Subcellular controls of mercury trophic transfer to a marine fish.
Dang, Fei; Wang, Wen-Xiong
2010-09-15
Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies. 2010 Elsevier B.V. All rights reserved.
Noe, BD; Baste, CA; Bauer, GE
1977-01-01
Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517
Perry, J E; Ishii-Ohba, H; Stalvey, J R
1991-06-01
Key to the production of biologically active steroids is the enzyme 3 beta-hydroxysteroid dehydrogenase-isomerase. Some controversy has arisen concerning the subcellular distribution of this enzyme within steroidogenic cells. The distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase was assessed in subcellular fractions obtained from homogenates of rat, bovine, and mouse adrenal glands in two ways. The activity of 3 beta-hydroxysteroid dehydrogenase-isomerase was quantitated by measuring the conversion of radiolabeled pregnenolone to radiolabeled progesterone in an aliquot of each of the fractions obtained. The presence of the enzyme was assessed by performing Western analyses on aliquots of each of the fractions obtained with the use of a specific polyclonal antiserum against 3 beta-hydroxysteroid dehydrogenase-isomerase, the characterization of which is described. In control experiments, the degree of contamination of the fractions was determined by assessing the presence of known subcellular fraction markers with Western analysis. In the bovine and mouse adrenal glands, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to be localized solely in the microsomal fraction, while in the rat, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to have dual subcellular distribution: the microsomes and the inner mitochondrial membrane. We conclude that there is a species difference in the subcellular distribution of this important steroidogenic enzyme and that this species difference may be related to the steroidogenic pathway preferred in that species.
Rolland, N; Droux, M; Douce, R
1992-03-01
The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs.
Rolland, Norbert; Droux, Michel; Douce, Roland
1992-01-01
The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs. ImagesFigure 1 PMID:16668766
Site of Fluoride Accumulation in Navel Orange Leaves 1
Chang, Chong W.; Thompson, C. Ray
1966-01-01
Fluoride-polluted navel orange leaves, Citrus sinensis (Linn.) Osbeck, were fractionated into the subcellular components in hexane/carbon tetrachloride mixtures having various densities. Fluoride was determined at each fraction. Analyses were also made for the subcellular distribution of chlorophyll, nitrogen, and DNA to assess the extent of cross-contamination of each component. The fraction containing cell wall, nuclei, and partly broken cells apparently contained a major amount of fluoride. However, if allowance was made for the cross-contamination of chloroplasts and chloroplast fragments, the fraction of chloroplasts was found to be the site of the highest fluoride accumulation. When each particulate component was washed with water after drying, the combined washings contained more than 50% of the total fluoride of the isolated fractions. The usual method of subcellular fractionation with aqueous solvent shifted the major site of fluoride accumulation from the fraction of chloroplasts to that of the supernatant. PMID:5908632
High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.
Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee
2015-06-16
Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states.
2010-01-01
Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular components determines the accumulation of lipophilic compounds, and the diffusion rate is related to the concentration gradient established between cell walls and cell organelles. Our results offer insights into the transport mechanisms of PAHs in ryegrass roots and their diffusion in root cells. PMID:20860818
Kurz, Jonathan E; Rana, Annu; Parsons, J Travis; Churn, Severn B
2003-12-01
This study was performed to determine the effect of prolonged status epilepticus on the activity and subcellular location of a neuronally enriched, calcium-regulated enzyme, calcineurin. Brain fractions isolated from control animals and rats subjected to pilocarpine-induced status epilepticus were subjected to differential centrifugation. Specific subcellular fractions were tested for both calcineurin activity and enzyme content. Significant, status epilepticus-induced increases in calcineurin activity were found in homogenates, nuclear fractions, and crude synaptic membrane-enriched fractions isolated from both cortex and hippocampus. Additionally, significant increases in enzyme levels were observed in crude synaptic fractions as measured by Western analysis. Immunohistochemical studies revealed a status epilepticus-induced increase in calcineurin immunoreactivity in dendritic structures of pyramidal neurons of the hippocampus. The data demonstrate a status epilepticus-induced increase in calcineurin activity and concentration in the postsynaptic region of forebrain pyramidal neurons.
Distribution of physostigmine and metabolites in brain subcellular fractions of the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, B.F.; Somani, S.M.
1987-10-26
The distribution of /sup 3/H-physostigmine (Phy) has been studied in the rat brain subcellular fractions at various time intervals following i.v. injection. /sup 3/H-Phy or its metabolites rapidly accumulate into the cytoplasm of cells and penetrates the intracellular compartments. Kinetic studies of the subcellular distribution of radioactivity (RA) per gm of rat brain following i.v. injection of /sup 3/H-Phy show peak concentrations at 30 min in all subcellular fractions with the exception of mitochondria. In the mitochondrial fraction the RA levels continue to rise from 4682 +/- 875 DPM/gm at 5 min to 27,474 +/- 2825 DPM/gm at 60 minmore » (P < .05). The cytosol contains the highest RA: 223,341 +/- 21,044 DPM/gm at 30 min which declined to 53,475 +/- 3756 DPM/gm at 60 min. RA in synaptosome, microsomes and myelin increases from 5 to 30 min, and declines at 60 min. In vitro studies did not show a greater uptake of RA by the mitochondrial or synaptosomal fractions. The finding of relatively high concentrations of RA in the mitochondrial fraction at 60 min increases the likelihood that Phy or its metabolites could interfere with the physiological function of the organelle. 21 references, 1 figure, 2 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, J.T.; Cook, H.W.; Spence, M.W.
1985-03-01
To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-(1-/sup 3/H)galactose or (/sup 3/H)GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellularmore » membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous (/sup 3/H)GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid.« less
2012-01-01
Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels. PMID:22534096
Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noele; Selck, Henriette
2016-01-01
The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched 65Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus handle the two Cu forms differently. However, longer-term exposures are suggested in order to clearly highlight differences in the subcellular distribution of these two Cu forms.
2005-01-01
Abstract The aim of this study was to evaluate the effect of 3 Brucella ovis subcellular protein fractions: Outer membrane (OMP), inner membrane (IMP), and cytoplasm (CP), on cellular immune response by in vitro production of interleukin (IL)-2, IL-4, and interferon (IFN)-γ. Each fraction was inoculated 3 times into Balb/c mice, primary cultures of mice spleen cells were done, and these were then stimulated with the fractions. Culture supernatants were collected at 24, 48, 72, 96, and 120 h postinoculation. Cytokine concentration was measured by Duoset-enzyme-linked immunosorbent assay (ELISA). The OMP fraction induced highest cellular immune response of 1000 pg/mL of IL-2 at 24 h, which decreased to < 100 pg/mL by 96 h. The IL-2 response for the IMP fraction was low at 24 h, but exceeded that of the OMP fraction at 72, 96, and 120 h. The CP showed a poor IL response. Regarding the IFN-γ production, OMP and IMP induced a high response at 120 h. These results open the possibility for the use of B. ovis outer and inner membrane proteins as a subcellular vaccine. PMID:15745223
Cartwright, I J; Higgins, J A
1992-01-01
We have developed a method for measurement of apolipoprotein (apo) B-48 and apo B-100 in blood and subcellular fractions of rat liver based on SDS/PAGE followed by quantitative immunoblotting using 125I-Protein A. Standard curves were prepared in each assay using apo B prepared from total rat lipoproteins by extraction with tetramethylurea. Subcellular fractions (rough and smooth endoplasmic reticulum and Golgi fractions) were prepared from rat liver and separated into membrane and cisternal-content fractions. For quantification, membrane fractions were solubilized in Triton X-100, and the apo B was immunoprecipitated before separation by SDS/PAGE and immunoblotting. Content fractions were concentrated by ultrafiltration and separated by SDS/PAGE without immunoprecipitation. Quantification of apo B in subcellular fractions and detection of apo B by immunoblotting yielded consistent results. In all fractions apo B-48 was the major form, accounting for approximately three-quarters of the total apo B. By using marker enzymes as internal standards, it was calculated that all of the apo B was recovered in the endoplasmic reticulum and Golgi fractions, with approximately 80% of each form of apo B in the endoplasmic reticulum. More than 90% of the apo B of the rough- and smooth-endoplasmic-reticulum fractions was membrane-bound, whereas approx. 33 and 15% of the apo B of the cis-enriched Golgi fractions and trans-enriched Golgi fractions respectively were membrane-bound. Images Fig. 1. Fig. 3. Fig. 4. PMID:1637294
Bednarska, Agnieszka J; Świątek, Zuzanna
2016-11-01
By studying the internal compartmentalization of metals in different subcellular fractions we are able to better understand the mechanisms of metal accumulation in organisms and the transfer of metals through trophic chains. We investigated the internal compartmentalization of cadmium (Cd) and zinc (Zn) in mealworm beetle (Tenebrio molitor) larvae by breeding them in flour contaminated with either Cd at 100, 300 and 600mgkg(-1), or Zn at 1000 and 2000mgkg(-1). We separated the cellular components of the larvae into 3 fractions: the S1 or cytosolic fraction containing organelles, heat-sensitive and heat-stable proteins, the S2 or cellular debris fraction and the G or metal-rich granule fraction. The concentration of Cd and Zn in each fraction was measured at 0, 7, 14 and 21 days of being fed the flour. The concentration of Cd in the flour affected the concentration of Cd measured in each larval subcellular fraction (p≤0.0001), while the concentration of Zn in the flour only affected the Zn concentration in the S2 and G fractions (p≤0.02). Both Cd and Zn concentrations in mealworms remained relatively constant during the exposure (days 7, 14 and 21) in all three fractions, but the Cd concentrations were much higher than those found in larvae before the exposure (day 0). The concentration of Cd in the flour, however, did not affect the percentage of Cd in the S1 fraction. The contribution of Cd in the G fraction to the total Cd amount was similar (30-40%) in all Cd treatments. The percentage of Zn in all three fractions was not affected by the concentration of Zn in the flour and the relative contributions of each subcellular fraction to the total burden of Zn remained generally constant for both control and treated larvae. In general, larvae sequestered approximately 30% of Cd and Zn in the S1 fraction, which is important for the transport of metals to higher trophic levels in a food web. Copyright © 2016 Elsevier Inc. All rights reserved.
Mercury speciation and subcellular distribution in experimentally dosed and wild birds.
Perkins, Marie; Barst, Benjamin D; Hadrava, Justine; Basu, Niladri
2017-12-01
Many bird species are exposed to methylmercury (MeHg) at levels shown to cause sublethal effects. Although MeHg sensitivity and assimilation can vary among species and developmental stages, the underlying reasons (such as MeHg toxicokinetics) are poorly understood. We investigated Hg distribution at the tissue and cellular levels in birds by examining Hg speciation in blood, brain, and liver and Hg subcellular distribution in liver. We used MeHg egg injection of white leghorn chicken (Gallus gallus domesticus), sampled at 3 early developmental stages, and embryonic ring-billed gulls (Larus delawarensis) exposed to maternally deposited MeHg. The percentage of MeHg (relative to total Hg [THg]) in blood, brain, and liver ranged from 94 to 121%, indicating little MeHg demethylation. A liver subcellular partitioning procedure was used to determine how THg was distributed between potentially sensitive and detoxified compartments. The distributions of THg among subcellular fractions were similar among chicken time points, and between embryonic chicken and ring-billed gulls. A greater proportion of THg was associated with metal-sensitive fractions than detoxified fractions. Within the sensitive compartment, THg was found predominately in heat-denatured proteins (∼42-46%), followed by mitochondria (∼15-18%). A low rate of MeHg demethylation and high proportion of THg in metal-sensitive subcellular fractions further indicates that embryonic and hatchling time points are Hg-sensitive developmental stages, although further work is needed across a range of additional species and life stages. Environ Toxicol Chem 2017;36:3289-3298. © 2017 SETAC. © 2017 SETAC.
Beatty, W L; Russell, D G
2000-12-01
Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome.
Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille
2011-02-08
Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.
Lorenzatto, Karina R; Kim, Kyunggon; Ntai, Ioanna; Paludo, Gabriela P; Camargo de Lima, Jeferson; Thomas, Paul M; Kelleher, Neil L; Ferreira, Henrique B
2015-11-06
Echinococcus granulosus is the causative agent of cystic hydatid disease, a neglected zoonosis responsible for high morbidity and mortality. Several molecular mechanisms underlying parasite biology remain poorly understood. Here, E. granulosus subcellular fractions were analyzed by top down and bottom up proteomics for protein identification and characterization of co-translational and post-translational modifications (CTMs and PTMs, respectively). Nuclear and cytosolic extracts of E. granulosus protoscoleces were fractionated by 10% GELFrEE and proteins under 30 kDa were analyzed by LC-MS/MS. By top down analysis, 186 proteins and 207 proteoforms were identified, of which 122 and 52 proteoforms were exclusively detected in nuclear and cytosolic fractions, respectively. CTMs were evident as 71% of the proteoforms had methionine excised and 47% were N-terminal acetylated. In addition, in silico internal acetylation prediction coupled with top down MS allowed the characterization of 9 proteins differentially acetylated, including histones. Bottom up analysis increased the overall number of identified proteins in nuclear and cytosolic fractions to 154 and 112, respectively. Overall, our results provided the first description of the low mass proteome of E. granulosus subcellular fractions and highlighted proteoforms with CTMs and PTMS whose characterization may lead to another level of understanding about molecular mechanisms controlling parasitic flatworm biology.
Chen, Qiqing; Hu, Xialin; Yin, Daqiang; Wang, Rui
2016-06-01
The potential uptake and trophic transfer ability of nanoparticles (NPs) in aquatic organisms have not been well understood yet. There has been an increasing awareness of the subcellular fate of NPs in organisms, but how the subcellular distribution of NPs subsequently affects the trophic transfer to predator remains to be answered. In the present study, the food chain from Scenedesmus obliquus to Daphnia magna was established to simulate the trophic transfer of fullerene aqueous suspension (nC60). The nC60 contaminated algae were separated into three fractions: cell wall (CW), cell organelle (CO), and cell membrane (CM) fractions, and we investigated the nC60 uptake amounts and trophic transfer efficiency to the predator through dietary exposure to algae or algal subcellular fractions. The nC60 distribution in CW fraction of S. obliquus was the highest, following by CO and CM fractions. nC60 uptake amounts in D. magna were found to be mainly relative to the NPs' distribution in CW fraction and daphnia uptake ability from CW fraction, whereas the nC60 trophic transfer efficiency (TE) were mainly in accordance with the transfer ability of NPs from the CO fraction. CW fed group possessed the highest uptake amount, followed by CO and CM fed groups, but the presence of humic acid (HA) significantly decreased the nC60 uptake from CW fed group. The CO fed groups acquired high TE values for nC60, while CM fed groups had low TE values. Moreover, even though CW fed group had a high TE value; it decreased significantly with the presence of HA. This study contributes to the understanding of fullerene NPs' dietary exposure to aquatic organisms, suggesting that NPs in different food forms are not necessarily equally trophically available to the predator. Copyright © 2016 Elsevier Inc. All rights reserved.
Beaumelle, Léa; Gimbert, Frédéric; Hedde, Mickaël; Guérin, Annie; Lamy, Isabelle
2015-07-01
Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. Copyright © 2015 Elsevier B.V. All rights reserved.
Kostal, Vratislav; Arriaga, Edgar A.
2011-01-01
Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532
Beatty, Wandy L.; Russell, David G.
2000-01-01
Considerable effort has focused on the identification of proteins secreted from Mycobacterium spp. that contribute to the development of protective immunity. Little is known, however, about the release of mycobacterial proteins from the bacterial phagosome and the potential role of these molecules in chronically infected macrophages. In the present study, the release of mycobacterial surface proteins from the bacterial phagosome into subcellular compartments of infected macrophages was analyzed. Mycobacterium bovis BCG was surface labeled with fluorescein-tagged succinimidyl ester, an amine-reactive probe. The fluorescein tag was then used as a marker for the release of bacterial proteins in infected macrophages. Fractionation studies revealed bacterial proteins within subcellular compartments distinct from mycobacteria and mycobacterial phagosomes. To identify these proteins, subcellular fractions free of bacteria were probed with mycobacterium-specific antibodies. The fibronectin attachment protein and proteins of the antigen 85-kDa complex were identified among the mycobacterial proteins released from the bacterial phagosome. PMID:11083824
Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre
2016-01-01
Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3′ UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type–specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3′ UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. PMID:26546131
Araújo, Olinda; Pereira, Patrícia; Cesário, Rute; Pacheco, Mário; Raimundo, Joana
2015-06-15
Mercury is a recognized harmful pollutant in aquatic systems but still little is known about its sub-cellular partitioning in wild fish. Mercury concentrations in liver homogenate (whole organ load) and in six sub-cellular compartments were determined in wild Liza aurata from two areas - contaminated (LAR) and reference. Water and sediment contamination was also assessed. Fish from LAR displayed higher total mercury (tHg) organ load as well as in sub-cellular compartments than those from the reference area, reflecting environmental differences. However, spatial differences in percentage of tHg were only observed for mitochondria (Mit) and lysosomes plus microsomes (Lys+Mic). At LAR, Lys+Mic exhibited higher levels of tHg than the other fractions. Interestingly, tHg in Mit, granules (Gran) and heat-denaturable proteins was linearly correlated with the whole organ. Low tHg concentrations in heat stable proteins and Gran suggests that accumulated levels might be below the physiological threshold to activate those detoxification fractions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Li; Zhang, Haoqiang; Song, Yingying; Yang, Yurong; Chen, Hui; Tang, Ming
2017-01-01
The effect of arbuscular mycorrhizal fungus on the subcellular compartmentalization and chemical forms of lead (Pb) in Pb tolerance plants was assessed in a pot experiment in greenhouse conditions. We measured root colonization, plant growth, photosynthesis, subcellular compartmentalization and chemical forms of Pb in black locust (Robinia pseudoacacia L.) seedlings inoculated with Funneliformis mosseae isolate (BGC XJ01A) under a range of Pb treatments (0, 90, 900, and 3000 mg Pb kg-1 soil). The majority of Pb was retained in the roots of R. pseudoacacia under Pb stress, with a significantly higher retention in the inoculated seedlings. F. mosseae inoculation significantly increased the proportion of Pb in the cell wall and soluble fractions and decreased the proportion of Pb in the organelle fraction of roots, stems, and leaves, with the largest proportion of Pb segregated in the cell wall fraction. F. mosseae inoculation increased the proportion of inactive Pb (especially pectate- and protein-integrated Pb and Pb phosphate) and reduced the proportion of water-soluble Pb in the roots, stems, and leaves. The subcellular compartmentalization of Pb in different chemical forms was highly correlated with improved plant biomass, height, and photosynthesis in the inoculated seedlings. This study indicates that F. mosseae could improve Pb tolerance in R. pseudoacacia seedlings growing in Pb polluted soils. PMID:28443111
Sun, Jianling; Luo, Liqiang
2018-06-22
Studying the accumulation position and forms of heavy metals (HMs) in organisms and cells is helpful to understand the transport process and detoxification mechanism. As typical HMs, lead (Pb) subcellular content, localization, and speciation of corn subcellular fractions were studied by a series of technologies, including transmission electron microscopy, inductively coupled plasma mass spectrometry, and X-ray absorption near edge structure. The results revealed that the electrodense granules of Pb were localized in the cell wall, intercellular space, and plasma membranes. About 71% Pb was localized at the cell wall and soluble fraction. In cell walls, the total amount of pyromorphite and Pb carbonate was about 80% and the remaining was Pb stearate. In the nuclear and chloroplast fraction, which demonstrated significant changes, major speciations were Pb sulfide (72%), basic Pb carbonate (16%), and Pb stearate (12%). Pb is blocked by cell walls as pyromorphite and Pb carbonate sediments and compartmentalized by vacuoles, which both play an inportant role in cell detoxification. Besides, sulfur-containing compounds form inside the cells.
A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions.
Enrich, C; Bachs, O; Evans, W H
1988-01-01
The distribution of calmodulin-binding polypeptides in various rat liver subcellular fractions was investigated. Plasma-membrane, endosome, Golgi and lysosome fractions were prepared by established procedures. The calmodulin-binding polypeptides present in the subcellular fractions were identified by using an overlay technique after transfer from gels to nitrocellulose sheets. Distinctive populations of calmodulin-binding polypeptides were present in all the fractions examined except lysosomes. A major 115 kDa calmodulin-binding polypeptide of pI 4.3 was located to the endosome subfractions, and it emerges as a candidate endosome-specific protein. Partitioning of endosome fractions between aqueous and Triton X-114 phases indicated that the calmodulin-binding polypeptide was hydrophobic. Major calmodulin-binding polypeptides of 140 and 240 kDa and minor polypeptides of 40-60 kDa were present in plasma membranes. The distribution of calmodulin in the various endosome and plasma-membrane fractions was also analysed, and the results indicated that the amounts were high compared with those in the cytosol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3214436
Horai, Sawako; Furukawa, Tatsuhiko; Ando, Tetsuo; Akiba, Suminori; Takeda, Yasuo; Yamada, Katsushi; Kuno, Katsuji; Abe, Shintaro; Watanabe, Izumi
2008-06-01
In a previous study, we showed that Hg accumulated to high levels in the liver of the Javan mongoose (Herpestes javanicus), a terrestrial mammal that lives on Amamioshima Island, Japan. This suggests a sophisticated mechanism of hepatic Hg detoxication. Assay of the subcellular localization of Hg and the expression of protective enzymes provides important clues for elucidating the mechanism of Hg detoxication. In the present study, the concentrations of 11 elements (Mg, Cr, Mn, Fe, Cu, Zn, Se, Rb, Cd, total Hg [T-Hg] and organic Hg [O-Hg], and Pb) were determined in the liver and in five liver subcellular fractions (plasma membrane, mitochondria, nuclei, microsome, and cytosol) of this species. As the T-Hg level increased, T-Hg markedly distributed to the plasma membrane. The T-Hg levels in all subcellular fractions correlated with Se levels. Although the T-Hg level in the microsomal fraction was relatively low, the ratio of O-Hg to T-Hg was significantly lower in the microsomes than in the other fractions. Significant positive correlations were found between the level of glutathione-S-transferase-pi, a marker of oxidative stress, and the O-Hg and T-Hg levels, but the correlation was better with O-Hg than with T-Hg. Western blot analysis of thioredoxin reductase 2 (TrxR2), a protein involved in protecting cells from mitochondrial oxidative stress, showed that the level of TrxR2 correlated with that of T-Hg. High TrxR2 levels may be one mechanism by which the Javan mongoose attenuates the toxicity of the high Hg levels present in the liver.
Cheng, Behling; Al-Shammari, Fatema H; Ghader, Isra'a A; Sequeira, Fatima; Thakkar, Jitendra; Mathew, Thazhumpal C
2017-07-01
Adrenal gland reportedly expresses many nuclear receptors that are known to heterodimerize with retinoid-X-receptor (RXR) for functions, but the information regarding the glandular RXR is not adequate. Studies of rat adrenal homogenate by Western blotting revealed three RXR proteins: RXRα (55kDa), RXRβ (47kDa) and RXR (56kDa). RXRγ was not detectable. After fractionation, RXRα was almost exclusively localized in the nuclear fraction. In comparison, substantial portions of RXRβ and RXR were found in both nuclear and post-nuclear particle fractions, suggesting genomic and non-genomic functions. Cells immunostained for RXRα were primarily localized in zona fasciculata (ZF) and medulla, although some stained cells were found in zona glomerulosa (ZG) and zona reticularis (ZR). In contrast, cells immunostained for RXRβ were concentrated principally in ZG, although some stained cells were seen in ZR, ZF, and medulla (in descending order, qualitatively). Analysis of adrenal lipid extracts by LC/MS did not detect 9-cis-retinoic acid (a potent RXR-ligand) but identified all-trans retinoic acid. Since C20 and C22 polyunsaturated fatty acids (PUFAs) can also activate RXR, subcellular availabilities of unesterified fatty acids were investigated by GC/MS. As results, arachidonic acid (C20:4), adrenic acid (C22:4), docosapentaenoic acid (C22:5), and cervonic acid (C22:6) were detected in the lipids extracted from each subcellular fraction. Thus, the RXR-agonizing PUFAs are available in all the main subcellular compartments considerably. The present findings not only shed light on the adrenal network of RXRs but also provide baseline information for further investigations of RXR heterodimers in the regulation of adrenal steroidogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kopyl'chuk, G P; Buchkovskaia, I M
2014-01-01
The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.
Intracellular And Subcellular Partitioning Of Nickel In Aureococcus Anophagefferens
NASA Astrophysics Data System (ADS)
Wang, B.; Axe, L.; Wei, L.; Bagheri, S.; Michalopoulou, Z.
2008-12-01
Brown tides are caused by Aureococcus anophagefferens, a species of Pelagophyceae, and have been observed in NY/NJ waterways effecting ecosystems by attenuating light, changing water color, reducing eelgrass beds, decreasing shellfisheries, and further impacting the food web by reducing phytoplankton. Although the impact of macronutrients and iron on A. anophagefferens has been well studied, contaminants, and specifically trace metals have not. In long-term experiments designed to investigate the growth and toxicity, Cd, Cu, Ni, and Zn exposure was evaluated over 10-13 to 10-7 M for the free metal ion. While growth was inhibited or terminated from exposure to Cd and Cu, nickel addition ([Ni2+]: 10-11.23 to 10-10.23 M) promoted A. anophagefferens growth. Short-term experiments are being conducted to better understand mechanistically nickel speciation and distribution. Both total intracellular and subcellular metal concentrations are being assessed with radio-labeled 63Ni. Subcellular fractions are defined as metal-sensitive fractions (MSF) constituting organelles, cell debris, and heat-denatured protein [HDP] and biologically detoxified metal comprising heat-stabilized protein [HSP] and metal-rich granules [MRG]. Based on subcellular distribution, aqueous [Ni2+] concentrations, and A. anophagefferens growth rates, potential reaction pathways promoting A. anophagefferens growth can be addressed.
Taupin, P; Ben-Ari, Y; Roisin, M P
1994-05-02
Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.
Kurz, Jonathan E; Hamm, Robert J; Singleton, Richard H; Povlishock, John T; Churn, Severn B
2005-06-28
Calcineurin, a neuronally enriched, calcium-stimulated phosphatase, is an important modulator of many neuronal processes, including several that are physiologically related to the pathology of traumatic brain injury. The effect of moderate, central fluid percussion injury on the subcellular distribution of this important neuronal enzyme was examined. Animals were sacrificed at several time points post-injury and calcineurin distribution in subcellular fractions was assayed by Western blot analysis and immunohistochemistry. A persistent increase in calcineurin concentration was observed in crude synaptoplasmic membrane-containing fractions. In cortical fractions, calcineurin immunoreactivity remained persistently increased for 2 weeks post-injury. In hippocampal homogenates, calcineurin immunoreactivity remained increased for up to 4 weeks. Finally, immunohistochemical analysis of hippocampal slices revealed increased staining in the apical dendrites of CA1 neurons. The increased staining was greatest in magnitude 24 h post-injury; however, staining was still more intense than control 4 weeks post-injury. The data support the conclusion that fluid percussion injury results in redistribution of the enzyme in the rat forebrain. These changes have broad physiological implications, possibly resulting in altered cellular excitability or a greater likelihood of neuronal cell death.
Identification of an immunogenic protein of Actinobacillus seminis that is present in microvesicles
2006-01-01
Abstract Actinobacillus seminis is a gram-negative bacterium of the Pasteurellaceae family that is involved in ovine epididymitis. Looking for a protein specific to this species, we determined the protein profile of subcellular fractions of A. seminis (American Type Culture Collection number 15768): proteins from the outer membrane (OMPs), inner membrane (IMPs), and cytoplasm (CPs). These profiles provide the first data, to our knowledge, regarding subcellular fractions of A. seminis. In the OMP fraction, we identified a protein with a molecular mass of 75 kDa that proved to be immunogenic and apparently specific for A. seminis. This conclusion was based on the reaction of hyperimmune serum of rabbits inoculated with whole cells of A. seminis that was tested against sonicated complete cells of reference strains and field isolates of Brucella ovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. No protein of these bacteria cross-reacted with the 75-kDa protein of A. seminis. Furthermore, when each type of hyperimmune serum was tested against the sonicated cells and each of the subcellular fractions of A. seminis, it did not recognize the A. seminis 75-kDa protein. We also isolated and identified this protein in microvesicles released to the culture supernatant. The results suggest that the 75-kDa protein could be used to establish a diagnostic test specific for ovine epididymitis caused by A. seminis. PMID:16548331
Stekhoven, Daniel J; Omasits, Ulrich; Quebatte, Maxime; Dehio, Christoph; Ahrens, Christian H
2014-03-17
Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled us to distinguish cytoplasmic, peripheral inner membrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion. The work presented here describes the first prokaryotic proteome-wide subcellular localization (SCL) dataset for the emerging pathogen B. henselae (Bhen). The study indicates that suitable subcellular fractionation experiments combined with straight-forward computational analysis approaches assessing the proportion of spectral counts observed in different subcellular fractions are powerful for determining the predominant SCL of a large percentage of the experimentally observed proteins. This includes numerous cases where in silico prediction methods do not provide any prediction. Avoiding a treatment with harsh conditions, cytoplasmic proteins tend to co-fractionate with proteins of the inner membrane fraction, indicative of close functional interactions. The spectral count proportion (SCP) of total membrane versus cytoplasmic fractions allowed us to obtain a good indication about the relative proximity of individual protein complex members to the inner membrane. Using principal component analysis and k-nearest neighbor approaches, we were able to extend the percentage of proteins with a predominant experimental localization to over 90% of all expressed proteins and identified a set of at least 74 outer membrane (OM) proteins. In general, OM proteins represent a rich source of candidates for the development of urgently needed new therapeutics in combat of resurgence of infectious disease and multi-drug resistant bacteria. Finally, by comparing the data from two infection biology relevant conditions, we conceptually explore methods to identify and visualize potential candidates that may partially change their SCL in these different conditions. The data are made available to researchers as a SCL compendium for Bhen and as an assistance in further improving in silico SCL prediction algorithms. Copyright © 2014 Elsevier B.V. All rights reserved.
Xin, Juan; Zhao, Xiaohu; Tan, Qiling; Sun, Xuecheng; Hu, Chengxiao
2017-11-01
Cadmium (Cd) absorption and accumulation vary greatly not only among plant species but also among cultivars within the same species. In order to better understand the mechanisms of Cd absorption, transportation and distribution, we examined the differences of Cd absorption, translocation, subcellular distribution and chemical forms between L19, a Cd-tolerant genotype, and H4, a Cd-sensitive genotype, using kinetic analysis and soil culture experiment. Kinetic assays showed that the different Cd concentrations between the two cultivars might be ascribed to root absorption and translocation from root to shoot. The investigations of subcellular distribution and chemical forms verified that Cd concentrations of all subcellular fractions in H4 were all higher than in L19. Meanwhile, most of the Cd was associated with cell walls in the root of H4, but the Cd in the root of L19 and leaf of the two cultivars was mainly stored in soluble fraction, which could be one possible mechanism of tolerance to Cd toxicity. In addition, Cd fractions extracted by 1M NaCl and 2% HAC were predominant in root and leaf of both cultivars and the concentrations and proportions extracted by water and 80% ethanol in root and 1M NaCl in leaf were all higher in H4 than in L19. These results indicate that the Cd in H4 is more active than L19, which could be responsible for the sensitivity of H4 to Cd damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Bioavailability of biologically sequestered cadmium and the implications of metal detoxification
Wallace, W.G.; Lopez, G.R.
1997-01-01
The deposit-feeding oligochaete Limnodrilus hoffmeisteri possesses metallothionein-like proteins and metal-rich granules for storing and detoxifying cadmium (Cd). In this study we investigated the bioavailability of Cd sequestered within this oligochaete by conducting feeding experiments with 109Cd-labeled oligochaetes and the omnivorous grass shrimp Palaemonetes pugio. We also make predictions on Cd trophic transfer based on oligochaete subcellular Cd distributions and absorption efficiencies of Cd by shrimp Cytosol [including metallothionein-like proteins and other proteins) and a debris fraction (including metal-rich granules and tissue fragments) isolated from homogenized 109Cd-labeled oligochaetes were embedded in gelatin and fed to shrimp. The 109Cd absorption efficiencies of shrimp fed these subcellular fractions were 84.8 and 48.6%, respectively, and were significantly different (p < 0.001), indicating that 109Cd bound in these fractions was not equally available to a predator. Mass balance equations demonstrate that shrimp fed whole worms absorb 61.5% of the ingested 109Cd, an absorption efficiency similar to that obtained experimentally (57.1%). Furthermore, the majority of the absorbed 109Cd comes from the fraction containing metallothionein-like proteins (i.e. cytosol). 109Cd absorbed from the debris fraction probably comes from the digestion of tissue fragments, rather than metal-rich granules. The ecological significance of these findings is that prey detoxification mechanisms may mediate the bioreduction or bioaccumulation of toxic metals along fond chains by altering metal bioavailability. Another important finding is that trophic transfer of metal can be predicted based on the subcellular metal distribution of prey.
Bitirim, Ceylan Verda; Tuncay, Erkan; Turan, Belma
2018-06-01
The cellular control of glucose uptake and glycogen metabolism in mammalian tissues is in part mediated through the regulation of protein-serine/threonine kinases including CK2. Although it participates to several cellular signaling processes, however, its subcellular localization is not well-defined while some documents mentioned its localization change under pathological conditions. The activation/phosphorylation of some proteins including Zn 2+ -transporter ZIP7 in cardiomyocytes is controlled with CK2α, thereby, inducing changes in the level of intracellular free Zn 2+ ([Zn 2+ ] i ). In this regard, we aimed to examine cellular localization of CK2α in cardiomyocytes and its possible subcellular migration under hyperglycemia. Our confocal imaging together with biochemical analysis in isolated sarco(endo)plasmic reticulum [S(E)R] and nuclear fractions from hearts have shown that CK2α localized highly to S(E)R and Golgi and weakly to nuclear fractions in physiological condition. However, it can migrate from nuclear fractions to S(E)R under hyperglycemia. This migration can further underlie phosphorylation of a target protein ZIP7 as well as some endogenous kinases and phosphatases including PKA, CaMKII, and PP2A. We also have shown that CK2α activation is responsible for hyperglycemia-associated [Zn 2+ ] i increase in diabetic heart. Therefore, our present data demonstrated, for the first time, the physiological relevance of CK2α in cellular control of Zn 2+ -distribution via inducing ZIP7 phosphorylation and activation of these above endogenous actors in hyperglycemia/diabetes-associated cardiac dysfunction. Moreover, our present data also emphasized the multi-subcellular compartmental localizations of CK2α and a tightly regulation of these localizations in cardiomyocytes. Therefore, taken into consideration of all data, one can emphasize the important role of the subcellular localization of CK2α as a novel target-pathway for understanding of diabetic cardiomyopathy.
Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H
1983-01-01
The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.
A draft map of the mouse pluripotent stem cell spatial proteome
Christoforou, Andy; Mulvey, Claire M.; Breckels, Lisa M.; Geladaki, Aikaterini; Hurrell, Tracey; Hayward, Penelope C.; Naake, Thomas; Gatto, Laurent; Viner, Rosa; Arias, Alfonso Martinez; Lilley, Kathryn S.
2016-01-01
Knowledge of the subcellular distribution of proteins is vital for understanding cellular mechanisms. Capturing the subcellular proteome in a single experiment has proven challenging, with studies focusing on specific compartments or assigning proteins to subcellular niches with low resolution and/or accuracy. Here we introduce hyperLOPIT, a method that couples extensive fractionation, quantitative high-resolution accurate mass spectrometry with multivariate data analysis. We apply hyperLOPIT to a pluripotent stem cell population whose subcellular proteome has not been extensively studied. We provide localization data on over 5,000 proteins with unprecedented spatial resolution to reveal the organization of organelles, sub-organellar compartments, protein complexes, functional networks and steady-state dynamics of proteins and unexpected subcellular locations. The method paves the way for characterizing the impact of post-transcriptional and post-translational modification on protein location and studies involving proteome-level locational changes on cellular perturbation. An interactive open-source resource is presented that enables exploration of these data. PMID:26754106
Determining the Localization of Carbohydrate Active Enzymes Within Gram-Negative Bacteria.
McLean, Richard; Inglis, G Douglas; Mosimann, Steven C; Uwiera, Richard R E; Abbott, D Wade
2017-01-01
Investigating the subcellular location of secreted proteins is valuable for illuminating their biological function. Although several bioinformatics programs currently exist to predict the destination of a trafficked protein using its signal peptide sequence, these programs have limited accuracy and often require experimental validation. Here, we present a systematic method to fractionate gram-negative cells and characterize the subcellular localization of secreted carbohydrate active enzymes (CAZymes). This method involves four parallel approaches that reveal the relative abundance of protein within the cytoplasm, periplasm, outer membrane, and extracellular environment. Cytoplasmic and periplasmic proteins are fractionated by lysis and osmotic shock, respectively. Outer membrane bound proteins are determined by comparing cells before and after exoproteolytic digestion. Extracellularly secreted proteins are collected from the media and concentrated. These four different fractionations can then be probed for the presence and quantity of target proteins using immunochemical methods such as Western blots and ELISAs, or enzyme activity assays.
Zhou, Li; Wei, Chunsheng; Huang, Wei; Bennett, David A; Dickson, Dennis W; Wang, Rui; Wang, Dengshun
2013-01-01
We investigated the subcellular distribution of NEP protein and activity in brains of human individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI) and AD dementia, as well as double transgenic mice and human neuronal cell line treated with Aβ and 4-hydroxy-2-nonenal (HNE). Total cortical neuronal-related NEP was significantly increased in MCI compared to NCI brains. NeuN was decreased in both MCI and AD, consistent with neuronal loss occurring in MCI and AD. Negative relationship between NEP protein and NeuN in MCI brains, and positive correlation between NEP and pan-cadherin in NCI and MCI brains, suggesting the increased NEP expression in NCI and MCI might be due to membrane associated NEP in non-neuronal cells. In subcellular extracts, NEP protein decreased in cytoplasmic fractions in MCI and AD, but increased in membrane fractions, with a significant increase in the membrane/cytoplasmic ratio of NEP protein in AD brains. By contrast, NEP activity was decreased in AD. Similar results were observed in AD-mimic transgenic mice. Studies of SH-SY5Y neuroblastoma showed an up-regulation of NEP protein in the cytoplasmic compartment induced by HNE and Aβ; however, NEP activity decreased in cytoplasmic fractions. Activity of NEP in membrane fractions increased at 48 hours and then significantly decreased after treatment with HNE and Aβ. The cytoplasmic/membrane ratio of NEP protein increased at 24 hours and then decreased in both HNE and Aβ treated cells. Both HNE and Aβ up-regulate NEP expression, but NEP enzyme activity did not show the same increase, possibly indicating immature cytoplasmic NEP is less active than membrane associated NEP. These observations indicate that modulation of NEP protein levels and its subcellular location influence the net proteolytic activity and this complex association might participate in deficiency of Aβ degradation that is associated with amyloid deposition in AD. PMID:24093058
Studies on the site of biosynthesis of acidic glycoproteins of guinea-pig serum
Simkin, J. L.; Jamieson, J. C.
1967-01-01
1. Studies were carried out to determine the cellular and subcellular site of biosynthesis of components of fraction I, an α-globulin fraction containing acidic glycoproteins isolated from guinea-pig serum. l-[U-14C]Leucine or -valine and d-[1-14C]glucosamine were used as precursors. 2. A lag of about 10min. occurred before appreciable label appeared in fraction I of serum after injection of leucine or glucosamine. Label in fraction I after 60min. labelling with glucosamine was present almost entirely in hexosamine and sialic acid. 3. Site of synthesis was investigated by studies in vivo up to 17min. after injection of precursor. Particulate subcellular fractions isolated from liver, spleen and kidney or homogenates of the latter two tissues were extracted with Lubrol. Extracts were allowed to react by double diffusion with antisera to fraction I or to subfractions isolated from it, and gels were subsequently subjected to radioautography. With either amino acid or glucosamine as precursor, only extracts of the microsome fraction of liver formed precipitin lines that were appreciably radioactive. 4. The role of the microsome fraction of liver in the synthesis of these glycoproteins was confirmed by immunological studies after incubation of liver slices with leucine or glucosamine. Incorporation of leucine was also investigated in a cell-free microsome system. 5. Material was also precipitated from certain Lubrol extracts of liver microsomes by direct addition of antiserum and its radioactivity measured. Degradation of material thus precipitated and use of heterologous immune systems showed that labelling of precipitin lines represented biosynthesis. 6. A study of extraction procedures suggested that the substances present in the microsome fraction of liver that react with specific antisera are associated with membranous structures. 7. Most or all precipitin lines formed by Lubrol extracts of liver microsomes interacted with precipitin lines given by guinea-pig serum or fraction I, immunological identity being apparent with some lines. The microsome-bound substances thus represent serum glycoproteins or precursors of them. 8. The distribution of label in various tissues and in the protein of subcellular fractions of liver after administration of [14C]glucosamine to the guinea pig was also studied. Some variation in results obtained with liver was found depending on the fractionation medium used. Images(a)(b)(a)(b) PMID:4962164
Armstrong, D G
1979-01-01
1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties. PMID:518548
Zhou, Chuifan; Huang, Meiying; Li, Ying; Luo, Jiewen; Cai, Li Ping
2016-11-01
The effects of increasing concentrations of lead (Pb) on Pb accumulation, subcellular distribution, ultrastructure, photosynthetic characteristics, antioxidative enzyme activity, malondialdehyde content, and phytochelatin contents were investigated in Neyraudia reynaudiana seedlings after a 21-day exposure. A Pb analysis at the subcellular level showed that the majority of Pb in the roots was associated with the cell wall fraction, followed by the soluble fraction. In contrast, the majority of the Pb in the leaves was located in the soluble fraction based on transmission electron microscopy and energy dispersive X-ray analyses. Furthermore, high Pb concentrations adversely affected N. reynaudiana cellular structure. The changes in enzyme activity suggested that the antioxidant system plays an important role in eliminating or alleviating Pb toxicity, both in the roots and leaves of N. reynaudiana. Additionally, the phytochelatin contents in the roots and leaves differed significantly between Pb-spiked treatments and control plants. Our results provide strong evidence that cell walls restrict Pb uptake into the protoplasm and establish an important protective barrier. Subsequent vacuolar compartmentalization in leaves could isolate Pb from other substances in the cell and minimize Pb toxicity in other organelles over time. These results also demonstrated that the levels of antioxidant enzymes and phytochelatin in leaves and roots are correlated with Pb toxicity. These detoxification mechanisms promote Pb tolerance in N. reynaudiana.
NASA Astrophysics Data System (ADS)
Wigle, Jeffrey C.; Castellanos, Cherry C.; Denton, Michael L.; Holwitt, Eric A.
2014-02-01
Cells in a tissue culture model for laser eye injury exhibit increased resistance to a lethal pulse of 2.0-μm laser radiation if the cells are first exposed to 2.88 J/cm2 of red light 24 hr prior to the lethal laser exposure. Changes in expression of various genes associated with apoptosis have been observed, but the biochemical link between light absorption and gene expression remains unknown. Cytochome c oxidase (CCOX), in the electron transport chain, is the currentlyhypothesized absorber. Absorption of the red light by CCOX is thought to facilitate displacement of nitric oxide (NO) by O2 in the active site, increasing cellular respiration and intracellular ATP. However, NO is also an important regulator and mediator of numerous physiological processes in a variety of cell and tissue types that is synthesized from l-arginine by NO synthases. In an effort to determine the relative NO contributions from these competing pathways, we measured NO levels in whole cells and subcellular fractions, with and without exposure to red light, using DAF-FM, a fluorescent dye that stoichiometrically reacts with NO. Red light induced a small, but consistently reproducible, increase in fluorescence intensity in whole cells and some subcellular fractions. Whole cells exhibited the highest overall fluorescence intensity followed by (in order) cytosolic proteins, microsomes, then nuclei and mitochondria.
