a sub-wavelength defect inside the AM structure to confine the elastic energy into a spot which is then electromechanically converted into electrical power using a ceramic PZT patch. Several types of sub-wavelength cavities capable of confining acoustic energy at the sonic regime are extensively investigated for the optimization of AEH. Three analytical approaches—band structure, sound transmission loss and electrical-to-mechanical energy conversion—are proposed to fully describe the system interaction with the acoustic wave and quantify the AEH performance. The computed results show that an average power of 18 μW can be harvested using a specific cavity design of only 3 × 3 cm2 size from an incident acoustic wave with a sound pressure level of 100 dB at 520 Hz. Such a system can open up a way through the design of effective tunable sub-wavelength acoustic energy harvesters based on AM applied to scavenge energy from sound.
NASA Astrophysics Data System (ADS)
Yuan, Ying; Peng, Sha; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2018-02-01
In this paper, we propose a new device composed of patterned sub-wavelength arrays to investigate surface plasmons (SPs) over sub-wavelength metal nano-structures. The device consists of silicon substrate and sub-wavelength patterns fabricated on a layer of aluminum film with nanometer thickness. Each sub-wavelength pattern formed in aluminum film is composed of a basic nano-square and twelve triangles for shaping single nano-pattern, which are uniformly distributed on the four sides of each square. Reflectance spectra and electric field distribution in infrared region are simulated. Numerical simulation results demonstrate that the device can efficiently lower its reflectance in infrared spectrum, and the response frequency can be controlled by only changing the device parameters such as square side length and then triangle vertex angle. Besides, the simulated electric field distribution of the device shows obviously field localization effect at the edges of aluminum film nano-structure. The electric filed around the tips of aluminum triangles is localized into sub-wavelength scale, so as to be beyond the common diffraction limitation. Our work will help to reveal the interesting properties of SPs device, and also bring new prospect of photonic device.
Evidence for a critical Earth: the New Geophysics
NASA Astrophysics Data System (ADS)
Crampin, Stuart; Gao, Yuan
2015-04-01
Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This new understanding of fluid-rock deformation unifies much of the behaviour and has currently-relevant applications: 1) The times, magnitudes, and in some circumstances locations, of impending earthquakes can be stress-forecast (predicted); 2) The times of impending volcanic eruptions can be stress-forecast (predicted); 3) The production of hydrocarbon reservoirs can be, in principle, calculated; 4) Recovery from hydrocarbon reservoirs will be increased if production is slower; 5) Time-lapse of SWS single-well imaging can monitor movement of oil/water contacts; 6) Time-lapse of SWS can monitor behaviour of fluids in fracking reservoirs; 7) Time-lapse SWS can monitor leakage in underground nuclear-waste repositories. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Gao & Crampin (SM3.1), Liu & Crampin (NH2.5), and Crampin & Gao (GD.1).
A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography
Zhang, J-J; Qiao, X-H; Gao, F; Li, F; Bai, M; Zhang, H-P; Liu, Y; Du, L-F
2015-01-01
Objective: To evaluate the feasibility of measuring the stiffness of corpus cavernosum penis (CCP) with ShearWave™ Elastography (SWE; SuperSonic Imagine, Aix-en-Provence, France). Methods: 40 healthy volunteers with ages ranging from 19 to 81 years (mean, 36 years; standard deviation, 17 years) were selected in this study. The ultrafast ultrasound device Aixplorer® (SuperSonic Imagine) was used for the research and the probe selected was SuperLinear™ SL15-4 (SuperSonic Imagine). The shear wave stiffness (SWS) of CCP was measured using SWE images. The measurement indexes of SWS included (1) SWS of CCP measured in the transverse section (SWS-T), (2) SWS of CCP measured in the longitudinal section (SWS-L) and (3) mean of SWS-T and SWS-L (SWS-M). The interval between hormone test and SWE examination of each subject was less than 7 days. The paired t-test was used to analyse the differences between SWS-T and SWS-L. The Pearson correlation was used to analyse the correlation of SWS of CCP with age as well as with sex hormone levels. Results: There was no significant difference between SWS-T and SWS-L (p > 0.05). SWS (SWS-T, SWS-L, SWS-M) was negatively correlated with age and oestradiol value, and SWS (SWS-T, SWS-L, SWS-M) was positively correlated with testosterone value. Conclusion: SWE could serve as a new non-invasive method of evaluating the stiffness of CCP. Advances in knowledge: It is the first time that we have discussed the feasibility of measuring the stiffness of CCP with SWE and analysed the correlation of SWS of CCP with age as well as with sex hormone levels. PMID:25694260
A new method of measuring the stiffness of corpus cavernosum penis with ShearWave™ Elastography.
Zhang, J-J; Qiao, X-H; Gao, F; Li, F; Bai, M; Zhang, H-P; Liu, Y; Du, L-F; Xing, J-F
2015-04-01
To evaluate the feasibility of measuring the stiffness of corpus cavernosum penis (CCP) with ShearWave™ Elastography (SWE; SuperSonic Imagine, Aix-en-Provence, France). 40 healthy volunteers with ages ranging from 19 to 81 years (mean, 36 years; standard deviation, 17 years) were selected in this study. The ultrafast ultrasound device Aixplorer(®) (SuperSonic Imagine) was used for the research and the probe selected was SuperLinear™ SL15-4 (SuperSonic Imagine). The shear wave stiffness (SWS) of CCP was measured using SWE images. The measurement indexes of SWS included (1) SWS of CCP measured in the transverse section (SWS-T), (2) SWS of CCP measured in the longitudinal section (SWS-L) and (3) mean of SWS-T and SWS-L (SWS-M). The interval between hormone test and SWE examination of each subject was less than 7 days. The paired t-test was used to analyse the differences between SWS-T and SWS-L. The Pearson correlation was used to analyse the correlation of SWS of CCP with age as well as with sex hormone levels. There was no significant difference between SWS-T and SWS-L (p > 0.05). SWS (SWS-T, SWS-L, SWS-M) was negatively correlated with age and oestradiol value, and SWS (SWS-T, SWS-L, SWS-M) was positively correlated with testosterone value. SWE could serve as a new non-invasive method of evaluating the stiffness of CCP. It is the first time that we have discussed the feasibility of measuring the stiffness of CCP with SWE and analysed the correlation of SWS of CCP with age as well as with sex hormone levels.
Architectural design of deep metallic sub-wavelength grating for practical holography display
NASA Astrophysics Data System (ADS)
Zhu, WenLiang; Shen, Chuan; Zhang, MingHua; Wei, Sui; Wang, XiangXiang; Wang, Ye
2017-10-01
Spatial light modulator (SLM) is the core device of holographic display, which requires a large space-bandwidth product (SBP), especially needing a wide viewing angle. According to the grating theory, the scale of the holographic display unit should be close to the wavelength of light. The transmission resonances of deep metallic sub-wavelength grating structure, which is produced by the surface plasmon and Fabry-Perot (FP) resonance based on metal grating phenomenon of Wood's anomaly, especially the metal-insulator-metal (MIM) structure provides a theoretical and effective technique for enhancing the reflection resonances and can be used for implementing the holographic display unit technology. In this paper, we replace the top electrode layer of the LCOS with a metallic deep sub-wavelength grating structure and change the grating period, slit width and spacer thickness. The simulation results by aid of CST software are given, which demonstrate that the improved device with dielectric medium parameter within liquid crystal refractive rate range (1.4 1.7) can reach 0 to 2π phase modulation in the visible wavelength range. Moreover, it also decrease the difficulty of device processing.
Argento, Elena; Duff, Putu; Bingham, Brittany; Chapman, Jules; Nguyen, Paul; Strathdee, Steffanie A; Shannon, Kate
2016-06-01
Community empowerment can be a powerful determinant of HIV risk among sex workers (SWs). This study modeled the impact of social cohesion on client condom refusal among SWs in Vancouver. Longitudinal data were drawn from a prospective cohort of SWs (2010-2013). Lippman and colleagues' Social Cohesion Scale measured SWs' connectedness (i.e., perception of mutual aid, trust, support). Multivariable logistic regression examined the independent effect of social cohesion on client condom refusal. Of 654 SWs, 22 % reported baseline client condom refusal and 34 % over 3 years. The baseline median social cohesion score was 24 (IQR 20-29, range 4-45). In the final confounding model, for every one-point increase in the social cohesion score, average odds of condom refusal decreased by 3 % (AOR 0.97; 95 % CI 0.95-0.99). Community empowerment can have a direct protective effect on HIV risk. These findings highlight the need for a legal framework that enables collectivization and SW-led efforts in the HIV response.
Melesse, Dessalegn Y.; Shafer, Leigh Anne; Shaw, Souradet Y.; Thompson, Laura H.; Achakzai, Baser K.; Furqan, Sofia; Reza, Tahira; Emmanuel, Faran; Blanchard, James F.
2016-01-01
Abstract Concerns remain regarding the heterogeneity in overlapping human immunodeficiency virus (HIV) risk behaviors among sex workers (SWs) in Pakistan; specifically, the degree to which SWs interact with people who inject drugs (PWID) through sex and/or needle sharing. Following an in-depth mapping performed in 2011 to determine the size and distribution of key populations at highest risk of HIV acquisition in Pakistan, a cross-sectional biological and behavioral survey was conducted among PWID, female (FSWs), male (MSWs), and hijra/transgender (HSWs) sex workers, and data from 8 major cities were used for analyses. Logistic regression was used to identify factors, including city of residence and mode of SW-client solicitation, contributing to the overlapping risks of drug injection and sexual interaction with PWID. The study comprised 8483 SWs (34.5% FSWs, 32.4% HSWs, and 33.1% MSWs). Among SWs who had sex with PWID, HSWs were 2.61 (95% confidence interval [CI], 1.19–5.74) and 1.99 (95% CI, 0.94–4.22) times more likely to inject drugs than MSWs and FSWs, respectively. There was up to a 3-fold difference in drug injecting probability, dependent on where and/or how the SW solicited clients. Compared with SWs in Larkana, the highest likelihood of drug injection use was among SWs in Multan (OR = 4.52; 95% CI: 3.27–6.26), followed by those in Lahore, Quetta, and Faisalabad. Heterogeneity exists in the overlapping patterns of HIV risk behaviors of SWs. The risk of drug injection among SWs also varies by city. Some means of sexual client solicitation may be along the pathway to overlapping HIV risk vulnerability due to increased likelihood of drug injection among SWs. There is a need to closely to monitor the mixing patterns between SWs and PWID and underlying structural factors, such as means of sexual client solicitation, that mediate HIV risk, and implement prevention programs customized to local subepidemics. PMID:27015178
Melesse, Dessalegn Y; Shafer, Leigh Anne; Shaw, Souradet Y; Thompson, Laura H; Achakzai, Baser K; Furqan, Sofia; Reza, Tahira; Emmanuel, Faran; Blanchard, James F
2016-03-01
Concerns remain regarding the heterogeneity in overlapping human immunodeficiency virus (HIV) risk behaviors among sex workers (SWs) in Pakistan; specifically, the degree to which SWs interact with people who inject drugs (PWID) through sex and/or needle sharing.Following an in-depth mapping performed in 2011 to determine the size and distribution of key populations at highest risk of HIV acquisition in Pakistan, a cross-sectional biological and behavioral survey was conducted among PWID, female (FSWs), male (MSWs), and hijra/transgender (HSWs) sex workers, and data from 8 major cities were used for analyses. Logistic regression was used to identify factors, including city of residence and mode of SW-client solicitation, contributing to the overlapping risks of drug injection and sexual interaction with PWID.The study comprised 8483 SWs (34.5% FSWs, 32.4% HSWs, and 33.1% MSWs). Among SWs who had sex with PWID, HSWs were 2.61 (95% confidence interval [CI], 1.19-5.74) and 1.99 (95% CI, 0.94-4.22) times more likely to inject drugs than MSWs and FSWs, respectively. There was up to a 3-fold difference in drug injecting probability, dependent on where and/or how the SW solicited clients. Compared with SWs in Larkana, the highest likelihood of drug injection use was among SWs in Multan (OR = 4.52; 95% CI: 3.27-6.26), followed by those in Lahore, Quetta, and Faisalabad.Heterogeneity exists in the overlapping patterns of HIV risk behaviors of SWs. The risk of drug injection among SWs also varies by city. Some means of sexual client solicitation may be along the pathway to overlapping HIV risk vulnerability due to increased likelihood of drug injection among SWs. There is a need to closely to monitor the mixing patterns between SWs and PWID and underlying structural factors, such as means of sexual client solicitation, that mediate HIV risk, and implement prevention programs customized to local subepidemics.
Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.
Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin
2016-03-25
The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.
Shedding light on serpent sight: the visual pigments of henophidian snakes.
Davies, Wayne L; Cowing, Jill A; Bowmaker, James K; Carvalho, Livia S; Gower, David J; Hunt, David M
2009-06-10
The biologist Gordon Walls proposed his "transmutation" theory through the 1930s and the 1940s to explain cone-like morphology of rods (and vice versa) in the duplex retinas of modern-day reptiles, with snakes regarded as the epitome of his hypothesis. Despite Walls' interest, the visual system of reptiles, and in particular snakes, has been widely neglected in favor of studies of fishes and mammals. By analyzing the visual pigments of two henophidian snakes, Xenopeltis unicolor and Python regius, we show that both species express two cone opsins, an ultraviolet-sensitive short-wavelength-sensitive 1 (SWS1) (lambda(max) = 361 nm) pigment and a long-wavelength-sensitive (LWS) (lambda(max) = 550 nm) pigment, providing the potential for dichromatic color vision. They also possess rod photoreceptors which express the usual rod opsin (Rh1) pigment with a lambda(max) at 497 nm. This is the first molecular study of the visual pigments expressed in the photoreceptors of any snake species. The presence of a duplex retina and the characterization of LWS, SWS1, and Rh1 visual pigments in henophidian snakes implies that "lower" snakes do not provide support for Walls' transmutation theory, unlike some "higher" (caenophidian) snakes and other reptiles, such as geckos. More data from other snake lineages will be required to test this hypothesis further.
Fermentation process tracking through enhanced spectral calibration modeling.
Triadaphillou, Sophia; Martin, Elaine; Montague, Gary; Norden, Alison; Jeffkins, Paul; Stimpson, Sarah
2007-06-15
The FDA process analytical technology (PAT) initiative will materialize in a significant increase in the number of installations of spectroscopic instrumentation. However, to attain the greatest benefit from the data generated, there is a need for calibration procedures that extract the maximum information content. For example, in fermentation processes, the interpretation of the resulting spectra is challenging as a consequence of the large number of wavelengths recorded, the underlying correlation structure that is evident between the wavelengths and the impact of the measurement environment. Approaches to the development of calibration models have been based on the application of partial least squares (PLS) either to the full spectral signature or to a subset of wavelengths. This paper presents a new approach to calibration modeling that combines a wavelength selection procedure, spectral window selection (SWS), where windows of wavelengths are automatically selected which are subsequently used as the basis of the calibration model. However, due to the non-uniqueness of the windows selected when the algorithm is executed repeatedly, multiple models are constructed and these are then combined using stacking thereby increasing the robustness of the final calibration model. The methodology is applied to data generated during the monitoring of broth concentrations in an industrial fermentation process from on-line near-infrared (NIR) and mid-infrared (MIR) spectrometers. It is shown that the proposed calibration modeling procedure outperforms traditional calibration procedures, as well as enabling the identification of the critical regions of the spectra with regard to the fermentation process.
The cosmic-ray shock structure problem for relativistic shocks
NASA Technical Reports Server (NTRS)
Webb, G. M.
1985-01-01
The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.
Kim, Jae Hwan Eric; Chrostowski, Lukas; Bisaillon, Eric; Plant, David V
2007-08-06
We demonstrate a Finite-Difference Time-Domain (FDTD) phase methodology to estimate resonant wavelengths in Fabry-Perot (FP) cavity structures. We validate the phase method in a conventional Vertical-Cavity Surface-Emitting Laser (VCSEL) structure using a transfer-matrix method, and compare results with a FDTD reflectance method. We extend this approach to a Sub-Wavelength Grating (SWG) and a Photonic Crystal (Phc) slab, either of which may replace one of the Distributed Bragg Reflectors (DBRs) in the VCSEL, and predict resonant conditions with varying lithographic parameters. Finally, we compare the resonant tunabilities of three different VCSEL structures, taking quality factors into account.
Sleep and stress in man: an approach through exercise and exposure to extreme environments.
Buguet, A; Cespuglio, R; Radomski, M W
1998-05-01
In this paper, the effects of exercise on human sleep (in temperate, cold, and hot climates) are compared with those of exposure to extreme environments (tropical, polar climates). Exercise has two effect: (i) when the exercise load is too heavy or if the subject is not trained to the exercise conditions, the hypothalamo-pituitary-adrenocortical axis (HPA) is strongly activated (somatic stress reaction), and a diachronic (delayed) decrease in total sleep time and slow-wave sleep (SWS) occurs with a synchronic (concomitant) sleep disruption (such as a decrease in REM sleep); (ii) a diachronic enhancement of SWS and (or) REM sleep occurs during moderate training and in athletes, with a moderate HPA activation (neurogenic stress reaction). Heat acclimatization (neurogenic stress response) results in a diachronic increase in SWS, contrary to acute heat exposure (somatic stress) which leads to a diachronic decrease in SWS. Nocturnal cold exposure (somatic and (or) neurogenic stress) provokes a synchronic decrease in REM sleep with an activation of stress hormones, which are reduced by previous acclimation (neurogenic pathway); SWS remains undisturbed in the cold, as it occurs at the beginning of the night before body cooling. In conclusion, when the brain can deal with the stressor (neurogenic stress), diachronic increases in SWS and (or) REM sleep occur. When these "central" mechanisms are overloaded, the classical "somatic" stress reaction occurs with diachronic and synchronic disruptions of the sleep structure.
ISAP: ISO Spectral Analysis Package
NASA Astrophysics Data System (ADS)
Ali, Babar; Bauer, Otto; Brauher, Jim; Buckley, Mark; Harwood, Andrew; Hur, Min; Khan, Iffat; Li, Jing; Lord, Steve; Lutz, Dieter; Mazzarella, Joe; Molinari, Sergio; Morris, Pat; Narron, Bob; Seidenschwang, Karla; Sidher, Sunil; Sturm, Eckhard; Swinyard, Bruce; Unger, Sarah; Verstraete, Laurent; Vivares, Florence; Wieprecht, Ecki
2014-03-01
ISAP, written in IDL, simplifies the process of visualizing, subsetting, shifting, rebinning, masking, combining scans with weighted means or medians, filtering, and smoothing Auto Analysis Results (AARs) from post-pipeline processing of the Infrared Space Observatory's (ISO) Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrometer (LWS) data. It can also be applied to PHOT-S and CAM-CVF data, and data from practically any spectrometer. The result of a typical ISAP session is expected to be a "simple spectrum" (single-valued spectrum which may be resampled to a uniform wavelength separation if desired) that can be further analyzed and measured either with other ISAP functions, native IDL functions, or exported to other analysis package (e.g., IRAF, MIDAS) if desired. ISAP provides many tools for further analysis, line-fitting, and continuum measurements, such as routines for unit conversions, conversions from wavelength space to frequency space, line and continuum fitting, flux measurement, synthetic photometry and models such as a zodiacal light model to predict and subtract the dominant foreground at some wavelengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Ning; Shen, Jun; Xiao, Tengjiao
2015-10-15
The emission of Eu{sup 3+} doped Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors could be tunable by the site symmetry of the activators and the excitation wavelengths. - Highlights: • The emission of Eu{sup 3+} depends on site symmetry and excitation wavelengths. • The color of the samples was tunable by structure and excitation wavelength. • The effect of W and Eu content on the properties of the samples was investigated. - Abstract: A series of Eu{sup 3+} substituted double-perovskite Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} phosphors were prepared by solid state reactions. The phase, photoluminescence and energy transfer of the phosphorsmore » were investigated by X-ray diffraction (XRD), photoluminescence (PL) and luminescence decay respectively. It is found that the emission of the Eu{sup 3+} substituted double perovskites depends on both the site symmetry of the activators and the excitation wavelengths. Based on the decay analysis of Sr{sub 2}CaW{sub x}Mo{sub 1−x}O{sub 6} matrix and Eu{sup 3+} doped samples, the energy transfer efficiencies between the host and activators Eu{sup 3+} were investigated. The results of the emission tunable phosphors indicate their potential applications in LEDs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang
Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM{sub 0n} modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM{sub 0n}. NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersionmore » equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.« less
Simon, Emmanuel G; Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre
2018-01-01
Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young's modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50-0.82), and the interobserver ICC for SWS 0.65 (0.37-0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures.
Callé, Samuel; Perrotin, Franck; Remenieras, Jean-Pierre
2018-01-01
Background Placental elasticity may be modified in women with placental insufficiency. Shear wave elastography (SWE) can measure this, using acoustic radiation force, but the safety of its use in pregnant women has not yet been demonstrated. Transient elastography (TE) is a safer alternative, but has not yet been applied to the placenta. Moreover, the dispersion of shear wave speed (SWS) as a function of frequency has received relatively little study for placental tissue, although it might improve the accuracy of biomechanical assessment. Objective To explore the feasibility and reproducibility of TE for placental analysis, to compare the values of SWS and Young’s modulus (YM) from TE and SWE, and to analyze SWS dispersion as a function of frequency ex vivo in normal placentas. Materials and methods Ten normal placentas were analyzed ex vivo by an Aixplorer ultrasound system as shear waves were generated by a vibrating plate and by using an Aixplorer system. The frequency analysis provided the value of the exponent n from a fractional rheological model applied to the TE method. We calculated intra- and interobserver agreement for SWS and YM with 95% prediction intervals, created Bland-Altman plots with 95% limits of agreement, and estimated the intraclass correlation coefficient (ICC). Main results The mean SWS was 1.80 m/s +/- 0.28 (standard deviation) with the TE method at 50 Hz and 1.82 m/s +/-0.13 with SWE (P = 0.912). No differences were observed between the central and peripheral regions of placentas with either TE or SWE. With TE, the intraobserver ICC for SWS was 0.68 (0.50–0.82), and the interobserver ICC for SWS 0.65 (0.37–0.85). The mean parameter n obtained from the fractional rheological model was 1.21 +/- 0.12, with variable values of n for any given SWS. Conclusions TE is feasible and reproducible on placentas ex vivo. The frequency analysis of SWS provides additional information about placental elasticity and appears to be able to distinguish differences between placental structures. PMID:29621270
Evidence for water vapor in Titan's atmosphere from ISO/SWS data
NASA Astrophysics Data System (ADS)
Coustenis, A.; Salama, A.; Lellouch, E.; Encrenaz, Th.; Bjoraker, G. L.; Samuelson, R. E.; de Graauw, Th.; Feuchtgruber, H.; Kessler, M. F.
1998-08-01
The infrared spectrum of Titan around 40 mu m was recorded in the grating mode of the Short Wavelength Spectrometer (SWS) of ISO, with a resolving power of about 1900. Two emission features appear at 43.9 and 39.4 mu m, where pure rotational water lines are expected. Line strengths are about 8 times the 1sigma statistical noise level. The H_2O vertical profile for water suggested by the photochemical model of Lara et al. (1996), rescaled by a factor of about 0.4(+0.3}_{-0.2) , is compatible with the data. The associated water mole fraction is about 8(+6}_{-4) x 10(-9) at an altitude of 400 km (column density of 2.6(+1.9}_{-1.6) x 10(14) mol cm(-2) above the surface). The inferred water influx at 700 km in Titan's atmosphere is in the range (0.8-2.8) x 10(6) mol cm(-2) s(-1) . Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) with the participation of NASA and ISAS. The SWS instrument (P.I. Th. de Graauw) is a joint project of the SRON and the MPE. RES would like to thank D. Hamilton for illuminating discussions regarding dust transport in the Saturn System.
NASA Astrophysics Data System (ADS)
Lu, Zhigang; Su, Zhicheng; Wei, Yanyu
2018-05-01
A double-ridge-loaded folded waveguide (DRL-FW) travelling wave tube (TWT) based on period-tapered structure is proposed. Through analysing the dispersion characteristics of the DRL-FW slow wave structure (SWS), the physical mechanism of the band-edge oscillation is obtained. Period-tapered SWS is proposed and analysed for verifying the feasibility in suppressing upper-band-edge oscillation and increasing the output power. Then the electromagnetic characteristics and the beam-wave interaction of TWT based on the period-tapered DRL-FW SWS are investigated. The calculation results predict that it potentially could provide continuous wave power over 600W from 29 GHz to 32 GHz without upper-band-edge oscillation. The bandwidth expands from 29-31GHz to 29-32GHz and electron efficiency is increased from more than 8.3% to more than 11%, while the range of operating voltage expands from 22kV-22.5kV to 22kV-24kV. The corresponding saturated gain can reach over 36.8 dB. In addition, we have carried out experimental tests on the transmission characteristics of period-tapered DRL-FW SWS. The cold test results show that the voltage stand-wave ratio (VSWR) is below 1.8 in the range of 29-32GHz. Good transmission characteristics greatly reduce the risk of reflection wave oscillation, thus improving the stability of DRL-FW TWT.
Lyons, Tara; Kerr, Thomas; Duff, Putu; Feng, Cindy; Shannon, Kate
2014-01-01
Despite increasing evidence of enhanced HIV risk among sexual minority populations, and sex workers (SWs) in particular, there remains a paucity of epidemiological data on the risk environments of SWs who identify as lesbian or bisexual. Therefore, this short report describes a study that examined the individual, interpersonal and structural associations with lesbian or bisexual identity among SWs in Vancouver, Canada. Analysis drew on data from an open prospective cohort of street and hidden off-street SWs in Vancouver. Bivariate and multivariable logistic regressions were used to examine the independent relationships between individual, interpersonal, work environment and structural factors and lesbian or bisexual identity. Of the 510 individuals in our sample, 95 (18.6%) identified as lesbian or bisexual. In multivariable analysis, reporting non-injection drug use in the last six months (adjusted odds ratio [AOR] = 2.89; 95% confidence intervals [CI] = 1.42, 5.75), youth ≤24 years of age (AOR = 2.43; 95% CI = 1.24, 4.73) and experiencing client-perpetrated verbal, physical and/or sexual violence in the last six months (AOR = 1.85; 95% CI = 1.15, 2.98) remained independently associated with lesbian/bisexual identity, after adjusting for potential confounders. The findings demonstrate an urgent need for evidence-based social and structural HIV prevention interventions. In particular, policies and programmes tailored to lesbian and bisexual youth and women working in sex work, including those that prevent violence and address issues of non-injection stimulant use are required.
NASA Technical Reports Server (NTRS)
Lambert, David L.
2003-01-01
A block grant supported several astronomers who executed observing programs using the Infrared Space Observatory (ISO). The ISO project in which Harriet Dinerstein participated was a study of sulfur and neon abundances in extragalactic H II regions using the ISO Short Wavelength Spectrometer (SWS). Evans and Jaffe, along with collaborators Ewine van Dishoeck and Wing-Fai Thi, and then graduate student Wenbin Li, carried out an in-depth study of the peripheral region of the molecular cloud L1204/S140, where the far ultraviolet radiation and the density are relatively low. Their observations test theories of photon-dominated regions (PDRs) in a regime that has been little explored. One ISO program was involved with PHT-32 observations of about a dozen young stars to search for extended emission that could be modeled with our dust-modeling-code at UT. The document reports on preliminary analysis of PHT 32 scanning of 10 pre-main-sequence stars at 50 and 100 microns. A small sample of R Coronae Borealis stars was observed with the SWS.
Hussein, Shereen
2018-04-26
Social workers (SWs) provide emotional and practical support to vulnerable service users who are likely to suffer from emotional trauma and mental health conditions. Stress and burnout levels are reported to be high among SWs, however, little is known about their relationships with different characteristics. The current article utilises unique and large dataset (n = 3786) on SWs working in adults and children's services to examine factors associated with burnout. Employing job-demand/resources model and structural equations modelling, we highlight the varying significant impact of work-engagement, administrative support and work experience as moderating factors to burnout across adult and children service specialism in this sample.
Introductory study on female condom use among sex workers in China.
Yimin, Cheng; Zhaohui, Li; Xianmi, Wang; Shiying, Wang; Lingzhi, Hu; Yueying, Xie; Xiaolan, Huang; Lifen, Xu; Yunzhen, Wu; Shaolan, Zheng; Yulian, Liu
2002-09-01
There is lack of barrier method use among sex workers (SWs) in China. Our objective was to find new ways to introduce female condoms (FCs) among SWs, and to increase knowledge of, support for, and use of this method in this population. We used the intervention study method and provided the SWs of experimental groups with information, education, and communication on FCs and provided them with FCs. We recruited 330 SWs as the participants of the study in Enping City, China. The selected 330 SWs were randomly divided into the experimental group (165 SWs to use female condom) and the others into the reference group (165 SWs to use male condom). Questionnaires were used to evaluate the intervention study. At the end of our study, 15 SWs were lost of follow-up, so only 315 were included in the analysis. After intervention, about 97% of SWs in the intervention group expressed that they would use FC in the future. The rate of SWs who reported liking FC increased from 60% at pre-intervention to 94% at post-intervention. The rate of SWs who considered their clients could accept FC increased from 27% to 92%, and the rate of SWs who were willing to recommend FC to others increased from 19% to 70%. In comparison with the first several uses, during last several uses about 80% of SWs expressed that it became easier to use FC. Our intervention increased knowledge of, positive attitudes towards, and correct use of FC in this population of SWs.
Deep sub-wavelength ultrasonic imaging
NASA Astrophysics Data System (ADS)
Amireddy, Kiran Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu
2018-04-01
There is much interest in improving the resolution of ultrasonic inspection, which suffers from large wavelengths typically in the range of millimeters, due to low value of speed of sound in solid media. The authors are interested in achieving this through holey structured metamaterial lenses, and have recently demonstrated an experimental subwavelength resolution of λ/25. However the previous work was in through-transmission mode with reception using Laser Doppler Vibrometer (LDV), which may not be suitable for practical applications. This paper discusses the use of optimized holey structured metalens to achieve a deep sub-wavelength imaging up to λ/18 in through-transmission mode, but using commercially available piezoelectric ultrasonic transducers for both generation and reception of ultrasound.
NASA Astrophysics Data System (ADS)
Li, Zefeng; Peng, Zhigang
2017-10-01
We measure shear wave splitting (SWS) parameters (i.e., fast direction and delay time) using 330,000 local earthquakes recorded by more than 400 stations of the Southern California Seismic Network (1995-2014). The resulting 232,000 SWS measurements (90,000 high-quality ones) provide a uniform and comprehensive database of local SWS measurements in Southern California. The fast directions at many stations are consistent with regional maximum compressional stress σHmax. However, several regions show clear deviations from the σHmax directions. These include linear sections along the San Andreas Fault and the Santa Ynez Fault, geological blocks NW to the Los Angeles Basin, regions around the San Jacinto Fault, the Peninsular Ranges near San Diego, and the Coso volcanic field. These complex patterns show that regional stresses and active faults cannot adequately explain the upper crustal anisotropy in Southern California. Other types of local structures, such as local rock types or tectonic features, also play significant roles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Yue; Wang, Liping, E-mail: liping.wang@asu.edu
2014-08-18
We numerically demonstrate a switchable metamaterial absorber/emitter by thermally turning on or off the excitation of magnetic resonance upon the phase transition of vanadium dioxide (VO{sub 2}). Perfect absorption peak exists around the wavelength of 5 μm when the excitation of magnetic resonance is supported with the insulating VO{sub 2} spacer layer. The wavelength-selective absorption is switched off when the magnetic resonance is disabled with metallic VO{sub 2} that shorts the top and bottom metallic structures. The resonance wavelength can be tuned with different geometry, and the switchable metamaterial exhibits diffuse behaviors at oblique angles. The results would facilitate the designmore » of switchable metamaterials for active control in energy and sensing applications.« less
Small band gap superlattices as intrinsic long wavelength infrared detector materials
NASA Technical Reports Server (NTRS)
Smith, Darryl L.; Mailhiot, C.
1990-01-01
Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.
Connors, Bret A; Evan, Andrew P; Handa, Rajash K; Blomgren, Philip M; Johnson, Cynthia D; Liu, Ziyue; Lingeman, James E
2016-09-01
Pretreating a pig kidney with 500 low-energy shock waves (SWs) before delivering a clinical dose of SWs (2000 SWs, 24 kV, 120 SWs/min) has been shown to significantly reduce the size of the hemorrhagic lesion produced in that treated kidney, compared with a protocol without pretreatment. However, since the time available for patient care is limited, we wanted to determine if fewer pretreatment SWs could be used in this protocol. As such, we tested if pretreating with 300 SWs can initiate the same reduction in renal lesion size as has been observed with 500 SWs. Fifteen female farm pigs were placed in an unmodified Dornier HM-3 lithotripter, where the left kidney of each animal was targeted for lithotripsy treatment. The kidneys received 300 SWs at 12 kV (120 SWs/min) followed immediately by 2000 SWs at 24 kV (120 SWs/min) focused on the lower pole. These kidneys were compared with kidneys given a clinical dose of SWs with 500 SW pretreatment, and without pretreatment. Renal function was measured both before and after SW exposure, and lesion size analysis was performed to assess the volume of hemorrhagic tissue injury (% functional renal volume, FRV) created by the 300 SW pretreatment regimen. Glomerular filtration rate fell significantly in the 300 SW pretreatment group by 1 hour after lithotripsy treatment. For most animals, low-energy pretreatment with 300 SWs significantly reduced the size of the hemorrhagic injury (to 0.8% ± 0.4%FRV) compared with the injury produced by a typical clinical dose of SWs. The results suggest that 300 pretreatment SWs in a voltage ramping treatment regimen can initiate a protective response in the majority of treated kidneys and significantly reduce tissue injury in our model of lithotripsy injury.
Fractal behavior of soil water storage at multiple depths
NASA Astrophysics Data System (ADS)
Ji, Wenjun; Lin, Mi; Biswas, Asim; Si, Bing C.; Chau, Henry W.; Cresswell, Hamish P.
2016-08-01
Spatiotemporal behavior of soil water is essential to understand the science of hydrodynamics. Data intensive measurement of surface soil water using remote sensing has established that the spatial variability of soil water can be described using the principle of self-similarity (scaling properties) or fractal theory. This information can be used in determining land management practices provided the surface scaling properties are kept at deep layers. The current study examined the scaling properties of sub-surface soil water and their relationship to surface soil water, thereby serving as supporting information for plant root and vadose zone models. Soil water storage (SWS) down to 1.4 m depth at seven equal intervals was measured along a transect of 576 m for 5 years in Saskatchewan. The surface SWS showed multifractal nature only during the wet period (from snowmelt until mid- to late June) indicating the need for multiple scaling indices in transferring soil water variability information over multiple scales. However, with increasing depth, the SWS became monofractal in nature indicating the need for a single scaling index to upscale/downscale soil water variability information. In contrast, all soil layers during the dry period (from late June to the end of the growing season in early November) were monofractal in nature, probably resulting from the high evapotranspirative demand of the growing vegetation that surpassed other effects. This strong similarity between the scaling properties at the surface layer and deep layers provides the possibility of inferring about the whole profile soil water dynamics using the scaling properties of the easy-to-measure surface SWS data.
Wavelength-tunable, sub-picosecond pulses from a passively Q-switched microchip laser system.
Lehneis, R; Steinmetz, A; Limpert, J; Tünnermann, A
2013-07-15
We present a novel concept to generate sub-picosecond pulses from a passively Q-switched Nd:YVO4 microchip laser system with an adjustable wavelength shift up to a few tens of nanometers around the original emission wavelength of 1064 nm. This concept comprises two stages: one that carries out a nonlinear compression of fiber-amplified microchip pulses and a subsequent stage in which the compressed pulses are coupled into a further waveguide structure followed by a bandpass filter. In a proof-of-principle experiment, pedestal-free 0.62 ps long pulses have been demonstrated with a wavelength shift to 1045 nm.
Argento, Elena; Duff, Putu; Bingham, Brittany; Chapman, Jules; Nguyen, Paul; Strathdee, Steffanie A.
2015-01-01
Community empowerment can be a powerful determinant of HIV risk among sex workers (SWs). This study modeled the impact of social cohesion on client condom refusal among SWs in Vancouver. Longitudinal data were drawn from a prospective cohort of SWs (2010–2013). Lippman and colleagues’ Social Cohesion Scale measured SWs’ connectedness (i.e., perception of mutual aid, trust, support). Multivariable logistic regression examined the independent effect of social cohesion on client condom refusal. Of 654 SWs, 22 % reported baseline client condom refusal and 34 % over 3 years. The baseline median social cohesion score was 24 (IQR 20–29, range 4–45). In the final confounding model, for every one-point increase in the social cohesion score, average odds of condom refusal decreased by 3 % (AOR 0.97; 95 % CI 0.95–0.99). Community empowerment can have a direct protective effect on HIV risk. These findings highlight the need for a legal framework that enables collectivization and SW-led efforts in the HIV response. PMID:26499335
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Zhi-Fang, E-mail: tongzhifang1998@126.com; Wei, Zhan-Long; Xiao, Cheng
The crystal structure, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} with varying Eu doping concentrations are computed by the density functional theory (DFT) and compared with experimental results. The results show that the lattice parameters of primitive cells of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} become smaller and Eu–N bond length shortens as Eu concentration increases. The band structure of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x} exhibits a direct optical band gap and it's propitious to luminescence. The energy differences from the lowest Eu 5d state to the lowest Eu 4f state decrease with increasing Eumore » concentrations. The analysis of simulative absorption spectra indicates that the electron transition from Eu 4f states to 5d states of both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. Under the coupling effect between Eu and Ba, Ba in BaSi{sub 2}O{sub 2}N{sub 2} exhibits longer wavelength absorption and increases absorption efficiency. The emission wavelength is deduced by measuring energy differences from the lowest Eu 5d state to the lowest Eu 4f state, and the result is in good agreement with experimental value within experimental Eu{sup 2+} doping range. - Graphical abstract: The structure and optical property of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT and its absorption mechanism is analysed. Results show that absorption peak α is from the host lattice absorption. The absorption peaks β, γ and δ are from Eu 4f to Eu 5d and Ba 6s 5d states. The absorption is attributed to the coupling effect of Eu and Ba atom. - Highlights: • The crystal, electronic structure and optical properties of BaSi{sub 2}O{sub 2}N{sub 2}:Eu{sup 2+} are computed by DFT. • The lattice parameters of primitive cells reduces and Eu–N bond length shortens as Eu{sup 2+} increases. • The energy gap from Eu 5d state to Eu 4f state decrease with increasing Eu concentrations. • Both Eu and Ba atoms contributes to the absorption of Ba{sub 1−x}Si{sub 2}O{sub 2}N{sub 2}:Eu{sub x}. • The deduced emission wavelength is in good agreement with experimental value.« less
Handa, Rajash K; Bailey, Michael R; Paun, Marla; Gao, Sujuan; Connors, Bret A; Willis, Lynn R; Evan, Andrew P
2009-05-01
To test the hypothesis that the pretreatment of the kidney with low-energy shock waves (SWs) will induce renal vasoconstriction sooner than a standard clinical dose of high-energy SWs, thus providing a potential mechanism by which the pretreatment SW lithotripsy (SWL) protocol reduces tissue injury. Female farm pigs (6-weeks-old) were anaesthetized with isoflurane and the lower pole of the right kidney treated with SWs using a conventional electrohydraulic lithotripter (HM3, Dornier GmbH, Germany). Pulsed Doppler ultrasonography was used to measure renal resistive index (RI) in blood vessels as a measure of resistance/impedance to blood flow. RI was recorded from one intralobar artery located in the targeted pole of the kidney, and measurements taken from pigs given sham SW treatment (Group 1; no SWs, four pigs), a standard clinical dose of high-energy SWs (Group 2; 2000 SWs, 24 kV, 120 SWs/min, seven pigs), low-energy SW pretreatment followed by high-energy SWL (Group 3; 500 SWs, 12 kV, 120 SWs/min + 2000 SWs, 24 kV, 120 SWs/min, eight pigs) and low-energy SW pretreatment alone (Group 4; 500 SWs, 12 kV, 120 SWs/min, six pigs). Baseline RI (approximately 0.61) was similar for all groups. Pigs receiving sham SW treatment (Group 1) had no significant change in RI. A standard clinical dose of high-energy SWs (Group 2) did not significantly alter RI during treatment, but did increase RI at 45 min after SWL. Low-energy SWs did not alter RI in Group 3 pigs, but subsequent treatment with a standard clinical dose of high-energy SWs resulted in a significantly earlier (at 1000 SWs) and greater (two-fold) rise in RI than that in Group 2 pigs. This rise in RI during the low/high-energy SWL protocol was not due to a delayed vasoconstrictor response of pretreatment, as low-energy SW treatment alone (Group 4) did not increase RI until 65 min after SWL. The pretreatment protocol induces renal vasoconstriction during the period of SW application whereas the standard protocol shows vasoconstriction occurring after SWL. Thus, the earlier and greater rise in RI during the pretreatment protocol may be causally associated with a reduction in tissue injury.
Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor
Connors, Bret A.; McAteer, James A.; Evan, Andrew P.; Blomgren, Philip M.; Handa, Rajash K.; Johnson, Cynthia D.; Gao, Sujuan; Pishchalnikov, Yuri A.; Lingeman, James E.
2012-01-01
OBJECTIVE To assess renal injury in a pig model after treatment with a clinical dose of shock waves using a narrow focal zone (≈ 3 mm) lithotriptor (Modulith SLX, Karl Storz Lithotripsy). MATERIALS AND METHODS The left kidney of anaesthetized female pigs were treated with 2000 or 4000 shock waves (SWs) at 120 SWs/min, or 2000 SWs at 60 SWs/min using the Storz SLX. Measures of renal function (glomerular filtration rate and renal plasma flow) were collected before and 1 h after shock wave lithotripsy (SWL) and the kidneys were harvested for histological analysis and morphometric quantitation of haemorrhage in the renal parenchyma with lesion size expressed as a percentage of functional renal volume (FRV). A fibre-optic probe hydrophone was used to determine acoustic output and map the focal width of the lithotriptor. Data for the SLX were compared with data from a previously published study in which pigs of the same age (7–8 weeks) were treated (2000 SWs at 120 or 60 SWs/min) using an unmodified Dornier HM3 lithotriptor. RESULTS Treatment with the SLX produced a highly focused lesion running from cortex to medulla and often spanning the full thickness of the kidney. Unlike the diffuse interstitial haemorrhage observed with the HM3, the SLX lesion bore a blood-filled core of near-complete tissue disruption devoid of histologically recognizable kidney structure. Despite the intensity of tissue destruction at the core of the lesion, measures of lesion size based on macroscopic determination of haemorrhage in the parenchyma were not significantly different from kidneys treated using the HM3 (2000 SWs, 120 SWs/min: SLX, 1.86 ± 0.52% FRV; HM3, 3.93 ± 1.29% FRV). Doubling the SW dose of the SLX from 2000 to 4000 SWs did not significantly increase lesion size. In addition, slowing the firing rate of the SLX to 60 SWs/min did not reduce the size of the lesion (2.16 ± 0.96% FRV) compared with treatment at 120 SWs/min, as was the case with the HM3 (0.42 ± 0.23% FRV vs 3.93 ± 1.29% FRV). Renal function fell significantly below baseline in all treated groups but was similar for both lithotriptors. Focal width of the SLX (≈ 2.6 mm) was about one-third that of the HM3 (≈ 8 mm) while peak pressures were higher (SLX at power level 9: P+ ≈ 90 MPa, P− ≈ −12 MPa; HM3 at 24 kV: P+ ≈ 46 MPa, P−≈−8 MPa). CONCLUSIONS The lesion produced by the SLX (narrow focal width, high acoustic pressure) was a more focused, more intense form of tissue damage than occurs with the HM3. Slowing the SW rate to 60 SWs/min, a strategy shown to be effective in reducing injury with the HM3, was not protective with the SLX. These findings suggest that the focal width and acoustic output of a lithotriptor affect the renal response to SWL. PMID:22519983
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuya; Takaoka, Toshimitsu; Fukui, Hidetoshi; Haruta, Yasuyuki; Yamashita, Tomoya; Kitagawa, Seiichiro
2016-03-01
In general, thin-film coating process is widely applied on optical lens surface as anti-reflection function. In normal production process, at first lens is manufactured by molding, then anti-reflection is added by thin-film coating. In recent years, instead of thin-film coating, sub-wavelength structures adding on surface of molding die are widely studied and development to keep anti-reflection performance. As merits, applying sub-wavelength structure, coating process becomes unnecessary and it is possible to reduce man-hour costs. In addition to cost merit, these are some technical advantages on this study. Adhesion of coating depends on material of plastic, and it is impossible to apply anti-reflection function on arbitrary surface. Sub-wavelength structure can solve both problems. Manufacturing method of anti-reflection structure can be divided into two types mainly. One method is with the resist patterning, and the other is mask-less method that does not require patterning. What we have developed is new mask-less method which is no need for resist patterning and possible to impart an anti-reflection structure to large area and curved lens surface, and can be expected to apply to various market segments. We report developed technique and characteristics of production lens.
Cued Memory Reactivation During SWS Abolishes the Beneficial Effect of Sleep on Abstraction.
Hennies, Nora; Lambon Ralph, Matthew A; Durrant, Simon J; Cousins, James N; Lewis, Penelope A
2017-08-01
Extracting regularities from stimuli in our environment and generalizing these to new situations are fundamental processes in human cognition. Sleep has been shown to enhance these processes, possibly by facilitating reactivation-triggered memory reorganization. Here, we assessed whether cued reactivation during slow wave sleep (SWS) promotes the beneficial effect of sleep on abstraction of statistical regularities. We used an auditory statistical learning task, in which the benefit of sleep has been firmly established. Participants were exposed to a probabilistically determined sequence of tones and subsequently tested for recognition of novel short sequences adhering to this same statistical pattern in both immediate and delayed recall sessions. In different groups, the exposure stream was replayed during SWS in the night between the recall sessions (SWS-replay group), in wake just before sleep (presleep replay group), or not at all (control group). Surprisingly, participants who received replay in sleep performed worse in the delayed recall session than the control and the presleep replay group. They also failed to show the association between SWS and task performance that has been observed in previous studies and was present in the controls. Importantly, sleep structure and sleep quality did not differ between groups, suggesting that replay during SWS did not impair sleep but rather disrupted or interfered with sleep-dependent mechanisms that underlie the extraction of the statistical pattern. These findings raise important questions about the scope of cued memory reactivation and the mechanisms that underlie sleep-related generalization. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Automated selective disruption of slow wave sleep.
Ooms, Sharon J; Zempel, John M; Holtzman, David M; Ju, Yo-El S
2017-04-01
Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10s live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5-4Hz) band, particularly in the 0.5-2Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4-8Hz) and alpha (8-12Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6min, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. Copyright © 2017 Elsevier B.V. All rights reserved.
Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands
NASA Astrophysics Data System (ADS)
Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.
2017-12-01
With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.
Rink, John P.
1977-01-01
The disclosure relates to a pulsed gas laser comprising an optical resonant cavity, a CO.sub.2 lasing medium, structure for containing the CO.sub.2 lasing medium within the optical cavity and a device for causing a population inversion in the lasing medium, with a novel improvement comprising structure for causing a laser pulse comprising a wavelength in the near 14 .mu.m and near 16 .mu.m range. The structure for cooling the CO.sub.2 lasing medium to less than about -40.degree. C as well is a structure for pumping the maximum inversion of CO.sub.2 molecules within the lasing medium by minimizing the population in the 010 level.
Tozaki, Mitsuhiro; Saito, Masahiro; Benson, John; Fan, Liexiang; Isobe, Sachiko
2013-12-01
This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p < 0.0001). Sensitivity, specificity and accuracy were 86% (36/42), 90% (37/41) and 88% (73/83), respectively, for SP-SWS, and 88% (37/42), 93% (38/41) and 90% (75/83), respectively, for 2D-SWS. It is concluded that 2D-SWS is a useful diagnostic tool for differentiating malignant from benign solid breast masses. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoze; Song, Wei; Tan, Weibing
2016-07-15
A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reducedmore » gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.« less
NASA Astrophysics Data System (ADS)
Shcherbakova, D. A.; Debusschere, N.; Caenen, A.; Iannaccone, F.; Pernot, M.; Swillens, A.; Segers, P.
2017-07-01
Shear wave elastography (SWE) is an ultrasound (US) diagnostic method for measuring the stiffness of soft tissues based on generated shear waves (SWs). SWE has been applied to bulk tissues, but in arteries it is still under investigation. Previously performed studies in arteries or arterial phantoms demonstrated the potential of SWE to measure arterial wall stiffness—a relevant marker in prediction of cardiovascular diseases. This study is focused on numerical modelling of SWs in ex vivo equine aortic tissue, yet based on experimental SWE measurements with the tissue dynamically loaded while rotating the US probe to investigate the sensitivity of SWE to the anisotropic structure. A good match with experimental shear wave group speed results was obtained. SWs were sensitive to the orthotropy and nonlinearity of the material. The model also allowed to study the nature of the SWs by performing 2D FFT-based and analytical phase analyses. A good match between numerical group velocities derived using the time-of-flight algorithm and derived from the dispersion curves was found in the cross-sectional and axial arterial views. The complexity of solving analytical equations for nonlinear orthotropic stressed plates was discussed.
Handa, Rajash K.; Bailey, Michael R.; Paun, Marla; Gao, Sujuan; Connors, Bret A.; Willis, Lynn R.; Evan, Andrew P.
2008-01-01
Introduction and Objective A great deal of effort has been focused on developing new treatment protocols to reduce tissue injury to improve the safety of shock wave lithotripsy. This has led to the discovery that pretreatment of the kidney with a series of low-energy shock waves (SWs) will substantially reduce the hemorrhagic lesion that normally results from a standard clinical dose of high-energy SWs. Because renal blood flow is reduced following low- or high-energy SWL, and may therefore contribute to this effect, this study was designed to test the hypothesis that the pretreatment protocol induces renal vasoconstriction sooner than the standard protocol for SW delivery. Methods Female farm pigs (6-weeks old) were anesthetized with isoflurane and the lower pole of the right kidney treated with SWs using the HM3 lithotripter. Pulsed Doppler sonography was used to measure resistive index (RI) in blood vessels as a reflection of resistance/impedance to blood flow. RI was recorded from a single intralobar artery located in the targeted pole of the kidney, and measurements taken from pigs given sham SW treatment (Group 1; no SWs, n = 4), a standard clinical dose of high-energy SWs (Group 2; 2000 SWs, 24 kV, 120 SWs/min, n = 7), low-energy SW pretreatment followed by high-energy SWL (Group 3; 500 SWs, 12 kV, 120 SWs/min + 2000 SWs, 24 kV, 120 SWs/min, n = 8) and low-energy SW pretreatment alone (Group 4; 500 SWs, 12 kV, 120 SWs/min, n = 6). Results Baseline RI (~ 0.61) was similar for all groups. Pigs receiving sham SW treatment (Group 1) had no significant change in RI. A standard clinical dose of high-energy SWs (Group 2) did not significantly alter RI during treatment, but did increase RI at 45-min into the post-SWL period. Low-energy SWs did not alter RI in Group 3 pigs, but subsequent treatment with a standard clinical dose of high-energy SWs resulted in a significantly earlier (at 1000 SWs) and greater (two-fold) rise in RI than that observed in Group 2 pigs. This rise in RI during the low/high-energy SWL treatment protocol was not due to a delayed vasoconstrictor response of pretreatment, as low-energy SW treatment alone (Group 4) did not increase RI until 65 min into the post-SWL period. Conclusions The pretreatment protocol induces renal vasoconstriction during the period of SW application whereas the standard protocol shows vasoconstriction occurring only during the post-SWL period. Thus the earlier and greater rise in RI during the pretreatment protocol may be causally associated with a reduction in tissue injury. PMID:19154458
2006-10-01
2004); (A) autoshape (see text). The number in brackets is the wavelength (in microns) at which that segment ends. The first segment starts at 1 pm...and is produced with autoshape . Where available, the Strecker et al. (1979) data cover 1.2-2.36 pm; otherwise, autoshape is used. The SWS spectra all...uncertainties are listed Table 2. The stars in parameter function autoshape , which was developed to fit the Table 1 are original Cohen et al. secondary
Tamm plasmon sub-wavelength structuration for loss reduction and resonance tuning
NASA Astrophysics Data System (ADS)
Gubaydullin, A. R.; Symonds, C.; Benoit, J.-M.; Ferrier, L.; Benyattou, T.; Jamois, C.; Lemaître, A.; Senellart, P.; Kaliteevski, M. A.; Bellessa, J.
2017-12-01
We have demonstrated experimentally and theoretically that losses in Tamm plasmon structures can be reduced by using a subwavelength structuration of the metal layer. The structures consist of a GaAs/Al0.95Ga0.05As Bragg reflector covered with a sub-wavelength silver grating. An active quantum dot layer is inserted to perform photoluminescence experiments. Experimental results show that the quality factor of the Tamm plasmon mode with grating increases substantially, with respect to the same structure without a grating. Moreover, a fine-tuning of the Tamm spectral position is obtained by changing the grating parameters. Finite element method simulations are in good agreement with the experimental values. Our results will promote the realization of lasing with the TP based devices at room temperature.
Automated selective disruption of slow wave sleep
Ooms, Sharon J.; Zempel, John M.; Holtzman, David M.; Ju, Yo-El S.
2017-01-01
Background Slow wave sleep (SWS) plays an important role in neurophysiologic restoration. Experimentally testing the effect of SWS disruption previously required highly time-intensive and subjective methods. Our goal was to develop an automated and objective protocol to reduce SWS without affecting sleep architecture. New Method We developed a custom Matlab™ protocol to calculate electroencephalogram spectral power every 10 seconds live during a polysomnogram, exclude artifact, and, if measurements met criteria for SWS, deliver increasingly louder tones through earphones. Middle-aged healthy volunteers (n=10) each underwent 2 polysomnograms, one with the SWS disruption protocol and one with sham condition. Results The SWS disruption protocol reduced SWS compared to sham condition, as measured by spectral power in the delta (0.5–4 Hz) band, particularly in the 0.5–2 Hz range (mean 20% decrease). A compensatory increase in the proportion of total spectral power in the theta (4–8 Hz) and alpha (8–12 Hz) bands was seen, but otherwise normal sleep features were preserved. N3 sleep decreased from 20±34 to 3±6 minutes, otherwise there were no significant changes in total sleep time, sleep efficiency, or other macrostructural sleep characteristics. Comparison with existing method This novel SWS disruption protocol produces specific reductions in delta band power similar to existing methods, but has the advantage of being automated, such that SWS disruption can be performed easily in a highly standardized and operator-independent manner. Conclusion This automated SWS disruption protocol effectively reduces SWS without impacting overall sleep architecture. PMID:28238859
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yukun; Wang, Shuai; Zheng, Min
2015-10-14
In this paper, gallium nitride (GaN) based white light-emitting diodes (WLEDs) with modulated quantities of blue (In{sub 0.15}Ga{sub 0.85}N) quantum wells (QWs) and cyan QWs (In{sub 0.18}Ga{sub 0.82}N) in multiple QW (MQW) structures have been investigated numerically and experimentally. It is demonstrated that the optical performance of LEDs is sensitive to the quantities of cyan QWs in dual-wavelength MQW structures. Compared to the LEDs with respective 0, 4, and 8 cyan QWs (12 QWs in total), the optical performance of the sample with 6 cyan QWs is the best. The deterioration of the optical performance in the sample with lessmore » (4 pairs) cyan QWs or more (8 pairs) cyan QWs than 6 cyan QWs may be ascribed to weakened reservoir effect or more defects induced. Compared to conventional blue LEDs (12 blue QWs), the sample with 6 cyan QWs could effectively suppress the efficiency droop (the experimental droop ratio decreases from 50.3% to 39.5% at 80 A/cm{sup 2}) and significantly improve the color rendering index (CRI, increases from 66.4 to 77.0) simultaneously. We attribute the droop suppression to the strengthened reservoir effect and carrier confinement of deeper QWs (higher indium composition) incorporated in the dual-wavelength MQW structures, which lead to the better hole spreading and enhanced radiative recombination. Meanwhile, the remarkable experimental CRI improvement may result from the wider full-width at half-maximum of electroluminescence spectra and higher cyan intensity in WLED chips with dual-wavelength MQW structures.« less
Study on W-band sheet-beam traveling-wave tube based on flat-roofed sine waveguide
NASA Astrophysics Data System (ADS)
Fang, Shuanzhu; Xu, Jin; Jiang, Xuebing; Lei, Xia; Wu, Gangxiong; Li, Qian; Ding, Chong; Yu, Xiang; Wang, Wenxiang; Gong, Yubin; Wei, Yanyu
2018-05-01
A W-band sheet electron beam (SEB) traveling-wave tube (TWT) based on flat-roofed sine waveguide slow-wave structure (FRSWG-SWS) is proposed. The sine wave of the metal grating is replaced by a flat-roofed sine wave around the electron beam tunnel. The slow-wave characteristics including the dispersion properties and interaction impedance have been investigated by using the eigenmode solver in the 3-D electromagnetic simulation software Ansoft HFSS. Through calculations, the FRSWG SWS possesses the larger average interaction impedance than the conventional sine waveguide (SWG) SWS in the frequency range of 86-110 GHz. The beam-wave interaction was studied and particle-in-cell simulation results show that the SEB TWT can produce output power over 120 W within the bandwidth ranging from 90 to 100 GHz, and the maximum output power is 226 W at typical frequency 94 GHz, corresponding electron efficiency of 5.89%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.
Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less
Bull’s-Eye Structure with a Sub-Wavelength Circular Aperture
2013-08-30
experimentation. Bull’s-eye structures were fabricated with high precision using a CNC lathe machine and a thermal evaporator. Then, quality of...periodic grooves in the 3-mm-wavelength bull’s-eye structure were created with a CNC lathe on a Teflon or high-density polyethylene (HDPE) substrate... CNC lathe . Figure 26 (far right) shows the cross section of the bull’s-eye structure with six periodic grooves. By clicking on “Preferences” in
Tailorable infrared sensing device with strain layer superlattice structure
Cheng, Li-Jen
1987-12-08
An infrared photodetector is formed of a heavily doped p-type Ge.sub.x Si.sub.1-x /Si superlattice in which x is pre-established during manufacture in the range 0 to 100 percent. A custom tailored photodetector that can differentiate among close wavelengths in the range of 2.7 to 50 microns is fabricated by appropriate selection of the alloy constituency value, x, to establish a specific wavelength at which photodetection cut-off will occur.
Dutta, Sudeshna; Rieche, Franziska; Eckl, Nina; Duch, Carsten; Kretzschmar, Doris
2016-03-01
Mutations in Drosophila Swiss cheese (SWS) or its vertebrate orthologue neuropathy target esterase (NTE), respectively, cause progressive neuronal degeneration in Drosophila and mice and a complex syndrome in humans that includes mental retardation, spastic paraplegia and blindness. SWS and NTE are widely expressed in neurons but can also be found in glia; however, their function in glia has, until now, remained unknown. We have used a knockdown approach to specifically address SWS function in glia and to probe for resulting neuronal dysfunctions. This revealed that loss of SWS in pseudocartridge glia causes the formation of multi-layered glial whorls in the lamina cortex, the first optic neuropil. This phenotype was rescued by the expression of SWS or NTE, suggesting that the glial function is conserved in the vertebrate protein. SWS was also found to be required for the glial wrapping of neurons by ensheathing glia, and its loss in glia caused axonal damage. We also detected severe locomotion deficits in glial sws-knockdown flies, which occurred as early as 2 days after eclosion and increased further with age. Utilizing the giant fibre system to test for underlying functional neuronal defects showed that the response latency to a stimulus was unchanged in knockdown flies compared to controls, but the reliability with which the neurons responded to increasing frequencies was reduced. This shows that the loss of SWS in glia impairs neuronal function, strongly suggesting that the loss of glial SWS plays an important role in the phenotypes observed in the sws mutant. It is therefore likely that changes in glia also contribute to the pathology observed in humans that carry mutations in NTE. © 2016. Published by The Company of Biologists Ltd.
A mechanism for upper airway stability during slow wave sleep.
McSharry, David G; Saboisky, Julian P; Deyoung, Pam; Matteis, Paul; Jordan, Amy S; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul
2013-04-01
The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Sleep laboratory. Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. SWS. Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS.
Dillman, Jonathan R; Smith, Ethan A; Davenport, Matthew S; DiPietro, Michael A; Sanchez, Ramon; Kraft, Kate H; Brown, Richard K J; Rubin, Jonathan M
2015-10-01
To determine if ultrasonographic (US) renal shear-wave speed (SWS) measurements obtained either before or after intravenous diuretic administration can be used to discriminate obstructive hydronephrosis from unobstructive hydronephrosis in children, with diuretic renal scintigraphy as the reference standard. Institutional review board approval and parental informed consent were obtained for this HIPAA-compliant prospective cross-sectional blind comparison with a reference standard. Between November 2012 and September 2014, 37 children (mean age, 4.1 years; age range, 1 month to 17 years) underwent shear-wave elastography of the kidneys immediately before and immediately after diuretic renal scintigraphy (reference standard for presence of urinary tract obstruction). Median SWS measurements (in meters per second), as well as change in median SWS (median SWS after diuretic administration minus median SWS before diuretic administration) were correlated with the amount of time required for kidney radiotracer activity to fall by 50% after intravenous administration of the diuretic (T1/2). Median SWS measurements were compared with degree of obstruction and degree of hydronephrosis with analysis of variance. Receiver operating characteristic (ROC) curves were created. Radiotracer T1/2 values after diuretic administration did not correlate with median SWS measurements obtained before (r = -0.08, P = .53) or after (r = -0.0004, P >.99) diuretic administration, nor did they correlate with intraindividual change in median SWS (r = 0.07, P = .56). There was no significant difference in pre- or postdiuretic median SWS measurements between kidneys with scintigraphic evidence of no, equivocal, or definite urinary tract obstruction (P > .5) or for median SWS measurements between kidneys with increasing degree of hydronephrosis (P > .5). ROC curves showed poor diagnostic performance of median SWS in discerning no, equivocal, or definite urinary tract obstruction (area under the ROC curve ranged from 0.50 to 0.62). US SWS measurements did not enable discrimination of obstructive hydronephrosis from unobstructive hydronephrosis in children. (©) RSNA, 2015 Online supplemental material is available for this article.
Design and fabrication of sub-wavelength anti-reflection grating
NASA Astrophysics Data System (ADS)
Zou, Wenlong; Li, Chaoming; Chen, Xinrong; Cai, Zhijian; Wu, Jianhong
2018-01-01
In the high power laser system, the reflection of optical surface has a strong impact on the efficiency for luminous energy utilization. Fresnel reflection can be effectively suppressed by antireflection film. For that, the anti-reflection film is one of the important optical elements in high power laser system. The common preparation methods of anti-reflection film include monolayer film, multilayer film and sub-wavelength grating. The effectiveness of monolayer is unsatisfactory, and its application spectrum bandwidth is very narrow. The preparation process of multilayer film is complex and it is very expensive. The emerging technology of fabrication anti-reflection film is sub-wavelength grating. The zero order transmission diffraction efficiency depends on the period, etching depth and duty cycle of the grating. The structure parameters of antireflection grating were designed and optimized under small angle incidence of 351nm based on rigorous coupled wave analysis method. The impaction of zero order reflection diffraction and zero order transmission diffraction efficiency on period, duty cycle and etching depth of grating was discussed in detail in this paper. The sub-wavelength anti-reflection grating was fabricated by holographic and ion etching method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadofyev, Yu. G.; Samal, N.; Andreev, B. A., E-mail: Boris@ipm.sci-nnov.ru
Optimum conditions for the growth of the GaAs{sub 1-x}Sb{sub x}/GaAs heterostructures by the method of molecular-bean epitaxy are determined; it is shown that effective long-wavelength photoluminescence at T = 300 K can be obtained at wavelengths as long as {lambda} = 1.3 {mu}m by increasing the antimony incorporation. As the excitation power is increased, the appearance of a short-wavelength line (in addition to a shift of a photoluminescence maximum to shorter wavelengths characteristic of the type II heterojunctions) related to direct optical transitions in the real space takes place; this relation is confirmed by the results of studying the photoluminescencemore » spectra with subpicosecond and nanosecond time resolution in the case of pulsed excitation.« less
Chen, Tuo; He, Sailing
2014-08-11
Manipulating the circular polarization of light is of great importance in chemistry and biology, as chiral molecules exhibit different physiological properties when exposed to different circularly polarized waves. Here we suggest a graphene/dielectric-stacked structure, which has both the properties of an epsilon-near-zero material and the high Hall conductivity of graphene. The proposed sub-wavelength structure demonstrates efficient manipulation of circular polarization properties of light. In a quite broad frequency range and at a large oblique incidence angle, the present magnetically active structure is transparent for one circularly polarized wave, and opaque for another. Such an effect can be further tuned by changing the magnitude of the applied magnetic field and chemical potential of graphene.
Mtetwa, Sibongile; Busza, Joanna; Davey, Calum; Wong-Gruenwald, Ramona; Cowan, Frances
2015-08-16
Community mobilization among female sex workers (SWs) is recognized as an effective strategy to empower SWs and increase their uptake of health services. Activities focus on increasing social cohesion between SWs by building trust, strengthening networks, and encouraging shared efforts for mutual gain. Several studies, however, suggest that high levels of interpersonal competition between SWs can pose a barrier to collective action and support. We conducted a study to examine levels of perceived competition between SWs in Mutare, Hwange and Victoria Falls in Zimbabwe in order to inform development of a community-based intervention for HIV prevention and treatment. This paper focuses on our qualitative findings and their implications for the design of HIV programming in the Zimbabwean context. Following a respondent driven sampling (RDS) survey, we explored issues related to social cohesion amongst SWs in Mutare, Hwange and Victoria Falls through in-depth interviews conducted with 22 SWs. Interviews examined dynamics of SWs' relationships and extent of social support, and were analyzed using thematic content analysis using the constant comparative method. Findings are contextualised against descriptive data extracted from the survey, which was analysed using Stata 12, adjusting for RDS. Across all sites, women described protecting each other at night, advising each other about violent or non-paying clients, and paying fines for each other following arrest. In Mutare, women gave additional examples, including physically attacking problem clients, treatment adherence support and shared saving schemes. However, interviews also highlighted fierce competition between women and deep mistrust. This reflects the reported mix of competition and support from the survey of 836 women (Mutare n = 370, Hwange n = 237, Victoria Falls n = 229). In Mutare, 92.8 % of SWs agreed there was a lot of competition; 87.9 % reported that SWs support each other. This contrasted with Victoria Falls and Hwange where fewer agreed there was competition between SWs (70.5 % and 78.0 %), but also fewer reported that SWs support each other at work (55.2 % and 51.2 %). Women reported being most likely to support each other when confronted with serious danger but maintained high levels of competition for clients, suggesting competition at work does not represent a barrier to support. Examples of practical assistance between SWs provide entry points for our planned community mobilization activities, which aim to broaden trust and support among SWs while acknowledging their professional competition.
NASA Astrophysics Data System (ADS)
Kong, Fanrong; Chen, Peiqi; Nie, Qiuyue; Zhang, Xiaoning; Zhang, Zhen; Jiang, Binhao
2018-02-01
The modulation and enhancement effect of sub-wavelength plasma structures on compact antennas exhibits obvious technological advantage and considerable progress. In order to extend the availability of this technology under complex and actual environment with inhomogeneous plasma structure, a numerical simulation analysis based on finite element method has been conducted in this paper. The modulation function of the antenna radiation with sub-wavelength plasma layer located at different positions was investigated, and the inhomogeneous plasma layer with multiple electron density distribution profiles were employed to explore the effect of plasma density distribution on the antenna radiation. It has been revealed that the optical near-field modulated distance and reduced plasma distribution are more beneficial to enhance the radiation. On the basis above, an application-focused research about communication through the plasma sheath surrounding a hypersonic vehicle has been carried out aiming at exploring an effective communication window. The relevant results devote guiding significance in the field of antenna radiation modulation and enhancement, as well as the development of communication technology in hypersonic flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parr, A.C.; Hardis, J.E.; Southworth, S.H.
1988-01-15
Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less
NASA Astrophysics Data System (ADS)
Tsibidis, George D.; Mimidis, Alexandros; Skoulas, Evangelos; Kirner, Sabrina V.; Krüger, Jörg; Bonse, Jörn; Stratakis, Emmanuel
2018-01-01
We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications.
NASA Astrophysics Data System (ADS)
Bigeon, John; Huby, Nolwenn; Duvail, Jean-Luc; Bêche, Bruno
2014-04-01
We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm-1 by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.
Bigeon, John; Huby, Nolwenn; Duvail, Jean-Luc; Bêche, Bruno
2014-05-21
We report photonic concepts related to injection and sub-wavelength propagation in nanotubes, an unusual but promising geometry for highly integrated photonic devices. Theoretical simulation by the finite domain time-dependent (FDTD) method was first used to determine the features of the direct light injection and sub-wavelength propagation regime within nanotubes. Then, the injection into nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with a sub-micronic radius of curvature, as theoretically expected from FDTD simulations. The propagation losses in a single SU8 nanotube were determined by using a comprehensive set-up and a protocol for optical characterization. The attenuation coefficient has been evaluated at 1.25 dB mm(-1) by a cut-back method transposed to such nanostructures. The mechanisms responsible for losses in nanotubes were identified with FDTD theoretical support. Both injection and cut-back methods developed here are compatible with any sub-micronic structures. This work on SU8 nanotubes suggests broader perspectives for future nanophotonics.
Imaging of sub-wavelength structures radiating coherently near microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu
2016-02-01
Using a two-dimensional model, we show that the optical images of a sub-wavelength object depend strongly on the excitation of its electromagnetic modes. There exist modes that enable the resolution of the object features smaller than the classical diffraction limit, in particular, due to the destructive interference. We propose to use such modes for super-resolution of resonant structures such as coupled cavities, metal dimers, or bowties. A dielectric microsphere in contact with the object forms its magnified image in a wide range of the virtual image plane positions. It is also suggested that the resonances may significantly affect the resolutionmore » quantification in recent experimental studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Jui-Yuan
2010-10-19
Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to developmore » better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.« less
Single- and multi-pulse formation of surface structures under static femtosecond irradiation
NASA Astrophysics Data System (ADS)
Guillermin, M.; Garrelie, F.; Sanner, N.; Audouard, E.; Soder, H.
2007-07-01
Femtosecond surface structure modifications are investigated under irradiation with laser pulses of 150 fs at 800 nm, on copper and silicon. We report sub-wavelength periodic structures formation (ripples) with a periodicity of 500 nm for both materials. These ripples are perpendicular to the laser polarization and can be obtained with only one pulse. The formation of these ripples corresponds to a fluence threshold of 1 J/cm 2 for copper and 0.15 J/cm 2 for silicon. We find several morphologies when more pulses are applied: larger ripples parallel to the polarization are formed with a periodicity of 1 μm and degenerate into a worm-like morphology with a higher number of pulses. In addition, walls of deep holes also show sub-wavelength and large ripples.
Development of In-Fiber Reflective Bragg Gratings as Shear Stress Monitors in Aerodynamic Facilities
NASA Technical Reports Server (NTRS)
Parmar, Devendra S.; Sprinkle, Danny R.; Singh, Jag J.
1998-01-01
Bragg gratings centered at nominal wavelengths of 1290 nm and 1300 run were inscribed in a 9/125 microns germano-silicate optical fiber, using continuous wave frequency doubled Ar+ laser radiation at 244 nm. Such gratings have been used extensively as temperature and strain monitors in smart structures. They have, however, never been used for measuring aerodynamic shear stresses. As a test of their sensitivity as shear stress monitors, a Bragg fiber attached to a metal plate was subjected to laminar flows in a glass pipe. An easily measurable large flow-induced wavelength shift (Delta Lambda(sub B)) was observed in the Bragg reflected wavelength. Thereafter, the grating was calibrated by making one time, simultaneous measurements of Delta Lambda(sub B) and the coefficient of skin friction (C(sub f)) with a skin friction balance, as a function of flow rates in a subsonic wind tunnel. Onset of fan-induced transition in the tunnel flow provided a unique flow rate for correlating Delta Lambda(sub B) and (C(sub f) values needed for computing effective modulus of rigidity (N(sub eff)) of the fiber attached to the metal plate. This value Of N(sub eff) is expected to remain constant throughout the elastic stress range expected during the Bragg grating aerodynamic tests. It has been used for calculating the value of Cf at various tunnel speeds, on the basis of measured values of Bragg wavelength shifts at those speeds.
Hot, Pascal; Rauchs, Géraldine; Bertran, Françoise; Denise, Pierre; Desgranges, Béatrice; Clochon, Patrice; Eustache, Francis
2011-07-01
Impairments have been reported both in sleep structure and episodic memory in Alzheimer's disease [AD]. Our objective was to investigate the relationships between episodic memory deficits and electro-encephalography [EEG] abnormalities occurring during sleep in patients with early AD. Postlearning sleep was recorded in 14 patients with mild to moderate AD, and 14 healthy elderly controls after they performed an episodic memory task derived from the Grober and Buschke's procedure. For each sleep stage, the relative power and mean frequency in each band were analyzed. Relative to agematched controls, AD patients presented faster mean theta frequency in both REM sleep and slow wave sleep [SWS]. In AD patients, a correlative analysis revealed that faster theta frequency during SWS was associated with better delayed episodic recall. We assume that increased theta activity reflects changes in neuronal activity to maintain memory performance, indicating that compensatory mechanisms already described at the waking state could also be engaged during SWS. Copyright © 2011 Elsevier B.V. All rights reserved.
Pérez i de Lanuza, Guillem; Font, Enrique
2014-08-15
Ultraviolet (UV) vision and UV colour patches have been reported in a wide range of taxa and are increasingly appreciated as an integral part of vertebrate visual perception and communication systems. Previous studies with Lacertidae, a lizard family with diverse and complex coloration, have revealed the existence of UV-reflecting patches that may function as social signals. However, confirmation of the signalling role of UV coloration requires demonstrating that the lizards are capable of vision in the UV waveband. Here we use a multidisciplinary approach to characterize the visual sensitivity of a diverse sample of lacertid species. Spectral transmission measurements of the ocular media show that wavelengths down to 300 nm are transmitted in all the species sampled. Four retinal oil droplet types can be identified in the lacertid retina. Two types are pigmented and two are colourless. Fluorescence microscopy reveals that a type of colourless droplet is UV-transmitting and may thus be associated with UV-sensitive cones. DNA sequencing shows that lacertids have a functional SWS1 opsin, very similar at 13 critical sites to that in the presumed ancestral vertebrate (which was UV sensitive) and other UV-sensitive lizards. Finally, males of Podarcis muralis are capable of discriminating between two views of the same stimulus that differ only in the presence/absence of UV radiance. Taken together, these results provide convergent evidence of UV vision in lacertids, very likely by means of an independent photopigment. Moreover, the presence of four oil droplet types suggests that lacertids have a four-cone colour vision system. © 2014. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Tung, Yen-Chun; Chung, Ming-Han; Sung, I.-Hui; Lee, Chih-Kung
2014-03-01
Adopting optical technique to pursue micromachining must make a compromise between the focal spot sizes the depth of focus. The focal spot size determines the minimum features can be fabricated. On the other hand, the depth of focus influences the ease of alignment in positioning the fabrication light beam. A typical approach to bypass the diffraction limit is to adopt the near-field approach, which has spot size in the range of the optical fiber tip. However, the depth of focus of the emitted light beam will be limited to tens of nanometers in most cases, which posts a difficult challenge to control the distance between the optical fiber tip and the sample to be machined optically. More specifically, problems remained in this machining approach, which include issues such as residue induced by laser ablation tends to deposit near the optical fiber tip and leads to loss of coupling efficiency. We proposed a method based on illuminating femtosecond laser through a sub-wavelength annular aperture on metallic film so as to produce Bessel light beam of sub-wavelength while maintaining large depth of focus first. To further advance the ease of use in one such system, producing sub-wavelength annular aperture on a single mode optical fiber head with sub-wavelength focusing ability is detailed. It is shown that this method can be applied in material machining with an emphasis to produce high aspect ratio structure. Simulations and experimental results are presented in this paper.
Elimination of the asymmetric modes in a Ka-band super overmoded coaxial Cerenkov oscillator
NASA Astrophysics Data System (ADS)
Bai, Zhen; Zhang, Jun; Zhong, Huihuang; Zhao, Xuelong; Yang, Fuxiang
2017-12-01
The issue of asymmetric modes output of a Ka-band super overmoded coaxial Cerenkov oscillator is analyzed in this paper. Due to serious passband overlapping in a super overmoded coaxial slow wave structure (SWS), the asymmetric competition mode EH11 can hardly be suppressed thoroughly by the methods adopted in moderately overmoded devices, especially in the startup of oscillation. If the output structures reflect the asymmetric modes, the asymmetric mode competition in SWS will be aggravated and the normal operation state will be destroyed. In order to solve this problem, a taper waveguide is inserted at a specific position to achieve the destructive interference of the reflected TM11, and a special support structure is designed to avoid reflection of TE11. With these methods, asymmetric mode competition can be successfully eliminated, and the oscillator is capable of achieving a steady fundamental mode operation performance.
Pullini, Daniele; Repetto, Piermario; Bernard, Stefano; Doskolovich, Leonid; Perlo, Pietro
2005-08-20
The use of metal 2D subwavelength structures (SWSs) is a promising solution for all those applications where a selective emission from a thermal source is desirable, e.g., photovoltaic and blackbody emission. The investigation of the SWS's photonic bandgap properties is challenging, especially for the infrared and visible spectra, where the fabrication difficulties have always represented an obstacle. In this paper, the anodization of aluminum films as a self-assembly method for the SWS fabrication is proposed. A rigorous calculation of 2D SWSs of gold having high absorptivity in the visible and low absorptivity in the NIR, their fabrication by DC-sputtering deposition through anodic porous alumina templates, and their optical and topographic characterization are presented.
NASA Astrophysics Data System (ADS)
Anastasopoulos, Dimitrios; Moretti, Patrizia; Geernaert, Thomas; De Pauw, Ben; Nawrot, Urszula; De Roeck, Guido; Berghmans, Francis; Reynders, Edwin
2017-03-01
The presence of damage in a civil structure alters its stiffness and consequently its modal characteristics. The identification of these changes can provide engineers with useful information about the condition of a structure and constitutes the basic principle of the vibration-based structural health monitoring. While eigenfrequencies and mode shapes are the most commonly monitored modal characteristics, their sensitivity to structural damage may be low relative to their sensitivity to environmental influences. Modal strains or curvatures could offer an attractive alternative but current measurement techniques encounter difficulties in capturing the very small strain (sub-microstrain) levels occurring during ambient, or operational excitation, with sufficient accuracy. This paper investigates the ability to obtain sub-microstrain accuracy with standard fiber-optic Bragg gratings using a novel optical signal processing algorithm that identifies the wavelength shift with high accuracy and precision. The novel technique is validated in an extensive experimental modal analysis test on a steel I-beam which is instrumented with FBG sensors at its top and bottom flange. The raw wavelength FBG data are processed into strain values using both a novel correlation-based processing technique and a conventional peak tracking technique. Subsequently, the strain time series are used for identifying the beam's modal characteristics. Finally, the accuracy of both algorithms in identification of modal characteristics is extensively investigated.
Argento, Elena; Muldoon, Katherine A.; Duff, Putu; Simo, Annick; Deering, Kathleen N.; Shannon, Kate
2014-01-01
Objectives Intimate partner violence (IPV) is associated with increased risk of HIV among women globally. There is limited evidence and understanding about IPV and potential HIV risk pathways among sex workers (SWs). This study aims to longitudinally evaluate prevalence and correlates of IPV among street and off-street SWs over two-years follow-up. Methods Longitudinal data were drawn from an open prospective cohort, AESHA (An Evaluation of Sex Workers Health Access) in Metro Vancouver, Canada (2010–2012). Prevalence of physical and sexual IPV was measured using the WHO standardized IPV scale (version 9.9). Bivariate and multivariable logistic regression using Generalized Estimating Equations (GEE) were used to examine interpersonal and structural correlates of IPV over two years. Results At baseline, 387 SWs had a male, intimate sexual partner and were eligible for this analysis. One-fifth (n = 83, 21.5%) experienced recent physical/sexual IPV at baseline and 26.2% over two-years follow-up. In multivariable GEE analysis, factors independently correlated with physical/sexual IPV in the last six months include: childhood (<18 years) sexual/physical abuse (adjusted odds ratio [AOR] = 2.05, 95% confidence interval [CI]: 1.14–3.69), inconsistent condom use for vaginal and/or anal sex with intimate partner (AOR = 1.84, 95% CI: 1.07–3.16),
Behaviour of a ZnO thin film as MSG for biosensing material in sub-wavelength regime
NASA Astrophysics Data System (ADS)
Iftimie, N.; Steigmann, R.; Danila, N. A.; Iacomi, F.; Faktorova, D.; Savin, A.
2016-11-01
Zinc oxide nanostructured materials, such as films and nanoparticles, could provide a suitable platform for development of high performance biosensing material due to their unique fundamental material properties. In this study, the enzyme biosensing consisting of a zinc oxide (ZnO) nanoparticles were grown on SiO2/Si substrates by vacuum thermal evaporation method and their sensing characteristics are examined in air and investigated. The film morphology is characterized by X-ray diffraction (XRD) the film crystalline quality and by scanning electron microscopy (SEM). Also, the interest in surface waves appeared due to evanescent waves in the metallic strip grating structure (MSG-Ag/ZnO/SiO2/Si) in sub-wavelength regime. Before testing the sensor with metamaterials (MMs) lens in the sub-wavelength regime, a simulation of the evanescent wave's formation has been performed at the edge of Ag strips, with thicknesses in the range of micrometers.
NASA Astrophysics Data System (ADS)
Ryu, Meguya; Mizeikis, Vygantas; Morikawa, Junko; Magallanes, Hernando; Brasselet, Etienne; Varapnickas, Simonas; Malinauskas, Mangirdas; Juodkazis, Saulius
2017-08-01
Three dimensional (3D) fast (< 0.5 hour) printing of micro-optical elements down to sub-wavelength resolution over 100 μm footprint areas using femtosecond (fs-)laser oscillator is presented. Using sub-1 nJ pulse energies, optical vortex generators made of polymerised grating segments with an azimuthally changing orientation have been fabricated in SZ2080 resist; width of polymerised rods was 150 nm and period 0.6-1 μm. Detailed phase retardance analysis was carried out manually with Berek compensator (under a white light illumination) and using an equivalent principle by an automated Abrio implementation at 546 nm. Direct experimental measurements of retardance was required since the period of the grating was comparable (or larger) than the wavelength of visible light. By gold sputtering, transmissive optical vortex generators were turned into reflective ones with augmented retardance, Δn × h defined by the form birefringence, Δn, and the height h = 2d where d is the thickness of the polymerised structure. Retardance reached 315 nm as measured with Berek compensator at visible wavelengths. Birefringent phase delays of π (or λ/2 in wavelength) required for high purity vortex generators can be made based on the proposed approach. Optical vortex generators for telecom wavelengths with sub-wavelength patterns of azimuthally oriented gratings are amenable by direct laser polymerisation.
ISM Parameters in the Normal Galaxy NGC 5713
NASA Technical Reports Server (NTRS)
Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.;
1996-01-01
We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.
A Mechanism for Upper Airway Stability during Slow Wave Sleep
McSharry, David G.; Saboisky, Julian P.; DeYoung, Pam; Matteis, Paul; Jordan, Amy S.; Trinder, John; Smales, Erik; Hess, Lauren; Guo, Mengshuang; Malhotra, Atul
2013-01-01
Study Objectives: The severity of obstructive sleep apnea is diminished (sometimes markedly) during slow wave sleep (SWS). We sought to understand why SWS stabilizes the upper airway. Increased single motor unit (SMU) activity of the major upper airway dilating muscle (genioglossus) should improve upper airway stability. Therefore, we hypothesized that genioglossus SMUs would increase their activity during SWS in comparison with Stage N2 sleep. Design: The activity of genioglossus SMUs was studied on both sides of the transition between Stage N2 sleep and SWS. Setting: Sleep laboratory. Participants: Twenty-nine subjects (age 38 ± 13 yr, 17 males) were studied. Intervention: SWS. Measurement and Results: Subjects slept overnight with fine-wire electrodes in their genioglossus muscles and with full polysomnographic and end tidal carbon dioxide monitors. Fifteen inspiratory phasic (IP) and 11 inspiratory tonic (IT) units were identified from seven subjects and these units exhibited significantly increased inspiratory discharge frequencies during SWS compared with Stage N2 sleep. The peak discharge frequency of the inspiratory units (IP and IT) was 22.7 ± 4.1 Hz in SWS versus 20.3 ± 4.5 Hz in Stage N2 (P < 0.001). The IP units also fired for a longer duration (expressed as a percentage of inspiratory time) during SWS (104.6 ± 39.5 %TI) versus Stage N2 sleep (82.6 ± 39.5 %TI, P < 0.001). The IT units fired faster during expiration in SWS (14.2 ± 1.8 Hz) versus Stage N2 sleep (12.6 ± 3.1 Hz, P = 0.035). There was minimal recruitment or derecruitment of units between SWS and Stage N2 sleep. Conclusion: Increased genioglossus SMU activity likely makes the airway more stable and resistant to collapse throughout the respiratory cycle during SWS. Citation: McSharry DG; Saboisky JP; DeYoung P; Matteis P; Jordan AS; Trinder J; Smales E; Hess L; Guo M; Malhotra A. A mechanism for upper airway stability during slow wave sleep. SLEEP 2013;36(4):555-563. PMID:23565001
Internal structure of laser supported detonation waves by two-wavelength Mach-Zehnder interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimamura, Kohei; Kawamura, Koichi; Fukuda, Akio
Characteristics of the internal structure of the laser supported detonation (LSD) waves, such as the electron density n{sub e} and the electron temperature T{sub e} profiles behind the shock wave were measured using a two-wavelength Mach-Zehnder interferometer along with emission spectroscopy. A TEA CO{sub 2} laser with energy of 10 J/pulse produced explosive laser heating in atmospheric air. Results show that the peak values of n{sub e} and T{sub e} were, respectively, about 2 x 10{sup 24} m{sup -3} and 30 000 K, during the LSD regime. The temporal variation of the laser absorption coefficient profile estimated from the measuredmore » properties reveals that the laser energy was absorbed perfectly in a thin layer behind the shock wave during the LSD regime, as predicted by Raizer's LSD model. However, the absorption layer was much thinner than a plasma layer, the situation of which was not considered in Raizer's model. The measured n{sub e} at the shock front was not zero while the LSD was supported, which implies that the precursor electrons exist ahead of the shock wave.« less
The role of ecological factors in shaping bat cone opsin evolution.
Gutierrez, Eduardo de A; Schott, Ryan K; Preston, Matthew W; Loureiro, Lívia O; Lim, Burton K; Chang, Belinda S W
2018-04-11
Bats represent one of the largest and most striking nocturnal mammalian radiations, exhibiting many visual system specializations for performance in light-limited environments. Despite representing the greatest ecological diversity and species richness in Chiroptera, Neotropical lineages have been undersampled in molecular studies, limiting the potential for identifying signatures of selection on visual genes associated with differences in bat ecology. Here, we investigated how diverse ecological pressures mediate long-term shifts in selection upon long-wavelength ( Lws ) and short-wavelength ( Sws1 ) opsins, photosensitive cone pigments that form the basis of colour vision in most mammals, including bats. We used codon-based likelihood clade models to test whether ecological variables associated with reliance on visual information (e.g. echolocation ability and diet) or exposure to varying light environments (e.g. roosting behaviour and foraging habitat) mediated shifts in evolutionary rates in bat cone opsin genes. Using additional cone opsin sequences from newly sequenced eye transcriptomes of six Neotropical bat species, we found significant evidence for different ecological pressures influencing the evolution of the cone opsins. While Lws is evolving under significantly lower constraint in highly specialized high-duty cycle echolocating lineages, which have enhanced sonar ability to detect and track targets, variation in Sws1 constraint was significantly associated with foraging habitat, exhibiting elevated rates of evolution in species that forage among vegetation. This suggests that increased reliance on echolocation as well as the spectral environment experienced by foraging bats may differentially influence the evolution of different cone opsins. Our study demonstrates that different ecological variables may underlie contrasting evolutionary patterns in bat visual opsins, and highlights the suitability of clade models for testing ecological hypotheses of visual evolution. © 2018 The Author(s).
Janisse, Kevyn; Doucet, Stéphanie M.
2017-01-01
Perceptual models of animal vision have greatly contributed to our understanding of animal-animal and plant-animal communication. The receptor-noise model of color contrasts has been central to this research as it quantifies the difference between two colors for any visual system of interest. However, if the properties of the visual system are unknown, assumptions regarding parameter values must be made, generally with unknown consequences. In this study, we conduct a sensitivity analysis of the receptor-noise model using avian visual system parameters to systematically investigate the influence of variation in light environment, photoreceptor sensitivities, photoreceptor densities, and light transmission properties of the ocular media and the oil droplets. We calculated the chromatic contrast of 15 plumage patches to quantify a dichromatism score for 70 species of Galliformes, a group of birds that display a wide range of sexual dimorphism. We found that the photoreceptor densities and the wavelength of maximum sensitivity of the short-wavelength-sensitive photoreceptor 1 (SWS1) can change dichromatism scores by 50% to 100%. In contrast, the light environment, transmission properties of the oil droplets, transmission properties of the ocular media, and the peak sensitivities of the cone photoreceptors had a smaller impact on the scores. By investigating the effect of varying two or more parameters simultaneously, we further demonstrate that improper parameterization could lead to differences between calculated and actual contrasts of more than 650%. Our findings demonstrate that improper parameterization of tetrachromatic visual models can have very large effects on measures of dichromatism scores, potentially leading to erroneous inferences. We urge more complete characterization of avian retinal properties and recommend that researchers either determine whether their species of interest possess an ultraviolet or near-ultraviolet sensitive SWS1 photoreceptor, or present models for both. PMID:28076391
Goldenberg, Shira M; Chettiar, Jill; Simo, Annick; Silverman, Jay G; Strathdee, Steffanie A; Montaner, Julio S G; Shannon, Kate
2014-01-01
To explore factors associated with early sex work initiation and model the independent effect of early initiation on HIV infection and prostitution arrests among adult sex workers (SWs). Baseline data (2010-2011) were drawn from a cohort of SWs who exchanged sex for money within the last month and were recruited through time location sampling in Vancouver, Canada. Analyses were restricted to adults ≥18 years old. SWs completed a questionnaire and HIV/sexually transmitted infection testing. Using multivariate logistic regression, we identified associations with early sex work initiation (<18 years old) and constructed confounder models examining the independent effect of early initiation on HIV and prostitution arrests among adult SWs. Of 508 SWs, 193 (38.0%) reported early sex work initiation, with 78.53% primarily street-involved SWs and 21.46% off-street SWs. HIV prevalence was 11.22%, which was 19.69% among early initiates. Early initiates were more likely to be Canadian born [adjusted odds ratio (AOR): 6.8, 95% confidence interval (CI): 2.42 to 19.02], inject drugs (AOR: 1.6, 95% CI: 1.0 to 2.5), and to have worked for a manager (AOR: 2.22, 95% CI: 1.3 to 3.6) or been coerced into sex work (AOR: 2.3, 95% CI: 1.14 to 4.44). Early initiation retained an independent effect on increased risk of HIV infection (AOR: 2.5, 95% CI: 1.3 to 3.2) and prostitution arrests (AOR: 2.0, 95% CI: 1.3 to 3.2). Adolescent sex work initiation is concentrated among marginalized, drug, and street-involved SWs. Early initiation holds an independent increased effect on HIV infection and criminalization of adult SWs. Findings suggest the need for evidence-based approaches to reduce harm among adult and youth SWs.
Somatic GNAQ Mutation is Enriched in Brain Endothelial Cells in Sturge-Weber Syndrome.
Huang, Lan; Couto, Javier A; Pinto, Anna; Alexandrescu, Sanda; Madsen, Joseph R; Greene, Arin K; Sahin, Mustafa; Bischoff, Joyce
2017-02-01
Sturge-Weber syndrome (SWS) is a rare congenital neurocutaneous disorder characterized by facial and extracraniofacial capillary malformations and capillary-venule malformations in the leptomeninges. A somatic mosaic mutation in GNAQ (c.548G>A; p.R183Q) was found in SWS brain and skin capillary malformations. Our laboratory showed endothelial cells in skin capillary malformations are enriched for the GNAQ mutation. The purpose of this study is to determine whether the GNAQ mutation is also enriched in endothelial cells in affected SWS brain. Two human SWS brain specimens were fractionated by fluorescence-activated cell sorting into hematopoietic (CD45), endothelial (CD31, VE-Cadherin, and vascular endothelial growth factor receptor 2), and perivascular (platelet-derived growth factor receptor beta) cells and cells negative for all markers. The sorted cell populations were analyzed for GNAQ p.R183Q mutation by droplet digital polymerase chain reaction. SWS patient-derived brain endothelial cells were selected by anti-CD31-coated magnetic beads and cultured in endothelial growth medium in vitro. The GNAQ p.R183Q mutation was present in brain endothelial cells in two SWS specimens, with mutant allelic frequencies of 34.7% and 24.0%. Cells negative for all markers also harbored the GNAQ mutation. The mutant allelic frequencies in these unidentified cells were 9.2% and 8.4%. SWS patient-derived brain endothelial cells with mutant allelic frequencies of 14.7% and 21% survived and proliferated in vitro. Our study provides evidence that GNAQ p.R183Q mutation is enriched in endothelial cells in SWS brain lesions and thereby reveals endothelial cells as a source of aberrant Gαq signaling. This will help to understand the pathophysiology of SWS, to discover biomarkers for predicting cerebral involvement, and to develop therapeutic targets to prevent neurological impairments in SWS. Copyright © 2016 Elsevier Inc. All rights reserved.
Connors, Bret A; Evan, Andrew P; Blomgren, Philip M; Handa, Rajash K; Willis, Lynn R; Gao, Sujuan
2009-01-01
To determine if the starting voltage in a step-wise ramping protocol for extracorporeal shock wave lithotripsy (SWL) alters the size of the renal lesion caused by the SWs. To address this question, one kidney from 19 juvenile pigs (aged 7-8 weeks) was treated in an unmodified Dornier HM-3 lithotripter (Dornier Medical Systems, Kennesaw, GA, USA) with either 2000 SWs at 24 kV (standard clinical treatment, 120 SWs/min), 100 SWs at 18 kV followed by 2000 SWs at 24 kV or 100 SWs at 24 kV followed by 2000 SWs at 24 kV. The latter protocols included a 3-4 min interval, between the 100 SWs and the 2000 SWs, used to check the targeting of the focal zone. The kidneys were removed at the end of the experiment so that lesion size could be determined by sectioning the entire kidney and quantifying the amount of haemorrhage in each slice. The average parenchymal lesion for each pig was then determined and a group mean was calculated. Kidneys that received the standard clinical treatment had a mean (sem) lesion size of 3.93 (1.29)% functional renal volume (FRV). The mean lesion size for the 18 kV ramping group was 0.09 (0.01)% FRV, while lesion size for the 24 kV ramping group was 0.51 (0.14)% FRV. The lesion size for both of these groups was significantly smaller than the lesion size in the standard clinical treatment group. The data suggest that initial voltage in a voltage-ramping protocol does not correlate with renal damage. While voltage ramping does reduce injury when compared with SWL with no voltage ramping, starting at low or high voltage produces lesions of the same approximate size. Our findings also suggest that the interval between the initial shocks and the clinical dose of SWs, in our one-step ramping protocol, is important for protecting the kidney against injury.
Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents.
Shaw, Natalie D; McHill, Andrew W; Schiavon, Michele; Kangarloo, Tairmae; Mankowski, Piotr W; Cobelli, Claudio; Klerman, Elizabeth B; Hall, Janet E
2016-08-01
Cross-sectional studies report a correlation between slow wave sleep (SWS) duration and insulin sensitivity (SI) in children and adults. Suppression of SWS causes insulin resistance in adults but effects in children are unknown. This study was designed to determine the effect of SWS fragmentation on SI in children. Fourteen pubertal children (11.3-14.1 y, body mass index 29(th) to 97(th) percentile) were randomized to sleep studies and mixed meal (MM) tolerance tests with and without SWS disruption. Beta-cell responsiveness (Φ) and SI were determined using oral minimal modeling. During the disruption night, auditory stimuli (68.1 ± 10.7/night; mean ± standard error) decreased SWS by 40.0 ± 8.0%. SWS fragmentation did not affect fasting glucose (non-disrupted 76.9 ± 2.3 versus disrupted 80.6 ± 2.1 mg/dL), insulin (9.2 ± 1.6 versus 10.4 ± 2.0 μIU/mL), or C-peptide (1.9 ± 0.2 versus 1.9 ± 0.1 ng/mL) levels and did not impair SI (12.9 ± 2.3 versus 10.1 ± 1.6 10(-4) dL/kg/min per μIU/mL) or Φ (73.4 ± 7.8 versus 74.4 ± 8.4 10(-9) min(-1)) to a MM challenge. Only the subjects in the most insulin-sensitive tertile demonstrated a consistent decrease in SI after SWS disruption. Pubertal children across a range of body mass indices may be resistant to the adverse metabolic effects of acute SWS disruption. Only those subjects with high SI (i.e., having the greatest "metabolic reserve") demonstrated a consistent decrease in SI. These results suggest that adolescents may have a unique ability to adapt to metabolic stressors, such as acute SWS disruption, to maintain euglycemia. Additional studies are necessary to confirm that this resiliency is maintained in settings of chronic SWS disruption. © 2016 Associated Professional Sleep Societies, LLC.
GOLDENBERG, Shira M.; CHETTIAR, Jill; SIMO, Annick; SILVERMAN, Jay G.; STRATHDEE, Steffanie A.; MONTANER, Julio; SHANNON, Kate
2014-01-01
Objectives To explore factors associated with early sex work initiation, and model the independent effect of early initiation on HIV infection and prostitution arrests among adult sex workers (SWs). Design Baseline data (2010–2011) were drawn from a cohort of SWs who exchanged sex for money within the last month and were recruited through time-location sampling in Vancouver, Canada. Analyses were restricted to adults ≥18 years old. Methods SWs completed a questionnaire and HIV/STI testing. Using multivariate logistic regression, we identified associations with early sex work initiation (<18 years old) and constructed confounder models examining the independent effect of early initiation on HIV and prostitution arrests among adult SWs. Results Of 508 SWs, 193 (38.0%) reported early sex work initiation, with 78.53% primarily street-involved SWs and 21.46% off-street SWs. HIV prevalence was 11.22%, which was 19.69% among early initiates. Early initiates were more likely to be Canadian-born (Adjusted Odds Ratio (AOR): 6.8, 95% Confidence Interval (CI): 2.42–19.02), inject drugs (AOR: 1.6, 95%CI: 1.0–2.5), and to have worked for a manager (AOR: 2.22, 95%CI: 1.3–3.6) or been coerced into sex work (AOR: 2.3, 95%CI: 1.14–4.44). Early initiation retained an independent effect on increased risk of HIV infection (AOR: 2.5, 95% CI: 1.3–3.2) and prostitution arrests (AOR: 2.0, 95%CI: 1.3–3.2). Conclusions Adolescent sex work initiation is concentrated among marginalized, drug and street-involved SWs. Early initiation holds an independent increased effect on HIV infection and criminalization of adult SWs. Findings suggest the need for evidence-based approaches to reduce harm among adult and youth SWs. PMID:23982660
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Jiutian; Cao, Yudong; Fan, Hai
2015-12-15
A color-tunable luminescent material was prepared based on the composition of functionalized graphitic carbon nitride (g-C{sub 3}N{sub 4}) and europium (III). The functionalized g-C{sub 3}N{sub 4} layers not only behave as multifunctional supports including ligand coordinated with europium (III) and a support structure for the formation of the luminescent material, but exhibit excitation wavelength-dependent luminescence, thus the energy transfer between the functionalized g-C{sub 3}N{sub 4} and europium (III) can match very well by controlling the emission wavelength of functionalized g-C{sub 3}N{sub 4}. The as-prepared materials was comprehensively characterized via X-ray photoelectron spectroscopy, Fourier Transform Infrared spectroscopy, X-ray scattering techniques, Ultravioletmore » and Visible spectrophotometer, fluorescence spectrophotometer, thermogravimetric analysis, etc. The luminescent material exhibits multi-color emissions which are consistent with the characteristic emissions of europium (III) and functionalized g-C{sub 3}N{sub 4}, and the photoluminescence quality and density of the europium (III) can be greatly enhanced. The brilliant optical properties of the materials make them suiting for multipurpose applications in practical fields. - Graphical abstract: Schematic illustration of the synthesis and basic composition of the luminescent material. Inset figures were luminescence emission spectra of g-C{sub 3}N{sub 4} (A), europium (III) complex (a) and luminescent material (b) with the same concentration in (B) (K{sub ex}=350 nm) and photographs of (left) H{sub 2}O and (right) the H{sub 2}O dispersion of luminescence emission spectra under 350 nm UV radiation. The energy transfer in the luminescent material matchs very well and it exhibits multi-color emissions simultaneously. The enhanced photoluminescence quality and density of the europium (III) makes them suiting for multipurpose applications in practical fields. - Highlights: • Luminescent material exhibits multi-color emissions when excited by single wavelength. • The energy trsnsfer between functionalized g-C{sub 3}N{sub 4} and europium matches very vell. • Functionalized g-C{sub 3}N{sub 4} exhibits excitation wavelength-depengdent bright blue luminescence. • Functionalized g-C{sub 3}N{sub 4} layer provided as multifunctional supports.« less
Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex.
Steyn-Ross, Moira L; Steyn-Ross, D A; Sleigh, J W; Wilson, M T; Wilcocks, Lara C
2005-12-01
Understanding the structure and purpose of sleep remains one of the grand challenges of neurobiology. Here we use a mean-field linearized theory of the sleeping cortex to derive statistics for synaptic learning and memory erasure. The growth in correlated low-frequency high-amplitude voltage fluctuations during slow-wave sleep (SWS) is characterized by a probability density function that becomes broader and shallower as the transition into rapid-eye-movement (REM) sleep is approached. At transition, the Shannon information entropy of the fluctuations is maximized. If we assume Hebbian-learning rules apply to the cortex, then its correlated response to white-noise stimulation during SWS provides a natural mechanism for a synaptic weight change that will tend to shut down reverberant neural activity. In contrast, during REM sleep the weights will evolve in a direction that encourages excitatory activity. These entropy and weight-change predictions lead us to identify the final portion of deep SWS that occurs immediately prior to transition into REM sleep as a time of enhanced erasure of labile memory. We draw a link between the sleeping cortex and Landauer's dissipation theorem for irreversible computing [R. Landauer, IBM J. Res. Devel. 5, 183 (1961)], arguing that because information erasure is an irreversible computation, there is an inherent entropy cost as the cortex transits from SWS into REM sleep.
Dependence of Plastic TATB Shock-Wave Sensitivity on Temperature, Density and Technology Factors
NASA Astrophysics Data System (ADS)
Vlasov, Yu. A.; Kosolapov, V. B.; Fomicheva, L. V.; Khabarov, I. P.
1999-06-01
Mixed TATB-based HE is the most perspective because of the manufacture and exploitation safety of its items. At the same time the safety of these explosive, at high temperatures, which take place at emergencies, causes the certain anxiety. Plastic TATB shock-wave sensitivity (SWS) researches has shown that temperature as one of the important factors of external influence is not always the determining reason of SWS change. It is known that density influence on SWS significantly. At the same time density depends on temperature and technology of details manufacturing. In this connection in this work the temperature dependence of plastic TATB SWS was studied in view of convertible and irreversible changes of density (p) under heating at -50[C up to 90[C . It is shown that during these influences the dependence of threshold pressure of initiation (P) from temperature is explained, first of all, by change of HE density, caused by its thermal expansion (compression), and also by irreversible changes of p and HE structure, arising at heating. It is found also that the share of irreversible change of density depends on technology of HE details manufacturing and is explained by relaxation of residual pressure in them. The mentioned relaxation is finished after the first cycles of thermal influence. The value of density change, caused by this factor, depends on temperature and duration of heating.
Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex
NASA Astrophysics Data System (ADS)
Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.; Wilson, M. T.; Wilcocks, Lara C.
2005-12-01
Understanding the structure and purpose of sleep remains one of the grand challenges of neurobiology. Here we use a mean-field linearized theory of the sleeping cortex to derive statistics for synaptic learning and memory erasure. The growth in correlated low-frequency high-amplitude voltage fluctuations during slow-wave sleep (SWS) is characterized by a probability density function that becomes broader and shallower as the transition into rapid-eye-movement (REM) sleep is approached. At transition, the Shannon information entropy of the fluctuations is maximized. If we assume Hebbian-learning rules apply to the cortex, then its correlated response to white-noise stimulation during SWS provides a natural mechanism for a synaptic weight change that will tend to shut down reverberant neural activity. In contrast, during REM sleep the weights will evolve in a direction that encourages excitatory activity. These entropy and weight-change predictions lead us to identify the final portion of deep SWS that occurs immediately prior to transition into REM sleep as a time of enhanced erasure of labile memory. We draw a link between the sleeping cortex and Landauer’s dissipation theorem for irreversible computing [R. Landauer, IBM J. Res. Devel. 5, 183 (1961)], arguing that because information erasure is an irreversible computation, there is an inherent entropy cost as the cortex transits from SWS into REM sleep.
NASA Astrophysics Data System (ADS)
Assouar, Badreddine; Li, Yong
2016-04-01
The concept of the coiling up space, based on which artificial structures could exhibit extreme acoustic properties, such as high refractive index, double negativity, near-zero index, etc., have been investigated intensively recently due to the fascinating underlying physics and diverse potential applications [1-3]. One of the most important functionality is the ability to shrink bulky structures into deep sub-wavelength scale. It is therefore intuitive to prospect that the concept of coiling up space, if could be extended into the perforated system, will benefit to significantly reduce the total thickness while keeping total absorption. Conventional acoustic absorbers require a structure with a thickness comparable to the working wavelength, resulting major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in extremely low frequency region. The metasurface possessing a deep sub-wavelength thickness down to a feature size of ~ lambda/223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have high impact on amount of applications due to the extremely thin thickness, easy fabrication and high efficiency of the proposed structure. References 1. Z. Liang and J. Li, Phys. Rev. Lett. 108, 114301 (2012). 2. Y. Li, B. Liang, X. Tao, X. F. Zhu, X. Y. Zou, and J. C. Cheng, Appl. Phys. Lett. 101, 233508 (2012). 3. Y. Xie, W. Wang, H. Chen, A. Konneker, B. I. Popa, and S. A. Cummer, Nat. Commun. 5, 5553 (2014).
NASA Astrophysics Data System (ADS)
Zha, Jinlin; Wu, Jian; Zhao, Deming; Tang, Jianping
2018-04-01
A lasting decrease in the near-surface wind speed (SWS) in China has been revealed, but a following short-term strengthening in the SWS was rarely noted. In this paper, the daily mean SWS observed datasets from 328 measurement stations in Eastern China during the period 1981-2011 were used to investigate the facts and causes of the observed short-term strengthening in winter SWS in recent decades. The major results are summarized as follows: the SWS showed a significant decrease in the last 30 years, but a short-term strengthening in SWS was observed during the winter since 2000 in Eastern China. The SWS in Eastern China showed a significant decrease of - 0.11 m s-1 decade-1 from 1981 to 1999, followed by a weak increase of 0.0008 m s-1 decade-1 from 2000 to 2011. The short-term strengthening in the SWS since 2000 was mainly induced by the changes of the pressure-gradient force (PGF), which could be attributed to the changes of the sea-level pressure (SLP) in the region (51°-69.75° N, 51.75°-111.75° E). Furthermore, the changes of the PGF during the two periods of 1981-1999 and 2000-2011 were consistent with those of the SLP in the region (51°-69.75° N, 51.75°-111.75° E). The correlation coefficient between PGF and SLP was 0.32 and 0.66 during the period 1981-1999 and 2000-2011, respectively. Therefore, the effects of the changes in SLP over the region (51°-69.75° N, 51.75°-111.75° E) on changes of SWS in the Eastern China should be significant.
Contribution of rivers and floodplains to the global terrestrial water storage variability
NASA Astrophysics Data System (ADS)
Getirana, A.; Kumar, S.; Girotto, M.; Rodell, M.
2017-12-01
Since the launch of the GRACE mission in 2002, the scientific community has gained significant insight into terrestrial water storage (TWS) variations around the world. Still, understanding of the relationship between TWS variations and changes in its individual components (groundwater, soil moisture, surface waters, snow, and vegetation water storage) has not advanced beyond small-scale studies based on in situ data. Although a few studies have demonstrated the impact that surface water storage (SWS) has on TWS in tropical basins, the vast majority of investigations on TWS decomposition systematically neglect SWS by assuming that its contribution to TWS is trivial. Even though that assumption might be a close representation of the truth in specific locations, the actual impact of SWS on the global TWS change and its spatial variability is unknown. This study aims to quantify the contribution of rivers and floodplains on the global terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics in order to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes to 7% of TWS globally, but that contribution highly varies spatially. The primary contribution of SWS to TWS is in the tropics, and in major rivers flowing over arid regions or at high latitudes. About 20-23% of both Amazon and Nile basins' TWS changes are due to SWS. SWS has low impact in Western U.S., Northern Africa, Middle-East and central Asia. Based on comparisons against GRACE-based estimates, we conclude that using SWS significantly improves TWS simulations in most South America, Africa and Northern India, confirming the need for SWS as a key component of TWS change.
Deepening Sleep by Hypnotic Suggestion
Cordi, Maren J.; Schlarb, Angelika A.; Rasch, Björn
2014-01-01
Study Objectives: Slow wave sleep (SWS) plays a critical role in body restoration and promotes brain plasticity; however, it markedly declines across the lifespan. Despite its importance, effective tools to increase SWS are rare. Here we tested whether a hypnotic suggestion to “sleep deeper” extends the amount of SWS. Design: Within-subject, placebo-controlled crossover design. Setting: Sleep laboratory at the University of Zurich, Switzerland. Participants: Seventy healthy females 23.27 ± 3.17 y. Intervention: Participants listened to an auditory text with hypnotic suggestions or a control tape before napping for 90 min while high-density electroencephalography was recorded. Measurements and Results: After participants listened to the hypnotic suggestion to “sleep deeper” subsequent SWS was increased by 81% and time spent awake was reduced by 67% (with the amount of SWS or wake in the control condition set to 100%). Other sleep stages remained unaffected. Additionally, slow wave activity was significantly enhanced after hypnotic suggestions. During the hypnotic tape, parietal theta power increases predicted the hypnosis-induced extension of SWS. Additional experiments confirmed that the beneficial effect of hypnotic suggestions on SWS was specific to the hypnotic suggestion and did not occur in low suggestible participants. Conclusions: Our results demonstrate the effectiveness of hypnotic suggestions to specifically increase the amount and duration of slow wave sleep (SWS) in a midday nap using objective measures of sleep in young, healthy, suggestible females. Hypnotic suggestions might be a successful tool with a lower risk of adverse side effects than pharmacological treatments to extend SWS also in clinical and elderly populations. Citation: Cordi MJ, Schlarb AA, Rasch B. Deepening sleep by hypnotic suggestion. SLEEP 2014;37(6):1143-1152. PMID:24882909
Sun, Jingyao; Wang, Xiaobing; Wu, Jinghua; Jiang, Chong; Shen, Jingjing; Cooper, Merideth A; Zheng, Xiuting; Liu, Ying; Yang, Zhaogang; Wu, Daming
2018-04-03
Sub-wavelength antireflection moth-eye structures were fabricated with Nickel mold using Roll-to-Plate (R2P) ultraviolet nanoimprint lithography (UV-NIL) on transparent polycarbonate (PC) substrates. Samples with well replicated patterns established an average reflection of 1.21% in the visible light range, 380 to 760 nm, at normal incidence. An excellent antireflection property of a wide range of incidence angles was shown with the average reflection below 4% at 50°. Compared with the unpatterned ultraviolet-curable resin coating, the resulting sub-wavelength moth-eye structure also exhibited increased hydrophobicity in addition to antireflection. This R2P method is especially suitable for large-area product preparation and the biomimetic moth-eye structure with multiple performances can be applied to optical devices such as display screens, solar cells, or light emitting diodes.
Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability
NASA Astrophysics Data System (ADS)
Getirana, Augusto; Kumar, Sujay; Girotto, Manuela; Rodell, Matthew
2017-10-01
This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for 22-27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, D. K., E-mail: dwivedidkphys@rediffmail.com; Pathak, H. P., E-mail: dwivedidkphys@rediffmail.com; Shukla, Nitesh
2014-04-24
Thin films of a−Se{sub 72}Te{sub 25}Sb{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup −6} Torr on to well cleaned glass substrate. a−Se{sub 72}Te{sub 25}Sb{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 400–1100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.
Neu, Daniel; Mairesse, Olivier; Verbanck, Paul; Le Bon, Olivier
2015-10-01
To investigate slow wave sleep (SWS) spectral power proportions in distinct clinical conditions sharing non-restorative sleep and fatigue complaints without excessive daytime sleepiness (EDS), namely the chronic fatigue syndrome (CFS) and primary insomnia (PI). Impaired sleep homeostasis has been suspected in both CFS and PI. We compared perceived sleep quality, fatigue and sleepiness symptom-intensities, polysomnography (PSG) and SWS spectral power distributions of drug-free CFS and PI patients without comorbid sleep or mental disorders, with a good sleeper control group. Higher fatigue without EDS and impaired perceived sleep quality were confirmed in both patient groups. PSG mainly differed in sleep fragmentation and SWS durations. Spectral analysis revealed a similar decrease in central ultra slow power (0.3-0.79Hz) proportion during SWS for both CFS and PI and an increase in frontal power proportions of faster frequencies during SWS in PI only. The latter was correlated to affective symptoms whereas lower central ultra slow power proportions were related to fatigue severity and sleep quality impairment. In combination with normal (PI) or even increased SWS durations (CFS), we found consistent evidence for lower proportions of slow oscillations during SWS in PI and CFS. Observing normal or increased SWS durations but lower proportions of ultra slow power, our findings suggest a possible quantitative compensation of altered homeostatic regulation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
A prospective study of risk for Sturge-Weber syndrome in children with upper facial port-wine stain.