Chaplin, David D.; Wedner, H. James; Parker, Charles W.
1979-01-01
Phosphorylation of endogenous proteins in subcellular fractions of human peripheral-blood lymphocytes was studied by one- and two-dimensional polyacrylamide-gel electrophoresis. Studies using extensively purified subcellular fractions indicated that the endogenous phosphorylating activity in the particulate fractions was derived primarily from the plasma membrane. Electrophoresis of 32P-labelled subcellular fractions in two dimensions [O'Farrell (1975) J. Biol. Chem. 250, 4007–4021] provided much greater resolution of the endogenous phosphoproteins than electrophoresis in one dimension, facilitating their excision from gels for quantification of 32P content. More than 100 cytoplasmic and 20 plasma-membrane phosphorylated species were observed. Phosphorylation of more than 10 cytoplasmic proteins was absolutely dependent on cyclic AMP. In the plasma membrane, cyclic AMP-dependent phosphoproteins were observed with mol.wts. of 42000, 42000, 80000 and 90000 and pI values of 6.1, 6.3, 6.25 and 6.5 respectively. Phosphorylation of endogenous cytoplasmic and plasma-membrane proteins was rapid with t½=5–12s at 25°C. Between 40 and 70% of the 32P was recovered as phosphoserine and phosphothreonine when acid hydrolysates of isolated plasma-membrane phosphoproteins were analysed by high-voltage paper electrophoresis. The presence of cyclic AMP-dependent protein kinase and endogenous phosphate-acceptor proteins in the plasma membranes of lymphocytes provides a mechanism by which these cells might respond to plasma-membrane pools of cyclic AMP generated in response to stimulation by mitogens or physiological modulators of lymphocyte function. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4. PMID:228657
Turski, W A; Lachowicz, L; Koziołkiewicz, W
1985-01-01
Peptidase(s) activity of different subcellular fractions isolated from cortex, hippocampus, midbrain, thalamus with hypothalamus, cerebellum and medulla oblongata exerted against less than Glu SP6-11 (3H-Phen8) was evaluated in "low-ionic" and similar (in composition) to both extracellular and intracellular conditions. The incubation of less than Glu SP6-11 with different fractions leaves the hexapeptide undegraded in the studied conditions in most cases. Peptidases activity results in the formation of the first of all C-terminal and exceptionally "internal" labelled products. Labelled N-terminal products were not seen. The most effective degradation in vitro of less than Glu SP6-11 takes place, in the majority of cases, in "low ionic" conditions when compared to those similar to extra or intracellular ones. The biggest total (per 1 g of wet mass) and specific activities against less than Glu SP6-11 can be shown in the hippocampus areas.
Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen
2017-01-01
Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat ( Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn 10 ) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate ( V max ), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N 7.5 ) treatment were higher, but the Michaelis constant ( K m ) and minimum equilibrium concentrations ( C min ) in this treatment were lower than those in the low (N 0.05 ) and high (N 15 ) N treatments, when Zn was supplied at a high level (Zn 10 ). Meanwhile, there were no pronounced differences in the above root traits between the N 0.05 Zn 0 and N 7.5 Zn 10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism.
Nie, Zhaojun; Zhao, Peng; Wang, Jia; Li, Jinfeng; Liu, Hongen
2017-01-01
Nitrogen (N) is critical for zinc (Zn) absorption into plant roots; this in turn allows for Zn accumulation and biofortification of grain in winter wheat (Triticum aestivum L.), an important food crop. However, little is known about root morphology and subcellular Zn distribution in response to N treatment at different levels of Zn supply. In this study, two nutrient solution culture experiments were conducted to examine Zn accumulation, Zn absorption kinetics, root morphology, and Zn subcellular distribution in wheat seedlings pre-cultured with different N concentrations. The results showed positive correlations between N and Zn concentrations, and N and Zn accumulation, respectively. The findings suggested that an increase in N supply enhanced root absorption and the root-to-shoot transport of Zn. Nitrogen combined with the high Zn (Zn10) treatment increased the Zn concentration and consequently its accumulation in both shoots and roots. The maximum influx rate (Vmax), root length, surface area, and volume of 14-d-old seedlings, and root growth from 7 to 14 d in the medium N (N7.5) treatment were higher, but the Michaelis constant (Km) and minimum equilibrium concentrations (Cmin) in this treatment were lower than those in the low (N0.05) and high (N15) N treatments, when Zn was supplied at a high level (Zn10). Meanwhile, there were no pronounced differences in the above root traits between the N0.05Zn0 and N7.5Zn10 treatments. An increase in N supply decreased Zn in cell walls and cell organelles, while it increased Zn in the root soluble fraction. In leaves, an increase in N supply significantly decreased Zn in cell walls and the soluble fraction, while it increased Zn in cell organelles under Zn deficiency, but increased Zn distribution in the soluble fraction under medium and high Zn treatments. Therefore, a combination of medium N and high Zn treatments enhanced Zn absorption, apparently by enhancing Zn membrane transport and stimulating root development in winter wheat. An increase in N supply was beneficial in terms of achieving a balanced distribution of Zn subcellular fractions, thus enhancing Zn translocation to shoots, while maintaining normal metabolism. PMID:28868060
Barst, Benjamin D; Rosabal, Maikel; Campbell, Peter G C; Muir, Derek G C; Wang, Xioawa; Köck, Günter; Drevnick, Paul E
2016-05-01
We sampled landlocked Arctic char (Salvelinus alpinus) from four lakes (Small, 9-Mile, North, Amituk) in the Canadian High Arctic that span a gradient of mercury contamination. Metals (Hg, Se, Tl, and Fe) were measured in char tissues to determine their relationships with health indices (relative condition factor and hepatosomatic index), stable nitrogen isotope ratios, and liver histology. A subcellular partitioning procedure was employed to determine how metals were distributed between potentially sensitive and detoxified compartments of Arctic char livers from a low- and high-mercury lake (Small Lake and Amituk Lake, respectively). Differences in health indices and metal concentrations among char populations were likely related to differences in feeding ecology. Concentrations of Hg, Se, and Tl were highest in the livers of Amituk char, whereas concentrations of Fe were highest in Small and 9-Mile char. At the subcellular level we found that although Amituk char had higher concentrations of Tl in whole liver than Small Lake char, they maintained a greater proportion of this metal in detoxified fractions, suggesting an attempt at detoxification. Mercury was found mainly in potentially sensitive fractions of both Small and Amituk Lake char, indicating that Arctic char are not effectively detoxifying this metal. Histological changes in char livers, mainly in the form of melano-macrophage aggregates and hepatic fibrosis, could be linked to the concentrations and subcellular distributions of essential or non-essential metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kuniyasu, Akihiko; Kaneko, Kazuyoshi; Kawahara, Kohichi; Nakayama, Hitoshi
2003-09-25
Cardiac ATP-sensitive K(+) (K(ATP)) channels are proposed to contribute to cardio-protection and ischemic preconditioning. Although mRNAs for all subunits of K(ATP) channels (Kir6.0 and sulfonylurea receptors SURs) were detected in hearts, subcellular localization of their proteins and the subunit combination are not well elucidated. We address these questions in rat hearts, using anti-peptide antibodies raised against each subunit. By immunoblot analysis, all of the subunits were detected in microsomal fractions including sarcolemmal membranes, while they were not detected in mitochondrial fractions at all. Immunoprecipitation and sucrose gradient sedimentation of the digitonin-solubilized microsomes indicated that Kir6.2 exclusively assembled with SUR2A. The molecular mass of the Kir6.2-SUR2A complex estimated by sucrose sedimentation was 1150 kDa, significantly larger than the calculated value for (Kir6.2)(4)-(SUR2A)(4), suggesting a potential formation of micellar complex with digitonin but no indication of hybrid channel formation under the conditions. These findings provide additional information on the structural and functional relationships of cardiac K(ATP) channel proteins involving subcellular localization and roles for cardioprotection and ischemic preconditioning.
Zhang, Wen; Lin, Kuangfei; Zhou, Jian; Zhang, Wei; Liu, Lili; Zhang, Qianqian
2014-01-01
Changes in cadmium (Cd) accumulation, distribution, and chemical form in rice seedling in the joint presence of different concentrations of sulfur (S) remain almost unknown. Therefore, the indoor experiments were performed to determine the accumulation, sub-cellular distribution and chemical forms of Cd under three S levels in rice seedling for the first time. The result showed that Cd accumulation in rice roots was more than in shoots. Sub-cellular distribution of Cd in rice roots and shoots indicated that the largest proportion of Cd accumulated in cell walls and soluble fractions. As S supply increased, the proportion of Cd in cell walls reduced, while it increased in the soluble fractions. The majority of Cd existed in inorganic form, and then gradually changed to organic forms that included pectates and proteins with increased S supply. The results showed that S supply significantly influenced Cd accumulation, distribution, and chemical forms, suggesting that S might provide the material for the synthesis of sulfhydryl protein and thereby affect Cd stress on plants. These observations provided a basic understanding of potential ecotoxicological effects of joint Cd and S exposure in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Velez, Cátia; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa
2016-08-01
The main goal of the present study was to assess accumulation, tolerance and sub-cellular partitioning of As, Hg, Cd and Pb in Venerupis corrugata. Results showed an increase of elements accumulation in V. corrugata with the increase of exposure. However, organisms presented higher capacity to accumulate Hg, Cd and Pb (BCF ≥ 12.8) than As (BCF ≤ 2.1) and higher accumulation rate for Cd and Pb than for Hg and As. With the increase of Hg exposure concentrations clams tended to increase the amount of metal bound to metal-sensitive fractions, which may explain the mortality recorded at the highest exposure concentration. Cd sub-cellular partitioning showed that with the increase of exposure concentrations V. corrugata increased the amount of metal in the cellular debris fraction, probably bound to the cellular membranes which explain the mortality recorded at the highest concentration. Results on As partitioning demonstrated that most of the metalloid was associated with fractions in the biologically detoxified metal compartment (BDM). Since high mortality was observed in clams exposed to As our results may indicate that this strategy was not enough to prevent clams from toxic effects and mortality occurred. When exposed to Pb most of the metal was in the BDM compartment, but in this case the metal was mostly in the metal-rich granules fraction which seemed to be efficient in preventing clams from toxicity, and no mortality was recorded. Our study further revealed that As and Hg were the most available elements to be biomagnified through the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thyroid states regulate subcellular glucose phosphorylation activity in male mice
Martins Peçanha, Flavia Letícia; dos Santos, Reinaldo Sousa
2017-01-01
The thyroid hormones (THs), triiodothyronine (T3) and thyroxine (T4), are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK) is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 µg/g, i.p. during 21 days) mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10), gastrocnemius (369.2% ± 112.4, n = 10) and heart (142.2% ± 13.6, n = 10) muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 µg/g, i.p.) did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways. PMID:28483784
He, Shanying; Wu, Qiuling; He, Zhenli
2013-11-01
The effects of growth-promoting hormone diethyl aminoethyl hexanoate (DA-6) and EDTA, either alone or in combination applied to original soil or lead (Pb) spiked soil on Pb phytoextraction, subcellular distribution and chemical forms in Lolium perenne were studied. EDTA addition alone significantly reduced plant biomass though it increased Pb accumulation (P<0.05). Foliar spray of DA-6 alone increased both plant biomass and Pb accumulation (P<0.05), with 10μM DA-6 being the most effective. DA-6 combined with EDTA compensated the adverse effect of the latter on plant growth, and resulted in a synergistic effect on Pb uptake and translocation, with the maximum accumulation occurring in the EDTA+10μM DA-6 treatment. At the subcellular level, about 35-66% of Pb was distributed in cell wall and 21-42% in soluble fraction, with a minority present in cellular organelles fraction. EDTA addition alone increased the proportion of Pb in soluble and cellular organelles fraction, while DA-6 detoxified Pb in plant by storing additional Pb in cell wall, and 10μM DA-6 was the most effective. Of the total Pb in plant shoot, 27-52% was NaCl extractable, 22-47% HAc extractable, followed by other fractions. Contrary to EDTA, DA-6 significantly decreased Pb migration in plant. These results suggest that Pb fixation by pectates and proteins in cell wall and compartmentalization by vacuole might be responsible for Pb detoxification in plant, and the combined use of EDTA and 10μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Pb contaminated soil. Copyright © 2013 Elsevier Ltd. All rights reserved.
Membrane-association of mRNA decapping factors is independent of stress in budding yeast
Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy
2016-01-01
Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487
Membrane-association of mRNA decapping factors is independent of stress in budding yeast.
Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy
2016-05-05
Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation.
Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, ChangHyuk, E-mail: netbuyer@hanmail.net; Tak, Hyosun, E-mail: chuberry@naver.com; Rho, Mina, E-mail: minarho@hanyang.ac.kr
2014-03-28
Highlights: • piRNA sequences were mapped to human mitochondrial (mt) genome. • We inspected small RNA-Seq datasets from somatic cell mt subcellular fractions. • Piwi and piRNA transcripts are present in mammalian somatic cancer cell mt fractions. - Abstract: Piwi-interacting RNAs (piRNAs) are 26–31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWImore » and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies.« less
Ho, Yin Ying; Penno, Megan; Perugini, Michelle; Lewis, Ian; Hoffmann, Peter
2012-01-01
Labeling of exposed cell surface proteins of live cells using CyDye DIGE fluor minimal dyes is an efficient strategy for cell surface proteome profiling and quantifying differentially expressed proteins in diseases. Here we describe a strategy to evaluate a two-step detergent-based protein fractionation method using live cell labeling followed by visualization of the fluorescently labeled cell surface proteins and fractionated proteins within a single 2D gel.
Functional characterization of Autographa californica multiple nucleopolyhedrovirus gp16 (ac130)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ming; Huang, Cui; Qian, Duo-Duo
2014-09-15
To investigate the function of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp16, multiple gp16-knockout and repair mutants were constructed and characterized. No obvious difference in productivity of budded virus, DNA synthesis, late gene expression and morphogenesis was observed between gp16-knockout and repair viruses, but gp16 deletion resulted in six hours of lengthening in ST{sub 50} to the third instar Spodoptera exigua larvae in bioassays. GP16 was fractionated mainly in the light membrane fraction, by subcellular fractionation. A GP16-EGFP fusion protein was predominantly localized close around the nuclear membrane in infected cells, being coincident with formation of the vesicles associated with themore » nuclear membrane, which hosted nucleocapsids released from the nucleus. These data suggest that gp16 is not required for viral replication, but may be involved in membrane trafficking associated with the envelopment/de-envelopment of budded viruses when they cross over the nuclear membrane and pass through cytoplasm. - Highlights: • gp16 knockout and repair mutants of AcMNPV were constructed and characterized. • AcMNPV gp16 is not essential to virus replication. • Deletion of gp16 resulted in time lengthening to kill S. exigua larvae. • GP16 was localized close around the nuclear membrane of infected cells. • GP16 was fractionated in the light membrane fraction in subcellular fractionation.« less
Gimbert, Frédéric; Geffard, Alain; Guédron, Stéphane; Dominik, Janusz; Ferrari, Benoit J D
2016-02-01
Along with the growing body of evidence that total internal concentration is not a good indicator of toxicity, the Critical Body Residue (CBR) approach recently evolved into the Tissue Residue Approach (TRA) which considers the biologically active portion of metal that is available to contribute to the toxicity at sites of toxic action. For that purpose, we examined total mercury (Hg) bioaccumulation and subcellular fractionation kinetics in fourth stage larvae of the midge Chironomus riparius during a four-day laboratory exposure to Hg-spiked sediments and water. The debris (including exoskeleton, gut contents and cellular debris), granule and organelle fractions accounted only for about 10% of the Hg taken up, whereas Hg concentrations in the entire cytosolic fraction rapidly increased to approach steady-state. Within this fraction, Hg compartmentalization to metallothionein-like proteins (MTLP) and heat-sensitive proteins (HSP), consisting mostly of enzymes, was assessed in a comparative manner by two methodologies based on heat-treatment and centrifugation (HT&C method) or size exclusion chromatography separation (SECS method). The low Hg recoveries obtained with the HT&C method prevented accurate analysis of the cytosolic Hg fractionation by this approach. According to the SECS methodology, the Hg-bound MTLP fraction increased linearly over the exposure duration and sequestered a third of the Hg flux entering the cytosol. In contrast, the HSP fraction progressively saturated leading to Hg excretion and physiological impairments. This work highlights several methodological and biological aspects to improve our understanding of Hg toxicological bioavailability in aquatic invertebrates. Copyright © 2015 Elsevier B.V. All rights reserved.
Wada, Fumitaka; Ogawa, Atsuko; Hanai, Yuko; Nakamura, Akio; Maki, Masatoshi; Hitomi, Kiyotaka
2004-11-01
Transglutaminase (TGase) is an enzyme that modifies proteins by crosslinking or polyamination. Physarum polycephalum, an acellular slime mold, is the evolutionally lowest organism that has a mammalian-type transglutaminase. We have cloned a cDNA for Physarum polycephalum TGase (PpTGB), homologous to a previously identified TGase (PpTGA), whose sequence is similar to that of mammalian TGases. PpTGB encodes a primary sequence identical to that of PpTGA except for 11 amino acid residues at the N-terminus. Reverse transcription-PCR and Western blotting analyses showed that both PpTGA and PpTGB are expressed in microplasmodia and macroplasmodia during their life cycle, except for in sporangia. For biochemical characterization, we carried out the ectopical expressions of PpTGA and PpTGB in Dictyostelium discoideum. Subcellular fractionation of these Dictyostelium cells showed that the expressed PpTGA, but not PpTGB, localizes to the membrane fraction. Furthermore, in Physarum, subcellular fractionation and immunostaining indicated specific localization at the plasma membrane in macroplasmodia, while the localization was entirely cytoplasmic in microplasmodia.
Wang, Minmin; Toda, Kyoko; Maeda, Hiroshi A
2016-12-01
Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Subcellular distribution of trace elements in the liver of sea turtles.
Anan, Yasumi; Kunito, Takashi; Sakai, Haruya; Tanabe, Shinsuke
2002-01-01
Subcellular distribution of Cu, Zn, Se, Rb, Mo, Ag, Cd and Pb was determined in the liver of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Japan. Also, hepatic cytosol from sea turtles was applied on a Sephadex G-75 column and elution profiles of trace elements were examined. Copper, Zn, Se, Rb, Ag and Cd were largely present in cytosol in the liver of both species, indicating that cytosol was the significant site for the accumulation of these elements in sea turtles. In contrast, Mo and Pb were accumulated specifically in nuclear and mitochondrial fraction and microsomal fraction, respectively. Gel filtration analysis showed that Cu, Zn, Ag and Cd were bound to metallothionein (MT) in the cytosol of sea turtles. To our knowledge, this is the first report on the association of trace elements with MT in sea turtles.
Wallace, W.G.; Lee, B.-G.; Luoma, S.N.
2003-01-01
Many aspects of metal accumulation in aquatic invertebrates (i.e. toxicity, tolerance and trophic transfer) can be understood by examining the subcellular partitioning of accumulated metal. In this paper, we use a compartmentalization approach to interpret the significance of metal, species and size dependence in the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis. Of special interest is the compartmentalization of metal as metal-sensitive fractions (MSF) (i.e. organelles and heat-sensitive proteins, termed 'enzymes' hereafter) and biologically detoxified metal (BDM) (i.e. metallothioneins [MT] and metal-rich granules [MRG]). Clams from San Francisco Bay, CA, were exposed for 14 d to seawater (20??? salinity) containing 3.5 ??g l-1 Cd and 20.5 ??g l-1 Zn, including 109Cd and 65Zn as radiotracers. Uptake was followed by 21 d of depuration. The subcellular partitioning of metal within clams was examined following exposure and loss. P. amurensis accumulated ???22x more Cd and ???2x more Zn than M. balthica. MT played an important role in the storage of Cd in P. amurensis, while organelles were the major site of Zn accumulation. In M. balthica, Cd and Zn partitioned similarly, although the pathway of detoxification was metal-specific (MRG for Cd; MRG and MT for Zn). Upon loss, M. balthica depurated ???40% of Cd with Zn being retained; P. amurensis retained Cd and depurated Zn (???40%). During efflux, Cd and Zn concentrations in the MSF compartment of both clams declined with metal either being lost from the animal or being transferred to the BDM compartment. Subcellular compartmentalization was also size-dependent, with the importance of BDM increasing with clam size; MSF decreased accordingly. We hypothesized that progressive retention of metal as BDM (i.e. MRG) with age may lead to size dependency of metal concentrations often observed in some populations of M. balthica.
A fraction enriched in rat hippocampal mossy fibre synaptosomes contains trophic activities.
Taupin, P; Roisin, M P; Ben-Ari, Y; Barbin, G
1994-06-27
Subcellular fractions prepared from the rat hippocampus, were assessed for the presence of trophic activities. The cytosol of synaptosomal fractions induced mitotic reinitiation of confluent 3T3 fibroblasts. The synaptosomal fraction, enriched in mossy fibre terminals, contained the highest mitotic activity. The mitogenic activity was heat and trypsin sensitive, suggesting that polypeptides are involved. The cytosol of the mossy fibre synaptosomal fraction promoted neuritic outgrowth of PC 12 cells and embryonic hippocampal neurones in primary cultures. These results suggest that mossy fibres contain both mitogenic and neurotrophic activities. These factors could participate in mossy fibre sprouting that occur following brief seizures or experimental lesions.
Deguchi, T; Amano, E; Nakane, M
1976-11-01
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.
Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis
NASA Technical Reports Server (NTRS)
Dammann, Christian; Ichida, Audrey; Hong, Bimei; Romanowsky, Shawn M.; Hrabak, Estelle M.; Harmon, Alice C.; Pickard, Barbara G.; Harper, Jeffrey F.; Evans, M. L. (Principal Investigator)
2003-01-01
Calcium-dependent protein kinases (CDPKs) are specific to plants and some protists. Their activation by calcium makes them important switches for the transduction of intracellular calcium signals. Here, we identify the subcellular targeting potentials for nine CDPK isoforms from Arabidopsis, as determined by expression of green fluorescent protein (GFP) fusions in transgenic plants. Subcellular locations were determined by fluorescence microscopy in cells near the root tip. Isoforms AtCPK3-GFP and AtCPK4-GFP showed a nuclear and cytosolic distribution similar to that of free GFP. Membrane fractionation experiments confirmed that these isoforms were primarily soluble. A membrane association was observed for AtCPKs 1, 7, 8, 9, 16, 21, and 28, based on imaging and membrane fractionation experiments. This correlates with the presence of potential N-terminal acylation sites, consistent with acylation as an important factor in membrane association. All but one of the membrane-associated isoforms targeted exclusively to the plasma membrane. The exception was AtCPK1-GFP, which targeted to peroxisomes, as determined by covisualization with a peroxisome marker. Peroxisome targeting of AtCPK1-GFP was disrupted by a deletion of two potential N-terminal acylation sites. The observation of a peroxisome-located CDPK suggests a mechanism for calcium regulation of peroxisomal functions involved in oxidative stress and lipid metabolism.
Ishihara, Shoichiro; Tomimitsu, Hiroyuki; Fujigasaki, Hiroto; Saito, Fumiaki; Mizusawa, Hidehiro
2008-03-01
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is a key molecule in the pathogenesis of distal myopathy with rimmed vacuoles (DMRV) and hereditary inclusion body myopathy (HIBM) and almost all such patients have some mutations in GNE. However, subcellular localization of GNE and the mechanism of muscular damage have not been clarified. A rabbit polyclonal antibody for GNE was prepared. Immunohistochemistry was performed using anti-GNE and anti-nuclear protein antibodies. Western blotting with subcellular fractionated proteins was performed to determine subcellular localization of GNE. The sizes of myonuclei were quantified in muscle biopsies from patients with DMRV and amyotrophic lateral sclerosis (ALS). In DMRV muscles, immunohistochemistry identified GNE in sarcoplasm and specifically in myonuclei and rimmed vacuoles (RV). Nuclear proteins were also found in RVs. Immunohistochemistry showed colocalization of GNE and emerin in C2C12 cells. Western blotting revealed the presence of GNE in nuclear fractions of human embryonic kidney (HEK) 293T cells. The mean size of myonuclei of DMRV was significantly larger than that of ALS. GNE is present in myonuclei near nuclear membrane. Our results suggest that myonuclei are involved in RV formation in DMRV, and that mutant GNE in myonuclei seems to play some role in this process.
Quantitative Proteomic Profiling of Low-Dose Ionizing Radiation Effects in a Human Skin Model
Hengel, Shawna M.; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.
2014-01-01
To assess responses to low-dose ionizing radiation (LD-IR) exposures potentially encountered during medical diagnostic procedures, nuclear accidents or terrorist acts, a quantitative proteomic approach was used to identify changes in protein abundance in a reconstituted human skin tissue model treated with 0.1 Gy of ionizing radiation. To improve the dynamic range of the assay, subcellular fractionation was employed to remove highly abundant structural proteins and to provide insight into radiation-induced alterations in protein localization. Relative peptide quantification across cellular fractions, control and irradiated samples was performing using 8-plex iTRAQ labeling followed by online two-dimensional nano-scale liquid chromatography and high resolution MS/MS analysis. A total of 107 proteins were detected with statistically significant radiation-induced change in abundance (>1.5 fold) and/or subcellular localization compared to controls. The top biological pathways identified using bioinformatics include organ development, anatomical structure formation and the regulation of actin cytoskeleton. From the proteomic data, a change in proteolytic processing and subcellular localization of the skin barrier protein, filaggrin, was identified, and the results were confirmed by western blotting. This data indicate post-transcriptional regulation of protein abundance, localization and proteolytic processing playing an important role in regulating radiation response in human tissues. PMID:28250387
Sokolova, I M; Ringwood, A H; Johnson, C
2005-09-10
Cadmium distribution was studied in different subcellular fractions of gill and hepatopancreas tissues of eastern oysters Crassostrea virginica. Oysters were exposed for up to 21 days to low sublethal Cd concentrations (25 microg L(-1)). Gill and hepatopancreas tissues were sampled and divided into organelle fractions and cytosol by differential centrifugation. Organelle content of different fractions was verified by activities of marker enzymes, citrate synthase and acid phosphatase for mitochondria and lysosomes, respectively. In both tissue types, there was a significant accumulation of cadmium in cytosol reaching 230-350 ng mg(-1) protein. Among organelles, mitochondria were the main target for Cd bioaccumulation in gills (250-300 ng mg(-1) protein), whereas in hepatopancreas tissues, the highest cadmium accumulation occurred in lysosomes (90-94 ng mg(-1) protein). Although 75-83% of total cadmium burden was associated with the cytosol reflecting high volume fraction of this compartment, Cd concentrations in organelle fractions reached levels that could cause dysfunction of mitochondria and lysosomes. Organ- and organelle-specific patterns of cadmium bioaccumulation support our previous in vivo studies, which showed adverse effects of cadmium exposures on mitochondrial oxidation in gills and on the lysosomal system of hepatopancreas. This may have important implications for the development of biomarkers of effect for heavy metals and for understanding the mechanisms of toxic effects of metals.
He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong
2010-03-24
In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.
Vey, Martin; Pilkuhn, Susanne; Wille, Holger; Nixon, Randal; DeArmond, Stephen J.; Smart, Eric J.; Anderson, Richard G. W.; Taraboulos, Albert; Prusiner, Stanley B.
1996-01-01
Results of transgenetic studies argue that the scrapie isoform of the prion protein (PrPSc) interacts with the substrate cellular PrP (PrPC) during conversion into nascent PrPSc. While PrPSc appears to accumulate primarily in lysosomes, caveolae-like domains (CLDs) have been suggested to be the site where PrPC is converted into PrPSc. We report herein that CLDs isolated from scrapie-infected neuroblastoma (ScN2a) cells contain PrPC and PrPSc. After lysis of ScN2a cells in ice-cold Triton X-100, both PrP isoforms and an N-terminally truncated form of PrPC (PrPC-II) were found concentrated in detergent-insoluble complexes resembling CLDs that were isolated by flotation in sucrose gradients. Similar results were obtained when CLDs were purified from plasma membranes by sonication and gradient centrifugation; with this procedure no detergents are used, which minimizes artifacts that might arise from redistribution of proteins among subcellular fractions. The caveolar markers ganglioside GM1 and H-ras were found concentrated in the CLD fractions. When plasma membrane proteins were labeled with the impermeant reagent sulfo-N-hydroxysuccinimide-biotin, both PrPC and PrPSc were found biotinylated in CLD fractions. Similar results on the colocalization of PrPC and PrPSc were obtained when CLDs were isolated from Syrian hamster brains. Our findings demonstrate that both PrPC and PrPSc are present in CLDs and, thus, support the hypothesis that the PrPSc formation occurs within this subcellular compartment. PMID:8962161
Uptake and subcellular distributions of cadmium and selenium in transplanted aquatic insect larvae.
Rosabal, Maikel; Ponton, Dominic E; Campbell, Peter G C; Hare, Landis
2014-11-04
We transplanted larvae of the phantom midge Chaoborus punctipennis from a lake having lower concentrations of Cd and Se (Lake Dasserat) to a more contaminated lake (Lake Dufault) located near a metal smelter in Rouyn-Noranda, Quebec. Transplanted individuals were held in mesh mesocosms for up to 16 days where they were fed with indigenous contaminated zooplankton. Larval Cd and Se burdens increased over time, and came to equal those measured in indigenous C. punctipennis from contaminated Lake Dufault. Larval Se burdens increased steadily, whereas those of Cd showed an initial lag phase that we explain by a change in the efficiency with which this insect assimilated Cd from its prey. We measured Cd and Se in subcellular fractions and found that larvae sequestered the majority (60%) of the incoming Cd in a detoxified fraction containing metal-binding proteins, whereas a minority of this nonessential metal was in sensitive fractions (20%). In contrast, a much higher proportion of the essential element Se (40%) was apportioned to metabolically active sensitive fractions. Larvae took up equimolar quantities of these elements over the course of the experiment. Likewise, Cd and Se concentrations in wild larvae were equimolar, which suggests that they are exposed to equimolar bioavailable concentrations of these elements in our study lakes.
Strychnine Binding Associated with Glycine Receptors of the Central Nervous System
Young, Anne B.; Snyder, Solomon H.
1973-01-01
[3H]Strychnine binds to synaptic-membrane fractions of the spinal cord in a selective fashion, indicating an interaction with postsynaptic glycine receptors. Displacement of strychnine by glycine and other amino acids parallels their glycine-like neurophysiologic activity. The regional localization of strychnine binding in the central nervous system correlates closely with endogenous glycine concentrations. In subcellular fractionation experiments, strychnine binding is most enhanced in synaptic-membrane fractions. Strychnine binding is saturable, with affinity constants for glycine and strychnine of 10 and 0.03 μM, respectively. PMID:4200724
Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Deatsch, Alison; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven
We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy-combined with cell fractionation-to accurately measure PSDs over a wide size range: from 10 nm to 3000nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.
Wallace, W.G.; Lopez, G.R.; Levinton, J.S.
1998-01-01
It has been demonstrated that the deposit-feeding oligochaete Limnodrilus hoffmeisteri inhabiting Foundry Cove (FC), a severely cadmium (Cd)-contaminated cove located on the Hudson River, New York, USA, has evolved resistance to Cd. In this study we investigate how this resistance influences Cd trophic transfer from this oligochaete to the grass shrimp Palaemonetes pugio. Cadmium-resistant worms collected from FC and nonresistant worms collected from an adjacent unpolluted site were investigated for differences in Cd tolerance, accumulation, subcellular distribution and bioavailability to shrimp. FC worms were more tolerant of Cd, surviving twice as long as worms from the unpolluted site during a toxicity bioassay. The 7 d concentration factor of Cd-resistant worms was 4 times greater than that of nonresistant worms (2020 vs 577). There were also differences between worm populations with respect to subcellular Cd distributions. Cd-resistant worms produced metallothionein-like proteins (MT) as well as metal-rich granules (MRG) for Cd storage and detoxification; nonresistant worms only produced MT. These differences in subcellular Cd distributions led to large differences in Cd bioavailability to shrimp; shrimp fed Cd-resistant worms absorbed 21% of the ingested Cd, while those fed nonresistant worms absorbed roughly 4 times that amount (~75%). These absorption efficiencies were in good agreement with the proportions of Cd bound to the worm's most biologically available subcellular fractions (i.e. the cytosol and organelles). Although Cd-resistant worms predominantly stored the toxic metal in biologically unavailable MRG, their increased accumulation of Cd would still result in substantial trophic transfer to shrimp because of the storage of Cd in the biologically available fractions. This work demonstrates that the evolution of Cd resistance can have profound implications for Cd bioavailability and cycling within aquatic ecosystems.
Copper and zinc contamination in oysters: subcellular distribution and detoxification.
Wang, Wen-Xiong; Yang, Yubo; Guo, Xiaoyu; He, Mei; Guo, Feng; Ke, Caihuan
2011-08-01
Metal pollution levels in estuarine and coastal environments have been widely reported, but few documented reports exist of severe contamination in specific environments. Here, we report on a metal-contaminated estuary in Fujian Province, China, in which blue oysters (Crassostrea hongkongensis) and green oysters (Crassostrea angulata) were discovered to be contaminated with Cu and other metals. Extraordinarily high metal concentrations were found in the oysters collected from the estuary. Comparison with historical data suggests that the estuary has recently been contaminated with Cr, Cu, Ni, and Zn. Metal concentrations in blue oysters were as high as 1.4 and 2.4% of whole-body tissue dry wt for Cu and Zn, respectively. Cellular debris was the main subcellular fraction binding the metals, but metal-rich granules were important for Cr, Ni, and Pb. With increasing Cu accumulation, its partitioning into the cytosolic proteins decreased. In contrast, metallothionein-like proteins increased their importance in binding with Zn as tissue concentrations of Zn increased. In the most severely contaminated oysters, only a negligible fraction of their Cu and Zn was bound with the metal-sensitive fraction, which may explain the survival of oysters in such contaminated environments. Copyright © 2011 SETAC.
Subcellular localization and compartmentation of thiamine derivatives in rat brain.
Bettendorff, L; Wins, P; Lesourd, M
1994-05-26
The subcellular distribution of thiamine derivatives in rat brain was studied. Thiamine diphosphate content was highest in the mitochondrial and synaptosomal fractions, and lowest in microsomal, myelin and cytosolic fractions. Only 3-5% of total thiamine diphosphate was bound to transketolase, a cytosolic enzyme. Thiamine triphosphate was barely detectable in the microsomal and cytosolic fraction, but synaptosomes were slightly enriched in this compound compared to the crude homogenate. Both myelin and mitochondrial fractions contained significant amounts of thiamine triphosphate. In order to estimate the relative turnover rates of these compounds, the animals received an intraperitoneal injection of either [14C]thiamine or [14C]sulbutiamine (isobutyrylthiamine disulfide) 1 h before decapitation. The specific radioactivities of thiamine compounds found in the brain decreased in the order: thiamine > thiamine triphosphate > thiamine monophosphate > thiamine diphosphate. Incorporation of radioactivity into thiamine triphosphate was more marked with [14C]sulbutiamine than with [14C]thiamine. The highest specific radioactivity of thiamine diphosphate was found in the cytosolic fraction of the brain, though this pool represents less than 10% of total thiamine diphosphate. Cytosolic thiamine diphosphate had a twice higher specific radioactivity when [14C]sulbutiamine was used as precursor compared with thiamine though no significant differences were found in the other cellular compartments. Our results suggest the existence of two thiamine diphosphate pools: the bound cofactor pool is essentially mitochondrial and has a low turnover; a much smaller cytosolic pool (6-7% of total TDP) of high turnover is the likely precursor of thiamine triphosphate.
Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C.
Gildemeister, Otto S; Sage, Jay M; Knight, Kendall L
2009-11-13
Exposure of cells to DNA-damaging agents results in a rapid increase in the formation of subnuclear complexes containing Rad51. To date, it has not been determined to what extent DNA damage-induced cytoplasmic to nuclear transport of Rad51 may contribute to this process. We have analyzed subcellular fractions of HeLa and HCT116 cells and found a significant increase in nuclear Rad51 levels following exposure to a modest dose of ionizing radiation (2 grays). We also observed a DNA damage-induced increase in nuclear Rad51 in the Brca2-defective cell line Capan-1. To address a possible Brca2-independent mechanism for Rad51 nuclear transport, we analyzed subcellular fractions for two other Rad51-interacting proteins, Rad51C and Xrcc3. Rad51C has a functional nuclear localization signal, and although we found that the subcellular distribution of Xrcc3 was not significantly affected by DNA damage, there was a damage-induced increase in nuclear Rad51C. Furthermore, RNA interference-mediated depletion of Rad51C in HeLa and Capan-1 cells resulted in lower steady-state levels of nuclear Rad51 as well as a diminished DNA damage-induced increase. Our results provide important insight into the cellular regulation of Rad51 nuclear entry and a role for Rad51C in this process.
Subcellular localization and cytoplasmic complex status of endogenous Keap1.
Watai, Yoriko; Kobayashi, Akira; Nagase, Hiroko; Mizukami, Mio; McEvoy, Justina; Singer, Jeffrey D; Itoh, Ken; Yamamoto, Masayuki
2007-10-01
Keap1 acts as a sensor for oxidative/electrophilic stress, an adaptor for Cullin-3-based ubiquitin ligase, and a regulator of Nrf2 activity through the interaction with Nrf2 Neh2 domain. However, the mechanism(s) of Nrf2 migration into the nucleus in response to stress remains largely unknown due to the lack of a reliable antibody for the detection of endogenous Keap1 molecule. Here, we report the generation of a new monoclonal antibody for the detection of endogenous Keap1 molecules. Immunocytochemical analysis of mouse embryonic fibroblasts with the antibody revealed that under normal, unstressed condition, Keap1 is localized primarily in the cytoplasm with minimal amount in the nucleus and endoplasmic reticulum. This subcellular localization profile of Keap1 appears unchanged after treatment of cells with diethyl maleate, an electrophile, and/or Leptomycin B, a nuclear export inhibitor. Subcellular fractionation analysis of mouse liver cells showed similar results. No substantial change in the subcellular distribution profile could be observed in cells isolated from butylated hydroxyanisole-treated mice. Analyses of sucrose density gradient centrifugation of mouse liver cells indicated that Keap1 appears to form multiprotein complexes in the cytoplasm. These results demonstrate that endogenous Keap1 remains mostly in the cytoplasm, and electrophiles promote nuclear accumulation of Nrf2 without altering the subcellular localization of Keap1.
Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B.; Ahmed, Mohamed R.; Gurevich, Eugenia V.
2012-01-01
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling. PMID:23139825
Bychkov, Evgeny; Zurkovsky, Lilia; Garret, Mika B; Ahmed, Mohamed R; Gurevich, Eugenia V
2012-01-01
G protein-coupled receptor kinases (GRKs) and arrestins mediate desensitization of G protein-coupled receptors (GPCR). Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.
Benito, Itziar; Casañas, Juan José; Montesinos, María Luz
2018-06-19
Several proteomic analyses have been performed on synaptic fractions isolated from cortex or even total brain, resulting in preparations with a high synaptic heterogeneity and complexity. Synaptoneurosomes (SNs) are subcellular membranous elements that contain sealed pre- and post-synaptic components. They are obtained by subcellular fractionation of brain homogenates and serve as a suitable model to study many aspects of the synapse physiology. Here we report the proteomic content of SNs isolated from hippocampus of adult mice, a brain region involved in memory that presents lower synaptic heterogeneity than cortex. Interestingly, in addition to pre- and post-synaptic proteins, we found that proteins involved in RNA binding and translation were overrepresented in our preparation. These results validate the protocol we previously reported for SNs isolation, and, as reported by other authors, highlight the relevance of local synaptic translation for hippocampal physiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
High Concentrations of Ketocarotenoids in Hepatic Mitochondria of Haemorhous mexicanus.
Ge, Zhiyuan; Johnson, James D; Cobine, Paul A; McGraw, Kevin J; Garcia, Rosana; Hill, Geoffrey E
2015-01-01
Vertebrates cannot synthesize carotenoid pigments de novo, so to produce carotenoid-based coloration they must ingest carotenoids. Most songbirds that deposit red carotenoids in feathers, bills, eyes, or skin ingest only yellow or orange dietary pigments, which they oxidize to red pigments via a ketolation reaction. It has been hypothesized that carotenoid ketolation occurs in the liver of vertebrates, but this hypothesis remains to be confirmed. To better understand the role of hepatocytes in the production of ketolated carotenoids in songbirds, we measured the carotenoid content of subcellular components of hepatocytes from wild male house finches (Haemorhous mexicanus) that were molting red, ketocarotenoid-containing feathers (e.g., 3-hydroxy-echinenone). We homogenized freshly collected livers of house finches and isolated subcellular fractions, including mitochondria. We found the highest concentration of ketocarotenoids in the mitochondrial fraction. These observations are consistent with the hypothesis that carotenoid pigments are oxidized on or within hepatic mitochondria, esterified, and then transported to the Golgi apparatus for secretory processing.
Peng, Tao; Bonamy, Ghislain M C; Glory-Afshar, Estelle; Rines, Daniel R; Chanda, Sumit K; Murphy, Robert F
2010-02-16
Many proteins or other biological macromolecules are localized to more than one subcellular structure. The fraction of a protein in different cellular compartments is often measured by colocalization with organelle-specific fluorescent markers, requiring availability of fluorescent probes for each compartment and acquisition of images for each in conjunction with the macromolecule of interest. Alternatively, tailored algorithms allow finding particular regions in images and quantifying the amount of fluorescence they contain. Unfortunately, this approach requires extensive hand-tuning of algorithms and is often cell type-dependent. Here we describe a machine-learning approach for estimating the amount of fluorescent signal in different subcellular compartments without hand tuning, requiring only the acquisition of separate training images of markers for each compartment. In testing on images of cells stained with mixtures of probes for different organelles, we achieved a 93% correlation between estimated and expected amounts of probes in each compartment. We also demonstrated that the method can be used to quantify drug-dependent protein translocations. The method enables automated and unbiased determination of the distributions of protein across cellular compartments, and will significantly improve imaging-based high-throughput assays and facilitate proteome-scale localization efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Roslyn N.; Sanford, James A.; Park, Jea H.
Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators ofmore » two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.« less
Changes in subcellular distribution of ependymins in goldfish brain induced by learning.
Schmidt, R
1987-06-01
Goldfish were trained for 4 h to swim with an attached polystyrene foam float and tested for retention 3 days later. Intracerebroventricular injection of anti-ependymin antisera was shown to prevent long-term memory formation of this vestibulomotor learning task, as reported previously. In further experiments, fish were killed 4-14 h after the start of training. The brains were dissected, incubated in an isoosmolar solution for collection of proteins of the brain extracellular fluid (ECF), homogenized, and fractionated by differential centrifugation. The ECF, a supernatant fraction enriched in cytoplasmic constituents (S3), and various particulate subcellular fractions were analyzed for their ependymin contents by radioimmunoassay. No statistically significant changes that might be induced by the learning were revealed in any of the particulate fractions. Steady-state concentrations of ependymins in the cytoplasm, however, increased temporarily by 39% in fish that had mastered the training task as compared with nonlearning animals (passive and active controls). In the ECF, the specific concentration of ependymins first decreased to 88% of control levels (4-5 h after the start of training), but later on, it increased to 138% (8-14 h). Apparently, ependymins present in the ECF are used during biochemical reactions of memory consolidation. The resulting decrease in extracellular ependymin concentrations might trigger their resynthesis in the cytoplasm and lead to an increased release of these glycoproteins into the ECF.