Dutkiewicz, Anne-Sophie; Ezzedine, Khaled; Mazereeuw-Hautier, Juliette; Lacour, Jean-Philippe; Barbarot, Sébastien; Vabres, Pierre; Miquel, Juliette; Balguerie, Xavier; Martin, Ludovic; Boralevi, Franck; Bessou, Pierre; Chateil, Jean-François; Léauté-Labrèze, Christine
2015-03-01
Upper facial port-wine stain (PWS) is a feature of Sturge-Weber syndrome (SWS). Recent studies suggest that the distribution of the PWS corresponds to genetic mosaicism rather than to trigeminal nerve impairment. We sought to refine the cutaneous distribution of upper facial PWS at risk for SWS. This was a prospective multicenter study of consecutive cases of upper facial PWS larger than 1 cm² located in the ophthalmic division of trigeminal nerve distribution in infants aged less than 1 year, seen in 8 French pediatric dermatology departments between 2006 and 2012. Clinical data, magnetic resonance imaging, and photographs were systematically collected and studied. PWS were classified into 6 distinct patterns. In all, 66 patients were included. Eleven presented with SWS (magnetic resonance imaging signs and seizure). Four additional infants had suspected SWS without neurologic manifestations. Hemifacial (odds ratio 7.7, P = .003) and median (odds ratio 17.08, P = .008) PWS patterns were found to be at high risk for SWS. A nonmedian linear pattern was not associated with SWS. Small number of patients translated to limited power of the study. Specific PWS distribution patterns are associated with an increased risk of SWS. These PWS patterns conform to areas of somatic mosaicism. Terminology stipulating ophthalmic division of trigeminal nerve territory involvement in SWS should be abandoned. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang; Li, Shuang; Zeng, Peng
2018-05-03
High power vacuum electronic devices of millimeter wave to terahertz regime are attracting extensive interests due to their potential applications in science and technologies. In this paper, the design and experimental results of a powerful compact oversized surface wave oscillator (SWO) in Y-band are presented. The cylindrical slow wave structure (SWS) with rectangular corrugations and large diameter about 6.8 times the radiation wavelength is proposed to support the surface wave interacting with annular relativistic electron beam. By choosing appropriate beam parameters, the beam-wave interaction takes place near the π-point of TM 01 mode dispersion curve, giving high coupling impedance and temporal growth rate compared with higher TM 0n modes. The fundamental mode operation of the device is verified by the particle-in-cell (PIC) simulation results, which also indicate its capability of tens of megawatts power output in the Y-band. Finally, a compact experimental setup is completed to validate our design. Measurement results show that a terahertz pulse with frequency in the range of 0.319-0.349 THz, duration of about 2 ns and radiation power of about 2.1 MW has been generated.
Joo, Dong Hyuk; Leem, Jung Woo; Yu, Jae Su
2011-11-01
We report the disordered silicon (Si) subwavelength structures (SWSs), which are fabricated with the use of inductively coupled plasma (ICP) etching in SiCl4 gas using nickel/silicon dioxide (Ni/SiO2) nanopattens as the etch mask, on Si substrates by varying the etching parameters for broadband antireflective and self-cleaning surfaces. For the fabricated Si SWSs, the antireflection characteristics are experimentally investigated and a theoretical analysis is made based on the rigorous coupled-wave analysis method. The desirable dot-like Ni nanoparticles on SiO2/Si substrates are formed by the thermal dewetting process of Ni films at 900 degrees C. The truncated cone shaped Si SWS with a high average height of 790 +/- 23 nm, which is fabricated by ICP etching with 5 sccm SiCl4 at 50 W RF power with additional 200 W ICP power under 10 mTorr process pressure, exhibits a low average reflectance of approximately 5% over a wide wavelength range of 450-1050 nm. The water contact angle of 110 degrees is obtained, indicating a hydrophobic surface. The calculated reflectance results are also reasonably consistent with the experimental data.
Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.
2016-07-26
Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.
NASA Astrophysics Data System (ADS)
Padooru, Yashwanth R.; Yakovlev, Alexander B.; Chen, Pai-Yen; Alù, Andrea
2012-08-01
Following the idea of "cloaking by a surface" [A. Alù, Phys. Rev. B 80, 245115 (2009); P. Y. Chen and A. Alù, Phys. Rev. B 84, 205110 (2011)], we present a rigorous analytical model applicable to mantle cloaking of cylindrical objects using 1D and 2D sub-wavelength conformal frequency selective surface (FSS) elements. The model is based on Lorenz-Mie scattering theory which utilizes the two-sided impedance boundary conditions at the interface of the sub-wavelength elements. The FSS arrays considered in this work are composed of 1D horizontal and vertical metallic strips and 2D printed (patches, Jerusalem crosses, and cross dipoles) and slotted structures (meshes, slot-Jerusalem crosses, and slot-cross dipoles). It is shown that the analytical grid-impedance expressions derived for the planar arrays of sub-wavelength elements may be successfully used to model and tailor the surface reactance of cylindrical conformal mantle cloaks. By properly tailoring the surface reactance of the cloak, the total scattering from the cylinder can be significantly reduced, thus rendering the object invisible over the range of frequencies of interest (i.e., at microwaves and far-infrared). The results obtained using our analytical model for mantle cloaks are validated against full-wave numerical simulations.
Simple fabrication of antireflective silicon subwavelength structure with self-cleaning properties.
Kim, Bo-Soon; Ju, Won-Ki; Lee, Min-Woo; Lee, Cheon; Lee, Seung-Gol; Beom-Hoan, O
2013-05-01
A subwavelength structure (SWS) was formed via a simple chemical wet etching using a gold (Au) catalyst. Single nano-sized Au particles were fabricated by metallic self-aggregation. The deposition and thermal annealing of the thin metallic film were carried out. Thermal annealing of a thin metallic film enables the creation of metal nano particles by isolating them from each other by means of the self-aggregation of the metal. After annealing, the samples were soaked in an aqueous etching solution of hydrofluoric acid and hydrogen peroxide. When silicon (Si) was etched for 2 minutes using the Au nano particles, the reflectance was decreased almost 0% over the entire wavelength range from 300 to 1300 nm due to its deep and steeply double tapered structure. When given varying incident angle degrees from 30 degrees to 60 degrees, the reflectance was also maintained at less than 3%. Following this, the etched silicon was treated with a plasma-polymerized fluorocarbon (PPFC) film of about 5 nm using an ICP reactor for surface modification. The result of this surface treatment, the contact angle increased significantly from 27.5 degrees to 139.3 degrees. The surface modification was successful and maintained almost 0% reflectance because of the thin film deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dhananjay Kumar, E-mail: dksism89@gmail.com; Manam, J., E-mail: jairam.manam@gmail.com
2016-05-06
The present work report a series of trivalent Europium (Eu{sup 3+}) doped well crystallized perovskite CaTiO{sub 3} phosphors successfully synthesized by chemical co-precipitation method. The crystal structure was confirmed by X-ray diffraction (XRD) which is in good agreement with pure orthorhombic phase with space group Pbnm, and it also indicated that the incorporation of the dopant did not affect the crystal structure. The impact of doping on the photoluminescence performances of the sample has been investigated by emission, excitation, and diffuse reflectance spectra at the room temperature. Photoluminescence spectra of Eu{sup 3+} doped CaTiO{sub 3} nanophosphor revealed the characteristic emissionmore » peak around wavelength 618 nm in the visible region upon the excitation of near-UV light at wavelength 397 nm due to {sup 5}D{sub 0} → {sup 7}F{sub 2} transition in Eu{sup 3+}. It was further proved that the dipole– dipole interactions results in the concentration quenching of Eu{sup 3+} in CaTiO{sub 3}:Eu{sup 3+} nanophosphors. The elemental composition of sample carried out by energy dispersive spectroscopy (EDS). EDS analysis reveals that the Eu{sup 3+} doped successfully into host CaTiO{sub 3}. The experimental result reveals that prepared nanophosphor can be used in the application of solid state lighting devices.« less
Slow Wave Sleep and Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Orr, M.; Whitmire, A.; Arias, D.; Leveton, L.
2011-01-01
To review the literature on slow wave sleep (SWS) in long duration space flight, and place this within the context of the broader literature on SWS particularly with respect to analogous environments such as the Antarctic. Explore how SWS could be measured within the International Space Station (ISS) context with the aim to utilize the ISS as an analog for future extra-orbital long duration missions. Discuss the potential use of emergent minimally intrusive wireless technologies like ZEO for integrated prelaunch, flight, and return to Earth analysis and optimization of SWS (and general quality of sleep).
Sou, Julie; Goldenberg, Shira M; Duff, Putu; Nguyen, Paul; Shoveller, Jean; Shannon, Kate
2017-05-01
Despite universal health care in Canada, sex workers (SWs) and im/migrants experience suboptimal health care access. In this analysis, we examined the correlates of unmet health needs among SWs in Metro Vancouver over time. Data from a longitudinal cohort of women SWs (An Evaluation of Sex Workers Health Access [AESHA]) were used. Of 742 SWs, 25.5% reported unmet health needs at least once over the 4-year study period. In multivariable logistic regression using generalized estimating equations, recent im/migration had the strongest impact on unmet health needs; long-term im/migration, policing, and trauma were also important determinants. Legal and social supports to promote im/migrant SWs' access to health care are recommended.
The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi
2011-05-15
Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less
Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jun; Cao, Yibing; Teng, Yan
2015-07-15
The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmedmore » by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.« less
Circadian regulation of slow waves in human sleep: Topographical aspects
Lazar, Alpar S.; Lazar, Zsolt I.; Dijk, Derk-Jan
2015-01-01
Slow waves (SWs, 0.5–4 Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664
Room-temperature-operation visible-emission semiconductor diode lasers
NASA Technical Reports Server (NTRS)
Ladany, I.; Kressel, H.; Nuese, C. J.
1977-01-01
There were two main approaches taken to develop shorter wavelength lasers. (1) Based on (AlGa)As and liquid-phase epitaxy, significant new results were obtained: Properties of these laser diodes (power output, spectra, and beam patterns), materials considerations, laser theory, and growth problems are discussed. The design of (AlGa)As layers is discussed from the vertical point of view, and various design curves are given. Horizontal structural requirements are also discussed. Experimental results from measurements done as a function of hydrostatic pressure are correlated with other results. (2) The first heterojunction laser structures using GaAs sub l-x P sub x and In sub y Ga sub l-y P at compositions, where the lattice constants are matched, were grown using vapor-phase growth technology and are described in detail, including experimental device results. Threshold current densities from 3,000 to 5,000 A per sq cm. and emission wavelengths from 6,520 A to 6,640 A were obtained at 77 K. The limiting factor in these devices is nonradiative recombination at the heterojunctions. Life tests on facet-coated (AlGa)As CW diodes are reported.
Karthikeyan, Rengasamy; Selvam, Ammayaippan; Cheng, Ka Yu; Wong, Jonathan Woon-Chung
2016-01-01
This study aimed at manipulating ionic conductivity (EC) to harvest the maximum electrical energy from seawater-based domestic wastewater sewage sludge (SWS), unique to only a few cities, through microbial fuel cell (MFC). SWS has never been investigated as a MFC substrate before, and thus the influence of high in-situ EC on the energy recovery was unknown. In this study, the EC of the SWS was reduced through mixing it with fresh water-based domestic wastewater sewage sludge (FWS) or diluted 50% using deionized water while FWS and SWS were individually served as reference treatments. SWS:FWS mix (1:1) exhibited a maximum Coulombic efficiency of 28.6±0.5% at a COD removal of 59±3% while the peak power density was 20-fold higher than FWS. The improved performance was due to the lower ohmic internal resistance (36.8±4.2Ω) and optimal conductivity (12.8±0.2mScm(-1)). Therefore, dilution with FWS could enhance energy recovery from SWS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Low, Sheryl A; McCoy, Sarah Westcott; Beling, Janna; Adams, Janet
2011-01-01
This study investigated pediatric physical therapists' use of support walkers (SWs) for children with disabilities. An 8-page survey was mailed to 2500 randomly selected members of the Section on Pediatrics of the American Physical Therapy Association. Respondents to the survey included 513 pediatric physical therapists who were users of SWs. Descriptive statistics were calculated and themes were analyzed. Several SWs were reported as used most often to improve gait, mobility, participation at school, and interaction with peers. Use commonly included a month trial before purchase and 9 sessions of physical therapy to train a child for use in school. Reasons given for the use of SWs were improving impairments, functional limitations, and participation with peers. Pediatric physical therapists use SWs to increase postural control, mobility, and children's participation in school.
Evaluation of shock wave lithotripsy injury in the pig using a narrow focal zone lithotriptor.
Connors, Bret A; McAteer, James A; Evan, Andrew P; Blomgren, Philip M; Handa, Rajash K; Johnson, Cynthia D; Gao, Sujuan; Pishchalnikov, Yuri A; Lingeman, James E
2012-11-01
What's known on the subject? and What does the study add? Of all the SW lithotriptors manufactured to date, more research studies have been conducted on and more is known about the injury (both description of injury and how to manipulate injury size) produced by the Dornier HM-3 than any other machine. From this information have come suggestions for treatment protocols to reduce shock wave (SW)-induced injury for use in stone clinics. By contrast, much less is known about the injury produced by narrow-focus and high-pressure lithotriptors like the Storz Modulith SLX. In fact, a careful study looking at the morphology of the injury produced by the SLX itself is lacking, as is any study exploring ways to reduce renal injury by manipulating SW delivery variables of this lithotriptor. The present study quantitates the lesion size and describes the morphology of the injury produced by the SLX. In addition, we report that reducing the SW delivery rate, a manoeuvre known to lower injury in the HM-3, does not reduce lesion size in the SLX. • To assess renal injury in a pig model after treatment with a clinical dose of shock waves using a narrow focal zone (≈3 mm) lithotriptor (Modulith SLX, Karl Storz Lithotripsy). • The left kidney of anaesthetized female pigs were treated with 2000 or 4000 shock waves (SWs) at 120 SWs/min, or 2000 SWs at 60 SWs/min using the Storz SLX. • Measures of renal function (glomerular filtration rate and renal plasma flow) were collected before and 1 h after shock wave lithotripsy (SWL) and the kidneys were harvested for histological analysis and morphometric quantitation of haemorrhage in the renal parenchyma with lesion size expressed as a percentage of functional renal volume (FRV). • A fibre-optic probe hydrophone was used to determine acoustic output and map the focal width of the lithotriptor. • Data for the SLX were compared with data from a previously published study in which pigs of the same age (7-8 weeks) were treated (2000 SWs at 120 or 60 SWs/min) using an unmodified Dornier HM3 lithotriptor. • Treatment with the SLX produced a highly focused lesion running from cortex to medulla and often spanning the full thickness of the kidney. Unlike the diffuse interstitial haemorrhage observed with the HM3, the SLX lesion bore a blood-filled core of near-complete tissue disruption devoid of histologically recognizable kidney structure. • Despite the intensity of tissue destruction at the core of the lesion, measures of lesion size based on macroscopic determination of haemorrhage in the parenchyma were not significantly different from kidneys treated using the HM3 (2000 SWs, 120 SWs/min: SLX, 1.86 ± 0.52% FRV; HM3, 3.93 ± 1.29% FRV). • Doubling the SW dose of the SLX from 2000 to 4000 SWs did not significantly increase lesion size. In addition, slowing the firing rate of the SLX to 60 SWs/min did not reduce the size of the lesion (2.16 ± 0.96% FRV) compared with treatment at 120 SWs/min, as was the case with the HM3 (0.42 ± 0.23% FRV vs 3.93 ± 1.29% FRV). • Renal function fell significantly below baseline in all treated groups but was similar for both lithotriptors. • Focal width of the SLX (≈2.6 mm) was about one-third that of the HM3 (≈8 mm) while peak pressures were higher (SLX at power level 9: P+≈90 MPa, P-≈-12 MPa; HM3 at 24 kV: P+≈46 MPa, P-≈-8 MPa). • The lesion produced by the SLX (narrow focal width, high acoustic pressure) was a more focused, more intense form of tissue damage than occurs with the HM3. • Slowing the SW rate to 60 SWs/min, a strategy shown to be effective in reducing injury with the HM3, was not protective with the SLX. • These findings suggest that the focal width and acoustic output of a lithotriptor affect the renal response to SWL. © 2012 BJU INTERNATIONAL.
NASA Astrophysics Data System (ADS)
Xiao, Ziniu; Li, Delin
2016-06-01
The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.
Age-Related Reduction in Daytime Sleep Propensity and Nocturnal Slow Wave Sleep
Dijk, Derk-Jan; Groeger, John A.; Stanley, Neil; Deacon, Stephen
2010-01-01
Objective: To investigate whether age-related and experimental reductions in SWS and sleep continuity are associated with increased daytime sleep propensity. Methods: Assessment of daytime sleep propensity under baseline conditions and following experimental disruption of SWS. Healthy young (20-30 y, n = 44), middle-aged (40-55 y, n = 35) and older (66-83 y, n = 31) men and women, completed a 2-way parallel group study. After an 8-h baseline sleep episode, subjects were randomized to 2 nights with selective SWS disruption by acoustic stimuli, or without disruption, followed by 1 recovery night. Objective and subjective sleep propensity were assessed using the Multiple Sleep Latency Test (MSLT) and the Karolinska Sleepiness Scale (KSS). Findings: During baseline sleep, SWS decreased (P < 0.001) and the number of awakenings increased (P < 0.001) across the 3 age groups. During the baseline day, MSLT values increased across the three age groups (P < 0.0001) with mean values of 8.7min (SD: 4.5), 11.7 (5.1) and 14.2 (4.1) in the young, middle-aged, and older adults, respectively. KSS values were 3.7 (1.0), 3.2 (0.9), and 3.4 (0.6) (age-group: P = 0.031). Two nights of SWS disruption led to a reduction in MSLT and increase in KSS in all 3 age groups (SWS disruption vs. control: P < 0.05 in all cases). Conclusions: Healthy aging is associated with a reduction in daytime sleep propensity, sleep continuity, and SWS. In contrast, experimental disruption of SWS leads to an increase in daytime sleep propensity. The age-related decline in SWS and reduction in daytime sleep propensity may reflect a lessening in homeostatic sleep requirement. Healthy older adults without sleep disorders can expect to be less sleepy during the daytime than young adults. Citation: Dijk DJ; Groeger JA; Stanley N; Deacon S. Age-related reduction in daytime sleep propensity and nocturnal slow wave sleep. SLEEP 2010;33(2):211-223. PMID:20175405
Efficient mass-selective three-photon ionization of zirconium atoms
Page, Ralph H.
1994-01-01
In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
NASA Astrophysics Data System (ADS)
Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong
2015-04-01
Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-715 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the selection of SWs, and the Vis/NIR combined with LS-SVM models had the capability to predict the different breeds (mutant M1, mutant M2 and their parent) of tomatoes from leafs and fruits.
Point shear wave speed measurement in differentiating benign and malignant focal liver lesions.
Dong, Yi; Wang, Wen-Ping; Xu, Yadan; Cao, Jiaying; Mao, Feng; Dietrich, Cristoph F
2017-06-26
To investigate the value of ElastPQ measurement for differential diagnosis of benign and malignant focal liver lesions (FLLs) by using histologic results as a reference standard. A total of 154 patients were included. ElastPQ measurement was performed for each lesion in which the shear wave speed (SWS) was measured. The difference in SWS and SWS ratio of FLL to surrounding liver were evaluated, and the cut off value was investigated. Receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic performance. Histology as a gold standard was obtained by surgery in all patients. A total of 154 lesions including 129 (83.7 %) malignant FLLs and 25 (16.3 %) benign ones were analysed. The SWS of malignant and benign FLLs was significantly different, 2.77±0.68 m/s and 1.57±0.55 m/s (p<0.05). The SWS ratio of each FLL to surrounding liver parenchyma was 2.23±0.49 for malignant and 1.14±0.36 for benign FLLs (p<0.05). The cut off value for differential diagnosis was 2.06 m/s for SWS and 1.67 for SWS ratio. ElastPQ measurement provides reliable quantitative stiffness information of FLLs and may be helpful in the differential diagnosis between malignant and benign FLLs.
Guilherme, Stéphanie; Rodriguez, Manuel J
2017-10-23
Among all the organic disinfection by-products (DBPs), only trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated in drinking water, while most DBPs are not. Very little information exists on the occurrence of non-regulated DBPs, particularly in small water systems (SWS). Paradoxically, SWS are more vulnerable to DBPs because of a low capacity to implement adequate treatment technologies to remove DBP precursors. Since DBP analyses are expensive, usually SWS have difficulties to implement a rigorous characterization of these contaminants. The purpose of this study was to estimate non-regulated DBP levels in SWS from easy measurements of relevant parameters regularly monitored. Since no information on non-regulated DBPs in SWS was available, a sampling program was carried out in 25 SWS in two provinces of Canada. Five DBP families were investigated: THMs, HAAs, haloacetonitriles (HANs), halonitromethanes (HNMs), and haloketones (HKs). Multivariate linear mixed regression models were developed to estimate HAN, HK, and HNM levels from water quality characteristics in the water treatment plant, concentrations of regulated DBPs, and residual disinfectant levels. The models obtained have a good explanatory capacity since R 2 varies from 0.77 to 0.91 according to compounds and conditions for application (season and type of treatment). Model validation with an independent database suggested their ability for generalization in similar SWS in North America.
Khanfar, H K; Azzam, R M A
2009-09-20
An iterative procedure for the design of a polarizing beam splitter (PBS) that uses a form-birefringent, subwavelength-structured, one-dimensional photonic-crystal layer (SWS 1-D PCL) embedded in a high-index cubical prism is presented. The PBS is based on index matching and total transmission for the p polarization and total internal reflection for the s polarization at the prism-PCL interface at 45 degrees angle of incidence. A high extinction ratio in reflection (>50 dB) over the 4-12 microm IR spectral range is achieved using a SWS 1-D PCL of ZnTe embedded in a ZnS cube within an external field of view of +/-6.6 degrees and in the presence of grating filling factor errors of up to +/-10%. Comparable results, but with wider field of view, are also obtained with a Ge PCL embedded in a Si prism.
Design Rules for Tailoring Antireflection Properties of Hierarchical Optical Structures
Leon, Juan J. Diaz; Hiszpanski, Anna M.; Bond, Tiziana C.; ...
2017-05-18
Hierarchical structures consisting of small sub-wavelength features stacked atop larger structures have been demonstrated as an effective means of reducing the reflectance of surfaces. However, optical devices require different antireflective properties depending on the application, and general unifying guidelines on hierarchical structures' design to attain a desired antireflection spectral response are still lacking. The type of reflectivity (diffuse, specular, or total/hemispherical) and its angular- and spectral-dependence are all dictated by the structural parameters. Through computational and experimental studies, guidelines have been devised to modify these various aspects of reflectivity across the solar spectrum by proper selection of the features ofmore » hierarchical structures. In this wavelength regime, micrometer-scale substructures dictate the long-wavelength spectral response and effectively reduce specular reflectance, whereas nanometer-scale substructures dictate primarily the visible wavelength spectral response and reduce diffuse reflectance. Coupling structures having these two length scales into hierarchical arrays impressively reduces surfaces' hemispherical reflectance across a broad spectrum of wavelengths and angles. Furthermore, such hierarchical structures in silicon are demonstrated having an average total reflectance across the solar spectrum of 1.1% (average weighted reflectance of 1% in the 280–2500 nm range of the AM 1.5 G spectrum) and specular reflectance <1% even at angles of incidence as high as 67°.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lisa; Kalume, Aimable; Wagner, James
Iso-polyhalomethanes are known reactive intermediates that play a pivotal role in the photochemistry of halomethanes in condensed phases. In this work, iso-bromoform (iso-CHBr{sub 3}) and its deuterated isotopomer were characterized by matrix isolation infrared and UV/visible spectroscopy, supported by ab initio and density functional theory calculations, to further probe the structure, spectroscopy, and photochemistry of this important intermediate. Selected wavelength laser irradiation of CHBr{sub 3} isolated in Ar or Ne matrices at {approx}5 K yielded iso-CHBr{sub 3}; the observed infrared and UV/visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CHBr{submore » 3} potential energy surface were characterized computationally using high-level methods in combination with correlation consistent basis sets. These calculations show that, while the corresponding minima lie {approx}200 kJ/mol above the global CHBr{sub 3} minimum, the isomer is bound by some 60 kJ/mol in the gas phase with respect to the CHBr{sub 2}+ Br asymptote. The photochemistry of iso-CHBr{sub 3} was investigated by selected wavelength laser irradiation into the intense S{sub 0}{yields} S{sub 3} transition, which resulted in back photoisomerization to CHBr{sub 3}. Intrinsic reaction coordinate calculations confirmed the existence of a first-order saddle point connecting the two isomers, which lies energetically below the threshold of the radical channel. Subsequently, natural bond orbital analysis and natural resonance theory were used to characterize the important resonance structures of the isomer and related stationary points, which demonstrate that the isomerization transition state represents a crossover from dominantly covalent to dominantly ionic bonding. In condensed phases, the ion-pair dominated isomerization transition state structure is preferentially stabilized, so that the barrier to isomerization is lowered.« less
Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R
2016-08-01
Shear waves propagating through interfaces where there is a change in stiffness cause reflected waves that can lead to artifacts in shear wave speed (SWS) reconstructions. Two-dimensional (2-D) directional filters are commonly used to reduce in-plane reflected waves; however, SWS artifacts arise from both in- and out-of-imaging-plane reflected waves. Herein, we introduce 3-D shear wave reconstruction methods as an extension of the previous 2-D estimation methods and quantify the reduction in image artifacts through the use of volumetric SWS monitoring and 4-D-directional filters. A Gaussian acoustic radiation force impulse excitation was simulated in phantoms with Young's modulus ( E ) of 3 kPa and a 5-mm spherical lesion with E = 6, 12, or 18.75 kPa. The 2-D-, 3-D-, and 4-D-directional filters were applied to the displacement profiles to reduce in-and out-of-plane reflected wave artifacts. Contrast-to-noise ratio and SWS bias within the lesion were calculated for each reconstructed SWS image to evaluate the image quality. For 2-D SWS image reconstructions, the 3-D-directional filters showed greater improvements in image quality than the 2-D filters, and the 4-D-directional filters showed marginal improvement over the 3-D filters. Although 4-D-directional filters can further reduce the impact of large magnitude out-of-plane reflection artifacts in SWS images, computational overhead and transducer costs to acquire 3-D data may outweigh the modest improvements in image quality. The 4-D-directional filters have the largest impact in reducing reflection artifacts in 3-D SWS volumes.
Groeger, John A.; Stanley, Neil; Deacon, Stephen; Dijk, Derk-Jan
2014-01-01
Study Objective: To contrast the effects of slow wave sleep (SWS) disruption and age on daytime functioning. Design: Daytime functioning was contrasted in three age cohorts, across two parallel 4-night randomized groups (baseline, two nights of SWS disruption or control, recovery sleep). Setting: Sleep research laboratory. Participants: 44 healthy young (20-30 y), 35 middle-aged (40-55 y), and 31 older (66-83 y) men and women. Interventions: Acoustic stimulation contingent on appearance of slow waves. Measurements and Results: Cognitive performance was assessed before sleep latency tests at five daily time-points. SWS disruption resulted in less positive affect, slower or impaired information processing and sustained attention, less precise motor control, and erroneous implementation, rather than inhibition, of well-practiced actions. These performance impairments had far smaller effect sizes than the increase in daytime sleepiness and differed from baseline to the same extent for each age group. At baseline, younger participants performed better than older participants across many cognitive domains, with largest effects on executive function, response time, sustained attention, and motor control. At baseline, the young were sleepier than other age groups. Conclusions: SWS has been considered a potential mediator of age-related decline in performance, although the effects of SWS disruption on daytime functioning have not been quantified across different cognitive domains nor directly compared to age-related changes in performance. The data imply that two nights of SWS disruption primarily leads to an increase in sleepiness with minor effects on other aspects of daytime functioning, which are different from the substantial effects of age. Citation: Groeger JA, Stanley N, Deacon S, Dijk DJ. Dissociating effects of global sws disruption and healthy aging on waking performance and daytime sleepiness. SLEEP 2014;37(6):1127-1142. PMID:24882908
Clark, Daniel L; Connors, Bret A; Handa, Rajash K; Evan, Andrew P
2011-12-01
The purpose of this study was to determine if pretreatment of porcine kidneys with low-energy shock waves (SWs) prior to delivery of a clinical dose of 2,000 SWs reduces or prevents shock wave lithotripsy (SWL)-induced acute oxidative stress and inflammation in the treated kidney. Pigs (7-8 weeks old) received 2,000 SWs at 24 kV (120 SW/min) with or without pretreatment with 100 SWs at 12 kV/2 Hz to the lower pole calyx of one kidney using the HM3. Four hours post-treatment, selected samples of renal tissue were frozen for analysis of cytokine, interleukin-6 (IL-6), and stress response protein, heme oxygenase-1 (HO-1). Urine samples were taken before and after treatment for analysis of tumor necrosis factor-α (TNF-α). Treatment with 2,000 SWs with or without pretreatment caused a statistically significant elevation of HO-1 and IL-6 in the renal medulla localized to the focal zone of the lithotripter. However, the increase in HO-1 and IL-6 was significantly reduced using the pretreatment protocol compared to no pretreatment. Urinary excretion of TNF-α increased significantly (p < 0.05) from baseline for pigs receiving 2,000 SWs alone; however, this effect was completely abolished with the pretreatment protocol. We conclude that pretreatment of the kidney with a low dose of low-energy SWs prior to delivery of a clinical dose of SWs reduces, but does not completely prevent, SWL-induced acute renal oxidative stress and inflammation.
Brown, Edward J.; Baldasaro, Paul F.; Dziendziel, Randolph J.
1997-01-01
A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength .lambda..sub.IF approximately equal to the bandgap wavelength .lambda..sub.g of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5.lambda..sub.IF to .lambda..sub.IF and reflect from .lambda..sub.IF to about 2.lambda..sub.IF ; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5.lambda..sub.IF.
NASA Astrophysics Data System (ADS)
Arslan, M. H.; Arslan, H. D.
2017-08-01
Shear walled (SW) reinforced concrete (RC) buildings are considered to be a type of high seismic safety building. Although this structural system has an important seismic advantage, it also has some disadvantages, especially in acoustic and thermal comfort. In this study, experimental studies have been conducted on RC members produced with plastic material having circular sections to determine structural performance. RC members have been produced with and without 6 cm diameter balls to analyze the structural behaviour under loading and to investigate the thermal performance and sound absorption behaviour of the members. In the study, structural parameters have been determined for RC members such as slabs and SWs produced with and without balls to discover the feasibility of the research and discuss the findings comparatively. The results obtained from the experimental studies show that PB used in RC with suitable positions do not significantly decrease strength but improve the thermal and acoustic features. It has been also seen that using plastic balls reduce the total concrete materials.
Temperature dependence of the ClONO{sub 2} UV absorption spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, J.B.; Talukdar, R.K.; Ravishankara, A.R.
1994-04-01
The temperature dependence of the ClONO{sub 2} absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO{sub 2} absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, < 2% at 215 nm and 220 K, but significant atmore » the wavelengths important in the stratosphere, {approximately} 30% at 325 nm and 220 K. The authors ClONO{sub 2} absorption cross section data are in good general agreement with the previous measurements of Molina and Molina.« less
Optical properties of hybrid quantum-well–dots nanostructures grown by MOCVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mintairov, S. A., E-mail: mintairov@scell.ioffe.ru; Kalyuzhnyy, N. A.; Nadtochiy, A. M.
The deposition of In{sub x}Ga{sub 1–x}As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In{sub x}Ga{sub 1–x}As thicknesses andmore » compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shilin; Qu, Hongpeng; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp
Resistive drift wave instability is investigated numerically in tokamak edge plasma confined by sheared slab magnetic field geometry with an embedded magnetic island. The focus is on the structural characteristics of eigenmode inside the island, where the density profile tends to be flattened. A transition of the dominant eigenmode occurs around a critical island width w{sub c}. For thin islands with a width below w{sub c}, two global long wavelength eigenmodes with approximately the same growth rate but different eigenfrequency are excited, which are stabilized by the magnetic island through two-dimensional mode coupling in both x and y (corresponding tomore » radial and poloidal in tokamak) directions. On the other hand, a short wavelength eigenmode, which is destabilized by thick islands with a width above w{sub c}, dominates the edge fluctuation, showing a prominent structural localization in the region between the X-point and the O-point of the magnetic island. The main destabilization mechanism is identified as the mode coupling in the y direction, which is similar to the so-called toroidal coupling in tokamak plasmas. These three eigenmodes may coexist in the drift wave fluctuation for the island with a width around w{sub c}. It is demonstrated that the structural localization results mainly from the quasilinear flattening of density profile inside the magnetic island.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Ikonnikov, A. V.; Antonov, A. V.
2013-11-15
The spectra and relaxation kinetics of interband photoconductivity are investigated in narrow-gap Hg{sub 1-x}Cd{sub x}Te epitaxial films with x = 0.19-0.23 and in structures with HgCdTe-based quantum wells (QWs), having an interband-transition energy in the range of 30-90 meV, grown by molecular-beam epitaxy on GaAs (013) substrates. A long-wavelength sensitivity band caused by impurities or defects is found in the spectra of the structures with quantum wells in addition to the interband photoconductivity. It is shown that the lifetimes of nonequilibrium carriers in the structures with QWs is less than in bulk samples at the same optical-transition energy. From themore » measured carrier lifetimes, the ampere-watt responsivity and the equivalent noise power for a film with x = 0.19 at a wavelength of 19 {mu}m are estimated. When investigating the relaxation kinetics of the photoconductivity at 4.2 K in high excitation regime, it is revealed that radiative recombination is dominant over other mechanisms of nonequilibrium-carrier recombination.« less
Multi-wavelength Yb:YAG/Nd3+:YVO4 continuous-wave microchip Raman laser.
Wang, Xiao-Lei; Dong, Jun; Wang, Xiao-Jie; Xu, Jie; Ueda, Ken-Ichi; Kaminskii, Alexander A
2016-08-01
Multi-wavelength continuous-wave (CW) Raman lasers in a laser diode pumped Yb:YAG/Nd3+:YVO4 microchip Raman laser have been demonstrated for the first time to our best knowledge. The multi-wavelength laser of the first Stokes radiation around 1.08 μm has been achieved with a Raman shift of 261 cm-1 for a-cut Nd:YVO4 crystal corresponding to the fundamental wavelength at 1.05 μm. Multi-wavelength laser operation simultaneously around 1.05 and 1.08 μm has been achieved under the incident pump power between 1.5 and 1.7 W. Multi-wavelength Raman laser with frequency separation of 1 THz around 1.08 μm has been obtained when the incident pump power is higher than 1.7 W. The maximum Raman laser output power of 260 mW at 1.08 μm is obtained and the corresponding optical-to-optical conversion efficiency is 4.2%. Elliptically polarized fundamental laser and linearly polarized Raman laser were observed in an Yb:YAG/Nd:YVO4 CW microchip Raman laser. The experimental results of linearly polarized, multi-wavelength Yb:YAG/Nd:YVO4 CW microchip Raman laser with adjustable frequency separation provide a novel approach for developing potential compact laser sources for Terahertz generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radu, C.; Simion, S.; Zamfirescu, M.
2011-08-01
The aim of this study is to investigate the micrometer and submicrometer scale structuring of silicon by liquid chlorine and fluorine precursors with 200 fs laser pulses working at both fundamental (775 nm) and frequency doubled (387 nm) wavelengths. The silicon surface was irradiated at normal incidence by immersing the Si (111) substrates in a glass container filled with liquid chlorine (CCl{sub 4}) and fluorine (C{sub 2}Cl{sub 3}F{sub 3}) precursors. We report that silicon surfaces develop an array of spikes with single step irradiation processes at 775 nm and equally at 387 nm. When irradiating the Si surface with 400more » pulses at 330 mJ/cm{sup 2} laser fluence and a 775 nm wavelength, the average height of the formed Si spikes in the case of fluorine precursors is 4.2 {mu}m, with a full width at half maximum of 890 nm. At the same irradiation wavelength chlorine precursors develop Si spikes 4 {mu}m in height and with a full width at half maximum of 2.3 {mu}m with irradiation of 700 pulses at 560 mJ/cm{sup 2} laser fluence. Well ordered areas of submicrometer spikes with an average height of about 500 nm and a width of 300 nm have been created by irradiation at 387 nm by chlorine precursors, whereas the fluorine precursors fabricate spikes with an average height of 700 nm and a width of about 200 nm. Atomic force microscopy and scanning electron microscopy of the surface show that the formation of the micrometer and sub-micrometer spikes involves a combination of capillary waves on the molten silicon surface and laser-induced etching of silicon, at both 775 nm and 387 nm wavelength irradiation. The energy-dispersive x-ray measurements indicate the presence of chlorine and fluorine precursors on the structured surface. The fluorine precursors create a more ordered area of Si spikes at both micrometer and sub-micrometer scales. The potential use of patterned Si substrates with gradient topography as model scaffolds for the systematic exploration of the role of 3D micro/nano morphology on cell adhesion and growth is envisaged.« less
Efficient mass-selective three-photon ionization of zirconium atoms
Page, R.H.
1994-12-27
In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.
Potential biological targets for bioassay development in drug discovery of Sturge-Weber syndrome.
Mohammadipanah, Fatemeh; Salimi, Fatemeh
2018-02-01
Sturge-Weber Syndrome (SWS) is a neurocutaneous disease with clinical manifestations including ocular (glaucoma), cutaneous (port-wine birthmark), neurologic (seizures), and vascular problems. Molecular mechanisms of SWS pathogenesis are initiated by the somatic mutation in GNAQ. Therefore, no definite treatments exist for SWS and treatment options only mitigate the intensity of its clinical manifestations. Biological assay design for drug discovery against this syndrome demands comprehensive knowledge on mechanisms which are involved in its pathogenesis. By analysis of the interrelated molecular targets of SWS, some in vitro bioassay systems can be allotted for drug screening against its progression. Development of such platforms of bioassay can bring along the implementation of high-throughput screening of natural or synthetic compounds in drug discovery programs. Regarding the fact that study of molecular targets and their integration in biological assay design can facilitate the process of effective drug discovery; some potential biological targets and their respective biological assay for SWS drug discovery are propounded in this review. For this purpose, some biological targets for SWS drug discovery such as acetylcholinesterase, alkaline phosphatase, GABAergic receptors, Hypoxia-Inducible Factor (HIF)-1α and 2α are suggested. © 2017 John Wiley & Sons A/S.
The in vitro toxicology of Swedish snus
Coggins, Christopher R. E.; Ballantyne, Mark; Curvall, Margareta; Rutqvist, Lars-Erik
2012-01-01
Three commercial brands of Swedish snus (SWS), an experimental SWS, and the 2S3 reference moist snuff were each tested in four in vitro toxicology assays. These assays were: Salmonella reverse mutation, mouse lymphoma, in vitro micronucleus, and cytotoxicity. Water extractions of each of the 5 products were tested using several different concentrations; the experimental SWS was also extracted using dimethyl sulfoxide (DMSO). Extraction procedures were verified by nicotine determinations. Results for SWS in the mutagenicity assays were broadly negative: there were occasional positive responses, but these were effectively at the highest concentration only (concentrations well above those suggested by regulatory guidelines), and were often associated with cytotoxicity. The 2S3 reference was unequivocally positive in one of the three conditions of the micronucleus assay (MNA), at the highest concentration only. Positive controls produced the expected responses in each assay. The SWS data are contrasted with data reported for combusted tobacco in the form of cigarettes, where strongly positive responses have been routinely reported for mutagenicity and cytotoxicity. These negative findings in a laboratory setting concur with the large amount of epidemiological data from Sweden, data showing that SWS are associated with considerably lower carcinogenic potential when compared with cigarettes. PMID:22400986
NASA Astrophysics Data System (ADS)
Amalokwu, Kelvin; Chapman, Mark; Best, Angus I.; Sothcott, Jeremy; Minshull, Timothy A.; Li, Xiang-Yang
2015-01-01
Fractured rocks are known to exhibit seismic anisotropy and shear wave splitting (SWS). SWS is commonly used for fractured rock characterization and has been shown to be sensitive to fluid type. The presence of partial liquid/gas saturation is also known to affect the elastic properties of rocks. The combined effect of both fractures and partial liquid/gas saturation is still unknown. Using synthetic, silica-cemented sandstones with aligned penny-shaped voids, we conducted laboratory ultrasonic experiments to investigate the effect fractures aligned at an oblique angle to wave propagation would have on SWS under partial liquid/gas saturation conditions. The result for the fractured rock shows a saturation dependence which can be explained by combining a fractured rock model and a partial saturation model. At high to full water saturation values, SWS decreases as a result of the fluid bulk modulus effect on the quasi-shear wave. This bulk modulus effect is frequency dependent as a result of wave-induced fluid flow mechanisms, which would in turn lead to frequency dependent SWS. This result suggests the possible use of SWS for discriminating between full liquid saturation and partial liquid/gas saturation.
Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents
Shaw, Natalie D.; McHill, Andrew W.; Schiavon, Michele; Kangarloo, Tairmae; Mankowski, Piotr W.; Cobelli, Claudio; Klerman, Elizabeth B.; Hall, Janet E.
2016-01-01
Study Objectives: Cross-sectional studies report a correlation between slow wave sleep (SWS) duration and insulin sensitivity (SI) in children and adults. Suppression of SWS causes insulin resistance in adults but effects in children are unknown. This study was designed to determine the effect of SWS fragmentation on SI in children. Methods: Fourteen pubertal children (11.3–14.1 y, body mass index 29th to 97th percentile) were randomized to sleep studies and mixed meal (MM) tolerance tests with and without SWS disruption. Beta-cell responsiveness (Φ) and SI were determined using oral minimal modeling. Results: During the disruption night, auditory stimuli (68.1 ± 10.7/night; mean ± standard error) decreased SWS by 40.0 ± 8.0%. SWS fragmentation did not affect fasting glucose (non-disrupted 76.9 ± 2.3 versus disrupted 80.6 ± 2.1 mg/dL), insulin (9.2 ± 1.6 versus 10.4 ± 2.0 μIU/mL), or C-peptide (1.9 ± 0.2 versus 1.9 ± 0.1 ng/mL) levels and did not impair SI (12.9 ± 2.3 versus 10.1 ± 1.6 10−4 dL/kg/min per μIU/mL) or Φ (73.4 ± 7.8 versus 74.4 ± 8.4 10−9 min−1) to a MM challenge. Only the subjects in the most insulin-sensitive tertile demonstrated a consistent decrease in SI after SWS disruption. Conclusion: Pubertal children across a range of body mass indices may be resistant to the adverse metabolic effects of acute SWS disruption. Only those subjects with high SI (i.e., having the greatest “metabolic reserve”) demonstrated a consistent decrease in SI. These results suggest that adolescents may have a unique ability to adapt to metabolic stressors, such as acute SWS disruption, to maintain euglycemia. Additional studies are necessary to confirm that this resiliency is maintained in settings of chronic SWS disruption. Citation: Shaw ND, McHill AW, Schiavon M, Kangarloo T, Mankowski PW, Cobelli C, Klerman EB, Hall JE. Effect of slow wave sleep disruption on metabolic parameters in adolescents. SLEEP 2016;39(8):1591–1599. PMID:27166229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pathak, H. P.; Dwivedi, D. K., E-mail: todkdwivedi@gmail.com; Shukla, Nitesh
2016-05-06
Thin films of a- Se{sub 72}Te{sub 25}In{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup -6} Torr on to well cleaned glass substrate. a-Se{sub 72}Te{sub 25}In{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the absorption coefficient of these films. The optical band gap of as prepared and annealed films as a function of photon energy hasmore » been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuyuki, Takuma; Yoshioka, Ryo; Yoshida, Kenji
2013-11-11
This study demonstrates long-wavelength emission of up to 1204 nm in photo-pumped GaAs{sub 1−x}Bi{sub x} lasers grown by molecular beam epitaxy under low temperature conditions. The characteristic temperature (T{sub 0}) between 20 and 80 °C in the GaAs{sub 1−x}Bi{sub x} lasers with Al{sub 0.3}Ga{sub 0.7}As electron blocking layer is approximately 100 K, which is larger than that of the typical 1.3-μm InGaAsP Fabry-Perot laser diodes (FP-LDs; T{sub 0} = 66 K). The temperature coefficient of the lasing wavelength is approximately 40% of that of InGaAsP FP-LDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, N.; Bai, Y.; Slivken, S.
2014-08-18
A technique based on composite quantum wells for design and growth of strain balanced Al{sub 0.63}In{sub 0.37}As/Ga{sub 0.35}In{sub 0.65}As/Ga{sub 0.47}In{sub 0.53}As quantum cascade lasers (QCLs) by molecular beam epitaxy (MBE), emitting in 5.2–11 μm wavelength range, is reported. The strained Al{sub 0.63}In{sub 0.37}As provides good electron confinement at all wavelengths, and strain balancing can be achieved through composite wells of Ga{sub 0.35}In{sub 0.65}As/Ga{sub 0.47}In{sub 0.53}As for different wavelength. The use of these fixed composition materials can avoid the need for frequent calibration of a MBE reactor to grow active regions with different strain levels for different wavelengths. Experimental results for QCLsmore » emitting at 5.2, 6.7, 8.2, 9.1, and 11 μm exhibit good wall plug efficiencies and power across the whole wavelength range. It is shown that the emission wavelength can be predictably changed using the same design template. These lasers are also compatible with a heterogeneous broadband active region, consisting of multiple QCL cores, which can be produced in a single growth run.« less
Modeling and Optimization of Sub-Wavelength Grating Nanostructures on Cu(In,Ga)Se2 Solar Cell
NASA Astrophysics Data System (ADS)
Kuo, Shou-Yi; Hsieh, Ming-Yang; Lai, Fang-I.; Liao, Yu-Kuang; Kao, Ming-Hsuan; Kuo, Hao-Chung
2012-10-01
In this study, an optical simulation of Cu(In,Ga)Se2 (CIGS) solar cells by the rigorous coupled-wave analysis (RCWA) method is carried out to investigate the effects of surface morphology on the light absorption and power conversion efficiencies. Various sub-wavelength grating (SWG) nanostructures of periodic ZnO:Al (AZO) on CIGS solar cells were discussed in detail. SWG nanostructures were used as efficient antireflection layers. From the simulation results, AZO structures with nipple arrays effectively suppress the Fresnel reflection compared with nanorod- and cone-shaped AZO structures. The optimized reflectance decreased from 8.44 to 3.02% and the efficiency increased from 14.92 to 16.11% accordingly. The remarkable enhancement in light harvesting is attributed to the gradient refractive index profile between the AZO nanostructures and air.
Use of complex frequency plane to design broadband and sub-wavelength absorbers.
Romero-García, V; Theocharis, G; Richoux, O; Pagneux, V
2016-06-01
The reflection of sound of frequency below 1 kHz, by a rigid-backed structure that contains sub-wavelength resonators is studied in this work. In particular, only single mode reflected waves are considered, an approximation which is accurate in this low frequency regime. A method of analysis of absorption that uses the structure of the reflection coefficient in the complex frequency plane is proposed. In the absence of losses, the reflection coefficient supports pairs of poles and zeros that are complex conjugate and which have imaginary parts linked to the energy leakage by radiation. When losses are introduced and balanced to the leakage, the critical coupling condition is satisfied and total absorption is obtained. Examples of a slot resonator and of multiple Helmholtz resonators are analyzed to obtain both narrow and broadband total absorption.
Lateral conduction infrared photodetector
Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM
2011-09-20
A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhang, Xianting; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Wang, Liang; Zhong, Kangping; Wang, Kuiru; Yu, Chongxiu; Tam, Hwa Yaw; Wai, P K A
2016-06-01
Generation of spectrally-isolated wavelengths in the violet to blue region based on cascaded degenerate four-wave mixing (FWM) is experimentally demonstrated for the first time in a tailor-made photonic crystal fiber, which has two adjacent zero dispersion wavelengths (ZDWs) at 696 and 852 nm in the fundamental mode. The influences of the wavelength λp and the input average power Pav of the femtosecond pump pulses on the phase-matched frequency conversion process are studied. When femtosecond pump pulses at λp of 880, 870, and 860 nm and Pav of 500 mW are coupled into the normal dispersion region close to the second ZDW, the first anti-Stokes waves generated near the first ZDW act as a secondary pump for the next FWM process. The conversion efficiency ηas2 of the second anti-Stokes waves, which are generated at the violet to blue wavelengths of 430, 456, and 472 nm, are 4.8, 6.48, and 9.66%, for λp equalling 880, 870, and 860 nm, respectively.
Shear Wave Splitting Inversion in a Complex Crust
NASA Astrophysics Data System (ADS)
Lucas, A.
2015-12-01
Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for squirt flow better fits the data and is more applicable. The fluid influence factor that best describes the data can be identified prior to solving the inversion. Implementing this formula in a linear inversion has a significantly improved fit to the time delay observations than that of the current methods.
Electro-optic polymeric reflection modulator based on plasmonic metamaterial
NASA Astrophysics Data System (ADS)
Abbas, A.; Swillam, M.
2018-02-01
A novel low power design for polymeric Electro-Optic reflection modulator is proposed based on the Extraordinary Reflection of light from multilayer structure consisting of a plasmonic metasurface with a periodic structure of sub wavelength circular apertures in a gold film above a thin layer of EO polymer and above another thin gold layer. The interference of the different reflected beams from different layer construct the modulated beam, The applied input driving voltage change the polymer refractive index which in turn determine whether the interference is constructive or destructive, so both phase and intensity modulation could be achieved. The resonant wavelength is tuned to the standard telecommunication wavelength 1.55μm, at this wavelength the reflection is minimum, while the absorption is maximum due to plasmonic resonance (PR) and the coupling between the incident light and the plasmonic metasurface.
Enhanced Memory Consolidation Via Automatic Sound Stimulation During Non-REM Sleep.
Leminen, Miika M; Virkkala, Jussi; Saure, Emma; Paajanen, Teemu; Zee, Phyllis C; Santostasi, Giovanni; Hublin, Christer; Müller, Kiti; Porkka-Heiskanen, Tarja; Huotilainen, Minna; Paunio, Tiina
2017-03-01
Slow-wave sleep (SWS) slow waves and sleep spindle activity have been shown to be crucial for memory consolidation. Recently, memory consolidation has been causally facilitated in human participants via auditory stimuli phase-locked to SWS slow waves. Here, we aimed to develop a new acoustic stimulus protocol to facilitate learning and to validate it using different memory tasks. Most importantly, the stimulation setup was automated to be applicable for ambulatory home use. Fifteen healthy participants slept 3 nights in the laboratory. Learning was tested with 4 memory tasks (word pairs, serial finger tapping, picture recognition, and face-name association). Additional questionnaires addressed subjective sleep quality and overnight changes in mood. During the stimulus night, auditory stimuli were adjusted and targeted by an unsupervised algorithm to be phase-locked to the negative peak of slow waves in SWS. During the control night no sounds were presented. Results showed that the sound stimulation increased both slow wave (p = .002) and sleep spindle activity (p < .001). When overnight improvement of memory performance was compared between stimulus and control nights, we found a significant effect in word pair task but not in other memory tasks. The stimulation did not affect sleep structure or subjective sleep quality. We showed that the memory effect of the SWS-targeted individually triggered single-sound stimulation is specific to verbal associative memory. Moreover, the ambulatory and automated sound stimulus setup was promising and allows for a broad range of potential follow-up studies in the future. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohishi, Yuya; Oku, Takeo, E-mail: oku@mat.usp.ac.jp; Suzuki, Atsushi
2016-02-01
Perovskite-type CH{sub 3}NH{sub 3}PbI{sub 3}-based photovoltaic devices were fabricated and characterized. Doping effects of thallium (Tl), indium (In), or germanium (Ge) element on the photovoltaic properties and surface structures of the perovskite phase were investigated. The open circuit voltage increased by Ge addition, and fill factors were improved by adding a small amount of Ge, Tl or In. In addition, the wavelength range of incident photon conversion efficiencies was expanded by the Tl addition.
Brown, E.J.; Baldasaro, P.F.; Dziendziel, R.J.
1997-12-23
A filter system to transmit short wavelength radiation and reflect long wavelength radiation for a thermophotovoltaic energy conversion cell comprises an optically transparent substrate segregation layer with at least one coherent wavelength in optical thickness; a dielectric interference filter deposited on one side of the substrate segregation layer, the interference filter being disposed toward the source of radiation, the interference filter including a plurality of alternating layers of high and low optical index materials adapted to change from transmitting to reflecting at a nominal wavelength {lambda}{sub IF} approximately equal to the bandgap wavelength {lambda}{sub g} of the thermophotovoltaic cell, the interference filter being adapted to transmit incident radiation from about 0.5{lambda}{sub IF} to {lambda}{sub IF} and reflect from {lambda}{sub IF} to about 2{lambda}{sub IF}; and a high mobility plasma filter deposited on the opposite side of the substrate segregation layer, the plasma filter being adapted to start to become reflecting at a wavelength of about 1.5{lambda}{sub IF}. 10 figs.
Liu, Xiangyu; Otsuki, Taisuke; Takahashi, Akio; Kaido, Takanobu
2016-01-01
The authors here present a rare case of a 3-month-old infant with unilateral Sturge-Weber syndrome (SWS) who had excellent seizure control and no aggravation of previous existed neurological deficits after vertical parasagittal hemispherotomy (VPH). To our knowledge, this patient with SWS was the youngest one who received VPH. The use of VPH results in a successful treatment of intractable epilepsy in a patient with seizure onset in early infancy. At follow-up, the patient's neurodevelopmental status has been improved since the surgery. It is generally accepted that early-onset seizures in children with SWS are associated with worse neurological and developmental outcomes. However, when surgical treatment should be considered and how it should be performed remain a longstanding controversy. We promote early surgery in children with SWS and early-onset epilepsy. We suggest that VPH may be a useful adjuvant in the management of SWS with refractory epilepsy in early infancy and this procedure carries low neurological risk.
Optimal management of substrates in anaerobic co-digestion: An ant colony algorithm approach.
Verdaguer, Marta; Molinos-Senante, María; Poch, Manel
2016-04-01
Sewage sludge (SWS) is inevitably produced in urban wastewater treatment plants (WWTPs). The treatment of SWS on site at small WWTPs is not economical; therefore, the SWS is typically transported to an alternative SWS treatment center. There is increased interest in the use of anaerobic digestion (AnD) with co-digestion as an SWS treatment alternative. Although the availability of different co-substrates has been ignored in most of the previous studies, it is an essential issue for the optimization of AnD co-digestion. In a pioneering approach, this paper applies an Ant-Colony-Optimization (ACO) algorithm that maximizes the generation of biogas through AnD co-digestion in order to optimize the discharge of organic waste from different waste sources in real-time. An empirical application is developed based on a virtual case study that involves organic waste from urban WWTPs and agrifood activities. The results illustrate the dominate role of toxicity levels in selecting contributions to the AnD input. The methodology and case study proposed in this paper demonstrate the usefulness of the ACO approach in supporting a decision process that contributes to improving the sustainability of organic waste and SWS management. Copyright © 2016 Elsevier Ltd. All rights reserved.
Behavioural effects of dimethyl sulfoxide (DMSO): changes in sleep architecture in rats.
Cavas, María; Beltrán, David; Navarro, José F
2005-07-04
Dimethyl sulfoxide (DMSO) is an efficient solvent for water-insoluble compounds, widely used in biological studies and as a vehicle for drug therapy, but few data on its neurotoxic or behavioural effects is available. The aim of this work is to explore DMSO's effects upon sleep/wake states. Twenty male rats were sterotaxically prepared for polysomnography. Four concentrations of DMSO (5%, 10%, 15%, and 20%, in saline) were examined. DMSO or saline were administered intraperitoneally at the beginning of the light period. Three hours of polygraphic recording were evaluated for stages of vigilance after treatment. Sleep/wake parameters and EEG power spectral analyses during sleep were investigated. Results show no significant effect after 5% or 10% DMSO treatment. DMSO 15% increased mean episode duration of light slow wave sleep (SWS), decreasing mean episode duration of deep SWS and of quiet wake (QW). DMSO 20% increased light SWS enhancing number of episodes, while decreased deep SWS mean episode duration. EEG power spectra of sigma and delta activity were also affected by DMSO. Therefore, DMSO at 15% and 20% affects sleep architecture in rats, increasing light SWS and reducing deep SWS. Being aware of DMSO behavioural effects seems important since experimental artefacts caused by DMSO can lead to the erroneous interpretation of results.
Rogers, S J; Tureski, K; Cushnie, A; Brown, A; Bailey, A; Palmer, Q
2014-01-01
While considerable research has documented stigma toward key populations affected by HIV and AIDS - men who have sex with men (MSM), sex workers (SWs) - it provided limited empirical evidence on the presence of layered stigma among health-care professionals providing services for these populations. C-Change conducted a survey among 332 staff of health-care and social service agencies in Jamaica and The Bahamas to understand the levels of stigma toward people living with HIV (PLHIV), including MSM and SWs and factors associated with stigma. While most health-care professionals responding to the survey said that PLHIV, MSM, and SWs deserved quality care, they expressed high levels of blame and negative judgments, especially toward MSM and SWs. Across a stigma assessment involving eight vignette characters, the highest levels of stigma were expressed toward PLHIV who were also MSM or SWs, followed by PLHIV, MSM, and SWs. Differences were assessed by gender, country, type of staff, type of agency, and exposure to relevant training. Findings indicate higher reported stigma among nonclinical vs. clinical staff, staff who worked in general vs. MSM/SW-friendly health facilities, and among untrained vs. training staff. This implies the need for targeted staff capacity strengthening as well as improved facility environments that are MSM/SW-friendly.