1990-05-28
Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP perfluoro.n-decanoic acid ; two-dimensional electrophoresis...hepatotoxicity; cell fractions; liver 1 t ABSTRACT (Continue on reverse if necessary and identify by block number) Perfluoro-n-decanoic acid (PFDA) effects...Unu::’-. ’. I AFOSR Ju .T , Building 410 Bolling AFB, DC 20332-6448 By Dist V’ lml mm mm i INTRODUCTION Perfluorocarboxylic acids and other
Chemical biotransformation represents the single largest source of uncertainty in chemical bioaccumulation assessments for fish. In vitro methods employing isolated hepatocytes and liver subcellular fractions (S9) can be used to estimate whole-body rates of chemical metabolism, ...
Findling, Sarah; Zanger, Klaus; Krueger, Stephan; Lohaus, Gertrud
2015-01-01
In Ajuga reptans, raffinose oligosaccharides accumulated during winter. Stachyose, verbascose, and higher RFO oligomers were exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. The evergreen labiate Ajuga reptans L. can grow at low temperature. The carbohydrate metabolism changes during the cold phase, e.g., raffinose family oligosaccharides (RFOs) accumulate. Additionally, A. reptans translocates RFOs in the phloem. In the present study, subcellular concentrations of metabolites were studied in summer and winter leaves of A. reptans to gain further insight into regulatory instances involved in the cold acclimation process and into the function of RFOs. Subcellular metabolite concentrations were determined by non-aqueous fractionation. Volumes of the subcellular compartments of summer and winter leaves were analyzed by morphometric measurements. The metabolite content varied strongly between summer and winter leaves. Soluble metabolites increased up to tenfold during winter whereas the starch content was decreased. In winter leaves, the subcellular distribution showed a shift of carbohydrates from cytoplasm to vacuole and chloroplast. Despite this, the metabolite concentration was higher in all compartments in winter leaves compared to summer leaves because of the much higher total metabolite content in winter leaves. The different oligosaccharides did show different compartmentations. Stachyose, verbascose, and higher RFO oligomers were almost exclusively found in the vacuole whereas one-fourth of raffinose was localized in the stroma. Apparently, the subcellular distribution of the RFOs differs because they fulfill different functions in plant metabolism during winter. Raffinose might function in protecting chloroplast membranes during freezing, whereas higher RFO oligomers may exert protective effects on vacuolar membranes. In addition, the high content of RFOs in winter leaves may also result from reduced consumption of assimilates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, Akinori, E-mail: morita@tokushima-u.ac.jp; Department of Radiological Science, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8509; Tanimoto, Keiji
2014-01-24
Highlights: • Oxidative ATM activation can occur in the absence of nuclear DNA damage response. • The oxidized Hep G2 cells were subjected to subcellular fractionation. • The obtained results suggest that the ATM activation occurs in mitochondria. • ATM failed to respond to oxidative stress in mitochondria-depleted Hep G2 cells. • Mitochondria are required for the oxidative activation of ATM. - Abstract: Ataxia–telangiectasia mutated (ATM) is a serine/threonine protein kinase that plays a central role in DNA damage response (DDR). A recent study reported that oxidized ATM can be active in the absence of DDR. However, the issue ofmore » where ATM is activated by oxidative stress remains unclear. Regarding the localization of ATM, two possible locations, namely, mitochondria and peroxisomes are possible. We report herein that ATM can be activated when exposed to hydrogen peroxide without inducing nuclear DDR in Hep G2 cells, and the oxidized cells could be subjected to subcellular fractionation. The first detergent-based fractionation experiment revealed that active, phosphorylated ATM was located in the second fraction, which also contained both mitochondria and peroxisomes. An alternative fractionation method involving homogenization and differential centrifugation, which permits the light membrane fraction containing peroxisomes to be produced, but not mitochondria, revealed that the light membrane fraction contained only traces of ATM. In contrast, the heavy membrane fraction, which mainly contained mitochondrial components, was enriched in ATM and active ATM, suggesting that the oxidative activation of ATM occurs in mitochondria and not in peroxisomes. In Rho 0-Hep G2 cells, which lack mitochondrial DNA and functional mitochondria, ATM failed to respond to hydrogen peroxide, indicating that mitochondria are required for the oxidative activation of ATM. These findings strongly suggest that ATM can be activated in response to oxidative stress in mitochondria and that this occurs in a DDR-independent manner.« less
Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions
NASA Astrophysics Data System (ADS)
Nie, Xiaoqin; Dong, Faqin; Liu, Ning; Liu, Mingxue; Zhang, Dong; Kang, Wu; Sun, Shiyong; Zhang, Wei; Yang, Jie
2015-08-01
The subcellular distribution of uranium in roots of Spirodela punctata (duckweed) and the process of surface interaction were studied upon exposure to U (0, 5-200 mg/L) at pH 5. The concentration of uranium in each subcelluar fraction increased significantly with increasing solution U level, after 200 mg/L uranium solution treatment 120 h, the proportion of uranium concentration approximate as 8:2:1 in the cell wall organelle and cytosol fractions of roots of S. punctata. OM SEM and EDS showed after 5-200 mg/L U treatment 4-24 h, some intracellular fluid released from the root cells, after 100 mg/L U treatment 48 h, the particles including 35% Fe (wt%) and other organic matters such as EPS released from the cells, most of the uranium bound onto the root surface and contacted with phosphorus ligands and formed as nano-scales U-P lamellar crystal, similar crystal has been found in the cell wall and organelle fractions after 50 mg/L U treatment 120 h. FTIR and XPS analyses result indicates the uranium changed the band position and shapes of phosphate group, and the region of characteristic peak belongs to U(VI) and U(IV) were also observed.
Duka, Tetyana; Collins, Zachary; Anderson, Sarah M; Raghanti, Mary Ann; Ely, John J; Hof, Patrick R; Wildman, Derek E; Goodman, Morris; Grossman, Lawrence I; Sherwood, Chet C
2017-07-01
The compartmentalization and association of lactate dehydrogenase (LDH) with specific cellular structures (e.g., synaptosomal, sarcoplasmic or mitochondrial) may play an important role in brain energy metabolism. Our previous research revealed that LDH in the synaptosomal fraction shifts toward the aerobic isoforms (LDH-B) among the large-brained haplorhine primates compared to strepsirrhines. Here, we further analyzed the subcellular localization of LDH in primate forebrain structures using quantitative Western blotting and ELISA. We show that, in cytosolic and mitochondrial subfractions, LDH-B expression level was relatively elevated and LDH-A declined in haplorhines compared to strepsirrhines. LDH-B expression in mitochondrial fractions of the neocortex was preferentially increased, showing a particularly significant rise in the ratio of LDH-B to LDH-A in chimpanzees and humans. We also found a significant correlation between the protein levels of LDH-B in mitochondrial fractions from haplorhine neocortex and the synaptosomal LDH-B that suggests LDH isoforms shift from a predominance of A-subunits toward B-subunits as part of a system that spatially buffers dynamic energy requirements of brain cells. Our results indicate that there is differential subcellular compartmentalization of LDH isoenzymes that evolved among different primate lineages to meet the energy requirements in neocortical and striatal cells. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stekhoven, Daniel J.; Omasits, Ulrich; Quebatte, Maxime
2014-03-01
Proteomics data provide unique insights into biological systems, including the predominant subcellular localization (SCL) of proteins, which can reveal important clues about their functions. Here we analyzed data of a complete prokaryotic proteome expressed under two conditions mimicking interaction of the emerging pathogen Bartonella henselae with its mammalian host. Normalized spectral count data from cytoplasmic, total membrane, inner and outer membrane fractions allowed us to identify the predominant SCL for 82% of the identified proteins. The spectral count proportion of total membrane versus cytoplasmic fractions indicated the propensity of cytoplasmic proteins to co-fractionate with the inner membrane, and enabled usmore » to distinguish cytoplasmic, peripheral innermembrane and bona fide inner membrane proteins. Principal component analysis and k-nearest neighbor classification training on selected marker proteins or predominantly localized proteins, allowed us to determine an extensive catalog of at least 74 expressed outer membrane proteins, and to extend the SCL assignment to 94% of the identified proteins, including 18% where in silico methods gave no prediction. Suitable experimental proteomics data combined with straightforward computational approaches can thus identify the predominant SCL on a proteome-wide scale. Finally, we present a conceptual approach to identify proteins potentially changing their SCL in a condition-dependent fashion.« less
NASA Astrophysics Data System (ADS)
Lu, Huanping; Li, Zhian; Wu, Jingtao; Shen, Yong; Li, Yingwen; Zou, Bi; Tang, Yetao; Zhuang, Ping
2017-01-01
A pot experiment was conducted to investigate the effects of calcium silicate (CS) on the subcellular distribution and chemical forms of cadmium (Cd) in grain amaranths (Amaranthus hypochondriacus L. Cv. ‘K112’) grown in a Cd contaminated soil. Results showed that the dry weight and the photosynthetic pigments contents in grain amaranths increased significantly with the increasing doses of CS treatments, with the highest value found for the treatment of CS3 (1.65 g/kg). Compared with the control, application of CS4 (3.31 g/kg) significantly reduced Cd concentrations in the roots, stems and leaves of grain amaranths by 68%, 87% and 89%, respectively. At subcellular level, CS treatment resulted in redistribution of Cd, higher percentages of Cd in the chloroplast and soluble fractions in leaves of grain amaranths were found, while lower proportions of Cd were located at the cell wall of the leaves. The application of CS enhanced the proportions of pectate and protein integrated forms of Cd and decreased the percentages of water soluble Cd potentially associated with toxicity in grain amaranths. Changes of free Cd ions into inactive forms sequestered in subcellular compartments may indicate an important mechanism of CS for alleviating Cd toxicity and accumulation in plants.
Characterization of a neutral protease from lysosomes of rabbit polymorphonuclear leucocytes
Davies, Philip; Rita, Giuseppe A.; Krakauer, Kathrin; Weissmann, Gerald
1971-01-01
1. The subcellular distribution has been investigated of a protease from rabbit polymorphonuclear leucocytes, obtained from peritoneal exudates. The enzyme, optimally active between pH7.0 and 7.5, hydrolyses histone but not haemoglobin, sediments almost exclusively with a granule fraction rich in other lysosomal enzymes, and is latent until the granules are disrupted by various means. 2. Enzymic analysis of specific and azurophilic granules separated by zonal centrifugation showed that neutral protease activity was confined to fractions rich in enzymes characteristic of azurophile granules. 3. Recovery of neutral protease activity from subcellular fractions was several times greater than that found in whole cells. This finding was explained by the presence of a potent inhibitor of the enzyme activity in the cytoplasm. 4. The effect of the inhibitor was reversed by increasing ionic strength (up to 2.5m-potassium chloride) and by polyanions such as heparin and dextran sulphate, but not by an uncharged polymer, dextran. 5. The enzyme was also inhibited, to a lesser extent, by 1-chloro-4-phenyl-3-l-toluene-p-sulphonamidobutan-2-one, soya-bean trypsin inhibitor and ∈-aminohexanoate (∈-aminocaproate). 6. The granule fractions failed to hydrolyse artificial substrates for trypsin and chymotrypsin. 7. Partial separation of the enzyme was achieved by Sephadex gel filtration at high ionic strength and by isoelectric focusing. The partially separated, activated enzyme showed an approximately 300-fold increase in specific activity over that in whole cells. PMID:5126908
Subcellular Localization of Arabidopsis 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase1
Leivar, Pablo; González, Víctor M.; Castel, Susanna; Trelease, Richard N.; López-Iglesias, Carmen; Arró, Montserrat; Boronat, Albert; Campos, Narciso; Ferrer, Albert; Fernàndez-Busquets, Xavier
2005-01-01
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-μm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants. PMID:15618432
Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate.
Berguig, Geoffrey Y; Convertine, Anthony J; Shi, Julie; Palanca-Wessels, Maria Corinna; Duvall, Craig L; Pun, Suzie H; Press, Oliver W; Stayton, Patrick S
2012-12-03
Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells, where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-release dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alexa Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH distribution of the HD39/SA-polymer conjugates was quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH value experienced by the conjugates was also characterized as a function of time by flow cytometry. PPAA was shown to alter the intracellular trafficking kinetics strongly relative to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 h, only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast, the average intracellular pH of HD39/SA alone dropped from 6.7 ± 0.2 at 1 h to 5.6 ± 0.5 after 3 h and 4.7 ± 0.6 after 6 h. Conjugation of the control polymer PMAA to HD39/SA showed an average pH drop similar to that of HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 h, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time.
Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes.
Woudenberg, Jannes; Rembacz, Krzysztof P; van den Heuvel, Fiona A J; Woudenberg-Vrenken, Titia E; Buist-Homan, Manon; Geuken, Mariska; Hoekstra, Mark; Deelman, Leo E; Enrich, Carlos; Henning, Rob H; Moshage, Han; Faber, Klaas Nico
2010-05-01
Caveolae are a subtype of cholesterol-enriched lipid microdomains/rafts that are routinely detected as vesicles pinching off from the plasma membrane. Caveolin-1 is an essential component of caveolae. Hepatic caveolin-1 plays an important role in liver regeneration and lipid metabolism. Expression of caveolin-1 in hepatocytes is relatively low, and it has been suggested to also reside at other subcellular locations than the plasma membrane. Recently, we found that the peroxisomal membrane contains lipid microdomains. Like caveolin-1, hepatic peroxisomes are involved in lipid metabolism. Here, we analyzed the subcellular location of caveolin-1 in rat hepatocytes. The subcellular location of rat hepatocyte caveolin-1 was analyzed by cell fractionation procedures, immunofluorescence, and immuno-electron microscopy. Green fluorescent protein (GFP)-tagged caveolin-1 was expressed in rat hepatocytes. Lipid rafts were characterized after Triton X-100 or Lubrol WX extraction of purified peroxisomes. Fenofibric acid-dependent regulation of caveolin-1 was analyzed. Peroxisome biogenesis was studied in rat hepatocytes after RNA interference-mediated silencing of caveolin-1 and caveolin-1 knockout mice. Cell fractionation and microscopic analyses reveal that caveolin-1 colocalizes with peroxisomal marker proteins (catalase, the 70 kDa peroxisomal membrane protein PMP70, the adrenoleukodystrophy protein ALDP, Pex14p, and the bile acid-coenzyme A:amino acid N-acyltransferase BAAT) in rat hepatocytes. Artificially expressed GFP-caveolin-1 accumulated in catalase-positive organelles. Peroxisomal caveolin-1 is associated with detergent-resistant microdomains. Caveolin-1 expression is strongly repressed by the peroxisome proliferator-activated receptor-alpha agonist fenofibric acid. Targeting of peroxisomal matrix proteins and peroxisome number and shape were not altered in rat hepatocytes with 70%-80% reduced caveolin-1 levels and in livers of caveolin-1 knockout mice. Caveolin-1 is enriched in peroxisomes of hepatocytes. Caveolin-1 is not required for peroxisome biogenesis, but this unique subcellular location may determine its important role in hepatocyte proliferation and lipid metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamunusinghe, Devinka, E-mail: dbamu001@ucr.ed; Hemenway, Cynthia L., E-mail: cindy_hemenway@ncsu.ed; Nelson, Richard S., E-mail: rsnelson@noble.or
Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER atmore » the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.« less
Olmedo, Patricio; Moreno, Adrián A; Sanhueza, Dayan; Balic, Iván; Silva-Sanzana, Christian; Zepeda, Baltasar; Verdonk, Julian C; Arriagada, César; Meneses, Claudio; Campos-Vargas, Reinaldo
2018-01-01
Cherimoya (Annona cherimola) is an exotic fruit with attractive organoleptic characteristics. However, it is highly perishable and susceptible to postharvest browning. In fresh fruit, browning is primarily caused by the polyphenol oxidase (PPO) enzyme catalyzing the oxidation of o-diphenols to quinones, which polymerize to form brown melanin pigment. There is no consensus in the literature regarding a specific role of PPO, and its subcellular localization in different plant species is mainly described within plastids. The present work determined the subcellular localization of a PPO protein from cherimoya (AcPPO). The obtained results revealed that the AcPPO- green fluorescent protein co-localized with a Golgi apparatus marker, and AcPPO activity was present in Golgi apparatus-enriched fractions. Likewise, transient expression assays revealed that AcPPO remained active in Golgi apparatus-enriched fractions obtained from tobacco leaves. These results suggest a putative function of AcPPO in the Golgi apparatus of cherimoya, providing new perspectives on PPO functionality in the secretory pathway, its effects on cherimoya physiology, and the evolution of this enzyme. Copyright © 2017. Published by Elsevier B.V.
Kovalenko, V M; Byshovets', T F; Hubs'kyĭ, Iu I; Levyts'kyĭ, Ie L; Shaiakhmetova, H M; Marchenko, O M; Voloshyna, O S; Saĭfetdinova, H A; Okhrimenko, V O; Donchenko, H V
2000-01-01
Embikhin causes activation of LPO processes in endoplasmic reticulum and in nuclear chromatine fractions of rat liver cells. The latter is accompanied by the impairment of repressive and active nuclear chromatine fractions structure. Derivate of vitamin E in these conditions renders correcting action on parameters of lipid peroxidation in the investigated subcellular structures, testifying its positive influence on the cell heredity apparatus state. The normalizing action of tocopherol derivative on cytochromes P450 and b5 levels is shown.
Gervais, M R; Tufts, B L
1998-07-01
The purpose of this study was to examine the subcellular distribution and isoenzyme characteristics of carbonic anhydrase from the gills and respiratory air bladder of bowfin Amia calva, a primitive air-breathing fish. Separation of subcellular fractions by differential centrifugation revealed that the vast majority of carbonic anhydrase from the gills of bowfin originated from the cytoplasmic fraction. Washing of the gill microsomal pellet also indicated that the carbonic anhydrase originally associated with this pellet was largely due to contamination from the cytoplasmic fraction. Experiments with a carbonic anhydrase inhibitor, sulphanilamide, and the plasma carbonic anhydrase inhibitor from this species confirmed that the bowfin gill probably contains only one carbonic anhydrase isoenzyme which had properties resembling those of CA II. In contrast to the situation in the gills, a relatively large percentage (27%) of the total air bladder carbonic anhydrase was associated with the microsomal fraction. Washing of the air bladder microsomal pellet removed little of the carbonic anhydrase activity, indicating that most of the carbonic anhydrase in the microsomal fraction was associated with the membranes. Like the mammalian pulmonary CA IV isoenzyme, microsomal carbonic anhydrase from the bowfin air bladder was less sensitive to the bowfin plasma carbonic anhydrase inhibitor, sodium dodecylsulphate (SDS) and sulphanilamide than was cytoplasmic carbonic anhydrase from the air bladder. Microsomal carbonic anhydrase from the bowfin air bladder also resembled CA IV in that it appears to be anchored to the membrane via a phosphatidylinositol-glycan linkage which could be cleaved by phosphatidylinositol-specific phospholipase C. Taken together, these results suggest that a membrane-bound carbonic anhydrase isoenzyme resembling mammalian CA IV in terms of inhibition characteristics and membrane attachment is present in the air-breathing organ of one of the most primitive air-breathing vertebrates.
Luo, Zhuanxi; Li, Mengting; Wang, Zhenhong; Li, Jinli; Guo, Jianhua; Rosenfeldt, Ricki R; Seitz, Frank; Yan, Changzhou
2018-05-15
The impact of titanium dioxide nanoparticles (nano-TiO 2 ) on the bioavailability of metals in aquatic filter-feeding organisms has rarely been investigated, especially in the presence of algae as a food source. In this study, we quantified the accumulation and subcellular distribution of arsenate (As V ) in Daphnia magna in the presence of nano-TiO 2 and a green alga (Scenedesmus obliquus) food source. Results showed that S. obliquus significantly increased the accumulation of total arsenic (As) and titanium (Ti) in D. magna. The presence of this food source increased As in metal-sensitive fractions (MSF) and as biologically detoxified metals (BDM), while it decreased Ti levels in MSF but increased levels as BDM. The difference in the subcellular distribution of As and Ti demonstrates the dissociation of As from nano-TiO 2 during digestion at subcellular partitioning irrespective of food availability. In turn, the presence of algae was shown to increase metal-based toxicity in D. magna due to the transfer of As from BMD to MSF. Furthermore, S. obliquus significantly increased the concentration of As and Ti in soluble fractions, indicating that As and nano-TiO 2 ingested by D. magna could be transferred more readily to their predators in the presence of S. obliquus. Our study shows the potential of algae to increase the toxicity and biomagnification of As V . Furthermore, it highlights food as an important factor in the toxicity assessment of nanomaterials and co-existing pollutants.
Gondet, L.; Bronner, R.; Benveniste, P.
1994-01-01
The study of sterol overproduction in tissues of LAB 1-4 mutant tobacco (Nicotiana tabacum L. cv Xanthi) (P. Maillot-Vernier, H. Schaller, P. Benveniste, G. Belliard [1989] Biochem Biophys Res Commun 165: 125-130) over several generations showed that the overproduction phenotype is stable in calli, with a 10-fold stimulation of sterol content when compared with wild-type calli. However, leaves of LAB 1-4 plants obtained after two steps of self-fertilization were characterized by a mere 3-fold stimulation, whereas calli obtained from these plants retained a typical sterol-overproducing mutant phenotype (i.e. a 10-fold increase of sterol content). These results suggest that the expression of the LAB 1-4 phenotype is dependent on the differentiation state of cells. Most of the sterols accumulating in the mutant tissues were present as steryl-esters, which were minor species in wild-type tissues. Subcellular fractionation showed that in both mutant and wild-type tissues, free sterols were associated mainly with microsomal membranes. In contrast, the bulk of steryl-esters present in mutant tissues was found in the soluble fraction of cells. Numerous lipid droplets were detected in the hyaloplasm of LAB 1-4 cells by cytochemical and cytological techniques. After isolation, these lipid granules were shown to contain steryl-esters. These results show that the overproduced sterols of mutant tissues accumulate as steryl-esters in hyaloplasmic bodies. The esterification process thus allows regulation of the amount of free sterols in membranes by subcellular compartmentation. PMID:12232218
The purpose of this one-day short course is to train students on methods used to measure in vitro metabolism in fish and extrapolate this information to the intact animal. This talk is one of four presentations given by course instructors. The first part of this talk provides a...
Species differences in hepatic biotransformation of the anthelmintic drug flubendazole.
Maté, M L; Geary, T; Mackenzie, C; Lanusse, C; Virkel, G
2017-10-01
Flubendazole (FLBZ) is a broad-spectrum benzimidazole anthelmintic used in pigs, poultry, and humans. It has been proposed as a candidate for development for use in elimination programmes for lymphatic filariasis and onchocerciasis in humans. Moreover, FLBZ has shown promise in cancer chemotherapy, particularly for neuroblastoma. This work investigated the hepatic carbonyl-reducing pathway of FLBZ in different species, including humans. Microsomal and cytosolic fractions were obtained from sheep, cattle, pig, hen, rat, and human liver. Both subcellular fractions of each species converted FLBZ into a reduced metabolite (red-FLBZ). The rate of microsomal red-FLBZ production was highest in sheep (1.92 ± 0.13 nmol/min.mg) and lowest in pigs (0.04 ± 0.02 nmol/min.mg); cytosolic red-FLBZ production ranged from 0.02 ± 0.01 (pig) to 1.86 ± 0.61 nmol/min.mg (sheep). Only subcellular fractions from sheep liver oxidized red-FLBZ to FLBZ in a NADP + -dependent oxidative reaction. Liver microsomes from both pigs and humans transformed FLBZ to red-FLBZ and a hydrolyzed metabolite. Very significant differences in the pattern of FLBZ metabolism were observed among the tested species and humans. These results reinforce the need for caution in extrapolating data on metabolism, efficacy, and safety of drugs derived from studies performed in different species. © 2017 John Wiley & Sons Ltd.
Structural requirements of oleosin domains for subcellular targeting to the oil body.
van Rooijen, G J; Moloney, M M
1995-01-01
We have investigated the protein domains responsible for the correct subcellular targeting of plant seed oleosins. We have attempted to study this targeting in vivo using "tagged" oleosins in transgenic plants. Different constructs were prepared lacking gene sequences encoding one of three structural domains of natural oleosins. Each was fused in frame to the Escherichia coli uid A gene encoding beta-glucuronidase (GUS). These constructs were introduced into Brassica napus using Agrobacterium-mediated transformation. GUS activity was measured in washed oil bodies and in the soluble protein fraction of the transgenic seeds. It was found that complete Arabidopsis oleosin-GUS fusions undergo correct subcellular targeting in transgenic Brassica seeds. Removal of the C-terminal domain of the Arabidopsis oleosin comprising the last 48 amino acids had no effect on overall subcellular targeting. In contrast, loss of the first 47 amino acids (N terminus) or amino acids 48 to 113 (which make up a lipophilic core) resulted in impaired targeting of the fusion protein to the oil bodies and greatly reduced accumulation of the fusion protein. Northern blotting revealed that this reduction is not due to differences in mRNA accumulation. Results from these measurements indicated that both the N-terminal and central oleosin domain are important for targeting to the oil body and show that there is a direct correlation between the inability to target to the oil body and protein stability. PMID:8539295
Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I
1995-07-15
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process.
Rainbow, P.S.; Poirier, L.; Smith, B.D.; Brix, K.V.; Luoma, S.N.
2006-01-01
The chemical form of accumulated trace metal in prey is important in controlling the bioavailataility of dietary metal to a predator. This study investigated the trophic transfer of radiolabelled Ag, Cd and Zn from the polychaete worm Nereis diversicolor to the decapod crustacean Palaemonetes varians. We used 2 populations of worms with different proportions of accumulated metals in different subcellular fractions as prey, and loaded the worms with radiolabelled metals either from sediment or from solution. Accumulated radiolabelled metals were fractionated into 5 components : metal-rich granules (MRG), cellular debris, organelles, metallothionein-like proteins (MTLP), and other (heat-sensitive) proteins (HSP). Assimilation efficiencies (AE) of the metals by P. varians were measured from the 4 categories of prey (i.e. 2 populations, radiolabelled from sediment or solution). There were significant differences for each metal between the AEs from the different prey categories, confirming that origin of prey and route of uptake of accumulated trace metal will cause intraspecific differences in subsequent metal assimilation. Correlations were sought between AEs and selected fractions or combinations of fractions of metals in the prey-MRG, Trophically Available Metal (TAM = MTLP + HSP + organelles) and total protein (MTLP + HSP). TAM explained 28% of the variance in AEs for Ag, but no consistent relationships emerged between AEs and TAM or total protein when the metals were considered separately. AEs did, however, show significant positive regressions with both TAM and total protein when the 3 metals were considered together, explaining only about 21 % of the variance in each case. A significant negative relationship was observed between MRG and AE for all metals combined. The predator (P. varians) can assimilate dietary metal from a range of the fractions binding metals in the prey (N. diversicolor), with different assimilation efficiencies summated across these fractions. TAM and/or total protein may represent an approximate minimum for trophic availability but neither of these alone is a fully accurate predictor. ?? Inter-Research 2006.
Li, Jieyue; Newberg, Justin Y; Uhlén, Mathias; Lundberg, Emma; Murphy, Robert F
2012-01-01
The Human Protein Atlas contains immunofluorescence images showing subcellular locations for thousands of proteins. These are currently annotated by visual inspection. In this paper, we describe automated approaches to analyze the images and their use to improve annotation. We began by training classifiers to recognize the annotated patterns. By ranking proteins according to the confidence of the classifier, we generated a list of proteins that were strong candidates for reexamination. In parallel, we applied hierarchical clustering to group proteins and identified proteins whose annotations were inconsistent with the remainder of the proteins in their cluster. These proteins were reexamined by the original annotators, and a significant fraction had their annotations changed. The results demonstrate that automated approaches can provide an important complement to visual annotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khripchenko, I.P.; Kukulyanskaya, M.F.; Markina, V.L.
1977-01-01
Data are submitted on activity of hexokinase and isozymes thereof, and cholinesterase in subcellular fractions of the brain in the case of inhibition and stimulation of M-cholinoreactive structures under the influence of a relatively small dose, 40 R, of ionizing radiation.
Neutrophils Express Distinct RNA Receptors in a Non-canonical Way*
Berger, Michael; Hsieh, Chin-Yuan; Bakele, Martina; Marcos, Veronica; Rieber, Nikolaus; Kormann, Michael; Mays, Lauren; Hofer, Laura; Neth, Olaf; Vitkov, Ljubomir; Krautgartner, Wolf Dietrich; von Schweinitz, Dietrich; Kappler, Roland; Hector, Andreas; Weber, Alexander; Hartl, Dominik
2012-01-01
RNAs are capable of modulating immune responses by binding to specific receptors. Neutrophils represent the major fraction of circulating immune cells, but receptors and mechanisms by which neutrophils sense RNA are poorly defined. Here, we analyzed the mRNA and protein expression patterns and the subcellular localization of the RNA receptors RIG-I, MDA-5, TLR3, TLR7, and TLR8 in primary neutrophils and immortalized neutrophil-like differentiated HL-60 cells. Our results demonstrate that both neutrophils and differentiated HL-60 cells express RIG-I, MDA-5, and TLR8 at the mRNA and protein levels, whereas TLR3 and TLR7 are not expressed at the protein level. Subcellular fractionation, flow cytometry, confocal laser scanning microscopy, and immuno-transmission electron microscopy provided evidence that, besides the cytoplasm, RIG-I and MDA-5 are stored in secretory vesicles of neutrophils and showed that RIG-I and its ligand, 3p-RNA, co-localize at the cell surface without triggering neutrophil activation. In summary, this study demonstrates that neutrophils express a distinct pattern of RNA recognition receptors in a non-canonical way, which could have essential implications for future RNA-based therapeutics. PMID:22532562
Lee, J E; Ahn, T I
2000-10-01
Escherichia coli MC4100 transformed with a groE homologous operon cloned from X-bacteria accumulated large amounts of the gene product when cultured at 30 or 37 degrees C. Heat shock for 10-30 min at 42 degrees C or ethanol (5%) shock for 2 h increased GroESx levels to about twice that in E. coli grown at 30 degrees C. The subcellular localization of GroESx in transformed E. coli was determined by several subcellular fractionation methods, by the analysis of extracted proteins in SDS polyacrylamide gels and by assays of marker enzymes. The GroESx protein was detected in both the periplasmic and cytoplasmic extracts and a large amount of the protein was accumulated in the periplasm. The GroEL protein and recombinant beta-galactosidase were exclusively localized in the cytoplasmic fraction, eliminating the possibility that periplasmic GroESx might be due to simple overproduction. N-terminal amino acid sequencing confirmed that the protein resolved on a 2-D gel was GroESx. This work represents the first report of the periplasmic location of GroES homologues in E. coli.
NASA Technical Reports Server (NTRS)
Pevzner, L. Z.; Venkov, L.; Cheresharov, L.
1980-01-01
Albino rats were kept for a year under conditions of daily motor load or constant hypokinesia. An increase in motor activity results in a rise in the acetylcholinesterase activity determined in the synaptosomal and purified mitochondrial fractions while hypokinesia induces a pronounced decrease in this enzyme activity. The butyrylcholinesterase activity somewhat decreases in the synaptosomal fraction after hypokinesia but does not change under the motor load pattern. Motor load causes an increase in the amount of synaptosomal water-soluble proteins possessing an intermediate electrophoretic mobility and seem to correspond to the brain-specific protein 14-3-2. In the synaptosomal fraction the amount of membrane proteins with a low electrophoretic mobility and with the cholinesterase activity rises. Hypokinesia, on the contrary, decreases the amount of these membrane proteins.
Subcellular Localization of Rice Leaf Aryl Acylamidase Activity 1
Gaynor, John J.; Still, Cecil C.
1983-01-01
The intracellular localization of aryl acylamidase (aryl-acylamide amidohydrolase, EC 3.5.1.13) in rice (Oryza sativa L. var Starbonnet) leaves was investigated. The enzyme hydrolyzes and detoxifies the herbicide propanil (3,4-dichloropropionanilide) thereby accounting for immunity of the rice plant to herbicidal action. Fractionation of mesophyll protoplasts by differential centrifugation yielded the highest specific activity of amidase in the crude mitochondrial fraction. Further separation of density gradients of the silica sol Percoll also indicated that this enzyme was mitochondrial. By the use of biochemical markers, the purified mitochondrial fraction was shown to be substantially free of contamination from nuclei, chloroplasts, golgi, and plasma membranes. Subfractionation of the purified mitochondria suggests that this enzyme is located on the outer membrane. PMID:16662987
The interaction of triethyltin with components of animal tissues
Rose, M. S.; Aldridge, W. N.
1968-01-01
1. The distribution of triethyl[113Sn]tin chloride in the rat, guinea pig and hamster is not uniform, the highest concentrations being in rat blood and the liver of all three species. 2. Subcellular fractionation of rat liver, brain and kidney shows that triethyltin binds to all fractions to different extents. In the liver of the rat and guinea pig the supernatant fraction contains the largest amount and the highest specific concentration; this triethyltin is bound to a non-diffusible component. 3. Rat haemoglobin is responsible for the binding of triethyltin in rat blood (2 moles of triethyltin/mole of haemoglobin). Haemoglobins from other species have much less affinity for triethyltin. 4. A variety of other proteins do not bind triethyltin. PMID:5637365
Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate
Berguig, Geoffrey Y.; Convertine, Anthony J.; Shi, Julie; Palanca-Wessels, Maria Corinna; Duvall, Craig L.; Pun, Suzie H.; Press, Oliver W.; Stayton, Patrick S.
2012-01-01
Ratiometric fluorescence and cellular fractionation studies were employed to characterize the intracellular trafficking dynamics of antibody-poly(propylacrylic acid) (PPAA) conjugates in CD22+ RAMOS-AW cells. The HD39 monoclonal antibody (mAb) directs CD22-dependent, receptor-mediated uptake in human B-cell lymphoma cells where it is rapidly trafficked to the lysosomal compartment. To characterize the intracellular-releasing dynamics of the polymer-mAb conjugates, HD39-streptavidin (HD39/SA) was dual-labeled with pH-insensitive Alex Fluor 488 and pH-sensitive pHrodo fluorophores. The subcellular pH-distribution of the HD39/SA-polymer conjugates were quantified as a function of time by live-cell fluorescence microscopy, and the average intracellular pH values experienced by the conjugates were also characterized as a function of time by flow cytometry. PPAA was shown to strongly alter the intracellular trafficking kinetics compared to HD39/SA alone or HD39/SA conjugates with a control polymer, poly(methacryclic acid) (PMAA). Subcellular trafficking studies revealed that after 6 hours only 11% of the HD39/SA-PPAA conjugates had been trafficked to acidic lysosomal compartments with values at or below pH 5.6. In contrast the average intracellular pH of HD39/SA alone dropped from pH 6.7 ± 0.2 at 1 hour to pH 5.6 ± 0.5 after 3 hours and pH 4.7 ± 0.6 after 6 hours. Conjugation of the control PMAA to HD39/SA showed an average pH drop similar to HD39/SA. Subcellular fractionation studies with tritium-labeled HD39/SA demonstrated that after 6 hours, 89% of HD39/SA was associated with endosomes (Rab5+) and lysosomes (Lamp2+), while 45% of HD39/SA-PPAA was translocated to the cytosol (lactate dehydrogenase+). These results demonstrate the endosomal-releasing properties of PPAA with antibody-polymer conjugates and detail their intracellular trafficking dynamics and subcellular compartmental distributions over time. PMID:23075320
Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome*
Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K.; Moore, Dirk F.; Sleat, David E.; Lobel, Peter
2017-01-01
Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene. PMID:27923875
Accounting for Protein Subcellular Localization: A Compartmental Map of the Rat Liver Proteome.
Jadot, Michel; Boonen, Marielle; Thirion, Jaqueline; Wang, Nan; Xing, Jinchuan; Zhao, Caifeng; Tannous, Abla; Qian, Meiqian; Zheng, Haiyan; Everett, John K; Moore, Dirk F; Sleat, David E; Lobel, Peter
2017-02-01
Accurate knowledge of the intracellular location of proteins is important for numerous areas of biomedical research including assessing fidelity of putative protein-protein interactions, modeling cellular processes at a system-wide level and investigating metabolic and disease pathways. Many proteins have not been localized, or have been incompletely localized, partly because most studies do not account for entire subcellular distribution. Thus, proteins are frequently assigned to one organelle whereas a significant fraction may reside elsewhere. As a step toward a comprehensive cellular map, we used subcellular fractionation with classic balance sheet analysis and isobaric labeling/quantitative mass spectrometry to assign locations to >6000 rat liver proteins. We provide quantitative data and error estimates describing the distribution of each protein among the eight major cellular compartments: nucleus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, Golgi, plasma membrane and cytosol. Accounting for total intracellular distribution improves quality of organelle assignments and assigns proteins with multiple locations. Protein assignments and supporting data are available online through the Prolocate website (http://prolocate.cabm.rutgers.edu). As an example of the utility of this data set, we have used organelle assignments to help analyze whole exome sequencing data from an infant dying at 6 months of age from a suspected neurodegenerative lysosomal storage disorder of unknown etiology. Sequencing data was prioritized using lists of lysosomal proteins comprising well-established residents of this organelle as well as novel candidates identified in this study. The latter included copper transporter 1, encoded by SLC31A1, which we localized to both the plasma membrane and lysosome. The patient harbors two predicted loss of function mutations in SLC31A1, suggesting that this may represent a heretofore undescribed recessive lysosomal storage disease gene. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Merlanti, R; Gallina, G; Capolongo, F; Contiero, L; Biancotto, G; Dacasto, M; Montesissa, C
2007-03-14
17Beta-boldenone (17beta-BOLD) and Boldione (ADD) are steroid compounds with androgenic activity, likely to be used as growth promoters in cattle. Different studies still on-going aiming to distinguish between "natural" occurrence or illegal BOLD source had already indicated that their metabolism in cattle is of relevant significance. To identify metabolites as in vivo markers to support the thesis of exogenous administration, a further approach to the in vitro biotransformation of 17beta-BOLD and ADD was performed using different subcellular fractions obtained from both liver and kidney of untreated cattle. Polar and non-polar metabolites obtained from incubated parent compounds were formerly separated by high performance liquid chromatography (HPLC) elution and successively identified by liquid chromatography tandem mass spectrometry (LC-MS/MS) detection. The bovine liver was the target tissue of the main metabolic reaction transforming 17beta-BOLD to ADD and vice versa. The presence of 6beta-hydroxy-17beta-BOLD, produced from both compounds when NADPH was added as cofactors to liver post mitochondrial and microsomal fractions suggests that cytochrome P450-dependent enzymes could be involved in the biotransformation, as it occurs for 6beta-hydroxylation of 17beta-testosterone. The results indicated that the urinary excretion profile in vivo of 6beta-hydroxy-17beta-BOLD and 16alpha-hydroxy-17beta-BOLD could be studied together with 17alpha- and 17beta-BOLD as putative markers of BOLD treatment in cattle.
Gomes, F.M.; Ramos, I.B.; Wendt, C.; Girard-Dias, W.; De Souza, W.; Machado, E.A.; K. Miranda, E.A.
2013-01-01
Inorganic polyphosphate (PolyP) is a biological polymer that plays important roles in the cell physiology of both prokaryotic and eukaryotic organisms. Among the available methods for PolyP localization and quantification, a 4’,6-diamidino-2-phenylindole(DAPI)-based assay has been used for visualization of PolyP-rich organelles. Due to differences in DAPI permeability to different compartments and/or PolyP retention after fixation, a general protocol for DAPI-PolyP staining has not yet been established. Here, we tested different protocols for DAPI-PolyP detection in a range of samples with different levels of DAPI permeability, including subcellular fractions, free-living cells and cryosections of fixed tissues. Subcellular fractions of PolyP-rich organelles yielded DAPI-PolyP fluorescence, although those with a complex external layer usually required longer incubation times, previous aldehyde fixation and/or detergent permeabilization. DAPI-PolyP was also detected in cryosections of OCT-embedded tissues analyzed by multiphoton microscopy. In addition, a semi-quantitative fluorimetric analysis of DAPI-stained fractions showed PolyP mobilization in a similar fashion to what has been demonstrated with the use of enzyme-based quantitative protocols. Taken together, our results support the use of DAPI for both PolyP visualization and quantification, although specific steps are suggested as a general guideline for DAPI-PolyP staining in biological samples with different degrees of DAPI and PolyP permeability. PMID:24441187
Ortmeyer, Heidi K; Adall, Yohannes; Marciani, Karina R; Katsiaras, Andreas; Ryan, Alice S; Bodkin, Noni L; Hansen, Barbara C
2005-06-01
Insulin covalently and allosterically regulates glycogen synthase (GS) and may also cause the translocation of GS from glycogen-poor to glycogen-rich locations. We examined the possible role of subcellular localization of GS and glycogen in insulin activation of GS in skeletal muscle of six obese monkeys and determined whether 1) insulin stimulation during a hyperinsulinemic euglycemic clamp and/or peroxisome proliferator-activated receptor (PPAR)-alpha agonist treatment (K-111, 3 mg.kg(-1).day(-1); Kowa) induced translocation of GS and 2) translocation of GS was associated with insulin activation of GS. GS and glycogen were present in all fractions obtained by differential centrifugation, except for the cytosolic fraction, under both basal and insulin-stimulated conditions. We found no evidence for translocation of GS by insulin. GS total (GST) activity was strongly associated with glycogen content (r = 0.70, P < 0.001). Six weeks of treatment with K-111 increased GST activity in all fractions, except the cytosolic fraction, and mean GST activity, GS independent activity, and glycogen content were significantly higher in the insulin-stimulated samples compared with basal samples, effects not seen with vehicle. The increase in GST activity was strongly related to the increase in glycogen content during the hyperinsulinemic euglycemic clamp after K-111 administration (r = 0.74, P < 0.001). Neither GS protein expression nor GS gene expression was affected by insulin or by K-111 treatment. We conclude that 1) in vivo insulin does not cause translocation of GS from a glycogen-poor to a glycogen-rich location in primate skeletal muscle and 2) the mechanism of action of K-111 to improve insulin sensitivity includes an increase in GST activity without an increase in GS gene or protein expression.
2016-01-01
Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solitary and clustered LDs (<0.5 μm), some previously studied by electron microscopy and speculated to be for cuticle formation. In vanilla leaves, transcripts of oleosins of the U lineage were present in both epidermis and mesophyll, but oleosin occurred only in epidermis. Immuno-confocal laser scanning microscopy revealed that the LDs were coated with oleosins. LDs in isolated fractions did not coalesce, and the fractions contained heterogeneous proteins including oleosins and diverse lipids. These findings reflect the in situ structure and possible functions of the LDs. Fruit mesocarp of avocado (Persea americana) and other Lauraceae species possessed large LDs, which likely function in attracting animals for seed dispersal. They contained transcripts of oleosin of a novel M phylogenic lineage. Each avocado mesocarp fatty cell possessed one to several large LDs (5 to 20 μm) and at their periphery, numerous small LDs (<0.5 μm). Immuno-confocal laser scanning microscopy revealed that oleosin was present mostly on the small LDs. LDs in isolated fractions coalesced rapidly, and the fraction contained oleosin and several other proteins and triacylglycerols as the main lipids. These two new types of oleosin-LDs exemplify the evolutionary plasticity of oleosins-LDs in generating novel functions in diverse cell types and species. PMID:27208281
Huang, Ming-Der; Huang, Anthony H C
2016-07-01
Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solitary and clustered LDs (<0.5 μm), some previously studied by electron microscopy and speculated to be for cuticle formation. In vanilla leaves, transcripts of oleosins of the U lineage were present in both epidermis and mesophyll, but oleosin occurred only in epidermis. Immuno-confocal laser scanning microscopy revealed that the LDs were coated with oleosins. LDs in isolated fractions did not coalesce, and the fractions contained heterogeneous proteins including oleosins and diverse lipids. These findings reflect the in situ structure and possible functions of the LDs. Fruit mesocarp of avocado (Persea americana) and other Lauraceae species possessed large LDs, which likely function in attracting animals for seed dispersal. They contained transcripts of oleosin of a novel M phylogenic lineage. Each avocado mesocarp fatty cell possessed one to several large LDs (5 to 20 μm) and at their periphery, numerous small LDs (<0.5 μm). Immuno-confocal laser scanning microscopy revealed that oleosin was present mostly on the small LDs. LDs in isolated fractions coalesced rapidly, and the fraction contained oleosin and several other proteins and triacylglycerols as the main lipids. These two new types of oleosin-LDs exemplify the evolutionary plasticity of oleosins-LDs in generating novel functions in diverse cell types and species. © 2016 American Society of Plant Biologists. All Rights Reserved.
Möhn, H; Le Cabec, V; Fischer, S; Maridonneau-Parini, I
1995-01-01
The src-family protein-tyrosine kinase p59hck is mainly expressed in neutrophils; however, its functional role in these cells is unknown. Several other src-family members are localized on secretory vesicles and have been proposed to regulate intracellular traffic. We have established here the subcellular localization of p59hck in human neutrophils. Immunoblotting of subcellular fractions showed that approx. 60% of the p59hck per cell is localized on the secretory granules; the other 40% is distributed equally between non-granular membranes and the cytosol. Immunofluorescence of neutrophils and HL60 cells suggests that the p59hck-positive granules are azurophil granules. Granular p59hck is highly susceptible to degradation by an azurophil-granule proteinase. Different forms of p59hck occur in the three subcellular compartments: a 61 kDa form is mainly found in the granules, a 59 kDa form is predominant in the non-granular membranes, whereas cytosolic p59hck migrates as a doublet at 63 kDa. During the process of phagocytosis-linked degranulation, induced by serum-opsonized zymosan in neutrophils or HL60 cells, granular p59hck translocates towards the phagosome. The subcellular localization of p59hck suggests that the enzyme could be involved in the regulation of the degranulation process. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7626033
Mass Spectrometry Analysis of Spatial Protein Networks by Colocalization Analysis (COLA).
Mardakheh, Faraz K
2017-01-01
A major challenge in systems biology is comprehensive mapping of protein interaction networks. Crucially, such interactions are often dynamic in nature, necessitating methods that can rapidly mine the interactome across varied conditions and treatments to reveal change in the interaction networks. Recently, we described a fast mass spectrometry-based method to reveal functional interactions in mammalian cells on a global scale, by revealing spatial colocalizations between proteins (COLA) (Mardakheh et al., Mol Biosyst 13:92-105, 2017). As protein localization and function are inherently linked, significant colocalization between two proteins is a strong indication for their functional interaction. COLA uses rapid complete subcellular fractionation, coupled with quantitative proteomics to generate a subcellular localization profile for each protein quantified by the mass spectrometer. Robust clustering is then applied to reveal significant similarities in protein localization profiles, indicative of colocalization.
Khavinson, V K; Myl'nikov, S V; Oparina, T I; Arutyunyan, A V
2001-07-01
We studied the effects of Epithalon (Ala-Glu-Asp-Gly) and Vilon (Lys-Glu) on free radical processes in highly inbred HA(+)line of Drosophila melanogaster. Vilon inhibited generation of reactive oxygen species in mitochondria, but stimulated this process in the cytosol. We found sex- and age-related differences in the generation of reactive oxygen species and cytosol antioxidant activity.
Nonspecific Resistance Induced by an Immunopharmacologic Agent Derived from Bordetella pertussis
1985-12-17
resistance to mouse adenovirus infection. Subcellular fractions of B . pertussis are capable of inducing resistance also. Boivin antigen, a...of B . ptrftaiss vaccine protected approximately 50% of the test population. Vaccines prepared fromt several different strains of B . pertussis were...provided by Connaught Laboratories, i~erved when an extract of B . pertussis was administered by SifwtrPaadasdjtetoprxmtly40g the subcutaneous
An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M
2008-09-05
Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.
ELECTRON MICROSCOPIC EXAMINATION OF SUBCELLULAR FRACTIONS
Baudhuin, Pierre; Evrard, Philippe; Berthet, Jacques
1967-01-01
A method is described for preparing, by filtration on Millipore filters, very thin (about 10 µ) pellicles of packed particles. These pellicles can be embedded in Epon for electron microscopic examination. They are also suitable for cytochemical assays. The method was used with various particulate fractions from rat liver. Its main advantages over the usual centrifugal packing techniques are that it produces heterogeneity solely in the direction perpendicular to the surface of the pellicle and that sections covering the whole depth of the pellicle can be photographed in a single field. It thus answers the essential criterion of random sampling and can be used for accurate quantitative evaluations. PMID:10976209
Taupin, P; Zini, S; Cesselin, F; Ben-Ari, Y; Roisin, M P
1994-04-01
A method for preparation of hippocampal mossy fiber synaptosomes directly from the postnuclear pellet is presented. This method represents an adaptation of that previously described for the isolation of synaptosomes by centrifugation through Percoll gradients directly from the supernatant fraction. We have characterized by electron microscopy two fractions, PII and PIII, enriched in mossy fiber synaptosomes; fraction PIII had 75% mossy fiber synaptosomes with well-preserved morphology (large size 3 microns, complex morphology, high synaptic vesicle density, multisynapses), whereas fraction PII contained 12%. These fractions were enriched in lactate dehydrogenase activity indicating that the integrity of synaptosomes was preserved. Compared with the other synaptosomal fractions, these fractions showed greater levels of dynorphin A (1-8) immunoreactivity and endogenous zinc, which are particularly concentrated in hippocampal mossy fiber terminals. Furthermore, we prepared synaptosomes from adult hippocampus after neonatal irradiation, which destroys the majority of granule cells and associated mossy fibers. The levels of dynorphin and zinc decreased by 88 and 70% in fraction PII and by 95 and 90%, respectively, in PIII. These results suggest that the rapid Percoll procedure is convenient for the purification of mossy fiber synaptosomes.
Cyclic AMP-receptor proteins in heart muscle of rats flown on Cosmos 1887
NASA Technical Reports Server (NTRS)
Mednieks, Maija I.; Popova, Irina A.; Grindeland, Richard E.
1991-01-01
The cellular compartmentalization of the cyclic AMP-receptor proteins in heart ventricular tissue obtained from rats flown on the Cosmos 1887 is determined. Photoaffinity labeling of soluble and particular cell fractions with a (32P)-8-azido analog of cyclic AMP is followed by electrophoretic separation of the proteins and by autoradiographic identification of the labeled isoforms of cAPK R subunits. It is shown that RII in the particulate subcellular fraction was significantly decreased in heart cells from rats in the flight group when compared to controls. Protein banding patterns in both the cytoplasmic fraction and in a fraction enriched in chromatin-bound proteins exhibited some variability in tissues of individual animals, but showed no changes that could be directly attributed to flight conditions. No significant change was apparent in the distribution of RI or RII cyclic AMP binding in the soluble fractions. It is inferred that the cardiac cell integrity or its protein content is not compromised under flight conditions.
1988-01-01
presence of extrasynaptosomal calcium . while only 3(0- of the evoked release of glutamate was calcium -dependent. D-aspartate. which exchanges glutamate...out of the cytoplasmic pool. virtually eliminated the calcium -independent component of glutamate release. This synaptosomal preparation will be useful...investigation of their presynaptic mechanisms ol action. l" Hippocampus Mossy fiber expansions Synaptosomes Glutamate Dynorphin Peptides Opioids Release Calcium
1979-08-01
flagellate, Tritrichomonas foetus . The specific activities for enzymes in the original homogenate, cumulative percentage distributions in the various...with another protozoan T. foetus (Lloyd, Lindmark and Muller in press). The lack of latency for this trypanosomal ATPase indicates the enzyme to occupy...flagellate protozoan Tritrichomonas foetus . J. Gen. Microbiol. (in press). . Lowry, 0. H., Rosebrough, N. D., Farr, A. L. and Randall, R. J. (1951) Protein 9
Taha, Mohamed S.; Nouri, Kazem; Milroy, Lech G.; Moll, Jens M.; Herrmann, Christian; Brunsveld, Luc; Piekorz, Roland P.; Ahmadian, Mohammad R.
2014-01-01
Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs. PMID:24658146
Regulatory role of a neurotransmitter (5-HT) on glial Na+/K(+)-ATPase in the rat brain.
Mercado, R; Hernández, J
1992-07-01
In the present work we studied the effect of serotonin (5-HT) on the kinetics of Na+/K(+)-ATPase in subcellular preparations of the cerebral cortex from male Wistar rats using various concentrations of ATP and K+ with and without added 5-HT. Also we studied the effect of 5-HT on the enzyme in glial or neuronal preparations. The results indicated that there was a significant increase (P < 0.05) of the Vmax in the presence of 5-HT in the whole tissue preparation (homogenate) but not in the subcellular fractions, suggesting that the interaction could be preferentially with the glial pump. Further results supported that this was the case since activation by 5-HT was mainly in the glial preparations. Kinetic data and the binding of [3H]ouabain supported that the enzyme is activated by 5-HT through the exposure of more enzymatic active sites.
Roosendaal, E; Jacobs, A A; Rathman, P; Sondermeyer, C; Stegehuis, F; Oudega, B; de Graaf, F K
1987-09-01
Analysis of the nucleotide sequence of the distal part of the fan gene cluster encoding the proteins involved in the biosynthesis of the fibrillar adhesin, K99, revealed the presence of two structural genes, fanG and fanH. The amino acid sequence of the gene products (FanG and FanH) showed significant homology to the amino acid sequence of the fibrillar subunit protein (FanC). Introduction of a site-specific frameshift mutation in fanG or fanH resulted in a simultaneous decrease in fibrillae production and adhesive capacity. Analysis of subcellular fractions showed that, in contrast to the K99 fibrillar subunit (FanC), both the FanH and the FanG protein were loosely associated with the outer membrane, possibly on the periplasmic side, but were not components of the fimbriae themselves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa
Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttlingmore » of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.« less
Wallace, W.G.; Luoma, S.N.
2003-01-01
This paper examines how the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis may affect the trophic transfer of metal to predators. Results show that the partitioning of metals to organelles, 'enzymes' and metallothioneins (MT) comprise a subcellular compartment containing trophically available metal (TAM; i.e. metal trophically available to predators), and that because this partitioning varies with species, animal size and metal, TAM is similarly influenced. Clams from San Francisco Bay, California, were exposed for 14 d to 3.5 ??g 1-1 Cd and 20.5 ??g 1-1 Zn, including 109Cd and 65Zn as radiotracers, and were used in feeding experiments with grass shrimp Palaemon macrodatylus, or used to investigate the subcellular partitioning of metal. Grass shrimp fed Cd-contaminated P. amurensis absorbed ???60% of ingested Cd, which was in accordance with the partitioning of Cd to the bivalve's TAM compartment (i.e. Cd associated with organelles, 'enzymes' and MT); a similar relationship was found in previous studies with grass shrimp fed Cd-contaminated oligochaetes. Thus, TAM may be used as a tool to predict the trophic transfer of at least Cd. Subcellular fractionation revealed that ???34% of both the Cd and Zn accumulated by M. balthica was associated with TAM, while partitioning to TAM in P. amurensis was metal-dependent (???60% for TAM-Cd%, ???73% for TAM-Zn%). The greater TAM-Cd% of P. amurensis than M. balthica is due to preferential binding of Cd to MT and 'enzymes', while enhanced TAM-Zn% of P. amurensis results from a greater binding of Zn to organelles. TAM for most species-metal combinations was size-dependent, decreasing with increased clam size. Based on field data, it is estimated that of the 2 bivalves, P. amurensis poses the greater threat of Cd exposure to predators because of higher tissue concentrations and greater partitioning as TAM; exposure of Zn to predators would be similar between these species.
Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes.
Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L; Berrueta, Lisbeth; Salmen, Siham
2016-05-01
Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Noble, Jake W.; Hunter, Diana V.; Roskelley, Calvin D.; Chan, Edward K. L.; Mills, Julia
2016-01-01
“Rods and rings” (RR) and loukoumasomes are similarly shaped, subcellular macromolecular structures with as yet unknown function. RR, so named because of their shape, are formed in response to inhibition in the GTP or CTP synthetic pathways and are highly enriched in the two key enzymes of the nucleotide synthetic pathway. Loukoumasomes also occur as linear and toroidal bodies and were initially inferred to be the same as RR, largely due to their shared shape and size and the fact that it was unclear if they shared the same subcomponents. In human retinoblastoma tissue and cells we have observed toroidal, perinuclear, macromolecular structures of similar size and antigenicity to those previously reported in neurons (neuronal-loukoumasomes). To further characterize the subcomponents of the retinal-loukoumasomes, confocal analysis following immunocytochemical staining for alpha-tubulin, beta-III tubulin and detyrosinated tubulin was performed. These studies indicate that retinal-loukoumasomes are enriched for beta-III tubulin and other tubulins associated with microtubules. Immunofluorescence together with the in situ proximity ligation assay (PLA), confirmed that beta-III tubulin colocalized with detyrosinated tubulin within loukoumasomes. Our results indicate that these tissues contain only loukoumasomes because these macromolecular structures are immunoreactive with an anti-tubulin antibody but are not recognized by the prototype anti-RR/inosine monophosphate dehydrogenase (IMPDH) antibody (It2006). To further compare the RR and retinal-loukoumasomes, retinoblastoma cells were exposed to the IMPDH-inhibitor ribavirin, a drug known to induce the formation of RR. In contrast to RR, the production of retinal-loukoumasomes was unaffected. Coimmunostaining of Y79 cells for beta-III tubulin and IMPDH indicate that these cells, when treated with ribavirin, can contain both retinal-loukoumasomes and RR and that these structures are antigenically distinct. Subcellular fractionation studies indicate that ribavirin increased the RR subcomponent, IMPDH, in the nuclear fraction of Y79 cells from 21.3 ± 5.8% (0 mM ribavirin) to 122.8 ± 7.9% (1 mM ribavirin) while the subcellular localization of the retinal-loukoumasome subcomponent tubulin went unaltered. Further characterization of retinal-loukoumasomes in retinoblastoma cells reveals that they are intimately associated with lamin folds within the nuclear envelope. Using immunofluorescence and the in situ PLA in this cell type, we have observed colocalization of beta-III tubulin with MAP2. As MAP2 is a microtubule-associated protein implicated in microtubule crosslinking, this supports a role for microtubule crosslinkers in the formation of retinal-loukoumasomes. Together, these results suggest that loukoumasomes and RR are distinct subcellular macromolecular structures, formed by different cellular processes and that there are other loukoumasome-like structures within retinal tissues and cells. PMID:27798680
Noble, Jake W; Hunter, Diana V; Roskelley, Calvin D; Chan, Edward K L; Mills, Julia
2016-01-01
"Rods and rings" (RR) and loukoumasomes are similarly shaped, subcellular macromolecular structures with as yet unknown function. RR, so named because of their shape, are formed in response to inhibition in the GTP or CTP synthetic pathways and are highly enriched in the two key enzymes of the nucleotide synthetic pathway. Loukoumasomes also occur as linear and toroidal bodies and were initially inferred to be the same as RR, largely due to their shared shape and size and the fact that it was unclear if they shared the same subcomponents. In human retinoblastoma tissue and cells we have observed toroidal, perinuclear, macromolecular structures of similar size and antigenicity to those previously reported in neurons (neuronal-loukoumasomes). To further characterize the subcomponents of the retinal-loukoumasomes, confocal analysis following immunocytochemical staining for alpha-tubulin, beta-III tubulin and detyrosinated tubulin was performed. These studies indicate that retinal-loukoumasomes are enriched for beta-III tubulin and other tubulins associated with microtubules. Immunofluorescence together with the in situ proximity ligation assay (PLA), confirmed that beta-III tubulin colocalized with detyrosinated tubulin within loukoumasomes. Our results indicate that these tissues contain only loukoumasomes because these macromolecular structures are immunoreactive with an anti-tubulin antibody but are not recognized by the prototype anti-RR/inosine monophosphate dehydrogenase (IMPDH) antibody (It2006). To further compare the RR and retinal-loukoumasomes, retinoblastoma cells were exposed to the IMPDH-inhibitor ribavirin, a drug known to induce the formation of RR. In contrast to RR, the production of retinal-loukoumasomes was unaffected. Coimmunostaining of Y79 cells for beta-III tubulin and IMPDH indicate that these cells, when treated with ribavirin, can contain both retinal-loukoumasomes and RR and that these structures are antigenically distinct. Subcellular fractionation studies indicate that ribavirin increased the RR subcomponent, IMPDH, in the nuclear fraction of Y79 cells from 21.3 ± 5.8% (0 mM ribavirin) to 122.8 ± 7.9% (1 mM ribavirin) while the subcellular localization of the retinal-loukoumasome subcomponent tubulin went unaltered. Further characterization of retinal-loukoumasomes in retinoblastoma cells reveals that they are intimately associated with lamin folds within the nuclear envelope. Using immunofluorescence and the in situ PLA in this cell type, we have observed colocalization of beta-III tubulin with MAP2. As MAP2 is a microtubule-associated protein implicated in microtubule crosslinking, this supports a role for microtubule crosslinkers in the formation of retinal-loukoumasomes. Together, these results suggest that loukoumasomes and RR are distinct subcellular macromolecular structures, formed by different cellular processes and that there are other loukoumasome-like structures within retinal tissues and cells.
1982-08-01
CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE 4. PERFORMING ORGANIZATION REPORT NUMBER(S...S. MONITORING ORGANIZATION REPORT NUMBER(S) 6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION University of...was passed through the column using a peristaltic pump adjusted to flow rate of 8.0 ml/h. To allow full binding of sugar residues to lectin the eluent
Rodríguez-Güell, Elisabeth; Agustí, Gemma; Corominas, Mercè; Cardona, Pere-Joan; Luquin, Marina; Julián, Esther
2008-01-01
Whole heat-killed Mycobacterium vaccae is used as an immunotherapeutic agent in tuberculosis (TB), but the compound(s) that triggers its immunostimulatory ability is not known. Here, we show that among different subcellular fractions, the cell wall skeleton induced a prominent expression of gamma interferon in splenocytes from both non-TB and TB M. vaccae-treated mice. PMID:18337379
Distribution and Characterization of Antigens Found in Subcellular Fractions of African Trypanosomes
1983-08-01
glycoproteln of Trypanosoma brucel synthesized with a c-termlnal hydrophob Ic tall absent from purified glycoproteln. Nature Zfifi: 624-626. 3...Cardosa de Almeida, M.L. and Turner, M.J. 1983. The membrane form of variant surface glycoprotelns of Trypanosoma brucel . Nature 202: 349- 352. 4...Blochem. 131; 1-15. 7. Godfrey, D.G. 1967. Phosphol Iplds of Trypanosoma lewlsl,. I,. vlvaxP L. congolense and L brucel . Expt. Parasit. 20
Dietschy, J M; Weeks, L E; Delente, J J
1976-12-01
A method is described for assaying free and esterified cholesterol using the oxygen electrode in a modified glucose analyzer to measure the relative amount of oxygen utilization taking place during oxydation of free cholesterol by the enzyme, cholesterol oxidase. A second enzyme, cholesterol ester hydrolase, is utilized to generate free cholesterol from cholesterol esters. This assay procedure is rapid, specific, reproducible and applicable to the measurement of free and esterified cholesterol carried in the major plasma lipoprotein fractions of man and the rat and, in addition, it can be utilized for the assay of sterols in subcellular fractions of cells.
Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.
2014-01-01
RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428
He, Shanying; Wu, Qiuling; He, Zhenli
2014-12-01
Research is needed to improve efficiency of phytoextraction of heavy metals from contaminated soils. A pot experiment was carried out to study the effects of plant growth regulators (PGRs) (diethyl aminoethyl hexanoate (C18H33NO8, DA-6) and gibberellic acid 3 (C19H22O6, GA3)) and/or EDTA on Cd extraction, subcellular distribution and chemical forms in Lolium perenne. The addition of EDTA or PGRs significantly enhanced Cd extraction efficiency (P<0.05), with the decreasing order of: 1 μM DA-6>10 μM DA-6>10 μM GA3>2.5 mmol kg(-1) EDTA>other treatments of PGR alone. PGRs+EDTA resulted in a further increase in Cd extraction efficiency, with EDTA+1 μM DA-6 being the most efficient. At the subcellular level, about 44-57% of Cd was soluble fraction, 18-44% in cell walls, and 12-25% in cellular organelles fraction. Chemical speciation analysis showed that 40-54% of Cd was NaCl extractable, 7-23% HAc extractable, followed by other fractions. EDTA increased the proportions of Cd in soluble and cellular organelles fraction, as well as the metal migration in shoot; therefore, the toxicity to plant increased and plant growth was inhibited. Conversely, PGRs fixed more Cd in cell walls and reduced Cd migration in shoot; thus, metal toxicity was reduced. In addition, PGRs promoted plant biomass growth significantly (P<0.05), with 1 μM DA-6 being the most effective. A combination of DA-6/GA3 with EDTA can alleviate the adverse effect of EDTA on plant growth, and the treatment of EDTA+1 μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Cd contaminated soil. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Makarov, G. A.
1980-01-01
Glycolysis and the intensity of protein synthesis were studied in 140 white male rats in subcellular fractions of the myocardium during 45 day hypodynamia and hyperbaric oxygenation. Hypodynamia increased: (1) the amount of lactic acids; (2) the amount of pyruvic acid; (3) the lactate/pyruvate coefficient; and (4) the activities of aldolase and lactate dehydrogenase. Hyperbaric oxygenation was found to have a favorable metabolic effect on the animals with hypodynamia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbier, Vincent; Lang, Diane; Valois, Sierra
Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associatedmore » with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.« less
Diamant, Gil; Eisenbaum, Tal; Leshkowitz, Dena; Dikstein, Rivka
2016-05-01
The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) modulates the expression of many genes, primarily through activation of NF-κB. Here, we examined the global effects of the elongation factor Spt5 on nascent and mature mRNAs of TNF-α-induced cells using chromatin and cytosolic subcellular fractions. We identified several classes of TNF-α-induced genes controlled at the level of transcription, splicing, and chromatin retention. Spt5 was found to facilitate splicing and chromatin release in genes displaying high induction rates. Further analysis revealed striking effects of TNF-α on the splicing of 25% of expressed genes; the vast majority were not transcriptionally induced. Splicing enhancement of noninduced genes by TNF-α was transient and independent of NF-κB. Investigating the underlying basis, we found that Spt5 is required for the splicing facilitation of the noninduced genes. In line with this, Spt5 interacts with Sm core protein splicing factors. Furthermore, following TNF-α treatment, levels of RNA polymerase II (Pol II) but not Spt5 are reduced from the splicing-induced genes, suggesting that these genes become enriched with a Pol II-Spt5 form. Our findings revealed the Pol II-Spt5 complex as a highly competent coordinator of cotranscriptional splicing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Adult murine CNS stem cells express aquaporin channels.
La Porta, Caterina A M; Gena, Patrizia; Gritti, Angela; Fascio, Umberto; Svelto, Maria; Calamita, Giuseppe
2006-02-01
Fluid homoeostasis is of critical importance in many functions of the CNS (central nervous system) as indicated by the fact that dysregulation of cell volume underlies clinical conditions such as brain oedema and hypoxia. Water balance is also important during neurogenesis as neural stem cells move considerable amounts of water into or out of the cell to rapidly change their volume during differentiation. Consistent with the relevance of water transport in CNS, multiple AQP (aquaporin) water channels have been recognized and partially characterized in brain cell function. However, the presence and distribution of AQPs in CNS stem cells has not yet been assessed. In the present study, we investigate the expression and subcellular localization of AQPs in murine ANSCs (adult neural stem cells). Considerable AQP8 mRNAs were found in ANSCs where, as expected, the transcript of two additional AQPs, AQP4 and AQP9, was also detected. Immunoblotting with subcellular membrane fractions of ANSCs showed predominant expression of AQP8 in the mitochondria-enriched fraction. This result was consistent with the spotted immunoreactivity profile encountered within the ANSCs by confocal immunofluorescence. AQP8 may have a role in mitochondrial volume regulation during ANSC differentiation. Recognition of AQPs in ANSCs is a step forward in our knowledge of water homoeostasis in the CNS and provides useful information for the purposes of stem cell technology.
Sambandam, Nandakumar; Steinmetz, Michael; Chu, Angel; Altarejos, Judith Y; Dyck, Jason R B; Lopaschuk, Gary D
2004-07-01
Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria.
Metabolic activation of sodium nitroprusside to nitric oxide in vascular smooth muscle.
Kowaluk, E A; Seth, P; Fung, H L
1992-09-01
Sodium nitroprusside (SNP) is thought to exert its vasodilating activity, at least in part, by vascular activation to nitric oxide (NO), but the activation mechanism has not been delineated. This study has examined the potential for vascular metabolism of SNP to NO in bovine coronary arterial smooth muscle subcellular fractions using a sensitive and specific redox-chemiluminescence assay for NO. SNP was readily metabolized to NO in subcellular fractions, and the dominant site of metabolism appeared to be located in the membrane fractions. NO-generating activity was significantly enhanced by, but did not absolutely require, the addition of a NADPH-regenerating system, NADPH per se, NADH or cysteine. A correlation analysis of NO-generating activity (in the presence of a NADPH-regenerating system) with marker enzyme activities indicated that the SNP-directed NO-generating activity was primarily membrane-associated. Radiation inactivation target-size analysis revealed that the microsomal SNP-directed NO-generating activity was relatively insensitive to inactivation by radiation exposure, suggesting that the functioning catalytic unit might be quite small. A molecular weight of 5 to 11 kDa was estimated. NO-generating activity could be solubilized from the crude microsomes with 3-[(3-cholamidopropyl)- dimethylammonio]-1-propane sulfonate, and the solubilized extract was subjected to gel filtration chromatography. NO-generating activity was eluted in two peaks: one peak corresponding to an approximate molecular weight of 4 kDa, thus confirming the existence of a small molecular weight NO-generating activity, and a second activity peak corresponding to a molecular weight of 112 to 169 kDa, the functional significance of which is unclear at present.(ABSTRACT TRUNCATED AT 250 WORDS)
AUTORADIOGRAPHIC ANALYSIS ON AGAR PLATES OF ANTIGENS FROM SUB CELLULAR FRACTIONS OF RAT LIVER SLICES
Morgan, W. S.; Perlmann, P.; Hultin, T.
1961-01-01
Slices of rat livers were incubated with 14C amino acids, homogenized, and subjected to differential centrifugation. The microsomes were further extracted with the non-ionic detergent Lubrol W and with EDTA. These extracts and the microsome free "cell sap," freed from the pH 5 precipitable fraction, were subsequently reacted with antisera using agar diffusion techniques. The antisera employed were obtained from rabbits injected with different subcellular fractions of rat liver or with rat serum proteins. When the agar diffusion plates were autoradiographed it was found that some of the precipitates were radioactive while others were not. Control experiments indicated that this labeling was due to the specific incorporation of 14C amino acids into various rat liver antigens during incubation of the slices rather than to a non-specific adsorption of radioactive material to the immunological precipitates. When the slices were incubated with the isotope for up to 30 minutes, the serum proteins which could be extracted from the microsomes with the detergent were strongly labeled, as were a number of additional microsomal antigens of unknown significance. In contrast, the serum proteins present in the cell sap were only weakly labeled. Most of the typical cell sap proteins, both those precipitable and those soluble at pH 5, seemed to remain unlabeled. No consistently reproducible results were obtained with the EDTA extracts of the ribosomal residues remaining after extraction of the microsomes with the detergent. Incubation of the liver slices for longer periods (up to 120 minutes) led to a strong labeling of the serum proteins in the cell sap as well as to the appearance of labeling in additional cell sap proteins. The results are discussed with regard to the subcellular site of synthesis and the metabolism of the different antigens. PMID:13772607
Oxidative bioactivation of abacavir in subcellular fractions of human antigen presenting cells.
Bell, Catherine C; Santoyo Castelazo, Anahi; Yang, Emma L; Maggs, James L; Jenkins, Rosalind E; Tugwood, Jonathan; O'Neill, Paul M; Naisbitt, Dean J; Park, B Kevin
2013-07-15
Human exposure to abacavir, a primary alcohol antiretroviral, is associated with the development of immunological drug reactions in individuals carrying the HLA risk allele B*57:01. Interaction of abacavir with antigen presenting cells results in cell activation through an Hsp70-mediated Toll-like receptor pathway and the provision of T-cell antigenic determinants. Abacavir's electrophilic aldehyde metabolites are potential precursors of neoantigens. Herein, we have used mass spectrometry to study the oxidative metabolism of abacavir in EBV-transformed human B-cells. RNA and protein were isolated from the cells and subjected to transcriptomic and mass spectrometric analyses to identify the redox enzymes expressed. Low levels of isomeric abacavir carboxylic acids were detected in subcellular fractions of EBV-transformed human B-cells incubated with abacavir. Metabolite formation was time-dependent but was not reduced by an inhibitor of Class I alcohol dehydrogenases. Relatively high levels of mRNA were detected for several redox enzymes, including alcohol dehydrogenase 5 (Class III), aldehyde dehydrogenases (ALDH3A2, ALDH6A1, and ALDH9A1), CYP1B1, CYP2R1, CYP7B1, and hydroxysteroid dehydrogenase 10. Over 2600 proteins were identified by mass spectrometry. More than 1000 of these proteins exhibited catalytic activity, and 80 were oxido-reductases. This is the first proteomic inventory of enzymes in antigen presenting cells. However, neither of the hepatic alcohol dehydrogenases of Class I which metabolize abacavir in vitro was expressed at the protein level. Nevertheless the metabolic production of abacavir carboxylic acids by B-cell fractions implies abacavir-treated immune cells might be exposed to the drug's protein-reactive aldehyde metabolites in vivo.
Bioaccumulation of Zn and Ag Nanoparticles in the Earthworms (Eisenia fetida)
NASA Astrophysics Data System (ADS)
Ha, Lee Seung; Sung-Dae, Kim; Yi, Yang Song; Byeong-Gweon, Lee
2014-05-01
Many studies are carried out to evaluate environmental effects of engineered nanoparticles (ENPs). Most of the previous studies primarily focused on the effects of nanoparticles into the aquatic environment and human. Model studies predict that ENPs released into environment would transferred primarily to the soil of the terrestrial environment. Despite this prediction, biogeochemical behavior of ENPs in soil environment as well as bioavailability of ENPs to soil-dwelling organisms such as earthworm, springtail, isopod and nematodes are poorly understood. The main goal of this study was to compare the bioaccumulation factor (BAFs) and subcellular partitioning of nanoparticles in the soil-dwelling earthworm (Eisenia fetida) from ENP (ZnO and Ag nanoparticles) or ionic metal (Zn2+, Ag+) contaminated soil. And the sequential extraction was also used to determine the mobility of metals in soil which could be used as to predict bioavailability and compare that with bioaccumulation factor. The radiotracer method was employed to trace the transfer of ENPs and ionic metal among different environmental media and animals. Radiolabeled 65ZnO, 110mAgNPs coated with PVP or citrate were synthesized in the laboratory and their chemical and biological behavior was compared to ionic 65Zn and 110mAg. The BAFs of Zn and Ag in the earthworms were determined after animals exposed to the contaminated soils. After the 7 days of elimination phase, subcellular partitioning of metals were also obtained. BAF for ZnO(0.06) was 31 times lower than that for Zn ion (1.86), suggesting that ZnO was less bioavailable than its ionic form from contaminated soil. On the other hands, BAFs for AgNPs coated with PVP (0.12) or with citrate (0.11) were comparable to those for Ag ion (0.17), indicating that Ag from contaminated soil was bioavailable in a similar rate regardless of chemical forms. The subcellular partitioning results showed that bioaccumulated Zn from Zn ion and ZnO contaminated soil were present mainly in HSP (heat-sensitive protein) while cellullar Ag from Ag ion and AgNPs (Ag/PVP, Ag/citrate) treatments were found mostly in cellular debris. No statistical difference in partitioning of metals among different subcelluar pools was found between the metal forms. Zn from ZnO contaminated solis was found largely in carbonate fraction (41%), while Zn from Zn ion treatment was found in Fe-Mn Oxide (29%). Association of Zn to mobile fractions (ZnO; 65%, Zn ion; 35%) suggest that Zn from ZnO contaminated soil would be more bioavailable than that from Zn ion treatment. However, the BAFs for Zn in the animals did not follow this prediction. Majority of Ag from AgNPs or Ag ion contaminated soil was bound mainly to biologically inert fractions mainly in organic matter, surphide fractions, and residual fractions. Consistent with these findings, the BAFs of Ag in the worms exposed to Ag contaminated soils were generally lower than those for Zn treatments.
Differential effects of methylmethane thiosulfonate on rat liver GPAT and DHAPAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webber, K.O.; Carter, B.D.; Datta, N.D.
Subcellular fractions (mitochondrial (M), light-mitochondrial (L), and microsomal) from rat liver were treated with 5 mM methylmethane thiosulfonate (MMTS) or 50 ..mu..M N-ethylmaleimide (NEM). Both of these reagents are known to specifically modify cysteine residues in proteins. After treatment, samples of each fraction were assayed for glycerophosphate acyltransferase and dihydroxyacetone phosphate acyltransferase activities. As reported by others, NEM was found to inhibit GPAT in the microsomal fraction but had no effect on this enzyme in the M or L fractions. MMTS, on the other hand, inhibited GPAT in all fractions to the extent of 80-100% compared to activity in untreatedmore » samples. DHAPAT activity in each fraction showed little or no inhibition by either reagent. Only the microsomal DHAPAT activity showed any sensitivity at all, being inhibited by 10-12% by both NEM and MMTS. This is the first demonstration of inhibition of mitochondrial GPAT by a thiol-specific reagent and is an indication that, like the microsomal analog, this enzyme may have a cysteine residue at or near the active site. In addition, these results are further evidence for the premise that DHAPAT and GPAT are separate and distinct proteins.« less
Betaine aldehyde dehydrogenase isozymes of spinach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, A.D.; Weretilnyk, E.A.; Weigel, P.
1986-04-01
Betaine is synthesized in spinach chloroplasts via the pathway Choline ..-->.. Betaine Aldehyde ..-->.. Betaine; the second step is catalyzed by betaine aldehyde dehydrogenase (BADH). The subcellular distribution of BADH was determined in leaf protoplast lysates; BADH isozymes were separated by 6-9% native PAGE. The chloroplast stromal fraction contains a single BADH isozyme (number1) that accounts for > 80% of the total protoplast activity; the extrachloroplastic fraction has a minor isozyme (number2) which migrates more slowly than number1. Both isozymes appear specific for betaine aldehyde, are more active with NAD than NADP, and show a ca. 3-fold activity increase inmore » salinized leaves. The phenotype of a natural variant of isozyme number1 suggests that the enzyme is a dimer.« less
Viranaicken, Wildriss; Gasmi, Laila; Chaumet, Alexandre; Durieux, Christiane; Georget, Virginie; Denoulet, Philippe; Larcher, Jean-Christophe
2011-01-01
Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins. PMID:21811582
Udby, Lene; Calafat, Jero; Sørensen, Ole E; Borregaard, Niels; Kjeldsen, Lars
2002-09-01
Cysteine-rich secretory protein 3 (CRISP-3; also known as SGP28) was originally discovered in human neutrophilic granulocytes. We have recently developed a sensitive sandwich enzyme-linked immunosorbent assay for CRISP-3 and demonstrated the presence of CRISP-3 in exocrine secretions. To investigate the subcellular localization and mobilization of CRISP-3 in human neutrophils, we performed subcellular fractionation of resting and activated neutrophils on three-layer Percoll density gradients, release-studies of granule proteins in response to different secretagogues, and double-labeling immunogold electron microscopy. CRISP-3 was found to be localized in a subset of granules with overlapping characteristics of specific and gelatinase granules and mobilized accordingly, thus confirming the hypothesis that peroxidase-negative granules exist as a continuum from specific to gelatinase granules regarding protein content and mobilization. CRISP-3 was found to be a matrix protein, which is stored in granules as glycosylated and as unglycosylated protein. The subcellular distribution of the two forms of CRISP-3 was identical. In addition, CRISP-3 was found as a granule protein in eosinophilic granulocytes. The presence of CRISP-3 in peroxidase-negative granules of neutrophils, in granules of eosinophils, and in exocrine secretions indicates a role in the innate host defense.
Adipocyte aminopeptidases in obesity and fasting.
Alponti, Rafaela Fadoni; Silveira, Paulo Flavio
2015-11-05
This study checked the existence of a diverse array of aminopeptidase (AP) enzymes in high (HDM) and low (LDM) density microsomal and plasma membrane (MF) fractions from adipocytes of control, monosodium glutamate obese and food deprived rats. Gene expression was detected for ArgAP, AspAP, MetAP, and two AlaAP (APM and PSA). APM and PSA had the highest catalytic efficiency, whereas AspAP the highest affinity. Subcellular distribution of AP activities depended on metabolic status. Comparing catalytic levels, AspAP in HDM, LDM and MF was absent in obese and control under food deprivation; PSA in LDM was 3.5-times higher in obese than in normally fed control and control and obese under food deprivation; MetAP in MF was 4.5-times higher in obese than in food deprived obese. Data show new AP enzymes genetically expressed in subcellular compartments of adipocytes, three of them with altered catalytic levels that respond to whole-body energetic demands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Simavorian, P S; Saakian, I L; Gevorkian, D A
1991-04-01
It has been established that the development of acute pancreatitis is accompanied by the reduced activity of glutamate dehydrogenase in the mitochondrial fraction of pancreas, pronounced in the focus of tissue necrosis and less expressed in the reactive inflammation focus. Besides this in the pancreas redistribution of enzyme, activity in the subcellular organelles takes place and enzyme activity emerges in the cytosol and further--in the blood and peritoneum liquid. Sodium thiosulfate has a marked correlation effect.
Behari, J R; Tandon, S K
1980-03-01
Some polyaminocarboxylic acids were examined for their ability to mobilize chromium from certain vital organs, their subcellular fractions, and blood cells of potassium chromate administered rats. Hexamethylene 1,6-diamino tetraacetic acid (TDTA), triethylene tetramine hexaacetic acid (TTHA), and ethylene diamine di (O-hydroxylphenyl acetic acid) (EDDHA) may be useful in preventing or reducing chromate toxicity. No definite relationship could be observed between the structure of the chelating agents and their chromium-removing capacity.
Localization of a portion of the liver isoform of fatty-acid-binding protein (L-FABP) to peroxisomes
Antonenkov, Vasily D.; Sormunen, Raija T.; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P.; Hiltunen, J. Kalervo
2005-01-01
The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal β-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed. PMID:16262600
Antonenkov, Vasily D; Sormunen, Raija T; Ohlmeier, Steffen; Amery, Leen; Fransen, Marc; Mannaerts, Guy P; Hiltunen, J Kalervo
2006-03-01
The liver isoform of fatty-acid-binding protein (L-FABP) facilitates the cellular uptake, transport and metabolism of fatty acids and is also involved in the regulation of gene expressions and cell differentiation. Consistent with these functions, L-FABP is predominantly present in the cytoplasm and to a lesser extent in the nucleus; however, a significant portion of this protein has also been detected in fractions containing different organelles. More recent observations, notably on L-FABP-deficient mice, indicated a possible direct involvement of L-FABP in the peroxisomal oxidation of long-chain fatty acids. In order to clarify the links between L-FABP and peroxisomal lipid metabolism, we reinvestigated the subcellular distribution of the protein. Analytical subcellular fractionation by a method preserving the intactness of isolated peroxisomes, two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with MS analysis, and immunoelectron microscopy of liver sections demonstrate the presence of L-FABP in the matrix of peroxisomes as a soluble protein. Peroxisomal L-FABP was highly inducible by clofibrate. The induction of L-FABP was accompanied by a marked increase in the binding capacity of peroxisomal matrix proteins for oleic acid and cis-parinaric acid. The peroxisomal beta-oxidation of palmitoyl-CoA and acyl-CoA thioesterase activity were stimulated by L-FABP, indicating that the protein modulates the function of peroxisomal lipid-metabolizing enzymes. The possible role of intraperoxisomal L-FABP in lipid metabolism is discussed.
Caldarera, C M; Casti, A; Guarnier, C; Moruzzi, G
1975-10-01
The relationship between polyamines and RNA synthesis was studied by considering the action of spermine on histone acetylation in perfused heart. In addition, the effect of methylglyoxal bis(guanylhydrazone), inhibitor of putrescine-activated S-adenosylmethionine decarboxylase activity, on RNA and polyamine specific radioactivity and on acetylation of histone fractions was also investigated in perfused heart. Different concentrations of spermine and/or methylglyoxas bis(guanylhydrazone) were injected into the heart, 15 min after beginning the perfusion. The results demonstrate that spermine stimulates the specific radioactivity of RNA of subcellular fractions. Acetylation of the arginine-rich histone fractions, involved in the regulation of RNA transcription, is enhanced by spermine. The perfusion with methylglyoxal bis(guanylhydrazone) causes a decrease in the specific radioactivity of polyamines and RNA, and in acetylation of histone fractions. However, spermine is able to reverse the methylglyoxal bis(guanylhydrazone) inhibition when injected simultaneously. From these results we may assume a possible role for spermine in the regulation of RNA transcription.
Caldarera, C M; Casti, A; Guarnier, C; Moruzzi, G
1975-01-01
The relationship between polyamines and RNA synthesis was studied by considering the action of spermine on histone acetylation in perfused heart. In addition, the effect of methylglyoxal bis(guanylhydrazone), inhibitor of putrescine-activated S-adenosylmethionine decarboxylase activity, on RNA and polyamine specific radioactivity and on acetylation of histone fractions was also investigated in perfused heart. Different concentrations of spermine and/or methylglyoxas bis(guanylhydrazone) were injected into the heart, 15 min after beginning the perfusion. The results demonstrate that spermine stimulates the specific radioactivity of RNA of subcellular fractions. Acetylation of the arginine-rich histone fractions, involved in the regulation of RNA transcription, is enhanced by spermine. The perfusion with methylglyoxal bis(guanylhydrazone) causes a decrease in the specific radioactivity of polyamines and RNA, and in acetylation of histone fractions. However, spermine is able to reverse the methylglyoxal bis(guanylhydrazone) inhibition when injected simultaneously. From these results we may assume a possible role for spermine in the regulation of RNA transcription. PMID:1212228
Bermejo, Marie Kristel; Milenkovic, Marija; Salahpour, Ali; Ramsey, Amy J
2014-09-03
Neuronal subcellular fractionation techniques allow the quantification of proteins that are trafficked to and from the synapse. As originally described in the late 1960's, proteins associated with the synaptic plasma membrane can be isolated by ultracentrifugation on a sucrose density gradient. Once synaptic membranes are isolated, the macromolecular complex known as the post-synaptic density can be subsequently isolated due to its detergent insolubility. The techniques used to isolate synaptic plasma membranes and post-synaptic density proteins remain essentially the same after 40 years, and are widely used in current neuroscience research. This article details the fractionation of proteins associated with the synaptic plasma membrane and post-synaptic density using a discontinuous sucrose gradient. Resulting protein preparations are suitable for western blotting or 2D DIGE analysis.