Leveraging a Sturge-Weber Gene Discovery: An Agenda for Future Research.
Comi, Anne M; Sahin, Mustafa; Hammill, Adrienne; Kaplan, Emma H; Juhász, Csaba; North, Paula; Ball, Karen L; Levin, Alex V; Cohen, Bernard; Morris, Jill; Lo, Warren; Roach, E Steve
2016-05-01
Sturge-Weber syndrome (SWS) is a vascular neurocutaneous disorder that results from a somatic mosaic mutation in GNAQ, which is also responsible for isolated port-wine birthmarks. Infants with SWS are born with a cutaneous capillary malformation (port-wine birthmark) of the forehead or upper eyelid which can signal an increased risk of brain and/or eye involvement prior to the onset of specific symptoms. This symptom-free interval represents a time when a targeted intervention could help to minimize the neurological and ophthalmologic manifestations of the disorder. This paper summarizes a 2015 SWS workshop in Bethesda, Maryland that was sponsored by the National Institutes of Health. Meeting attendees included a diverse group of clinical and translational researchers with a goal of establishing research priorities for the next few years. The initial portion of the meeting included a thorough review of the recent genetic discovery and what is known of the pathogenesis of SWS. Breakout sessions related to neurology, dermatology, and ophthalmology aimed to establish SWS research priorities in each field. Key priorities for future development include the need for clinical consensus guidelines, further work to develop a clinical trial network, improvement of tissue banking for research purposes, and the need for multiple animal and cell culture models of SWS. Copyright © 2016. Published by Elsevier Inc.
Potential biological targets for bioassay development in drug discovery of Sturge-Weber syndrome.
Mohammadipanah, Fatemeh; Salimi, Fatemeh
2017-04-29
Sturge-Weber Syndrome (SWS) is among the neurocutaneous diseases, which has several clinical manifestations of ocular (glaucoma), cutaneous (port-wine stain), neurological (seizures) and vascular problems. Molecular mechanisms of SWS pathogenesis are initiated by the somatic mutation in GNAQ. Therefore, no definite treatments exist for the SWS and treatment options only mitigate the intensity of its clinical manifestations. Biological assay design for drug discovery against this syndrome demands comprehensive knowledge on mechanisms which are involved in its pathogenesis. By analysis of the interrelated molecular targets of SWS, some in vitro bioassay systems can be allotted for drug screening against this syndrome. Development of such platforms of bioassay can bring along the implementation of high throughput screening of natural or synthetic compounds in drug discovery programs. Regarding the fact that study of biological targets and their integration in biological assay design can facilitate the process of effective drug discovery; some potential biological targets and their respective biological assay for SWS drug discovery are propounded in this review. For this purpose, some biological targets for SWS drug discovery such as acetylcholine esterase, alkaline phosphatase, gamma-aminobutyricacidergic, Hypoxia-Inducible Factor (HIF) -1α and 2α are suggested. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Hernandez-Andrade, Edgar; Aurioles-Garibay, Alma; Garcia, Maynor; Korzeniewski, Steven J.; Schwartz, Alyse G.; Ahn, Hyunyoung; Martinez-Varea, Alicia; Yeo, Lami; Chaiworapongsa, Tinnakorn; Hassan, Sonia S.; Romero, Roberto
2014-01-01
Aim To investigate the effect of depth on cervical shear-wave elastography. Methods Shear-wave elastography was applied to estimate the velocity of propagation of the acoustic force impulse (shear-wave) in the cervix of 154 pregnant women at 11-36 weeks of gestation. Shear-wave speed (SWS) was evaluated in cross-sectional views of the internal and external cervical os in five regions of interest: anterior, posterior, lateral right, lateral left, and endocervix. Distance from the center of the US transducer to the center of the each region of interest was registered. Results In all regions, SWS decreased significantly with gestational age (p=0.006). In the internal os SWS was similar among the anterior, posterior and lateral regions, and lower in the endocervix. In the external os, the endocervix and anterior regions showed similar SWS values, lower than those from the posterior and lateral regions. In the endocervix, these differences remained significant after adjustment for depth, gestational age and cervical length. SWS estimations in all regions of the internal os were higher than those of the external os, suggesting denser tissue. Conclusion Depth from the ultrasound probe to different regions in the cervix did not significantly affect the SWS estimations. PMID:25029081
Desynchronization of slow oscillations in the basal ganglia during natural sleep.
Mizrahi-Kliger, Aviv D; Kaplan, Alexander; Israel, Zvi; Bergman, Hagai
2018-05-01
Slow oscillations of neuronal activity alternating between firing and silence are a hallmark of slow-wave sleep (SWS). These oscillations reflect the default activity present in all mammalian species, and are ubiquitous to anesthesia, brain slice preparations, and neuronal cultures. In all these cases, neuronal firing is highly synchronous within local circuits, suggesting that oscillation-synchronization coupling may be a governing principle of sleep physiology regardless of anatomical connectivity. To investigate whether this principle applies to overall brain organization, we recorded the activity of individual neurons from basal ganglia (BG) structures and the thalamocortical (TC) network over 70 full nights of natural sleep in two vervet monkeys. During SWS, BG neurons manifested slow oscillations (∼0.5 Hz) in firing rate that were as prominent as in the TC network. However, in sharp contrast to any neural substrate explored thus far, the slow oscillations in all BG structures were completely desynchronized between individual neurons. Furthermore, whereas in the TC network single-cell spiking was locked to slow oscillations in the local field potential (LFP), the BG LFP exhibited only weak slow oscillatory activity and failed to entrain nearby cells. We thus show that synchrony is not inherent to slow oscillations, and propose that the BG desynchronization of slow oscillations could stem from its unique anatomy and functional connectivity. Finally, we posit that BG slow-oscillation desynchronization may further the reemergence of slow-oscillation traveling waves from multiple independent origins in the frontal cortex, thus significantly contributing to normal SWS.
Slow wave and REM sleep deprivation effects on explicit and implicit memory during sleep.
Casey, Sarah J; Solomons, Luke C; Steier, Joerg; Kabra, Neeraj; Burnside, Anna; Pengo, Martino F; Moxham, John; Goldstein, Laura H; Kopelman, Michael D
2016-11-01
It has been debated whether different stages in the human sleep cycle preferentially mediate the consolidation of explicit and implicit memories, or whether all of the stages in succession are necessary for optimal consolidation. Here we investigated whether the selective deprivation of slow wave sleep (SWS) or rapid eye movement (REM) sleep over an entire night would have a specific effect on consolidation in explicit and implicit memory tasks. Participants completed a set of explicit and implicit memory tasks at night, prior to sleep. They had 1 control night of undisturbed sleep and 2 experimental nights, during which either SWS or REM sleep was selectively deprived across the entire night (sleep conditions counterbalanced across participants). Polysomnography recordings quantified precisely the amount of SWS and REM sleep that occurred during each of the sleep conditions, and spindle counts were recorded. In the morning, participants completed the experimental tasks in the same sequence as the night before. SWS deprivation disrupted the consolidation of explicit memories for visuospatial information (ηp2 = .23), and both SWS (ηp2 = .53) and REM sleep (ηp2 = .52) deprivation adversely affected explicit verbal recall. Neither SWS nor REM sleep deprivation affected aspects of short-term or working memory, and did not affect measures of verbal implicit memory. Spindle counts did not correlate significantly with memory performance. These findings demonstrate the importance of measuring the sleep cycles throughout the entire night, and the contribution of both SWS and REM sleep to memory consolidation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Ren, Wei-Wei; Li, Xiao-Long; Wang, Dan; Liu, Bo-Ji; Zhao, Chong-Ke; Xu, Hui-Xiong
2018-04-13
To evaluate a special kind of ultrasound (US) shear wave elastography for differential diagnosis of breast lesions, using a new qualitative analysis (i.e. the elasticity score in the travel time map) compared with conventional quantitative analysis. From June 2014 to July 2015, 266 pathologically proven breast lesions were enrolled in this study. The maximum, mean, median, minimum, and standard deviation of shear wave speed (SWS) values (m/s) were assessed. The elasticity score, a new qualitative feature, was evaluated in the travel time map. The area under the receiver operating characteristic (AUROC) curves were plotted to evaluate the diagnostic performance of both qualitative and quantitative analyses for differentiation of breast lesions. Among all quantitative parameters, SWS-max showed the highest AUROC (0.805; 95% CI: 0.752, 0.851) compared with SWS-mean (0.786; 95% CI:0.732, 0.834; P = 0.094), SWS-median (0.775; 95% CI:0.720, 0.824; P = 0.046), SWS-min (0.675; 95% CI:0.615, 0.731; P = 0.000), and SWS-SD (0.768; 95% CI:0.712, 0.817; P = 0.074). The AUROC of qualitative analysis in this study obtained the best diagnostic performance (0.871; 95% CI: 0.825, 0.909, compared with the best parameter of SWS-max in quantitative analysis, P = 0.011). The new qualitative analysis of shear wave travel time showed the superior diagnostic performance in the differentiation of breast lesions in comparison with conventional quantitative analysis.
Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.
Tyzio, Roman; Khalilov, Ilgam; Represa, Alfonso; Crepel, Valerie; Zilberter, Yuri; Rheims, Sylvain; Aniksztejn, Laurent; Cossart, Rosa; Nardou, Romain; Mukhtarov, Marat; Minlebaev, Marat; Epsztein, Jérôme; Milh, Mathieu; Becq, Helene; Jorquera, Isabel; Bulteau, Christine; Fohlen, Martine; Oliver, Viviana; Dulac, Olivier; Dorfmüller, Georg; Delalande, Olivier; Ben-Ari, Yehezkel; Khazipov, Roustem
2009-08-01
The mechanisms of epileptogenesis in Sturge-Weber syndrome (SWS) are unknown. We explored the properties of neurons from human pediatric SWS cortex in vitro and tested in particular whether gamma-aminobutyric acid (GABA) excites neurons in SWS cortex, as has been suggested for various types of epilepsies. Patch-clamp and field potential recordings and dynamic biphoton imaging were used to analyze cortical tissue samples obtained from four 6- to 14-month-old pediatric SWS patients during surgery. Neurons in SWS cortex were characterized by a relatively depolarized resting membrane potential, as was estimated from cell-attached recordings of N-methyl-D-aspartate channels. Many cells spontaneously fired action potentials at a rate proportional to the level of neuronal depolarization. The reversal potential for GABA-activated currents, assessed by cell-attached single channel recordings, was close to the resting membrane potential. All spontaneously firing neurons recorded in cell-attached mode or imaged with biphoton microscopy were inhibited by GABA. Spontaneous epileptiform activity in the form of recurrent population bursts was suppressed by glutamate receptor antagonists, the GABA(A) receptor agonist isoguvacine, and the positive allosteric GABA(A) modulator diazepam. Blockade of GABA(A) receptors aggravated spontaneous epileptiform activity. The NKCC1 antagonist bumetanide had little effect on epileptiform activity. SWS cortical neurons have a relatively depolarized resting membrane potential and spontaneously fire action potentials that may contribute to increased network excitability. In contrast to previous data depicting excitatory and proconvulsive actions of GABA in certain pediatric and adult epilepsies, GABA plays mainly an inhibitory and anticonvulsive role in SWS pediatric cortex.
Van Helden, D F; Imtiaz, M S; Nurgaliyeva, K; von der Weid, P-Y; Dosen, P J
2000-01-01
Intracellular recordings made in single bundle strips of a visceral smooth muscle revealed rhythmic spontaneous membrane depolarizations termed slow waves (SWs). These exhibited ‘pacemaker’ and ‘regenerative’ components composed of summations of more elementary events termed spontaneous transient depolarizations (STDs). STDs and SWs persisted in the presence of tetrodotoxin, nifedipine and ryanodine, and upon brief exposure to Ca2+-free Cd2+-containing solutions; they were enhanced by ACh and blocked by BAPTA AM, cyclopiazonic acid and caffeine. SWs were also inhibited in heparin-loaded strips. SWs were observed over a wide range of membrane potentials (e.g. −80 to −45 mV) with increased frequencies at more depolarized potentials. Regular spontaneous SW activity in this preparation began after 1–3 h superfusion of the tissue with physiological saline following the dissection procedure. Membrane depolarization applied before the onset of this activity induced bursts of STD-like events (termed the ‘initial’ response) which, when larger than threshold levels initiated regenerative responses. The combined initial-regenerative waveform was termed the SW-like action potential. Voltage-induced responses exhibited large variable latencies (typical range 0.3–4 s), refractory periods of ≈11 s and a pharmacology that was indistinguishable from those of STDs and spontaneous SWs. The data indicate that SWs arise through more elementary inositol 1,4,5-trisphosphate (IP3) receptor-induced Ca2+ release events which rhythmically synchronize to trigger regenerative Ca2+ release and induce inward current across the plasmalemma. The finding that action potentials, which were indistinguishable from SWs, could be evoked by depolarization suggests that membrane potential modulates IP3 production. Voltage feedback on intracellular IP3-sensitive Ca2+ release is likely to have a major influence on the generation and propagation of SWs. PMID:10747196
Poor working conditions and work stress among Canadian sex workers.
Duff, P; Sou, J; Chapman, J; Dobrer, S; Braschel, M; Goldenberg, S; Shannon, K
2017-10-01
While sex work is often considered the world's oldest profession, there remains a dearth of research on work stress among sex workers (SWs) in occupational health epidemiological literature. A better understanding of the drivers of work stress among SWs is needed to inform sex work policy, workplace models and standards. To examine the factors that influence work stress among SWs in Metro Vancouver. Analyses drew from a longitudinal cohort of SWs, known as An Evaluation of Sex Workers' Health Access (AESHA) (2010-14). A modified standardized 'work stress' scale, multivariable linear regression with generalized estimating equations was used to longitudinally examine the factors associated with work stress. In multivariable analysis, poor working conditions were associated with increased work stress and included workplace physical/sexual violence (β = 0.18; 95% confidence interval (CI) 0.06, 0.29), displacement due to police (β = 0.26; 95% CI 0.14, 0.38), working in public spaces (β = 0.73; 95% CI 0.61, 0.84). Older (β = -0.02; 95% CI -0.03, -0.01) and Indigenous SWs experienced lower work stress (β = -0.25; 95% CI -0.43, -0.08), whereas non-injection (β = 0.32; 95% CI 0.14, 0.49) and injection drug users (β = 0.17; 95% CI 0.03, 0.31) had higher work stress. Vancouver-based SWs' work stress was largely shaped by poor work conditions, such as violence, policing, lack of safe workspaces. There is a need to move away from criminalized approaches which shape unsafe work conditions and increase work stress for SWs. Policies that promote SWs' access to the same occupational health, safety and human rights standards as workers in other labour sectors are also needed. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Effect of shock wave number on renal oxidative stress and inflammation
Clark, Daniel L; Connors, Bret A.; Evan, Andrew P.; Handa, Rajash K.; Gao, Sujuan
2012-01-01
Objective To determine if the magnitude of the acute injury response to shock-wave lithotripsy (SWL) depends on the number of SWs delivered to the kidney, as SWL causes acute renal oxidative stress and inflammation which are most severe in the portion of the kidney within the focal zone of the lithotripter. Materials and Methods Pigs (7–8 weeks old) received 500, 1000 or 2000 SWs at 24 kV from a lithotripter to the lower pole calyx of one kidney. At 4 h after treatment the kidneys were removed, and samples of cortex and medulla were frozen for analysis of the cytokine, interleukin-6, and for the stress response protein, heme oxygenase-1 (HO-1). Urine samples taken before and after treatment were analysed for the inflammatory cytokine, tumour necrosis factor-α. For comparison, we included previously published cytokine data from pigs exposed to sham treatment. Results Treatment with either 1000 or 2000 SWs caused a significant induction of HO-1 in the renal medulla within the focal zone of the lithotripter (F2, 1000 SWs, P < 0.05; 2000 SWs, P < 0.001). Interleukin-6 was also significantly elevated in the renal medulla of the pigs that received either 1000 or 2000 SWs (P < 0.05 and <0.001, respectively). Linear dose–response modelling showed a significant correlation between the HO-1 and interleukin-6 responses with SW dose (P < 0.001). Urinary excretion of tumour necrosis factor-α from the lithotripsy-treated kidney increased only for pigs that received 2000 SWs (P < 0.05). Conclusion The magnitude of renal oxidative stress and inflammatory response in the medulla increased with the number of SWs. However, it is not known if the HO-1 response is beneficial or deleterious; determining that will inform us whether SWL-induced renal injury can be assessed by quantifying markers of oxidative stress and inflammation. PMID:20438571
Dynamics of laser ablative shock waves from one dimensional periodic structured surfaces
NASA Astrophysics Data System (ADS)
Paturi, Prem Kiran; Chelikani, Leela; Pinnoju, Venkateshwarlu; Acrhem Team
2015-06-01
Spatio-temporal evolution of Laser ablative shock waves (LASWs) from one dimensional periodic structured surfaces (1D-PSS) of Aluminum is studied using time resolved defocused shadowgraphy technique. LASWs are generated by focusing 7 ns pulses from second harmonic of Nd:YAG (532 nm, 10 Hz) laser on to 1D-PSS with sinusoidal and triangular modulations of varying periodicity. An expanded He-Ne laser (632.8 nm) is used as probe beam for shadowgraphy. Evolution of ablative shock front (SF) with 1.5 ns temporal resolution is used to measure position of the SF, its nature, density and pressure behind the SF. The effect of surface modulation on the LASW and contact front dynamics was compared to those from a flat surface (FS) of Aluminum. SWs from FS and PSS obeyed Taylor's solution for spherical and planar nature, respectively. The velocity of SF from 1D PSS had a twofold increase compared to the FS. This was further enhanced for structures whose periodicity is of the order of excitation wavelength. Variation of SF properties with varying periodicity over a range of 3.3 μm to 0.55 μm has the potential to tailor shockwaves of required parameters. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program. The periodic surfaces were procured with financial support from BRFST project No. NFP-MAT-A12-04.
Estimating lithospheric properties at Atla Regio, Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1994-01-01
Magellan spehrical harmonic gravity and topography models are used to estimate lithospheric properties at Alta Regio, Venus, a proposed hotspot with dynamic support from mantle plume(s). Global spherical harmonic and local representations of the gravity field share common properties in the Atla region interms of their spectral behavior over a wavelength band from approximately 2100 to approximately 700 km. The estimated free-air admittance spectrum displays a rather featureless long-wavelength portion followed by a sharp rise at wavelengths shorter than about 1000 km. This sharp rise requires significant flexural support of short-wavelength structures. The Bouguer coherence also displays a sharp drop in this wavelength band, indicating a finite flexural rigidity of the lithosphere. A simple model for lithospheric loading from above and below is introduced (D. W. Forsyth, 1985) with four parameters: f, the ratio of bottom loading to top loading; z(sub m), crustal thickness; z(sub l) depth to bottom loading source; and T(sub e) elastic lithosphere thickness. A dual-mode compensation model is introduced in which the shorter wavelengths (lambda approximately less than 1000 km) might be explained best by a predominance of top loading by the large shield volcanoes Maat Mons, Ozza Mons, and Sapas Mons, and the longer wavelengths (lambda approximately greater than 1500 km) might be explained best by a deep depth of compensation, possibly representing bottom loading by a dynamic source. A Monte Carlo inversion technique is introduced to thoroughly search out the four-space of the model parameters and to examine parameter correlation in the solutions. Venus either is a considerabe deficient in heat sources relative to Earth, or the thermal lithosphere is overthickened in response to an earlier episode of significant heat loss from the planet.
Relativistic backward wave oscillator operating in TM02 with cutoff-type resonant reflector
NASA Astrophysics Data System (ADS)
Teng, Yan; Shi, Yanchao; Yang, Dewen; Cao, Yibing; Zhang, Zhijun
2017-04-01
This paper proposes an overmoded relativistic backward wave oscillator (RBWO) operating in the TM02 mode with the cutoff-type resonant reflector characterized by the advantages of the cutoff neck and the single resonant cavity. In order to protect the explosive emission of the annular cathode from the disturbance of the microwave leakage, the cutoff-type resonant reflector can effectively prevent the microwave consisting of several modes from propagating into the diode region. Attributed to the strong reflections caused by the cutoff-type resonant reflector at the front end of the overmoded slow-wave structure (SWS), the overmoded RBWO works in the state of the strong resonance, which enhances the beam-to-microwave power conversion efficiency. TM02 is selected as the operation mode so as to increase the power handling capability. The nonuniform SWS depresses the cross-excitation of the unwanted longitudinal modes of TM02 and improves the synchronous interaction between the electron beam and the structure wave. It is found that when we make the peak values of the longitudinal electric field and the modulated current appear nearly at the same position in the overmoded SWS by optimizing the electrodynamic structure, the conversion efficiency will be enhanced significantly. In the numerical simulation, the microwave generation with power 2.99 GW and efficiency 0.45 is obtained under the diode voltage 851 kV and current 7.8 kA with the guide magnetic field of 4.3 T. The microwave generation with the pure frequency spectrum of 10.083 GHz radiates in the TM01 mode. The conversion efficiency keeps above 0.40 over the diode voltage range of 220 kV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jin-Yi; Fu, Zheng-Qing; Argonne National Laboratory, Argonne, Illinois
2012-09-01
The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using data collected from a moderately diffracting crystal and 1.9 Å synchrotron X-rays. The crystal structure of the 11.14 kDa orphan ORF 1382 from Archaeoglobus fulgidus (AF1382) has been determined by sulfur SAD phasing using a moderately diffracting crystal and 1.9 Å wavelength synchrotron X-rays. AF1382 was selected as a structural genomics target by the Southeast Collaboratory for Structural Genomics (SECSG) since sequence analyses showed that it did not belong to the Pfam-A database and thus could represent amore » novel fold. The structure was determined by exploiting longer wavelength X-rays and data redundancy to increase the anomalous signal in the data. AF1382 is a 95-residue protein containing five S atoms associated with four methionine residues and a single cysteine residue that yields a calculated Bijvoet ratio (ΔF{sub anom}/F) of 1.39% for 1.9 Å wavelength X-rays. Coupled with an average Bijvoet redundancy of 25 (two 360° data sets), this produced an excellent electron-density map that allowed 69 of the 95 residues to be automatically fitted. The S-SAD model was then manually completed and refined (R = 23.2%, R{sub free} = 26.8%) to 2.3 Å resolution. High-resolution data were subsequently collected from a better diffracting crystal using 0.97 Å wavelength synchrotron X-rays and the S-SAD model was refined (R = 17.9%, R{sub free} = 21.4%) to 1.85 Å resolution. AF1382 has a winged-helix–turn–helix structure common to many DNA-binding proteins and most closely resembles the N-terminal domain (residues 1–82) of the Rio2 kinase from A. fulgidus, which has been shown to bind DNA, and a number of MarR-family transcriptional regulators, suggesting a similar DNA-binding function for AF1382. The analysis also points out the advantage gained from carrying out data reduction and structure determination on-site while the crystal is still available for further data collection.« less
NASA Astrophysics Data System (ADS)
Qi, Yunping; Zhang, Xuewei; Hu, Yue; Nan, Xianghong; Wang, Xiangxian
2017-10-01
The non-resonantly enhanced optical transmission phenomenon of sub-wavelength metallic slits on a thin film is significant for broadband light integrated devices. In order to improve the EOT characteristics of sub-wavelength metallic slits further more, in this paper, wedge-shape metallic slits array embedded with rectangular cavities structure is proposed and its transmission properties are investigated using the finite element method. The results show that wedgeshape metallic slits array can achieve higher transmission compared with straight slits array embedded with rectangular cavities and the light is strongly localized and enhanced at the slit exits. We describe the phenomenon with a transmission line model. The width of entrance of the slit influences the transmission property: the transmittance can be 94%, after optimizing the structure parameters, with the widths 150nm and 30nm at the entrance and exit of the slit, respectively. The thickness of metal film influences the transmission peak position and transmission rate: when the increase of the thickness of the metal film, the transmittance increases and the transmission peak is red-shift, however, the law of long wavelength range is opposite. In addition, the effects of structural period of wedge-shaped slits embedded with rectangular cavities structure on the transmission property are also studied. These results would be helpful for optical signal transmission and the design of near field optical conductor devices with higher transmission capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khanna, A.; Electrical Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180; Dutta, P.S., E-mail: duttap@rpi.edu
Red phosphors with narrow emission around 615 nm (with FWHM~5–10 nm) having chemical compositions of A{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} (A=Mg, Sr) have been found to exhibit the highest luminescence amongst the molybdate–tungstate family when excited by sources in the 380–420 nm wavelength range. Thus they are most suitable for enhancing color rendering index and lowering color temperature in phosphor converted white LEDs (pc-WLEDs) with near-UV/blue LED excitation sources. The excitation band edge in the near UV/blue wavelength in the reported phosphor has been attributed to the coordination environment of the transition metal ionmore » (Mo{sup 6+}, W{sup 6+}) and host crystal structure. Furthermore the quantum efficiency of the phosphors has been enhanced by adjusting activator concentration, suitable compositional alloying using substitutional alkaline earth metal cations and charge compensation mechanisms. - Graphical abstract: The charge transfer excitation of orthorhombic Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} is significantly higher than tetragonal CaMoO{sub 4}: Eu{sup 3+} phosphors making Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} prime candidates for fabrication of warm white phosphor-converted LEDs. - Highlights: • LED excitable Mg{sub 0.6}Ca{sub 2.16}Mo{sub 0.2}W{sub 0.8}O{sub 6}: Eu{sub 0.12}{sup 3+}/Na{sub 0.12}{sup +} phosphors were synthesized. • These phosphors are 10 times more intense than CaMoO{sub 4}: Eu{sup 3+} red phosphors. • Their intensity and efficiency were enhanced by materials optimization techniques. • Such techniques include compositional alloying, charge compensation, etc.« less
Dual circularly polarized broadside beam antenna based on metasurfaces
NASA Astrophysics Data System (ADS)
Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.
2018-02-01
Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.
Dillman, Jonathan R.; Chen, Shigao; Davenport, Matthew S.; Zhao, Heng; Urban, Matthew W.; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L.
2014-01-01
Background There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. Purpose To assess the repeatability and reproducibility of superficial shear wave speed (SWS) measurements acquired from elasticity phantoms at varying imaging depths using three different imaging methods, two different ultrasound systems, and multiple operators. Methods and Materials Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems, Inc. (Norfolk, VA) were utilized for our investigation. Institution #1 used an Acuson S3000 ultrasound system (Siemens Medical Solutions USA, Inc.) and three different shear wave imaging method/transducer combinations, while institution #2 used an Aixplorer ultrasound system (Supersonic Imagine) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0, 2.5, and 4.0 cm) by four operators at each institution. Student’s t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single measure intra-class correlation coefficients and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. Results For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (p=0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (p>0.05). The coefficients of variation were low (0.5–6.8%), and inter-operator agreement was near-perfect (ICCs ≥0.99). Shear wave imaging method and imaging depth significantly affected measured SWS (p<0.0001). Conclusions Superficial SWS measurements in elasticity phantoms demonstrate minimal variability across imaging method/transducer combinations, imaging depths, and between operators. The exact clinical significance of this variability is uncertain and may vary by organ and specific disease state. PMID:25249389
Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry
Robert Treuhaft; Yang Lei; Fabio Gonçalves; Michael Keller; João Santos; Maxim Neumann; André Almeida
2017-01-01
Changes in tropical-forest structure and aboveground biomass (AGB) contribute directly to atmospheric changes in CO2, which, in turn, bear on global climate. This paper demonstrates the capability of radar-interferometric phase-height time series at X-band (wavelength = 3 cm) to monitor changes in vertical structure and AGB, with sub-hectare and monthly spatial and...
Porous photonic crystal external cavity laser biosensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qinglan; Peh, Jessie; Hergenrother, Paul J.
2016-08-15
We report the design, fabrication, and testing of a photonic crystal (PC) biosensor structure that incorporates a porous high refractive index TiO{sub 2} dielectric film that enables immobilization of capture proteins within an enhanced surface-area volume that spatially overlaps with the regions of resonant electromagnetic fields where biomolecular binding can produce the greatest shifts in photonic crystal resonant wavelength. Despite the nanoscale porosity of the sensor structure, the PC slab exhibits narrowband and high efficiency resonant reflection, enabling the structure to serve as a wavelength-tunable element of an external cavity laser. In the context of sensing small molecule interactions withmore » much larger immobilized proteins, we demonstrate that the porous structure provides 3.7× larger biosensor signals than an equivalent nonporous structure, while the external cavity laser (ECL) detection method provides capability for sensing picometer-scale shifts in the PC resonant wavelength caused by small molecule binding. The porous ECL achieves a record high figure of merit for label-free optical biosensors.« less
Effects of age and pathology on shear wave speed of the human rotator cuff.
Baumer, Timothy G; Dischler, Jack; Davis, Leah; Labyed, Yassin; Siegal, Daniel S; van Holsbeeck, Marnix; Moutzouros, Vasilios; Bey, Michael J
2018-01-01
Rotator cuff tears are common and often repaired surgically, but post-operative repair tissue healing, and shoulder function can be unpredictable. Tear chronicity is believed to influence clinical outcomes, but conventional clinical approaches for assessing tear chronicity are subjective. Shear wave elastography (SWE) is a promising technique for assessing soft tissue via estimates of shear wave speed (SWS), but this technique has not been used extensively on the rotator cuff. Specifically, the effects of age and pathology on rotator cuff SWS are not well known. The objectives of this study were to assess the association between SWS and age in healthy, asymptomatic subjects, and to compare measures of SWS between patients with a rotator cuff tear and healthy, asymptomatic subjects. SWE images of the supraspinatus muscle and intramuscular tendon were acquired from 19 asymptomatic subjects and 11 patients with a rotator cuff tear. Images were acquired with the supraspinatus under passive and active (i.e., minimal activation) conditions. Mean SWS was positively associated with age in the supraspinatus muscle and tendon under passive and active conditions (p ≤ 0.049). Compared to asymptomatic subjects, patients had a lower mean SWS in their muscle and tendon under active conditions (p ≤ 0.024), but no differences were detected under passive conditions (p ≥ 0.783). These findings identify the influences of age and pathology on SWS in the rotator cuff. These preliminary findings are an important step toward evaluating the clinical utility of SWE for assessing rotator cuff pathology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:282-288, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Gómez-Carrillo, M.; Vignoles, M.; Rubio, A.E.; dos Ramos Farias, M.S.; Vila, M.; Rossi, D.; Ralón, G.; Marone, R.; Reynaga, E.; Sosa, J.; Torres, O.; Maestri, M.; Ávila, M.M.; Salomón, H.
2011-01-01
Abstract An HIV incidence estimation was performed among men who have sex with men (MSM), drug users (DUs), sex workers (SWs), and pregnant women (PW) from Argentina. Volunteers older than 18 years old without a previous HIV-positive diagnosis were included. HIV-positive samples were analyzed by the Serological Testing Algorithm for Recent HIV Seroconversion (STARHS) to estimate incidence. By partial RT-PCR and sequencing of the HIV pol gene, an HIV subtype and resistance profile were determined. A total of 12,192 volunteers were recruited from October 2006 to September 2008. A higher HIV prevalence was detected among trans SWs (33.9%, 38/112), male SWs (10.8%, 12/111), and MSM 10.4% (161/1549). HIV incidence estimates by STARHS was also higher on trans SWs (11.31 per 100 person-years), male SWs (6.06 per 100 person-years), and MSM (6.36 per 100 person-years). Antiretroviral primary resistant mutations were detected in 8.4% of the study group, with a higher frequency in female DUs (33.3%). Phylogenetic analysis showed that 124 (57.9%) samples were subtype B, 84 (39.3%) intersubtype BF recombinants, 5 (2.3%) subtype C, and 1 (0.5%) subtype F in the pol region. Subtype B was most commonly found in MSM and male SWs whereas the intersubtype BF recombinant was more prevalent in female DUs, female SWs, and PW. Given the high HIV prevalence and incidence found in most of these groups, monitoring the continuing spread of the HIV epidemic is essential for determining public health priorities, assessing the impact of interventions, and estimating current and future health care needs. PMID:20860532
Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.
Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis
2016-12-20
Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.
Direct injection in organic SU8 nanowires and nanotubes for waveguiding properties investigation
NASA Astrophysics Data System (ADS)
Bigeon, J.; Huby, N.; Duvail, Jean-Luc; Bêche, Bruno
2014-05-01
We report photonic concepts related to injection and sub-wavelength propagation in nanofibers (nanowires and nanotubes). These nanostructures are fabricated by the wetting template method leading to aspect ratio of over 250. At first, injection into nanowires and nanotubes of SU8, a photoresist used for integrated photonics, was successfully achieved by using polymer microlensed fibers with sub-micronic radius of curvature. Theoret- ical simulation by finite domain time-dependent (FDTD) method was used to determine the sub-wavelength propagation for nanowires and nanotubes and corroborate this coupling phenomena. The original confinement of energy density into SU8 nanotubes is highlighted. Finally, characterisation of propagation losses is reported by using a cut-back method transposed to such nanotubes and determined to range between 1 and 2 dB/mm. Both injection and cut-back method developed here are compatible with any sub-micronic structures. This work on SU8 nanofibers suggests broader perspectives for future nanophotonics.
Aydogdu, Ibrahim; Tanriverdi, Zeynep; Ertekin, Cumhur
2011-06-01
The aim of this study is to investigate a probable dysfunction of the central pattern generator (CPG) in dysphagic patients with ALS. We investigated 58 patients with ALS, 23 patients with PD, and 33 normal subjects. The laryngeal movements and EMG of the submental muscles were recorded during sequential water swallowing (SWS) of 100ml of water. The coordination of SWS and respiration was also studied in some normal cases and ALS patients. Normal subjects could complete the SWS optimally within 10s using 7 swallows, while in dysphagic ALS patients, the total duration and the number of swallows were significantly increased. The novel finding was that the regularity and rhythmicity of the swallowing pattern during SWS was disorganized to irregular and arhythmic pattern in 43% of the ALS patients. The duration and speed of swallowing were the most sensitive parameters for the disturbed oropharyngeal motility during SWS. The corticobulbar control of swallowing is insufficient in ALS, and the swallowing CPG cannot work very well to produce segmental muscle activation and sequential swallowing. CPG dysfunction can result in irregular and arhythmical sequential swallowing in ALS patients with bulbar plus pseudobulbar types. The arhythmical SWS pattern can be considered as a kind of dysfunction of CPG in human ALS cases with dysphagia. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Sleep-wake responses of squirrel monkeys exposed to hyperdynamic environments
NASA Technical Reports Server (NTRS)
Fuller, C. A.
1983-01-01
This study examines the sleep responses of primates to acute 3 Gz environments. To investigate this question, loosely-restrained squirrel monkeys were exposed to 70 minutes of 3 Gz during the day. The animals' behavioral state was polygraphically monitored (EEG, EMG, EOG) along with video and deep body temperature. During the control period, animals exhibited slow wave sleep (SWS) napping behavior. SWS occurred during approximately 20 percent of the control period. Body temperature was maintained at 38.7 C. At 3 Gz, SWS was inhibited for 5 minutes, after which SWS occurred at levels 50 percent lower than in the control period. During the post-centrifugation period, SWS was elevated above the control (50 percent) and hyperdynamic (100 percent) levels. Body temperature was depressed 1.5 C when the animals were at 3 Gz. Thus, hyperdynamic environments are capable of modifying primate sleep behavior, at least as a result of acute exposure. Further, the increased arousal in the hyperdynamic environment is correlated with a lower body temperature. This negative correlation differs from the normal positive correlation of arousal and body temperature.
Effect of Shock Wave Lithotripsy on Renal Hemodynamics
NASA Astrophysics Data System (ADS)
Handa, Rajash K.; Willis, Lynn R.; Evan, Andrew P.; Connors, Bret A.
2008-09-01
Extracorporeal shock wave lithotripsy (SWL) can injure tissue and decrease blood flow in the SWL-treated kidney, both tissue and functional effects being largely localized to the region targeted with shock waves (SWs). A novel method of limiting SWL-induced tissue injury is to employ the "protection" protocol, where the kidney is pretreated with low-energy SWs prior to the application of a standard clinical dose of high-energy SWs. Resistive index measurements of renal vascular resistance/impedance to blood flow during SWL treatment protocols revealed that a standard clinical dose of high-energy SWs did not alter RI during SW application. However, there was an interaction between low- and high-energy SWL treatment phases of the "protection" protocol such that an increase in RI (vasoconstriction) was observed during the later half of SW application, a time when tissue damage is occurring during the standard high-energy SWL protocol. We suggest that renal vasoconstriction may be responsible for reducing the degree of tissue damage that normally results from a standard clinical dose of high-energy SWs.
Shao, Yongni; Xie, Chuanqi; Jiang, Linjun; Shi, Jiahui; Zhu, Jiajin; He, Yong
2015-04-05
Visible/near infrared spectroscopy (Vis/NIR) based on sensitive wavelengths (SWs) and chemometrics was proposed to discriminate different tomatoes bred by spaceflight mutagenesis from their leafs or fruits (green or mature). The tomato breeds were mutant M1, M2 and their parent. Partial least squares (PLS) analysis and least squares-support vector machine (LS-SVM) were implemented for calibration models. PLS analysis was implemented for calibration models with different wavebands including the visible region (400-700 nm) and the near infrared region (700-1000 nm). The best PLS models were achieved in the visible region for the leaf and green fruit samples and in the near infrared region for the mature fruit samples. Furthermore, different latent variables (4-8 LVs for leafs, 5-9 LVs for green fruits, and 4-9 LVs for mature fruits) were used as inputs of LS-SVM to develop the LV-LS-SVM models with the grid search technique and radial basis function (RBF) kernel. The optimal LV-LS-SVM models were achieved with six LVs for the leaf samples, seven LVs for green fruits, and six LVs for mature fruits, respectively, and they outperformed the PLS models. Moreover, independent component analysis (ICA) was executed to select several SWs based on loading weights. The optimal LS-SVM model was achieved with SWs of 550-560 nm, 562-574 nm, 670-680 nm and 705-71 5 nm for the leaf samples; 548-556 nm, 559-564 nm, 678-685 nm and 962-974 nm for the green fruit samples; and 712-718 nm, 720-729 nm, 968-978 nm and 820-830 nm for the mature fruit samples. All of them had better performance than PLS and LV-LS-SVM, with the parameters of correlation coefficient (rp), root mean square error of prediction (RMSEP) and bias of 0.9792, 0.2632 and 0.0901 based on leaf discrimination, 0.9837, 0.2783 and 0.1758 based on green fruit discrimination, 0.9804, 0.2215 and -0.0035 based on mature fruit discrimination, respectively. The overall results indicated that ICA was an effective way for the selection of SWs, and the Vis/NIR combined with LS-SVM models had the capability to predict the different breeds (mutant M1, mutant M2 and their parent) of tomatoes from leafs and fruits. Copyright © 2015 Elsevier B.V. All rights reserved.
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (Voc) and fill factor (FF).
Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinilla, P.; Pohl, A.; Stammler, S. M.
Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μ m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold,more » which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H{sub 2}O, CO{sub 2}, and NH{sub 3}. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H{sub 2}O and CO{sub 2} (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.« less
Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate
2014-05-01
Employing innovative mapping and spatial analyses of individual and neighbourhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a 'spatial isolation index' in explaining exchanging sex for drugs and exchanging sex while high. Analyses drew on baseline interview and geographic data (January 2010-October 2011) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighbourhood environment data. An index measuring 'spatial isolation' was developed from seven indicators measuring features of the built environment within 50m buffers (e.g., industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Of 510 SWs, 328 worked in street-based/outdoor environments (e.g., streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs' main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. Copyright © 2013 Elsevier B.V. All rights reserved.
Kong, Victor Y; Sartorius, Benn; Clarke, Damian L
2015-01-01
Traumatic pleural collections secondary to penetrating chest trauma are generally managed by intercostal chest drainage (ICD), but these protocols were developed a few decades ago when stabs (SWs) predominated over gunshot wounds (GSWs). This study reviews the outcome of a selective conservative approach to penetrating thoracic trauma to establish if it is still appropriate in the current era. We reviewed 827 patients over a four-year period with penetrating unilateral non-cardiac wounds of the chest in order to review the efficacy of our policy and to define the differences in the spectrum of injury between SWs and GSWs. Ninety-two per cent (764/827) were males, and the median age was 24 years. Seventy-six per cent (625/827) sustained SWs and twenty-four per cent (202/827) GSWs. Chest pathologies were: pneumothorax (PTX): 362 (44%), haemothorax (HTX): 150 (18%) and haemopneumothorax (HPTX): 315 (38%). Ninety-six per cent of patients were managed non-operatively. Four per cent (36/827) were subjected to a thoracotomy [31 SWs and 5 GSWs]. No difference was observed in terms of the need for operative intervention: 5% vs. 3% [p=0.202]. PTX was seen exclusively in SWs: 58% vs. 0% and there were significantly more HPTXs seen in the GSWs: HPTX: 24% vs. 81% [p<0.001]. The median days of ICD in situ were significantly longer in GSWs compared to SWs for all pathologies. For HTX: 4.5 (interquartile range [IQR]: 3-6) vs. 3.5 (IQR: 0-5) days, p=0.001 and HPTX: 4 (IQR: 3-5) vs. 3.0 (IQR: 3-4) days, p<0.001. There were seven (15%) complications. A total of five (13%) patients died and all deaths were confined to the operative group. SWs continue to predominate over GSWs. PTXs were more commonly associated with SWs, whilst HPTX are more commonly associated with GSWs. A policy of selective conservatism is still applicable to the management of traumatic pleural collections. Copyright © 2014 Elsevier Ltd. All rights reserved.
Elimination of oral candidiasis may increase stimulated whole salivary flow rate.
Ohga, Noritaka; Yamazaki, Yutaka; Sato, Jun; Asaka, Takuya; Morimoto, Masahiro; Hata, Hironobu; Satoh, Chiharu; Kitagawa, Yoshimasa
2016-11-01
Candida infections are frequently encountered fungal infections in the oral mucosa. This study aimed to evaluate the effect of eliminating Candida spp. on stimulated whole salivary flow rate (SWS) in patients with oral candidiasis. This study involved 66 patients with oral candidiasis. Fifty-two consecutive patients, successfully treated by antifungal therapy, were available to examine the effect of elimination of oral Candida spp. on SWS (success group); the 14 patients who tested positive for Candida after therapy were retrospectively included (control group). SWS were used to measure saliva production. Moreover, tongue pain and xerostomia were evaluated using visual analog score (VAS). By eliminating oral Candida spp., SWS significantly increased in the success group after antifungal therapy [SWS: mean value 0.89±0.51ml/min (median 0.82ml/min: 0.15-2.14) to mean value 1.16±0.58ml/min (median 1.05ml/min: 0.2-2.93), P<0.001]. Furthermore, VAS scores for subjective tongue pain and xerostomia were significantly decreased compared with those before therapy in the success group [xerostomia: mean value 52.5±28.8 (median 53: 9-100) to 24.2±1.6 (median 17: 0-70), tongue pain: mean value 52.6±27.2 (median 56: 1-93) to 15.3±18.0 (median 9: 0-62). P<0.001]. There was no significant difference in SWS, subjective tongue pain, or xerostomia in the control group after antifungal therapy. [SWS: mean value 1.08±0.83ml/min (median 0.69ml/min: 0.2-2.7) to 0.98±0.59ml/min (median 0.8ml/min: 0.45-2.5), P=0.65], [xerostomia: mean value 62.8±5.3 (median 62: 28-70) to 64.0±8.8 (median 64: 56-73), P=0.58, tongue pain: mean value 64.3±18.6 (median 67: 31-87) to 58.4±20.0 (median 8: 20-78), respectively; P=0.24] CONCLUSION: Our study demonstrated that SWS may increase by eliminating oral Candida spp. in patients with oral candidiasis. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Gao, Lei; Lv, Yujuan; Wang, Dongdong; Tahir, Muhammad; Peng, Xinhua
2015-12-01
Knowing the amount of soil water storage (SWS) in agricultural soil profiles is important for understanding physical, chemical, and biological soil processes. However, measuring the SWS in deep soil layers is more expensive and time consuming than in shallower layers. Whether deep SWS can be predicted from shallow-layer measurements through temporal stability analysis (TSA) remains unclear. To address this issue, the soil water content was measured at depths of 0-1.6 m (0.2-m depth intervals) at 79 locations along an agricultural slope on 28 occasions between July 2013 and October 2014. SWSs values were then calculated for the 0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers. The SWS exhibited strong temporal stability, with mean Spearman's ranking coefficients (rs) of 0.83, 0.92, 0.83, and 0.79 in the 0-0.4, 0.4-0.8, 0.8-1.2, and 1.2-1.6 m soil layers, respectively. As expected, the most temporally stable location (MTSL1) accurately predicted the average SWS of the corresponding soil layer, and the values of absolute bias relative to mean (ARB) were lower than 3% for all of the investigated soil layers. Using TSA, deep-layer SWS information could be predicted using a single-location measurement in the 0-0.4 m soil layer. The mean ARB values between the observed and predicted mean SWS values were 2.9%, 4.3%, 3.9%, and 2.7% in the 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers, respectively. The prediction accuracy of the spatial distribution generally decreased with increasing depth, with linear determination coefficients (R2) of 0.93, 0.79, 0.72, and 0.84 for the four soil layers, respectively. The proposed method could further expand the application of the temporal stability technique in the estimation of SWS.
Steen, R; Mogasale, V; Wi, T; Singh, A K; Das, A; Daly, C; George, B; Neilsen, G; Loo, V; Dallabetta, G
2006-01-01
Background Migration, population mobility, and sex work continue to drive sexually transmitted epidemics in India. Yet interventions targeting high incidence networks are rarely implemented at sufficient scale to have impact. India AIDS Initiative (Avahan), funded by the Bill and Melinda Gates Foundation, is scaling up interventions with sex workers (SWs) and other high risk populations in India's six highest HIV prevalence states. Methods Avahan resources are channelled through state level partners (SLPs) to local level non‐governmental organisations (NGOs) who organise outreach, community mobilisation, and dedicated clinics for SWs. These clinics provide services for sexually transmitted infections (STIs) including Condom Promotion, syndromic case management, regular check‐ups, and treatment of asymptomatic infections. SWs take an active role in service delivery. STI capacity building support functions on three levels. A central capacity building team developed guidelines and standards, trains state level STI coordinators, monitors outcomes, and conducts operations research. Standards are documented in an Avahan‐wide manual. State level STI coordinators train NGO clinic staff and conduct supervision of clinics based on these standards and related quality monitoring tools. Clinic and outreach staff report on indicators that guide additional capacity building inputs. Results In 2 years, clinics with community outreach for SWs have been established in 274 settings covering 77 districts. Mapping and size estimation have identified 187 000 SWs. In a subset of four large states covered by six SLPs (183 000 estimated SWs, 65 districts), 128 326 (70%) of the SWs have been contacted through peer outreach and 74 265 (41%) have attended the clinic at least once. A total of 127 630 clinic visits have been reported, an increasing proportion for recommended routine check ups. Supervision and monitoring facilitate standardisation of services across sites. Conclusion Targeted HIV/STI interventions can be brought to scale and standardised given adequate capacity building support. Intervention coverage, service utilisation, and quality are key parameters that should be monitored and progressively improved with active involvement of SWs themselves. PMID:17012513
On Spectral Invariance of Single Scattering Albedo for Weakly Absorbing Wavelengths
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.
2011-01-01
This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda(r))/omega(sub O lambda(r(sub O)) of two single scattering albedo spectra, omega(sub O lambda(r) and omega(sub O lambda(r (sub O)), is a linear function of omega(sub O lambda(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo omega(sub O lambda(r) via one known spectrum omega(sub O lambda(r(sub O)). The note provides a simple physical explanation of the discovered relationship. In addition to water droplets, similar linear relationships were found for the single scattering albedo of non-spherical ice crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Zhichao; Wu, Shuang; Liu, Bo, E-mail: lbo@tongji.edu.cn
2015-06-15
Soft-X-ray interference lithography is utilized in combination with atomic layer deposition to prepare photonic crystal structures on the surface of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillator in order to extract the light otherwise trapped in the internal of scintillator due to total internal reflection. An enhancement with wavelength- and emergence angle-integration by 95.1% has been achieved. This method is advantageous to fabricate photonic crystal structures with large-area and high-index-contrast which enable a high-efficient coupling of evanescent field and the photonic crystal structures. Generally, the method demonstrated in this work is also suitable for many other light emitting devices where amore » large-area is required in the practical applications.« less
Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications
Han, Katherine; Chang, Chih-Hung
2014-01-01
This paper reviews the current progress in mathematical modeling of anti-reflective subwavelength structures. Methods covered include effective medium theory (EMT), finite-difference time-domain (FDTD), transfer matrix method (TMM), the Fourier modal method (FMM)/rigorous coupled-wave analysis (RCWA) and the finite element method (FEM). Time-based solutions to Maxwell’s equations, such as FDTD, have the benefits of calculating reflectance for multiple wavelengths of light per simulation, but are computationally intensive. Space-discretized methods such as FDTD and FEM output field strength results over the whole geometry and are capable of modeling arbitrary shapes. Frequency-based solutions such as RCWA/FMM and FEM model one wavelength per simulation and are thus able to handle dispersion for regular geometries. Analytical approaches such as TMM are appropriate for very simple thin films. Initial disadvantages such as neglect of dispersion (FDTD), inaccuracy in TM polarization (RCWA), inability to model aperiodic gratings (RCWA), and inaccuracy with metallic materials (FDTD) have been overcome by most modern software. All rigorous numerical methods have accurately predicted the broadband reflection of ideal, graded-index anti-reflective subwavelength structures; ideal structures are tapered nanostructures with periods smaller than the wavelengths of light of interest and lengths that are at least a large portion of the wavelengths considered. PMID:28348287
Chen, Yingming; Wang, Bing-Zhong
2014-07-14
Time-reversal (TR) phase prints are first used in far-field (FF) detection of sub-wavelength (SW) deformable scatterers without any extra metal structure positioned in the vicinity of the target. The 2D prints derive from discrete short-time Fourier transform of 1D TR electromagnetic (EM) signals. Because the time-invariant intensive background interference is effectively centralized by TR technique, the time-variant weak indication from FF SW scatterers can be highlighted. This method shows a different use of TR technique in which the focus peak of TR EM waves is unusually removed and the most useful information is conveyed by the other part.
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.
2012-01-01
The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.
Spin wave propagation in perpendicularly magnetized nm-thick yttrium iron garnet films
NASA Astrophysics Data System (ADS)
Chen, Jilei; Heimbach, Florian; Liu, Tao; Yu, Haiming; Liu, Chuanpu; Chang, Houchen; Stückler, Tobias; Hu, Junfeng; Zeng, Lang; Zhang, Youguang; Liao, Zhimin; Yu, Dapeng; Zhao, Weisheng; Wu, Mingzhong
2018-03-01
Magnonics offers a new way for information transport that uses spin waves (SWs) and is free of charge currents. Unlike Damon-Eshbach SWs, the magneto-static forward volume SWs offer the reciprocity configuration suitable for SW logic devices with low power consumption. Here, we study forward volume SW propagation in yttrium iron garnet (YIG) thin films with an ultra-low damping constant α = 8 ×10-5 . We design different integrated microwave antenna with different k-vector excitation distributions on YIG thin films. Using a vector network analyzer, we measured SW transmission with the films magnetized in perpendicular orientation. Based on the experimental results, we extract the group velocity as well as the dispersion relation of SWs and directly compare the power efficiency of SW propagation in YIG using coplanar waveguide and micro stripline for SW excitation and detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. S. Tobiason
Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from bothmore » sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the discharge line at SWS 1 Septic Tank 33-1A (Figure 3). These concentrations are above the PALs of 3.0 mg/kg and 360 {micro}g/kg, respectively (DOE/NV, 1999) but are below the hazardous regulatory levels for these constituents. The soil will be excavated and disposed in the Nevada Test Site (NTS) Area 23 Sanitary Landfill.« less
NASA Astrophysics Data System (ADS)
Mamun, A. A.
2018-02-01
A general (but realistic) self-gravitating degenerate quantum plasma system (SG-DQPS) containing inertialess degenerate electron species, inertial degenerate light, and heavy ion/nucleus species is considered to examine the possibility for the existence of degenerate pressure driven self-gravito-acoustic (DPD-SGA) solitary waves (SWs) formed in such a SG-DQPS. The pseudo-potential approach, which is valid for the arbitrary amplitude DPD-SGA SWs, is employed. It is found that depending on the value of the number density of heavy ion/nucleus species, the SG-DQPS under consideration supports the existence of positive or the coexistence of positive and negative DPD-SGA SWs. The basic features (polarity, amplitude, and width) of both positive and negative DPD-SGA SWs are found to be significantly modified by the dynamics of heavy ion/nucleus species. The theoretical investigation presented here is so general that it can be applied not only in astrophysical SG-DQPSs (such as white dwarf and neutron star SG-DQPSs), but also in laboratory SG-DQPSs (viz., solid density and laser-produced SG-DQPSs) to identify the salient features of the DPD-SGA SWs formed in them.
NASA Astrophysics Data System (ADS)
Campagnola, Paul J.; Tilbury, Karissa B.; Campbell, Kirby R.; Eliceiri, Kevin W.; Patankar, Manish
2017-02-01
Ovarian cancer remains the most deadly gynecological cancer with a poor aggregate survival rate. To improve upon this situation, we utilized collagen-specific Second Harmonic Generation (SHG) imaging microscopy and optical scattering measurements to probe structural differences in the extracellular matrix of normal stroma, benign tumors, endometrioid tumors, and low and high-grade serous (LGS and HGS) tumors. The SHG signatures of the emission directionality and conversion efficiency as well as the optical scattering are related to the organization of collagen on the sub-micron size. The wavelength dependence of these readouts adds additional characterization of the size and distribution of collagen fibrils/fibers relative to the interrogating wavelengths. We found strong wavelength dependent dependencies of these metrics that were different between the different tumors that are related to respective structural attributes in the collagen organization. These sub-resolution determinations are consistent with the dualistic classification of type I and II serous tumors. However, type I endometrioid tumors have strongly differing ECM architecture than the serous malignancies. Moreover, our analyses are further consistent with LGS and benign tumors having similar etiology. We identified optimal wavelengths for the SHG metrics as well as optical scattering measurements. The SHG metrics and optical scattering measurements were then used to form a linear discriminant model to classify the tissues, and we obtained high accuracy ( 90%) between the tissue types. This delineation is superior to current clinical performance and has potential applicability in supplementing histological analysis, understanding the etiology, as well as development of an in vivo screening tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuladeep, Rajamudili; Dar, Mudasir H.; Rao, D. Narayana, E-mail: dnrsp@uohyd.ac.in, E-mail: dnr-laserlab@yahoo.com
2014-09-21
In this communication, we demonstrate the generation of laser-induced periodic sub-wavelength surface structures (LIPSS) or ripples on a bulk aluminum (Al) and Al nanoparticles (NPs) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Al surface at normal incidence in air and by immersing in ethanol (C₂H₅OH) and water (H₂O) using linearly polarized Ti:sapphire fs laser pulses of ~110 fs pulse duration and ~800 nm wavelength. Field emission scanning electron microscope is utilized for imaging surface morphology of laser written structures and it reveals that the spatial periodicity as well as the surface morphology of the LIPSSmore » depends on the surrounding dielectric medium and also on the various laser irradiation parameters. The observed LIPSS have been classified as low spatial frequency LIPSS which are perpendicularly oriented to the laser polarization with a periodicity from 460 to 620 nm and high spatial frequency LIPSS which spectacles a periodicity less than 100 nm with the orientation parallel to the polarization of the incident laser beam. Fabricated colloidal solutions, which contain the Al NPs, were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). TEM results reveal the formation of internal cavities in Al NPs both in ethanol and water. Formation mechanism of LIPSS and cavities inside the nanoparticles are discussed in detail.« less
Ferrara, M; De Gennaro, L; Bertini, M
The aim of the present study is to evaluate the effects of selective SWS deprivation on the motor and sensory motor performance impairment immediately after awakening from nocturnal sleep at different times of the night. Ten normal males slept for 6 consecutive nights in the laboratory: one adaptation, two baseline, two selective SWS deprivation, and one recovery night. During the last 4 nights performance was assessed four times: (a) before sleep, as a baseline measure; (b) within 30 s from the first nighttime awakening, after 2 h of sleep; (c) within 30 s from the second nighttime awakening, after 5 h of sleep; (d) within 30 s from the final morning awakening. After each awakening, following a 3-min cognitive test, a simple Auditory Reaction Time task (ART, about 5 min) and a Finger Tapping Task (FTT, 3 min) were administered. Median of Reaction Times (RT) and of Intertapping Intervals (ITI), 10% fastest RT, 10% slowest RT, and number of misses were considered as dependent variables. The selective SWS deprivation was very effective: SWS percentage during both the deprivation nights was close to zero. This strong manipulation of SWS amount interacted with time-of-night factors in influencing sleep inertia. The SWS deprivation procedure caused a worsening of behavioral performance during the deprivation nights. as well as upon the final awakening of the recovery night. Behavioral performance slowing upon awakening is accounted for by: (1) a general decrement in overall response speed (median of RT); (2) an "optimum response shift", i.e., a decrease in speed of the fastest responses; (3) an increase of lapsing, with more marked response delays resulting in a further decrease in response speed in the "lapse domain". Finally, our results do not support the existence of a circadian rhythm of sleep inertia linked to body temperature rhythm.