Glynn, I. M.; Slayman, Carolyn W.; Eichberg, J.; Dawson, R. M. C.
1965-01-01
1. Subcellular fractions were prepared from the electric organs of Electrophorus and Torpedo and assayed for adenosine-triphosphatase activity. 2. Treatment of the `low-speed' fraction from Torpedo with m-urea gave an adenosine-triphosphatase preparation that was almost completely (98%) inhibited by ouabain (0·1mg./ml.) and dependent on the simultaneous presence of Na+ and K+. 3. The adenosine-triphosphatase preparations were exposed to [γ-32P]ATP for 30sec. in the presence of (i) Na+, (ii) K+, (iii) Na++K+ and (iv) Na++K++ouabain. No significant labelling of phosphatidic acid, triphosphoinositide or any other phospholipid was observed. 4. The results suggest that phospholipids do not act as phosphorylated intermediates in the `transport adenosine-triphosphatase' system of electric organ. PMID:14340060
Advanced Glycation End-Products affect transcription factors regulating insulin gene expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puddu, A., E-mail: alep100@hotmail.com; Storace, D.; Odetti, P.
2010-04-23
Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation preventsmore » FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.« less
D'Angelo, Maximiliano A; Sanguineti, Santiago; Reece, Jeffrey M; Birnbaumer, Lutz; Torres, Héctor N; Flawiá, Mirtha M
2004-01-01
Compartmentalization of cAMP phosphodiesterases plays a key role in the regulation of cAMP signalling in mammals. In the present paper, we report the characterization and subcellular localization of TcPDE1, the first cAMP-specific phosphodiesterase to be identified from Trypanosoma cruzi. TcPDE1 is part of a small gene family and encodes a 929-amino-acid protein that can complement a heat-shock-sensitive yeast mutant deficient in phospho-diesterase genes. Recombinant TcPDE1 strongly associates with membranes and cannot be released with NaCl or sodium cholate, suggesting that it is an integral membrane protein. This enzyme is specific for cAMP and its activity is not affected by cGMP, Ca2+, calmodulin or fenotiazinic inhibitors. TcPDE1 is sensitive to the phosphodiesterase inhibitor dipyridamole but is resistant to 3-isobutyl-1-methylxanthine, theophylline, rolipram and zaprinast. Papaverine, erythro-9-(2-hydroxy-3-nonyl)-adenine hydrochloride, and vinpocetine are poor inhibitors of this enzyme. Confocal laser scanning of T. cruzi epimastigotes showed that TcPDE1 is associated with the plasma membrane and concentrated in the flagellum of the parasite. The association of TcPDE1 with this organelle was confirmed by subcellular fractionation and cell-disruption treatments. The localization of this enzyme is a unique feature that distinguishes it from all the trypanosomatid phosphodiesterases described so far and indicates that compartmentalization of cAMP phosphodiesterases could also be important in these parasites. PMID:14556647
Xie, Lingtian; Lambert, D.; Martin, C.; Cain, D.J.; Luoma, S.N.; Buchwalter, D.
2008-01-01
It has become increasingly apparent that diet can be a major source of trace metal bioaccumulation in aquatic organisms. In this study, we examined cadmium uptake, efflux, and subcellular compartmentalization dynamics in the freshwater oligochaete Lumbriculus variegatus. L. variegatus is an important component of freshwater food webs in Europe and North America and is potentially useful as a standard food source for laboratory-based trophic transfer studies. Cadmium accumulation and depuration were each followed for 10 days. Rate constants of uptake (ku) and efflux (ke) were estimated and subcellular Cd compartmentalization was followed over the course of uptake and efflux. The partitioning of Cd into operationally-defined subcellular compartments was relatively consistent throughout the 20-day experiment, with the majority of Cd accumulating in the cytosol. No major changes in Cd compartmentalization were observed over uptake or depuration, but there appeared to be some exchange between heat-stable and heat-labile cytosolic protein fractions. Cadmium accumulation from solution was strongly affected by ambient calcium concentrations, suggesting competition between Cd and Ca for uptake sites. Finally, we demonstrate the ability to manipulate the whole body calcium content of L. variegatus as a potential tool for examining calcium influences on dietary Cd dynamics. The potential for this species to be an important conduit of Cd to higher trophic levels is discussed, along with its potential as a standardized food source in metal trophic transfer studies. ?? 2007 Elsevier B.V. All rights reserved.
Kim, Ji-Eun; Park, Jin-Young; Kang, Tae-Cheon
2017-01-01
Recently, we have reported that transient receptor potential channel-6 (TRPC6) plays an important role in the regulation of neuronal excitability and synchronization of spiking activity in the dentate granule cells (DGC). However, the underlying mechanisms of TRPC6 in these phenomena have been still unclear. In the present study, we investigated the role of TRPC6 in subcellular localization of Kv4.3 and its relevance to neuronal excitability in the rat hippocampus. TRPC6 knockdown increased excitability and inhibitory transmission in the DGC and the CA1 neurons in response to a paired-pulse stimulus. However, TRPC6 knockdown impaired γ-aminobutyric acid (GABA)ergic inhibition in the hippocampus during and after high-frequency stimulation (HFS). TRPC6 knockdown reduced the Kv4.3 clusters in membrane fractions and its dendritic localization on DGC and GABAergic interneurons. TRPC6 knockdown also decreased extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and the efficacy of 4-aminopyridine (4-AP) in neuronal excitability. An ERK1/2 inhibitor generated multiple population spikes in response to a paired-pulse stimulus, concomitant with reduced membrane Kv4.3 translocation. A TRPC6 activator (hyperforin) reversed the effects of TRPC knockdown, except paired-pulse inhibition. These findings provide valuable clues indicating that TRPC6-mediated ERK1/2 activation may regulate subcellular Kv4.3 localization in DGC and interneurons, which is cause-effect relationship between neuronal excitability and seizure susceptibility. PMID:29326557
Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha
2014-07-18
Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated thatmore » TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.« less
Qing, Xuejiao; Zhao, Xiaohu; Hu, Chengxiao; Wang, Peng; Zhang, Ying; Zhang, Xuan; Wang, Pengcheng; Shi, Hanzhi; Jia, Fen; Qu, Chanjuan
2015-04-01
The beneficial role of selenium (Se) in alleviation of chromium (Cr)-induced oxidative stress is well established. However, little is known about the underlying mechanism. The impacts of exogenous Se (0.1mg/L) on Cr(1mg/L)-induced oxidative stress and antioxidant systems in leaves of cabbage (Brassica campestris L. ssp. Pekinensis) were investigated by using cellular and biochemical approaches. The results showed that supplementation of the medium with Se was effective in reducing Cr-induced increased levels of lipid peroxides and superoxide free radicals (O(-)2(·)), as well as increasing activities of superoxide dismutase (SOD) and peroxidase (POD). Meanwhile, 1mg/L Cr induced loss of plasma membrane integrity, growth inhibition, as well as ultrastructural changes of leaves were significantly reversed due to Se supplementation in the medium. In addition, Se application significantly altered the subcellular distribution of Cr which transported from mitochondria, nucleus and the cell-wall material to the soluble fraction and chloroplasts. However, Se application did no significant alteration of Cr effects on osmotic adjustment accumulating products. The study suggested that Se is able to protect leaves of cabbage against Cr toxicity by alleviation of Cr induced oxidative stress, and re-distribution of Cr in the subcellular of the leaf. Furthermore, free radicals, lipid peroxides, activity of SOD and POD, and subcellular distribution of Cr can be considered the efficient biomarkers to indicate the efficiency of Se to detoxification Cr. Copyright © 2015 Elsevier Inc. All rights reserved.
Qin, Shi-yu; Sun, Xue-cheng; Hu, Cheng-xiao; Tan, Qi-ling; Zhao, Xiao-hu
2017-01-01
Objectives: To investigate the effects of different nitrate sources on the uptake, transport, and distribution of molybdenum (Mo) between two oilseed rape (Brassica napus L.) cultivars, L0917 and ZS11. Methods: A hydroponic culture experiment was conducted with four nitrate/ammonium (NO3 −:NH4 +) ratios (14:1, 9:6, 7.5:7.5, and 1:14) at a constant nitrogen concentration of 15 mmol/L. We examined Mo concentrations in roots, shoots, xylem and phloem sap, and subcellular fractions of leaves to contrast Mo uptake, transport, and subcellular distribution between ZS11 and L0917. Results: Both the cultivars showed maximum biomass and Mo accumulation at the 7.5:7.5 ratio of NO3 −:NH4 + while those were decreased by the 14:1 and 1:14 treatments. However, the percentages of root Mo (14.8% and 15.0% for L0917 and ZS11, respectively) were low under the 7.5:7.5 treatment, suggesting that the equal NO3 −:NH4 + ratio promoted Mo transportation from root to shoot. The xylem sap Mo concentration and phloem sap Mo accumulation of L0917 were lower than those of ZS11 under the 1:14 treatment, which suggests that higher NO3 −:NH4 + ratio was more beneficial for L0917. On the contrary, a lower NO3 −:NH4 + ratio was more beneficial for ZS11 to transport and remobilize Mo. Furthermore, the Mo concentrations of both the cultivars’ leaf organelles were increased but the Mo accumulations of the cell wall and soluble fraction were reduced significantly under the 14:1 treatment, meaning that more Mo was accumulated in organelles under the highest NO3 −:NH4 + ratio. Conclusions: This investigation demonstrated that the capacities of Mo absorption, transportation and subcellular distribution play an important role in genotype-dependent differences in Mo accumulation under low or high NO3 −:NH4 + ratio conditions. PMID:28585427
NASA Technical Reports Server (NTRS)
Stuart, C. A.; Wen, G.; Gustafson, W. C.; Thompson, E. A.
2000-01-01
Basal, "insulin-independent" glucose uptake into skeletal muscle is provided by glucose transporters positioned at the plasma membrane. The relative amount of the three glucose transporters expressed in muscle has not been previously quantified. Using a combination of qualitative and quantitative ribonuclease protection assay (RPA) methods, we found in normal human muscle that GLUT1, GLUT3, and GLUT4 mRNA were expressed at 90 +/- 10, 46 +/- 4, and 156 +/- 12 copies/ng RNA, respectively. Muscle was fractionated by DNase digestion and differential sedimentation into membrane fractions enriched in plasma membranes (PM) or low-density microsomes (LDM). GLUT1 and GLUT4 proteins were distributed 57% to 67% in LDM, whereas GLUT3 protein was at least 88% in the PM-enriched fractions. These data suggest that basal glucose uptake into resting human muscle could be provided in part by each of these three isoforms.
Beil, W.; Sewing, K. F.
1984-01-01
The cellular and subcellular distributions of adenosinetriphosphatases (ATPases) were examined in guinea-pig gastric mucosal cells. All cell types displayed Mg2+-ATPase and bicarbonate (HCO3-)-stimulated ATPase activity. K+-ATPase was located only in fractions derived from parietal cells. Differential and density-gradient centrifugation of material prepared from parietal cells revealed that K+-ATPase activity was located in a tubulo-vesicular membrane fraction. Enzyme activity was ten fold greater in this fraction than in a crude parietal cell homogenate. The substituted benzimidazoles, omeprazole and picoprazole, inhibited K+-ATPase (IC50 1.8 +/- 0.5 mumol l-1 and 3.1 +/- 0.4 mumol l-1, respectively). Detailed kinetic analysis indicated that these compounds were non-competitive and reversible inhibitors of the enzyme. In contrast cimetidine and verapamil were without effect on the enzyme. The relevance of the inhibition of K+-ATPase to the antisecretory activity of the benzimidazoles, in experimental animals and man, is discussed. PMID:6146367
Zhou, Chui-Fan; Wang, Yu-Jun; Sun, Rui-Juan; Liu, Cun; Fan, Guang-Ping; Qin, Wen-Xiu; Li, Cheng-Cheng; Zhou, Dong-Mei
2014-10-01
The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio. The subcellular distribution of Cd in E. fetida tissues showed that internal Cd was dominant in the intact cells fraction and the heat-stable proteins fraction. The presence of glyphosate reduced the concentration of Cd in all fractions, especially the intact cells. During a longer period of exposure, the weight loss of earthworm and the total Cd absorption was alleviated by glyphosate. Thus, the herbicide glyphosate can reduce the toxicity and bioavailability of Cd in the soil ecosystems at both short- and long-term exposures. © 2014 SETAC.
DeLorenzo, Robert J.; Walton, Kenneth G.; Curran, Peter F.; Greengard, Paul
1973-01-01
Phosphorylation of a specific protein was decreased in intact toad bladders by exposure to either antidiuretic hormone or monobutyryl cyclic AMP. The decrease in phosphorylation caused by these agents preceded the change in electrical potential difference (an indicator of the rate of sodium ion transport) observed in response to the same compounds. The addition of cyclic AMP to homogenates of toad bladder led to a decrease in phosphorylation of the same, or a similar, protein. In subcellular fractionation studies, the effect of cyclic AMP on the phosphorylation of this protein was observed in those fractions rich in membrane fragments, but not in the nuclear or cell-sap fractions. These and other results are compatible with the possibility that the regulation by vasopressin and cyclic AMP of sodium and/or water transport in toad bladder may be mediated through regulation of the phosphorylation of this specific protein. Images PMID:4351809
Inoue, A; Nakata, Y; Yajima, H; Segawa, T
1984-10-01
In the present study, we demonstrated the existence of an active uptake system for substance P carboxy-terminal heptapeptide, (5-11)SP. When a fraction from rabbit brain enriched in glial cells was incubated with [3H] (5-11)SP, an uptake of [3H](5-11)SP was observed. The uptake system has the properties of an active transport mechanism. Kinetic analysis indicated two components of [3H](5-11)SP uptake, one representing a high and the other a low affinity transport system. After unilateral ablation of the striatum, approximately 30% of the high affinity [3H](5-11)SP uptake capacity of substantia nigra slices disappeared. The subcellular distribution of the high affinity uptake indicated that [3H] 5-hydroxytryptamine was taken up mostly into the P2B fraction (synaptosomal fraction), whereas [3H](5-11)SP was taken up into the P2A fraction (myelin fraction) to the same extent as into the P2B fraction. These results suggest that when SP is released from nerve terminals, it is hydrolysed into (5-11)SP, which is in turn accumulated into glial cells as well as nerve terminals and that this high affinity uptake mechanism may play an important role in terminating the synaptic action of SP.
1987-01-01
We have used pulse-chase metabolic radiolabeling with L-[35S]methionine in conjunction with subcellular fractionation and specific protein immunoprecipitation techniques to compare the posttranslational transport pathways taken by endogenous domain-specific integral proteins of the rat hepatocyte plasma membrane in vivo. Our results suggest that both apical (HA 4, dipeptidylpeptidase IV, and aminopeptidase N) and basolateral (CE 9 and the asialoglycoprotein receptor [ASGP-R]) proteins reach the hepatocyte plasma membrane with similar kinetics. The mature molecular mass form of each of these proteins reaches its maximum specific radioactivity in a purified hepatocyte plasma membrane fraction after only 45 min of chase. However, at this time, the mature radiolabeled apical proteins are not associated with vesicles derived from the apical domain of the hepatocyte plasma membrane, but instead are associated with vesicles which, by several criteria, appear to be basolateral plasma membrane. These vesicles: (a) fractionate like basolateral plasma membrane in sucrose density gradients and in free-flow electrophoresis; (b) can be separated from the bulk of the likely organellar contaminants, including membranes derived from the late Golgi cisternae, transtubular network, and endosomes; (c) contain the proven basolateral constituents CE 9 and the ASGP-R, as judged by vesicle immunoadsorption using fixed Staphylococcus aureus cells and anti-ASGP-R antibodies; and (d) are oriented with their ectoplasmic surfaces facing outward, based on the results of vesicle immunoadsorption experiments using antibodies specific for the ectoplasmic domain of the ASGP-R. Only at times of chase greater than 45 min do significant amounts of the mature radiolabeled apical proteins arrive at the apical domain, and they do so at different rates. Approximate half-times for arrival are in the range of 90-120 min for aminopeptidase N and dipeptidylpeptidase IV whereas only 15-20% of the mature radiolabeled HA 4 associated with the hepatocyte plasma membrane fraction has become apical even after 150 min of chase. Our results suggest a mechanism for hepatocyte plasma membrane biogenesis in vivo in which all integral plasma membrane proteins are shipped first to the basolateral domain, followed by the specific retrieval and transport of apical proteins to the apical domain at distinct rates. PMID:3654750
Maftah, A; Petit, J M; Ratinaud, M H; Julien, R
1989-10-16
The specificity of binding of 10-N Nonyl Acridine Orange to mitochondria, and more precisely to inner membranes, is demonstrated by subcellular fractionation of hepatocytes. Unlike Rhodamine 123, which is a preferential marker of the transmembrane potential, Nonyl Acridine Orange binding is essentially independent of the mitochondria energization state although a low uptake of this dye, in response to the potential, may be measured. So 10-N Nonyl acridine orange is an appropriate marker of the mitochondial membrane surface per unit of cell mass.
Protein localization as a principal feature of the etiology and comorbidity of genetic diseases
Park, Solip; Yang, Jae-Seong; Shin, Young-Eun; Park, Juyong; Jang, Sung Key; Kim, Sanguk
2011-01-01
Proteins targeting the same subcellular localization tend to participate in mutual protein–protein interactions (PPIs) and are often functionally associated. Here, we investigated the relationship between disease-associated proteins and their subcellular localizations, based on the assumption that protein pairs associated with phenotypically similar diseases are more likely to be connected via subcellular localization. The spatial constraints from subcellular localization significantly strengthened the disease associations of the proteins connected by subcellular localizations. In particular, certain disease types were more prevalent in specific subcellular localizations. We analyzed the enrichment of disease phenotypes within subcellular localizations, and found that there exists a significant correlation between disease classes and subcellular localizations. Furthermore, we found that two diseases displayed high comorbidity when disease-associated proteins were connected via subcellular localization. We newly explained 7584 disease pairs by using the context of protein subcellular localization, which had not been identified using shared genes or PPIs only. Our result establishes a direct correlation between protein subcellular localization and disease association, and helps to understand the mechanism of human disease progression. PMID:21613983
Qin, Shiyu; Sun, Xuecheng; Hu, Chengxiao; Tan, Qiling; Zhao, Xiaohu; Xu, Shoujun
2017-03-01
Due to the similarities of molybdenum (Mo) with tungsten (W) in the physical structure and chemical properties, studies involving the two elements have mainly examined their competitive relationships. The objectives of this study were to assess the effects of equimolar W on Mo accumulation, transport and subcellular distribution in oilseed rape at two Mo levels with four treatments: Mo 1 (1μmol/L Mo, Low Mo), Mo 1 +W 1 (1μmol/L Mo+1μmol/LW, Low Mo with Low W), Mo 200 (200μmol/L Mo, High Mo) and Mo 200 +W 200 (200μmol/L Mo+200μmol/L Mo, High Mo with high W). The fresh weight and root growth were inhibited by equimolar W at both low and high Mo levels. The Mo concentration and accumulation in root was increased by equimolar W at the low Mo level, but that in the root and shoot was decreased at the high Mo level. Additionally, equimolar W increased the Mo concentrations of xylem and phloem sap at low Mo level, but decreased that of xylem and increased that of phloem sap at the high Mo level. Furthermore, equimolar W decreased the expression of BnMOT1 in roots and leaves at the low Mo level, and only decreased its expression in leaves at the high Mo level. The expression of BnMOT2 was also decreased in root for equimolar W compared with the low Mo level, but increased compared with high Mo level. Moreover, equimolar W increased the proportion of Mo in cell wall fraction in root and that of soluble fraction in leaves when compared with the low Mo level. The results suggest that cell wall and soluble fractions might be responsible for the adaptation of oilseed rape to W stress. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Green, J L; Jones, B C; Reed, G A
1994-01-01
Sulfur dioxide (SO2) may act as a cocarcinogen with benzo[a]pyrene (BaP) in the respiratory tract. We have modeled this effect by examining the interactions of 7r,8t-dihydroxy-9t,10t-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BPDE) with sulfite, the physiological form of SO2, in a murine respiratory epithelial cell line (C10). We exposed C10 cells to [3H]-anti-BPDE and determined the effects of 1 and 10 mM sulfite on the uptake and subcellular localization of labeled products. Autoradiographic analysis showed that sulfite doubled the nuclear localization of anti-BPDE-derived materials after a 4-hr incubation period. The net nuclear localization of anti-BPDE-derived materials was not affected by sulfite during the first 60 min, but nuclear localization continued to increase in the sulfite-containing incubations throughout the 4-hr incubation period. Little increase in nuclear localization of anti-BPDE-derived material was noted in the incubations without sulfite after 60 min. Subcellular fractionation was performed to determine the amount of label associated with cytosolic and nuclear fractions and to determine covalent binding to protein and DNA. Sulfite produced a modest increase in the amount of [3H]-anti-BPDE-derived products bound to protein; however, binding to nuclear DNA increased by more than 200% with 10 mM sulfite. Analysis of the supernatants from the cytosolic and nuclear fractions of cells exposed to anti-BPDE and sulfite demonstrated the presence of 7r,8t,9t-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene-10c-su lfonate (BPT-10-sulfonate). [3H]-BPT-10-sulfonate was unable to enter C10 cells, suggesting that it is formed intracellularly.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. Figure 2. Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. Figure 4. PMID:8033853
Modification of the effects of guanethidine on cardiac catechol amines by various agents
Bhagat, B.
1964-01-01
A study has been made of the effect of injections of guanethidine in rats, in depleting catechol amines from the whole cardiac ventricles and from various subcellular fractions. Unlike reserpine, guanethidine first affected the concentration of the amines in the soluble fraction of the cell. Neither [2-(2,6-dimethylphenoxy)-propyl]trimethylammonium chloride monohydrate (β-methyl xylocholine) nor hemicholinium affected the endogenous catechol amines or the uptake of injected noradrenaline, but each significantly reduced the action of guanethidine in depleting catechol amines. Administration of choline chloride after hemicholinium reversed its influence on guanethidine depletion. In cats, cocaine potentiated the pressor response to noradrenaline, but antagonized the response to tyramine and guanethidine, while bretylium and N-o-chlorobenzyl-N'N”-dimethylguanidine sulphate (BW392C60) potentiated the responses to noradrenaline, tyramine and guanethidine. PMID:14190459
Wellburn, A. R.; Hemming, F. W.
1967-01-01
Intact chloroplasts and cell walls were prepared from horse-chestnut leaves that had previously metabolized [2-14C]mevalonate. The bulk of the castaprenols and plastoquinone-9 was found within the chloroplasts. The remaining portion of the castaprenols was associated with the cell-wall preparation whereas that of the plastoquinone-9 was probably localized in the soluble fraction of the plant cell. The 14C content of these compounds of different cell fractions indicated the presence of polyisoprenoid-synthesizing activity both inside and outside the chloroplasts. This was confirmed by the relative incorporation of 14C when ultrasonically treated and intact chloroplasts were incubated with [2-14C]mevalonate. As the leaves aged (on the tree) an increase in extraplastidic castaprenols and plastoquinone-9, together with associated synthesizing activities, was observed. PMID:6068175
Plant subcellular proteomics: Application for exploring optimal cell function in soybean.
Wang, Xin; Komatsu, Setsuko
2016-06-30
Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean. Copyright © 2016 Elsevier B.V. All rights reserved.
Moir, R D; Lynch, T; Bush, A I; Whyte, S; Henry, A; Portbury, S; Multhaup, G; Small, D H; Tanzi, R E; Beyreuther, K; Masters, C L
1998-02-27
Although a number of studies have examined amyloid precursor protein (APP) mRNA levels in Alzheimer's disease (AD), no clear consensus has emerged as to whether the levels of transcripts for isoforms containing a Kunitz protease inhibitory (KPI)-encoded region are increased or decreased in AD. Here we compare AD and control brain for the relative amounts of APP protein containing KPI to APP protein lacking this domain. APP protein was purified from the soluble subcellular fraction and Triton X-100 membrane pellet extract of one hemisphere of AD (n = 10), normal (n = 7), and neurological control (n = 5) brains. The amount of KPI-containing APP in the purified protein samples was determined using two independent assay methods. The first assay exploited the inhibitory action of KPI-containing APP on trypsin. The second assay employed reflectance analysis of Western blots. The proportion of KPI-containing forms of APP in the soluble subcellular fraction of AD brains is significantly elevated (p < 0.01) compared with controls. Species containing a KPI domain comprise 32-41 and 76-77% of purified soluble APP from control and AD brains, respectively. For purified membrane-associated APP, 72-77 and 65-82% of control and AD samples, respectively, contain a KPI domain. Since KPI-containing species of APP may be more amyloidogenic (Ho, L., Fukuchi, K., and Yonkin, S. G. (1996) J. Biol. Chem. 271, 30929-30934), our findings support an imbalance of isoforms as one possible mechanism for amyloid deposition in sporadic AD.
Filardo, E; Quinn, J; Pang, Y; Graeber, C; Shaw, S; Dong, J; Thomas, P
2007-07-01
G protein-coupled receptor 30 (GPR30), a seven-transmembrane receptor (7TMR), is associated with rapid estrogen-dependent, G protein signaling and specific estrogen binding. At present, the subcellular site of GPR30 action is unclear. Previous studies using antibodies and fluorochrome-labeled estradiol (E2) have failed to detect GPR30 on the cell surface, suggesting that GPR30 may function uniquely among 7TMRs as an intracellular receptor. Here, we show that detectable expression of GPR30 on the surface of transfected HEK-293 cells can be selected by fluorescence-activated cell sorting. Expression of GPR30 on the cell surface was confirmed by confocal microscopy using the lectin concanavalin A as a plasma membrane marker. Stimulation of GPR30-expressing HEK-293 cells with 17beta-E2 caused sequestration of GPR30 from the cell surface and resulted in its codistribution with clathrin and mobilization of intracellular calcium stores. Evidence that GPR30 signals from the cell surface was obtained from experiments demonstrating that the cell-impermeable E2-protein conjugates E2-BSA and E2-horseradish peroxidase promote GPR30-dependent elevation of intracellular cAMP concentrations. Subcellular fractionation studies further support the plasma membrane as a site of GPR30 action with specific [3H]17beta-E2 binding and G protein activation associated with plasma membrane but not microsomal, or other fractions, prepared from HEK-293 or SKBR3 breast cancer cells. These results suggest that GPR30, like other 7TMRs, functions as a plasma membrane receptor.
Localization and Functionality of the Inflammasome in Neutrophils*
Bakele, Martina; Joos, Melanie; Burdi, Sofia; Allgaier, Nicolas; Pöschel, Simone; Fehrenbacher, Birgit; Schaller, Martin; Marcos, Veronica; Kümmerle-Deschner, Jasmin; Rieber, Nikolaus; Borregaard, Niels; Yazdi, Amir; Hector, Andreas; Hartl, Dominik
2014-01-01
Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein containing a CARD (ASC), AIM2, and caspase-1. Subcellular fractionation and microscopic analyses further showed that inflammasome components were localized in the cytoplasm and also noncanonically in secretory vesicle and tertiary granule compartments. Whereas IL-1β and IL-18 were expressed at the mRNA level and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases were differentially involved in IL-1β release, depending on the stimulus. Spontaneous activation of the NLRP3 inflammasome in neutrophils in vivo affected IL-1β, but not IL-18 release. In summary, these studies show that human neutrophils express key components of the inflammasome machinery in distinct intracellular compartments and release IL-1β and IL-18, but not IL-1α or IL-33 protein. Targeting the neutrophil inflammasome may represent a future therapeutic strategy to modulate neutrophilic inflammatory diseases, such as cystic fibrosis, rheumatoid arthritis, or sepsis. PMID:24398679
Mauch, F.; Staehelin, L. A.
1989-01-01
Plants respond to an attack by potentially pathogenic organisms and to the plant stress hormone ethylene with an increased synthesis of hydrolases such as chitinase and [beta]-1,3-glucanase. We have studied the subcellular localization of these two enzymes in ethylene-treated bean leaves by immunogold cytochemistry and by biochemical fractionation techniques. Our micrographs indicate that chitinase and [beta]-1,3-glucanase accumulate in the vacuole of ethylene-treated leaf cells. Within the vacuole label was found predominantly over ethylene-induced electron dense protein aggregates. A second, minor site of accumulation of [beta]-1,3-glucanase was the cell wall, where label was present nearly exclusively over the middle lamella surrounding intercellular air spaces. Both kinds of antibodies labeled Golgi cisternae of ethylene-treated tissue, suggesting that the newly synthesized chitinase and [beta]-1,3-glucanase are processed in the Golgi apparatus. Biochemical fractionation studies confirmed the accumulation in high concentrations of both chitinase and [beta]-1,3-glucanase in isolated vacuoles, and demonstrated that only [beta]-1,3-glucanase, but not chitinase, was present in intercellular washing fluids collected from ethylene-treated leaves. Based on these results and earlier studies, we propose a model in which the vacuole-localized chitinase and [beta]-1,3-glucanase are used as a last line of defense to be released when the attacked host cells lyse. The cell wall-localized [beta]-1,3-glucanase, on the other hand, would be involved in recognition processes, releasing defense activating signaling molecules from the walls of invading pathogens. PMID:12359894
1985-01-01
The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191
An Extended Proteome Map of the Lysosomal Membrane Reveals Novel Potential Transporters*
Chapel, Agnès; Kieffer-Jaquinod, Sylvie; Sagné, Corinne; Verdon, Quentin; Ivaldi, Corinne; Mellal, Mourad; Thirion, Jaqueline; Jadot, Michel; Bruley, Christophe; Garin, Jérôme; Gasnier, Bruno; Journet, Agnès
2013-01-01
Lysosomes are membrane-bound endocytic organelles that play a major role in degrading cell macromolecules and recycling their building blocks. A comprehensive knowledge of the lysosome function requires an extensive description of its content, an issue partially addressed by previous proteomic analyses. However, the proteins underlying many lysosomal membrane functions, including numerous membrane transporters, remain unidentified. We performed a comparative, semi-quantitative proteomic analysis of rat liver lysosome-enriched and lysosome-nonenriched membranes and used spectral counts to evaluate the relative abundance of proteins. Among a total of 2,385 identified proteins, 734 proteins were significantly enriched in the lysosomal fraction, including 207 proteins already known or predicted as endo-lysosomal and 94 proteins without any known or predicted subcellular localization. The remaining 433 proteins had been previously assigned to other subcellular compartments but may in fact reside on lysosomes either predominantly or as a secondary location. Many membrane-associated complexes implicated in diverse processes such as degradation, membrane trafficking, lysosome biogenesis, lysosome acidification, signaling, and nutrient sensing were enriched in the lysosomal fraction. They were identified to an unprecedented extent as most, if not all, of their subunits were found and retained by our screen. Numerous transporters were also identified, including 46 novel potentially lysosomal proteins. We expressed 12 candidates in HeLa cells and observed that most of them colocalized with the lysosomal marker LAMP1, thus confirming their lysosomal residency. This list of candidate lysosomal proteins substantially increases our knowledge of the lysosomal membrane and provides a basis for further characterization of lysosomal functions. PMID:23436907
Chemiluminescence of Acanthamoeba castellanii.
Lloyd, D; Boveris, A; Reiter, R; Filipkowski, M; Chance, B
1979-01-01
1. Chemiluminescence of Acanthomoeba castellanii in the presence of O2 was of similar intensity in organisms harvested early or late during exponential growth [when cyanide (1 mM) stimulates or inhibits respiration respectively]. 2. Cyanide (up to 1.5 mM) stimulated photoemission in both types of organism by 250--300 photons/s per 10(7) cells above the value observed under aerobic conditions. 3. 'Dibromothymoquinone' (2,5-dibromo-6-isopropyl-3-methyl-p-benzoquinone) (up to 80 microM) further increased chemiluminescence. 4. Similar responses were also demonstrated in whole homogenates and in subcellular fractions; 36% of the chemiluminescence was provided by a fraction sedimenting at 100000g-min, and 20% in that fraction that was non-sedimentable at 200000g-min. 5. Mitochondrial substrates (succinate, 2-oxoglutarate, NADH) in the presence or absence of ADP and Pi or peroxisomal substrates (glycollate, urate or ethanol) gave no increases in light emission by whole homogenates or in any of the fractions. 6. It is suggested that reactions responsible for production of chemiluminescence are those primarily producing superoxide anions and leading to lipid peroxidation and singlet-oxygen formation. Photoemission enhancement and superoxide dismutase inhibition showed similar cyanide concentration-dependencies. PMID:534514
Shotgun proteomics of plant plasma membrane and microdomain proteins using nano-LC-MS/MS.
Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo
2014-01-01
Shotgun proteomics allows the comprehensive analysis of proteins extracted from plant cells, subcellular organelles, and membranes. Previously, two-dimensional gel electrophoresis-based proteomics was used for mass spectrometric analysis of plasma membrane proteins. In order to get comprehensive proteome profiles of the plasma membrane including highly hydrophobic proteins with a number of transmembrane domains, a mass spectrometry-based shotgun proteomics method using nano-LC-MS/MS for proteins from the plasma membrane proteins and plasma membrane microdomain fraction is described. The results obtained are easily applicable to label-free protein semiquantification.
Kopacz-Jodczyk, T; Gałasiński, W
1987-10-01
UDP-D-[U-14C]galactose is decomposed to [U-14C]galactose-1-phosphate and [U-14C]galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-[U-14C]galactose, at neutral pH, is also chemically degraded to the [U-14C]galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-[U-14C]galactose. It is a very important finding that products of the UDP-D-[U-14C]galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended in order to avoid incorrect interpretations of the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopacz-Jodczyk, T.; Galasinski, W.
1987-10-01
UDP-D-(U-/sup 14/C)galactose is decomposed to (U-/sup 14/C)galactose-1-phosphate and (U-/sup 14/C)galactose by rat liver microsomal and crude polyribosomal fractions, under conditions commonly used to assay of glycosyltransferase activities. UDP-D-(U-/sup 14/C)galactose, at neutral pH, is also chemically degraded to the (U-/sup 14/C)galactose-1,2-cyclic phosphate. The 1,2-cyclic phosphate derivative of galactose also exists in the commercial UDP-D-(U-/sup 14/C)galactose. It is a very important finding that products of the UDP-D-(U-/sup 14/C)galactose decomposition are tightly, although nonenzymatically, bound to tested subcellular fractions and may create a false impression of protein glycosylation. The application of controls containing all radioactive substances present in suitable samples is recommended inmore » order to avoid incorrect interpretations of the results.« less
Perkel, V S; Liu, A Y; Miura, Y; Magner, J A
1988-07-01
We have studied the effects of Brefeldin-A (BFA) on the processing of high mannose (Man) oligosaccharides of TSH. BFA is a drug that inhibits the intracellular translocation of newly synthesized glycoproteins and causes dilatation of the rough endoplasmic reticulum (RER) as well as mild swelling of the Golgi apparatus. Mouse pituitary thyrotropic tumor tissue was incubated with [3H]Man for a 2-h pulse, with and without a 3-h chase; BFA (5 micrograms/ml) was included during selected pulse and selected chase incubations. TSH and free alpha-subunits were obtained from detergent lysates of tissue by immunoprecipitation using specific antisera. Total glycoproteins were obtained by trichloroacetic acid precipitation. Endoglycosidase-H-released [3H]oligosaccharides were analyzed by paper chromatography. BFA inhibited carbohydrate processing of TSH, free alpha-subunits, and total glycoproteins, resulting in the accumulation of Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2, and Man5GlcNAc2, especially during the chase period. Subcellular fractions enriched in RER, heavy (proximal) Golgi, and light (distal) Golgi were prepared by centrifugation in discontinuous sucrose gradients. [3H]Man-labeled oligosaccharides of TSH and total glycoproteins in the subcellular fractions were analyzed. In contrast to oligosaccharides with eight or nine Man residues found in control incubations, BFA caused the accumulation of oligosaccharides containing five to eight Man residues. These BFA-induced oligosaccharide alterations began in the RER and proximal Golgi with the 2-h pulse and extended into the distal Golgi during the chase incubations. Thus, BFA blocks the normal intracellular transport and processing of TSH, free alpha-subunits, and total glycoproteins within thyrotrophs, causing species with smaller than normal high Man oligosaccharides to appear in subcellular compartments as early as the RER. The translocation block between RER and Golgi produced by BFA may prevent the processing of Man8GlcNAc2 to Man5GlcNAc2 by Golgi (alpha,1-2)mannosidase I, yet the species retained within the RER may be subject to ongoing processing by endoplasmic reticulum (alpha,1-2)mannosidase, resulting in the accumulation of Man5-8GlcNAc2 within the RER.
Nucleobindin Co-Localizes and Associates with Cyclooxygenase (COX)-2 in Human Neutrophils
Leclerc, Patrick; Biarc, Jordane; St-Onge, Mireille; Gilbert, Caroline; Dussault, Andrée-Anne; Laflamme, Cynthia; Pouliot, Marc
2008-01-01
The inducible cyclooxygenase isoform (COX-2) is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc), a ubiquitous Ca2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr) Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis. PMID:18493301
High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels†
Müller, Jan; Ballini, Marco; Livi, Paolo; Chen, Yihui; Radivojevic, Milos; Shadmani, Amir; Viswam, Vijay; Jones, Ian L.; Fiscella, Michele; Diggelmann, Roland; Stettler, Alexander; Frey, Urs; Bakkum, Douglas J.; Hierlemann, Andreas
2017-01-01
Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 μm) within a large overall sensing area (3.85 × 2.10 mm2). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons. PMID:25973786
Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells.
Kwon, ChangHyuk; Tak, Hyosun; Rho, Mina; Chang, Hae Ryung; Kim, Yon Hui; Kim, Kyung Tae; Balch, Curt; Lee, Eun Kyung; Nam, Seungyoon
2014-03-28
Piwi-interacting RNAs (piRNAs) are 26-31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels.
Müller, Jan; Ballini, Marco; Livi, Paolo; Chen, Yihui; Radivojevic, Milos; Shadmani, Amir; Viswam, Vijay; Jones, Ian L; Fiscella, Michele; Diggelmann, Roland; Stettler, Alexander; Frey, Urs; Bakkum, Douglas J; Hierlemann, Andreas
2015-07-07
Studies on information processing and learning properties of neuronal networks would benefit from simultaneous and parallel access to the activity of a large fraction of all neurons in such networks. Here, we present a CMOS-based device, capable of simultaneously recording the electrical activity of over a thousand cells in in vitro neuronal networks. The device provides sufficiently high spatiotemporal resolution to enable, at the same time, access to neuronal preparations on subcellular, cellular, and network level. The key feature is a rapidly reconfigurable array of 26 400 microelectrodes arranged at low pitch (17.5 μm) within a large overall sensing area (3.85 × 2.10 mm(2)). An arbitrary subset of the electrodes can be simultaneously connected to 1024 low-noise readout channels as well as 32 stimulation units. Each electrode or electrode subset can be used to electrically stimulate or record the signals of virtually any neuron on the array. We demonstrate the applicability and potential of this device for various different experimental paradigms: large-scale recordings from whole networks of neurons as well as investigations of axonal properties of individual neurons.
Arginine Decarboxylase Is Localized in Chloroplasts.
Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.
1995-01-01
Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631
Subcellular localization of rat CYP2E1 impacts metabolic efficiency toward common substrates.
Hartman, Jessica H; Martin, H Cass; Caro, Andres A; Pearce, Amy R; Miller, Grover P
2015-12-02
Cytochrome P450 2E1 (CYP2E1) detoxifies or bioactivates many low molecular-weight compounds. Most knowledge about CYP2E1 activity relies on studies of the enzyme localized to endoplasmic reticulum (erCYP2E1); however, CYP2E1 undergoes transport to mitochondria (mtCYP2E1) and becomes metabolically active. We report the first comparison of in vitro steady-state kinetic profiles for erCYP2E1 and mtCYP2E1 oxidation of probe substrate 4-nitrophenol and pollutants styrene and aniline using subcellular fractions from rat liver. For all substrates, metabolic efficiency changed with substrate concentration for erCYP2E1 reflected in non-hyperbolic kinetic profiles but not for mtCYP2E1. Hyperbolic kinetic profiles for the mitochondrial enzyme were consistent with Michaelis-Menten mechanism in which metabolic efficiency was constant. By contrast, erCYP2E1 metabolism of 4-nitrophenol led to a loss of enzyme efficiency at high substrate concentrations when substrate inhibited the reaction. Similarly, aniline metabolism by erCYP2E1 demonstrated negative cooperativity as metabolic efficiency decreased with increasing substrate concentration. The opposite was observed for erCYP2E1 oxidation of styrene; the sigmoidal kinetic profile indicated increased efficiency at higher substrate concentrations. These mechanisms and CYP2E1 levels in mitochondria and endoplasmic reticulum were used to estimate the impact of CYP2E1 subcellular localization on metabolic flux of pollutants. Those models showed that erCYP2E1 mainly carries out aniline metabolism at all aniline concentrations. Conversely, mtCYP2E1 dominates styrene oxidation at low styrene concentrations and erCYP2E1 at higher concentrations. Taken together, subcellular localization of CYP2E1 results in distinctly different enzyme activities that could impact overall metabolic clearance and/or activation of substrates and thus impact the interpretation and prediction of toxicological outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Effect of Water Stress on Cotton Leaves 1
Berlin, Jerry; Quisenberry, J. E.; Bailey, Franklin; Woodworth, Margaret; McMichael, B. L.
1982-01-01
Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study. Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae. Images Fig. 1 PMID:16662453
Berlin, J; Quisenberry, J E; Bailey, F; Woodworth, M; McMichael, B L
1982-07-01
Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae.
Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.
2011-01-01
Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [14C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [14C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [14C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [14C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [14C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [14C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATPbinding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism. PMID:18387646
Lee, Junga; Scheri, Richard C; Curtis, Lawrence R
2008-06-15
Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [(14)C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [(14)C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [(14)C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [(14)C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [(14)C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [(14)C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism.
Dogra, M; Palmer, BD; Bashiri, G; Tingle, MD; Shinde, SS; Anderson, RF; O'Toole, R; Baker, EN; Denny, WA; Helsby, NA
2011-01-01
BACKGROUND AND PURPOSE PA-824 is a 2-nitroimidazooxazine prodrug currently in Phase II clinical trial for tuberculosis therapy. It is bioactivated by a deazaflavin (F420)-dependent nitroreductase (Ddn) isolated from Mycobacterium tuberculosis to form a des-nitro metabolite. This releases toxic reactive nitrogen species which may be responsible for its anti-mycobacterial activity. There are no published reports of mammalian enzymes bioactivating this prodrug. We have investigated the metabolism of PA-824 following incubation with a subcellular fraction of human liver, in comparison with purified Ddn, M. tuberculosis and Mycobacterium smegmatis. EXPERIMENTAL APPROACH PA-824 (250 µM) was incubated with the 9000×g supernatant (S9) of human liver homogenates, purified Ddn, M. tuberculosis and M. smegmatis for metabolite identification by liquid chromatography mass spectrometry analysis. KEY RESULTS PA-824 was metabolized to seven products by Ddn and M. tuberculosis, with the major metabolite being the des-nitro product. Six of these products, but not the des-nitro metabolite, were also detected in M. smegmatis. In contrast, only four of these metabolites were observed in human liver S9; M3, a reduction product previously proposed as an intermediate in the Ddn-catalyzed des-nitrification and radiolytic reduction of PA-824; two unidentified metabolites, M1 and M4, which were products of M3; and a haem-catalyzed product of imidazole ring hydration (M2). CONCLUSIONS AND IMPLICATIONS PA-824 was metabolized by des-nitrification in Ddn and M. tuberculosis, but this does not occur in human liver S9 and M. smegmatis. Thus, PA-824 was selectively bioactivated in M. tuberculosis and there was no evidence for ‘cross-activation’ by human enzymes. PMID:20955364
Morphine Regulated Synaptic Networks Revealed by Integrated Proteomics and Network Analysis*
Stockton, Steven D.; Gomes, Ivone; Liu, Tong; Moraje, Chandrakala; Hipólito, Lucia; Jones, Matthew R.; Ma'ayan, Avi; Morón, Jose A.; Li, Hong; Devi, Lakshmi A.
2015-01-01
Despite its efficacy, the use of morphine for the treatment of chronic pain remains limited because of the rapid development of tolerance, dependence and ultimately addiction. These undesired effects are thought to be because of alterations in synaptic transmission and neuroplasticity within the reward circuitry including the striatum. In this study we used subcellular fractionation and quantitative proteomics combined with computational approaches to investigate the morphine-induced protein profile changes at the striatal postsynaptic density. Over 2,600 proteins were identified by mass spectrometry analysis of subcellular fractions enriched in postsynaptic density associated proteins from saline or morphine-treated striata. Among these, the levels of 34 proteins were differentially altered in response to morphine. These include proteins involved in G-protein coupled receptor signaling, regulation of transcription and translation, chaperones, and protein degradation pathways. The altered expression levels of several of these proteins was validated by Western blotting analysis. Using Genes2Fans software suite we connected the differentially expressed proteins with proteins identified within the known background protein-protein interaction network. This led to the generation of a network consisting of 116 proteins with 40 significant intermediates. To validate this, we confirmed the presence of three proteins predicted to be significant intermediates: caspase-3, receptor-interacting serine/threonine protein kinase 3 and NEDD4 (an E3-ubiquitin ligase identified as a neural precursor cell expressed developmentally down-regulated protein 4). Because this morphine-regulated network predicted alterations in proteasomal degradation, we examined the global ubiquitination state of postsynaptic density proteins and found it to be substantially altered. Together, these findings suggest a role for protein degradation and for the ubiquitin/proteasomal system in the etiology of opiate dependence and addiction. PMID:26149443
Wong, S K; Westfall, D P; Fedan, J S; Fleming, W W
1981-10-01
Previous evidence has suggested that postjunctional supersensitivity of the guinea-pig vas deferens results, in part, from partial depolarization of the cell membrane. The depolarization is believed to result from a reduction in the activity of the Na-K pump. Indeed, the Na, K+ -adenosine triphosphatase activity of subcellular fractions from supersensitive vas deferens is reduced. In order to determine whether the biochemical alteration seen in subcellular fractions correlate with Na-K pump sites in intact tissues, we have studied the binding of [3H] ouabain to intact vas deferens. [3H]ouabain binds to membrane sites which have the characteristics expected of Na+, K+ - adenosine triphosphatase. Specific binding was saturable and reversible. Scatchard analysis of ouabain-binding in control tissues yielded a single class of binding sites with a dissociation constant (KD) of 156 +/- 7 nM and a maximum number of binding sites (Bmax) of 558.7 +/- 15.6 fmol/mg wet wt. [3H]Ouabain binding was displaceable by several cardiac glycosides and aglycones, but not by steroid hormones or sodium vanadate. Alteration of concentrations of Na+ and K+ markedly affected ouabain binding. Denervation (with 6-hydroxydopamine), decentralization or reserpine treatment for 1 day, which do not produce supersensitivity, did not alter the Bmax, whereas 5 to 7 days after these procedures, when supersensitivity was present, the Bmax was significantly reduced by 20 to 40%. The KD was not changed by any of the treatments. These data provide additional support for the concept that a reduction in the NaK pump sites contributes to postjunctional supersensitivity.
Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.
2014-07-29
To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides withmore » 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.« less
Konopka, Adam R; Laurin, Jaime L; Musci, Robert V; Wolff, Christopher A; Reid, Justin J; Biela, Laurie M; Zhang, Qian; Peelor, Fredrick F; Melby, Christopher L; Hamilton, Karyn L; Miller, Benjamin F
2017-04-01
In older adults, chronic oxidative and inflammatory stresses are associated with an impaired increase in skeletal muscle protein synthesis after acute anabolic stimuli. Conjugated linoleic acid (CLA) and Protandim have been shown to activate nuclear factor erythroid-derived 2-like 2 (Nrf2), a transcription factor for the antioxidant response element and anti-inflammatory pathways. This study tested the hypothesis that compared to a placebo control (CON), CLA and Protandim would increase skeletal muscle subcellular protein (myofibrillar, mitochondrial, cytoplasmic) and DNA synthesis in older adults after 6 weeks of milk protein feeding. CLA decreased oxidative stress and skeletal muscle oxidative damage with a trend to increase messenger RNA (mRNA) expression of a Nrf2 target, NAD(P)H dehydrogenase quinone 1 (NQO1). However, CLA did not influence other Nrf2 targets (heme oxygenase-1 (HO-1), glutathione peroxidase 1 (Gpx1)) or protein or DNA synthesis. Conversely, Protandim increased HO-1 protein content but not the mRNA expression of downstream Nrf2 targets, oxidative stress, or skeletal muscle oxidative damage. Rates of myofibrillar protein synthesis were maintained despite lower mitochondrial and cytoplasmic protein syntheses after Protandim versus CON. Similarly, DNA synthesis was non-significantly lower after Protandim compared to CON. After Protandim, the ratio of protein to DNA synthesis tended to be greater in the myofibrillar fraction and maintained in the mitochondrial and cytoplasmic fractions, emphasizing the importance of measuring both protein and DNA synthesis to gain insight into proteostasis. Overall, these data suggest that Protandim may enhance proteostatic mechanisms of skeletal muscle contractile proteins after 6 weeks of milk protein feeding in older adults.
Characterization and subcellular localization of aminopeptidases in senescing barley leaves
NASA Technical Reports Server (NTRS)
Thayer, S. S.; Choe, H. T.; Rausser, S.; Huffaker, R. C.
1988-01-01
Four aminopeptidases (APs) were separated using native polyacrylamide gel electrophoresis of cell-free extracts and the stromal fractions of isolated chloroplasts prepared from primary barley (Hordeum vulgare L., var Numar) leaves. Activities were identified using a series of aminoacyl-beta-naphthylamide derivatives as substrates. AP1, 2, and 3 were found in the stromal fraction of isolated chloroplasts with respective molecular masses of 66.7, 56.5, and 54.6 kilodaltons. AP4 was found only in the cytoplasmic fraction. No AP activity was found in vacuoles of these leaves. It was found that 50% of the L-Leu-beta-naphthylamide and 25% of the L-Arg-beta-naphthylamide activities were localized in the chloroplasts. Several AP activities were associated with the membranes of the thylakoid fraction of isolated chloroplasts. AP1, 2, and 4 reacted against a broad range of substrates, whereas AP3 hydrolyzed only L-Arg-beta-naphthylamide. Only AP2 hydrolyzed L-Val-beta-naphthylamide. Since AP2 and AP3 were the only ones reacting against Val-beta-naphthylamide and Arg-beta-naphthylamide, respectively, several protease inhibitors were tested against these substrates using a stromal fraction from isolated chloroplasts as the source of the two APs. Both APs were sensitive to both metallo and sulfhydryl type inhibitors. Although AP activity decreased as leaves senesced, no new APs appeared on gels during senescence and none disappeared.
Khan, Farhan R; Irving, Jennifer R; Bury, Nicolas R; Hogstrand, Christer
2011-03-01
The River Hayle, Cornwall, UK exhibits pronounced Cu and Zn concentration gradients which were used to compare the metal handling abilities of two populations of Gammarus pulex (Crustacea: Amphipoda). One population was native to the Hayle region (Drym) and presumably has been historically impacted by elevated Cu and Zn levels, whilst naïve gammarids were collected from the River Cray, Kent, UK. Both populations were subject to a 32 day in situ exposure at four R. Hayle sites (Drym, Godolphin, Relubbus and St. Erth). Mortality (LT50), Cu and Zn accumulation and sub-cellular distribution, and oxidative stress (malondialdehyde production) increased with the expected Cu and Zn bioavailabilities at the four sites (i.e. Godolphin>Relubbus>St. Erth>Drym). The naïve population experienced greater metal induced effects in terms of Cu and Zn accumulation, oxidative stress responses and lower LT50s. Analysis of Cu and Zn sub-cellular distribution, however, revealed no significant differences in metal handling. In both populations each metal was localised predominantly to the sub-cellular fraction containing metal bound to metallothionein-like proteins (MTLP) or that holding both metal-rich granules (MRG) and exoskeleton, MTLP and MRG binding being indicative of metal detoxification. However, a greater capacity for detoxified metal storage is not a mechanism implicated in the perceived tolerance of the historically impacted gammarids. Instead our results suggest that the historically impacted population was adapted for lower uptake of Cu and Zn leading to lower bioaccumulation, stress response and ultimately mortality. These results demonstrate not only the usefulness of the in situ methodology, but also that differences in population exposure history can cause significant differences in metal responses during exposure at higher concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.
The Native Form and Maturation Process of Hepatitis C Virus Core Protein
Yasui, Kohichiroh; Wakita, Takaji; Tsukiyama-Kohara, Kyoko; Funahashi, Shin-Ichi; Ichikawa, Masumi; Kajita, Tadahiro; Moradpour, Darius; Wands, Jack R.; Kohara, Michinori
1998-01-01
The maturation and subcellular localization of hepatitis C virus (HCV) core protein were investigated with both a vaccinia virus expression system and CHO cell lines stably transformed with HCV cDNA. Two HCV core proteins, with molecular sizes of 21 kDa (p21) and 23 kDa (p23), were identified. The C-terminal end of p23 is amino acid 191 of the HCV polyprotein, and p21 is produced as a result of processing between amino acids 174 and 191. The subcellular localization of the HCV core protein was examined by confocal laser scanning microscopy. Although HCV core protein resided predominantly in the cytoplasm, it was also found in the nucleus and had the same molecular size as p21 in both locations, as determined by subcellular fractionation. The HCV core proteins had different immunoreactivities to a panel of monoclonal antibodies. Antibody 5E3 stained core protein in both the cytoplasm and the nucleus, C7-50 stained core protein only in the cytoplasm, and 499S stained core protein only in the nucleus. These results clearly indicate that the p23 form of HCV core protein is processed to p21 in the cytoplasm and that the core protein in the nucleus has a higher-order structure different from that of p21 in the cytoplasm. HCV core protein in sera of patients with HCV infection was analyzed in order to determine the molecular size of genuinely processed HCV core protein. HCV core protein in sera was found to have exactly the same molecular weight as the p21 protein. These results suggest that p21 core protein is a component of native viral particles. PMID:9621068
Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru
2013-12-20
Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.
The accumulation and subcellular distribution of arsenic and antimony in four fern plants.
Feng, R; Wang, X; Wei, C; Tu, S
2015-01-01
In the present study, Pteris cretica 'Albo-Lineata' (PC), Pteris fauriei (PF), Humata tyermanii Moore (HT), and Pteris ensiformis Burm (PE), were selected to explore additional plant materials for the phytoremediation of As and Sb co-contamination. To some extent, the addition of As and Sb enhanced the growth of HT, PE, and PF. Conversely, the addition of As and Sb negatively affected the growth of PC and was accompanied with the accumulation of high levels of As and Sb in the roots. The highest concentration of Sb was recorded as 6405 mg kg(-1) in the roots of PC, and that for As was 337 mg kg(-1) in the rhizome of PF. To some degree, As and Sb stimulated the uptake of each other in these ferns. Arsenic was mainly stored in the cytoplasmic supernatant (CS) fraction, followed by the cell wall (CW) fraction. In contrast, Sb was mainly found in the CW fraction and, to a lesser extent, in the CS fraction, suggesting that the cell wall and cytosol play different roles in As and Sb accumulation by fern plants. This study demonstrated that these fern plants show a good application potential in the phytoremediation of As and Sb co-contaminated environments.
Regulation of Lipid Synthesis in Soybeans by Two Benzoic Acid Herbicides 1
Muslih, Raad K.; Linscott, Dean L.
1977-01-01
The effects of 3-nitro-2,5-dichlorobenzoic acid (dinoben) and 3-amino-2,4-dichlorobenzoic acid (chloramben) on lipid formation and on the incorporation of various substrates into lipids by intact seeds and subcellular fractions of germinating soybean (Glycine max [L.] Merr. `Amsoy') were studied. Dinoben (20 μg/ml) inhibited synthesis of total lipids 67%, neutral lipids 73%, glycolipids 51%, and phospholipids 39% in germinating seeds. When polar lipids were analyzed further, inhibition of individual lipid classes was also observed. Chloramben (20 μg/ml) stimulated total lipid synthesis 25%. With the exception of the mitochondrial fraction where malonate thiokinase was absent, dinoben inhibited up to 99% the incorporation of acetate and malonate into lipids, but did not inhibit acetyl-CoA and malonyl-CoA incorporation. Chloramben stimulated the incorporation of all substrates tested into lipids by all fractions except the mitochondrial fraction when malonate was the substrate. When dinoben and chloramben were used in combinations, chloramben did not reverse the inhibitory effect of dinoben. It is concluded that the dinoben inhibitory effect is specific and is associated with the acetate and malonate thiokinase systems. The chloramben effect is stimulatory to either acetyl-CoA carboxylase or fatty acid synthetase or both. PMID:16660173
Trespassing cancer cells: ‘fingerprinting’ invasive protrusions reveals metastatic culprits
Klemke, Richard L.
2012-01-01
Metastatic cancer cells produce invasive membrane protrusions called invadopodia and pseudopodia, which play a central role in driving cancer cell dissemination in the body. Malignant cells use these structures to attach to and degrade extracellular matrix proteins, generate force for cell locomotion, and to penetrate the vasculature. Recent work using unique subcellular fractionation methodologies combined with spatial genomic, proteomic, and phosphoproteomic profiling has provided insight into the invadopodiome and pseudopodiome signaling networks that control the protrusion of invasive membranes. Here I highlight how these powerful spatial “omics” approaches reveal important signatures of metastatic cancer cells and possible new therapeutic targets aimed at treating metastatic disease. PMID:22980730
Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates.
Cowan-Ellsberry, Christina E; Dyer, Scott D; Erhardt, Susan; Bernhard, Mary Jo; Roe, Amy L; Dowty, Martin E; Weisbrod, Annie V
2008-02-01
National and international chemical management programs are assessing thousands of chemicals for their persistence, bioaccumulative and environmental toxic properties; however, data for evaluating the bioaccumulation potential for fish are limited. Computer based models that account for the uptake and elimination processes that contribute to bioaccumulation may help to meet the need for reliable estimates. One critical elimination process of chemicals is metabolic transformation. It has been suggested that in vitro metabolic transformation tests using fish liver hepatocytes or S9 fractions can provide rapid and cost-effective measurements of fish metabolic potential, which could be used to refine bioconcentration factor (BCF) computer model estimates. Therefore, recent activity has focused on developing in vitro methods to measure metabolic transformation in cellular and subcellular fish liver fractions. A method to extrapolate in vitro test data to the whole body metabolic transformation rates is presented that could be used to refine BCF computer model estimates. This extrapolation approach is based on concepts used to determine the fate and distribution of drugs within the human body which have successfully supported the development of new pharmaceuticals for years. In addition, this approach has already been applied in physiologically-based toxicokinetic models for fish. The validity of the in vitro to in vivo extrapolation is illustrated using the rate of loss of parent chemical measured in two independent in vitro test systems: (1) subcellular enzymatic test using the trout liver S9 fraction, and (2) primary hepatocytes isolated from the common carp. The test chemicals evaluated have high quality in vivo BCF values and a range of logK(ow) from 3.5 to 6.7. The results show very good agreement between the measured BCF and estimated BCF values when the extrapolated whole body metabolism rates are included, thus suggesting that in vitro biotransformation data could effectively be used to reduce in vivo BCF testing and refine BCF model estimates. However, additional fish physiological data for parameterization and validation for a wider range of chemicals are needed.
Zhu, Liping; Lu, Yankai; Zhang, Jiwei; Hu, Qinghua
2017-01-01
Oxidative and antioxidative system of cells and tissues maintains a balanced state under physiological conditions. A disruption in this balance of redox status has been associated with numerous pathological processes. Reactive oxygen species (ROS) as a major redox signaling generates in a spatiotemporally dependent manner. Subcellular organelles such as mitochondria, endoplasmic reticulum, plasma membrane and nuclei contribute to the production of ROS. In addition to downstream effects of ROS signaling regulated by average ROS changes in cytoplasm, whether subcelluar ROS mediate biological effect(s) has drawn greater attentions. With the advance in redox-sensitive probes targeted to different subcellular compartments, the investigation of subcellular ROS signaling and its associated cellular function has become feasible. In this review, we discuss the subcellular ROS signaling, with particular focus on mechanisms of subcellular ROS production and its downstream effects.
Steroid production and estrogen binding in flowers of Gladiolus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, J.H.; Wolfe, G.R.; Janik, J.R.
1987-04-01
The bioconversion of /sup 3/H-cholesterol to steroids was examined in excised tissue from the pistils and bracts of Gladiolus. Ovary-ovule and stigma-style tissues produce a compound with chromatographic properties on reverse phase HPLC similar to 17..beta..-estradiol (E/sub 2/). The stigma-style fraction also produced a compound that chromatographed similarly to progesterone. Bracts and the oxidation controls produced no radiolabeled compounds which were chromatographically similar to E/sub 2/. An endogenous E/sub 2/ binding protein was partially characterized from the ovules. The protein binds E/sub 2/, estriol, and diethylstilbesterol whereas testosterone and progesterone do not bind. The total specific binding capacities in themore » cytosolic and nuclear fractions are 1.6 and 2.2 femtomoles of estradiol per mg of tissue. The dissociation constant is 1.1 x 10/sup -9/ M/sup -1/ for both subcellular fractions. The protein-estradiol complex has a sedimentation coefficient of 4.7 +/- 0.1S. The tissue specific biosynthesis of estrogens and the presence of a steroid binding protein similar to a Type 1 estrogen receptor found in mammals is suggestive of a role for steroids in pistil ontogeny.« less
Marín, C; Rodríguez-González, I; Hitos, A B; Rosales, M J; Dollet, M; Sánchez-Moreno, M
2004-07-01
Two superoxide dismutases (SODI and SODII) have been purified by differential centrifugation, fractionation with ammonium sulphate followed by chromatographic separation (ionic exchange and affinity), from a plant trypanosomatid isolated from Euphorbia characias, and then characterized for several biochemical properties. Both enzymes were insensitive to cyanide but sensitive to hydrogen peroxide, properties characteristic of iron-containing superoxide dismutase. SODI had a molecular mass of approximately 66 kDa, whereas the molecular mass of SODII was approximately 22 kDa, both enzymes showing single bands. The isoelectric points of SODI and SODII were 6.8 and 3.6, respectively. The enzymatic stability persisted at least for 6 months when the sample was lyophilized and preserved at -80 degrees C. Digitonin titration and subcellular fractionation showed that both enzymes were in the cytoplasmic fraction, although part of SODII isoenzyme was also associated with glycosomes. We assayed these activities (SOD) in 18 trypanosomatid isolates on isoelectric focusing gels, and have demonstrated that the SOD is a biochemical marker sufficient to identify a trypanosomatid isolated from a plant as belonging to the genus Phytomonas and to distinguish between a true Phytomonas and other trypanosomatids that are capable of causing transient infections in plants.
Nonspecific uptake and homeostasis drive the oceanic cadmium cycle
NASA Astrophysics Data System (ADS)
Horner, Tristan J.; Lee, Renee B. Y.; Henderson, Gideon M.; Rickaby, Rosalind E. M.
2013-02-01
The global marine distributions of Cd and phosphate are closely correlated, which has led to Cd being considered as a marine micronutrient, despite its toxicity to life. The explanation for this nutrient-like behavior is unknown because there is only one identified biochemical function for Cd, an unusual Cd/Zn carbonic anhydrase. Recent developments in Cd isotope mass spectrometry have revealed that Cd uptake by phytoplankton causes isotopic fractionation in the open ocean and in culture. Here we investigate the physiochemical pathways that fractionate Cd isotopes by performing subcellular Cd isotope analysis on genetically modified microorganisms. We find that expression of the Cd/Zn carbonic anhydrase makes no difference to the Cd isotope composition of whole cells. Instead, a large proportion of the Cd is partitioned into cell membranes with a similar direction and magnitude of Cd isotopic fractionation to that seen in surface seawater. This observation is well explained if Cd is mistakenly imported with other divalent metals and subsequently managed by binding within the cell to avoid toxicity. This process may apply to other divalent metals, whereby nonspecific uptake and subsequent homeostasis may contribute to elemental and isotopic distributions in seawater, even for elements commonly considered as micronutrients.
Khan, Abdul Arif; Khan, Zakir; Kalam, Mohd Abul; Khan, Azmat Ali
2018-01-01
Microbial pathogenesis involves several aspects of host-pathogen interactions, including microbial proteins targeting host subcellular compartments and subsequent effects on host physiology. Such studies are supported by experimental data, but recent detection of bacterial proteins localization through computational eukaryotic subcellular protein targeting prediction tools has also come into practice. We evaluated inter-kingdom prediction certainty of these tools. The bacterial proteins experimentally known to target host subcellular compartments were predicted with eukaryotic subcellular targeting prediction tools, and prediction certainty was assessed. The results indicate that these tools alone are not sufficient for inter-kingdom protein targeting prediction. The correct prediction of pathogen's protein subcellular targeting depends on several factors, including presence of localization signal, transmembrane domain and molecular weight, etc., in addition to approach for subcellular targeting prediction. The detection of protein targeting in endomembrane system is comparatively difficult, as the proteins in this location are channelized to different compartments. In addition, the high specificity of training data set also creates low inter-kingdom prediction accuracy. Current data can help to suggest strategy for correct prediction of bacterial protein's subcellular localization in host cell. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kanoh, H.; Lindsay, D. B.
1972-01-01
1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-14C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C18 and C20 fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Δ11:12 isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Δ11:12 isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C16 and C18 monoenoic acids; synthesis of C20 acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction. PMID:4638795
Schmidt-Ullrich, R.; Wallach, D. F. H.; Lightholder, J.
1979-01-01
In order to characterize parasite-induced host cell membrane antigens, the plasma membranes of Plasmodium knowlesi-infected rhesus erythrocytes have been compared with those of normal red cells and purified schizonts by immunochemical and biochemical techniques. Host cell membranes and schizonts were separated by differential centrifugation following nitrogen decompression. Isolated schizonts were further fractionated into several subcellular compartments. Crossed-immune electrophoresis, against monkey anti-schizont serum, of Triton X-100-solubilized material identified 7 P. knowlesi-specific antigens, of which 4 could be detected only in the host cell membranes. These membranes also contained 3 proteins, with relative molecular masses of 55 000, 65 000 and 90 000 and isoelectric points at pH 4.5, 4.5 and 5.2, respectively, which are lacking in normal membranes. Pulse-chase experiments with (14C)-glucosamine showed that these parasite-induced host cell membrane components are glycoproteins. ImagesFig. 1Fig. 2 PMID:120762
Quissell, D O; Deisher, L M
1992-04-01
Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.
Assessing heterogeneity of peroxisomes: isolation of two subpopulations from rat liver.
Islinger, Markus; Abdolzade-Bavil, Afsaneh; Liebler, Sven; Weber, Gerhardt; Völkl, Alfred
2012-01-01
Peroxisomes exhibit a heterogeneous morphological appearance in rat liver tissue. In this respect, the isolation and subsequent biochemical characterization of peroxisome species from different subcellular prefractions should help to solve the question of whether peroxisomes indeed diverge into functionally specialized subgroups in one tissue. As a means to address this question, we provide a detailed separation protocol for the isolation of peroxisomes from both the light (LM-Po) and the heavy (HM-Po) mitochondrial prefraction for their subsequent comparative analysis. Both isolation strategies rely on centrifugation in individually adapted Optiprep gradients. In case of the heavy mitochondrial fraction, free flow electrophoresis is appended as an additional separation step to yield peroxisomes of sufficient purity. In view of their morphology, peroxisomes isolated from both fractions are surrounded by a continuous single membrane and contain a gray-opaque inner matrix. However, beyond this overall similar appearance, HM-Po exhibit a smaller average diameter, float at lower density, and show a more negative average membrane charge when compared to LM-Po.
Evidence that the platelet plasma membrane does not contain a (Ca2+ + Mg2+)-dependent ATPase.
Steiner, B; Lüscher, E F
1985-09-10
The present study was designed to determine the subcellular distribution of the platelet (Ca2+ + Mg2+)-ATPase. Human platelets were surface labeled by the periodate-boro[3H]hydride method. Plasma membrane vesicles were then isolated to a purity of approx. 90% by a procedure utilizing wheat germ agglutinin affinity chromatography. These membranes were found to be 2.6-fold enriched in surface glycoproteins compared to an unfractionated vesicle fraction and almost 7-fold enriched compared to intact platelets. In contrast, the isolated plasma membranes showed a decreased specific activity of the (Ca2+ + Mg2+)-ATPase compared to the unfractionated vesicle fraction. This decrease in specific activity was found to be similar to that of an endoplasmic reticulum marker, glucose-6-phosphatase, and to that of a platelet inner membrane marker, phospholipase A2. We conclude, therefore, that the (Ca2+ + Mg2+)-ATPase is not located in the platelet plasma membrane but is restricted to membranes of intracellular origin.
Mechanisms of electron transfer between a styrylquinolinium dye and yeast in biofuel cell.
Hubenova, Yolina; Bakalska, Rumyana; Hubenova, Eleonora; Mitov, Mario
2016-12-01
In the present study, the influence of the recently synthesized styrylquinolinium dye 4-{(E)-2-[4-(dimethylamino)naphthalen-1-yl]ethenyl}-1-methylquinolinium iodide (DANSQI) on the intracellular processes as well as the electrical outputs of Candida melibiosica 2491 yeast-based biofuel cell was investigated. The addition of nanomolar quantities of DANSQI to the yeast suspension results in an increase of the current outputs right after the startup of the biofuel cells, associated with an electrooxidation of the dye on the anode. After that, the formed cation radical of the dye penetrates the yeast cells, provoking a set of intracellular changes. Studies of the subcellular anolyte fractions show that 1μM dye increased the peroxisomal catalase activity 30-times (1.15±0.06Unit/mg protein) and over twice the mitochondrial cytochrome c oxidase activity (92±5Unit/mg protein). The results obtained by electrochemical and spectrophotometric analyses let to the supposition that the dye acts as subcellular shuttle, on account of its specific intramolecular charge transfer properties. The transition between its benzoid, quinolyl radical and ion forms and their putative role for the extracellular and intracellular charge transfer mechanisms are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumeta, Masahiro, E-mail: kumeta@lif.kyoto-u.ac.jp; Hirai, Yuya; Yoshimura, Shige H.
2013-12-10
To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do notmore » take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.« less
Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation
Welch; Mauran; Maridonneau-Parini
1996-06-01
Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.
Gautier, Juliette; Munnier, Emilie; Soucé, Martin; Chourpa, Igor; Douziech Eyrolles, Laurence
2015-05-01
The intracellular distribution of the antiancer drug doxorubicin (DOX) was followed qualitatively by fluorescence confocal spectral imaging (FCSI) and quantitatively by capillary electrophoresis (CE). FCSI permits the localization of the major fluorescent species in cell compartments, with spectral shifts indicating the polarity of the respective environment. However, distinction between drug and metabolites by FCSI is difficult due to their similar fluorochromes, and direct quantification of their fluorescence is complicated by quantum yield variation between different subcellular environments. On the other hand, capillary electrophoresis with fluorescence detection (CE-LIF) is a quantitative method capable of separating doxorubicin and its metabolites. In this paper, we propose a method for determining drug and metabolite concentration in enriched nuclear and cytosolic fractions of cancer cells by CE-LIF, and we compare these data with those of FCSI. Significant differences in the subcellular distribution of DOX are observed between the drug administered as a molecular solution or as a suspension of drug-loaded iron oxide nanoparticles coated with polyethylene glycol. Comparative analysis of the CE-LIF vs FCSI data may lead to a tentative calibration of this latter method in terms of DOX fluorescence quantum yields in the nucleus and more or less polar regions of the cytosol.
Soni, Shivani; Bala, Shashi; Kumar, Ajay; Hanspal, Manjit
2007-01-01
Erythroblast macrophage protein (Emp) mediates the attachment of erythroid cells to macrophages and is required for normal differentiation of both cell lineages. In erythroid cells, Emp is believed to be involved in nuclear extrusion, however, its role in macrophage differentiation is unknown. Information on the changes in the expression level and subcellular distribution of Emp in differentiating macrophages is essential for understanding the function of Emp. Macrophages of varying maturity were examined by immunofluorescence microscopy and biochemical methods. Our data show that Emp is expressed in all stages of maturation, but its localization pattern changes dramatically during maturation: in immature macrophages, a substantial fraction of Emp is associated with the nuclear matrix, whereas in more mature cells, Emp is expressed largely at cell surface. Pulse-chase experiments show that nascent Emp migrates intracellularly from the cytoplasm to the plasma membrane more efficiently in mature macrophages than in immature cells. Incubation of erythroid cells with macrophages in culture shows that erythroid cells attach to mature macrophages but not to immature macrophage precursors. Together, our data show that the temporal and spatial expression of Emp correlates with its role in erythroblastic island formation and suggest that Emp may be involved in multiple cellular functions.
Soni, Shivani; Bala, Shashi; Kumar, Ajay; Hanspal, Manjit
2007-01-01
Erythroblast macrophage protein (Emp), mediates the attachment of erythroid cells to macrophages, and is required for normal differentiation of both cell lineages. In erythroid cells Emp is believed to be involved in nuclear extrusion however, its role in macrophage differentiation is unknown. Information on the changes in the expression level and subcellular distribution of Emp in differentiating macrophages is essential for understanding the function of Emp. Macrophages of varying maturity were examined by immunofluorescence microscopy and biochemical methods. Our data shows that Emp is expressed in all stages of maturation, but its localization pattern changes dramatically during maturation: in immature macrophages, a substantial fraction of Emp is associated with the nuclear matrix, whereas in more mature cells, Emp is expressed largely at cell surface. Pulse-chase experiments show that nascent Emp migrates intracellularly from the cytoplasm to the plasma membrane more efficiently in mature macrophages than in immature cells. Incubation of erythroid cells with macrophages in culture show that erythroid cells attach to mature macrophages but not to immature macrophage precursors. Together, our data shows that the temporal and spatial expression of Emp correlates with its role in erythroblastic island formation, and suggests that Emp may be involved in multiple cellular functions. PMID:17071116
Isolation of the Lateral Border Recycling Compartment using a diaminobenzidine-induced density shift
Sullivan, David P.; Rüffer, Claas; Muller, William A.
2014-01-01
The migration of leukocytes across the endothelium and into tissue is critical to mounting an inflammatory response. The Lateral Border Recycling Compartment (LBRC), a complex vesicular-tubule invagination of the plasma membrane found at endothelial cell borders, plays an important role in the this process. Although a few proteins have been shown to be present in the LBRC, no unique marker is known. Here we detail methods that can be used to characterize a subcellular compartment that lacks an identifying marker. Initial characterization of the LBRC was performed using standard subcellular fractionation with sucrose gradients and took advantage of the observation that the compartment migrated at a lower density than other membrane compartments. To isolate larger quantities of the compartment, we modified a classic technique known as a diaminobenzidine (DAB)-induced density shift. The DAB-induced density shift allowed for specific isolation of membranes labeled with HRP conjugated antibody. Because the LBRC could be differentially labeled at 4°C and 37°C, we were able to identify proteins that are enriched in the compartment, despite lacking a unique marker. These methods serve as a model to others studying poorly characterized compartments and organelles and are applicable to a wide variety of biological systems. PMID:24915828
Mannosomes: a molluscan intracellular tubular membrane system related to heavy metal stress?
Knigge, Thomas; Mann, Neelam; Parveen, Zahida; Perry, Christopher; Gernhöfer, Maike; Triebskorn, Rita; Köhler, Heinz R; Connock, Martin
2002-03-01
Amongst animals, several hydrogen peroxide-generating oxidases are apparently restricted to molluscs. One of these, D-mannitol oxidase, is concentrated in the alimentary system, where it is associated with its own subcellular membrane system of unique tubular morphology, most likely representing a structural modification of the ER. These structures can be purified by subcellular fractionation and have been termed 'mannosomes'. Little is known about the functions of mannitol oxidase or of mannosomes, but the previously reported molluscicide-induced increase in mannosomes implies their involvement in a general stress reaction. In this study, we examined the effects of heavy metal stress in the terrestrial gastropod Arion lusitanicus. The activity of mannitol oxidase and mannosome abundance were monitored, together with metal effects on heat-shock protein level, and these parameters were compared to heavy metal accumulation in the digestive gland. We found that mannitol oxidase is inhibited by heavy metals more than other oxidases. On the other hand, hsp70 levels and mannosomal protein were increased with enhanced heavy metal stress, the latter indicating a probable increase in the number of mannosome organelles. Thus, stress protein (hsp70) and mannosomal protein were positively correlated with heavy metal accumulation, whereas the enzyme activity showed a negative correlation with increasing heavy metal content of the slugs.
From the Cover: Visualization of maltose uptake in living yeast cells by fluorescent nanosensors
NASA Astrophysics Data System (ADS)
Fehr, Marcus; Frommer, Wolf B.; Lalonde, Sylvie
2002-07-01
Compartmentation of metabolic reactions and thus transport within and between cells can be understood only if we know subcellular distribution based on nondestructive dynamic monitoring. Currently, methods are not available for in vivo metabolite imaging at cellular or subcellular levels. Limited information derives from methods requiring fixation or fractionation of tissue (1, 2). We thus developed a flexible strategy for designing protein-based nanosensors for a wide spectrum of solutes, allowing analysis of changes in solute concentration in living cells. We made use of bacterial periplasmic binding proteins (PBPs), where we show that, on binding of the substrate, PBPs transform their hinge-bend movement into increased fluorescence resonance energy transfer (FRET) between two coupled green fluorescent proteins. By using the maltose-binding protein as a prototype, nanosensors were constructed allowing in vitro determination of FRET changes in a concentration-dependent fashion. For physiological applications, mutants with different binding affinities were generated, allowing dynamic in vivo imaging of the increase in cytosolic maltose concentration in single yeast cells. Control sensors allow the exclusion of the effect from other cellular or environmental parameters on ratio imaging. Thus the myriad of PBPs recognizing a wide spectrum of different substrates is suitable for FRET-based in vivo detection, providing numerous scientific, medical, and environmental applications.
The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing
Stalder, Lukas; Heusermann, Wolf; Sokol, Lena; Trojer, Dominic; Wirz, Joel; Hean, Justin; Fritzsche, Anja; Aeschimann, Florian; Pfanzagl, Vera; Basselet, Pascal; Weiler, Jan; Hintersteiner, Martin; Morrissey, David V; Meisner-Kober, Nicole C
2013-01-01
Despite progress in mechanistic understanding of the RNA interference (RNAi) pathways, the subcellular sites of RNA silencing remain under debate. Here we show that loading of lipid-transfected siRNAs and endogenous microRNAs (miRNA) into RISC (RNA-induced silencing complexes), encounter of the target mRNA, and Ago2-mediated mRNA slicing in mammalian cells are nucleated at the rough endoplasmic reticulum (rER). Although the major RNAi pathway proteins are found in most subcellular compartments, the miRNA- and siRNA-loaded Ago2 populations co-sediment almost exclusively with the rER membranes, together with the RISC loading complex (RLC) factors Dicer, TAR RNA binding protein (TRBP) and protein activator of the interferon-induced protein kinase (PACT). Fractionation and membrane co-immune precipitations further confirm that siRNA-loaded Ago2 physically associates with the cytosolic side of the rER membrane. Additionally, RLC-associated double-stranded siRNA, diagnostic of RISC loading, and RISC-mediated mRNA cleavage products exclusively co-sediment with rER. Finally, we identify TRBP and PACT as key factors anchoring RISC to ER membranes in an RNA-independent manner. Together, our findings demonstrate that the outer rER membrane is a central nucleation site of siRNA-mediated RNA silencing. PMID:23511973
Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo
2018-04-27
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Determination of the Subcellular Distribution of Liposomes Using Confocal Microscopy.
Solomon, Melani A
2017-01-01
It is being increasingly recognized that therapeutics need to be delivered to specific organelle targets within cells. Liposomes are versatile lipid-based drug delivery vehicles that can be surface-modified to deliver the loaded cargo to specific subcellular locations within the cell. Hence, the development of such technology requires a means of measuring the subcellular distribution possibly by utilizing imaging techniques that can visualize and quantitate the extent of this subcellular localization. The apparent increase of resolution along the Z-axis offered by confocal microscopy makes this technique suitable for such studies. In this chapter, we describe the application of confocal laser scanning microscopy (CLSM) to determine the subcellular distribution of fluorescently labeled mitochondriotropic liposomes.
Comparative stereology of the mouse and finch left ventricle.
Bossen, E H; Sommer, J R; Waugh, R A
1978-01-01
The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.
Cartledge, T. G.; Lloyd, D.
1972-01-01
1. Homogenates were prepared from sphaeroplasts of aerobically grown glucose-de-repressed Saccharomyces carlsbergensis and the distributions of marker enzymes were investigated after differential centrifugation. Cytochrome c oxidase and cytochrome c were sedimented almost completely at 105g-min, and this fraction also contained 37% of the catalase, 27% of the acid p-nitrophenyl phosphatase, 53 and 54% respectively of the NADH– and NADPH–cytochrome c oxidoreductases. 2. Zonal centrifugation indicated complex density distributions of the sedimentable portions of these enzymes and of adenosine triphosphatases and suggested the presence of two mitochondrial populations, as well as a bimodal distribution of peroxisomes and heterogeneity of the acid p-nitrophenyl phosphatase-containing particles. 3. Several different adenosine triphosphatases were distinguished in a post-mitochondrial supernatant that contained no mitochondrial fragments; these enzymes varied in their sensitivities to oligomycin and ouabain and their distributions were different from those of pyrophosphatase, adenosine phosphatase and adenosine pyrophosphatase. 4. The distribution of NADPH–cytochrome c oxidoreductase demonstrated that it cannot be used in S. carlsbergensis as a specific marker enzyme for the microsomal fraction. Glucose 6-phosphatase, inosine pyrophosphatase, cytochrome P-450 and five other enzymes frequently assigned to microsomal fractions of mammalian origin were not detected in yeast under these growth conditions. ImagesPLATE 2PLATE 1 (cont.)PLATE 1PLATE 2 (cont.) PMID:4400904
Phosphoinositide-binding proteins in autophagy.
Lystad, Alf Håkon; Simonsen, Anne
2016-08-01
Phosphoinositides represent a very small fraction of membrane phospholipids, having fast turnover rates and unique subcellular distributions, which make them perfect for initiating local temporal effects. Seven different phosphoinositide species are generated through reversible phosphorylation of the inositol ring of phosphatidylinositol (PtdIns). The negative charge generated by the phosphates provides specificity for interaction with various protein domains that commonly contain a cluster of basic residues. Examples of domains that bind phosphoinositides include PH domains, WD40 repeats, PX domains, and FYVE domains. Such domains often display specificity toward a certain species or subset of phosphoinositides. Here we will review the current literature of different phosphoinositide-binding proteins involved in autophagy. © 2016 Federation of European Biochemical Societies.
Trespassing cancer cells: 'fingerprinting' invasive protrusions reveals metastatic culprits.
Klemke, Richard L
2012-10-01
Metastatic cancer cells produce invasive membrane protrusions called invadopodia and pseudopodia, which play a central role in driving cancer cell dissemination in the body. Malignant cells use these structures to attach to and degrade extracellular matrix proteins, generate force for cell locomotion, and to penetrate the vasculature. Recent work using unique subcellular fractionation methodologies combined with spatial genomic, proteomic, and phosphoproteomic profiling has provided insight into the invadopodiome and pseudopodiome signaling networks that control the protrusion of invasive membranes. Here I highlight how these powerful spatial 'omics' approaches reveal important signatures of metastatic cancer cells and possible new therapeutic targets aimed at treating metastatic disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tips on the analysis of phosphatidic acid by the fluorometric coupled enzyme assay.
Hassaninasab, Azam; Han, Gil-Soo; Carman, George M
2017-06-01
The fluorometric coupled enzyme assay to measure phosphatidic acid (PA) involves the solubilization of extracted lipids in Triton X-100, deacylation, and the oxidation of PA-derived glycerol-3-phosphate to produce hydrogen peroxide for conversion of Amplex Red to resorufin. The enzyme assay is sensitive, but plagued by high background fluorescence from the peroxide-containing detergent and incomplete heat inactivation of lipoprotein lipase. These problems affecting the assay reproducibility were obviated by the use of highly pure Triton X-100 and by sufficient heat inactivation of the lipase enzyme. The enzyme assay could accurately measure the PA content from the subcellular fractions of yeast cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Echinococcus granulosus fatty acid binding proteins subcellular localization.
Alvite, Gabriela; Esteves, Adriana
2016-05-01
Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Ratkiewicz, A; Galasinski, W
1976-01-01
The characteristics of the ribonucleic acids of Guerin tumor was the subject of this work. The effect of tumor development on the structure of the ribonucleic acids in the liver of tumor bearing rats was studied. Some differences of nucleotide compositions in RNAs isolated from subcellular fractions of liver of control and tumor bearing rats and of cancer tissue were observed. The nucleotide compositions of cancer nuclear RNA is distinctly different from liver RNA. The changes in primary structure of liver RNAs due by development of tumor in rats may be result of metabolic peculiarities of these RNAs.
Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis.
Liu, Wenjing; Wang, Hongbo; Du, Jingjing; Jing, Chuanyong
2017-11-15
Subcellular Raman analysis is a promising clinic tool for cancer diagnosis, but constrained by the difficulty of deciphering subcellular spectra in actual human tissues. We report a label-free subcellular Raman analysis for use in cancer diagnosis that integrates subcellular signature spectra by subtracting cytoplasm from nucleus spectra (Nuc.-Cyt.) with a partial least squares-discriminant analysis (PLS-DA) model. Raman mapping with the classical least-squares (CLS) model allowed direct visualization of the distribution of the cytoplasm and nucleus. The PLS-DA model was employed to evaluate the diagnostic performance of five types of spectral datasets, including non-selective, nucleus, cytoplasm, ratio of nucleus to cytoplasm (Nuc./Cyt.), and nucleus minus cytoplasm (Nuc.-Cyt.), resulting in diagnostic sensitivity of 88.3%, 84.0%, 98.4%, 84.5%, and 98.9%, respectively. Discriminating between normal and cancerous cells of actual human tissues through subcellular Raman markers is feasible, especially when using the nucleus-cytoplasm difference spectra. The subcellular Raman approach had good stability, and had excellent diagnostic performance for rectal as well as colon tissues. The insights gained from this study shed new light on the general applicability of subcellular Raman analysis in clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Bin; Li, Shan; Qiu, Wen-Ying; Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan
2017-12-08
Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research.
Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan
2017-01-01
Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research. PMID:29296195
Designer nanoparticle: nanobiotechnology tool for cell biology
NASA Astrophysics Data System (ADS)
Thimiri Govinda Raj, Deepak B.; Khan, Niamat Ali
2016-09-01
This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.
Designer nanoparticle: nanobiotechnology tool for cell biology.