NASA Astrophysics Data System (ADS)
Rosado-Mendez, Ivan M.; Carlson, Lindsey C.; Woo, Kaitlin M.; Santoso, Andrew P.; Guerrero, Quinton W.; Palmeri, Mark L.; Feltovich, Helen; Hall, Timothy J.
2018-04-01
Abnormal parturition, e.g. pre- or post-term birth, is associated with maternal and neonatal morbidity and increased economic burden. This could potentially be prevented by accurate detection of abnormal softening of the uterine cervix. Shear wave elasticity imaging (SWEI) techniques that quantify tissue softness, such as shear wave speed (SWS) measurement, are promising for evaluation of the cervix. Still, interpretation of results can be complicated by biological variability (i.e. spatial variations of cervix stiffness, parity), as well as by experimental factors (i.e. type of transducer, posture during scanning). Here we investigated the ability of SWEI to detect cervical softening, as well as sources of SWS variability that can affect this task, in the pregnant and nonpregnant Rhesus macaque. Specifically, we evaluated SWS differences when imaging the cervix transabdominally with a typical linear array abdominal transducer, and transrectally with a prototype intracavitary linear array transducer. Linear mixed effects (LME) models were used to model SWS as a function of menstrual cycle day (in nonpregnant animals) and gestational age (in pregnant animals). Other variables included parity, shear wave direction, and cervix side (anterior versus posterior). In the nonpregnant cervix, the LME model indicated that SWS increased by 2% (95% confidence interval 0–3%) per day, starting eight days before menstruation. During pregnancy, SWS significantly decreased at a rate of 6% (95% CI 5–7%) per week (intracavitary approach) and 3% (95% CI 2–4%) per week (transabdominal approach), and interactions between the scanning approach and other fixed effects were also significant. These results suggest that, while absolute SWS values are influenced by factors such as scanning approach and SWEI implementation, these sources of variability do not compromise the sensitivity of SWEI to cervical softening. Our results also highlight the importance of standardizing SWEI approaches to improve their accuracy for cervical assessment.
Argento, Elena; Shannon, Kate; Nguyen, Paul; Dobrer, Sabina; Chettiar, Jill; Deering, Kathleen N.
2015-01-01
Background Despite high HIV burden among sex workers (SWs) globally, and relatively high prevalence of client condom use, research on potential HIV/STI risk pathways of intimate partnerships is limited. This study investigated partner/dyad-level factors associated with inconsistent condom use among SWs with intimate partners in Vancouver, Canada. Methods Baseline data (2010–2013) were drawn from a community-based prospective cohort of women SWs. Multivariable generalized estimating equations logistic regression examined dyad-level factors associated with inconsistent condom use (<100% in last six months) with up to three male intimate partners per SW. Adjusted odds ratios and 95% confidence intervals were reported (AOR[95%CI]). Results Overall, 369 SWs reported having at least one intimate partner, with 70.1% reporting inconsistent condom use. Median length of partnerships was 1.8 years, with longer duration linked to inconsistent condom use. In multivariable analysis, dyad factors significantly associated with increased odds of inconsistent condom use included: having a cohabiting (5.43[2.53–11.66]) or non-cohabiting intimate partner (2.15[1.11–4.19]) (versus casual partner), providing drugs (3.04[1.47–6.30]) or financial support to an intimate partner (2.46[1.05–5.74]), physical intimate partner violence (2.20[1.17–4.12]), and an intimate partner providing physical safety (2.08[1.11–3.91]); non-injection drug use was associated with a 68% reduced odds (0.32[0.17–0.60]). Conclusions Our study highlights the complex role of dyad-level factors in shaping sexual and drug-related HIV/STI risk pathways for SWs from intimate partners. Couple and gender-focused interventions efforts are needed to reduce HIV/STI risks to SWs through intimate partnerships. This research supports further calls for integrated violence and HIV prevention within broader sexual/reproductive health efforts for SWs. PMID:26585612
Wu, Y; Yu, R J; Lin, X X; Guo, W Y
2017-10-11
Objective: To investigate the clinical characteristics of Sturge-Weber syndrome (SWS) in the patients with Port-wine stain (PWS). Methods: A total of 279 PWS patients, 164 males, 115 females with a median age of first visit 17.00 (4.75, 56.00) months. Most of the PWS patients were referred to the Ophthalmology Department for screening eye problems when the cutaneous angiomas involved the ophthalmic division of the trigeminal nerve distribution. The intraocular pressure (IOP), cup to disk ratio (C/D), corneal condition and other essential measurements were examined to screen glaucoma or choroidal hemangioma. The differences of age, gender and vascular ectasia in the ipsilateral eyes were compared among PWS and SWS patients with chi-square test. The differences about the first visit time, IOP, C/D and corneal diameters were evaluated with independent-sample T test or nonparametric test followed by Mann-Whitney U test. Results: A total number of 66 out of 279 PWS patients (23.7%) were confirmed as SWS with glaucoma. The IOP of the ipsilateral eye with vascular ectasia in PWS and SWS was 13.00 mmHg (1 mmHg=0.133 kPa) (IQR: 9.75, 17.00) and 23.00 mmHg (20.00, 32.00), respectively ( Z=- 8.212, P< 0.001); the IOP differences between the ipsilateral and contralateral eye in PWS and SWS was 1mmHg (0, 2) and 7 mmHg (3, 11) respectively; the C/D in the ipsilateral eye and the contralateral eye was 0.30 (0.30, 0.35) and 0.7 (0.6, 0.8) respectively in SWS cases with secondary glaucoma. Conclusions: There is a high proportion of SWS with glaucoma in ophthalmic division affected PWS patients. Fundus examinations were necessary for this type of patients. (Chin J Ophthalmol, 2017, 53:753-757) .
Functional Spectral Domain Optical Coherence Tomography imaging
NASA Astrophysics Data System (ADS)
Bower, Bradley A.
Spectral Domain Optical Coherence Tomography (SDOCT) is a high-speed, high resolution imaging modality capable of structural and functional characterization of tissue microstructure. SDOCT fills a niche between histology and ultrasound imaging, providing non-contact, non-invasive backscattering amplitude and phase from a sample. Due to the translucent nature of the tissue, ophthalmic imaging is an ideal space for SDOCT imaging. Structural imaging of the retina has provided new insights into ophthalmic disease. The phase component of SDOCT images remains largely underexplored, though. While Doppler SDOCT has been explored in a research setting, it has yet to gain traction in the clinic. Other, functional exploitations of the phase are possible and necessary to expand the utility of SDOCT. Spectral Domain Phase Microscopy (SDPM) is an extension of SDOCT that is capable of resolving sub-wavelength displacements within a focal volume. Application of sub-wavelength displacement measurement imaging could provide a new method for non-invasive optophysiological measurement. This body of work encompasses both hardware and software design and development for implementation of SDOCT. Structural imaging was proven in both the lab and the clinic. Coarse phase changes associated with Doppler flow frequency shifts were recorded and a study was conducted to validate Doppler measurement. Fine phase changes were explored through SDPM applications. Preliminary optophysiology data was acquired to study the potential of sub-wavelength measurements in the retina. To remove the complexity associated with in-vivo human retinal imaging, a first principles approach using isolated nerve samples was applied using standard SDPM and a depthencoded technique for measuring conduction velocity. Results from amplitude as well as both coarse and fine phase processing are presented. In-vivo optophysiology using SDPM is a promising avenue for exploration, and projects furthering or extending this body of work are discussed.
Nucleus-acoustic Solitons in Self-gravitating Magnetized Quantum Plasmas
NASA Astrophysics Data System (ADS)
Saaduzzaman, Dewan Mohammad; Amina, Moriom; Mamun, Abdullah Al
2018-03-01
The basic properties of the nucleus-acoustic (NA) solitary waves (SWs) are investigated in a super-dense self-gravitating magnetized quantum plasma (SDSGMQP) system in the presence of an external magnetic field, whose constituents are the non-degenerate light as well as heavy nuclei, and non-/ultra-relativistically degenerate electrons. The Korteweg-de Vries (KdV) equation has been derived by employing the reductive perturbation method. The NA SWs are formed with negative (positive) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure and the obliqueness of the external magnetic field significantly change the basic properties (e.g., amplitude, width, and speed) of NA SWs. The implications of the findings of our present investigation in explaining the physics behind the formation of the NA SWs in astrophysical compact objects like neutron stars are briefly discussed.
Rembado, Irene; Zanos, Stavros; Fetz, Eberhard E.
2017-01-01
Slow wave sleep (SWS) has been identified as the sleep stage involved in consolidating newly acquired information. A growing body of evidence has shown that delta (1–4 Hz) oscillatory activity, the characteristic electroencephalographic signature of SWS, is involved in coordinating interaction between the hippocampus and the neocortex and is thought to take a role in stabilizing memory traces related to a novel task. This case report describes a new protocol that uses neuroprosthetics training of a non-human primate to evaluate the effects of surface cortical electrical stimulation triggered from SWS cycles. The results suggest that stimulation phase-locked to SWS oscillatory activity promoted learning of the neuroprosthetic task. This protocol could be used to elucidate mechanisms of synaptic plasticity underlying off-line learning during sleep and offers new insights into the role of brain oscillations in information processing and memory consolidation. PMID:28450831
Differential effects of non-REM and REM sleep on memory consolidation?
Ackermann, Sandra; Rasch, Björn
2014-02-01
Sleep benefits memory consolidation. Previous theoretical accounts have proposed a differential role of slow-wave sleep (SWS), rapid-eye-movement (REM) sleep, and stage N2 sleep for different types of memories. For example the dual process hypothesis proposes that SWS is beneficial for declarative memories, whereas REM sleep is important for consolidation of non-declarative, procedural and emotional memories. In fact, numerous recent studies do provide further support for the crucial role of SWS (or non-REM sleep) in declarative memory consolidation. However, recent evidence for the benefit of REM sleep for non-declarative memories is rather scarce. In contrast, several recent studies have related consolidation of procedural memories (and some also emotional memories) to SWS (or non-REM sleep)-dependent consolidation processes. We will review this recent evidence, and propose future research questions to advance our understanding of the role of different sleep stages for memory consolidation.
Terahertz injection lasers based on PbSnSe alloy with an emission wavelength up to 46.5 μm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maremyanin, K. V., E-mail: kirillm@ipmras.ru; Rumyantsev, V. V.; Ikonnikov, A. V.
2016-12-15
Diffusion injection lasers based on Pb{sub 1} {sub –} {sub x}Sn{sub x}Se alloy, emitting in a wide spectral range of 10–46.5 μm depending on the composition and temperatures are fabricated. A technology for growing high-quality single crystals from the vapor phase under conditions of free growth is developed. The dependences of the total emission intensity on the pump current and the emission spectra of injection lasers based on Pb{sub 1–x}Sn{sub x}Se are studied. In these samples, lasing of long-wavelength radiation to a record wavelength of 46.5 μm is achieved.
Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2alpha/DRB complex.
Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten
2008-09-01
The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-rays (wavelength around 2 A) since they match the absorption edges of sulfur and chlorine. A particularly useful application of this phenomenon is the experimental detection of the sub-structures of the anomalous scatterers in protein crystals. We demonstrate this here with a crystal of a C-terminally truncated variant of human CK2alpha to which two molecules of the inhibitor 5,6-dichloro-1-beta-D-ribo-furanosyl-benzimidazole (DRB) are bound. The structure of this co-crystal has been solved recently. For this study we measured an additional diffraction data set at a wavelength of 2 A which showed strong anomalous dispersion effects. On the basis of these effects we detected all sulfur atoms of the protein, the two liganded DRB molecules and a total of 16 additional chloride ions some of them emerging at positions filled with water molecules in previous structure determinations. A number of chloride ions are bound to structural and functional important locations fitting to the constitutive activity and the acidophilic substrate specificity of the enzyme.
NASA Technical Reports Server (NTRS)
Vial, J. C.
1986-01-01
The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbrich, Sebastian; Al-Hadhuri, Tawfik; Gericke, Karl-Heinz, E-mail: k.Gericke@tu-bs.de
2015-01-14
We present a detailed study of two-color two-photon excited fluorescence in indole dissolved in propylene glycol. Femtosecond excitation pulses at effective wavelengths from 268 to 293.33 nm were used to populate the two lowest indole excited states {sup 1}L{sub a} and {sup 1}L{sub b} and polarized fluorescence was then detected. All seven molecular parameters and the two-photon polarization ratio Ω containing information on two-photon absorption dynamics, molecular lifetime τ{sub f}, and rotation correlation time τ{sub rot} have been determined from experiment and analyzed as a function of the excitation wavelength. The analysis of the experimental data has shown that {supmore » 1}L{sub b}–{sup 1}L{sub a} inversion occurred under the conditions of our experiment. The two-photon absorption predominantly populated the {sup 1}L{sub a} state at all excitation wavelengths but in the 287–289 nm area which contained an absorption hump of the {sup 1}L{sub b} state 0-0 origin. The components of the two-photon excitation tensor S were analyzed giving important information on the principal tensor axes and absorption symmetry. The results obtained are in a good agreement with the results reported by other groups. The lifetime τ{sub f} and the rotation correlation time τ{sub rot} showed no explicit dependence on the effective excitation wavelength. Their calculated weighted average values were found to be τ{sub f} = 3.83 ± 0.14 ns and τ{sub rot} = 0.74 ± 0.06 ns.« less
Contribution of norepinephrine to emotional memory consolidation during sleep.
Groch, Sabine; Wilhelm, Ines; Diekelmann, Susanne; Sayk, Friedhelm; Gais, Steffen; Born, Jan
2011-10-01
There is increasing evidence indicating that slow wave sleep (SWS) supports memory consolidation. This effect may in part originate from phasic noradrinergic (NE) activity occurring during SWS in the presence of tonically lowered NE levels. Here, we examined whether NE supports the consolidation of amygdala-dependent emotional memory during SWS. In a double-blind cross-over study, 15 men learned emotional and neutral materials (stories, pictures) in the evening before a 3-h period of early SWS-rich retention sleep, during which either placebo or clonidine, an α2-adrenoceptor agonist which blocks locus coeruleus NE release, was intravenously infused. Memory retrieval as well as affective ratings and heart rate responses to the pictures were assessed 23 h after learning. Clonidine reduced plasma NE levels but had no effect on SWS. While retention of story content words and pictures per se remained unaffected, clonidine distinctly blocked the superiority of emotional compared to neutral memory for temporal order, with this superiority of emotional over neutral memories observed only in the placebo condition. Heart rate responses to pictures were not affected, but whereas under placebo conditions familiar negative pictures were rated less arousing and with a more negative valence compared to pictures not seen before; these differences were abolished after clonidine. Given that memory for the temporal order of events depends on the hippocampus to a greater extent than item memory, our findings suggest that NE activity during early SWS-rich sleep facilitates consolidation of memories that involve both, a strong amygdalar and hippocampal component. Copyright © 2011 Elsevier Ltd. All rights reserved.
Smart wearable systems: current status and future challenges.
Chan, Marie; Estève, Daniel; Fourniols, Jean-Yves; Escriba, Christophe; Campo, Eric
2012-11-01
Extensive efforts have been made in both academia and industry in the research and development of smart wearable systems (SWS) for health monitoring (HM). Primarily influenced by skyrocketing healthcare costs and supported by recent technological advances in micro- and nanotechnologies, miniaturisation of sensors, and smart fabrics, the continuous advances in SWS will progressively change the landscape of healthcare by allowing individual management and continuous monitoring of a patient's health status. Consisting of various components and devices, ranging from sensors and actuators to multimedia devices, these systems support complex healthcare applications and enable low-cost wearable, non-invasive alternatives for continuous 24-h monitoring of health, activity, mobility, and mental status, both indoors and outdoors. Our objective has been to examine the current research in wearable to serve as references for researchers and provide perspectives for future research. Herein, we review the current research and development of and the challenges facing SWS for HM, focusing on multi-parameter physiological sensor systems and activity and mobility measurement system designs that reliably measure mobility or vital signs and integrate real-time decision support processing for disease prevention, symptom detection, and diagnosis. For this literature review, we have chosen specific selection criteria to include papers in which wearable systems or devices are covered. We describe the state of the art in SWS and provide a survey of recent implementations of wearable health-care systems. We describe current issues, challenges, and prospects of SWS. We conclude by identifying the future challenges facing SWS for HM. Copyright © 2012 Elsevier B.V. All rights reserved.
Stimulant Use in Patients with Sturge-Weber Syndrome: Safety and Efficacy
Lance, Eboni I.; Lanier, Kira E.; Zabel, T. Andrew; Comi, Anne M.
2015-01-01
BACKGROUND Sturge Weber Syndrome (SWS) is characterized by a facial port-wine birthmark, vascular eye abnormalities, and a leptomeningeal angioma. Attention and behavioral issues are common in SWS; however, literature evidence for stimulant treatment is minimal. This study evaluates stimulant medication safety and efficacy in SWS patients. METHODS The research database of the Hunter Nelson Sturge-Weber Center (n = 210 subjects with SWS brain involvement) was reviewed for stimulant use. Twelve subjects (mean age 10.5 years, age range 4 to 21 years) on stimulants were seen between 2003 and 2012. A retrospective chart review obtained co-morbid diagnoses, stimulant type and dosage, medication side effects, vital signs, and medication efficacy. RESULTS All twelve subjects had brain involvement (unilateral - nine; bilateral – three). Additional co-morbidities included epilepsy (twelve), hemi-paresis (eight), headaches (eight), and vision deficits (seven). Eight subjects reported side effects, primarily appetite suppression (four) and headaches (three). There were no statistically significant changes in weight or blood pressure six months after medication initiation. Medication efficacy was subjectively reported in eleven subjects. Seven patients remained on stimulants at their most recent follow up visit. CONCLUSIONS This study preliminarily evaluates stimulant medication use in a small group of SWS patients. Stimulants were tolerated and effective in most subjects. Side effects were mostly minor and medication did not negatively impact growth or vital signs. Stimulant medication may be a safe and effective intervention for SWS children with attention issues/attention deficit hyperactivity disorder (ADHD). Further studies with larger sample sizes are needed. PMID:25439578
SWS: accessing SRS sites contents through Web Services.
Romano, Paolo; Marra, Domenico
2008-03-26
Web Services and Workflow Management Systems can support creation and deployment of network systems, able to automate data analysis and retrieval processes in biomedical research. Web Services have been implemented at bioinformatics centres and workflow systems have been proposed for biological data analysis. New databanks are often developed by taking into account these technologies, but many existing databases do not allow a programmatic access. Only a fraction of available databanks can thus be queried through programmatic interfaces. SRS is a well know indexing and search engine for biomedical databanks offering public access to many databanks and analysis tools. Unfortunately, these data are not easily and efficiently accessible through Web Services. We have developed 'SRS by WS' (SWS), a tool that makes information available in SRS sites accessible through Web Services. Information on known sites is maintained in a database, srsdb. SWS consists in a suite of WS that can query both srsdb, for information on sites and databases, and SRS sites. SWS returns results in a text-only format and can be accessed through a WSDL compliant client. SWS enables interoperability between workflow systems and SRS implementations, by also managing access to alternative sites, in order to cope with network and maintenance problems, and selecting the most up-to-date among available systems. Development and implementation of Web Services, allowing to make a programmatic access to an exhaustive set of biomedical databases can significantly improve automation of in-silico analysis. SWS supports this activity by making biological databanks that are managed in public SRS sites available through a programmatic interface.
Effect of conditioned stimulus exposure during slow wave sleep on fear memory extinction in humans.
He, Jia; Sun, Hong-Qiang; Li, Su-Xia; Zhang, Wei-Hua; Shi, Jie; Ai, Si-Zhi; Li, Yun; Li, Xiao-Jun; Tang, Xiang-Dong; Lu, Lin
2015-03-01
Repeated exposure to a neutral conditioned stimulus (CS) in the absence of a noxious unconditioned stimulus (US) elicits fear memory extinction. The aim of the current study was to investigate the effects of mild tone exposure (CS) during slow wave sleep (SWS) on fear memory extinction in humans. The healthy volunteers underwent an auditory fear conditioning paradigm on the experimental night, during which tones served as the CS, and a mild shock served as the US. They were then randomly assigned to four groups. Three groups were exposed to the CS for 3 or 10 min or an irrelevant tone (control stimulus, CtrS) for 10 min during SWS. The fourth group served as controls and was not subjected to any interventions. All of the subjects completed a memory test 4 h after SWS-rich stage to evaluate the effect on fear extinction. Moreover, we conducted similar experiments using an independent group of subjects during the daytime to test whether the memory extinction effect was specific to the sleep condition. Ninety-six healthy volunteers (44 males) aged 18-28 y. Participants exhibited undisturbed sleep during 2 consecutive nights, as assessed by sleep variables (all P > 0.05) from polysomnographic recordings and power spectral analysis. Participants who were re-exposed to the 10 min CS either during SWS and wakefulness exhibited attenuated fear responses (wake-10 min CS, P < 0.05; SWS-10 min CS, P < 0.01). Conditioned stimulus re-exposure during SWS promoted fear memory extinction without altering sleep profiles. © 2015 Associated Professional Sleep Societies, LLC.
Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory
2014-01-01
Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093
Pathophysiology, diagnosis, and management of glaucoma associated with Sturge-Weber syndrome.
Javaid, Usman; Ali, Muhammad Hassaan; Jamal, Samreen; Butt, Nadeem Hafeez
2018-02-01
Sturge-Weber syndrome (SWS), also known as encephalotrigeminal angiomatosis, is a condition which includes leptomeningeal hemangioma, facial angiomatosis or nevus flammeus, and ocular changes. SWS can lead to severe complications of anterior segment involving conjunctiva and eyelids, whereas posterior segment of the eye may also be affected by diffuse choroidal hemorrhages. This article was written with the objectives to determine the pathophysiology, diagnosis, and treatment of glaucoma associated with this rare and challenging disorder. A detailed literature search was conducted on PubMed, EMBASE, Cochrane Library, and Google Scholar using the key words. Forty-five articles matched our inclusion criteria that were included in this systematic review. Glaucoma is the one of the commonest ocular manifestations of SWS. It is caused by anterior chamber malformations, increased pressure in the episcleral veins, and changes in ocular hemodynamics. Glaucoma associated with SWS is usually congenital but can develop adults as well. The treatment of glaucoma associated with SWS is quite challenging because of early-onset, severe visual field impairment at the time of diagnosis, and unresponsiveness to standard medical treatment. Several surgical procedures have been devised but the long-term control of the intraocular pressure and visual function remain unsatisfactory. Modifications in the filtration surgery techniques and use of newer anti-fibrotic agents have produced good control of intraocular pressure. Management of glaucoma associated with SWS is multi-dimensional and needs both medical and surgical interventions for better control. The treatment should be devised on case to case basis depending upon the intraocular pressure, stage of the disease, and type of glaucoma.
Lamb shift and fine structure of n = 2 in /sup 35/C1 XVI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, H.G.; DeSerio, R.; Livingston, A.E.
We have measured the wavelengths of the 2s /sup 3/S/sub 1/-2p /sup 3/P/sub 2/ and 2s /sup 3/S/sub 1/ -- 2p /sup 3/P/sub 0/ transitions in C1 XVI to be 613.825 +- 0.013 A and 705.854 +- 0.076 A. Our precision is sufficient to provide measurements of the 2s/sub 1/2/-2p/sub 3/2/ Lamb shifts to an accuracy of +- 0.3% and to test quantum electrodynamics (QED) theory in the strong-field region. We compres our results with the one-electron QED theories of Mohr and Erickson and discuss the accuracy of calculations of electron correlation in two-electron atoms.
Yan, Changchun; Zhang, Dao Hua; Zhang, Yuan; Li, Dongdong; Fiddy, M A
2010-07-05
We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H-polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Belov, Pavel A.; Hao, Yang
2006-06-01
In this paper, a spatially dispersive finite-difference time-domain (FDTD) method to model wire media is developed and validated. Sub-wavelength imaging properties of the finite wire medium slabs are examined. It is demonstrated that the slab with its thickness equal to an integer number of half-wavelengths is capable of transporting images with sub-wavelength resolution from one interface of the slab to another. It is also shown that the operation of such transmission devices is not sensitive to their transverse dimensions, which can be made even comparable to the wavelength. In this case, the edge diffractions are negligible and do not disturb the image formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahul, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Vishwakarma, S. R., E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com; Verma, Aneet Kumar, E-mail: rhl.jaunpur@gmail, E-mail: srvfzb@rediffmail.com
2011-10-20
Indium Antimonide (InSb) is a promising materials for mid and long wavelength infrared and high speed devices applications because of its small band gap. The Indium Antimonide (InSb) thin films have been deposited onto well cleaned glass substrate at different substrate temperatures (300 K, 323 K, 373 K) by electron beam evaporation technique in the high vacuum chamber at vacuum pressure ∼10{sup −5} torr using prepared non‐stoichiometric InSb powder using formula In{sub 1−x}Sb{sub x}(0.2
NASA Astrophysics Data System (ADS)
Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.
1999-06-01
We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5-45 μm grating scan of VY CMa, obtained using the Short-Wavelength Spectrometer (SWS) of the Infrared Space Observatory at a spectral resolving power λ/Δλ of ~2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity of ~25 Lsolar. In addition to pure rotational transitions within the ground vibrational state, these features include rotational transitions within the (010) excited vibrational state. The spectrum also shows the 2Π1/2(J=5/2)<--2Π3/2(J=3/2) OH feature near 34.6 μm in absorption. Additional SWS observations of VY CMa were carried out in the instrument's Fabry-Perot mode for three water transitions: the 725-616 line at 29.8367 μm, the 441-312 line at 31.7721 μm, and the 432-303 line at 40.6909 μm. The higher spectral resolving power λ/Δλ of approximately 30,000 thereby obtained permits the line profiles to be resolved spectrally for the first time and reveals the ``P Cygni'' profiles that are characteristic of emission from an outflowing envelope. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands, and the UK) with the participation of ISAS and NASA.
Euarchontan Opsin Variation Brings New Focus to Primate Origins
Melin, Amanda D.; Wells, Konstans; Moritz, Gillian L.; Kistler, Logan; Orkin, Joseph D.; Timm, Robert M.; Bernard, Henry; Lakim, Maklarin B.; Perry, George H.; Kawamura, Shoji; Dominy, Nathaniel J.
2016-01-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. PMID:26739880
Effects of ultraviolet (UV) irradiation in air and under vacuum on low-k dielectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, F. A.; Nguyen, H. M.; Shohet, J. L., E-mail: shohet@engr.wisc.edu
This work addresses the effect of ultraviolet radiation of wavelengths longer than 250 nm on Si-CH{sub 3} bonds in porous low-k dielectrics. Porous low-k films (k = 2.3) were exposed to 4.9 eV (254 nm) ultraviolet (UV) radiation in both air and vacuum for one hour. Using Fourier Transform Infrared (FTIR) spectroscopy, the chemical structures of the dielectric films were analyzed before and after the UV exposure. UV irradiation in air led to Si-CH{sub 3} bond depletion in the low-k material and made the films hydrophilic. However, no change in Si-CH{sub 3} bond concentration was observed when the same samplesmore » were exposed to UV under vacuum with a similar fluence. These results indicate that UV exposures in vacuum with wavelengths longer than ∼250 nm do not result in Si-CH{sub 3} depletion in low-k films. However, if the irradiation takes place in air, the UV irradiation removes Si-CH{sub 3} although direct photolysis of air species does not occur above ∼242 nm. We propose that photons along with molecular oxygen and, water, synergistically demethylate the low-k films.« less
H2O from R Cas: ISO LWS-SWS observations and detailed modelling
NASA Astrophysics Data System (ADS)
Truong-Bach; Sylvester, R. J.; Barlow, M. J.; Nguyen-Q-Rieu; Lim, T.; Liu, X. W.; Baluteau, J. P.; Deguchi, S.; Justtanont, K.; Tielens, A. G. G. M.
1999-05-01
We present 29-197 mu m spectra of the oxygen-rich Mira variable star, R Cas, obtained with the Long- and Short- Wavelength Spectrometers (LWS and SWS) on board the Infrared Space Observatory (ISO). The LWS grating observations were made during two pulsational stellar phases, phi { ~ } 0.5 and 0.2 in August 1996 and June 1997 when the stellar luminosity was near its minimum and mean values, respectively. The infrared flux at the latter epoch was { ~ } 30-40% stronger than at the former. SWS grating observations were also made in June 1997. The spectrum presents a strong far-infrared (FIR) continuum and is rich in water lines suitable for use as circumstellar diagnostics. We have constructed a circumstellar model which consistently treats radiative transfer, chemical exchanges, photodissociation, and heating and cooling effects. The overall FIR excitation field was scaled by a factor which varied with the stellar phase. By fitting the model to the observed FIR water line fluxes and continuum while adopting the stellar parameters based on the Hipparcos distance we have found a mass-loss rate of dot {M} { ~ } 3.4*E(-7) Msun yr(-1) and a total ortho and para water vapour abundance (relative to {H_2} ) of f { ~ } 1.1x\\ex{-5}. The kinetic temperature and the relative abundances of {H2O} , OH, and O in chemical equilibrium have been derived as functions of radial distance r. {H2O} excitation is mainly dominated by FIR emitted by dust grains. The deduced model continuum flux at 29-197 mu m for the phi ~ 0.5 phase was 61% of the flux at phi ~ 0.2. Photodissociation by the FUV interstellar field and CO cooling effects operate farther out than the {H2O} excitation region. Our derived mass-loss rate of R Cas is similar to the value 6x\\ex{-7} Msun yr(-1) previously published for WHya, another oxygen-rich AGB star. Based on observations with ISO, an ESA project with instruments funded by ESA Members States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.
Osbourn, G.C.
1983-10-06
An intrinsic semiconductor electro-optical device comprises a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8 to 12 ..mu..m. This radiation responsive p-n junction comprises a strained-layer superlattice (SLS) of alternating layers of two different III-V semiconductors. The lattice constants of the two semiconductors are mismatched, whereby a total strain is imposed on each pair of alternating semiconductor layers in the SLS structure, the proportion of the total strain which acts on each layer of the pair being proportional to the ratio of the layer thicknesses of each layer in the pair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Yunae; Kim, Eunah; Gwon, Minji
2015-10-12
We compared nanopatterned Si solar cells with and without SiN{sub x} layers. The SiN{sub x} layer coating significantly improved the internal quantum efficiency of the nanopatterned cells at long wavelengths as well as short wavelengths, whereas the surface passivation helped carrier collection of flat cells mainly at short wavelengths. The surface nanostructured array enhanced the optical absorption and also concentrated incoming light near the surface in broad wavelength range. Resulting high density of the photo-excited carriers near the surface could lead to significant recombination loss and the SiN{sub x} layer played a crucial role in the improved carrier collection ofmore » the nanostructured solar cells.« less
The ISO View of Star Forming Galaxies
NASA Technical Reports Server (NTRS)
Helou, George
1999-01-01
ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K
Metasurface Freeform Nanophotonics.
Zhan, Alan; Colburn, Shane; Dodson, Christopher M; Majumdar, Arka
2017-05-10
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of ~1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
Structure determination and optical properties of CsSm(PO{sub 3}){sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Hassen, N.; Ferhi, M., E-mail: ferhi.mounir@gmail.com; Horchani-Naifer, K.
2015-03-15
Graphical abstract: Projection of the CsSm(PO{sub 3}){sub 4} structure viewing along the a axis. - Highlights: • Single crystal of a new polyphosphate CsSm(PO{sub 3}){sub 4} has been synthesized. • The obtained compound has been characterized by several techniques. • The crystal structure of CsSm(PO{sub 3}){sub 4} has been resolved. • Spectroscopic properties of Sm{sup 3+} in CsSm(PO{sub 3}){sub 4} have been performed. - Abstract: A new alkali metal-rare earth polyphosphate CsSm(PO{sub 3}){sub 4} has been synthesized by flux method. The obtained compound has been characterized by means of single crystal X-ray diffraction, Fourier transform infrared (FTIR) and Raman scatteringmore » spectroscopies. It crystallizes in the monoclinic space group P2{sub 1}/n with the following unit-cell parameters: a = 10.382(2), b = 8.978(6), c = 11.205(4) Å, β = 106.398(3)° and Z = 4. The structure of CsSm(PO{sub 3}){sub 4} is an infinite three-dimensional framework made up of double spiral (PO{sub 3}){sub n} chains linked with neighboring SmO{sub 8} and CsO{sub 11} polyhedra. Spectroscopic properties of Sm{sup 3+} in this new compound including excitation, emission, and kinetic measurement have been performed. The emission spectrum shows four transitions characteristics of Sm{sup 3+} in the orange–red region by excitation wavelength at 400 nm. The decay time curve of {sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition has been also registered and fitted to a single exponential function.« less
NASA Astrophysics Data System (ADS)
Bouya, Zahra; Terkildsen, Michael
2016-07-01
The Australian Space Forecast Centre (ASFC) provides space weather forecasts to a diverse group of customers. Space Weather Services (SWS) within the Australian Bureau of Meteorology is focussed both on developing tailored products and services for the key customer groups, and supporting ASFC operations. Research in SWS is largely centred on the development of data-driven models using a range of solar-terrestrial data. This paper will cover some data requirements , approaches and recent SWS activities for data driven modelling with a focus on the regional Ionospheric specification and forecasting.
NASA Technical Reports Server (NTRS)
Venkatakrishnan, P.
1987-01-01
A physical length scale in the wavefront corresponding to the parameter (r sub 0) characterizing the loss in detail in a long exposure image is identified, and the influence of the correlation scale of turbulence as r sub 0 approaches this scale is shown. Allowing for the effect of 2-point correlations in the fluctuations of the refractive index, Venkatakrishnan and Chatterjee (1987) proposed a modified law for the phase structure function. It is suggested that the departure of the phase structure function from the 5/3 power law for length scales in the wavefront approaching the correlation scale of turbulence may lead to better 'seeing' at longer wavelengths.
Laser performance of in-band pumped Er : LiYF{sub 4} and Er : LiLuF{sub 4} crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorbachenya, K N; Kisel, V E; Yasukevich, A S
2016-02-28
Spectroscopic properties of Er : LiLuF{sub 4} and Er : LiYF{sub 4} crystals in the spectral region near 1.5 μm and the lasing characteristics of these crystals under in-band pumping at a wavelength of 1522 nm are studied. With the Er : LiLuF{sub 4} crystal, the maximum slope efficiency with respect to the absorbed pump power was 44% at a wavelength of 1609 nm. Continuous-wave operation of an inband pumped Er : LiYF{sub 4} laser is obtained for the first time. The output power at a wavelength of 1606 nm was 58 mW with a slope efficiency of 21%. (lasers)
NASA Astrophysics Data System (ADS)
Bai, Zhen; Zhang, Jun; Zhong, Huihuang
2016-04-01
An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.
Hippocampal memory consolidation during sleep: a comparison of mammals and birds
Rattenborg, Niels C.; Martinez-Gonzalez, Dolores; Roth, Timothy C.; Pravosudov, Vladimir V.
2010-01-01
The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow-oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high-order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow-oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp-wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7–14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow-oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only taxonomic group other than mammals to exhibit SWS and REM sleep. Based on our review of research on avian sleep, neuroanatomy, and memory, although involved in some forms of memory consolidation, avian sleep does not appear to be involved in transferring hippocampal memories to other brain regions. Despite exhibiting the slow-oscillation, SWRs and spindles have not been found in birds. Moreover, although birds independently evolved a brain region – the caudolateral nidopallium (NCL) – involved in performing high-order cognitive functions similar to those performed by the PFC, direct connections between the NCL and hippocampus have not been found in birds, and evidence for the transfer of information from the hippocampus to the NCL or other extra-hippocampal regions is lacking. Although based on the absence of evidence for various traits, collectively, these findings suggest that unlike mammalian SWS, avian SWS may not be involved in transferring memories from the hippocampus. Furthermore, it suggests that the slow-oscillation, the defining feature of mammalian and avian SWS, may serve a more general function independent of that related to coordinating the transfer of information from the hippocampus to the PFC in mammals. Given that SWS is homeostatically regulated (a process intimately related to the slow-oscillation) in mammals and birds, functional hypotheses linked to this process may apply to both taxonomic groups. PMID:21070585
Hippocampal memory consolidation during sleep: a comparison of mammals and birds.
Rattenborg, Niels C; Martinez-Gonzalez, Dolores; Roth, Timothy C; Pravosudov, Vladimir V
2011-08-01
The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow-oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high-order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow-oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp-wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7-14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow-oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only taxonomic group other than mammals to exhibit SWS and REM sleep. Based on our review of research on avian sleep, neuroanatomy, and memory, although involved in some forms of memory consolidation, avian sleep does not appear to be involved in transferring hippocampal memories to other brain regions. Despite exhibiting the slow-oscillation, SWRs and spindles have not been found in birds. Moreover, although birds independently evolved a brain region--the caudolateral nidopallium (NCL)--involved in performing high-order cognitive functions similar to those performed by the PFC, direct connections between the NCL and hippocampus have not been found in birds, and evidence for the transfer of information from the hippocampus to the NCL or other extra-hippocampal regions is lacking. Although based on the absence of evidence for various traits, collectively, these findings suggest that unlike mammalian SWS, avian SWS may not be involved in transferring memories from the hippocampus. Furthermore, it suggests that the slow-oscillation, the defining feature of mammalian and avian SWS, may serve a more general function independent of that related to coordinating the transfer of information from the hippocampus to the PFC in mammals. Given that SWS is homeostatically regulated (a process intimately related to the slow-oscillation) in mammals and birds, functional hypotheses linked to this process may apply to both taxonomic groups. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajesh, D., E-mail: ratnakaramsvu@gmail.com; Ratnakaram, Y. C., E-mail: ratnakaramsvu@gmail.com
2014-04-24
Keeping in view of the recent increased interest towards phosphor materials and its applications, an attempt has been made in the present paper to analyze the new NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor with different Dy{sub 3+} concentrations. Special attention is paid to investigate their crystal structure, morphology and luminescence properties. X-ray diffraction (XRD) results confirm the formation of NaPbB{sub 5}O{sub 9}:Dy{sub 3+} phosphor powder. The scanning electron microscope (SEM) images show that the grains are in micrometer range. Photoluminescence spectra are recorded with different excitation wavelengths for the investigated phosphor and analyzed the variation of intensity of emission bands withmore » Dy{sub 3+} ion concentration. Color co-ordinates are calculated and are used to characterize the color of the phosphor.« less
Changes in shear-wave splitting before volcanic eruptions
NASA Astrophysics Data System (ADS)
Liu, Sha; Crampin, Stuart
2015-04-01
We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The 2001 flank eruption of Etna showed stress-accumulation and stress-relaxation typical of a small earthquake. However, the changes in SWS before the 2010 Eyjafjajökull Eruption, SW Iceland, showed the most distinctive correlations with earthquakes, as it was only ~90km-west of the 1988 M5 in SW Iceland, which was successfully stress-forecast. The behaviour of SWS before the M5 earthquake and the Eyjafjajökull flank (ash-cloud) eruption is almost identical both showing linear stress-accumulation increases, and linear stress-relaxation decreases to the earthquake and the onset of the flank eruption, respectively. There are comparable slopes and durations. We consider this strong confirmation of the universality property of the New Geophysics of a critically-microcracked Earth. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Crampin & Gao (SM1.1), Gao & Crampin (SM3.1), and Crampin & Gao (GD.1).
Sub-wavelength antenna enhanced bilayer graphene tunable photodetector
Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke
2016-03-22
The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.
Wavelength dependence of Verdet constant of Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snetkov, I. L., E-mail: snetkov@appl.sci-nnov.ru; Palashov, O. V.; Permin, D. A.
2016-04-18
Samples of the magneto-active material—Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics with Tb{sup 3+} ion concentrations of 10%, 20%, 30%, and 100% (Tb{sub 2}O{sub 3})—were prepared and studied. The wavelength dependence of Verdet constant in the 380 nm–1750 nm range was approximated for all investigated ceramic samples and was predicted for a pure Tb{sub 2}O{sub 3} material. Tb{sub 2}O{sub 3} ceramics demonstrates a more than three times higher Verdet constant in comparison with terbium gallium garnet crystal or ceramics. The linear dependence of the Verdet constant on Tb{sup 3+} ion concentration in the Tb{sup 3+}:Y{sub 2}O{sub 3} ceramics was demonstrated. The obtained data willmore » be useful for fabricating magneto-optical elements of Faraday devices based on Tb{sup 3+}:Y{sub 2}O{sub 3} with arbitrary Tb{sup 3+} ion concentration operating at room temperature in the wavelength range of 380 nm–1750 nm.« less
High resolution resonance ionization imaging detector and method
Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.
1999-01-01
A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.
2010-07-19
The reaction of uranyl nitrate with a large excess of molten boric acid in the presence of potassium or rubidium nitrate results in the formation of three new potassium uranyl borates, K{sub 2}[(UO{sub 2}){sub 2}B{sub 12}O{sub 19}(OH){sub 4}]·0.3H{sub 2}O (KUBO-1), K[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (KUBO-2), and K[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (KUBO-3) and two new rubidium uranyl borates Rb{sub 2}[(UO{sub 2}){sub 2}B{sub 13}O{sub 20}(OH){sub 5}] (RbUBO-1) and Rb[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (RbUBO-2). The latter is isotypic with KUBO-3. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+},more » cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. All of these compounds adopt layered structures. With the exception of KUBO-1, the structures are all centrosymmetric. All of these compounds fluoresce when irradiated with long-wavelength UV light. The fluorescence spectrum yields well-defined vibronically coupled charge-transfer features.« less
Foda, Khaled; Abdeldaeim, Hussein; Youssif, Mohamed; Assem, Akram
2013-11-01
To define the parameters that accompanied a successful extracorporeal shock wave lithotripsy (ESWL), namely the number of shock waves (SWs), expulsion time (ET), mean stone density (MSD), and the skin-to-stone distance (SSD). A total of 368 patients diagnosed with renal calculi using noncontrast computerized tomography had their MSD, diameter, and SSD recorded. All patients were treated using a Siemens lithotripter. ESWL success meant a stone-free status or presence of residual fragments <3 mm, ET was the time in days for the successful clearance of stone fragments. Correlation was performed between the stone characteristics, number of SWs, and ET. Two multiple regression analysis models defined the number of SWs and ET. Two receiver operating characteristic curves plotted the best MSD cutoff value and optimum SSD for a successful ESWL. Three hundred one patients were ESWL successes. A significant positive correlation was elicited between number of SWs and stone diameter, density and SSD; between ET and stone diameter and density. Multiple regressions concluded 2 equations: Number of SWs = 265.108 + 5.103 x1 + 22.39 x2 + 10.931 x3 ET (days) = -10.85 + 0.031 x1 + 2.11 x2 x1 = stone density (Hounsfield unit [HUs]), x2 = stone diameter (mm), and x3 = SSD (mm). Receiver operating characteristic curves demonstrated a cutoff value of ≤ 934 HUs with 94.4% sensitivity and 66.7% specificity and P = .0211. The SSD curve showed that a distance ≤ 99 mm was 85.7% sensitive, 87.5% specific, P <.0001. Stone disintegration is not recommended if MSD is >934 HUs and SSD >99 mm. The required number of SWs and the expected ET can be anticipated. Copyright © 2013 Elsevier Inc. All rights reserved.
Giant optical rotation in a three-dimensional semiconductor chiral photonic crystal.
Takahashi, S; Tandaechanurat, A; Igusa, R; Ota, Y; Tatebayashi, J; Iwamoto, S; Arakawa, Y
2013-12-02
Optical rotation is experimentally demonstrated in a semiconductor-based three-dimensional chiral photonic crystal (PhC) at a telecommunication wavelength. We design a rotationally-stacked woodpile PhC structure, where neighboring layers are rotated by 45° and four layers construct a single helical unit. The mirror-asymmetric PhC made from GaAs with sub-micron periodicity is fabricated by a micro-manipulation technique. The linearly polarized light incident on the structure undergoes optical rotation during transmission. The obtained results show good agreement with numerical simulations. The measurement demonstrates the largest optical rotation angle as large as ∼ 23° at 1.3 μm wavelength for a single helical unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Xuan; Yu, Ruixuan; Takayanagi, Shinya
2013-08-07
Ag–Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar–ion irradiation of 30 nm Ag–Au bimetallic films deposited on SiO{sub 2} glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 10{sup 17} cm{sup −2}, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linearmore » shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag–Au nanospheroids with a FCC structure partially embedded in the SiO{sub 2} substrate was confirmed, which has a potential application in solid-state devices.« less
Sleep during an Antarctic summer expedition: new light on "polar insomnia".
Pattyn, Nathalie; Mairesse, Olivier; Cortoos, Aisha; Marcoen, Nele; Neyt, Xavier; Meeusen, Romain
2017-04-01
Sleep complaints are consistently cited as the most prominent health and well-being problem in Arctic and Antarctic expeditions, without clear evidence to identify the causal mechanisms. The present investigation aimed at studying sleep and determining circadian regulation and mood during a 4-mo Antarctic summer expedition. All data collection was performed during the continuous illumination of the Antarctic summer. After an habituation night and acclimatization to the environment (3 wk), ambulatory polysomnography (PSG) was performed in 21 healthy male subjects, free of medication. An 18-h profile (saliva sampling every 2 h) of cortisol and melatonin was assessed. Mood, sleepiness, and subjective sleep quality were assessed, and the psychomotor vigilance task was administered. PSG showed, in addition to high sleep fragmentation, a major decrease in slow-wave sleep (SWS) and an increase in stage R sleep. Furthermore, the ultradian rhythmicity of sleep was altered, with SWS occurring mainly at the end of the night and stage R sleep at the beginning. Cortisol secretion profiles were normal; melatonin secretion, however, showed a severe phase delay. There were no mood alterations according to the Profile of Mood States scores, but the psychomotor vigilance test showed an impaired vigilance performance. These results confirm previous reports on "polar insomnia", the decrease in SWS, and present novel insight, the disturbed ultradian sleep structure. A hypothesis is formulated linking the prolonged SWS latency to the phase delay in melatonin. NEW & NOTEWORTHY The present paper presents a rare body of work on sleep and sleep wake regulation in the extreme environment of an Antarctic expedition, documenting the effects of constant illumination on sleep, mood, and chronobiology. For applied research, these results suggest the potential efficiency of melatonin supplementation in similar deployments. For fundamental research, these results warrant further investigation of the potential link between melatonin secretion and the onset of slow-wave sleep. Copyright © 2017 the American Physiological Society.
Yuan, Jinhui; Kang, Zhe; Li, Feng; Zhou, Guiyao; Sang, Xinzhu; Wu, Qiang; Yan, Binbin; Zhou, Xian; Zhong, Kangping; Wang, Liang; Wang, Kuiru; Yu, Chongxiu; Lu, Chao; Tam, Hwa Yaw; Wai, P K A
2017-05-01
In this Letter, polarization-dependent intermodal four-wave mixing (FWM) is demonstrated experimentally in a birefringent multimode photonic crystal fiber (BM-PCF) designed and fabricated in-house. Femtosecond pump pulses at wavelengths ∼800 nm polarized along one of the principal axes of the BM-PCF are coupled into a normal dispersion region away from the zero-dispersion wavelengths of the fundamental guided mode of the BM-PCF. Anti-Stokes and Stokes waves are generated in the 2nd guided mode at visible and near-infrared wavelengths, respectively. For pump pulses at an average input power of 500 mW polarized along the slow axis, the conversion efficiencies ηas and ηs of the anti-Stokes and Stokes waves generated at wavelengths 579.7 and 1290.4 nm are 19% and 14%, respectively. For pump pulses polarized along the fast axis, the corresponding ηas and ηs at 530.4 and 1627 nm are 23% and 18%, respectively. We also observed that fiber bending and intermodal walk-off have a small effect on the polarization-dependent intermodal FWM-based frequency conversion process.
Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio
2017-07-15
A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
Maruani, Annabel
2010-04-01
Facial port-wine stains are capillary malformations, which can reveal, very rarely, Sturge-Weber syndrome (SWS). SWS is a severe neurocutaneous syndrome, which involves a facial port-wine stain reaching the first branch of trigeminal nerve (V1), ophthalmologic abnormalities (especially congenital glaucoma) and neurologic signs (seizure, mental retardation, hemiparesis). Neuroimaging (CT-scan/angio-magnetic resonance imaging [MRI]) provides the diagnosis of SWS, when it shows ipsilateral leptomeningeal angioma; the best age to perform the exam is not established. Extension to superior eyelid, to other territories of trigeminal nerve (V2, V3) or to the contralateral hemiface is statistically associated to SWS. When a new-born has a facial port-wine stain reaching V1, ophthalmologic examination must be performed in the first months of life, as well as neuroimaging (at the age of 6-12 months, earlier in case of neurologic signs); a treatment of the port-wine stain by pulsed dye laser must also be considered. (c) 2010. Published by Elsevier Masson SAS.
Dopamine Receptor Activation Reorganizes Neuronal Ensembles during Hippocampal Sharp Waves In Vitro
Miyawaki, Takeyuki; Norimoto, Hiroaki; Ishikawa, Tomoe; Watanabe, Yusuke; Matsuki, Norio; Ikegaya, Yuji
2014-01-01
Hippocampal sharp wave (SW)/ripple complexes are thought to contribute to memory consolidation. Previous studies suggest that behavioral rewards facilitate SW occurrence in vivo. However, little is known about the precise mechanism underlying this enhancement. Here, we examined the effect of dopaminergic neuromodulation on spontaneously occurring SWs in acute hippocampal slices. Local field potentials were recorded from the CA1 region. A brief (1 min) treatment with dopamine led to a persistent increase in the event frequency and the magnitude of SWs. This effect lasted at least for our recording period of 45 min and did not occur in the presence of a dopamine D1/D5 receptor antagonist. Functional multineuron calcium imaging revealed that dopamine-induced SW augmentation was associated with an enriched repertoire of the firing patterns in SW events, whereas the overall tendency of individual neurons to participate in SWs and the mean number of cells participating in a single SW were maintained. Therefore, dopaminergic activation is likely to reorganize cell assemblies during SWs. PMID:25089705
Karhula, Kati; Hakola, Tarja; Koskinen, Aki; Ojajärvi, Anneli; Kivimäki, Mika; Härmä, Mikko
2018-05-15
We aimed to study whether permanent night workers sleep and psychosocial factors differ from day workers and shift workers. The participants (n = 9 312, 92% females, average age 45 years, most commonly nurses and departmental secretaries) were day workers (DW, n = 2 672), shift workers (SW, n = 6 486) and permanent night workers (PNW, n = 154). The Finnish Public Sector survey responses from six hospital districts from 2012 were combined to payroll data from 91 days preceding the survey. The data were analyzed using Pearson χ 2 -test, one-way ANOVA and multinomial logistic regression analysis. The PNWs reported slightly longer average sleep length than the SWs or the DWs (7:27 vs. 7:13 and 7:10 h, p < 0.001). The PNWs reported least often difficulties in maintaining sleep (p < 0.001) compared to the SWs and the DWs. The PNWs reported most often difficulties to fall asleep and fatigue during free-time (p-values <0.001). The DWs and PNWs experienced less often work-life conflict than the SWs (25 and 26 vs. 38%, p < 0.001). The PNWs were more often satisfied with autonomy at work and appreciation and fair treatment by colleagues than the DWs or the SWs (p < 0.001). The SWs and PNWs reported remarkably higher occurrence of verbal (p < 0.001, OR 3.71, 95% CI 3.23-4.27 and OR 7.67, 95% CI 5.35-10.99, respectively) and physical workplace violence (p < 0.001, OR 9.24, 95% CI 7.17-11.90 and OR 28.34, 95% CI 16.64-43.06, respectively) compared to DWs. Conclusively, PNWs reported contradictory differences in sleep quality compared to DWs and SWs. PNWs are more often satisfied with their colleagues and autonomy at work than DWs or SWs but face workplace violence remarkably more often.
2016 Rio Olympics: an epidemiological study of the men's and women's Rugby-7s tournaments.
Fuller, Colin W; Taylor, Aileen; Raftery, Martin
2017-09-01
To determine the incidence, severity and nature of injuries sustained during the men's and women's 2014/2015 and 2015/2016 Sevens World Series (SWS) and 2016 Olympic Games Rugby Sevens tournaments. A prospective cohort study. All players from the core teams competing in the men's and women's 2014/2015 and 2015/2016 SWS (men: 15 teams; women: 11 teams) and all players from the men's (12 teams) and women's (12 teams) 2016 Rio Olympics tournaments. The gold, silver and bronze medal-winning women's teams contained bigger players (body mass and stature) than other teams but the men's medal winning teams came from across the size spectrum of men's teams competing at Rio 2016. The incidences of injury in the men's tournaments (2014/2015 SWS: 107.7 injuries/1000 player-match-hours (95% CI 90.9 to 127.4); 2015/2016 SWS: 109.7 (95% CI 93.7 to 128.6); Rio 2016: 124.5 (95% CI 73.7 to 210.2)) were higher but not statistically significant than those in the equivalent women's tournaments (2014/2015 SWS: 88.5 (95% CI 68.4 to 114.5), p=0.250; 2015/2016 SWS: 109.4 (95% CI 84.2 to 142.2), p=0.984; Rio 2016: 71.1 (95% CI 35.6 to 142.2), p=0.208). There were no statistically significant differences between the incidences of injury at the men's and women's 2016 Rio Olympics and the equivalent 2014/2015 (men: p=0.603; women: p=0.562) and 2015/2016 (men: p=0.652; women: p=0.254) SWS. The incidence, severity and nature of the injuries sustained during the men's and women's Rio 2016 Rugby-7s tournaments fell within the normal range of values for international Rugby-7s tournaments. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Rutters, F; Gonnissen, H K; Hursel, R; Lemmens, S G; Martens, E A; Westerterp-Plantenga, M S
2012-10-01
Epidemiologically, an inverse relationship between body mass index (BMI) and sleep duration is observed. Intra-individual variance in the amount of slow wave sleep (SWS) or rapid eye movement (REM) sleep has been related to variance of metabolic and endocrine parameters, which are risk factors for the disturbance of energy balance (EB). To investigate inter-individual relationships between EB (EB= energy intake-energy expenditure∣, MJ/24 h), SWS or REM sleep, and relevant parameters in normal-weight men during two 48 h stays in the controlled environment of a respiration chamber. A total of 16 men (age 23±3.7 years, BMI 23.9±1.9 kg m(-2)) stayed in the respiration chamber twice for 48 h to assure EB. Electroencephalography was used to monitor sleep (2330-0730 hrs). Hunger and fullness were scored by visual analog scales; mood was determined by State Trait Anxiety Index-state and food reward by liking and wanting. Baseline blood and salivary samples were collected before breakfast. Subjects were fed in EB, except for the last dinner, when energy intake was ad libitum. The subjects slept on average 441.8±49 min per night, and showed high within-subject reliability for the amount of SWS and REM sleep. Linear regression analyses showed that EB was inversely related to the amount of SWS (r=-0.43, P<0.03), and positively related to the amount of REM sleep (r=0.40, P<0.05). Relevant parameters such as hunger, reward, stress and orexigenic hormone concentrations were related to overeating, as well as to the amount of SWS and REM sleep, however, after inclusion of these parameters in a multiple regression, the amount of SWS and REM sleep did not add to the explained variance of EB, which suggests that due to their individual associations, these EB parameters are mediator variables. A positive EB due to overeating, was explained by a smaller amount of SWS and higher amount of REM sleep, mediated by hunger, fullness, State Trait Anxiety Index-state scores, glucose/insulin ratio, and ghrelin and cortisol concentrations.
Awungafac, George; Delvaux, Therese; Vuylsteke, Bea
2017-08-01
The incidence of HIV and sexually transmitted infections is disproportionately high among sex workers (SW). We aimed to update the evidence on the effectiveness of SW interventions in sub-Saharan Africa and to provide more insights into combination prevention. The Systematic review followed PRISMA guidelines in a search of PUBMED and POPLINE for peer-reviewed literature published between 1 January 2000 and 22 July 2016 (registration number on PROSPERO: CRD42016042529). We considered cohort interventions, randomised controlled trials and cross-sectional surveys of SW programmes. A framework was used in the description and mapping of intervention to desired outcomes. Twenty-six papers(reporting on 25 studies) were included. A strategy that empowered peer educator leaders to steer community activities showed a twofold increase in coverage of behaviour change communication and utilisation of health facility among SW. Brief alcohol harm reduction effort demonstrated a significant effect on sexual violence and engagement in sex trading. A risk reduction counselling intervention among drug-injecting SW showed an effect on alcohol, substance use and engagement in sex work. No study on a promising intervention like PrEP among SWs was found. We observed that interventions that combined some structural components, biomedical and behavioural strategies tend to accumulate more desired outcomes. The evidence base that can be considered in intervention designs to prevent HIV in SW in SSA is vast. The health sector should consider interventions to reduce binge alcohol intake and intravenous drug use among sex workers. Programmes should staunchly consider multicomponent approaches that explore community-based structural approaches. © 2017 John Wiley & Sons Ltd.
First light with ISO and its instruments
NASA Astrophysics Data System (ADS)
1995-12-01
On 28 November, the first infrared images were taken with the ISOCAM instrument. The target was the beautiful spiral galaxy, M51, also known as the Whirlpool Galaxy. Images were taken in two infrared colours, at wavelengths of 7 and 15 microns, and at two resolutions, namely 3 and 6 arc seconds. Figure 1 shows the 7 micron ISOCAM image with a spatial resolution of 6 arc seconds. Spiral structure in galaxies was first discovered by observations of M51 taken in 1845 by the third Earl of Rosse in Ireland. At a distance of 20 million light years, M51 is not one of our nearest neighbors in space but it is one of the most spectacular, as it presents its spiral structure face-on to us. M51 is smaller and - at a mass of 50000 million suns - less massive than our galaxy. However, due to intense recent star formation, it is much brighter. While very detailed images have been available for some time in the optical and radio wavelength range, infrared data in the ISO range has been very limited. Figure 2 shows the data from the previous infrared satellite - the American/Dutch/British satellite IRAS; where, in a similar wavelength range, there is not even a hint of the spiral structure. For ISOCAM, with its higher spatial resolution and greater sensitivity, not only the spiral structure but also details within are easily visible, even in a raw first light image. Images from ISOCAM data will be compared with maps at other wavelengths to reveal information about the star formation processes in galaxies. First light for the ISOPHOT instrument was obtained on 29 November 1995 from the star Gamma Draconis. A huge signal was measured in a narrow band filter at 3.29 microns (figure 3). The optical axis of the instrument was found by this observation to be as close as 15 arc seconds to the predicted position. The next target was the interacting galaxy, NGC6090, which was clearly detected for the first time at the longest wavelengths, 120 - 240 microns, exclusively available on ISO. This galaxy is about 320 million light years away from us and has already been detected at shorter wavelengths by IRAS. The newly discovered far-infrared emission arises from cold dust (-250 degrees C) in the galaxies warmed up by recently born stars. The rate of star formation is thought to be increased by the close encounter between the two galaxies. Based on previous measurements, about 50 stars per year are estimated to be born in NGC6090. The new measurements have determined the luminosity much more precisely by including a so far invisible region. This will lead to an accurate calculation of the star formation rate and will give an insight into the secrets of "star bursts" seen in many external galaxies. ISOPHOT will be used in larger programmes to study interacting galaxies from the distant passage of objects via close encounters to finally merging galaxies (cosmic "cannibalism"). The Long-Wavelength Spectrometer made its first astronomical observation on 30 November. It measured the infrared spectrum of a region of dust, gas and newly-formed stars known as S106. Lines from Nitrogen, Carbon and Oxygen are clearly visible in the raw unprocessed spectrum. Intense ultraviolet light from the stars heats up the surrounding dust, which re-radiates this energy in the infrared. It also excites atoms in the gas, causing them to emit radiation at precise infrared wavelengths. Unlike visible light, these infrared rays can emerge from deep within the clouds. Measurements like these will allow astronomers to discover the composition, density and temperature of the material and help us to understand the complex processes by which stars and their planetary systems form. The LWS wavelength range, is completely inaccessible from the ground due to atmospheric absorption and, thus, the LWS provides a unique opportunity of studying star-formation. For the Short-Wavelength Spectrometer, first light was obtained on 1 December, during a measurement to determine the focal plane geometry (i.e. the position of the instrument's entrance slit with respect to the telescope) with the star Gamma Draconis as the target. This detection was achieved with an 11 x 11 point raster map and with the spectrometer set at a wavelength of 3.08 microns. The measured flux appears to be within 10% of pre-launch predictions. Spectral scans of internal wavelength calibrators made during the first check-out show good performance of all scanner mechanisms. For reasons of ISO schedule constraints, SWS - unlike the other instruments - has not yet had the opportunity to make spectral observations of astronomical sources. This will start in the next few days and all indications are that they will be successful. Following these very successful detections of first light in the instruments, work is continuing on the detailed calibration and performance verification of ISO and its four scientific instruments. It is planned to organise a Press Conference around the end of January 1996 to present initial results. Note to Editors: Colour pictures are available upon request. Please send a fax to ESA Public Relations, Paris (+33.1.53.69.76.90) making reference to this press release. The four instruments on-board ISO were built by international consortia of scientific institutes and industry, with each consortium being led by a single Principal Investigator. The Principal Investigators are : Catherine Cesarsky (CEA, Saclay, France) for ISOCAM; Peter Clegg (QMW, London, United Kingdom) for LWS; Thijs de Graauw (SRON, Groningen, the Netherlands) for SWS; and Dietrich Lemke (MPIA, Heidelberg, Germany) for ISOPHOT. Note: ESA press releases can be received automatically by sending an electronic mail message via Internet to "LISTSERV@esoc.esa.de" (do not type the quotes). The body of the message (not the subject line) should just contain one line with the words "subscribe ESAPRESS first_name last_name" (do not type the quotes) where "first_name" and "last_name" is your personal name, i.e. "subscribe ESAPRESS Mario Rossi". The system will reply with a confirmation via e-mail of each subscription.
NASA Technical Reports Server (NTRS)
Kumar, R.
1978-01-01
Multispectral scanner data in twelve spectral channels, in the wavelength range 0.46 to 11.7 mm, acquired in July 1971 for three flightlines, were analyzed by applying automatic pattern recognition techniques. These twelve spectral channels were divided into four wavelength groups (W1, W2, W3 and W4), each consisting of three wavelength channels -- with respect to their estimated probability of correct classification (P sub c) in discriminating agricultural cover types. The same analysis was also done for the data acquired in August, to investigate the effect of time on these results. The effect of deletion of each of the wavelength groups on P sub C in the subsets of one to nine channels, is given. Values of P sub C for all possible combinations of wavelength groups, in the subsets of one to eleven channels are also given.
Broadband visible light source based on AllnGaN light emitting diodes
Crawford, Mary H.; Nelson, Jeffrey S.
2003-12-16
A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.
Robust Accurate Non-Invasive Analyte Monitor
Robinson, Mark R.
1998-11-03
An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.
High indium non-polar InGaN clusters with infrared sensitivity grown by PAMBE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma
2015-03-15
Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In{sub 0.55}Ga{sub 0.45}N over non-polar (11-20) a-plane In{sub 0.17}Ga{sub 0.83}N epilayer grown on a-plane (11-20)GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of In{sub x}Ga{sub 1−x}N alloys,more » which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region.« less
Wavelength-resolved emission spectroscopy of the alkoxy and alkylthio radicals in a supersonic jet
NASA Technical Reports Server (NTRS)
Misra, Prabhakar; Zhu, Xinming; Hsueh, Ching-Yu; Kamal, Mohammed M.
1993-01-01
Wavelength-resolved emission spectra of methoxy (CH3O) and methylthio (CH3S) radicals have been obtained in a supersonic jet environment with a resolution of 0.3 nm by dispersing the total laser-induced fluorescence with a 0.6 m monochromator. A detailed analysis of the single vibronic level dispersed fluorescence spectra yields the following vibrational frequencies for CH3O in the X(2)E state; nu(sub 1 double prime) = 2953/cm, nu(sub 2 double prime) = 1375/cm, nu(sub 3 double prime) = 1062/cm, nu(sub 4 double prime) = 2869/cm, nu(sub 5 double prime) = 1528/cm and nu(sub 6 double prime) = 688/cm. A similar analysis of the wavelength-resolved emission spectra of CH3S provides the following ground state vibrational frequencies: nu(sub 2 double prime) = 1329/cm, nu(sub 3 double prime) = 739/cm and nu(sub 6 double prime) = 601/cm. An experimental uncertainty of 20/cm is estimated for the assigned frequencies.
Retrospective stress-forecasting of earthquakes
NASA Astrophysics Data System (ADS)
Gao, Yuan; Crampin, Stuart
2015-04-01
Observations of changes in azimuthally varying shear-wave splitting (SWS) above swarms of small earthquakes monitor stress-induced changes to the stress-aligned vertical microcracks pervading the upper crust, lower crust, and uppermost ~400km of the mantle. (The microcracks are intergranular films of hydrolysed melt in the mantle.) Earthquakes release stress, and an appropriate amount of stress for the relevant magnitude must accumulate before each event. Iceland is on an extension of the Mid-Atlantic Ridge, where two transform zones, uniquely run onshore. These onshore transform zones provide semi-continuous swarms of small earthquakes, which are the only place worldwide where SWS can be routinely monitored. Elsewhere SWS must be monitored above temporally-active occasional swarms of small earthquakes, or in infrequent SKS and other teleseismic reflections from the mantle. Observations of changes in SWS time-delays are attributed to stress-induced changes in crack aspect-ratios allowing stress-accumulation and stress-relaxation to be identified. Monitoring SWS in SW Iceland in 1988, stress-accumulation before an impending earthquake was recognised and emails were exchanged between the University of Edinburgh (EU) and the Iceland Meteorological Office (IMO). On 10th November 1988, EU emailed IMO that a M5 earthquake could occur soon on a seismically-active fault plane where seismicity was still continuing following a M5.1 earthquake six-months earlier. Three-days later, IMO emailed EU that a M5 earthquake had just occurred on the specified fault-plane. We suggest this is a successful earthquake stress-forecast, where we refer to the procedure as stress-forecasting earthquakes as opposed to predicting or forecasting to emphasise the different formalism. Lack of funds has prevented us monitoring SWS on Iceland seismograms, however, we have identified similar characteristic behaviour of SWS time-delays above swarms of small earthquakes which have enabled us to retrospectively stress-forecasting ~17 earthquakes ranging in magnitude from a M1.7 swarm event in N Iceland, to the 1999 M7.7 Chi-Chi Earthquake in Taiwan, and the 2004 Mw9.2 Sumatra-Andaman Earthquake (SAE). Before SAE, the changes in SWS were observed at seismic stations in Iceland at a distance of ~10,500km the width of the Eurasian Plate, from Indonesia demonstrating the 'butterfly wings' sensitivity of the New Geophysics of a critically microcracked Earth. At that time, the sensitivity of the phenomena had not been recognised, and the SAE was not stress-forecast. These results have been published at various times in various formats in various journals. This presentation displays all the results in a normalised format that allows the similarities to be recognised, confirming that observations of SWS time-delays can stress-forecast the times, magnitudes, and in some circumstances fault-breaks, of impending earthquakes. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see abstracts in EGU2015 Sessions: Crampin & Gao (SM1.1), Liu & Crampin (NH2.5), and Crampin & Gao (GD.1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Li; University of the Chinese Academy of Sciences, Beijing 100049; Zhou, Pan-Wang, E-mail: pwzhou@dicp.ac.cn, E-mail: gjzhao@dicp.ac.cn
2016-07-28
The trans-urocanic acid, a UV chromophore in the epidermis of human skin, was found to exhibit a wavelength dependent isomerization property. The isomerization quantum yield to cis-urocanic is greatest when being excited to the S{sub 1} state, whereas exciting the molecule to the S{sub 2} state causes almost no isomerization. The comparative photochemical behavior of the trans-urocanic on the S{sub 1} and S{sub 2} states continues to be the subject of intense research effort. This study is concerned with the unique photo-behavior of this interesting molecule on the S{sub 2} state. Combining the on-the-fly surface hopping dynamics simulations and staticmore » electronic structure calculations, three decay channels were observed following excitation to the S{sub 2} state. An overwhelming majority of the molecules decay to the S{sub 1} state through a planar or pucker characterized minimum energy conical intersection (MECI), and then decay to the ground state along a relaxation coordinate driven by a pucker deformation of the ring. A very small fraction of molecules decay to the S{sub 1} state by a MECI characterized by a twisting motion around the CC double bond, which continues to drive the molecule to deactivate to the ground state. The latter channel is related with the photoisomerization process, whereas the former one will only generate the original trans-form products. The present work provides a novel S{sub 2} state decay mechanism of this molecule, which offers useful information to explain the wavelength dependent isomerization behavior.« less
Solid immersion terahertz imaging with sub-wavelength resolution
NASA Astrophysics Data System (ADS)
Chernomyrdin, Nikita V.; Schadko, Aleksander O.; Lebedev, Sergey P.; Tolstoguzov, Viktor L.; Kurlov, Vladimir N.; Reshetov, Igor V.; Spektor, Igor E.; Skorobogatiy, Maksim; Yurchenko, Stanislav O.; Zaytsev, Kirill I.
2017-05-01
We have developed a method of solid immersion THz imaging—a non-contact technique employing the THz beam focused into evanescent-field volume and allowing strong reduction in the dimensions of THz caustic. We have combined numerical simulations and experimental studies to demonstrate a sub-wavelength 0.35λ0-resolution of the solid immersion THz imaging system compared to 0.85λ0-resolution of a standard imaging system, employing only an aspherical singlet. We have discussed the prospective of using the developed technique in various branches of THz science and technology, namely, for THz measurements of solid-state materials featuring sub-wavelength variations of physical properties, for highly accurate mapping of healthy and pathological tissues in THz medical diagnosis, for detection of sub-wavelength defects in THz non-destructive sensing, and for enhancement of THz nonlinear effects.
Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays.
Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei
2016-02-15
Long-wavelength (especially >12 μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014 cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12 μm) HgCdTe infrared photodiode arrays.
A new understanding of fluid-rock deformation
NASA Astrophysics Data System (ADS)
Crampin, Stuart; Gao, Yuan
2015-04-01
Cracks in the pavement show that rock is weak to shear stress. Consequently we have a conundrum. How does in situ rock accumulate the enormous shear-stress energy necessary for release by a large magnitude earthquake without fracturing in smaller earthquakes? For example: observations of changes in seismic shear-wave splitting (SWS) were observed in Iceland before the 2004 Mw9.2 Sumatra-Andaman Earthquake (SAE) at a distance of ~10,500km (the width of the Eurasian Plate) from Indonesia. Observations of SWS monitor microcrack geometry, and the changes in SWS in Iceland indicated that stress-changes before the Sumatra earthquake modified microcrack geometry the width of Eurasia from Indonesia. What is the mechanism for such widespread accumulation of necessarily weak stress? We show that stress is stored in in situ rock by the stress-controlled geometry of the fluid-saturated stress-aligned microcrack. Microcrack aspect-ratios are aligned by fluid flow or dispersion along pressure-gradients between neighbouring microcracks at different orientations to the stress-field by a mechanism known as Anisotropic Poro-Elasticity or APE. Since the minimum stress is typically horizontal, the microcracks are typically vertically-oriented parallel to the maximum horizontal stress as is confirmed by observations of SWS. Such azimuthally varying shear-wave splitting (SWS) is observed in situ rocks in the upper crust, lower crust, and uppermost ~400km of the mantle. (The 'microcracks' in the mantle are intergranular films of hydrolysed melt.) SWS shows that the microcracks are so closely spaced that they verge on fracturing/earthquakes. Phenomena verging on failure are critical-systems with 'butterfly wings' sensitivity. Critical-systems are very common and it must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena is a critical-system. Monitoring SWS above small earthquakes allows stress-accumulation before earthquakes to be recognised and the time, magnitude, and in some circumstances fault-plane to stress-forecast. Currently, the time, magnitude, and fault-plane of a M5 earthquake in SW Iceland was stress-forecast three-days before it occurred, and characteristic anomalies in SWS have been recognised retrospectively before ~16 other earthquakes. Stress in the Earth is generated by plate-interactions at mid-oceanic ridges and subduction zones. The behaviour of SWS suggests the following scenario. Initially, the increasing stress-field has does not recognise the location or timing of the eventual earthquake where the stress will be released. Stress continues to increase until levels of cracking known as fracture-criticality are approached around the (usually) previous (but more rarely new) fault-plane, and there is stress-relaxation as microcracks begin to coalesce on the fault. Eventually, stress is concentrated on the heavily microcracked rock and the earthquake occurs. It is believed that the APE deformation of fluid-saturated microcrack geometry pervading most rocks above ~400km in the mantle is the mechanism controlling many aspects of fluid-rock deformation. It has the advantage that the internal behavior of stress-induced manipulation of the microcrack geometry can be monitored by observations of SWS. Papers referring to these developments can be found in geos.ed.ac.uk/home/scrampin/opinion. Also see Crampin & Gao (Session SM1.1), Liu & Crampin (Session NH2.5), and Crampin & Gao (Session GD.1) at this EGU2015 meeting.
Sub-wavelength grating mode transformers in silicon slab waveguides.
Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J
2009-10-12
We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddadi, A.; Chevallier, R.; Chen, G.
2015-01-05
A high performance bias-selectable mid-/long-wavelength infrared photodetector based on InAs/InAs{sub 1−x}Sb{sub x} type-II superlattices on GaSb substrate has been demonstrated. The mid- and long-wavelength channels' 50% cut-off wavelengths were ∼5.1 and ∼9.5 μm at 77 K. The mid-wavelength channel exhibited a quantum efficiency of 45% at 100 mV bias voltage under front-side illumination and without any anti-reflection coating. With a dark current density of 1 × 10{sup −7} A/cm{sup 2} under 100 mV applied bias, the mid-wavelength channel exhibited a specific detectivity of 8.2 × 10{sup 12 }cm·√(Hz)/W at 77 K. The long-wavelength channel exhibited a quantum efficiency of 40%, a dark current density of 5.7 × 10{sup −4} A/cm{sup 2} undermore » −150 mV applied bias at 77 K, providing a specific detectivity value of 1.64 × 10{sup 11 }cm·√(Hz)/W.« less
Passive microwave studies of frozen lakes
NASA Technical Reports Server (NTRS)
Hall, D. K.; Foster, J. L.; Rango, A.; Chang, A. T. C.
1978-01-01
Lakes of various sizes, depths and ice thicknesses in Alaska, Utah and Colorado were overflown with passive microwave sensors providing observations at several wavelengths. A layer model is used to calculate the microwave brightness temperature, T sub B (a function of the emissivity and physical temperatures of the object), of snowcovered ice underlain with water. Calculated T sub B's are comparable to measured T sub B's. At short wavelengths, e.g., 0.8 cm, T sub B data provide information on the near surface properties of ice covered lakes where the long wavelength, 21.0 cm, observations sense the entire thickness of ice including underlying water. Additionally, T sub B is found to increase with ice thickness. 1.55 cm observations on Chandalar Lake in Alaska show a T sub B increase of 38 K with an approximate 124 cm increase in ice thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com
2014-10-15
In this paper, we have proposed a new design of tunable two dimensional (2D) photonic crystal (PhC) channel drop filter (CDF) using ring resonators. The increasing interest in photonic integrated circuits (PIC's) and the increasing use of all-optical fiber networks as backbones for global communication systems have been based in large part on the extremely wide optical transmission bandwidth provided by dielectric materials. Based on the analysis we present novel photonic crystal channel drop filters. Simulations demonstrate that these filters exhibit ideal transfer characteristics. Channel dropping filters (CDF's) that access one channel of a wavelength division multiplexed (WDM) signal whilemore » leaving other channels undisturbed are essential components of PIC's and optical communication systems. In this paper we have investigated such parameters which have an effect on resonant wavelength in this Channel Drop Filter, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure. The dimensions of these structures are taken as 20a×19a and the area of the proposed structure is about 125.6μm{sup 2}; therefore this structure can be used in the future photonic integrated circuits. While using this design the dropping efficiency at the resonance of single ring are 100%. The spectrum of the power transmission is obtained with finite difference time domain (FDTD) method. FDTD method is the most famous method for PhC analysis. In this paper the dielectric rods have a dielectric constant of 10.65, so the refractive index is 3.26 and radius r=0.213a is located in air, where a is a lattice constant. In this we have used five scatter rods for obtaining more coupling efficiency; radius of scatter rods is set to 0.215a. The proposed structure is simulated with OptiFDTD.v.8.0 software, the different dielectric constant of rods equal to ε{sub r}−0.4, ε{sub r} and ε{sub r}+0.4 at wavelength of 1570 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybalchenko, D. V.; Mintairov, S. A.; Salii, R. A.
Metamorphic Ga{sub 0.76}In{sub 0.24}As heterostructures for photovoltaic converters are grown by the MOCVD (metal–organic chemical vapor deposition) technique. It is found that, due to the valence-band offset at the p-In{sub 0.24}Al{sub 0.76}As/p-In{sub 0.24}Ga{sub 0.76}As (wide-gap window/emitter) heterointerface, a potential barrier for holes arises as a result of a low carrier concentration in the wide-gap material. The use of an InAlGaAs solid solution with an Al content lower than 40% makes it possible to raise the hole concentration in the widegap window up ~9 × 10{sup 18} cm{sup –3} and completely remove the potential barrier, thereby reducing the series resistance ofmore » the device. The parameters of an GaInAs metamorphic buffer layer with a stepwise In content profile are calculated and its epitaxial growth conditions are optimized, which improves carrier collection from the n-GaInAs base region and provides a quantum efficiency of 83% at a wavelength of 1064 nm. Optimization of the metamorphic heterostructure of the photovoltaic converter results in that its conversion efficiency for laser light with a wavelength of 1064 nm is 38.5%.« less
A Multi-Wavelength View of Planet Forming Regions: Unleashing the Full Power of ALMA
NASA Astrophysics Data System (ADS)
Tazzari, Marco
2017-11-01
Observations at sub-mm/mm wavelengths allow us to probe the solids in the interior of protoplanetary disks, where the bulk of the dust is located and planet formation is expected to occur. However, the actual size of dust grains is still largely unknown due to the limited angular resolution and sensitivity of past observations. The upgraded VLA and, especially, the ALMA observatories provide now powerful tools to resolve grain growth in disks, making the time ripe for developing a multi-wavelength analysis of sub-mm/mm observations of disks. In my contribution I will present a novel analysis method for multi-wavelength ALMA/VLA observations which, based on the self-consistent modelling of the sub-mm/mm disk continuum emission, allows us to constrain simultaneously the size distribution of dust grains and the disk's physical structure (Tazzari et al. 2016, A&A 588 A53). I will also present the recent analysis of spatially resolved ALMA Band 7 observations of a large sample of disks in the Lupus star forming region, from which we obtained a tentative evidence of a disk size-disk mass correlation (Tazzari et al. 2017, arXiv:1707.01499). Finally, I will introduce galario, a GPU Accelerated Library for the Analysis of Radio Interferometry Observations. Fitting the observed visibilities in the uv-plane is computationally demanding: with galario we solve this problem for the current as well as for the full-science ALMA capabilities by leveraging on the computing power of GPUs, providing the computational breakthrough needed to fully exploit the new wealth of information delivered by ALMA.
Stability of Brillouin flow in the presence of slow-wave structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, D. H.; Lau, Y. Y.; Greening, G.
2016-09-15
Including a slow-wave structure (SWS) on the anode in the conventional, planar, and inverted magnetron, we systematically study the linear stability of Brillouin flow, which is the prevalent flow in crossed-field devices. The analytic treatment is fully relativistic and fully electromagnetic, and it incorporates the equilibrium density profile, flow profile, and electric field and magnetic field profiles in the linear stability analysis. Using parameters similar to the University of Michigan's recirculating planar magnetron, the numerical data show that the resonant interaction of the vacuum circuit mode and the corresponding smooth-bore diocotron-like mode is the dominant cause for instability. This resonantmore » interaction is far more important than the intrinsic negative (positive) mass property of electrons in the inverted (conventional) magnetron geometry. It is absent in either the smooth-bore magnetron or under the electrostatic assumption, one or both of which was almost always adopted in prior analytical formulation. This resonant interaction severely restricts the wavenumber for instability to the narrow range in which the cold tube frequency of the SWS is within a few percent of the corresponding smooth bore diocotron-like mode in the Brillouin flow.« less
Kim, Dae-Seon; Park, Min-Su; Jang, Jae-Hyung
2011-08-01
Subwavelength structures (SWSs) were fabricated on the Indium Phosphide (InP) substrate by utilizing the confined convective self-assembly (CCSA) method followed by reactive ion etching (RIE). The surface condition of the InP substrate was changed by depositing a 30-nm-thick SiO2 layer and subsequently treating the surface with O2 plasma to achieve better surface coverage. The surface coverage of nanoparticle monolayer reached 90% by using O2 plasma-treated SiO2/InP substrate among three kinds of starting substrates such as the bare InP, SiO2/InP and O2 plasma-treated SiO2/InP substrate. A nanoparticle monolayer consisting of polystyrene spheres with diameter of 300 nm was used as an etch mask for transferring a two-dimensional periodic pattern onto the InP substrate. The fabricated conical SWS with an aspect ratio of 1.25 on the O2 plasma-treated SiO2/InP substrate exhibited the lowest reflectance. The average reflectance of the conical SWS was 5.84% in a spectral range between 200 and 900 nm under the normal incident angle.
Report of the Asilomar 3 LDR Workshop
NASA Technical Reports Server (NTRS)
Mahoney, M. J. (Editor)
1988-01-01
The conclusions and recommendations of the workshop held to study technology development issues critical to the Large Deployable Reflector (LDR) are summarized. LDR is to be a dedicated, orbiting, astronomical observatory, operating at wavelengths from 30 to 1000 microns, a spectral region where the Earth's atmosphere is almost completely opaque. Because it will have a large, segmented, passively cooled aperture, LDR addresses a wide range of technology areas. These include lightweight, low cost, structural composite reflector panels, primary support structures, wavefront sensing and adaptive optics, thermal background management, and integrated vibration and pointing control systems. The science objectives for LDR present instrument development challenges for coherent and direct arrayed detectors which can operate effectively at far infrared and submillimeter wavelengths, and for sub-Kelvin cryogenic systems.
New insights into photodissociation dynamics of cyclobutanone from the AIMS dynamic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lihong; Fang, Wei-Hai, E-mail: fangwh@bnu.edu.cn
2016-04-14
In this work, the combined electronic structure calculations and non-adiabatic dynamics simulations were performed for understanding mechanistic photodissociation of cyclobutanone at ∼248 nm. Besides the stationary and intersection structures reported before, two new conical intersections between the ground (S{sub 0}) and the first excited singlet (S{sub 1}) states were determined in the present study, which were confirmed to be the new S{sub 1} → S{sub 0} funnels by the ab initio multiple spawning dynamic simulation, giving rise to products in the S{sub 0} state selectively. The time evolution of the S{sub 1} electronic population was fitted with the pure exponentialmore » formulae, from which the S{sub 1} lifetime was estimated to be 484.0 fs. The time constant for the S{sub 1} α-cleavage is calculated to be 176.6 fs, which is based on the present dynamics simulation. As a result of the ultrafast S{sub 1} processes, the statistical distribution of the excess energies is prevented in the S{sub 1} state. The S{sub 1} dynamic effect (the nonergodic behavior) was predicted to be an important factor that is responsible for the wavelength dependence of the branching ratio of photodissociation products, which will be discussed in detail.« less
Phonetic Recalibration Only Occurs in Speech Mode
ERIC Educational Resources Information Center
Vroomen, Jean; Baart, Martijn
2009-01-01
Upon hearing an ambiguous speech sound dubbed onto lipread speech, listeners adjust their phonetic categories in accordance with the lipread information (recalibration) that tells what the phoneme should be. Here we used sine wave speech (SWS) to show that this tuning effect occurs if the SWS sounds are perceived as speech, but not if the sounds…
Association of Shah-Waardenburgh syndrome: a review of 6 cases.
Jan, Iftikhar A; Stroedter, Lutz; Haq, Anwaar-ul; Din, Zaheer-ud
2008-04-01
Shah-Waardenburg syndrome (SWS) is a neurocristopathy and is characterized by Hirschsprung's disease (HD), deafness, and depigmentation of hairs, skin, and iris. The aim of the article is to study the relative frequency of associations in 6 consecutive cases of SWS. A review of 6 consecutive patients with SWS was performed to study the frequency of various components of the syndrome. Six patients had features of SWS. All patients had HD; of these, 3 had rectosigmoid HD, whereas 3 had extended HD. All patients had white forelock of hairs with skin depigmentation. One patient had sensorineural deafness, whereas other babies were less than 1 year, and thus, full evaluation of hearing deficiency was not assessed. Three patients had blue eyes, whereas other babies had normal iris pigmentation. Skin depigmentation was noted in 5 of the 6 patients. Three babies were seriously malnourished and showed higher association of enterocolitis. Shah-Waardenburg syndrome is an uncommon association of HD. Depigmentation with a white forelock and skin manifestations are common, whereas blue iris, long segment disease, and enterocolitis are present in nearly half of the patients.
Obesity and the Social Withdrawal Syndrome.
Rotenberg, Ken J; Bharathi, Carla; Davies, Helen; Finch, Tom
2017-08-01
The relation between obesity and Social Withdrawal Syndrome (SWS) was examined using the data gathered by Rotenberg, Bharathi, Davies, and Finch (2013). One hundred and 35 undergraduates (80 females; Mage=21years-10months) completed standardized scales that assessed the SWS (low emotional trust beliefs in close others, low disclosure to close others, and high loneliness). BMI was calculated from self-reported weight and height. As hypothesized, quadratic relations were found in which participants with BMI>30 (i.e., obese) demonstrated the SWS pattern of low emotional trust beliefs in close others, low disclosure to close others, and high loneliness. As further evidence, lower emotional trust in close others, lower disclosure to close others, and greater loneliness were found for obese participants (>30 BMI, n=27) than both normal weight (<25 BMI, n=67) and overweight participants (25 to 30 BMI, n=41). The findings confirmed the hypothesis that obesity was associated with the SWS. The findings suggested that the lack of trust in others by obese individuals contributes to their unwillingness to seek out help for health and psychosocial problems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genesis of femtosecond-induced nanostructures on solid surfaces.
Varlamova, Olga; Martens, Christian; Ratzke, Markus; Reif, Juergen
2014-11-01
The start and evolution of the formation of laser-induced periodic surface structures (LIPSS, ripples) are investigated. The important role of irradiation dose (fluence×number of pulses) for the properties of the generated structures is demonstrated. It is shown how, with an increasing dose, the structures evolve from random surface modification to regular sub-wavelength ripples, then coalesce to broader LIPSS and finally form more complex shapes when ablation produces deep craters. First experiments are presented following this evolution in one single irradiated spot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunaev, D S; Karasik, A Ya
2014-06-30
The nonlinear two-photon light absorption coefficients have been measured in an optical fibre with a quartz glass (SiO{sub 2}) core and in a fibre with a germanosilicate glass (SiO{sub 2} + GeO{sub 2}) core. The two-photon absorption coefficient β measured at a wavelength of 349 nm in the (SiO{sub 2} + GeO{sub 2})-based fibre (13.7 cm TW{sup -1}) multiply exceeds that for the pure quartz glass optical fibre (0.54 cm TW{sup -1}). (nonlinear optical phenomena)
NASA Astrophysics Data System (ADS)
Stark, Peter Randolph Hazard
Since the publication of the work by Thomas Ebbesen, et al. in 1998 on the extraordinary optical transmission of photons through sub-wavelength apertures in metallic films there has been tremendous interest in the phenomenon and applications of it. This dissertation is a compilation of investigations into applications of the extraordinary optical transmission through apertures in metallo-dielectric structures. Asymmetric metallo-dielectric structures (structures in which the dielectric functions of the dielectrics are not equivalent in a dielectric/metal film/dielectric stack) are fabricated by either sputtering or thermal evaporation. Apertures in the metal film are milled using a focused ion beam instrument. Transmission of photons through the apertures is characterized by the following photosensitive methods: direct exposure of photoresist, exposure of charged coupled devices through intermediate optics, direct exposure of a fluorescent medium and subsequent collection through intermediate optics and subsequent collection via photomultiplier tubes and CCD, collection by a photocathodic material and direct collection by photomultiplier tubes. Results indicate not only the extraordinary transmission discovered by Ebbesen et al.; but, in contravention to previously held theory, that photons emitted from such subwavelength apertures in asymmetric metallo-dielectric structures (aperture diameters typically
Precipitating factors of somnambulism: impact of sleep deprivation and forced arousals.
Pilon, Mathieu; Montplaisir, Jacques; Zadra, Antonio
2008-06-10
Experimental attempts to induce sleepwalking with forced arousals during slow-wave sleep (SWS) have yielded mixed results in children and have not been investigated in adult patients. We hypothesized that the combination of sleep deprivation and external stimulation would increase the probability of inducing somnambulistic episodes in sleepwalkers recorded in the sleep laboratory. The main goal of this study was to assess the effects of forced arousals from auditory stimuli (AS) in adult sleepwalkers and control subjects during normal sleep and following post-sleep deprivation recovery sleep. Ten sleepwalkers and 10 controls were investigated. After a baseline night, participants were presented with AS at predetermined sleep stages either during normal sleep or recovery sleep following 25 hours of sleep deprivation. One week later, the conditions with AS were reversed. No somnambulistic episodes were induced in controls. When compared to the effects of AS during sleepwalkers' normal sleep, the presentation of AS during sleepwalkers' recovery sleep significantly increased their efficacy in experimentally inducing somnambulistic events and a significantly greater proportion of sleepwalkers (100%) experienced at least one induced episode during recovery SWS as compared to normal SWS (30%). There was no significant difference between the mean intensity of AS that induced episodes during sleepwalkers' SWS and the mean intensity of AS that awakened sleepwalkers and controls from SWS. Sleep deprivation and forced arousals during slow-wave sleep can induce somnambulistic episodes in predisposed adults. The results highlight the potential value of this protocol in establishing a video-polysomnographically based diagnosis for sleepwalking.
The Role of NREM Sleep Instability in Child Cognitive Performance
Bruni, Oliviero; Kohler, Mark; Novelli, Luana; Kennedy, Declan; Lushington, Kurt; Martin, James; Ferri, Raffaele
2012-01-01
Study Objectives: Based on recent reports of the involvement of cyclic alternating pattern (CAP) in cognitive functioning in adults, we investigated the association between CAP parameters and cognitive performance in healthy children. Design: Polysomnographic assessment and standardized neurocognitive testing in healthy children. Settings: Sleep laboratory. Participants: Forty-two children aged 7.6 ± 2.7 years, with an even distribution of body mass percentile (58.5 ± 25.5) and SES reflective of national norms. Measurements: Analysis of sleep macrostructure following the R&K criteria and of cyclic alternating pattern (CAP). The neurocognitive tests were the Stanford Binet Intelligence Scale (5th edition) and a Neuropsychological Developmental Assessment (NEPSY) Results: Fluid reasoning ability was positively associated with CAP rate, particularly during SWS and with A1 total index and A1 index in SWS. Regression analysis, controlling for age and SES, showed that CAP rate in SWS and A1 index in SWS were significant predictors of nonverbal fluid reasoning, explaining 24% and 22% of the variance in test scores, respectively. Conclusion: This study shows that CAP analysis provides important insights on the role of EEG slow oscillations (CAP A1) in cognitive performance. Children with higher cognitive efficiency showed an increase of phase A1 in total sleep and in SWS Citation: Bruni O; Kohler M; Novelli L; Kennedy D; Lushington K; Martin J; Ferri R. The role of NREM sleep instability in child cognitive performance. SLEEP 2012;35(5):649-656. PMID:22547891
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernoff, C.B.; Helper, M.A.; Mosher, S.
1993-02-01
Mid-Proterozoic Hondo Group metasediments in the western Picuris Mountains, New Mexico clearly display 3 generations of previously recognized penetrative, synmetamorphic structures and a previously undocumented forth generation of overprinting folds with an associated axial planar foliation. The earliest structures include: (1) a bedding-parallel S[sub 1] foliation and rare, rootless, intrafolial F[sub 1] folds; (2) north-verging, west-trending F[sub 2] folds and an axial planar metamorphic foliation (S[sub 2]); (3) a steeply dipping, N-S striking crenulation cleavage (S[sub 3]). In the Piedra Lumbre region, southwest-plunging, open, upright chevron and box folds (F[sub 4]) locally reorient F[sub 2], S[sub 2] and S[sub 3]more » crenulations. The largest F[sub 4] folds in the Piedra Lumbre region have half-wavelengths of 500 meters. An associated nearly vertical foliation (S[sub 4]) overprints the first three foliations. The S[sub 4] foliation is a crenulation cleavage in micaceous layers and a discontinuous alignment of biotite laths in quartzose layers. Crystallization of biotite during S[sub 4] and chloritoid after S[sub 4], along with static recrystallization and mineral replacement by chlorite, suggests this deformation occurred during the waning stages of mid-Proterozoic metamorphism. The orientation of F[sub 2] and F[sub 4] folds are similar and both appear to occur on a regional scale. Interference of open upright F[sub 4] folds and tight, north-verging, overturned F[sub 2] folds produces a geometry that resembles that of the kilometer-scale Copper Hill Anticline of the western Picuris Mountains, previously interpreted to be solely the result of F[sub 2] folding.« less
NASA Astrophysics Data System (ADS)
Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian
2018-04-01
Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.
Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping
2016-09-01
Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.
Walsh, James K.; Hall-Porter, Janine M.; Griffin, Kara S.; Dodson, Ehren R.; Forst, Elizabeth H.; Curry, Denise T.; Eisenstein, Rhody D.; Schweitzer, Paula K.
2010-01-01
Study Objectives: To investigate whether enhancement of slow wave sleep (SWS) with sodium oxybate reduces the impact of sleep deprivation. Design: Double-blind, parallel group, placebo-controlled design Setting: Sleep research laboratory Participants: Fifty-eight healthy adults (28 placebo, 30 sodium oxybate), ages 18-50 years. Interventions: A 5-day protocol included 2 screening/baseline nights and days, 2 sleep deprivation nights, each followed by a 3-h daytime (08:00-11:00) sleep opportunity and a recovery night. Sodium oxybate or placebo was administered prior to each daytime sleep period. Multiple sleep latency test (MSLT), psychomotor vigilance test (PVT), Karolinska Sleepiness Scale (KSS), and Profile of Mood States were administered during waking hours. Measurements and Results: During daytime sleep, the sodium oxybate group had more SWS, more EEG spectral power in the 1-9 Hz range, and less REM. Mean MSLT latency was longer for the sodium oxybate group on the night following the first daytime sleep period and on the day following the second day sleep period. Median PVT reaction time was faster in the sodium oxybate group following the second day sleep period. The change from baseline in SWS was positively correlated with the change in MSLT and KSS. During recovery sleep the sodium oxybate group had less TST, SWS, REM, and slow wave activity (SWA) than the placebo group. Conclusions: Pharmacological enhancement of SWS with sodium oxybate resulted in a reduced response to sleep loss on measures of alertness and attention. In addition, SWS enhancement during sleep restriction appears to result in a reduced homeostatic response to sleep loss. Citation: Walsh JK; Hall-Porter JM; Griffin KS; Dodson ER; Forst EH; Curry DT; Eisenstein RD; Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. SLEEP 2010;33(9):1217-1225. PMID:20857869
Wang, Yong; Chen, Xiang-Mei; Cai, Guang-Yan; Li, Wen-Ge; Zhang, Ai-Hua; Hao, Li-Rong; Shi, Ming; Wang, Rong; Jiang, Hong-Li; Luo, Hui-Min; Zhang, Dong; Sun, Xue-Feng
2017-08-02
To evaluate the in vivo and in vitro performance of a China-made dialysis machine (SWS-4000). This was a multi-center prospective controlled study consisting of both long-term in vitro evaluations and cross-over in vivo tests in 132 patients. The China-made SWS-4000 dialysis machine was compared with a German-made dialysis machine (Fresenius 4008) with regard to Kt/V values, URR values, and dialysis-related adverse reactions in patients on maintenance hemodialysis, as well as the ultrafiltration rate, the concentration of electrolytes in the proportioned dialysate, the rate of heparin injection, the flow rate of the blood pump, and the rate of malfunction. The Kt/V and URR values at the 1st and 4th weeks of dialysis as well as the incidence of adverse effects did not differ between the two groups in cross-over in vivo tests (P > 0.05). There were no significant differences between the two groups in the error values of the ultrafiltration rate, the rate of heparin injection or the concentrations of electrolytes in the proportioned dialysate at different time points under different parameter settings. At weeks 2 and 24, with the flow rate of the blood pump set at 300 mL/min, the actual error of the SWS-4000 dialysis machine was significantly higher than that of the Fresenius 4008 dialysis machine (P < 0.05), but there was no significant difference at other time points or under other settings (P > 0.05). The malfunction rate was higher in the SWS-4000 group than in the Fresenius 4008 group (P < 0.05). The in vivo performance of the SWS-4000 dialysis machine is roughly comparable to that of the Fresenius 4008 dialysis machine; however, the malfunction rate of the former is higher than that of the latter in in vitro tests. The stability and long-term accuracy of the SWS-4000 dialysis machine remain to be improved.
Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He
2016-02-01
The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. © 2015 International Society for Neurochemistry.
Reliability and Clinical Correlation of Transcranial Doppler Ultrasound in Sturge-Weber Syndrome.
Offermann, Elizabeth A; Sreenivasan, Aditya; DeJong, M Robert; Lin, Doris D M; McCulloch, Charles E; Chung, Melissa G; Comi, Anne M
2017-09-01
The reproducibility of transcranial Doppler (TCD) ultrasound measurements in Sturge-Weber syndrome (SWS) and TCD's ability to predict neurological progression is unknown. In 14 individuals with SWS, TCD measured mean flow velocity, pulsatility index, peak systolic velocity, and end-diastolic velocity in the middle, posterior, and anterior cerebral arteries of the affected and unaffected hemisphere. TCD was performed either once (n = 5) or twice in one day (n = 9). We assessed the reproducibility of the measurements performed twice on the same day on subjects and compared the TCD measurements to previously published age-matched controls. Clinically obtained neuroimaging was scored for extent and severity of SWS brain involvement. Patients were prospectively assigned SWS neuroscores. Middle cerebral artery velocity (r = 0.79, P = 0.04, n = 7), posterior cerebral artery velocity (r = 0.90, P = 0.04, n = 5), and anterior cerebral artery pulsatility index (r = 0.82, P = 0.02, n = 7) were reproducible TCD measurements comparing same-day percent side-to-side differences. In subjects with SWS, affected and unaffected mean peak systolic velocity and end-diastolic velocity in the middle, posterior, and anterior cerebral arteries were globally lower compared with age-matched control subjects. Subjects with the lowest affected middle cerebral artery velocity had the greatest worsening in the total neurological score between time 1 and 2 (r = -0.73, P = 0.04, n = 8) and the most severe magnetic resonance imaging involvement of the affected frontal lobe (r = -0.82, P = 0.007, n = 9). TCD may be a reliable measure with potential clinical value, indicating that blood flow may be globally decreased in SWS patients with unilateral brain involvement. Copyright © 2017. Published by Elsevier Inc.
Mouse Activity across Time Scales: Fractal Scenarios
Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.
2014-01-01
In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better understanding of neuroautonomic regulation mechanisms. PMID:25275515
Juhász, Csaba; Hu, Jiani; Xuan, Yang; Chugani, Harry T
2016-05-01
Sturge-Weber syndrome (SWS) is strongly associated with epilepsy. Brain tissue studies have suggested that epileptic activity in SWS is driven by glutamatergic synaptic activity. Here, we used proton magnetic resonance spectroscopic imaging (MRSI) to test if glutamate (GLU) concentrations are increased in the affected hemisphere and if such increases are associated with severity of epilepsy in children with SWS. We also studied the metabolic correlates of MRSI abnormalities, using glucose positron emission tomography (PET) imaging. 3T MRI and glucose PET were performed in 10 children (age: 7-78 months) with unilateral SWS and a history of epilepsy. MRSI data were acquired from the affected (ipsilateral) and non-affected (contralateral) hemispheres. GLU, N-acetyl-aspartate (NAA) and creatine (Cr) were quantified in multiple voxels; GLU/Cr and NAA/Cr ratios were calculated and compared to seizure frequency as well as glucose PET findings. The highest GLU/Cr ratios were found in the affected hemisphere in all children except one with severe atrophy. The maximum ipsilateral/contralateral GLU/Cr ratios ranged between 1.0 and 2.5 (mean: 1.6). Mean ipsilateral/contralateral GLU/Cr ratios were highest in the youngest children and showed a strong positive correlation with clinical seizure frequency scores assessed at the time of the scan (r=0.88, p=0.001) and also at follow-up (up to 1 year, r=0.80, p=0.009). GLU increases in the affected hemisphere coincided with areas showing current or previous increases of glucose metabolism on PET in 5 children. NAA/Cr ratios showed no association with clinical seizure frequency. Increased glutamate concentrations in the affected hemisphere, measured by MRSI, are common in young children with unilateral SWS and are associated with frequent seizures. The findings lend support to the role of excess glutamate in SWS-associated epilepsy. Copyright © 2016 Elsevier B.V. All rights reserved.
Nonclassical Smoothening of Nanoscale Surface Corrugations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erlebacher, Jonah; Aziz, Michael J.; Chason, Eric
2000-06-19
We report the first experimental observation of nonclassical morphological equilibration of a corrugated crystalline surface. Periodic rippled structures with wavelengths of 290-550 nm were made on Si(001) by sputter rippling and then annealed at 650-750 degree sign C . In contrast to the classical exponential decay with time, the ripple amplitude A{sub {lambda}}(t) followed an inverse linear decay, A{sub {lambda}}(t)=A{sub {lambda}}( 0)/(1+k{sub {lambda}}t) , agreeing with a prediction of Ozdemir and Zangwill. We measure the activation energy for surface relaxation to be 1.6{+-}0.2 eV , consistent with the fundamental energies of creation and migration on Si(001). (c) 2000 The Americanmore » Physical Society.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Hui-Lin, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn; Xiao, Shao-Qiu, E-mail: tuhl-uestc@163.com, E-mail: xiaoshaoqiu@uestc.edu.cn
The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysismore » of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.« less
Conditions for entangled photon emission from (111)B site-controlled pyramidal quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juska, G., E-mail: gediminas.juska@tyndall.ie; Murray, E.; Dimastrodonato, V.
A study of highly symmetric site-controlled pyramidal In{sub 0.25}Ga{sub 0.75}As quantum dots (QDs) is presented. It is discussed that polarization-entangled photons can be also obtained from pyramidal QDs of different designs from the one already reported in Juska et al. [Nat. Photonics 7, 527 (2013)]. Moreover, some of the limitations for a higher density of entangled photon emitters are addressed. Among these issues are (1) a remaining small fine-structure splitting and (2) an effective QD charging under non-resonant excitation conditions, which strongly reduce the number of useful biexciton-exciton recombination events. A possible solution of the charging problem is investigated exploitingmore » a dual-wavelength excitation technique, which allows a gradual QD charge tuning from strongly negative to positive and, eventually, efficient detection of entangled photons from QDs, which would be otherwise ineffective under a single-wavelength (non-resonant) excitation.« less
InP-based type-I quantum well lasers up to 2.9 μm at 230 K in pulsed mode on a metamorphic buffer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Y.; Zhang, Y. G., E-mail: ygzhang@mail.sim.ac.cn; Ma, Y. J.
This work reports on up to 2.9 μm lasing at 230 K of InP-based type-I quantum well lasers. This record long wavelength lasing is achieved by applying InP-based Sb-free structures with eight periods of strain-compensated InAs quantum wells grown on metamorphic In{sub 0.8}Al{sub 0.2}As template layers. The continuous-wave threshold current density is 797 A/cm{sup 2} and the idealized extrapolated threshold current density for infinite cavity length is as low as 58 A/cm{sup 2} per quantum well at 120 K. This scheme is a promising pathway for extending the wavelength range of type-I quantum well lasers on InP substrates.
Dillman, Jonathan R; Chen, Shigao; Davenport, Matthew S; Zhao, Heng; Urban, Matthew W; Song, Pengfei; Watcharotone, Kuanwong; Carson, Paul L
2015-03-01
There is a paucity of data available regarding the repeatability and reproducibility of superficial shear wave speed (SWS) measurements at imaging depths relevant to the pediatric population. To assess the repeatability and reproducibility of superficial shear wave speed measurements acquired from elasticity phantoms at varying imaging depths using three imaging methods, two US systems and multiple operators. Soft and hard elasticity phantoms manufactured by Computerized Imaging Reference Systems Inc. (Norfolk, VA) were utilized for our investigation. Institution No. 1 used an Acuson S3000 US system (Siemens Medical Solutions USA, Malvern, PA) and three shear wave imaging method/transducer combinations, while institution No. 2 used an Aixplorer US system (SuperSonic Imagine, Bothell, WA) and two different transducers. Ten stiffness measurements were acquired from each phantom at three depths (1.0 cm, 2.5 cm and 4.0 cm) by four operators at each institution. Student's t-test was used to compare SWS measurements between imaging techniques, while SWS measurement agreement was assessed with two-way random effects single-measure intra-class correlation coefficients (ICCs) and coefficients of variation. Mixed model regression analysis determined the effect of predictor variables on SWS measurements. For the soft phantom, the average of mean SWS measurements across the various imaging methods and depths was 0.84 ± 0.04 m/s (mean ± standard deviation) for the Acuson S3000 system and 0.90 ± 0.02 m/s for the Aixplorer system (P = 0.003). For the hard phantom, the average of mean SWS measurements across the various imaging methods and depths was 2.14 ± 0.08 m/s for the Acuson S3000 system and 2.07 ± 0.03 m/s Aixplorer system (P > 0.05). The coefficients of variation were low (0.5-6.8%), and interoperator agreement was near-perfect (ICCs ≥ 0.99). Shear wave imaging method and imaging depth significantly affected measured SWS (P < 0.0001). Superficial shear wave speed measurements in elasticity phantoms demonstrate minimal variability across imaging method/transducer combinations, imaging depths and operators. The exact clinical significance of this variation is uncertain and may change according to organ and specific disease state.
Yuan, Bo; Humphrey, Victor F; Wen, Jihong; Wen, Xisen
2013-09-01
Three-dimensional (3D) locally resonant sonic materials (LRSMs) are studied theoretically for purpose of optimising their sub-wavelength performance by coupling resonance and Bragg scattering effects together. Through the study of effective sound speeds of LRSMs, we find that the starting frequency of Bragg scattering can be shifted to sub-wavelength region by softening coats of resonators when the matrix is a low shear-velocity medium. A similar result can be achieved by compressing the lattice constant. By using a layer-multiple-scattering method, we investigate the complex band structure and the transmission spectrum of an LRSM whose Bragg gap is already close to the resonance gap in frequency. The wave fields of the composite simulated by COMSOL are further analysed at several typical frequencies. The result shows that the approaching of two kinds of gaps not only broadens the bandwidth of the resonance gap, but also increases the depth of the Bragg gap since the interaction between resonant modes and scattering waves are enhanced. By varying the shear velocity of coats, we obtain a coupled gap, which exhibits a broad transmission gap in the sub-wavelength region. When the loss of coats is considered, the coupled gap can not only maintain a good sound blocking performance, but also perform an efficient absorption in the low frequency region. Copyright © 2013 Elsevier B.V. All rights reserved.
Effect of Yb doping on the refractive index and thermo-optic coefficient of YVO4 single crystals.
Soharab, M; Bhaumik, Indranil; Bhatt, R; Saxena, A; Karnal, A K; Gupta, P K
2017-02-20
Single crystals of YVO4 with different doping concentrations of Yb (1.5, 3.0, 8.0, and 15.0 at. %) and with good crystalline quality (FWHM ∼43-55 arc sec of rocking curve) were grown by the optical floating zone technique. Refractive index measurements were carried out at four wavelengths as a function of temperature. The measurements show that as the doping concentration of Yb is increased, the refractive index varies marginally for ne whereas there is a significant change in the value of no. The thermo-optic coefficient (dn/dT) was found to be positive with a value ∼10-5/°C, which is 1 order higher than that for the undoped YVO4 crystal. The thermo-optic coefficient is higher for ne compared to that of no. Also, a set of relations describing the wavelength dependence of the thermo-optic coefficient were established that are useful for calculating the thermo-optic coefficient at any temperature in the range 30°C-150°C and at any wavelength in the range 532-1551 nm.
Absorbing boundary layers for spin wave micromagnetics
NASA Astrophysics Data System (ADS)
Venkat, G.; Fangohr, H.; Prabhakar, A.
2018-03-01
Micromagnetic simulations are used to investigate the effects of different absorbing boundary layers (ABLs) on spin waves (SWs) reflected from the edges of a magnetic nano-structure. We define the conditions that a suitable ABL must fulfill and compare the performance of abrupt, linear, polynomial and tan hyperbolic damping profiles in the ABL. We first consider normal incidence in a permalloy stripe and propose a transmission line model to quantify reflections and calculate the loss introduced into the stripe due to the ABL. We find that a parabolic damping profile absorbs the SW energy efficiently and has a low reflection coefficient, thus performing much better than the commonly used abrupt damping profile. We then investigated SWs that are obliquely incident at 26.6 °, 45 ° and 63.4 ° on the edge of a yttrium-iron-garnet film. The parabolic damping profile again performs efficiently by showing a high SW energy transfer to the ABL and a low reflected SW amplitude.
Predictable internal brain dynamics in EEG and its relation to conscious states
Yoo, Jaewook; Kwon, Jaerock; Choe, Yoonsuck
2014-01-01
Consciousness is a complex and multi-faceted phenomenon defying scientific explanation. Part of the reason why this is the case is due to its subjective nature. In our previous computational experiments, to avoid such a subjective trap, we took a strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory), protention (anticipation), and primary impression as the tripartite temporal structure of consciousness. To test our hypothesis, we analyzed publicly available sleep and awake electroencephalogram (EEG) data. Our results show that EEG signals from awake or rapid eye movement (REM) sleep states have more predictable dynamics compared to those from slow-wave sleep (SWS). Since awakeness and REM sleep are associated with conscious states and SWS with unconscious or less consciousness states, these results support our hypothesis. The results suggest an intricate relationship among prediction, consciousness, and time, with potential applications to time perception and neurorobotics. PMID:24917813
Synthesis, structural and optical properties of BaMoO{sub 4}:Eu{sup 3+} shuttle like phosphors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna Bharat, L.; Lee, Soo Hyun; Yu, Jae Su, E-mail: jsyu@khu.ac.kr
2014-05-01
Graphical abstract: - Highlights: • BaMoO{sub 4}:Eu{sup 3+} phosphors were synthesized by a facile synthesis route. • PL and CL spectra showed dominant emissions due to ({sup 5}D{sub 0} → {sup 7}F{sub 2}) hypersensitive transitions. • The excitation wavelengths in the UV-B region make BaMoO{sub 4}:Eu{sup 3+} phosphors as a good candidate in the red region for the development of UV-based white LEDs. • PL and CL spectra showed similar CIE values close to the commercially available Y{sub 2}O{sub 3}:Eu{sup 3+} phosphors. - Abstract: Eu{sup 3+} ions doped BaMoO{sub 4} phosphor samples were synthesized by a facile synthesis process. Themore » tetragonal phase of the host lattice was substantiated by the X-ray diffraction patterns. The morphological studies were carried out by taking the scanning electron microscope and transmission electron microscope images and confirmed the formation of shuttle like particles with perpendicular protrusions in the middle of the particle. The single crystalline nature of the phosphors was confirmed by the selected area electron diffraction pattern. The photoluminescence (PL) properties of the Eu{sup 3+} ions doped samples revealed good emission with a high asymmetry ratio when excited with ultraviolet B wavelengths (between 280 and 315 nm). The cathodoluminescence (CL) spectra showed similar results to the PL spectra. The calculated CIE values based on the PL and CL spectra were almost similar and confirmed the rich red emission.« less
Schools-within-a-School: The Kapa'a Elementary School Model.
ERIC Educational Resources Information Center
Piper, Paul S.
1994-01-01
This document describes the successful schools-within-a-school (SWS) program implemented at Kapa'a Elementary School in Hawaii. The SWS model addresses the issue of school size and its ramifications. In 1989, the school sought the help of a leading educational researcher, Dr. Mary Anne Raywid, to develop a change model that gave the teachers…
Deng, Yufeng; Rouze, Ned C.; Palmeri, Mark L.; Nightingale, Kathryn R.
2017-01-01
Ultrasound elasticity imaging has been developed over the last decade to estimate tissue stiffness. Shear wave elasticity imaging (SWEI) quantifies tissue stiffness by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work presents the sequencing and data processing protocols of SWEI using a Verasonics system. The selection of the sequence parameters in a Verasonics programming script is discussed in detail. The data processing pipeline to calculate group shear wave speed (SWS), including tissue motion estimation, data filtering, and SWS estimation is demonstrated. In addition, the procedures for calibration of beam position, scanner timing, and transducer face heating are provided to avoid SWS measurement bias and transducer damage. PMID:28092508
Sou, Julie; Goldenberg, Shira M.; Duff, Putu; Nguyen, Paul; Shoveller, Jean; Shannon, Kate
2017-01-01
Despite universal health care in Canada, sex workers (SW) and im/migrants experience suboptimal health care access. In this analysis, we examined the correlates of unmet health needs among SWs in Metro Vancouver over time. Data from a longitudinal cohort of women SWs (AESHA) was used. Of 742 SWs, 25.5% reported unmet health needs at least once over the 4-year study period. In multivariable logistic regression using generalized estimating equations, recent im/migration had the strongest impact on unmet health needs; long-term im/migration, policing, and trauma were also important determinants. Legal and social supports to promote im/migrant SWs’ access to health care are recommended. PMID:28300492
Strained-layer superlattice focal plane array having a planar structure
Kim, Jin K [Albuquerque, NM; Carroll, Malcolm S [Albuquerque, NM; Gin, Aaron [Albuquerque, NM; Marsh, Phillip F [Lowell, MA; Young, Erik W [Albuquerque, NM; Cich, Michael J [Albuquerque, NM
2010-07-13
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
Strained layer superlattice focal plane array having a planar structure
Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J
2012-10-23
An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.