Thimiri Govinda Raj, Deepak B; Khan, Niamat Ali
2016-01-01
This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.
7 CFR 340.8 - Container requirements for the movement of regulated articles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... requirements—(1) Plants and plant parts. All plants or plant parts, except seeds, cells, and subcellular... strength. (3) Live microorganisms and/or etiologic agents, cells, or subcellular elements. All regulated articles which are live (non-inactivated) microorganisms, or etiologic agents, cells, or subcellular...
7 CFR 340.8 - Container requirements for the movement of regulated articles.
Code of Federal Regulations, 2014 CFR
2014-01-01
... requirements—(1) Plants and plant parts. All plants or plant parts, except seeds, cells, and subcellular... strength. (3) Live microorganisms and/or etiologic agents, cells, or subcellular elements. All regulated articles which are live (non-inactivated) microorganisms, or etiologic agents, cells, or subcellular...
7 CFR 340.8 - Container requirements for the movement of regulated articles.
Code of Federal Regulations, 2013 CFR
2013-01-01
... requirements—(1) Plants and plant parts. All plants or plant parts, except seeds, cells, and subcellular... strength. (3) Live microorganisms and/or etiologic agents, cells, or subcellular elements. All regulated articles which are live (non-inactivated) microorganisms, or etiologic agents, cells, or subcellular...
7 CFR 340.8 - Container requirements for the movement of regulated articles.
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements—(1) Plants and plant parts. All plants or plant parts, except seeds, cells, and subcellular... strength. (3) Live microorganisms and/or etiologic agents, cells, or subcellular elements. All regulated articles which are live (non-inactivated) microorganisms, or etiologic agents, cells, or subcellular...
Biosynthesis and Intracellular Transport of 11S Globulin in Developing Pumpkin Cotyledons 1
Hara-Nishimura, Ikuko; Nishimura, Mikio; Akazawa, Takashi
1985-01-01
In vitro studies to explore the biosynthesis of 11S globulin developing cotyledons of pumpkin (Cucurbita sp.) demonstrated that 11S globulin is synthesized on membrane-bound polysomes. Mr of the translation products (preproglobulin) synthesized by the poly(A)+-RNA isolated from developing cotyledons were determined to be 64,000 and 59,000, which are larger than those of the mature globulin subunit (62,000 and 57,000). Preproglobulin is then cotranslationally processed by cleavage of the signal peptide to produce proglobulin. In vivo pulse-chase experiments showed the sequential transformation of the single-chain proglobulin to mature globulin subunit (disulfide-linked doublet polypeptides) indicating posttranslational modification of the proglobulin. Subcellular fractionation of the pulse-chased intact cotyledons showed that the [35S]methionine label is detectable in proglobulin in rough endoplasmic reticulum shortly after the pulse label. With time, the labeled proteins move into other cellular fractions: proglobulin in the density = 1.24 grams per cubic centimeter fractions after 30 minutes and mature globulin subunit associated with protein bodies after 1 to 2 hours. The distribution of proglobulin in sucrose density gradients did not correspond with those of catalase (microbody marker) or fumarase (mitochondria marker). An accumulation of proglobulin occurred in the density = 1.24 grams per cubic centimeter fractions, whereas the mature globulin was scarcely detectable in this fraction. In contrast, proglobulin was not detected by immunochemical blotting analysis in the protein bodies prepared under the mild conditions from cotyledon protoplasts. The results suggest that the d = 1.24 grams per cubic centimeter fractions are engaged in the translocation of proglobulin into the protein bodies. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16664128
Hamberg, M.; Hamberg, G.
1996-01-01
Peroxygenase-catalyzed epoxidation of oleic acid in preparations of cereal seeds was investigated. The 105,000g particle fraction of oat (Avena sativa) seed homogenate showed high peroxygenase activity, i.e. 3034 [plus or minus] 288 and 2441 [plus or minus] 168 nmol (10 min)-1 mg-1 protein in two cultivars, whereas the corresponding fraction obtained from barley (Hordeum vulgare and Hordeum distichum), rye (Secale cereale), and wheat (Triticum aestivum) showed only weak activity, i.e. 13 to 138 nmol (10 min)-1 mg-1 protein. In subcellular fractions of oat seed homogenate, peroxygenase specific activity was highest in the 105,000g particle fraction, whereas lipoxygenase activity was more evenly distributed and highest in the 105,000g supernatant fraction. Incubation of [1-14C]linoleic acid with the 105,000g supernatant of oat seed homogenate led to the formation of several metabolites, i.e. in order of decreasing abundance, 9(S)-hydroxy-10(E),12(Z)-octadecadienoic acid, 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, cis-9,10-epoxy-12(Z)-octadecenoic acid [mainly the 9(R),10(S) enantiomer], cis-12,13-epoxy-9(Z)-octadecenoic acid [mainly the 12(R),13(S) enantiomer], threo-12,13-dihydroxy-9(Z)-octadecenoic acid, and 12(R),13(S)-epoxy-9(S)-hydroxy-10(E)-octadecenoic acid. Incubation of linoleic acid with the 105,000g particle fraction gave a similar, but not identical, pattern of metabolites. Conversion of linoleic acid into 9(S),12(S),13(S)-trihydroxy-10(E)-octadecenoic acid, a naturally occurring oxylipin with antifungal properties, took place by a pathway involving sequential catalysis by lipoxygenase, peroxygenase, and epoxide hydrolase. PMID:12226220
Intracellular Mannose Binding Lectin Mediates Subcellular Trafficking of HIV-1 gp120 in Neurons
Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, CL; Kaul, M; Singh, KK
2014-01-01
Human immunodeficiency virus -1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. PMID:24825317
Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons.
Teodorof, C; Divakar, S; Soontornniyomkij, B; Achim, C L; Kaul, M; Singh, K K
2014-09-01
Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons. Published by Elsevier Inc.
PG1058 Is a Novel Multidomain Protein Component of the Bacterial Type IX Secretion System
Veith, Paul D.; Butler, Catherine A.; Nor Muhammad, Nor A.; Chen, Yu-Yen; Slakeski, Nada; Peng, Benjamin; Zhang, Lianyi; Dashper, Stuart G.; Cross, Keith J.; Cleal, Steven M.; Moore, Caroline; Reynolds, Eric C.
2016-01-01
Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a β-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS. PMID:27711252
Nabzdyk, Christoph S; Lancero, Hope; Nguyen, Khanh P; Salek, Sherveen; Conte, Michael S
2011-11-01
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.
Nabzdyk, Christoph S.; Lancero, Hope; Nguyen, Khanh P.; Salek, Sherveen
2011-01-01
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G2/M fraction consistent with a mitotic defect; 4′,6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G2/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall. PMID:21856925
Liu, Hongen; Shi, Zhiwei; Li, Jinfeng; Zhao, Peng; Qin, Shiyu; Nie, Zhaojun
2018-01-01
Selenium (Se) is a necessary trace element for humans and animals, and Se fertilization is an efficient way to increase Se concentration in the edible parts of crops, thus enhance the beneficiary effects of Se in human and animal health. Due to the similarity of physical and chemical properties between phosphate () and selenite (), phosphorus (P) supply often significantly impacts the absorption of Se in plants, but little is known about how P supply influences the subcellular distribution and chemical forms of Se. In this study, the effects of P supply on subcellular distribution and chemical forms of Se in winter wheat were investigated in a hydroponic trial with medium Se level (0.1 mg Se L -1 ). P was applied with three concentrations (0.31, 3.1, and 31 mg P L -1 ) in the experiment. The results showed that increasing P supply significantly decreased the concentration and accumulation of Se in the roots, stems, and leaves of winter wheat. An increase in P supply significantly inhibited Se accumulation in the root cell wall, but enhanced Se distribution in the organelles and soluble fraction of root cells. These findings suggest that increased P supply inhibited the root-to-shoot transport of Se. An increase in P supply enhanced Se accumulation in the cell wall of plant stems (both apical and axillary stem) and cell organelles of plants leaves, but inhibited Se distribution in the soluble fraction of stems and leaves. This suggests that P supply enhances Se transportation across the cell membrane in shoots of winter wheat. In addition, increased P supply also altered the chemical forms of Se in tissues of winter wheat. These findings will help in understanding of the regulation grain Se accumulation and provide a practical way to enhance Se intake for humans inform Se-enriched grains.
Csanády, György András; Kessler, Winfried; Klein, Dominik; Pankratz, Helmut; Pütz, Christian; Richter, Nadine; Filser, Johannes Georg
2011-01-01
Ethylene (ET) is metabolized in mammals to the carcinogenic ethylene oxide (EO). Although both gases are of high industrial relevance, only limited data exist on the toxicokinetics of ET in mice and of EO in humans. Metabolism of ET is related to cytochrome P450-dependent mono-oxygenase (CYP) and of EO to epoxide hydrolase (EH) and glutathione S-transferase (GST). Kinetics of ET metabolism to EO and of elimination of EO were investigated in headspace vessels containing incubations of subcellular fractions of mouse, rat, or human liver or of mouse or rat lung. CYP-associated metabolism of ET and GST-related metabolism of EO were found in microsomes and cytosol, respectively, of each species. EH-related metabolism of EO was not detectable in hepatic microsomes of rats and mice but obeyed saturation kinetics in hepatic microsomes of humans. In ET-exposed liver microsomes, metabolism of ET to EO followed Michaelis-Menten-like kinetics. Mean values of Vmax [nmol/(min·mg protein)] and of the apparent Michaelis constant (Km [mmol/l ET in microsomal suspension]) were 0.567 and 0.0093 (mouse), 0.401 and 0.031 (rat), and 0.219 and 0.013 (human). In lung microsomes, Vmax values were 0.073 (mouse) and 0.055 (rat). During ET exposure, the rate of EO production decreased rapidly. By modeling a suicide inhibition mechanism, rate constants for CYP-mediated catalysis and CYP inactivation were estimated. In liver cytosol, mean GST activities to EO expressed as Vmax/Km [μl/(min·mg protein)] were 27.90 (mouse), 5.30 (rat), and 1.14 (human). The parameters are most relevant for reducing uncertainties in the risk assessment of ET and EO. PMID:21785163
Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions.
He, Yupeng; Nie, Enguang; Li, Chengming; Ye, Qingfu; Wang, Haiyan
2017-01-01
The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using 14 C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of 14 C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of 14 C-TCS content in the roots was 94.3%-99.0% of the added 14 C-TCS, and the concentrations in roots were 2-3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 10 2 -2.6 × 10 3 mL g -1 ), concentration (0.58-4.47 μg g -1 ), and percentage (30%-61%) of 14 C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rondón-Mercado, Rocío; Acosta, Héctor; Cáceres, Ana J; Quiñones, Wilfredo; Concepción, Juan Luis
2017-09-01
Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Jiangtao; Wan, Huixue; He, Jiali; Lyu, Deguo; Li, Huifeng
2017-01-01
Cadmium (Cd) is a nonessential and highly toxic element causing agricultural problems. However, little information is available about the variation in Cd tolerance among apple rootstocks and its underlying physiological regulation mechanisms. This study investigated Cd accumulation, subcellular distribution, and chemical forms as well as physiological changes among four apple rootstocks exposed to either 0 or 300 μM CdCl2. The results showed that variations in Cd tolerance existed among these rootstocks. Cd exposure caused decline in photosynthesis, chlorophyll and biomass in four apple rootstocks, which was less pronounced in M. baccata, indicating its higher Cd tolerance. This finding was corroborated with higher Cd tolerance indexes (TIs) of the whole plant in M. baccata than those in the other three apple rootstocks. Among the four apple rootstocks, M. baccata displayed the lowest Cd concentrations in roots, wood, and leaves, the smallest total Cd amounts as well as the lowest BCF. In apple rootstocks, it was found that to immobilize Cd in cell wall and soluble fraction (most likely in vacuole) and to convert it into pectate- or protein- integrated forms and undissolved Cd phosphate forms may be the primary strategies to reduce Cd mobility and toxicity. The physiological changes including ROS, carbohydrates and antioxidants were in line with the variations of Cd tolerance among four apple rootstocks. In comparison with the other three apple rootstocks, M. baccata had lower concentrations of ROS in roots and bark, H2O2 in roots and leaves and MDA in roots, wood and bark, but higher concentrations of soluble sugars in bark and starch in roots and leaves, and enhanced antioxidants. These results indicate that M. baccata are more tolerant to Cd stress than the other three apple rootstocks under the current experiment conditions, which is probably related to Cd accumulation, subcellular partitioning and chemical forms of Cd and well-coordinated antioxidant defense mechanisms. PMID:28638400
Electron spin resonance studies of the ovary of the rat
NASA Astrophysics Data System (ADS)
Andersen, Roy S.; Curtis, Joseph C.
1988-11-01
Electron spin resonance spectra of rat ovaries, isolated ovarian compartments, and ovarian subcellular fractions were compared with spectra of rat adrenals. Rat ovaries were found to exhibit ESR signals similar to those previously described in studies of mammalian adrenal and testis. Observations were made at 113 K in an anaerobic environment. ESR signals of the low-spin ferric cytochrome P-450, the non-heme protein ferredoxin, and the non-heme glycoprotein transferrin were consistently observed in whole ovaries. The first two signals were detected in mitochondrial fractions isolated from ovaries, while only cytochrome P-450 was detected in microsomal fractions. Signals from ferredoxin and cytochrome P-450 were also consistently observed in both whole adrenals and adrenal mitochondrial fractions. However, in the microsomal fraction only cytochrome P-450 was present. The g values for the cytochrome P-450 and ferredoxin signals found in this study of ovaries were identical to those previously reported and also found in this study in spectra of rat adrenals. The concentration of ferredoxin per milligram wet mass in rat ovaries appears to be only one-sixth of that in the rat adrenal. The concentration of cytochrome P-450 appears to be only one-ninth of that in the adrenal. Signals from ferredoxin were detected in all ovarian compartments except granulosa cells isolated from Graafian follicles. The third signal, that of transferrin, while often observed in the spectra of whole ovaries, has been attributed to residual blood in the tissues examined. The effects of oxygen on these spectra has been found to be considerable and is discussed.
Wedlock, D N; Pedersen, G; Denis, M; Dey, D; Janssen, P H; Buddle, B M
2010-02-01
To develop an understanding of the immune responses of ruminants to methanogens, and to provide proof of a concept that harnessing the immune system of ruminants is a potentially viable approach to mitigate greenhouse gas emissions from agriculture. Four subcellular fractions, namely cytoplasmic, two cell-wall preparations, and cell wall-derived proteins were prepared from Methanobrevibacter ruminantium M1. Twenty sheep (10 months of age) were vaccinated with these fractions or with whole cells (n=4 per group). Sheep were re-vaccinated once after 3 weeks, and antibody responses to M. ruminantium M1 antigens in sera and saliva measured using ELISA at 2 weeks after the second vaccination. Antigens recognised by the antisera were visualised using Western blotting. The antisera were tested in vitro for their impact on M. ruminantium M1, measuring the effect on cell growth, methane production, and ability to induce agglutination. Basal levels (pre-vaccination) of antibodies against M. ruminantium M1 antigens were low. Vaccination with the antigenic fractions induced strong antibody responses in serum. Both IgG and IgA responses to methanogen antigens were detected in saliva following vaccination. Western blot analysis of the antisera indicated reactivity of antibodies, and a wide range of proteins was present in the different methanogen fractions. Antisera against the various fractions agglutinated methanogens in an in-vitro assay. In addition, these antisera decreased the growth of a pure culture of a methanogen and production of methane in vitro. Antigens from methanogens are immunogenic in ruminants, and antisera from sheep vaccinated with fractions of methanogens have a significant impact on these organisms, inducing cell agglutination, and decreasing growth of methanogens and production of methane. Only antisera to selected methanogen fractions were able to achieve these effects. The results demonstrate the feasibility of a vaccination strategy to mitigate emission of methane.
Arden, Catherine; Harbottle, Andrew; Baltrusch, Simone; Tiedge, Markus; Agius, Loranne
2004-09-01
The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.
USDA-ARS?s Scientific Manuscript database
Mitochondria are essential subcellular organelles found in eukaryotic cells. Knowing information on a protein’s subcellular or sub subcellular location provides in-depth insights about the microenvironment where it interacts with other molecules and is crucial for inferring the protein’s function. T...
Mei, Suyu
2012-10-07
Recent years have witnessed much progress in computational modeling for protein subcellular localization. However, there are far few computational models for predicting plant protein subcellular multi-localization. In this paper, we propose a multi-label multi-kernel transfer learning model for predicting multiple subcellular locations of plant proteins (MLMK-TLM). The method proposes a multi-label confusion matrix and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which we further extend our published work MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization) for plant protein subcellular multi-localization. By proper homolog knowledge transfer, MLMK-TLM is applicable to novel plant protein subcellular localization in multi-label learning scenario. The experiments on plant protein benchmark dataset show that MLMK-TLM outperforms the baseline model. Unlike the existing models, MLMK-TLM also reports its misleading tendency, which is important for comprehensive survey of model's multi-labeling performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sub-cellular force microscopy in single normal and cancer cells.
Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M
2015-08-07
This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.
Wang, Xiao; Li, Guo-Zheng
2013-03-12
Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.
Rosso, Silvana; Bollati, Flavia; Bisbal, Mariano; Peretti, Diego; Sumi, Tomoyuki; Nakamura, Toshikazu; Quiroga, Santiago; Ferreira, Adriana; Cáceres, Alfredo
2004-07-01
In this study, we examined the subcellular distribution and functions of LIMK1 in developing neurons. Confocal microscopy, subcellular fractionation, and expression of several epitope-tagged LIMK1 constructs revealed that LIMK1 is enriched in the Golgi apparatus and growth cones, with the LIM domain required for Golgi localization and the PDZ domain for its presence at neuritic tips. Overexpression of wild-type LIMK1 suppresses the formation of trans-Golgi derived tubules, and prevents cytochalasin D-induced Golgi fragmentation, whereas that of a kinase-defective mutant has the opposite effect. Transfection of wild-type LIMK1 accelerates axon formation and enhances the accumulation of Par3/Par6, insulin-like growth factor (IGF)1 receptors, and neural cell adhesion molecule (NCAM) at growth cones, while inhibiting the Golgi export of synaptophysin-containing vesicles. These effects were dependent on the Golgi localization of LIMK1, paralleled by an increase in cofilin phosphorylation and phalloidin staining in the region of the Golgi apparatus, and prevented by coexpression of constitutive active cofilin. The long-term overexpression of LIMK1 produces growth cone collapse and axon retraction, an effect that is dependent on its growth cone localization. Together, our results suggest an important role for LIMK1 in axon formation that is related with its ability to regulate Golgi dynamics, membrane traffic, and actin cytoskeletal organization.
Hepatic subcellular distribution of squalene changes according to the experimental setting.
Martínez-Beamonte, Roberto; Alda, Olga; Sanclemente, Teresa; Felices, María J; Escusol, Sara; Arnal, Carmen; Herrera-Marcos, Luis V; Gascón, Sonia; Surra, Joaquín C; Osada, Jesús; Rodríguez-Yoldi, Mª Jesús
2018-02-22
Squalene is the main unsaponifiable component of virgin olive oil, the main source of dietary fat in Mediterranean diet, traditionally associated with a less frequency of cardiovascular diseases. In this study, two experimental approaches were used. In the first, New Zealand rabbits fed for 4 weeks with a chow diet enriched in 1% sunflower oil for the control group, and in 1% of sunflower oil and 0.5% squalene for the squalene group. In the second, APOE KO mice received either Western diet or Western diet enriched in 0.5% squalene for 11 weeks. In both studies, liver samples were obtained and analyzed for their squalene content by gas chromatography-mass spectrometry. Hepatic distribution of squalene was also characterized in isolated subcellular organelles. Our results show that dietary squalene accumulates in the liver and a differential distribution according to studied model. In this regard, rabbits accumulated in cytoplasm within small size vesicles, whose size was not big enough to be considered lipid droplets, rough endoplasmic reticulum, and nuclear and plasma membranes. On the contrary, mice accumulated in large lipid droplets, and smooth reticulum fractions in addition to nuclear and plasma membranes. These results show that the squalene cellular localization may change according to experimental setting and be a starting point to characterize the mechanisms involved in the protective action of dietary squalene in several pathologies.
Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J
2015-05-01
Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.
Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes
Froese, D. Sean; Gravel, Roy A.
2010-01-01
Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism. Genetic diseases of vitamin B12 utilisation constitute an important fraction of inherited newborn disease. Functionally, B12 is the cofactor for methionine synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must be metabolised through a complex pathway that modifies its structure and takes it through subcellular compartments of the cell. Through the study of inherited disorders of vitamin B12 utilisation, the genes for eight complementation groups have been identified, leading to the determination of the general structure of vitamin B12 processing and providing methods for carrier testing, prenatal diagnosis and approaches to treatment. PMID:21114891
Indomethacin inhibits the effects of oestrogen in the anterior pituitary gland of the rat.
Rosental, D G; Machiavelli, G A; Cherñavsky, A C; Speziale, N S; Burdman, J A
1989-06-01
Two inhibitors of prostaglandin synthesis, indomethacin and aspirin, blocked the increase of oestrogen-binding sites in the nuclear subcellular fraction, an increase which occurs after the administration of oestradiol. Consequently the biological effects of oestrogens in the anterior pituitary gland of the rat (prolactin synthesis, concentration of progesterone-binding sites and cell proliferation) are diminished. The anterior pituitary gland synthesized prostaglandin F2 alpha (PGF2 alpha), PGE2 and PGD2 from arachidonic acid. This synthesis was blocked when indomethacin was added to the culture media. Oestrogen increased the concentration of PGE2: an increase that was partially prevented by indomethacin. Prostaglandins may have an important role on the effects of oestrogen in the anterior pituitary gland of the rat.
Antonenkov, Vasily D; Ohlmeier, Steffen; Sormunen, Raija T; Hiltunen, J Kalervo
2007-05-25
Mammalian UK114 belongs to a highly conserved family of proteins with unknown functions. Although it is believed that UK114 is a cytosolic or mitochondrial protein there is no detailed study of its intracellular localization. Using analytical subcellular fractionation, electron microscopic colloidal gold technique, and two-dimensional gel electrophoresis of peroxisomal matrix proteins combined with mass spectrometric analysis we show here that a large portion of UK114 is present in rat liver peroxisomes. The peroxisomal UK114 is a soluble matrix protein and it is not inducible by the peroxisomal proliferator clofibrate. The data predict involvement of UK114 in peroxisomal metabolism.
Huzil, John Torin; Saliaj, Evi; Ivanova, Marina V; Gharagozloo, Marjan; Loureiro, Maria Jimena; Lamprecht, Constanze; Korinek, Andreas; Chen, Ding Wen; Foldvari, Marianna
2015-01-01
Background: The potential use of carbon nanotubes (CNTs) in gene therapy as delivery systems for nucleic acids has been recently recognized. Here, we describe that metallic versus semiconducting single-wall CNTs can produce significant differences in transfection rate and cellular distribution of siRNA in murine PAM212 keratinocytes. Results/Methodology: The results of cell interaction studies, coupled with supportive computational simulations and ultrastructural studies revealed that the use of metallic single wall CNTs resulted in siRNA delivery into both the cytoplasm and nucleus of keratinocytes, whereas semiconducting CNTs resulted in delivery only to the cytoplasm. Conclusion: Using enriched fractions of metallic or semiconducting CNTs for siRNA complex preparation may provide specific subcellular targeting advantages. PMID:28031892
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dosemeci, Ayse, E-mail: dosemeca@mail.nih.gov; Thein, Soe; Yang, Yijung
Highlights: Black-Right-Pointing-Pointer CYLD is a deubiquitinase specific for lysine63-linked polyubiquitins. Black-Right-Pointing-Pointer Presence of CYLD in PSDs is established by biochemistry and immunoEM. Black-Right-Pointing-Pointer CYLD accumulates on PSDs upon depolarization of neurons. Black-Right-Pointing-Pointer Accumulation of CYLD at PSDs may regulate trafficking/degradation of synaptic proteins. -- Abstract: Polyubiquitin chains on proteins flag them for distinct fates depending on the type of polyubiquitin linkage. While lysine48-linked polyubiquitination directs proteins to proteasomal degradation, lysine63-linked polyubiquitination promotes different protein trafficking and is involved in autophagy. Here we show that postsynaptic density (PSD) fractions from adult rat brain contain deubiquitinase activity that targets both lysine48 andmore » lysine63-linked polyubiquitins. Comparison of PSD fractions with parent subcellular fractions by Western immunoblotting reveals that CYLD, a deubiquitinase specific for lysine63-linked polyubiquitins, is highly enriched in the PSD fraction. Electron microscopic examination of hippocampal neurons in culture under basal conditions shows immunogold label for CYLD at the PSD complex in approximately one in four synapses. Following depolarization by exposure to high K+, the proportion of CYLD-labeled PSDs as well as the labeling intensity of CYLD at the PSD increased by more than eighty percent, indicating that neuronal activity promotes accumulation of CYLD at the PSD. An increase in postsynaptic CYLD following activity would promote removal of lysine63-polyubiquitins from PSD proteins and thus could regulate their trafficking and prevent their autophagic degradation.« less
Optogenetic Tools for Subcellular Applications in Neuroscience.
Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter
2017-11-01
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Browne, Christopher M.; Samir, Parimal; Fites, J. Scott; Villarreal, Seth A.
2013-01-01
Using affinity purifications coupled with mass spectrometry and yeast two-hybrid assays, we show the Saccharomyces cerevisiae translation initiation factor complex eukaryotic translation initiation factor 2B (eIF2B) and the very-long-chain fatty acid (VLCFA) synthesis keto-reductase enzyme YBR159W physically interact. The data show that the interaction is specifically between YBR159W and eIF2B and not between other members of the translation initiation or VLCFA pathways. A ybr159wΔ null strain has a slow-growth phenotype and a reduced translation rate but a normal GCN4 response to amino acid starvation. Although YBR159W localizes to the endoplasmic reticulum membrane, subcellular fractionation experiments show that a fraction of eIF2B cofractionates with lipid membranes in a YBR159W-independent manner. We show that a ybr159wΔ yeast strain and other strains with null mutations in the VLCFA pathway cause eIF2B to appear as numerous foci throughout the cytoplasm. PMID:23263984
Electron microscopic analysis of rotavirus assembly-replication intermediates
Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M.
2015-01-01
Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally, using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly-replicase process. PMID:25635339
Anand, Sanjeev K; Gaba, Amit; Singh, Jaswant; Tikoo, Suresh K
2014-02-01
Viruses modulate the functions of mitochondria by translocating viral proteins to the mitochondria. Subcellular fractionation and sensitivity to proteinase K/Triton X-100 treatment of mitochondrial fractions of bovine adenovirus (BAdV)-3-infected/transfected cells suggested that core protein pVII localizes to the mitochondria and contains a functional mitochondrial localization signal. Moreover, mitochondrial localization of BAdV-3 pVII appears to help in the retention of mitochondrial Ca(2+), inducing a significant increase in the levels of ATP and maintaining the mitochondrial membrane potential (MMP) in transfected cells. In contrast, mitochondrial localization of BAdV-3 pVII has no significant effect on the levels of cytoplasmic Ca(2+) and reactive oxygen species production in the transfected cells. Consistent with these results, expression of pVII in transfected cells treated with staurosporine decreased significantly the activation of caspase-3. Our results suggested that BAdV-3 pVII localizes to mitochondria, and interferes with apoptosis by inhibiting loss of the MMP and by increasing mitochondrial Ca(2+) and ATP production.
Li, Lisheng; Chen, Wanze; Liang, Yaoji; Ma, Huabin; Li, Wenjuan; Zhou, Zhenru; Li, Jie; Ding, Yan; Ren, Junming; Lin, Juan; Han, Felicia; Wu, Jianfeng; Han, Jiahuai
2014-01-01
Formation of multi-component signaling complex necrosomes is essential for tumor necrosis factor α (TNF)-induced programmed necrosis (also called necroptosis). However, the mechanisms of necroptosis are still largely unknown. We isolated a TNF-resistant L929 mutant cell line generated by retrovirus insertion and identified that disruption of the guanine nucleotide-binding protein γ 10 (Gγ10) gene is responsible for this phenotype. We further show that Gγ10 is involved in TNF-induced necroptosis and Gβ2 is the partner of Gγ10. Src is the downstream effector of Gβ2γ10 in TNF-induced necroptosis because TNF-induced Src activation was impaired upon Gγ10 knockdown. Gγ10 does not affect TNF-induced activation of NF-κB and MAPKs and the formation of necrosomes, but is required for trafficking of necrosomes to their potential functioning site, an unidentified subcellular organelle that can be fractionated into heterotypic membrane fractions. The TNF-induced Gβγ-Src signaling pathway is independent of RIP1/RIP3 kinase activity and necrosome formation, but is required for the necrosome to function. PMID:24513853
Neumann, Sarah; Wessels, Hans J C T; Rijpstra, W Irene C; Sinninghe Damsté, Jaap S; Kartal, Boran; Jetten, Mike S M; van Niftrik, Laura
2014-11-01
Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost-effective and environment-friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere. © 2014 John Wiley & Sons Ltd.
Modeling of Protein Subcellular Localization in Bacteria
NASA Astrophysics Data System (ADS)
Xu, Xiaohua; Kulkarni, Rahul
2006-03-01
Specific subcellular localization of proteins is a vital component of important bacterial processes: e.g. the Min proteins which regulate cell division in E. coli and Spo0J-Soj system which is critical for sporulation in B. subtilis. We examine how the processes of diffusion and membrane attachment contribute to protein subcellular localization for the above systems. We use previous experimental results to suggest minimal models for these processes. For the minimal models, we derive analytic expressions which provide insight into the processes that determine protein subcellular localization. Finally, we present the results of numerical simulations for the systems studied and make connections to the observed experiemental phenomenology.
LOCATE: a mouse protein subcellular localization database
Fink, J. Lynn; Aturaliya, Rajith N.; Davis, Melissa J.; Zhang, Fasheng; Hanson, Kelly; Teasdale, Melvena S.; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Teasdale, Rohan D.
2006-01-01
We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were determined by a high-throughput, immunofluorescence-based assay and by manually reviewing >1700 peer-reviewed publications. LOCATE represents the first effort to catalogue the experimentally verified subcellular location and membrane organization of mammalian proteins using a high-throughput approach and provides localization data for ∼40% of the mouse proteome. It is available at . PMID:16381849
Bulashevska, Alla; Eils, Roland
2006-06-14
The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.
Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey
2016-01-01
Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Hasan, Md Al Mehedi; Ahmad, Shamim; Molla, Md Khademul Islam
2017-03-28
Predicting the subcellular locations of proteins can provide useful hints that reveal their functions, increase our understanding of the mechanisms of some diseases, and finally aid in the development of novel drugs. As the number of newly discovered proteins has been growing exponentially, which in turns, makes the subcellular localization prediction by purely laboratory tests prohibitively laborious and expensive. In this context, to tackle the challenges, computational methods are being developed as an alternative choice to aid biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging issue, particularly, when query proteins have multi-label characteristics, i.e., if they exist simultaneously in more than one subcellular location or if they move between two or more different subcellular locations. To date, to address this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM) has been employed to provide potential solutions to the protein subcellular localization prediction problem. However, the practicability of an SVM is affected by the challenges of selecting an appropriate kernel and selecting the parameters of the selected kernel. To address this difficulty, in this study, we aimed to develop an efficient multi-label protein subcellular localization prediction system, named as MKLoc, by introducing multiple kernel learning (MKL) based SVM. We evaluated MKLoc using a combined dataset containing 5447 single-localized proteins (originally published as part of the Höglund dataset) and 3056 multi-localized proteins (originally published as part of the DBMLoc set). Note that this dataset was used by Briesemeister et al. in their extensive comparison of multi-localization prediction systems. Finally, our experimental results indicate that MKLoc not only achieves higher accuracy than a single kernel based SVM system but also shows significantly better results than those obtained from other top systems (MDLoc, BNCs, YLoc+). Moreover, MKLoc requires less computation time to tune and train the system than that required for BNCs and single kernel based SVM.
Optogenetic stimulation of myelination (Conference Presentation)
NASA Astrophysics Data System (ADS)
Yang, In Hong; Lee, Hae Ung; Thakor, Nitish V.
2016-03-01
Myelination is governed by axon-glia interaction which is modulated by neural activity. Currently, the effects of subcellular activation of neurons which induce neural activity upon myelination are not well understood. To identify if subcellular neuronal stimulation can enhance myelination, we developed a novel system for focal stimulation of neural activity with optogenetic in a compartmentalized microfluidic platform. In our systems, stimulation for neurons in restricted subcellular parts, such as cell bodies and axons promoted oligodendrocyte differentiation and the myelination of axons the just as much as whole cell activation of neurons did. The number of premature O4 positive oligodendrocytes was reduced and the numbers of mature and myelin basic protein-positive oligodendrocytes was increased both by subcellular optogenetic stimulation.
Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi
2014-02-18
In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca(2+)] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells.
Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok
2015-12-07
Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Terao, Kyohei; Gel, Murat; Okonogi, Atsuhito; Fuke, Ariko; Okitsu, Teru; Tada, Takashi; Suzuki, Takaaki; Nagamatsu, Shinya; Washizu, Masao; Kotera, Hidetoshi
2014-01-01
In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca2+] change in the β-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of β-cells. PMID:24535122
BUSCA: an integrative web server to predict subcellular localization of proteins.
Savojardo, Castrense; Martelli, Pier Luigi; Fariselli, Piero; Profiti, Giuseppe; Casadio, Rita
2018-04-30
Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.
Mas, Abraham; Amenós, Montse; Lois, L Maria
2016-01-01
Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.
MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins
Li, Hui; Wang, Rong; Gan, Yong
2017-01-01
Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area. PMID:28744305
MultiP-Apo: A Multilabel Predictor for Identifying Subcellular Locations of Apoptosis Proteins.
Wang, Xiao; Li, Hui; Wang, Rong; Zhang, Qiuwen; Zhang, Weiwei; Gan, Yong
2017-01-01
Apoptosis proteins play an important role in the mechanism of programmed cell death. Predicting subcellular localization of apoptosis proteins is an essential step to understand their functions and identify drugs target. Many computational prediction methods have been developed for apoptosis protein subcellular localization. However, these existing works only focus on the proteins that have one location; proteins with multiple locations are either not considered or assumed as not existing when constructing prediction models, so that they cannot completely predict all the locations of the apoptosis proteins with multiple locations. To address this problem, this paper proposes a novel multilabel predictor named MultiP-Apo, which can predict not only apoptosis proteins with single subcellular location but also those with multiple subcellular locations. Specifically, given a query protein, GO-based feature extraction method is used to extract its feature vector. Subsequently, the GO feature vector is classified by a new multilabel classifier based on the label-specific features. It is the first multilabel predictor ever established for identifying subcellular locations of multilocation apoptosis proteins. As an initial study, MultiP-Apo achieves an overall accuracy of 58.49% by jackknife test, which indicates that our proposed predictor may become a very useful high-throughput tool in this area.
Multilabel learning via random label selection for protein subcellular multilocations prediction.
Wang, Xiao; Li, Guo-Zheng
2013-01-01
Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multilocation proteins to multiple proteins with single location, which does not take correlations among different subcellular locations into account. In this paper, a novel method named random label selection (RALS) (multilabel learning via RALS), which extends the simple binary relevance (BR) method, is proposed to learn from multilocation proteins in an effective and efficient way. RALS does not explicitly find the correlations among labels, but rather implicitly attempts to learn the label correlations from data by augmenting original feature space with randomly selected labels as its additional input features. Through the fivefold cross-validation test on a benchmark data set, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark data sets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multilocations of proteins. The prediction web server is available at >http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.
Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko
2012-01-01
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase-3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase-3 activation in the 7-day–old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. PMID:22372857
Gomez-Bougie, Patricia; Bataille, Régis; Amiot, Martine
2005-03-01
Bim is an essential regulator of lymphoid system homeostasis and appears essential for B cell apoptosis induction. The mechanism by which Bim isoforms are held in an inactive form remains poorly documented in normal B cells. In the current study, we demonstrated that in normal tonsil B cells the three major Bim isoforms are strongly associated with the anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2 and Bcl-x(L). On the other hand, only a weak association of BimEL and L with the dynein LC8 chain has been found. In addition, there is no free Bim in normal B cells. Moreover, subcellular fractionation demonstrated that Bim and the anti-apoptotic counterparts are localized preferentially in the mitochondria-rich fraction. The fact that most Bim was found in this fraction supports the hypothesis that it is sequestered by anti-apoptotic molecules in mitochondria where its pro-apoptotic activity is controlled. Of interest, BimS is essentially complexed to Mcl-1 and the Mcl-1/Bim complex is the most abundant among the three types of complexes. This supports the idea that this complex is critical for the control of B cell death. In conclusion, these results favor a model in which Bim release from anti-apoptotic proteins is a critical event for initiation of apoptosis.
Kaneko, Keisuke; Tabuchi, Mitsuaki; Sueyoshi, Noriyuki; Ishida, Atsuhiko; Utsumi, Toshihiko; Kameshita, Isamu
2014-07-01
Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) have been extensively studied in mammals, whereas fungus CaMKs still remain largely uncharacterized. We previously obtained CaMK homolog in Coprinopsis cinerea, designated CoPK12, and revealed its unique catalytic properties in comparison with the mammalian CaMKs. To further clarify the regulatory mechanisms of CoPK12, we investigated post-translational modification and subcellular localization of CoPK12 in this study. In C. cinerea, full-length CoPK12 (65 kDa) was fractionated in the membrane fraction, while the catalytically active fragment (46 kDa) of CoPK12 was solely detected in the soluble fraction by differential centrifugation. Expressed CoPK12-GFP was localized on the cytoplasmic and vacuolar membranes as visualized by green fluorescence in yeast cells. In vitro N-myristoylation assay revealed that CoPK12 is N-myristoylated at Gly-2 in the N-terminal position. Furthermore, calmodulin could bind not only to CaM-binding domain but also to the N-terminal myristoyl moiety of CoPK12. These results, taken together, suggest that the cellular localization and function of CoPK12 are regulated by protein N-myristoylation and limited proteolysis. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Hamza-Chaffai, A; Amiard, J C; Cosson, R P
1999-06-01
Cadmium, copper and zinc were determined concomitantly with metallothionein-like proteins (MTLPs) in the subcellular fractions of Ruditapes decussatus digestive gland. This study covered 4 months and aimed to evaluate the effect of metal pollution and other factors such as sex, size and reproductive state on MTLP levels. Copper concentrations did not vary with month, however Cd and Zn concentrations showed high levels during August. Organisms showing low cadmium concentrations presented the highest cadmium percentages in the soluble fraction (SF) containing MTLPs. However for high cadmium concentrations, the insoluble fraction (IF) was implicated in cadmium association. MTLP levels varied according to the month, the sex and the size of the organisms. A non-linear model based on the Box-Cox transformation, was proposed to describe a positive and a significant relationship between MTLPs and the studied metals. A model including sex and size showed that these two factors affected MTLP levels, but were less important than metals. Males of R. decussatus showed higher significant correlations between MTLP levels and cadmium than females. Moreover, the effect of size and reproductive state on MTLP levels was less perceptible in males than in females. As a result, MTLPs in males of R. decussatus could be proposed as suitable biomarker for detecting metal contamination.
Byrn, R A; Medrek, P; Thomas, P; Jeanloz, R W; Zamcheck, N
1985-07-01
Carcinoembryonic antigen (CEA) is a glycoprotein metabolized primarily by the liver. Subcellular fractions of rat liver were examined for CEA binding activity. Hepatocyte plasma membrane and microsome fractions bound CEA, and this binding shared the calcium requirement, neuraminidase sensitivity, and carbohydrate specificity of the hepatocyte asialoglycoprotein receptor. CEA had previously been shown to react with this galactose-specific receptor, in vivo, only following neuraminidase treatment. Galactose receptor binding of CEA was measured in three different purified CEA preparations. The fraction of CEA capable of binding to excess levels of galactose receptor on membranes varied (46.5%, 40.2%, and 4.7% for CEA-1, -2, and -3, respectively). These CEAs were shown to be 2.3%, 7.9%, and 0.7% as effective, respectively, as asialo-alpha 1-acid glycoprotein in inhibiting the binding of radiolabeled asialo-alpha 1-acid glycoprotein to liver cell membranes. Each of the three CEA preparations showed different clearance kinetics from the circulation of mice. Coinjection of asialo-alpha 1-acid glycoprotein with the CEAs revealed differing inhibition of the clearances. These results show that differences in the carbohydrate components of purified CEA preparations affect their rate of removal from circulation and thus possibly the relationship between CEA production and observed plasma levels in patients. The possible origin of these CEA differences is discussed with their clinical implications.
Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi.
Scott, D A; de Souza, W; Benchimol, M; Zhong, L; Lu, H G; Moreno, S N; Docampo, R
1998-08-21
The vacuolar-type proton-translocating pyrophosphatase (V-H+-PPase) is an enzyme previously described in detail only in plants. This paper demonstrates its presence in the trypanosomatid Trypanosoma cruzi. Pyrophosphate promoted organellar acidification in permeabilized amastigotes, epimastigotes, and trypomastigotes of T. cruzi. This activity was stimulated by K+ ions and was inhibited by Na+ ions and pyrophosphate analogs, as is the plant activity. Separation of epimastigote extracts on Percoll gradients yielded a dense fraction that contained H+-PPase activity measured both by proton uptake and phosphate release but lacked markers for mitochondria, lysosomes, glycosomes, cytosol, and plasma membrane. Antiserum raised against specific sequences of the plant V-H+-PPase cross-reacted with a T. cruzi protein, which was also detectable in the dense Percoll fraction. The organelles in this fraction appeared by electron microscopy to consist mainly of acidocalcisomes (acidic calcium storage organelles). This identification was confirmed by x-ray microanalysis. Immunofluorescence and immunoelectron microscopy indicated that the V-H+-PPase was located in the plasma membrane and acidocalcisomes of the three different forms of the parasite. Pyrophosphate was able to drive calcium uptake in permeabilized T. cruzi. This uptake depended upon a proton gradient and was reversed by a specific V-H+-PPase inhibitor. Our results imply that the phylogenetic distribution of V-H+-PPases is much wider than previously perceived but that the enzyme has a unique subcellular location in trypanosomes.
Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.
Salmon, Magali S; Bayer, Emmanuelle M F
2012-01-01
In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.
Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK
Wang, Qin; Downey, Gregory P.; McCulloch, Christopher A.
2011-01-01
In connective tissue cells, IL-1-induced ERK activation leading to matrix metalloproteinase (MMP)-3 expression is dependent on cooperative interactions between focal adhesions and the endoplasmic reticulum (ER). As Ras can be activated on the ER, we investigated the role of Ras in IL-1 signaling and focal adhesion formation. We found that constitutively active H-Ras, K-Ras or N-Ras enhanced focal adhesion maturation and β1-integrin activation. IL-1 promoted the accumulation of Ras isoforms in ER and focal adhesion fractions, as shown in cells cotransfected with GFP-tagged Ras isoforms and YFP-ER protein and by analysis of subcellular fractions enriched for ER or focal adhesion proteins. Dominant-negative H-Ras or K-Ras reduced accumulation of H-Ras and K-Ras in focal adhesions induced by IL-1 and also blocked ERK activation and focal adhesion maturation. Ras-GRF was enriched constitutively in focal adhesion fractions and was required for Ras recruitment to focal adhesions. We conclude that Ras activation and IL-1 signaling are interactive processes that regulate the maturation of focal adhesions, which, in turn, is required for ERK activation.—Wang, Q., Downey, G. P., McCulloch, C. A. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK. PMID:21719512
Weiss, C A; White, E; Huang, H; Ma, H
1997-05-05
Towards the elucidation of the cellular function(s) of GP alpha1, we have characterized its subcellular localization using immunofluorescence and cell fractionation. GP alpha1 is not present in nuclei or chloroplasts. It is a membrane-bound protein, and analysis of isolated endoplasmic and plasma membranes indicates a good correlation between GP alpha1 in both the plasma membrane and the ER compartment. Interestingly, these results may suggest more different functions for GP alpha1: it might be involved in transmission of extracellular signals across the plasma membrane and in the cytoplasm, and/or it may also be involved in regulating some aspects of the ER functions or membrane trafficking between both membranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarachand, U.; Eapen, J.