Refractive index and birefringence of 2H silicon carbide
NASA Technical Reports Server (NTRS)
Powell, J. A.
1972-01-01
The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.
Polarized photoluminescence of nc-Si–SiO{sub x} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michailovska, E. V.; Indutnyi, I. Z.; Shepeliavyi, P. E.
2016-01-15
The effect of photoluminescence polarization memory in nc-Si–SiO{sub x} light-emitting structures containing Si nanoparticles (nc-Si) in an oxide matrix is for the first time studied. The polarization properties of continuous and porous nanostructures passivated in HF vapors (or solutions) are studied. It is established that the polarization memory effect is manifested only after treatment of the structures in HF. The effect is also accompanied by a shift of the photoluminescence peak to shorter wavelengths and by a substantial increase in the photoluminescence intensity. It is found that, in anisotropic nc-Si–SiO{sub x} samples produced by oblique deposition in vacuum, the degreemore » of linear photoluminescence polarization in the sample plane exhibits a noticeable orientation dependence and correlates with the orientation of SiO{sub x} nanocolumns forming the structure of the porous layer. These effects are attributed to the transformation of symmetrically shaped Si nanoparticles into asymmetric elongated nc-Si particles upon etching in HF. In continuous layers, nc-Si particles are oriented randomly, whereas in porous structures, their preferential orientation coincides with the orientation of oxide nanocolumns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gobrecht, David; Cristallo, Sergio; Piersanti, Luciano
Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities andmore » temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of cluster sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.« less
Jung, Yongmin; Brambilla, Gilberto; Richardson, David J
2008-09-15
We report the use of a sub-wavelength optical wire (SOW) with a specifically designed transition region as an efficient tool to filter higher-order modes in multimode waveguides. Higher-order modes are effectively suppressed by controlling the transition taper profile and the diameter of the sub-wavelength optical wire. As a practical example, single-mode operation of a standard telecom optical fiber over a broad spectral window (400 approximately 1700 nm) was demonstrated with a 1microm SOW. The ability to obtain robust and stable single-mode operation over a very broad range of wavelengths offers new possibilities for mode control within fiber devices and is relevant to a range of application sectors including high performance fiber lasers, sensors, photolithography, and optical coherence tomography systems.
A MULTI-WAVELENGTH 3D MODEL OF BD+30°3639
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M. J.; Kastner, Joel H.
2016-10-01
We present a 3D multi-wavelength reconstruction of BD+30°3639, one of the best-studied planetary nebulae in the solar neighborhood. BD+30°3639, which hosts a [WR]-type central star, has been imaged at wavelength regimes that span the electromagnetic spectrum, from radio to X-rays. We have used the astrophysical modeling software SHAPE to construct a 3D morpho-kinematic model of BD+30°3639. This reconstruction represents the most complete 3D model of a PN to date from the standpoint of the incorporation of multi-wavelength data. Based on previously published kinematic data in optical emission lines and in lines of CO (radio) and H{sub 2} (near-IR), we weremore » able to reconstruct BD+30's basic velocity components assuming a set of homologous velocity expansion laws combined with collimated flows along the major axis of the nebula. We confirm that the CO “bullets” in the PN lie along an axis that is slightly misaligned with respect to the major axis of the optical nebula, and that these bullets are likely responsible for the disrupted structures of the ionized and H{sub 2}-emitting shells within BD+30. Given the relative geometries and thus dynamical ages of BD+30's main structural components, it is furthermore possible that the same jets that ejected the CO bullets are responsible for the generation of the X-ray-emitting hot bubble within the PN. Comparison of alternative viewing geometries for our 3D reconstruction of BD+30°3639 with imagery of NGC 40 and NGC 6720 suggests a common evolutionary path for these nebulae.« less
Qiao, X-H; Zhang, J-J; Gao, F; Li, F; Bai, M; Du, L-F; Xing, J-F
2017-06-01
The purpose of this study was to explore the value of two-dimensional ShearWave ™ Elastography (2D-SWE) on quantitatively evaluating the change of the content of collagen fibres in penis. Twenty male Sprague Dawley rats were divided into the pre-sexual maturity group (Group 1) and the sexual decline group (Group 2) according to age. The ultrafast ultrasound device Aixplorer ® (SuperSonic Imagine, Aix-en-Provence, France) was used for 2D-SWE imaging of penis, and the measurement index was shear wave stiffness (SWS). The immunohistochemistry was used to analyse the content of collagen fibres in penis, and the measurement index was positive area percentage (PAP). The differences of SWS between the two groups and PAP between the two groups were analysed. SWS of Group 1 and Group 2 was 10.18 ± 1.09 and 8.02 ± 1.34 kPa, and SWS of Group 2 was significantly lower than Group 1 (p < .01). PAP of Group 1 and Group 2 was 4.83 ± 3.61% and 16.41 ± 10.02%, and PAP of Group 2 was significantly higher than Group 1 (p < .01). Our results indicate that when the content of collagen fibres changes, SWS of penis measured with 2D-SWE would change significantly as well. Two-dimensional SWE can be used to quantitatively evaluate the change of the content of collagen fibres in penis. © 2016 Blackwell Verlag GmbH.
Shaw, Fu-Zen; Lee, Su-Ying; Chiu, Ted H
2006-03-01
To clarify the cortical evoked responses in the primary somatosensory cortex of the rat under states of waking, slow-wave sleep (SWS), paradoxical sleep (PS), and spike-wave discharges (SWDs), which are associated with absence seizure. Somatosensory evoked potentials (SEPs) in response to single- and paired-pulse stimulations under waking, SWS, PS, and SWDs were compared. SEPs to a single-pulse stimulus with regard to cortical spikes of sleep spindles and SWDs were also evaluated. Twenty Long Evans rats. Single- and paired-pulse innocuous electrical stimulations were applied to the tail of rats with chronically implanted electrodes in the primary somatosensory cortex and neck muscle under waking, SWS, PS, and SWDs. SEPs displayed distinct patterns under waking/PS and SWS/SWDs. The short-latency P1-N1 wave of the SEP was severely impeded during SWDs but not in other states. Reduction of the P1-N1 magnitude to the second stimulus of the paired-pulse stimulus for interstimulus intervals of < or = 300 milliseconds appeared in waking and PS states, but the decrease occurred only at particular interstimulus intervals under SWS. Interestingly, augmentation was found under SWDs. Moreover, cyclic augmentation of the P1-N1 magnitude was associated with spindle spikes, but cyclic reduction was observed with SWD spikes. Changes in SEPs are not only behavior dependent, but also phase locked onto ongoing brain activity. Distinct short-term plasticity of SEPs during sleep spindles or SWDs may merit further studies for seizure control and tactile information processing.
Sleep stage 2: an electroencephalographic, autonomic, and hormonal duality.
Brandenberger, Gabrielle; Ehrhart, Jean; Buchheit, Martin
2005-12-01
It is generally thought that the electroencephalogram of sleep stage 2 is not uniform, depending on whether sleep stage 2 evolves toward slow-wave sleep (SWS) or toward rapid eye movement (REM) sleep. We provide here further evidence of the duality of sleep stage 2 on the basis of its autonomic and hormonal background. Fourteen healthy men (aged 21-29 years) underwent 1 experimental night. Sleep and cardiac recordings were taken from 11:00 PM to 7:00 AM. Blood was sampled continuously over 10-minute periods. Autonomic activity, as inferred from heart rate variability analysis and hormone profiles, were examined with regard to the normalized hypnograms. We found a dual activity of the autonomic nervous system during sleep stage 2, with a progressive decrease in heart rate variability sympathetic indexes during the transition toward SWS contrasting with high and rather stable levels during sleep stage 2 that evolve toward REM sleep. Also, different profiles were observed in 2 major hormone systems, the activating adrenocorticotropic system and the renin-angiotensin system. Cortisol, in its active period of circadian secretion, was stable during sleep stage 2 preceding SWS and increased significantly when sleep stage 2 preceded REM sleep. For plasma renin activity, sleep stage 2 played a transitional role, initiating increasing levels that peaked during SWS and decreasing levels that reached a nadir during REM sleep. These results indicate an autonomic and hormonal duality of sleep stage 2 that is characterized by a "quiet" period preparing SWS and an "active" period preceding REM sleep. These differences may confer a fundamental role on this sleep stage in ultradian sleep regulation.
Thompson, Aaron; House, Ron; Manno, Michael
2008-05-01
Finger plethysmography and thermometry are objective measures used to assess the vascular aspect of hand-arm vibration syndrome (HAVS). Research to date shows poor correlation between these tests and Stockholm Workshop Scale (SWS) vascular stage. Clinicians, researchers and compensation boards require objective means to diagnose and quantify HAVS. To define the specificity and sensitivity of thermometry and plethysmography using the SWS as the reference criterion. A secondary goal was to consider cut points for the tests optimizing sensitivity and specificity. A cross-sectional analysis was conducted on HAVS patients seen at an occupational medicine specialty clinic. Plethysmography and thermometry were analyzed using SWS vascular stage as the outcome variable. Logistic regression controlled for age, smoking and time since last vibration exposure and use of vasoactive medications. The sensitivity and specificity of the combined tests were calculated using varying cut points. A total of 139 patients consented to participate in the study. Plethysmography stage 1 or greater showed the highest sensitivity (sensitivity 94% and specificity 15%). Specificity was optimized combining plethysmography stage 3 and thermometry stage 3 (specificity 98% and sensitivity 23%). Maximal diagnostic accuracy was achieved by plethysmography alone setting the criteria for a positive test as being stage 1 or greater (70%). Neither plethysmography nor thermometry either alone or in combination demonstrated sufficient sensitivity and specificity to serve as an objective correlate for SWS vascular stage. All combinations of plethysmography and thermometry showed a lower specificity than sensitivity indicating that the SWS may be less sensitive in detecting vascular pathology than the objective tests.
Control of acoustic absorption in one-dimensional scattering by resonant scatterers
NASA Astrophysics Data System (ADS)
Merkel, A.; Theocharis, G.; Richoux, O.; Romero-García, V.; Pagneux, V.
2015-12-01
We experimentally report perfect acoustic absorption through the interplay of the inherent losses and transparent modes with high Q factor. These modes are generated in a two-port, one-dimensional waveguide, which is side-loaded by isolated resonators of moderate Q factor. In symmetric structures, we show that in the presence of small inherent losses, these modes lead to coherent perfect absorption associated with one-sided absorption slightly larger than 0.5. In asymmetric structures, near perfect one-sided absorption is possible (96%) with a deep sub-wavelength sample ( λ / 28 , where λ is the wavelength of the sound wave in the air). The control of strong absorption by the proper tuning of the radiation leakage of few resonators with weak losses will open possibilities in various wave-control devices.
Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn
2015-01-12
Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.
Kim, Tae-Joon; Lee, Byeong Uk; Sunwoo, Jun-Sang; Byun, Jung-Ick; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Kim, Manho; Lim, Jong-Min; Lee, Eunil; Lee, Sang Kun; Jung, Ki-Young
2017-01-01
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003-0.02 Hz), neurogenic VLFOs (0.02-0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04-0.15 Hz), and total LFOs (0.003-0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.
Photochemical preparation of sub-wavelength heterogeneous laser-induced periodic surface structures.
Kim, Hee-Cheol; Reinhardt, Hendrik; Hillebrecht, Pierre; Hampp, Norbert A
2012-04-17
Laser-induced periodic surface structures (LIPSS) are a phenomenon caused by interaction of light with solid surfaces. We present a photochemical concept which uses LIPSS-related light intensity patterns for the generation of heterogeneous nanostructures. The process facilitates arbitrary combinations of substrate and LIPSS-pattern materials. An efficient method for the generation of organometallic hybrid-nanowire arrays on porous anodic aluminum oxide is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Studies of snowpack properties by passive microwave radiometry
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.
1979-01-01
Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub B). The T sub B varies with snow grain and crystal sizes, liquid water content, and snowpack temperature. The T sub B of the 0.8 cm wavelength channel was found to decrease more so with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub B for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground.
Ye, Xin; Shao, Ting; Sun, Laixi; Wu, Jingjun; Wang, Fengrui; He, Junhui; Jiang, Xiaodong; Wu, Wei-Dong; Zheng, Wanguo
2018-04-25
In this work, antireflective and superhydrophilic subwavelength nanostructured fused silica surfaces have been created by one-step, self-masking reactive ion etching (RIE). Bare fused silica substrates with no mask were placed in a RIE vacuum chamber, and then nanoscale fluorocarbon masks and subwavelength nanostructures (SWSs) automatically formed on these substrate after the appropriate RIE plasma process. The mechanism of plasma-induced self-masking SWS has been proposed in this paper. Plasma parameter effects on the morphology of SWS have been investigated to achieve perfect nanocone-like SWS for excellent antireflection, including process time, reactive gas, and pressure of the chamber. Optical properties, i.e., antireflection and optical scattering, were simulated by the finite difference time domain (FDTD) method. Calculated data agree well with the experiment results. The optimized SWS show ultrabroadband antireflective property (up to 99% from 500 to 1360 nm). An excellent improvement of transmission was achieved for the deep-ultraviolet (DUV) range. The proposed low-cost, highly efficient, and maskless method was applied to achieve ultrabroadband antireflective and superhydrophilic SWSs on a 100 mm optical window, which promises great potential for applications in the automotive industry, goggles, and optical devices.
S-SAD phasing study of death receptor 6 and its solution conformation revealed by SAXS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ru, Heng; Graduate University of Chinese Academy of Sciences, Beijing 100 049; Zhao, Lixia
A comparative analysis of sulfur phasing of death receptor 6 (DR6) using data collected at wavelengths of 2.0 and 2.7 Å is presented. SAXS analysis of unliganded DR6 defines a dimer as the minimum physical unit in solution. A subset of tumour necrosis factor receptor (TNFR) superfamily members contain death domains in their cytoplasmic tails. Death receptor 6 (DR6) is one such member and can trigger apoptosis upon the binding of a ligand by its cysteine-rich domains (CRDs). The crystal structure of the ectodomain (amino acids 1–348) of human death receptor 6 (DR6) encompassing the CRD region was phased usingmore » the anomalous signal from S atoms. In order to explore the feasibility of S-SAD phasing at longer wavelengths (beyond 2.5 Å), a comparative study was performed on data collected at wavelengths of 2.0 and 2.7 Å. In spite of sub-optimal experimental conditions, the 2.7 Å wavelength used for data collection showed potential for S-SAD phasing. The results showed that the R{sub ano}/R{sub p.i.m.} ratio is a good indicator for monitoring the anomalous data quality when the anomalous signal is relatively strong, while d′′/sig(d′′) calculated by SHELXC is a more sensitive and stable indicator applicable for grading a wider range of anomalous data qualities. The use of the ‘parameter-space screening method’ for S-SAD phasing resulted in solutions for data sets that failed during manual attempts. SAXS measurements on the ectodomain suggested that a dimer defines the minimal physical unit of an unliganded DR6 molecule in solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucktooa, Prakash; Huvent, Isabelle; IFR 142, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59021 Lille CEDEX
2006-10-01
Sample preparation, crystallization and preliminary X-ray analysis are reported for two B. pertussis extracytoplasmic solute receptors. DctP6 and DctP7 are two Bordetella pertussis proteins which belong to the extracytoplasmic solute receptors (ESR) superfamily. ESRs are involved in the transport of substrates from the periplasm to the cytosol of Gram-negative bacteria. DctP6 and DctP7 have been crystallized and diffraction data were collected using a synchrotron-radiation source. DctP6 crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 108.39, b = 108.39, c = 63.09 Å, while selenomethionyl-derivatized DctP7 crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parametersmore » a = 64.87, b = 149.83, c = 170.65 Å. The three-dimensional structure of DctP7 will be determined by single-wavelength anomalous diffraction, while the DctP6 structure will be solved by molecular-replacement methods.« less
CuInGaSe{sub 2} nanoparticles by pulsed laser ablation in liquid medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendivil, M.I.; García, L.V.; Krishnan, B.
2015-12-15
Highlights: • CIGS nanocolloids were synthesized using PLAL technique. • Characterized their morphology, structure, composition and optical properties. • Morphologies were dependent on ablation wavelength and liquid medium. • Optical absorption and bandgap of these nanocolloids were tunable. - Abstract: Pulsed laser ablation in liquid medium (PLALM) is a nanofabrication technique to produce complex nanostructures. CuInGaSe{sub 2} (CIGS) is an alloy with applications in photovoltaic industry. In this work, we studied the effects of laser ablation wavelength, energy fluence and liquid medium on the properties of the CIGS nanoparticles synthesized by PLALM. The nanoparticles obtained were analyzed by transmission electronmore » microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and UV–vis absorption spectroscopy. XPS results confirmed the chemical states and composition of the ablated products. TEM analysis showed different morphologies for the nanomaterials obtained in different liquid media and ablation wavelengths. The optical properties for these CIGS nanocolloids were analyzed using UV–vis absorption spectroscopy. The results demonstrated the use of PLALM as a useful synthesis technique for nanoparticles of quaternary photovoltaic materials.« less
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
Metal oxide semiconductors for dye degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, Sangeeta; Sarkar, Debasish, E-mail: dsarkar@nitrkl.ac.in
2015-12-15
Highlights: • Hydrothermal synthesis of monoclinic and hexagonal WO{sub 3} nanostructures. • Nanocuboid and nanofiber growth using different structure directing agents. • WO{sub 3}–ZnO nanocomposites for dye degradation under UV and visible light. • High photocatalytic efficiency is achieved by 10 wt% monoclinic WO{sub 3}. • WO{sub 3} assists to trap hole in UV and arrests electron in visible light irradiation. - Abstract: Organic contaminants are a growing threat to the environment that widely demands their degradation by high efficient photocatalysts. Thus, the proposed research work primely focuses on the efficient degradation of methyl orange using designed WO{sub 3}–ZnO photocatalystsmore » under both UV and visible light irradiation. Two different sets of WO{sub 3} nanostructures namely, monoclinic WO{sub 3} (m-WO{sub 3}) and hexagonal WO{sub 3} (h-WO{sub 3}) synthesizes in presence of a different structure directing agents. A specific dispersion technique allows the intimate contact of as-synthesized WO{sub 3} and ultra-violet active commercial ZnO photocatalyst in different weight variations. ZnO nanocrystal in presence of an optimum 10 wt% m-WO{sub 3} shows a high degree of photocatalytic activity under both UV and visible light irradiation compared to counterpart h-WO{sub 3}. Symmetrical monoclinic WO{sub 3} assists to trap hole in UV, but electron arresting mechanism predominates in visible irradiation. Coupling of monoclinic nanocuboid WO{sub 3} with ZnO proves to be a promising photocatalyst in both wavelengths.« less
Recent Developments in Quantum-Well Infrared Photodetectors
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, K. M. S. V.
1995-01-01
Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.
Sensitivity of blackbody effective emissivity to wavelength and temperature: By genetic algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ejigu, E. K.; Liedberg, H. G.
A variable-temperature blackbody (VTBB) is used to calibrate an infrared radiation thermometer (pyrometer). The effective emissivity (ε{sub eff}) of a VTBB is dependent on temperature and wavelength other than the geometry of the VTBB. In the calibration process the effective emissivity is often assumed to be constant within the wavelength and temperature range. There are practical situations where the sensitivity of the effective emissivity needs to be known and correction has to be applied. We present a method using a genetic algorithm to investigate the sensitivity of the effective emissivity to wavelength and temperature variation. Two matlab® programs are generated:more » the first to model the radiance temperature calculation and the second to connect the model to the genetic algorithm optimization toolbox. The effective emissivity parameter is taken as a chromosome and optimized at each wavelength and temperature point. The difference between the contact temperature (reading from a platinum resistance thermometer or liquid in glass thermometer) and radiance temperature (calculated from the ε{sub eff} values) is used as an objective function where merit values are calculated and best fit ε{sub eff} values selected. The best fit ε{sub eff} values obtained as a solution show how sensitive they are to temperature and wavelength parameter variation. Uncertainty components that arise from wavelength and temperature variation are determined based on the sensitivity analysis. Numerical examples are considered for illustration.« less
NASA Astrophysics Data System (ADS)
Liu, Kelly H.; Elsheikh, Ahmed; Lemnifi, Awad; Purevsuren, Uranbaigal; Ray, Melissa; Refayee, Hesham; Yang, Bin B.; Yu, Youqiang; Gao, Stephen S.
2014-05-01
We present a shear wave splitting (SWS) database for the western and central United States as part of a lasting effort to build a uniform SWS database for the entire North America. The SWS measurements were obtained by minimizing the energy on the transverse component of the PKS, SKKS, and SKS phases. Each of the individual measurements was visually checked to ensure quality. This version of the database contains 16,105 pairs of splitting parameters. The data used to generate the parameters were recorded by 1774 digital broadband seismic stations over the period of 1989-2012, and represented all the available data from both permanent and portable seismic networks archived at the Incorporated Research Institutions for Seismology Data Management Center in the area of 26.00°N to 50.00°N and 125.00°W to 90.00°W. About 10,000 pairs of the measurements were from the 1092 USArray Transportable Array stations. The results show that approximately 2/3 of the fast orientations are within 30° from the absolute plate motion (APM) direction of the North American plate, and most of the largest departures with the APM are located along the eastern boundary of the western US orogenic zone and in the central Great Basins. The splitting times observed in the western US are larger than, and those in the central US are comparable with the global average of 1.0 s. The uniform database has an unprecedented spatial coverage and can be used for various investigations of the structure and dynamics of the Earth.
Wang, Shang; Li, Jiasong; Manapuram, Ravi Kiran; Menodiado, Floredes M; Ingram, Davis R; Twa, Michael D; Lazar, Alexander J; Lev, Dina C; Pollock, Raphael E; Larin, Kirill V
2012-12-15
We report on an optical noncontact method for the detection of soft-tissue tumors based on the measurement of their elasticity. A focused air-puff system is used to excite surface waves (SWs) on soft tissues with transient static pressure. A high-speed phase-sensitive optical coherence tomography system is used to measure the SWs as they propagate from the point of excitation. To evaluate the stiffness of soft tissues, the Young's modulus is quantified based on the group velocity of SWs. Pilot experiments were performed on ex vivo human myxoma and normal fat. Results demonstrate the feasibility of the proposed method to measure elasticity and differentiate soft-tissue tumors from normal tissues.
Bessel beam transformation in c-cuts of uniaxial crystals by varying the source wavelength
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranin, V. D.
Transformation of Bessel beam of a zero order to Bessel beam of the second order in c-cut of CaCO{sub 3} crystal is experimentally investigated. Possibility of output beam control at changing of wavelength and using of a diffraction axicon is shown. Full transformation of beams at changing of wavelength Δλ=1.5 nanometers is received at initial wavelength λ=637.5 nanometers for a crystal of CaCO{sub 3} with 15 mm long and a diffraction axicon with period of 2 microns. The theoretical value of necessary wavelength changing is Δλ=1.7 nanometers that is according with experimental results.
Evaluation of spectral channels and wavelength regions for separability of agricultural cover types
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Kumar, R.
1977-01-01
The author has identified the following significant results. Multispectral scanner data in twelve spectral channels in the wavelength range of 0.4 to 11.7 microns acquired in the middle of July for three flightlines were analyzed by applying automatic pattern recognition techniques. The same analysis was performed for the data acquired in mid August, over the same three flightlines, to investigate the effect of time on the results. The effect of deletion of each spectral channel, as well as each wavelength region on P sub c, is given. Values of P sub c for all possible combinations of wavelength regions in the subsets of one to twelve spectral channels are also given. The overall values of P sub c were found to be greater for the data of mid August than the data from mid July.
Wavelength-agile high-power sources via four-wave mixing in higher-order fiber modes.
Demas, J; Prabhakar, G; He, T; Ramachandran, S
2017-04-03
Frequency doubling of conventional fiber lasers in the near-infrared remains the most promising method for generating integrated high-peak-power lasers in the visible, while maintaining the benefits of a fiber geometry; but since the shortest wavelength power-scalable fiber laser sources are currently restricted to either the 10XX nm or 15XX nm wavelength ranges, accessing colors other than green or red remains a challenge with this schematic. Four-wave mixing using higher-order fiber modes allows for control of dispersion while maintaining large effective areas, thus enabling a power-scalable method to extend the bandwidth of near-infrared fiber lasers, and in turn, the bandwidth of potential high-power sources in the visible. Here, two parametric sources using the LP0,7 and LP0,6 modes of two step-index multi-mode fibers are presented. The output wavelengths for the sources are 880, 974, 1173, and 1347 nm with peak powers of 10.0, 16.2, 14.7, and 6.4 kW respectively, and ~300-ps pulse durations. The efficiencies of the sources are analyzed, along with a discussion of wavelength tuning and further power scaling, representing an advance in increasing the bandwidth of near-infrared lasers as a step towards high-peak-power sources at wavelengths across the visible spectrum.
NASA Astrophysics Data System (ADS)
Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.
2016-06-01
Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.
Nano-Gap Embedded Plasmonic Gratings for Surface Plasmon Enhanced Fluorescence
NASA Astrophysics Data System (ADS)
Bhatnagar, Kunal; Bok, Sangho; Korampally, Venumadhav; Gangopadhyay, Shubhra
2012-02-01
Plasmonic nanostructures have been extensively used in the past few decades for applications in sub-wavelength optics, data storage, optoelectronic circuits, microscopy and bio-photonics. The enhanced electromagnetic field produced at the metal/dielectric interface by the excitation of surface plasmons via incident radiation can be used for signal enhancement in fluorescence and surface enhanced Raman scattering studies. Novel plasmonic structures on the sub wavelength scale have been shown to provide very efficient and extreme light concentration at the nano-scale. The enhanced electric field produced within a few hundred nanometers of these structures can be used to excite fluorophores in the surrounding environment. Fluorescence based bio-detection and bio-imaging are two of the most important tools in the life sciences. Improving the qualities and capabilities of fluorescence based detectors and imaging equipment has been a big challenge to the industry manufacturers. We report the novel fabrication of nano-gap embedded periodic grating substrates on the nanoscale using micro-contact printing and polymethylsilsesquioxane (PMSSQ) polymer. Fluorescence enhancement of up to 118 times was observed with these silver nanostructures in conjugation with Rhodamine-590 fluorescent dye. These substrates are ideal candidates for low-level fluorescence detection and single molecule imaging.
Visual Pigments, Ocular Filters and the Evolution of Snake Vision.
Simões, Bruno F; Sampaio, Filipa L; Douglas, Ronald H; Kodandaramaiah, Ullasa; Casewell, Nicholas R; Harrison, Robert A; Hart, Nathan S; Partridge, Julian C; Hunt, David M; Gower, David J
2016-10-01
Much of what is known about the molecular evolution of vertebrate vision comes from studies of mammals, birds and fish. Reptiles (especially snakes) have barely been sampled in previous studies despite their exceptional diversity of retinal photoreceptor complements. Here, we analyze opsin gene sequences and ocular media transmission for up to 69 species to investigate snake visual evolution. Most snakes express three visual opsin genes (rh1, sws1, and lws). These opsin genes (especially rh1 and sws1) have undergone much evolutionary change, including modifications of amino acid residues at sites of known importance for spectral tuning, with several tuning site combinations unknown elsewhere among vertebrates. These changes are particularly common among dipsadine and colubrine "higher" snakes. All three opsin genes are inferred to be under purifying selection, though dN/dS varies with respect to some lineages, ecologies, and retinal anatomy. Positive selection was inferred at multiple sites in all three opsins, these being concentrated in transmembrane domains and thus likely to have a substantial effect on spectral tuning and other aspects of opsin function. Snake lenses vary substantially in their spectral transmission. Snakes active at night and some of those active by day have very transmissive lenses, whereas some primarily diurnal species cut out shorter wavelengths (including UVA). In terms of retinal anatomy, lens transmission, visual pigment spectral tuning and opsin gene evolution the visual system of snakes is exceptionally diverse compared with all other extant tetrapod orders. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Euarchontan Opsin Variation Brings New Focus to Primate Origins.
Melin, Amanda D; Wells, Konstans; Moritz, Gillian L; Kistler, Logan; Orkin, Joseph D; Timm, Robert M; Bernard, Henry; Lakim, Maklarin B; Perry, George H; Kawamura, Shoji; Dominy, Nathaniel J
2016-04-01
Debate on the adaptive origins of primates has long focused on the functional ecology of the primate visual system. For example, it is hypothesized that variable expression of short- (SWS1) and middle-to-long-wavelength sensitive (M/LWS) opsins, which confer color vision, can be used to infer ancestral activity patterns and therefore selective ecological pressures. A problem with this approach is that opsin gene variation is incompletely known in the grandorder Euarchonta, that is, the orders Scandentia (treeshrews), Dermoptera (colugos), and Primates. The ancestral state of primate color vision is therefore uncertain. Here, we report on the genes (OPN1SW and OPN1LW) that encode SWS1 and M/LWS opsins in seven species of treeshrew, including the sole nocturnal scandentian Ptilocercus lowii. In addition, we examined the opsin genes of the Central American woolly opossum (Caluromys derbianus), an enduring ecological analogue in the debate on primate origins. Our results indicate: 1) retention of ultraviolet (UV) visual sensitivity in C. derbianus and a shift from UV to blue spectral sensitivities at the base of Euarchonta; 2) ancient pseudogenization of OPN1SW in the ancestors of P. lowii, but a signature of purifying selection in those of C. derbianus; and, 3) the absence of OPN1LW polymorphism among diurnal treeshrews. These findings suggest functional variation in the color vision of nocturnal mammals and a distinctive visual ecology of early primates, perhaps one that demanded greater spatial resolution under light levels that could support cone-mediated color discrimination. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Campeau, Laurence; Blouin, Karine; Leclerc, Pascale; Alary, Michel; Morissette, Carole; Blanchette, Caty; Serhir, Bouchra; Roy, Elise
2018-01-31
The objectives of this study were: (1) to examine the correlates of HIV positivity among participants who injected drugs and engaged in sex work (PWID-SWs) in the SurvUDI network between 2004 and 2016, after stratification by sex, and (2) to compare these correlates with those of sexually active participants who did not engage in sex work (PWID non-SWs). This biobehavioural survey is an open cohort of services where participants who had injected in the past 6 months were recruited mainly through harm reduction programmes in Eastern Central Canada. Data from 5476 participants (9223 visits in total; 785 not included in multivariate analyses due to missing values) were included. Participants completed an interviewer-administered questionnaire and provided saliva samples for anti-HIV antibody testing. Generalised estimating equations taking into account multiple participations were used. Baseline HIV prevalence was higher among SWs compared with non-SWs (women: 13.0% vs 7.7%; P<0.001, and men: 17.4% vs 10.8%; P<0.001). PWID-SWs were particularly susceptible to HIV infection as a result of higher levels of vulnerability factors and injection risk behaviours. They also presented different risk-taking patterns than their non-SWs counterparts, as shown by differences in correlates of HIV positivity. Additionally, the importance of sex work for HIV infection varies according to gender, as suggested by a large proportion of injection risk behaviours associated with HIV among women and, conversely, a stronger association between sexual behaviours and HIV positivity observed among men. These results suggest that sex work has an impact on the risk of HIV acquisition and that risk behaviours vary according to gender. Public health practitioners should take those specificities into account when designing HIV prevention interventions aimed at PWIDs. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Smidt, Dorte; Torpet, Lis Andersen; Nauntofte, Birgitte; Heegaard, Karen Margrethe; Pedersen, Anne Marie Lynge
2010-10-01
To investigate the associations between age, gender, systemic diseases, medications and labial and whole salivary flow rates in older people. Unstimulated labial (LS) and unstimulated (UWS) and chewing-stimulated (SWS) whole salivary flow rates were measured in 389 randomly selected community-dwelling Danish women and 279 men aged 65-97 years. Systemic diseases, medications (coded according to the Anatomical Therapeutic Chemical (ATC) Classification System), tobacco and alcohol consumption were registered. The number of diseases and medications was higher and UWS lower in the older age groups. On average, women were slightly older, had more diseases, higher medication intake and lower UWS, SWS and LS than men. High number of diseases and medications was associated with low UWS, SWS and LS. In the healthy (14%) and nonmedicated (19%) participants, flow rates were not associated with age and gender, apart from SWS being lower in nonmedicated women. Low UWS were associated with psychiatric and respiratory disorders, type 2 diabetes and intake of psycholeptics, psychoanaleptics (especially SRRIs), respiratory agents, oral antidiabetics (particularly sulfonylureas), magnesium-hydroxide, cardiac agents, quinine, thiazides, calcium channel blockers, statins, urinary antispasmodics, glucosamine, NSAIDs, opioids and ophthalmologicals. SWS were lower in participants with ophthalmological disorders using ophthalmologicals (especially antiglaucoma agents and miotics), but also in those taking antidepressants, cardiac agents (mostly digitalis glycosides) and calcium channel blockers. Cardiovascular diseases and intake of anti-thrombotics (mainly low dose aspirins), calcium channel blockers and oral antidiabetics were associated with low LS. In older people, low salivary flow rates are associated with specific and high number of diseases and medications, but neither with age and gender per se nor with tobacco and alcohol consumption. Low UWS are associated with more diseases and medications than SWS and LS, which were primarily associated with cardiovascular diseases and medications including preventive agents such as low-dose aspirins and statins. New insights into medications and their association with salivary gland function were achieved using the ATC classification system. © 2010 John Wiley & Sons A/S.
Dijk, D-J; Stanley, N; Lundahl, J; Groeger, J A; Legters, A; Trap Huusom, A K; Deacon, S
2012-08-01
Slow wave sleep (SWS) has been reported to correlate with sleep maintenance, but whether pharmacological enhancement of SWS also leads to improved sleep maintenance is not known. Here we evaluate the time-course of the effects of gaboxadol, an extra-synaptic gamma-aminobutyric acid (GABA) agonist, on SWS, sleep maintenance, and other sleep measures in a traffic noise model of transient insomnia. After a placebo run-in, 101 healthy subjects (20-78 y) were randomized to gaboxadol (n = 50; 15 mg in subjects <65 y and 10 mg in subjects ≥65 y) or placebo (n = 51) for 7 nights (N1-N7). The model caused some disruption of sleep initiation and maintenance, with greatest effects on N1. Compared with placebo, gaboxadol increased SWS and slow wave activity throughout N1 to N7 (p < 0.05). Gaboxadol reduced latency to persistent sleep overall (N1-N7) by 4.5 min and on N1 by 11 min (both p < 0.05). Gaboxadol increased total sleep time (TST) overall by 16 min (p < 0.001) and on N1 by 38 min (p < 0.0001). Under gaboxadol, wakefulness after sleep onset was reduced by 11 min overall (p < 0.01) and by 29 min on N1 (p < 0.0001), and poly-somnographic awakenings were reduced on N1 (p < 0.05). Gaboxadol reduced self-reported sleep onset latency overall and on N1 (both p < 0.05) and increased self-reported TST overall (p < 0.05) and on N1 (p < 0.01). Subjective sleep quality improved overall (p < 0.01) and on N1 (p < 0.0001). Increases in SWS correlated with objective and subjective measures of sleep maintenance and subjective sleep quality under placebo and gaboxadol (p < 0.05). Gaboxadol enhanced SWS and reduced the disruptive effects of noise on sleep initiation and maintenance.
Madsen, AS; Laing, GL; Bruce, JL
2016-01-01
Introduction The aim of this comparative study of gunshot wounds (GSWs) and stab wounds (SWs) to the neck was to quantify the impact of the mechanism of injury on the outcome and management of penetrating neck injury (PNI). Methods A prospective trauma registry was interrogated retrospectively. Data were analysed pertaining to demographics and injury severity score (ISS), physiology on presentation, anatomical site of wounds and injuries sustained, investigations, management, outcome and complications. Results There were 452 SW and 58 GSW cases over the 46 months of the study. Patients with GSWs were more likely to have extracervical injuries than those with SWs (69% vs 63%). The incidence of a ‘significant cervical injury’ was almost twice as high in the GSW cohort (55% vs 31%). For patients with transcervical GSWs, this increased to 80%. The mean ISS was 17 for GSW and 11 for SW patients. Those in the GSW cohort presented with threatened airways and a requirement for an emergency airway three times as often as patients with SWs (24% vs 7% and 14% vs 5% respectively). The incidence among GSW and SW patients respectively was 5% and 6% for airway injuries, 12% and 8% for injuries to the digestive tract, 21% and 16% for vascular injuries, 59% and 10% for associated cervical injuries, 36% and 14% for maxillofacial injuries, 16% and 9% for injuries to the head, and 35% and 45% for injuries to the chest. In the GSW group, 91% underwent computed tomography angiography (CTA), with 23% of these being positive for a vascular injury. For SWs, 74% of patients underwent CTA, with 17% positive for a vascular injury. Slightly more patients with GSWs required operative intervention than those with SWs (29% vs 26%). Conclusions Patients with GSWs to the neck have a worse outcome than those with injuries secondary to SWs. However, the proportion of neck injuries actually requiring direct surgical intervention is not increased and most cases with PNI secondary to GSWs can be managed conservatively with a good outcome. Imaging should be performed for all GSWs to the neck. PMID:27269237
Madsen, A S; Laing, G L; Bruce, J L; Clarke, D L
2016-09-01
Introduction The aim of this comparative study of gunshot wounds (GSWs) and stab wounds (SWs) to the neck was to quantify the impact of the mechanism of injury on the outcome and management of penetrating neck injury (PNI). Methods A prospective trauma registry was interrogated retrospectively. Data were analysed pertaining to demographics and injury severity score (ISS), physiology on presentation, anatomical site of wounds and injuries sustained, investigations, management, outcome and complications. Results There were 452 SW and 58 GSW cases over the 46 months of the study. Patients with GSWs were more likely to have extracervical injuries than those with SWs (69% vs 63%). The incidence of a 'significant cervical injury' was almost twice as high in the GSW cohort (55% vs 31%). For patients with transcervical GSWs, this increased to 80%. The mean ISS was 17 for GSW and 11 for SW patients. Those in the GSW cohort presented with threatened airways and a requirement for an emergency airway three times as often as patients with SWs (24% vs 7% and 14% vs 5% respectively). The incidence among GSW and SW patients respectively was 5% and 6% for airway injuries, 12% and 8% for injuries to the digestive tract, 21% and 16% for vascular injuries, 59% and 10% for associated cervical injuries, 36% and 14% for maxillofacial injuries, 16% and 9% for injuries to the head, and 35% and 45% for injuries to the chest. In the GSW group, 91% underwent computed tomography angiography (CTA), with 23% of these being positive for a vascular injury. For SWs, 74% of patients underwent CTA, with 17% positive for a vascular injury. Slightly more patients with GSWs required operative intervention than those with SWs (29% vs 26%). Conclusions Patients with GSWs to the neck have a worse outcome than those with injuries secondary to SWs. However, the proportion of neck injuries actually requiring direct surgical intervention is not increased and most cases with PNI secondary to GSWs can be managed conservatively with a good outcome. Imaging should be performed for all GSWs to the neck.
[Inconsistent condom use among sexual workers in Ecuador: results from a behavior survey].
Gutiérrez, Juan Pablo; Molina-Yépez, Diana; Samuels, Fiona; Bertozzi, Stefano Michele
2006-01-01
Whilst existing data suggests that the HIV epidemic in Ecuador is concentrated amongst men who have sex with men (MSM), there is very little available information on the situation of key populations, i.e. those most at risk of HIV infection and/or transmitting the infection. In particular, there is very little known about sex workers (SWs), their rate of condom use and other behaviors and characteristics with respect to the risk of acquiring sexually transmitted infections (STIs). This study presents findings from a survey carried out with SWs in eight cities in Ecuador. Using a cross-sectional design, a questionnaire focusing on behaviours, attitudes and socio-economic and demographic characteristics was administered to SWs in eight cities in Ecuador. These eight cities together account for the majority of the population in the country, and they were also identified as the locations with high reported levels of HIV. Information from a total of 2867 SWs was obtained, the majority were captured in their workplaces. Most of SWs interviewed carry out their activities in closed settings dedicated to sex work (i.e. not in the street). The average age of respondents was 28 (95%CI 27-29), and around half of them live with a male partner (married or not). The rate of condom use with the last client was 88% (82% consistently with the last three), whilst with regular partners it was 6%. A high index of life-skills, high socio-economic status and having an official document that allows them to work, were positively associated with condom use with clients (PR [CI95%] 1.40 [1.40-1.40], 1.37 [1.36-1.37], y 7.26 [6.87-7.46], respectively). Whilst condom use with clients amongst Ecuadorian SWs is high, this diminishes if one analyzes consistent condom use and is notably low with respect to regular partners. Condom use appears to be related to variables that can be linked to interventions, e.g. life-skills and official permission to carry out sex work. It is, therefore, important to tailor interventions for this population so they maximize the likelihood to increase consistent condom use.
Groch, S; Zinke, K; Wilhelm, I; Born, J
2015-07-01
Sleep benefits the consolidation of emotional memories, and this influence is commonly attributed to the rapid eye movement (REM) stage of sleep. However, the contributions of sleep stages to memory for an emotional episode may differ for the event per se (i.e., item memory), and the context in which it occurred (source memory). Here, we examined the effects of slow wave sleep (SWS) and REM sleep on the consolidation of emotionally negative and neutral item (picture recognition) and source memory (recall of picture-location and picture-frame color association) in humans. In Study 1, the participants (n=18) learned 48 negative and 48 neutral pictures which were presented at specific locations and preceded by colored frames that had to be associated with the picture. In a within-subject design, learning was either followed by a 3-h early-night SWS-rich or by a late-night REM sleep-rich retention interval, then retrieval was tested. Only after REM-rich sleep, and not after SWS-rich sleep, was there a significant emotional enhancement, i.e., a significantly superior retention of emotional over neutral pictures. On the other hand, after SWS-rich sleep the retention of picture-frame color associations was better than after REM-rich sleep. However, this benefit was observed only for neutral pictures; and it was completely absent for the emotional pictures. To examine whether this absent benefit reflected a suppressive effect of emotionality on associations of minor task relevance, in Study 2 we manipulated the relevance of the picture-frame color association by combining it with information about monetary reward, following otherwise comparable procedures. Here, rewarded picture-frame color associations were equally well retained over SWS-rich early sleep no matter if the frames were associated with emotional or neutral pictures. Results are consistent with the view that REM sleep favors the emotional enhancement of item memory whereas SWS appears to contribute primarily to the consolidation of context-color information associated with the item. Copyright © 2014 Elsevier Inc. All rights reserved.
ESA switches its infrared space telescope off and will clean its orbit
NASA Astrophysics Data System (ADS)
1998-05-01
Controllers at the ESA ground station at Villafranca (Madrid, Spain) witnessed the definitive end for the telescope but they didn't have to press any 'red button' or the like. The instructions for the switch off had already been introduced into ISO's computer earlier. ISO's last month of life was used to gather as much technical data as possible. Various software and hardware systems that, due to the superb performance of the spacecraft, did not have to be used during the operational phase were subjected to detailed tests. Results from these tests will benefit future ESA missions, such as XMM and Integral, which use some of the same components, such as the Star Trackers guiding the spacecraft. Also, ISO's farewell included a further last gift for the astronomers. A few of the detectors in the Short Wavelength Spectrometer (SWS), one of the four instruments on-board the satellite, could still be used after exhaustion of the liquid helium. In anticipation of this opportunity, a special scientific programme has been prepared and was interleaved with the technology tests. Some 150 extra hours were used to measure nearly 300 stars at wavelengths between 2.4 and 4 microns enabling astronomers to make a detailed spectral classification. In fact, ISO continued to give scientific surprises to the very sad end. ISO's 'last light' observation - taken with the SWS instrument just before midnight on May 10 - was of emission lined from hydrogen in hot supergiant star (eta Canis Majoris). The preliminary results show that this star, supposed to be ordinary, is probably surrounded by a disk of matter. Commenting on the satellite switch off, ESA's Director of Science, Roger Bonnet, said "ISO has allowed us to gain the first clear view of the universe at infrared wavelengths. A great amount of work still awaits us to interpret all ISO's exciting discoveries. We will miss ISO, of course - new answers always bring new questions and the wish for yet more knowledge; that is why ESA is already working on one of ISO's successors, the Far Infrared and Submillimetre Space Telescope, FIRST. Footnote about ISO ISO was put into orbit in November 1995, by an Ariane 44P launcher at Europe's Spaceport at Kourou in French Guiana. As an unprecedented observatory for infrared astronomy, able to examine cool and hidden places in the Universe, ISO has successfully made more than 26,000 observations. A supply of liquid helium, used to cool the telescope and instruments close to the absolute zero of temperature, lasted more than 30% longer than expected, but ran out on 8 April 1998 (see ESA Press Information Note No.11-98 of 9 April).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, J. P.; Chakrabarty, S.; Mazzotti, F. J.
2011-03-10
Krelowski et al. have reported a weak, diffuse interstellar band (DIB) at 5069 A which appears to match in both mid-wavelength and width the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} gas-phase origin absorption band of HC{sub 4}H{sup +}. Here, we present laboratory rotational profiles at low temperatures which are then compared with the 5069 A DIB using {approx}0.1 and 0.3 A line widths based on a realistic line-of-sight interstellar velocity dispersion. Neither the band shape nor the wavelength of the maximum absorption match, which makes the association of the 5069 A DIB with HC{sub 4}H{sup +} unlikely. The magneticmore » dipole transition X {sup 2}{Pi}{sub g} {Omega} = 1/2{yields}X {sup 2}{Pi}{sub g} {Omega} = 3/2 within the ground electronic state which competes with collisional excitation is also considered. In addition, we present the laboratory gas-phase spectrum of the A {sup 2}{Pi}{sub u}-X {sup 2}{Pi}{sub g} transition of HC{sub 4}H{sup +} measured at 25 K in an ion trap and identify further absorption bands at shorter wavelengths for comparison with future DIB data.« less
Direct-patterned optical waveguides on amorphous silicon films
Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan
2005-08-02
An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.
Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave
Chen, Gang; Wu, Zhi-xiang; Yu, An-ping; Zhang, Zhi-hai; Wen, Zhong-quan; Zhang, Kun; Dai, Lu-ru; Jiang, Sen-lin; Li, Yu-yan; Chen, Li; Wang, Chang-tao; Luo, Xian-gang
2016-01-01
The generation of a sub-diffraction optical hollow ring is of great interest in various applications, such as optical microscopy, optical tweezers, and nanolithography. Azimuthally polarized light is a good candidate for creating an optical hollow ring structure. Various of methods have been proposed theoretically for generation of sub-wavelength hollow ring by focusing azimuthally polarized light, but without experimental demonstrations, especially for sub-diffraction focusing. Super-oscillation is a promising approach for shaping sub-diffraction optical focusing. In this paper, a planar sub-diffraction diffractive lens is proposed, which has an ultra-long focal length of 600 λ and small numerical aperture of 0.64. A sub-diffraction hollow ring is experimentally created by shaping an azimuthally polarized wave. The full-width-at-half-maximum of the hollow ring is 0.61 λ, which is smaller than the lens diffraction limit 0.78 λ, and the observed largest sidelobe intensity is only 10% of the peak intensity. PMID:27876885
Multi-stack InAs/InGaAs Sub-monolayer Quantum Dots Infrared Photodetectors
2013-01-01
013110 (2013) Demonstration of high performance bias-selectable dual- band short-/mid-wavelength infrared photodetectors based on type-II InAs/ GaSb ...been used for the growth of QD structures . These include the formation of self-assembled QD, for example, Stranski-Krastanov (SK) growth mode,8,9 atomic...confinement in SML-QD and the reduction in the amount of InAs used per layer of QD can help stack more layers in a 3-dimensional QD structure . Several
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balz, J.G.; Bernheim, R.A.; Gold, L.P.
1987-01-01
Multiphoton ionization spectra of /sup 7/Li/sub 2/, /sup 6/Li/sub 2/, and /sup 7/Li/sup 6/Li vapors have been measured in the 570--650 nm region using a single, low resolution, multimode cw dye laser. A number of wavelengths provide selective multiphoton ionization of one isotopic species demonstrating the possibility of efficient laser-driven isotopic separation in lithium in this wavelength region.
NASA Astrophysics Data System (ADS)
Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul
2015-10-01
The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.
Visual system evolution and the nature of the ancestral snake.
Simões, B F; Sampaio, F L; Jared, C; Antoniazzi, M M; Loew, E R; Bowmaker, J K; Rodriguez, A; Hart, N S; Hunt, D M; Partridge, J C; Gower, D J
2015-07-01
The dominant hypothesis for the evolutionary origin of snakes from 'lizards' (non-snake squamates) is that stem snakes acquired many snake features while passing through a profound burrowing (fossorial) phase. To investigate this, we examined the visual pigments and their encoding opsin genes in a range of squamate reptiles, focusing on fossorial lizards and snakes. We sequenced opsin transcripts isolated from retinal cDNA and used microspectrophotometry to measure directly the spectral absorbance of the photoreceptor visual pigments in a subset of samples. In snakes, but not lizards, dedicated fossoriality (as in Scolecophidia and the alethinophidian Anilius scytale) corresponds with loss of all visual opsins other than RH1 (λmax 490-497 nm); all other snakes (including less dedicated burrowers) also have functional sws1 and lws opsin genes. In contrast, the retinas of all lizards sampled, even highly fossorial amphisbaenians with reduced eyes, express functional lws, sws1, sws2 and rh1 genes, and most also express rh2 (i.e. they express all five of the visual opsin genes present in the ancestral vertebrate). Our evidence of visual pigment complements suggests that the visual system of stem snakes was partly reduced, with two (RH2 and SWS2) of the ancestral vertebrate visual pigments being eliminated, but that this did not extend to the extreme additional loss of SWS1 and LWS that subsequently occurred (probably independently) in highly fossorial extant scolecophidians and A. scytale. We therefore consider it unlikely that the ancestral snake was as fossorial as extant scolecophidians, whether or not the latter are para- or monophyletic. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Weingarten, Jeremy A; Dubrovsky, Boris; Basner, Robert C; Redline, Susan; George, Liziamma; Lederer, David J
2016-08-01
To determine whether total sleep time (TST) and specific sleep stage duration are associated with bodily pain perception and whether sex, age, or subjective sleepiness modifies this relationship. Data from adults ages 39-90 y (n = 5,199) who took part in the Sleep Heart Health Study Exam 1 were analyzed. TST, rapid eye movement (REM) sleep time, and slow wave sleep (SWS) time were measured by unattended, in-home nocturnal polysomnography. Bodily pain perception was measured via the Short Form-36 questionnaire bodily pain component. We used logistic regression to examine associations between total and individual sleep stage durations and bodily pain perception controlling for age, sex, race, body mass index, apnea-hypopnea index, antidepressant use, and important cardiovascular conditions (smoking [pack-years], history of diabetes, and history of percutaneous coronary intervention and/or coronary artery bypass graft). In the fully adjusted model, REM sleep time and SWS time were not associated with "moderate to severe pain," whereas TST was: Each 1-h decrement in TST was associated with a 7% increased odds of "moderate to severe pain" (odds ratio 1.07, 95% confidence interval 1.002, 1.14). Due to modification of the association between SWS time and "moderate to severe pain" by sex (P for interaction = 0.01), we performed analyses stratified by sex: Each 1-h decrement in SWS time was associated with a 20% higher odds of "moderate to severe pain" among men (odds ratio 1.20, 95% confidence interval 1.03-1.42) whereas an association was not observed among women. Shorter TST among all subjects and shorter SWS time in men was associated with "moderate to severe pain." REM sleep time was not associated with bodily pain perception in this cohort. © 2016 Associated Professional Sleep Societies, LLC.
Zhang, Zhongxing; Khatami, Ramin
2015-08-01
Current knowledge on hemodynamics in sleep is limited because available techniques do not allow continuous recordings and mainly focus on cerebral blood flow while neglecting other important parameters, such as blood volume (BV) and vasomotor activity. Observational study. Continuous measures of hemodynamics over the left forehead and biceps were performed using near-infrared spectroscopy (NIRS) during nocturnal polysomnography in 16 healthy participants in sleep laboratory. Temporal dynamics and mean values of cerebral and muscular oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and BV during different sleep stages were compared. A biphasic change of cerebral BV was observed which contrasted a monotonic increase of muscular BV during non-rapid eye movement sleep. A significant decrement in cerebral HbO2 and BV accompanied by an increase of HHb was recorded at sleep onset (Phase I). Prior to slow wave sleep (SWS) HbO2 and BV turned to increase whereas HHb began to decrease in subsequent Phase II suggested increased brain perfusion during SWS. The cerebral HbO2 slope correlated to BV slope in Phase I and II, but it only correlated to HHb slope in Phase II. The occurrence time of inflection points correlated to SWS latencies. Initial decrease of brain perfusion with decreased blood volume (BV) and oxygenated hemoglobin (HbO2) together with increasing muscular BV fit thermoregulation process at sleep onset. The uncorrelated and correlated slopes of HbO2 and deoxygenated hemoglobin indicate different mechanisms underlying the biphasic hemodynamic process in light sleep and slow wave sleep (SWS). In SWS, changes in vasomotor activity (i.e., increased vasodilatation) may mediate increasing cerebral and muscular BV. © 2015 Associated Professional Sleep Societies, LLC.
Fleishman, Leo J.; Loew, Ellis R.; Whiting, Martin J.
2011-01-01
Progress in developing animal communication theory is frequently constrained by a poor understanding of sensory systems. For example, while lizards have been the focus of numerous studies in visual signalling, we only have data on the spectral sensitivities of a few species clustered in two major clades (Iguania and Gekkota). Using electroretinography and microspectrophotometry, we studied the visual system of the cordylid lizard Platysaurus broadleyi because it represents an unstudied clade (Scinciformata) with respect to visual systems and because UV signals feature prominently in its social behaviour. The retina possessed four classes of single and one class of double cones. Sensitivity in the ultraviolet region (UV) was approximately three times higher than previously reported for other lizards. We found more colourless oil droplets (associated with UV-sensitive (UVS) and short wavelength-sensitive (SWS) photoreceptors), suggesting that the increased sensitivity was owing to the presence of more UVS photoreceptors. Using the Vorobyev–Osorio colour discrimination model, we demonstrated that an increase in the number of UVS photoreceptors significantly enhances a lizard's ability to discriminate conspecific male throat colours. Visual systems in diurnal lizards appear to be broadly conserved, but data from additional clades are needed to confirm this. PMID:21389031
NASA Technical Reports Server (NTRS)
Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Teufel, J.; Krebs, Carolyn (Technical Monitor)
2002-01-01
Antenna-coupled superconducting tunnel junction detectors have the potential for photon-counting sensitivity at sub-mm wavelengths. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.
Method to reduce CO.sub.2 to CO using plasmon-enhanced photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, George W.; Upadhye, Aniruddha A.; Kim, Hyung Ju
Described is a method of reducing CO.sub.2 to CO using visible radiation and plasmonic photocatalysts. The method includes contacting CO.sub.2 with a catalyst, in the presence of H.sub.2, wherein the catalyst has plasmonic photocatalytic reductive activity when exposed to radiation having a wavelength between 380 nm and 780 nm. The catalyst, CO.sub.2, and H.sub.2 are exposed to non-coherent radiation having a wavelength between 380 nm and 780 nm such that the catalyst undergoes surface plasmon resonance. The surface plasmon resonance increases the rate of CO.sub.2 reduction to CO as compared to the rate of CO.sub.2 reduction to CO without surfacemore » plasmon resonance in the catalyst.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malerba, M.; De Angelis, F., E-mail: francesco.deangelis@iit.it; Ongarello, T.
2016-07-11
We report a crucial step towards single-object cavity electrodynamics in the mid-infrared spectral range using resonators that borrow functionalities from antennas. Room-temperature strong light-matter coupling is demonstrated in the mid-infrared between an intersubband transition and an extremely reduced number of sub-wavelength resonators. By exploiting 3D plasmonic nano-antennas featuring an out-of-plane geometry, we observed strong light-matter coupling in a very low number of resonators: only 16, more than 100 times better than what reported to date in this spectral range. The modal volume addressed by each nano-antenna is sub-wavelength-sized and it encompasses only ≈4400 electrons.
Spin wave propagation detected over 100 μm in half-metallic Heusler alloy Co2MnSi
NASA Astrophysics Data System (ADS)
Stückler, Tobias; Liu, Chuanpu; Yu, Haiming; Heimbach, Florian; Chen, Jilei; Hu, Junfeng; Tu, Sa; Alam, Md. Shah; Zhang, Jianyu; Zhang, Youguang; Farrell, Ian L.; Emeny, Chrissy; Granville, Simon; Liao, Zhi-Min; Yu, Dapeng; Zhao, Weisheng
2018-03-01
The field of magnon spintronics offers a charge current free way of information transportation by using spin waves (SWs). Compared to forward volume spin waves for example, Damon-Eshbach (DE) SWs need a relatively weak external magnetic field which is suitable for small spintronic devices. In this work we study DE SWs in Co2MnSi, a half-metallic Heusler alloy with significant potential for magnonics. Thin films have been produced by pulsed laser deposition. Integrated coplanar waveguide (CPW) antennas with different distances between emitter and detection antenna have been prepared on a Co2MnSi film. We used a vector network analyzer to measure spin wave reflection and transmission. We observe spin wave propagation up to 100 μm, a new record for half-metallic Heusler thin films.
Administrative Report on Training Awards
NASA Technical Reports Server (NTRS)
Woodward, Charles E.
1999-01-01
During the tenure of this award, the recipient (David Harker) conducted areas of research which resulted in the award of a doctorate degree (August 1999) from the University of Wyoming. The primary science activity was investigation of silicate dust mineralogy in comets, particularly comet C/1995 O1 (Hale-Bopp). Determination of the dust mineralogy permits us to address an important astrophysical question of relevance to the origins and evolution of solar systems, "Do comets contain relic interstellar dust grains? Since, comets represent the frozen reservoirs of primitive proto-solar dust and ice, we can gain insight into the problem of understanding the formation of protoplanetesimals in the. early solar nebula. Mid-infrared spectrophotometry (7 - 14 micron, R approx. = 180 - 360) of Hale-Bopp was obtained with the NASA/Ames HIFOGS at four distinct epochs pre- and post- perihelion ion from 1996 October through 1997 June. These observations were conducted at the Wyoming Infrared Observatory and the NASA Infrared Telescope Facility, and were supported by funds from this training grant. The emission at mid-IR wavelengths in cometary comae arises from carbon grains, and small silicate grains which produce resonance features. Hale-Bopp had the strongest silicate feature observed from any comet to date. Theoretical calculations utilizing Mie Scattering Theory were employed to construct Synthetic cometary spectra to fit with the observed HIFOGS 10 microns spectral feature of Hale-Bopp. Our analysis suggests that the observed spectra can be modeled with the Hanner grain size distribution peaked at alpha((sub p) = 0.2 microns of fractal porous grains with porosity parameter D = 2.5. This model spectrum also fits photometry points in the 3 - 5 microns region. Comparison with the ISO SWS spectrum of Hale-Bopp obtained 1996 October reveals that the crystalline olivine grains must be at it temperature hotter than computed from Mie theory.
Satellite-based estimates of surface water dynamics in the Congo River Basin
NASA Astrophysics Data System (ADS)
Becker, M.; Papa, F.; Frappart, F.; Alsdorf, D.; Calmant, S.; da Silva, J. Santos; Prigent, C.; Seyler, F.
2018-04-01
In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, there is a limited understanding of the large-scale variability of its present-day hydrologic components and their link with climate. In this context, remote sensing observations provide a unique opportunity to better characterize those dynamics. Analyzing the Global Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers and their tributaries, and with two annual maxima located: i) in the lakes region of the Lwalaba sub-basin and ii) in the "Cuvette Centrale", including Tumba and Mai-Ndombe Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO and the Indian Ocean dipole events. We then estimate water level maps and surface water storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-2007, using a multi-satellite approach, which combines the GIEMS dataset with the water level measurements derived from the ENVISAT altimeter heights. The mean annual variation in SWS in the CRB is 81 ± 24 km3 and contributes to 19 ± 5% of the annual variations of GRACE-derived terrestrial water storage (33 ± 7% in the Middle Congo). It represents also ∼6 ± 2% of the annual water volume that flows from the Congo River into the Atlantic Ocean.
Evidence for Langmuir Envelope Solitons in Solar Type III Burst Source Regions
NASA Technical Reports Server (NTRS)
Thejappa, G.; Goldstein, M. L.; MacDowall, R. J.; Papadopoulos, K.; Stone, R. G.
1998-01-01
We present observational evidence for the generation of Langmuir envelope solitons in the source regions of solar type III radio bursts. The solitons appear to be formed by electron beams which excite either the modulational instability or oscillating two-stream instability (OTSI). Millisecond data from the Ulysses Unified Radio and Plasma Wave Experiment (URAP) show that Langmuir waves associated with type III bursts occur as broad intense peaks with time scales ranging from 15 to 90 milliseconds (6 - 27 km). These broad field structures have the properties expected of Langmuir envelope solitons, viz.: the normalized peak energy densities, W(sub L)/n(sub e)T(sub e) approximately 10(exp -5), are well above the modulational instability threshold; the spatial scales, L, which range from 1 - 5 Langmuir wavelengths, show a high degree of inverse correlation with (W(sub L)/n(sub e)T(sub e))(sup 1/2); and the observed widths of these broad peaks agree well with the predicted widths of envelope solitons. We show that the orientation of the Langmuir field structures is random with respect to the ambient magnetic field, indicating that they are probably isotropic structures that have evolved from initially pancake-like solitons. These observations suggest that strong turbulence processes, such as the modulational instability or the OTSI, stabilize the electron beams that produce type III bursts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Zhi-Gang; State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083; Bose, Sumanta
The electronic band structure and optical gain of GaN{sub x}Bi{sub y}As{sub 1−x−y}/GaAs pyramidal quantum dots (QDs) are investigated using the 16-band k ⋅ p model with constant strain. The optical gain is calculated taking both homogeneous and inhomogeneous broadenings into consideration. The effective band gap falls as we increase the composition of nitrogen (N) and bismuth (Bi) and with an appropriate choice of composition we can tune the emission wavelength to span within 1.3 μm–1.55 μm, for device application in fiber technology. The extent of this red shift is more profound in QDs compared with bulk material due to quantum confinement. Othermore » factors affecting the emission characteristics include virtual crystal, strain profile, band anticrossing (BAC), and valence band anticrossing (VBAC). The strain profile has a profound impact on the electronic structure, specially the valence band of QDs, which can be determined using the composition distribution of wave functions. All these factors eventually affect the optical gain spectrum. With an increase in QD size, we observe a red shift in the emission energy and emergence of secondary peaks owing to transitions or greater energy compared with the fundamental transition.« less
NASA Astrophysics Data System (ADS)
Tokizane, Yu; Nawata, Kouji; Han, Zhengli; Koyama, Mio; Notake, Takashi; Takida, Yuma; Minamide, Hiroaki
2017-02-01
We developed a widely tunable terahertz (THz)-wave source covering the sub-THz frequency by difference frequency generation using a 4-dimethylamino-N‧-methyl-4‧-stibazolium tosylate (DAST) crystal. Near-infrared waves generated by dual-wavelength injection-seeded β-BaB2O4 optical parametric generation (is-BBO-OPG) were used for pumping the DAST crystal, which had separated wavelengths in the spectrum with a difference frequency of sub-THz. Furthermore, the non-collinear phase-matching condition was designed to compensate the walk-off effect of the BBO crystal. Consequently, tunable THz-waves from 0.3 to 4 THz were generated by tuning the wavelength of one of the seeding beams. The generated sub-THz-waves were monochromatic (dν < 33 GHz) with a maximum energy of 80 pJ at 0.65 THz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Chunguang; Jiang, Dayong, E-mail: dayongjiangcust@126.com; Tan, Zhendong
Highlights: • Single-phase wurtzite/cubic Mg{sub x}Zn{sub 1−x}O films were grown by RF magnetron sputtering technique. • We focus on the red-shift caused by annealing the Mg{sub x}Zn{sub 1−x}O films. • MSM-structured visible-blind and solar-blind UV photodetectors were fabricated. - Abstract: A series of single-phase Mg{sub x}Zn{sub 1−x}O films with different Mg contents were prepared on quartz substrates by RF magnetron sputtering technique using different MgZnO targets, and annealed under the atmospheric environment. The absorption edges of Mg{sub x}Zn{sub 1−x}O films can cover the whole near ultraviolet and even the whole solar-blind spectra range, and the solar-blind wurtzite/cubic Mg{sub x}Zn{sub 1−x}Omore » films have been realized successfully by the same method. In addition, the absorption edges of annealed films shift to a long wavelength, which is caused by the diffusion of Zn atoms gathering at the surface during the thermal treatment process. Finally, the truly solar-blind metal-semiconductor-metal structured photodetectors based on wurtzite Mg{sub 0.445}Zn{sub 0.555}O and cubic Mg{sub 0.728}Zn{sub 0.272}O films were fabricated. The corresponding peak responsivities are 17 mA/W at 275 nm and 0.53 mA/W at 250 nm under a 120 V bias, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibuya, Keisuke, E-mail: k.shibuya@aist.go.jp; Sawa, Akihito
2015-10-15
We systematically examined the effects of the substrate temperature (T{sub S}) and the oxygen pressure (P{sub O2}) on the structural and optical properties polycrystalline V O{sub 2} films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O{sub 2} phase was formed at a T{sub S} ≥ 450 °C at P{sub O2} values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O{sub 2} films significantly increased at growth temperatures of 550 °C or more due to agglomeration of Vmore » O{sub 2} on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT) temperature was observed in V O{sub 2} films grown at a T{sub S} of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the T{sub S} and P{sub O2}, and was maximal for a V O{sub 2} film grown at 450 °C under 20 mTorr. Based on the results, we derived the P{sub O2} versus 1/T{sub S} phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O{sub 2} films on silicon platforms.« less
Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Y. J.; Zheng, H. Y.; Kim, Y. J.
2014-07-28
Using a planar and flexible metamaterial (MM), we obtained the low-frequency perfect absorption even with very small unit-cell size in snake-shape structure. These shrunken, deep-sub-wavelength and thin MM absorbers were numerically and experimentally investigated by increasing the inductance. The periodicity/thickness (the figure of merit for perfect absorption) is achieved to be 10 and 2 for single-snake-bar and 5-snake-bar structures, respectively. The ratio between periodicity and resonance wavelength (in mm) is close to 1/12 and 1/30 at 2 GHz and 400 MHz, respectively. The absorbers are specially designed for absorption peaks around 2 GHz and 400 MHz, which can be used for depressing the electromagneticmore » noise from everyday electronic devices and mobile phones.« less
Studies of snowpack properties by passive microwave radiometry
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Hall, D. K.; Foster, J. L.; Rango, A.; Schmugge, T. J.
1978-01-01
Research involving the microwave characteristics of snow was undertaken in order to expand the information content currently available from remote sensing, namely the measurement of snowcovered area. Microwave radiation emitted from beneath the snow surface can be sensed and thus permits information on internal snowpack properties to be inferred. The intensity of radiation received is a function of the average temperature and emissivity of the snow layers and is commonly referred to as the brightness temperature (T sub b). The T sub b varies with snow grain and crystal sizes, liquid water content and snowpack temperature. The T sub b of the 0.8 cm wavelength channel was found to decrease moreso with increasing snow depth than the 1.4 cm channel. More scattering of the shorter wavelength radiation occurs thus resulting in a lower T sub b for shorter wavelengths in a dry snowpack. The longer 21.0 cm wavelength was used to assess the condition of the underlying ground. Ultimately it may be possible to estimate snow volume over large areas using calibrated brightness temperatures and consequently improve snowmelt runoff predictions.
Time Shared Optical Network (TSON): a novel metro architecture for flexible multi-granular services.
Zervas, Georgios S; Triay, Joan; Amaya, Norberto; Qin, Yixuan; Cervelló-Pastor, Cristina; Simeonidou, Dimitra
2011-12-12
This paper presents the Time Shared Optical Network (TSON) as metro mesh network architecture for guaranteed, statistically-multiplexed services. TSON proposes a flexible and tunable time-wavelength assignment along with one-way tree-based reservation and node architecture. It delivers guaranteed sub-wavelength and multi-granular network services without wavelength conversion, time-slice interchange and optical buffering. Simulation results demonstrate high network utilization, fast service delivery, and low end-to-end delay on a contention-free sub-wavelength optical transport network. In addition, implementation complexity in terms of Layer 2 aggregation, grooming and optical switching has been evaluated. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Roy, Mathieu; DaCosta, Ralph S.; Weersink, Robert; Netchev, George; Davidson, Sean R. H.; Chan, Warren; Wilson, Brian C.
2007-02-01
Our group is investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). Our studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. This work quantitatively evaluates the effect of the excitation wavelength on the SBR, using both experimental measurements and mathematical modeling. Experimental SBR measurements were done by imaging QD solutions placed onto (surface) or embedded in (sub-surface) ex vivo murine tissue samples (brain, kidney, liver, lung), using a polymethylmethacrylate (PMMA) microchannel phantom. The results suggest that the maximum contrast is reached when the excitation wavelength is set at 400+/-20 μm for the surface configuration. For the sub-surface configuration, the optimal excitation wavelength varies with the tissue type and QD emission wavelengths. Our mathematical model, based on an approximation to the diffusion equation, successfully predicts the optimal excitation wavelength for the surface configuration, but needs further modifications to be accurate in the sub-surface configuration.
Disability in the upper extremity and quality of life in hand-arm vibration syndrome.
Poole, Kerry; Mason, Howard
2005-11-30
To investigate whether hand-arm vibration syndrome (HAVS) leads to disability in the upper extremity or deficit in quality of life (QoL) using validated questionnaire tools, and to establish whether these effects are related to the Stockholm Workshop Staging (SWS). This was a postal cross-sectional questionnaire study with a 50% response rate. Four hundred and forty-four males, who had been diagnosed and staged according to the SWS were sent the Disability in the Arm, Shoulder and Hand (DASH) and the SF-36v2 QoL questionnaires. HAVS cases had significantly greater DASH disability scores and reduced QoL physical and mental component scores compared to published normal values. Those HAVS cases with a presumptive diagnosis of Carpal Tunnel Syndrome(CTS) had even higher disability scores. There was a clear, linear relationship between both the DASH disability score and the physical component of the QoL and sensorineural SWS, but not with the vascular SWS. HAVS has a significant effect on an individual's perceived ability to perform everyday tasks involving the upper extremity, and their quality of life. Physical capability may be further compromised in those individuals who have a presumptive diagnosis of CTS. These findings may have important implications regarding management of the affected worker.
Mechanisms of shock wave induced endothelial cell injury.
Sondén, Anders; Svensson, Bengt; Roman, Nils; Brismar, Bo; Palmblad, Jan; Kjellström, B Thomas
2002-01-01
Medical procedures, for example, laser angioplasty and extracorporeal lithotripsy as well as high-energy trauma expose human tissues to shock waves (SWs) that may cause tissue injury. The mechanisms for this injury, often affecting blood vessel walls, are poorly understood. Here we sought to assess the role of two suggested factors, viz., cavitation or reactive oxygen species (ROS). A laser driven flyer-plate model was used to expose human umbilical cord vein endothelial cell (HUVEC) monolayers to SWs or to SWs plus cavitation (SWC). Cell injury was quantified with morphometry, trypan blue staining, and release of (51)Cr from labeled HUVECs. HUVECs, exposed to SWs only, could not be distinguished from controls in morphological appearance or ability to exclude trypan blue. Yet, release of (51)Cr, indicated a significant cell injury (P < 0.05). HUVEC cultures exposed to SWC, exhibited cell detachment and cell membrane damage detectable with trypan blue. Release of (51)Cr was fourfold compared to SW samples (P < 0.01). Signs of cell injury were evident at 15 minutes and did not change over the next 4 hours. No protective effects of ROS scavengers were demonstrated. Independent of ROS, SWC generated an immediate cell injury, which can explain, for example, vessel wall perturbation described in relation to SW treatments and trauma. Copyright 2002 Wiley-Liss, Inc.
Rios, Sebastian; Perlman, Christopher M
2017-04-24
Social withdrawal is a symptom experienced by individuals with an array of mental health conditions, particularly those with schizophrenia and mood disorders. Assessments of social withdrawal are often lengthy and may not be routinely integrated within the comprehensive clinical assessment of the individual. This study utilized item response and classical test theory methods to derive a Social Withdrawal Scale (SWS) using items embedded within a routine clinical assessment, the RAI-Mental Health (RAI-MH). Using data from 60,571 inpatients in Ontario, Canada, a common factor analysis identified seven items from the RAI-MH that measure social withdrawal. A graded response model found that six items had acceptable discrimination parameters: lack of motivation, reduced interaction, decreased energy, flat affect, anhedonia, and loss of interest. Summing these items, the SWS was found to have strong internal consistency (Cronbach's alpha = 0.82) and showed a medium to large effect size (d = 0.77) from admission to discharge. Fewer individuals with high SWS scores participated in social activity or reported having a confidant compared to those with lower scores. Since the RAI-MH is available across clinical subgroups in several jurisdictions, the SWS is a useful tool for screening, clinical decision support, and evaluation.
Methods and apparatus for vertical coupling from dielectric waveguides
Yaacobi, Ami; Cordova, Brad Gilbert
2014-06-17
A frequency-chirped nano-antenna provides efficient sub-wavelength vertical emission from a dielectric waveguide. In one example, this nano-antenna includes a set of plasmonic dipoles on the opposite side of a SiYV.sub.4 waveguide from a ground plane. The resulting structure, which is less than half a wavelength long, emits a broadband beam (e.g., >300 nm) that can be coupled into an optical fiber. In some embodiments, a diffractive optical element with unevenly shaped regions of high- and low-index dielectric material collimates the broadband beam for higher coupling efficiency. In some cases, a negative lens element between the nano-antenna and the diffractive optical element accelerates the emitted beam's divergence (and improves coupling efficiency), allowing for more compact packaging. Like the diffractive optical element, the negative lens element includes unevenly shaped regions of high- and low-index dielectric material that can be designed to compensate for aberrations in the beam emitted by the nano-antenna.
Controlling the size and optical properties of ZnO nanoparticles by capping with SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, K. Sowri, E-mail: sowribabuk@gmail.com; Reddy, A. Ramachandra; Reddy, K. Venugopal
Graphical abstract: - Highlights: • Small and uniform sized ZnO nanoparticles were obtained with SiO{sub 2} coating. • ZnO and ZnO–SiO{sub 2} nanocomposite exhibited excitation wavelength dependent PL. • Maximum UV emission intensity was obtained with 353 nm excitation wavelength. • Excitation processes in SiO{sub 2} were also contributed to the UV intensity. • It was found that oxygen vacancies and interstitials enhanced with SiO{sub 2} coating. - Abstract: The size and shape of the ZnO nanoparticles synthesized through sol–gel method were controlled by capping with SiO{sub 2}. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) and Highmore » Resolution Transmission Electron Microscope (HR-TEM) results demonstrated that the particle growth of the ZnO nanoparticles has been restricted to 5 nm with SiO{sub 2} capping. As a result, the absorption spectra of ZnO nanoparticles capped with SiO{sub 2} got blue shifted (toward lower wavelength side) due to strong quantum confinement effects. BET (Brunauer–Emmet–Teller) surface area pore size analyzer results showed that surface area of samples increased monotonously with increase of SiO{sub 2} concentration. It was observed that the absorption spectra of ZnO capped with SiO{sub 2} broadened with increase of SiO{sub 2} concentration. Absorption and photoluminescence excitation results (PLE) confirmed that this broadening is due to the absorption of non-bridging oxygen hole centers (NBOHC) of SiO{sub 2}. These results also indicated that ZnO nanoparticles capped with SiO{sub 2} are insensitive to Raman scattering. Maximum UV emission intensity was achieved with 353 nm excitation wavelength compared to 320 nm in ZnO as well as in SiO{sub 2} capped ZnO nanoparticles. Furthermore, there is an enhancement in the intensities of emission peaks related to oxygen vacancies and interstitials with SiO{sub 2} capping. The enhancement in the UV intensity is attributed to the surface passivation of ZnO nanoparticles and excitation processes in SiO{sub 2}.« less
Electro-optical SLS devices for operating at new wavelength ranges
Osbourn, Gordon C.
1986-01-01
An intrinsic semiconductor electro-optical device includes a p-n junction intrinsically responsive, when cooled, to electromagnetic radiation in the wavelength range of 8-12 um. The junction consists of a strained-layer superlattice of alternating layers of two different III-V semiconductors having mismatched lattice constants when in bulk form. A first set of layers is either InAs.sub.1-x Sb.sub.x (where x is aobut 0.5 to 0.7) or In.sub.1-x Ga.sub.x As.sub.1-y Sb.sub.y (where x and y are chosen such that the bulk bandgap of the resulting layer is about the same as the minimum bandgap in the In.sub.1-x Ga.sub.x As.sub.1-y Sb.sub.y family). The second set of layers has a lattice constant larger than the lattice constant of the layers in the first set.
Oceanic Geoid and Tides Obtained from GEOS-3 Satellite Data in the Northwestern Atlantic Ocean
NASA Technical Reports Server (NTRS)
Won, I. J.; Miller, L. S.
1978-01-01
Two sets of GEO-3 altimeter data which fall within about a 2.5 degree width are analyzed for ocean geoid and tides. One set covers a linear path from Newfoundland to Cuba and the other from Puerto Rico to the North Carolina coast. Forty different analyses using various parameters are performed in order to investigate convergence. Profiles of the geoid and four tides, M sub 2 O sub 1, S sub 2, and K sub 1, are obtained along the two strips. The results demonstrate convergent solutions for all forty cases and show, within expectation, fair agreement with those obtained from the MODE deep-sea tide gauge. It is also shown that the oceanic geoid obtained through this analysis can potentially improve the short wavelength structure over existing geoid models.
Porcel, Marco A G; Schepers, Florian; Epping, Jörn P; Hellwig, Tim; Hoekman, Marcel; Heideman, René G; van der Slot, Peter J M; Lee, Chris J; Schmidt, Robert; Bratschitsch, Rudolf; Fallnich, Carsten; Boller, Klaus-J
2017-01-23
We demonstrate supercontinuum generation in stoichiometric silicon nitride (Si3N4 in SiO2) integrated optical waveguides, pumped at telecommunication wavelengths. The pump laser is a mode-locked erbium fiber laser at a wavelength of 1.56 µm with a pulse duration of 120 fs. With a waveguide-internal pulse energy of 1.4 nJ and a waveguide with 1.0 µm × 0.9 µm cross section, designed for anomalous dispersion across the 1500 nm telecommunication range, the output spectrum extends from the visible, at around 526 nm, up to the mid-infrared, at least to 2.6 µm, the instrumental limit of our detection. This output spans more than 2.2 octaves (454 THz at the -30 dB level). The measured output spectra agree well with theoretical modeling based on the generalized nonlinear Schrödinger equation. The infrared part of the supercontinuum spectra shifts progressively towards the mid-infrared, well beyond 2.6 µm, by increasing the width of the waveguides.
PASOTRON high-energy microwave source
NASA Astrophysics Data System (ADS)
Goebel, Dan M.; Schumacher, Robert W.; Butler, Jennifer M.; Hyman, Jay, Jr.; Santoru, Joseph; Watkins, Ron M.; Harvey, Robin J.; Dolezal, Franklin A.; Eisenhart, Robert L.; Schneider, Authur J.
1992-04-01
A unique, high-energy microwave source, called PASOTRON (Plasma-Assisted Slow-wave Oscillator), has been developed. The PASOTRON utilizes a long-pulse E-gun and plasma- filled slow-wave structure (SWS) to produce high-energy pulses from a simple, lightweight device that utilizes no externally produced magnetic fields. Long pulses are obtained from a novel E-gun that employs a low-pressure glow discharge to provide a stable, high current- density electron source. The electron accelerator consists of a high-perveance, multi-aperture array. The E-beam is operated in the ion-focused regime where the plasma filling the SWS space-charge neutralizes the beam, and the self-pinch force compresses the beamlets and increases the beam current density. A scale-model PASOTRON, operating as a backward- wave oscillator in C-band with a 100-kV E-beam, has produced output powers in the 3 to 5 MW range and pulse lengths of over 100 microsecond(s) ec, corresponding to an integrated energy per pulse of up to 500 J. The E-beam to microwave-radiation power conversion efficiency is about 20%.
Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier
NASA Astrophysics Data System (ADS)
Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad
2017-10-01
The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.
Modified InGaN/GaN quantum wells with dual-wavelength green-yellow emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Z. L., E-mail: zhilaifang@hotmail.com; Li, Q. F.; Shen, X. Y.
2014-01-28
Energy band engineering by indium pretreatment of the bottom GaN barriers and control of the growth temperature profile for the InGaN active layers were employed to improve the green-yellow emitting InGaN/GaN quantum well (QW). The modified InGaN/GaN QWs were investigated by various characterization techniques and demonstrated to be of good interface abruptness and well-defined indium concentration profile, composed of 0.52 nm In{sub 0.35}Ga{sub 0.65}N “wetting layer,” 1.56 nm In{sub 0.35-0.22}Ga{sub 0.65-0.78}N graded layers, and 1.56 nm In{sub 0.22}Ga{sub 0.78}N layer along the growth direction. Broad-band dual-wavelength green-yellow emission at about 497 and 568 nm was observed and attributed to the major contribution of enhancedmore » interband transitions from the first and second quantized electron states “e1” and “e2” to the first quantized hole state “h1.” With the modified QW structure, electron overflow loss would be suppressed by filling of the excited electron state with electrons at high carrier injection density and reduction in polarization-induced band bending. APSYS simulation shows efficiency and droop improvements due to the enhanced overlapping of electron and hole wave functions inside the modified InGaN active layers, and the enhanced interband transitions involving the excited electron state.« less
Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in
2015-01-14
Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bondmore » weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.« less
Wang, Xiaozhong; Wang, Zhongfa; Bu, Yikun; Chen, Lujian; Cai, Guoxiong; Huang, Wencai; Cai, Zhiping; Chen, Nan
2016-02-01
For a linearly variable Fabry-Perot filter, the peak transmission wavelengths change linearly with the transverse position shift of the substrate. Such a Fabry-Perot filter is designed and fabricated and used as an output coupler of a c-cut Nd:YVO4 laser experimentally in this paper to obtain a 1062 and 1083 nm dual-wavelength laser. The peak transmission wavelengths are gradually shifted from 1040.8 to 1070.8 nm. The peak transmission wavelength of the Fabry-Perot filter used as the output coupler for the dual-wavelength laser is 1068 nm and resides between 1062 and 1083 nm, which makes the transmissions of the desired dual wavelengths change in opposite slopes with the transverse shift of the filter. Consequently, powers of the two wavelengths change in opposite directions. A branch power, oppositely tunable 1062 and 1083 nm dual-wavelength laser is successfully demonstrated. Design principles of the linear variable Fabry-Perot filter used as an output coupler are discussed. Advantages of the method are summarized.
Terahertz near-field imaging of surface plasmon waves in graphene structures
Mitrofanov, O.; Yu, W.; Thompson, R. J.; ...
2015-09-08
In this study, we introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.
Song, Young Min; Jeong, Yonkil; Yeo, Chan Il; Lee, Yong Tak
2012-11-05
We present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm. The BARCs were mounted on InGaP/GaAs/Ge triple-junction solar cells and the power conversion efficiency of this sub-receiver module reached 42.16% for 196 suns, which is a 7.41% boosted value compared to that of a module with bare coverglass, without any detrimental changes of the open circuit voltages (V(oc)) and fill factor (FF).
JCMT in the Post-Herschel ERA of Alma
NASA Astrophysics Data System (ADS)
Johnstone, Doug
2013-07-01
The James Clerk Maxwell Telescope (JCMT), with a 15m dish, is the largest single-dish astronomical telescope in the world designed specifically to operate in the sub-mm wavelength regime. The JCMT is located close to the summit of Mauna Kea, Hawaii, at an altitude of 4092m. The most recent addition to the JCMT's suite of instruments is the 10,000 bolometer sub-mm continuum instrument: SCUBA-2. SCUBA-2 operates simultaneously with 7' x7' foot print sub-arrays at both 450 and 850-microns. SCUBA-2's wide field surveying potential, combined with a 65% shared view of the sky from both sites, makes it the ideal instrument to provide complementary data for the ALMA Project. Furthermore, the SCUBA-2 sub-millimetre wavelength coverage and angular resolution complement existing Herschel observations. A set of comprehensive surveys of the submillimetre sky is underway at the James Clerk Maxwell Telescope (JCMT) using SCUBA-2 and HARP, a heterodyne array receiver operating between 325 and 375 GHz. The JCMT Legacy Survey (JLS) is comprised of seven survey projects, and ranges in scope from the study of nearby debris disk systems, the study of star formation in nearby molecular cloud systems and more distant structures in our Galactic Plane, to the structure and composition of galaxies in our local neighbourhood and the number and evolution of submillimetre galaxies at high redshifts in the early Universe. In addition to the JLS, the COHR survey is imaging the Galactic plane in CO (3-2) and a JAC Staff-led project is using SCUBA-2 to survey the Galactic Centre. This poster highlights the significant survey capabilities of SCUBA-2 and HARP and reveals the continuing importance of the JCMT in a post-Herschel, ALMA world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.; Duan, R. F.; Huang, F.
We report the synthesis of CH{sub 3}NH{sub 3}Pb(Br{sub 3−y}X{sub y}) (X=Cl and I) single crystals via a stepwise temperature control approach. High-quality CH{sub 3}NH{sub 3}Pb(Br{sub 3−y}X{sub y}) crystals with a tunable bandgap from 1.92 eV to 2.53 eV have been prepared successfully in this way. And further experiments revealed the influence of halogen content and preparation temperature on the structural and optical properties of these crystals. It is observed that chlorine can lower the critical nucleation energy, which results in crystallizing at lower temperature with the chlorine content increasing, while the nucleation energy increases slowly with increasing iodine content. Moreover,more » in contrast to Frank–van der Merwe growth with low heating rate, high heating rate leads to a mass of small size single crystals and Stranski-Krastanov growth. The single crystals with tunable band gap and impressive characteristics enable us to fabricate high performance photodetectors for different wavelengths.« less
Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications.
Shestaeva, Svetlana; Bingel, Astrid; Munzert, Peter; Ghazaryan, Lilit; Patzig, Christian; Tünnermann, Andreas; Szeghalmi, Adriana
2017-02-01
Structural, optical, and mechanical properties of Al2O3, SiO2, and HfO2 materials prepared by plasma-enhanced atomic layer deposition (PEALD) were investigated. Residual stress poses significant challenges for optical coatings since it may lead to mechanical failure, but in-depth understanding of these properties is still missing for PEALD coatings. The tensile stress of PEALD alumina films decreases with increasing deposition temperature and is approximately 100 MPa lower than the stress in thermally grown films. It was associated with incorporation of -OH groups in the film as measured by infrared spectroscopy. The tensile stress of hafnia PEALD layers increases with deposition temperature and was related to crystallization of the film. HfO2 nanocrystallites were observed even at 100°C deposition temperature with transmission electron microscopy. Stress in hafnia films can be reduced from approximately 650 MPA to approximately 450 MPa by incorporating ultrathin Al2O3 layers. PEALD silica layers have shown moderate stress values and stress relaxation with the storage time, which was correlated to water adsorption. A complex interference coating system for a dichroic mirror (DCM) at 355 nm wavelength was realized with a total coating thickness of approximately 2 μm. Severe cracking of the DCM coating was observed, and it propagates even into the substrate material, showing a good adhesion of the ALD films. The reflectance peak is above 99.6% despite the mechanical failure, and further optimization on the material properties should be carried out for demanding optical applications.
Heath, Melanie; Sutherland, Cate; Bartel, Kate; Gradisar, Michael; Williamson, Paul; Lovato, Nicole; Micic, Gorica
2014-05-01
Electronic media use is prevalent among adolescent populations, as is the frequency of sleeplessness. One mechanism proposed for technology affecting adolescents' sleep is the alerting effects from bright screens. Two explanations are provided. First, screens emit significant amounts of short-wavelength light (i.e. blue), which produces acute alertness and alters sleep timing. Second, later chronotypes are hypothesised to be hypersensitive to evening light. This study analysed the pre-sleep alertness (GO/NOGO task speed, accuracy; subjective sleepiness), sleep (sleep diary, polysomnography), and morning functioning of 16 healthy adolescents (M = 17.4 ± 1.9 yrs, 56% f) who used a bright tablet screen (80 lux), dim screen (1 lux) and a filtered short-wavelength screen (f.lux; 50 lux) for 1 hr before their usual bedtime in a within-subjects protocol. Chronotype was analysed as a continuous between-subjects factor; however, no significant interactions occurred. Significant effects occurred between bright and dim screens for GO/NOGO speed and accuracy. However, the magnitude of these differences was small (e.g. GO/NOGO speed = 23 ms, accuracy = 13%), suggesting minimal clinical significance. No significant effects were found for sleep onset latency, slow-rolling eye movements, or the number of SWS and REM minutes in the first two sleep cycles. Future independent studies are needed to test short (1 hr) vs longer (>2 hrs) screen usage to provide evidence for safe-to-harmful levels of screenlight exposure before adolescents' usual bedtime.
Ong, Ju Lynn; Lo, June C; Gooley, Joshua J; Chee, Michael W L
2016-06-01
To investigate sleep EEG changes in adolescents across 7 nights of sleep restriction to 5 h time in bed [TIB]) and 3 recovery nights of 9 h TIB. A parallel-group design, quasi-laboratory study was conducted in a boarding school. Fifty-five healthy adolescents (25 males, age = 15-19 y) who reported habitual TIBs of approximately 6 h on week nights (group average) but extended their sleep on weekends were randomly assigned to Sleep Restriction (SR) or Control groups. Participants underwent a 2-week protocol comprising 3 baseline nights (TIB = 9 h), 7 nights of sleep opportunity manipulation (TIB = 5 h for the SR and 9 h for the Control group), and 3 nights of recovery sleep (TIB = 9 h). Polysomnography was obtained on two baseline, three manipulation, and two recovery nights. Across the sleep restriction nights, total SWS duration was preserved relative to the 9 h baseline sleep opportunity, while other sleep stages were reduced. Considering only the first 5 h of sleep opportunity, SR participants had reduced N1 duration and wake after sleep onset (WASO), and increased total sleep time (TST), rapid eye movement (REM) sleep, and slow wave sleep (SWS) relative to baseline. Total REM sleep, N2, and TST duration remained above baseline levels by the third recovery sleep episode. In spite of preservation of SWS duration over multiple nights of sleep restriction, adolescents accustomed to curtailing nocturnal sleep on school day nights evidence residual effects on sleep macro-structure, even after three nights of recovery sleep. Older teenagers may not be as resilient to successive nights of sleep restriction as is commonly believed. © 2016 Associated Professional Sleep Societies, LLC.
Photoluminescence and energy transfer process in Gd{sub 2}O{sub 3}:Eu{sup 3+}, Tb{sup 3+}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvalakshmi, T.; Bose, A. Chandra, E-mail: acbose@nitt.edu
2016-05-23
Variation in photoluminescence (PL) properties of Eu{sup 3+} and Tb{sup 3+} as a function of co-dopant (Tb{sup 3+}) concentration are studied for Gd{sub 2-x-y}O{sub 3}: Eu{sup 3+}{sub x} Tb{sup 3+}{sub y} (x = 0.02, y = 0.01, 0.03, 0.05). The crystal structure analysis is carried out by X-ray Diffraction (XRD). Absence of addition peaks corresponding europium or terbium phase confirms the phase purity. Diffuse reflectance spectroscopy (DRS) reveals the absorption peaks corresponding to host matrix, Eu{sup 3+} and Tb{sup 3+}. The bandgap calculated from Kubelka – Munk function is also reported. PL spectra are recorded at the excitation wavelength ofmore » 307 nm and the emission peak corresponding to Eu{sup 3+} confirms the energy transfer from Tb{sup 3+} to Eu{sup 3+}. The agglomeration of particles acts as quenching centres for energy transfer at higher concentrations.« less
The Far-Infrared Emission Line and Continuum Spectrum of the Seyfert Galaxy NGC 1068
NASA Technical Reports Server (NTRS)
Spinoglio, Luigi; Smith, Howard A.; Gonzalez-Alfonso, Eduardo; Fisher, Jacqueline
2005-01-01
We report on the analysis of the first complete far-infrared spectrum (43-197 microns) of the Seyfert 2 galaxy NGC 1068 as observed with the Long Wavelength Spectrometer (LWS) onboard the Infrared Space Observatory (ISO). In addition to the 7 expected ionic fine structure emission lines, the OH rotational lines at 79, 119 and 163 microns were all detected in emission, which is unique among galaxies with full LWS spectra, where the 119 micron line, where detected, is always in absorption. The observed line intensities were modelled together with IS0 Short Wavelength Spectrometer (SWS) and optical and ultraviolet line intensities from the literature, considering two independent emission components: the AGN component and the starburst component in the circumnuclear ring of approximately 3kpc in size. Using the UV to mid-IR emission line spectrum to constrain the nuclear ionizing continuum, we have confirmed previous results: a canonical power-law ionizing spectrum is a poorer fit than one with a deep absorption trough, while the presence of a big blue bump is ruled out. Based on the instantaneous starburst age of 5 Myr constrained by the Br gamma equivalent width in the starburst ring, and starburst synthesis models of the mid- and far-infrared fine-structure line emission, a low ionization parameter (U=10(exp -3.5)) and low densities (n=100 cm (exp -3)) are derived. Combining the AGN and starburst components, we succeed in modeling the overall UV to far-IR atomic spectrum of SGC 1068, reproducing the line fluxes to within a factor 2.0 on average with a standard deviation of 1.4. The OH 119 micron emission indicates that the line is collisionally excited, and arises in a warm and dense region. The OH emission has been modeled using spherically symmetric, non-local, non-LTE radiative transfer models. The models indicate that the bulk of the emission arises from the nuclear region, although some extended contribution from the starburst is not ruled out. The OH abundance in the nuclear region is expected to be approximately 10(exp -5), characteristic of X-ray dominated regions.
NASA Astrophysics Data System (ADS)
Bowen, LI; Zhibin, WANG; Qiuyue, NIE; Xiaogang, WANG; Fanrong, KONG; Zhenyu, WANG
2018-01-01
Intensive collisions between electrons and neutral particles in partially ionized plasmas generated in atmospheric/sub-atmospheric pressure environments can sufficiently affect the propagation characteristics of electromagnetic waves, particularly in the sub-wavelength regime. To investigate the collisional effect in such plasmas, we introduce a simplified plasma slab model with a thickness on the order of the wavelength of the incident electromagnetic wave. The scattering matrix method (SMM) is applied to solve the wave equation in the plasma slab with significant nonuniformity. Results show that the collisions between the electrons and the neutral particles, as well as the incident angle and the plasma thickness, can disturb the transmission and reduce reflection significantly.
Band gap tuning of amorphous Al oxides by Zr alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.
2016-08-29
The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less
Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yingwei; Huang, Guanghui; Chen, Jiazhang
2015-08-31
As a new type of two-dimensional crystal material, black phosphorus (BP) exhibits excellent electronics and optical performance. Herein, we focus on carrier relaxation dynamics and nonlinear optical properties of BP suspension. Atomic force microscopy, transmission electron microscopy, and optical transmission spectrum are employed to characterize the structure and linear optical properties of the BP. Additionally, pump-probe experiments at wavelength of 1550 nm were carried out to study the carrier dynamics in BP suspension, and ultrafast recovery time was observed (τ{sub s} = 24 ± 2 fs). Furthermore, we demonstrate the saturable absorption signals by open aperture Z-scan experiments at wavelengths of 1550 nm, 532 nm, and 680 nm. Themore » results indicate that BP has broadband saturable absorption properties and the nonlinear absorption coefficients were determined to be β{sub 2} = −0.20 ± 0.08 × 10{sup −3 }cm/GW (532 nm), β{sub 2} = −0.12 ± 0.05 × 10{sup −3 }cm/GW (680 nm), and β{sub 2} = −0.15 ± 0.09 × 10{sup −3 }cm/GW (1550 nm)« less
Development and application of InAsP/InP quantum well infrared detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geetanjali,, E-mail: geetanjali@rrcat.gov.in; Porwal, S.; Kumar, R.
2016-05-23
InAs{sub x}P{sub 1-x}/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for infrared detector applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR detectors in the wide wavelength range, i.e. 0.9–1.46 µm by inter-band transitions and 7–18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAs{sub x}P{sub 1-x}/InPQW detector is verified by measuring the photoluminescence of suitable semiconductor quantum well structure. At the request of all authors of the paper,more » and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 June 2016. The original version supplied to AIP Publishing contained an error in the Figures 1 and 2 where the right side of the images were cutoff. The error has been corrected in the updated and re-published article.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ping, E-mail: mse_yangp@ujn.edu.cn; Matras-Postolek, Katarzyna; Song, Xueling
2015-10-15
Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL)more » wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.H.; Chen, L.; Zhou, X.F.
Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were synthesized at 1610 ℃ for 4 h via the solid-state reaction method. The XRD results confirm that the complete solid solutions are formed. With the increase of x, the emission spectra show an obvious blue-shift from 610 nm to 585 nm under the excitation of 460 nm. The color tone can be tuned from yellow to red. The corresponding mechanism for the blue-shift of peak-wavelength is studied in detail. The results of decomposed Gaussian spectra and fluorescence lifetime show that the local coordination structure surrounding activator ions changes with increasingmore » x value. It is found that the probability of Eu occupying Sr1 and Sr2 site is dependent on Ba/Sr ratio. The variation of thermal quenching properties and the corresponding mechanism is discussed in detail. The results indicate that Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} is a promising orange red-emitting phosphor for near UV or blue light-pumped white light-emitting-diodes (wLEDs). - Graphical abstract: Eu{sup 2+} doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} solid solutions were prepared by the solid-state reaction method. The structure, luminescence and thermal quenching properties with varying Ba/Sr ratio were investigated in detail. - Highlights: • The stucture and luminescence properties of Eu doped Sr{sub 2-x}Ba{sub x}Si{sub 5}N{sub 8} phosphors were investigated. • The samples with the intermediate compositions(x=1.0,1.5) show better stability than the end members of both Sr{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+} and Ba{sub 2}Si{sub 5}N{sub 8}:Eu{sup 2+}. • The possible mechanism for the improvement of thermal quenching properties was proposed.« less
Multi-wavelength seds of Herschel-selected galaxies in the cosmos field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.
2013-12-01
We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties ofmore » our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from AGN heating.« less
Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching.
Maier, Thomas; Bach, David; Müllner, Paul; Hainberger, Rainer; Brückl, Hubert
2013-08-26
We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ruiying, E-mail: ryzhang2008@sinano.ac.cn; State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 China; Zhu, Jian
2015-12-15
We report on our fabrication and characterization of Al{sub 2}O{sub 3}/Si composite nanodome (CND) structures, which is composed of Si nanodome structures with a conformal cladding Al{sub 2}O{sub 3} layer to evaluate its optical and electrical performance when it is applied to thin film solar cells. It has been observed that by application of Al{sub 2}O{sub 3}thin film coating using atomic layer deposition (ALD) to the Si nanodome structures, both optical and electrical performances are greatly improved. The reflectivity of less than 3% over the wavelength range of from 200 nm to 2000 nm at an incident angle from 0°more » to 45° is achieved when the Al{sub 2}O{sub 3} film is 90 nm thick. The ultimate efficiency of around 27% is obtained on the CND textured 2 μm-thick Si solar cells, which is compared to the efficiency of around 25.75% and 15% for the 2 μm-thick Si nanodome surface-decorated and planar samples respectively. Electrical characterization was made by using CND-decorated MOS devices to measure device’s leakage current and capacitance dispersion. It is found the electrical performance is sensitive to the thickness of the Al{sub 2}O{sub 3} film, and the performance is remarkably improved when the dielectric layer thickness is 90 nm thick. The leakage current, which is less than 4x10{sup −9} A/cm{sup 2} over voltage range of from -3 V to 3 V, is reduced by several orders of magnitude. C-V measurements also shows as small as 0.3% of variation in the capacitance over the frequency range from 10 kHz to 500 kHz, which is a strong indication of surface states being fully passivated. TEM examination of CND-decorated samples also reveals the occurrence of SiO{sub x} layer formed between the interface of Si and the Al{sub 2}O{sub 3} film, which is thin enough that ensures the presence of field-effect passivation, From our theoretical and experimental study, we believe Al{sub 2}O{sub 3} coated CND structures is a truly viable approach to achieving higher device efficiency.« less
Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.
Hung, Yung-Jr; Lee, San-Liang; Coldren, Larry A
2010-03-29
Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.
NASA Astrophysics Data System (ADS)
Banerjee, Chandrima; Gruszecki, Pawel; Klos, Jaroslaw W.; Hellwig, Olav; Krawczyk, Maciej; Barman, Anjan
2017-07-01
By combining Brillouin light scattering and micromagnetic simulations, we studied the spin-wave (SW) dynamics of a Co/Pd thin film multilayer, which features a stripe domain structure at remanence. The periodic up and down domains are separated by corkscrew type domain walls. The existence of these domains causes a scattering of the otherwise bulk and surface SW modes, which form mode families, similar to a one-dimensional magnonic crystal. The dispersion relation and mode profiles of SWs are measured for the transferred wave vector parallel and perpendicular to the domain axis.
Reliable noninvasive measurement of blood gases
Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.; Alam, Mary K.
1994-01-01
Methods and apparatus for, preferably, determining noninvasively and in vivo at least two of the five blood gas parameters (i.e., pH, PCO.sub.2, [HCO.sub.3.sup.- ], PO.sub.2, and O.sub.2 sat.) in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 500 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of at least two of pH, [HCO.sub.3.sup.- ], PCO.sub.2 and a measure of oxygen concentration. The determined values are within the physiological ranges observed in blood containing tissue. The method also includes the steps of providing calibration samples, determining if the spectral intensities v. wavelengths from the tissue represents an outlier, and determining if any of the calibration samples represents an outlier. The determination of the unknown values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. Preferably, there is a separate calibration for each blood gas parameter being determined. The method can be utilized in a pulse mode and can also be used invasively. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.
Terahertz time-gated spectral imaging for content extraction through layered structures
Redo-Sanchez, Albert; Heshmat, Barmak; Aghasi, Alireza; Naqvi, Salman; Zhang, Mingjie; Romberg, Justin; Raskar, Ramesh
2016-01-01
Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers. PMID:27610926
Probing topological protection using a designer surface plasmon structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Fei; Gao, Zhen; Shi, Xihang
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
Probing topological protection using a designer surface plasmon structure
Gao, Fei; Gao, Zhen; Shi, Xihang; ...
2016-05-20
Topological photonic states, inspired by robust chiral edge states in topological insulators, have recently been demonstrated in a few photonic systems, including an array of coupled on-chip ring resonators at communication wavelengths. However, the intrinsic difference between electrons and photons determines that the 'topological protection' in time-reversal-invariant photonic systems does not share the same robustness as its counterpart in electronic topological insulators. Here in a designer surface plasmon platform consisting of tunable metallic sub-wavelength structures, we construct photonic topological edge states and probe their robustness against a variety of defect classes, including some common time-reversal-invariant photonic defects that can breakmore » the topological protection, but do not exist in electronic topological insulators. Furthermore, this is also an experimental realization of anomalous Floquet topological edge states, whose topological phase cannot be predicted by the usual Chern number topological invariants.« less
Experimental study of fs-laser induced sub-100-nm periodic surface structures on titanium.
Nathala, Chandra S R; Ajami, Ali; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Ganz, Thomas; Assion, Andreas; Husinsky, Wolfgang
2015-03-09
In this work the formation of laser-induced periodic surface structures (LIPSS) on a titanium surface upon irradiation by linearly polarized femtosecond (fs) laser pulses with a repetition rate of 1 kHz in air environment was studied experimentally. In particular, the dependence of high-spatial-frequency-LIPSS (HSFL) characteristics on various laser parameters: fluence, pulse number, wavelength (800 nm and 400 nm), pulse duration (10 fs - 550 fs), and polarization was studied in detail. In comparison with low-spatial-frequency-LIPSS (LSFL), the HSFL emerge at a much lower fluence with orientation perpendicular to the ridges of the LSFL. It was observed that these two types of LIPSS demonstrate different fluence, shot number and wavelength dependencies, which suggest their origin is different. Therefore, the HSFL formation mechanism cannot be described by the widely accepted interference model developed for describing LSFL formation.
Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.
Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy.more » Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianjun, E-mail: zhangjianjun7110@163.com; Chen, Jun; Li, Qiang
2015-03-15
Graphical abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. Results show that microwave heating time plays an important role in the formation of CuInS{sub 2} nanostructure phase. The SEM results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The UV–vis spectrum results indicated that the CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. The possible growth mechanism of CuInS{sub 2} nanorods was discussed. -more » Abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. The as-synthesized CuInS{sub 2} nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The influences of microwave heating time on the formation of CuInS{sub 2} phase were discussed. Ultraviolet–visible (UV–vis) and photoluminescence (PL) spectra were utilized to investigate the optical properties of CuInS{sub 2} nanorods. The results showed that the as-synthesized CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. PL spectrum of the as-synthesized CuInS{sub 2} nanorods displays an emission peak centered at 580 nm under excitation wavelength of 366 nm at room temperature. The possible growth mechanism of CuInS{sub 2} nanorods was discussed.« less
Vigo, Daniel E; Dominguez, Javier; Guinjoan, Salvador M; Scaramal, Mariano; Ruffa, Eduardo; Solernó, Juan; Siri, Leonardo Nicola; Cardinali, Daniel P
2010-04-19
Heart rate variability (HRV) is a complex signal that results from the contribution of different sources of oscillation related to the autonomic nervous system activity. Although linear analysis of HRV has been applied to sleep studies, the nonlinear dynamics of HRV underlying frequency components during sleep is less known. We conducted a study to evaluate nonlinear HRV within independent frequency components in wake status, slow-wave sleep (SWS, stages III or IV of non-rapid eye movement sleep), and rapid-eye-movement sleep (REM). The sample included 10 healthy adults. Polysomnography was performed to detect sleep stages. HRV was studied globally during each phase and then very low frequency (VLF), low frequency (LF) and high frequency (HF) components were separated by means of the wavelet transform algorithm. HRV nonlinear dynamics was estimated with sample entropy (SampEn). A higher SampEn was found when analyzing global variability (Wake: 1.53+/-0.28, SWS: 1.76+/-0.32, REM: 1.45+/-0.19, p=0.005) and VLF variability (Wake: 0.13+/-0.03, SWS: 0.19+/-0.03, REM: 0.14+/-0.03, p<0.001) at SWS. REM was similar to wake status regarding nonlinear HRV. We propose nonlinear HRV is a useful index of the autonomic activity that characterizes the different sleep-wake cycle stages. 2009 Elsevier B.V. All rights reserved.
Mavanji, Vijayakumar; Teske, Jennifer A.; Billington, Charles J.; Kotz, Catherine M.
2012-01-01
Objective Sleep-restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful-methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight-gain. We hypothesized that sleep disruption by a less-stressful method would increase body weight, and examined effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats. Design and Methods OR and SD rats (n=12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light-phase for 9 d. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS) and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake and body weight were documented. Results Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery-sleep during active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls Conclusions PSD by less-stressful means increases body weight in rats. Also, PSD during rest phase increases active period sleep. PMID:23666828
Marqués, Laura; Núñez-Córdoba, Jorge M; Aguado, Leyre; Pretel, Maider; Boixeda, Pablo; Nagore, Eduardo; Baselga, Eulalia; Redondo, Pedro
2015-01-01
Sturge-Weber syndrome (SWS) is characterized by port-wine stains (PWS) affecting the face, eyes, and central nervous system. Pulsed dye laser (PDL) is the standard treatment for PWS. Unfortunately, recurrence is frequent because of reformation and reperfusion of blood vessels. We sought to assess the clinical efficacy of topical rapamycin combined with PDL in PWS of patients with SWS. We conducted a phase II, randomized, double-blind, intraindividual placebo-controlled, clinical trial. We recruited 23 patients with SWS and facial PWS (12 women; median age 33 years, age range 17-65 years) from the University Clinic of Navarra, Spain. Four interventions were evaluated: placebo, PDL + placebo, rapamycin, and PDL + rapamycin. Clinical and histologic responses were evaluated using a chromatographic computerized system, spectrometry, and histologic analyses at 6, 12, and 18 weeks after the intervention. PDL + rapamycin yielded the lowest digital photographic image score and the lowest percentage of vessels in histologic analysis, and showed a statistically significant improvement compared with the other interventions. The treatment was generally well tolerated. PDL was only applied to the lateral parts of the PWS area. Topical rapamycin associated with PDL seems to be an effective treatment for PWS in patients with SWS. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.
Mavanji, Vijayakumar; Teske, Jennifer A; Billington, Charles J; Kotz, Catherine M
2013-07-01
Sleep restriction in humans increases risk for obesity, but previous rodent studies show weight loss following sleep deprivation, possibly due to stressful methods used to prevent sleep. Obesity-resistant (OR) rats exhibit consolidated-sleep and resistance to weight gain. It was hypothesized that sleep disruption by a less-stressful method would increase body weight, and the effect of partial sleep deprivation (PSD) on body weight in OR and Sprague-Dawley (SD) rats was examined. OR and SD rats (n = 12/group) were implanted with transmitters to record sleep/wake. After baseline recording, six SD and six OR rats underwent 8 h PSD during light phase for 9 days. Sleep was reduced using recordings of random noise. Sleep/wake states were scored as wakefulness (W), slow-wave-sleep (SWS), and rapid-eye-movement-sleep (REMS). Total number of transitions between stages, SWS-delta-power, food intake, and body weight were documented. Exposure to noise decreased SWS and REMS time, while increasing W time. Sleep-deprivation increased the number of transitions between stages and SWS-delta-power. Further, PSD during the rest phase increased recovery sleep during the active phase. The PSD SD and OR rats had greater food intake and body weight compared to controls PSD by less-stressful means increases body weight in rats. Also, PSD during the rest phase increases active period sleep. Copyright © 2012 The Obesity Society.
Line-source excitation of realistic conformal metasurface cloaks
NASA Astrophysics Data System (ADS)
Padooru, Yashwanth R.; Yakovlev, Alexander B.; Chen, Pai-Yen; Alù, Andrea
2012-11-01
Following our recently introduced analytical tools to model and design conformal mantle cloaks based on metasurfaces [Padooru et al., J. Appl. Phys. 112, 034907 (2012)], we investigate their performance and physical properties when excited by an electric line source placed in their close proximity. We consider metasurfaces formed by 2-D arrays of slotted (meshes and Jerusalem cross slots) and printed (patches and Jerusalem crosses) sub-wavelength elements. The electromagnetic scattering analysis is carried out using a rigorous analytical model, which utilizes the two-sided impedance boundary conditions at the interface of the sub-wavelength elements. It is shown that the homogenized grid-impedance expressions, originally derived for planar arrays of sub-wavelength elements and plane-wave excitation, may be successfully used to model and tailor the surface reactance of cylindrical conformal mantle cloaks illuminated by near-field sources. Our closed-form analytical results are in good agreement with full-wave numerical simulations, up to sub-wavelength distances from the metasurface, confirming that mantle cloaks may be very effective to suppress the scattering of moderately sized objects, independent of the type of excitation and point of observation. We also discuss the dual functionality of these metasurfaces to boost radiation efficiency and directivity from confined near-field sources.
Deering, Kathleen N; Rusch, Melanie; Amram, Ofer; Chettiar, Jill; Nguyen, Paul; Feng, Cindy X; Shannon, Kate
2014-01-01
Background Employing innovative mapping and spatial analyses of individual and neighborhood environment data, we examined the social, physical and structural features of overlapping street-based sex work and drug scenes and explored the utility of a ‘spatial isolation index’ in explaining exchanging sex for drugs and exchanging sex while high. Methods Analyses drew on baseline interview and geographic data (Jan/10-Oct/11) from a large prospective cohort of street and off-street sex workers (SWs) in Metropolitan Vancouver and external publically-available, neighborhood environment data. An index measuring ‘spatial isolation’ was developed from seven indicators measuring features of the built environment within 50m buffers (e.g. industrial or commercial zoning, lighting) surrounding sex work environments. Bivariate and multivariable logistic regression was used to examine associations between the two outcomes (exchanged sex for drugs; exchanged sex while high) and the index, as well as each individual indicator. Results Of 510 SWs, 328 worked in street-based/outdoor environments (e.g. streets, parks, alleys) and were included in the analyses. In multivariable analysis, increased spatial isolation surrounding street-based/outdoor SWs’ main places of servicing clients as measured with the index was significantly associated with exchanging sex for drugs. Exchanging sex for drugs was also significantly positively associated with an indicator of the built environment suggesting greater spatial isolation (increased percent of parks) and negatively associated with those suggesting decreased spatial isolation (increased percent commercial areas, increased count of lighting, increased building footprint). Exchanging sex while high was negatively associated with increased percent of commercial zones but this association was removed when adjusting for police harassment. Conclusions The results from our exploratory study highlight how built environment shapes risks within overlapping street-based sex work and drug scenes through the development of a novel index comprised of multiple indicators of the built environment available through publicly available data, This study informs the important role that spatially-oriented responses, such as safer-environment interventions, and structural responses, such as decriminalization of sex work can play in improving the health, safety and well-being of SWs. PMID:24433813
Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators.
Romero-García, V; Theocharis, G; Richoux, O; Merkel, A; Tournat, V; Pagneux, V
2016-01-19
Perfect absorption is an interdisciplinary topic with a large number of applications, the challenge of which consists of broadening its inherently narrow frequency-band performance. We experimentally and analytically report perfect and broadband absorption for audible sound, by the mechanism of critical coupling, with a sub-wavelength multi-resonant scatterer (SMRS) made of a plate-resonator/closed waveguide structure. In order to introduce the role of the key parameters, we first present the case of a single resonant scatterer (SRS) made of a Helmholtz resonator/closed waveguide structure. In both cases the controlled balance between the energy leakage of the several resonances and the inherent losses of the system leads to perfect absorption peaks. In the case of the SMRS we show that systems with large inherent losses can be critically coupled using resonances with large leakage. In particular, we show that in the SMRS system, with a thickness of λ/12 and diameter of λ/7, several perfect absorption peaks overlap to produce absorption bigger than 93% for frequencies that extend over a factor of 2 in audible frequencies. The reported concepts and methodology provide guidelines for the design of broadband perfect absorbers which could contribute to solve the major issue of noise reduction.