Effect of x irradiation on in vivo incorporation of /sup 14/C-labeled DL- leucine, DL-phenylalanine, and glycine into placental and hepatic proteins was studied, using 15-day pregnant mice. Pattern of incorporation of leucine and phenylalanine into maternal liver proteins was similar following irradiation. Effect on glycine incorporation was different. Placental incorporation of all the three- amino acids, subsequent to irradiation, was comparable. Starvation per se enhanced incorporation of leucine into hepatic proteins which was further elevated following irradiation. Placental incorporation was reduced by starvation. Subcellular fractions showed disparate changes in leucine incorporation due to irradiation. Acid-soluble pool changed, following irradiation, withoutmore » significantly affecting incorporation of the precursors into proteins. (auth)« less
Park, Jang-Su; Yaster, Myron; Guan, Xiaowei; Xu, Ji-Tian; Shih, Ming-Hung; Guan, Yun; Raja, Srinivasa N; Tao, Yuan-Xiang
2008-12-30
Spinal cord alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) mediate acute spinal processing of nociceptive and non-nociceptive information, but whether and how their activation contributes to the central sensitization that underlies persistent inflammatory pain are still unclear. Here, we examined the role of spinal AMPARs in the development and maintenance of complete Freund's adjuvant (CFA)-induced persistent inflammatory pain. Intrathecal application of two selective non-competitive AMPAR antagonists, CFM-2 (25 and 50 microg) and GYKI 52466 (50 microg), significantly attenuated mechanical and thermal hypersensitivities on the ipsilateral hind paw at 2 and 24 h post-CFA injection. Neither CFM-2 nor GYKI 52466 affected the contralateral basal responses to thermal and mechanical stimuli. Locomotor activity was not altered in any of the drug-treated animals. CFA-induced inflammation did not change total expression or distribution of AMPAR subunits GluR1 and GluR2 in dorsal horn but did alter their subcellular distribution. The amount of GluR2 was markedly increased in the crude cytosolic fraction and decreased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. Conversely, the level of GluR1 was significantly decreased in the crude cytosolic fraction and increased in the crude membrane fraction from the ipsilateral L4-5 dorsal horn at 24 h (but not at 2 h) post-CFA injection. These findings suggest that spinal AMPARs might participate in the central spinal mechanism of persistent inflammatory pain.
Huang, Zhenling; Tang, Siqun; Zhang, Lu; Ma, Lijian; Ding, Songdong; Du, Liang; Zhang, Dong; Jin, Yongdong; Wang, Ruibing; Huang, Chao; Xia, Chuanqin
2017-01-01
Variant Sedum alfredii Hance (V S. alfredii) could simultaneously take up U and Th from water with the highest concentrations recorded as 1.84 × 10 4 and 6.72 × 10 3 mg/kg in the roots, respectively. Th stimulated U uptake by V S. alfredii roots at Th 10 (10 μM of Th), however, the opposite was observed at Th 100 (100 μM of Th). A similar result was found in the effect of U on the uptake of Th by V S. alfredii. Subcellular fractionation studies of V S. alfredii indicated that U and Th were mainly stored in cell wall fraction, and much less was found in organelle and soluble fractions. Chemical form examination results showed that water-soluble U and Th were the predominant chemical forms in this plant. Addition of the other radionuclide in aqueous solutions altered the concentration and percentage of U or Th in cell wall fraction and in water-soluble form, resulting in the change of the uptake capacity of U or Th by V S. alfredii roots. Comparing with single U or Th treatment, the plant cells revealed more swollen chloroplasts and enhanced thickening in cell walls under the U 100 + Th 100 treatment, as observed by TEM. Those results collectively displayed that V S. alfredii may be utilized as a potential plant to simultaneously remove U and Th from aqueous solutions (rhizofiltration).
INTRACELLULAR DISTRIBUTION OF CALCIUM IN DEVELOPING BREAST MUSCLE OF NORMAL AND DYSTROPHIC CHICKENS
Cosmos, Ethel
1964-01-01
To follow the intracellular distribution of calcium in the breast muscles of developing chickens, Ca45 was injected into the albumen of predeveloped eggs. Since the embryos were grown in a radioactive medium, a complete exchange of the isotope for its non-radioactive counterpart in muscles was accomplished. Subcellular particulates of the muscle cells were separated by the method of differential centrifugation. Analysis of the separated fractions showed that in the muscles of the 13-day embryo, when the nuclear-myofibrillar ratio is high, 65 per cent of the muscle calcium is in the nuclei. With the increased synthesis of myofibrils, the nuclear-myofibrillar ratio decreases with a concomitant fall in radioactivity. Thus, calcium was not associated with the developing myofibrils. At the time of hatching, when myofibrils perform physiological work, the highest level of calcium is in the mitochondria. This suggests that the mitochondria play a key role in the physiological activities of calcium in the cell. The microsomal fraction reaches a maximal level of calcium when the adult composition of muscle is attained. Results of investigations on dystrophic muscles show changes in the calcium distribution of the fractions as early as the 3rd week of embryonic development, which are interpreted to indicate an alteration in the protein metabolism of the cell, or an early destruction of muscle tissue. Further, alterations in the calcium content of fractions which seem to regulate the movements of this ion in the cell are discussed. A new technique for homogenizing tissues from embryos of different ages is presented. PMID:14222812
Huang, Jiansheng; Barr, Emily; Rudnick, David A.
2013-01-01
The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC mRNA and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA-treatment suppressed the effects of PH on histone deacetylation and hepatocellular BrdU incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. Conclusion The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. PMID:23258575
Ring, Axel; Le Lay, Soazig; Pohl, Juergen; Verkade, Paul; Stremmel, Wolfgang
2006-04-01
Several lines of evidence suggest that lipid rafts are involved in cellular fatty acid uptake and influence fatty acid translocase (FAT/CD36) function. However, it remains unknown whether caveolae, a specialized raft type, are required for this mechanism. Here, we show that wild-type (WT) mouse embryonic fibroblasts (MEFs) and caveolin-1 knockout (KO) MEFs, which are devoid of caveolae, have comparable overall expression of FAT/CD36 protein but altered subcellular FAT/CD36 localization and function. In WT MEFs, FAT/CD36 was isolated with both lipid raft enriched detergent-resistant membranes (DRMs) and detergent-soluble membranes (DSMs), whereas in cav-1 KO cells it was exclusively associated with DSMs. Subcellular fractionation demonstrated that FAT/CD36 in WT MEFs was localized intracellularly and at the plasma membrane level while in cav-1 KO MEFs it was absent from the plasma membrane. This mistargeting of FAT/CD36 in cav-1 KO cells resulted in reduced fatty acid uptake compared to WT controls. Adenoviral expression of caveolin-1 in KO MEFs induced caveolae formation, redirection of FAT/CD36 to the plasma membrane and rescue of fatty acid uptake. In conclusion, our data provide evidence that caveolin-1 is necessary to target FAT/CD36 to the plasma membrane. Caveolin-1 may influence fatty acid uptake by regulating surface availability of FAT/CD36.
Kang, Hong-Gu; Oh, Chang-Sik; Sato, Masanao; Katagiri, Fumiaki; Glazebrook, Jane; Takahashi, Hideki; Kachroo, Pradeep; Martin, Gregory B.; Klessig, Daniel F.
2010-01-01
Resistance gene–mediated immunity confers protection against pathogen infection in a wide range of plants. A genetic screen for Arabidopsis thaliana mutants compromised for recognition of turnip crinkle virus previously identified CRT1, a member of the GHKL ATPase/kinase superfamily. Here, we demonstrate that CRT1 interacts with various resistance proteins from different structural classes, and this interaction is disrupted when these resistance proteins are activated. The Arabidopsis mutant crt1-2 crh1-1, which lacks CRT1 and its closest homolog, displayed compromised resistance to avirulent Pseudomonas syringae and Hyaloperonospora arabidopsidis. Additionally, resistance-associated hypersensitive cell death was suppressed in Nicotiana benthamiana silenced for expression of CRT1 homolog(s). Thus, CRT1 appears to be a general factor for resistance gene–mediated immunity. Since elevation of cytosolic calcium triggered by avirulent P. syringae was compromised in crt1-2 crh1-1 plants, but cell death triggered by Nt MEK2DD was unaffected in CRT1-silenced N. benthamiana, CRT1 likely functions at an early step in this pathway. Genome-wide transcriptome analysis led to identification of CRT1-Associated genes, many of which are associated with transport processes, responses to (a)biotic stress, and the endomembrane system. Confocal microscopy and subcellular fractionation revealed that CRT1 localizes to endosome-like vesicles, suggesting a key process in resistance protein activation/signaling occurs in this subcellular compartment. PMID:20332379
Predescu, Sanda; Knezevic, Ivana; Bardita, Cristina; Neamu, Radu Florin; Brovcovych, Viktor; Predescu, Dan
2013-01-01
The spatial and functional relationship between platelet activating factor-receptor (PAF-R) and nitric oxide synthase (eNOS) in the lateral plane of the endothelial plasma membrane is poorly characterized. In this study, we used intact mouse pulmonary endothelial cells (ECs) as well as endothelial plasma membrane patches and subcellular fractions to define a new microdomain of plasmalemma proper where the two proteins colocalize and to demonstrate how PAF-mediated nitric oxide (NO) production fine-tunes ECs function as gatekeepers of vascular permeability. Using fluorescence microscopy and immunogold labeling electron microscopy (EM) on membrane patches we demonstrate that PAF-R is organized as clusters and colocalizes with a subcellular pool of eNOS, outside recognizable vesicular profiles. Moreover, PAF-induced acid sphingomyelinase activation generates a ceramide-based microdomain on the external leaflet of plasma membrane, inside of which a signalosome containing eNOS shapes PAF-stimulated NO production. Real-time measurements of NO after PAF-R ligation indicated a rapid (5 to 15 min) increase in NO production followed by a > 45 min period of reduction to basal levels. Moreover, at the level of this new microdomain, PAF induces a dynamic phosphorylation/dephosphorylation of Ser, Thr and Tyr residues of eNOS that correlates with NO production. Altogether, our findings establish the existence of a functional partnership PAF-R/eNOS on EC plasma membrane, at the level of PAF-induced ceramide plasma membrane microdomains, outside recognized vesicular profiles. PMID:24086643
NASA Astrophysics Data System (ADS)
Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.
2015-05-01
Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1 immunolabeling. See DOI: 10.1039/c5nr01539a
Profiling the Aspergillus fumigatus Proteome in Response to Caspofungin ▿ †
Cagas, Steven E.; Jain, Mohit Raja; Li, Hong; Perlin, David S.
2011-01-01
The proteomic response of Aspergillus fumigatus to caspofungin was evaluated by gel-free isobaric tagging for relative and absolute quantitation (iTRAQ) as a means to determine potential biomarkers of drug action. A cell fractionation approach yielding 4 subcellular compartment fractions was used to enhance the resolution of proteins for proteomic analysis. Using iTRAQ, a total of 471 unique proteins were identified in soluble and cell wall/plasma membrane fractions at 24 and 48 h of growth in rich media in a wild-type drug-susceptible strain. A total of 122 proteins showed at least a 2-fold change in relative abundance following exposure to caspofungin (CSF) at just below the minimum effective concentration (0.12 μg/ml). The largest changes were seen in the mitochondrial hypoxia response domain protein (AFUA_1G12250), the level of which decreased >16-fold in the secreted fraction, and ChiA1, the level of which decreased 12.1-fold in the cell wall/plasma membrane fraction. The level of the major allergen and cytotoxin AspF1 was also shown to decrease by 12.1-fold upon the addition of drug. A subsequent iTRAQ analysis of an echinocandin-resistant strain (fks1-S678P) was used to validate proteins specific to drug action. A total of 103 proteins in the 2 fractions tested by iTRAQ were differentially expressed in the wild-type susceptible strain but not significantly changed in the resistant strain. Of these potential biomarkers, 11 had levels that changed at least 12-fold. Microarray analysis of the susceptible strain was performed to evaluate the correlation between proteomics and genomics, with a total of 117 genes found to be changing at least 2-fold. Of these, a total of 22 proteins with significant changes identified by iTRAQ also showed significant gene expression level changes by microarray. Overall, these data have the potential to identify biomarkers that assess the relative efficacy of echinocandin drug therapy. PMID:20974863
Subcellular analysis by laser ablation electrospray ionization mass spectrometry
Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh
2014-12-02
In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.
NASA Astrophysics Data System (ADS)
Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash
2004-06-01
Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.
Ju, Yun-Ru; Yang, Ying-Fei; Tsai, Jeng-Wei; Cheng, Yi-Hsien; Chen, Wei-Yu; Liao, Chung-Min
2017-07-01
Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.
Camargo, Livia L; Harvey, Adam P; Rios, Francisco J; Tsiropoulou, Sofia; Da Silva, Renée de Nazaré Oliveira; Cao, Zhenbo; Graham, Delyth; McMaster, Claire; Burchmore, Richard J; Hartley, Richard C; Bulleid, Neil; Montezano, Augusto C; Touyz, Rhian M
2018-07-01
Vascular Nox (NADPH oxidase)-derived reactive oxygen species and endoplasmic reticulum (ER) stress have been implicated in hypertension. However, relationships between these processes are unclear. We hypothesized that Nox isoforms localize in a subcellular compartment-specific manner, contributing to oxidative and ER stress, which influence the oxidative proteome and vascular function in hypertension. Nox compartmentalization (cell fractionation), O 2 - (lucigenin), H 2 O 2 (amplex red), reversible protein oxidation (sulfenylation), irreversible protein oxidation (protein tyrosine phosphatase, peroxiredoxin oxidation), and ER stress (PERK [protein kinase RNA-like endoplasmic reticulum kinase], IRE1α [inositol-requiring enzyme 1], and phosphorylation/oxidation) were studied in spontaneously hypertensive rat (SHR) vascular smooth muscle cells (VSMCs). VSMC proliferation was measured by fluorescence-activated cell sorting, and vascular reactivity assessed in stroke-prone SHR arteries by myography. Noxs were downregulated by short interfering RNA and pharmacologically. In SHR, Noxs were localized in specific subcellular regions: Nox1 in plasma membrane and Nox4 in ER. In SHR, oxidative stress was associated with increased protein sulfenylation and hyperoxidation of protein tyrosine phosphatases and peroxiredoxins. Inhibition of Nox1 (NoxA1ds), Nox1/4 (GKT137831), and ER stress (4-phenylbutyric acid/tauroursodeoxycholic acid) normalized SHR vascular reactive oxygen species generation. GKT137831 reduced IRE1α sulfenylation and XBP1 (X-box binding protein 1) splicing in SHR. Increased VSMC proliferation in SHR was normalized by GKT137831, 4-phenylbutyric acid, and STF083010 (IRE1-XBP1 disruptor). Hypercontractility in the stroke-prone SHR was attenuated by 4-phenylbutyric acid. We demonstrate that protein hyperoxidation in hypertension is associated with oxidative and ER stress through upregulation of plasmalemmal-Nox1 and ER-Nox4. The IRE1-XBP1 pathway of the ER stress response is regulated by Nox4/reactive oxygen species and plays a role in the hyperproliferative VSMC phenotype in SHR. Our study highlights the importance of Nox subcellular compartmentalization and interplay between cytoplasmic reactive oxygen species and ER stress response, which contribute to the VSMC oxidative proteome and vascular dysfunction in hypertension. © 2018 American Heart Association, Inc.
Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M
2016-02-15
Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non-neoplastic RWPE-1 prostatic cells. Nup62, CaMKK2, and the AR were recruited to androgen response elements of the AR target genes, prostate specific antigen, and transmembrane protease, serine 2. Knockdown of CaMKK2 and Nup62 reduced prostate specific antigen expression and AR transcriptional activity driven by androgen response elements from the prostate-specific probasin gene promoter. Nup62 and CaMKK2 are required for optimal AR transcriptional activity and a potential mechanism for AR re-activation in CRPC. © 2015 Wiley Periodicals, Inc.
Figueroa, Xavier F; González, Daniel R; Martínez, Agustín D; Durán, Walter N; Boric, Mauricio P
2002-01-01
Studies in cultured cells show that activation of endothelial nitric oxide (NO) synthase (eNOS) requires the dissociation of this enzyme from its inhibitory association with caveolin-1 (Cav-1), and perhaps its translocation from plasma membrane caveolae to other cellular compartments. We investigated the hypothesis that in vivo NO-dependent vasodilatation is associated with the translocation of eNOS from the cell membrane. To this end, we applied ACh topically (10-100 μm for 10 min) to the hamster cheek pouch microcirculation and measured NO production, blood flow and vessel diameter, and assessed subcellular eNOS distribution by Western blotting. Baseline NO production was 54.4 ± 5.2 pmol min−1 (n = 16). ACh increased NO release, caused arteriolar and venular dilatation and elevated microvascular flow. These responses were inhibited by NG-nitro-L-arginine (30 μm). The maximal increase in NO production induced by 10 μm and 100 μm ACh was 45 ± 20 % and 111 ± 33 %, respectively; the corresponding blood flow increases were 50 ± 10 % and 130 ± 24 %, respectively (n = 4-6). Both responses followed a similar time course, although increases in NO preceded flow changes. In non-stimulated tissues, eNOS was distributed mainly in the microsomal fraction. ACh-induced vasodilatation was associated with eNOS translocation to the cytosolic and Golgi-enriched fractions. After 1.5, 3.0 or 6.0 min of application, 10 μm ACh decreased the level of membrane-bound eNOS by -13 ± 4 %, -60 ± 4 % and -19 ± 17 %, respectively; at the same time points, 100 μm ACh reduced microsomal eNOS content by -38 ± 9 %, -61 ± 16 % and -40 ± 18 %, respectively (n = 4-5). In all cases, microsomal Cav-1 content did not change. The close ACh concentration dependence and the concomitance between eNOS subcellular redistribution and NO release support the concept that eNOS translocation from the plasma membrane is part of an activation mechanism that induces NO-dependent vasodilatation in vivo. PMID:12411531
Glatt, H; de Balle, L; Oesch, F
1981-01-01
The activation of dimethylnitrosamine (DMN) to a bacterial mutagen in liver subcellular fraction and in intrasanguinous host-mediated assays was studied, in particular the effect of pretreatment of the animals with ethanol or acetone. Salmonella typhimurium TA 92 was much more sensitive to DMN mutagenicity than TA 100 and TA 1535 or Escherichia coli WP2uvrA and was used for the main part of the study. Noteworthy, in part already known, features of the in vitro activation are the relatively low pH optimum (pH 6-6.4), the non-linear dose-mutagenic response-relationship and the relatively high doses of DMN required for activation with control preparations. Pretreatment of mice with ethanol or acetone greatly reduced the minimal mutagenically effective concentration of DMN in the in vitro assay. Pretreatment with Aroclor 1254, an inducer frequently used in mutagenicity research, showed little effect when used alone, but reduced the potentiation by acetone. The results of the host-mediated assays substantially differed from those of the in vitro activation assays (a) in the relatively low dose of DMN required for mutagenicity to occur and (b) in the lack of potentiation by acetone-or ethanol-pretreatment. Acetone even led to a marginal decrease in mutagenicity. As a possible explantation for this apparent discrepancy were assume that with the in vitro system the activity of the dilute metabolizing system is limiting for the activation of DMN and induction therefore will increase the mutagenicity, whereas in vivo DMN is quantitatively metabolized in both induced and non-induced animals. The results show that caution has to be taken in the interpretation from in vitro results to the in vivo situation. In particular our in vivo experiments do not support the hypothesis that the induction by ethanol of an activating system with a low Km (which would strongly activate traces of DMN ingested with many foods) is one of the reasons for the increased risk of liver tumors in alcoholics.
Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4
Haas, Gabrielle; Azevedo, Jacinthe; Moissiard, Guillaume; Geldreich, Angèle; Himber, Christophe; Bureau, Marina; Fukuhara, Toshiyuki; Keller, Mario; Voinnet, Olivier
2008-01-01
Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-α-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function. PMID:18615098
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsson, Ida; Berrez, Jean-Marc; Leipus, Arunas
2007-05-15
Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experimentsmore » with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2{delta} mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation.« less
Kislinger, Thomas; Gramolini, Anthony O; MacLennan, David H; Emili, Andrew
2005-08-01
An optimized analytical expression profiling strategy based on gel-free multidimensional protein identification technology (MudPIT) is reported for the systematic investigation of biochemical (mal)-adaptations associated with healthy and diseased heart tissue. Enhanced shotgun proteomic detection coverage and improved biological inference is achieved by pre-fractionation of excised mouse cardiac muscle into subcellular components, with each organellar fraction investigated exhaustively using multiple repeat MudPIT analyses. Functional-enrichment, high-confidence identification, and relative quantification of hundreds of organelle- and tissue-specific proteins are achieved readily, including detection of low abundance transcriptional regulators, signaling factors, and proteins linked to cardiac disease. Important technical issues relating to data validation, including minimization of artifacts stemming from biased under-sampling and spurious false discovery, together with suggestions for further fine-tuning of sample preparation, are discussed. A framework for follow-up bioinformatic examination, pattern recognition, and data mining is also presented in the context of a stringent application of MudPIT for probing fundamental aspects of heart muscle physiology as well as the discovery of perturbations associated with heart failure.
Preparation of protein samples for mass spectrometry and N-terminal sequencing.
Glenn, Gary
2014-01-01
The preparation of protein samples for mass spectrometry and N-terminal sequencing is a key step in successfully identifying proteins. Mass spectrometry is a very sensitive technique, and as such, samples must be prepared carefully since they can be subject to contamination of the sample (e.g., due to incomplete subcellular fractionation or purification of a multiprotein complex), overwhelming of the sample by highly abundant proteins, and contamination from skin or hair (keratin can be a very common hit). One goal of sample preparation for mass spec is to reduce the complexity of the sample - in the example presented here, mitochondria are purified, solubilized, and fractionated by sucrose density gradient sedimentation prior to preparative 1D SDS-PAGE. It is important to verify the purity and integrity of the sample so that you can have confidence in the hits obtained. More protein is needed for N-terminal sequencing and ideally it should be purified to a single band when run on an SDS-polyacrylamide gel. The example presented here involves stably expressing a tagged protein in HEK293 cells and then isolating the protein by affinity purification and SDS-PAGE. © 2014 Elsevier Inc. All rights reserved.
Release of kinesin from vesicles by hsc70 and regulation of fast axonal transport
NASA Technical Reports Server (NTRS)
Tsai, M. Y.; Morfini, G.; Szebenyi, G.; Brady, S. T.
2000-01-01
The nature of kinesin interactions with membrane-bound organelles and mechanisms for regulation of kinesin-based motility have both been surprisingly difficult to define. Most kinesin is recovered in supernatants with standard protocols for purification of motor proteins, but kinesin recovered on membrane-bound organelles is tightly bound. Partitioning of kinesin between vesicle and cytosolic fractions is highly sensitive to buffer composition. Addition of either N-ethylmaleimide or EDTA to homogenization buffers significantly increased the fraction of kinesin bound to organelles. Given that an antibody against kinesin light chain tandem repeats also releases kinesin from vesicles, these observations indicated that specific cytoplasmic factors may regulate kinesin release from membranes. Kinesin light tandem repeats contain DnaJ-like motifs, so the effects of hsp70 chaperones were evaluated. Hsc70 released kinesin from vesicles in an MgATP-dependent and N-ethylmaleimide-sensitive manner. Recombinant kinesin light chains inhibited kinesin release by hsc70 and stimulated the hsc70 ATPase. Hsc70 actions may provide a mechanism to regulate kinesin function by releasing kinesin from cargo in specific subcellular domains, thereby effecting delivery of axonally transported materials.
Isolation of Endoplasmic Reticulum Fractions from Mammary Epithelial Tissue.
Chanat, Eric; Le Parc, Annabelle; Lahouassa, Hichem; Badaoui, Bouabid
2016-06-01
In the mammary glands of lactating animals, the mammary epithelial cells that surround the lumen of the acini produce and secrete copious amounts of milk. Functional differentiation of these mammary epithelial cells depends on the development of high-efficiency secretory pathways, notably for protein and lipid secretion. Protein secretion is a fundamental process common to all animal cells that involves a subset of cellular organelles, including the endoplasmic reticulum and the Golgi apparatus. In contrast, en masse secretion of triglycerides and cholesterol esters in the form of milk fat globules is a unique feature of the mammary epithelial cell. Cytoplasmic lipid droplets, the intracellular precursors of milk fat globules, originate from the endoplasmic reticulum, as do most milk-specific proteins. This organelle is therefore pivotal in the biogenesis of milk components. Fractionation of the cell into its subcellular parts is an approach that has proven very powerful for understanding organelle function and for studying the specific role of an organelle in a given cell activity. Here we describe a method for the purification of both smooth and rough microsomes, the membrane-bound endoplasmic reticulum fragments that form from endoplasmic reticulum domains when cells are broken up, from mammary gland tissue at lactation.
Protein subcellular localization assays using split fluorescent proteins
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2009-09-08
The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).
Sub-cellular force microscopy in single normal and cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babahosseini, H.; Carmichael, B.; Strobl, J.S.
2015-08-07
This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer andmore » significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.« less
Molzan, Manuela; Ottmann, Christian
2013-03-01
Myeloid leukemia factor 1 (MLF1) is associated with the development of leukemic diseases such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). However, information on the physiological function of MLF1 is limited and mostly derived from studies identifying MLF1 interaction partners like CSN3, MLF1IP, MADM, Manp and the 14-3-3 proteins. The 14-3-3-binding site surrounding S34 is one of the only known functional features of the MLF1 sequence, along with one nuclear export sequence (NES) and two nuclear localization sequences (NLS). It was recently shown that the subcellular localization of mouse MLF1 is dependent on 14-3-3 proteins. Based on these findings, we investigated whether the subcellular localization of human MLF1 was also directly 14-3-3-dependent. Live cell imaging with GFP-fused human MLF1 was used to study the effects of mutations and deletions on its subcellular localization. Surprisingly, we found that the subcellular localization of full-length human MLF1 is 14-3-3-independent, and is probably regulated by other as-yet-unknown proteins.
Du, Pufeng; Wang, Lusheng
2014-01-01
One of the fundamental tasks in biology is to identify the functions of all proteins to reveal the primary machinery of a cell. Knowledge of the subcellular locations of proteins will provide key hints to reveal their functions and to understand the intricate pathways that regulate biological processes at the cellular level. Protein subcellular location prediction has been extensively studied in the past two decades. A lot of methods have been developed based on protein primary sequences as well as protein-protein interaction network. In this paper, we propose to use the protein-protein interaction network as an infrastructure to integrate existing sequence based predictors. When predicting the subcellular locations of a given protein, not only the protein itself, but also all its interacting partners were considered. Unlike existing methods, our method requires neither the comprehensive knowledge of the protein-protein interaction network nor the experimentally annotated subcellular locations of most proteins in the protein-protein interaction network. Besides, our method can be used as a framework to integrate multiple predictors. Our method achieved 56% on human proteome in absolute-true rate, which is higher than the state-of-the-art methods. PMID:24466278
Rakkhumkaew, Numfon; Shibatani, Shigeo; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi
2013-04-01
Extraction of hyaluronan from animals or microbial fermentation has risks including contamination with pathogens and microbial toxins. In this work, tobacco cultured-cells (BY-2) were successfully transformed with a chloroviral hyaluronan synthase (cvHAS) gene to produce hyaluronan. Cytological studies revealed accumulation of HA on the cells, and also in subcellular fractions (protoplasts, miniplasts, vacuoplasts, and vacuoles). Transgenic BY-2 cells harboring a vSPO-cvHAS construct containing the vacuolar targeting signal of sporamin connected to the N-terminus of cvHAS accumulated significant amounts of HA in vacuoles. These results suggested that cvHAS successfully functions on the vacuolar membrane and synthesizes/transports HA into vacuoles. Efficient synthesis of HA using this system provides a new method for practical production of HA. Copyright © 2012 Wiley Periodicals, Inc.
Tian, Siqi; Ohta, Akinori; Horiuchi, Hiroyuki; Fukuda, Ryouichi
2015-01-01
To elucidate the mechanism of interorganelle sterol transport, a system to evaluate sterol transport from the endoplasmic reticulum (ER) to the mitochondria was constructed. A bacterial glycerophospholipid: cholesterol acyltransferase fused with a mitochondria-targeting sequence and a membrane-spanning domain of the mitochondrial inner membrane protein Pet100 and enhanced green fluorescent protein was expressed in a Saccharomyces cerevisiae mutant deleted for ARE1 and ARE2 encoding acyl-CoA:sterol acyltransferases. Microscopic observation and subcellular fractionation suggested that this fusion protein, which was named mito-SatA-EGFP, was localized in the mitochondria. Steryl esters were synthesized in the mutant expressing mito-SatA-EGFP. This system will be applicable for evaluations of sterol transport from the ER to the mitochondria in yeast by examining sterol esterification in the mitochondria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozhanets, V.V.; Anosov, A.K.
1986-01-01
The nonapeptide delta-sleep inducing peptide (DSIP) causes specific changes in the encephalogram of recipient animals: It prolongs the phase of long-wave or delta sleep. The cellular mechanism of action of DSIP has not yet been explained. To test the hyporhesis that this peptide or its degradation product may be presynaptic regulators of catecholamine release, the action of Leu-enkephaline, DSIP, and amino acids composing DSIP on release of endogenous noradrenalin (NA) from synaptosomes during depolarization was compared. Subcellular fractions from cerebral hemisphere of noninbred male albino rats were isolated. Lactate dehydrogenase activity was determined in the suspension of synaptosomes before andmore » after addition of 0.5% Triton X-100. The results were subjected to statistical analysis, using the Wilcoxon-Mann-Whitney nonparametric test.« less
Fowler, Stephanie; Akins, Mark; Bennett, Steffany A L
2016-01-01
Protein interaction networks at gap junction plaques are increasingly implicated in a variety of intracellular signaling cascades. Identifying protein interactions of integral membrane proteins is a valuable tool for determining channel function. However, several technical challenges exist. Subcellular fractionation of the bait protein matrix is usually required to identify less abundant proteins in complex homogenates. Sufficient solvation of the lipid environment without perturbation of the protein interactome must also be achieved. The present chapter describes the flotation of light and heavy liver tissue membrane microdomains to facilitate the identification and analysis of endogenous gap junction proteins and includes technical notes for translation to other integral membrane proteins, tissues, or cell culture models. These procedures are valuable tools for the enrichment of gap junction membrane compartments and for the identification of gap junction signaling interactomes.
Myllynen, Päivi; Vähäkangas, Kirsi
2013-02-01
Over the decades several ex vivo and in vitro models which utilize delivered human placenta have been developed to study various placental functions. The use of models originating from human placenta to study transplacental transfer and related mechanisms is an attractive option because human placenta is relatively easily available for experimental studies. After delivery placenta has served its purpose and is usually disposed of. The purpose of this review is to give an overview of the use of human placental models for the studies on human placental transfer and related mechanisms such as transporter functions and xenobiotic metabolism. Human placental perfusion, the most commonly used continuous cell lines, primary cells and tissue culture, as well as subcellular fractions are briefly introduced and their major advantages and disadvantages are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Adam, Rosalyn M; Yang, Wei; Di Vizio, Dolores; Mukhopadhyay, Nishit K; Steen, Hanno
2008-06-05
Cholesterol-rich membrane microdomains known as lipid rafts have been implicated in diverse physiologic processes including lipid transport and signal transduction. Lipid rafts were originally defined as detergent-resistant membranes (DRMs) due to their relative insolubility in cold non-ionic detergents. Recent findings suggest that, although DRMs are not equivalent to lipid rafts, the presence of a given protein within DRMs strongly suggests its potential for raft association in vivo. Therefore, isolation of DRMs represents a useful starting point for biochemical analysis of lipid rafts. The physicochemical properties of DRMs present unique challenges to analysis of their protein composition. Existing methods of isolating DRM-enriched fractions involve flotation of cell extracts in a sucrose density gradient, which, although successful, can be labor intensive, time consuming and results in dilute sucrose-containing fractions with limited utility for direct proteomic analysis. In addition, several studies describing the proteomic characterization of DRMs using this and other approaches have reported the presence of nuclear proteins in such fractions. It is unclear whether these results reflect trafficking of nuclear proteins to DRMs or whether they arise from nuclear contamination during isolation. To address these issues, we have modified a published differential detergent extraction method to enable rapid DRM isolation that minimizes nuclear contamination and yields fractions compatible with mass spectrometry. DRM-enriched fractions isolated using the conventional or modified extraction methods displayed comparable profiles of known DRM-associated proteins, including flotillins, GPI-anchored proteins and heterotrimeric G-protein subunits. Thus, the modified procedure yielded fractions consistent with those isolated by existing methods. However, we observed a marked reduction in the percentage of nuclear proteins identified in DRM fractions isolated with the modified method (15%) compared to DRMs isolated by conventional means (36%). Furthermore, of the 21 nuclear proteins identified exclusively in modified DRM fractions, 16 have been reported to exist in other subcellular sites, with evidence to suggest shuttling of these species between the nucleus and other organelles. We describe a modified DRM isolation procedure that generates DRMs that are largely free of nuclear contamination and that is compatible with downstream proteomic analyses with minimal additional processing. Our findings also imply that identification of nuclear proteins in DRMs is likely to reflect legitimate movement of proteins between compartments, and is not a result of contamination during extraction.
Protein subcellular localization prediction using artificial intelligence technology.
Nair, Rajesh; Rost, Burkhard
2008-01-01
Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with high-throughput methods for predicting localization, and they are beginning to play an important role in directing experimental research. In this chapter, we review some of the most important methods for the prediction of subcellular localization.
Xiao, Xuan; Cheng, Xiang; Chen, Genqiang; Mao, Qi; Chou, Kuo-Chen
2018-05-26
Knowledge of protein subcellular localization is vitally important for both basic research and drug development. With the avalanche of protein sequences emerging in the post-genomic age, it is highly desired to develop computational tools for timely and effectively identifying their subcellular localization purely based on the sequence information alone. Recently, a predictor called "pLoc-mGpos" was developed for identifying the subcellular localization of Gram-positive bacterial proteins. Its performance is overwhelmingly better than that of the other predictors for the same purpose, particularly in dealing with multi-label systems in which some proteins, called "multiplex proteins", may simultaneously occur in two or more subcellular locations. Although it is indeed a very powerful predictor, more efforts are definitely needed to further improve it. This is because pLoc-mGpos was trained by an extremely skewed dataset in which some subset (subcellular location) was over 11 times the size of the other subsets. Accordingly, it cannot avoid the bias consequence caused by such an uneven training dataset. To alleviate such bias consequence, we have developed a new and bias-reducing predictor called pLoc_bal-mGpos by quasi-balancing the training dataset. Rigorous target jackknife tests on exactly the same experiment-confirmed dataset have indicated that the proposed new predictor is remarkably superior to pLoc-mGpos, the existing state-of-the-art predictor in identifying the subcellular localization of Gram-positive bacterial proteins. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_bal-mGpos/, by which users can easily get their desired results without the need to go through the detailed mathematics. Copyright © 2018 Elsevier Inc. All rights reserved.
Presley, Andrew D; Fuller, Kathryn M; Arriaga, Edgar A
2003-08-05
MitoTracker Green (MTG) is a mitochondrial-selective fluorescent label commonly used in confocal microscopy and flow cytometry. It is expected that this dye selectively accumulates in the mitochondrial matrix where it covalently binds to mitochondrial proteins by reacting with free thiol groups of cysteine residues. Here we demonstrate that MTG can be used as a protein labeling reagent that is compatible with a subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). Although the MTG-labeled proteins and MTG do not seem to electrophoretically separate, an enhancement in fluorescence intensity of the product indicates that only proteins with free thiol groups are capable of reacting with MTG. In addition we propose that MTG is a partially selective label towards some mitochondrial proteins. This selectivity stems from the high MTG concentration in the mitochondrial matrix that favors alkylation of the available thiol groups in this subcellular compartment. To that effect we treated mitochondria-enriched fractions that had been prepared by differential centrifugation of an NS-1 cell lysate. This fraction was solubilized with an SDS-containing buffer and analyzed by CE-LIF. The presence of a band with fluorescence stronger than MTG alone also indicated the presence of an MTG-protein product. Confirming that MTG is labeling mitochondrial proteins was done by treating the solubilized mitochondrial fraction with 5-furoylquinoline-3-carboxaldehyde (FQ), a fluorogenic reagent that reacts with primary amino groups, and analysis by CE-LIF using two separate detection channels: 520 nm for MTG-labeled species and 635 nm for FQ-labeled species. In addition, these results indicate that MTG labels only a subset of proteins in the mitochondria-enriched fraction.
Lee, Donna H; Riquier, Anne D M; Yang, Li E; Leong, Patrick K K; Maunsbach, Arvid B; McDonough, Alicia A
2009-04-01
When blood pressure (BP) is elevated above baseline, a pressure natriuresis-diuresis response ensues, critical to volume and BP homeostasis. Distal convoluted tubule Na(+)-Cl(-) cotransporter (NCC) is regulated by trafficking between the apical plasma membrane (APM) and subapical cytoplasmic vesicles (SCV). We aimed to determine whether NCC trafficking contributes to pressure diuresis by decreasing APM NCC or compensates for increased volume flow to the DCT by increasing APM NCC. BP was raised 50 mmHg (high BP) in rats by arterial constriction for 5 or 20-30 min, provoking a 10-fold diuresis at both times. Kidneys were excised, and NCC subcellular distribution was analyzed by 1) sorbitol density gradient fractionation and immunoblotting and 2) immunoelectron microscopy (immuno-EM). NCC distribution did not change after 5-min high BP. After 20-30 min of high BP, 20% of NCC redistributed from low-density, APM-enriched fractions to higher density, endosome-enriched fractions, and, by quantitative immuno-EM, pool size of APM NCC decreased 14% and SCV pool size increased. Because of the time lag of the response, we tested the hypothesis that internalization of NCC was secondary to the decrease in ANG II that accompanies high BP. Clamping ANG II at a nonpressor level by coinfusion of captopril (12 microg/min) and ANG II (20 ng.kg(-1).min(-1)) during 30-min high BP reduced diuresis to eightfold and prevented redistribution of NCC from APM- to SCV-enriched fractions. We conclude that DCT NCC may participate in pressure natriuresis-diuresis by retraction out of apical plasma membranes and that the retraction is, at least in part, driven by the fall in ANG II that accompanies acute hypertension.
Compressed learning and its applications to subcellular localization.
Zheng, Zhong-Long; Guo, Li; Jia, Jiong; Xie, Chen-Mao; Zeng, Wen-Cai; Yang, Jie
2011-09-01
One of the main challenges faced by biological applications is to predict protein subcellular localization in automatic fashion accurately. To achieve this in these applications, a wide variety of machine learning methods have been proposed in recent years. Most of them focus on finding the optimal classification scheme and less of them take the simplifying the complexity of biological systems into account. Traditionally, such bio-data are analyzed by first performing a feature selection before classification. Motivated by CS (Compressed Sensing) theory, we propose the methodology which performs compressed learning with a sparseness criterion such that feature selection and dimension reduction are merged into one analysis. The proposed methodology decreases the complexity of biological system, while increases protein subcellular localization accuracy. Experimental results are quite encouraging, indicating that the aforementioned sparse methods are quite promising in dealing with complicated biological problems, such as predicting the subcellular localization of Gram-negative bacterial proteins.
Visualization of metallodrugs in single cells by secondary ion mass spectrometry imaging.
Wu, Kui; Jia, Feifei; Zheng, Wei; Luo, Qun; Zhao, Yao; Wang, Fuyi
2017-07-01
Secondary ion mass spectrometry, including nanoscale secondary ion mass spectrometry (NanoSIMS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), has emerged as a powerful tool for biological imaging, especially for single cell imaging. SIMS imaging can provide information on subcellular distribution of endogenous and exogenous chemicals, including metallodrugs, from membrane through to cytoplasm and nucleus without labeling, and with high spatial resolution and chemical specificity. In this mini-review, we summarize recent progress in the field of SIMS imaging, particularly in the characterization of the subcellular distribution of metallodrugs. We anticipate that the SIMS imaging method will be widely applied to visualize subcellular distributions of drugs and drug candidates in single cells, exerting significant influence on early drug evaluation and metabolism in medicinal and pharmaceutical chemistry. Recent progress of SIMS applications in characterizing the subcellular distributions of metallodrugs was summarized.
Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen
2009-07-21
Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.
NASA Astrophysics Data System (ADS)
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2017-02-01
Apoptosis is a fundamental process controlling normal tissue homeostasis by regulating a balance between cell proliferation and death. Predicting subcellular location of apoptosis proteins is very helpful for understanding its mechanism of programmed cell death. Prediction of apoptosis protein subcellular location is still a challenging and complicated task, and existing methods mainly based on protein primary sequences. In this paper, we propose a new position-specific scoring matrix (PSSM)-based model by using Geary autocorrelation function and detrended cross-correlation coefficient (DCCA coefficient). Then a 270-dimensional (270D) feature vector is constructed on three widely used datasets: ZD98, ZW225 and CL317, and support vector machine is adopted as classifier. The overall prediction accuracies are significantly improved by rigorous jackknife test. The results show that our model offers a reliable and effective PSSM-based tool for prediction of apoptosis protein subcellular localization.
System dynamics of subcellular transport.
Chen, Vivien Y; Khersonsky, Sonya M; Shedden, Kerby; Chang, Young Tae; Rosania, Gus R
2004-01-01
In pharmacokinetic experiments, interpretations often hinge on treating cells as a "black box": a single, lumped compartment or boundary. Here, a combinatorial library of fluorescent small molecules was used to visualize subcellular transport pathways in living cells, using a kinetic, high content imaging system to monitor spatiotemporal variations of intracellular probe distribution. Most probes accumulate in cytoplasmic vesicles and probe kinetics conform to a nested, two-compartment dynamical system. At steady state, probes preferentially partition from the extracellular medium to the cytosol, and from the cytosol to cytoplasmic vesicles, with hydrophobic molecules favoring sequestration. Altogether, these results point to a general organizing principle underlying the system dynamics of subcellular, small molecule transport. In addition to plasma membrane permeability, subcellular transport phenomena can determine the active concentration of small molecules in the cytosol and the efflux of small molecules from cells. Fundamentally, direct observation of intracellular probe distribution challenges the simple boundary model of classical pharmacokinetics, which considers cells as static permeability barriers.
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2016-12-01
Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.
Saito, Mitsuo; Chakraborty, Goutam; Shah, Relish; Mao, Rui-Fen; Kumar, Asok; Yang, Dun-Sheng; Dobrenis, Kostantin; Saito, Mariko
2012-05-01
GM2 ganglioside in the brain increased during ethanol-induced acute apoptotic neurodegeneration in 7-day-old mice. A small but a significant increase observed 2 h after ethanol exposure was followed by a marked increase around 24 h. Subcellular fractionation of the brain 24 h after ethanol treatment indicated that GM2 increased in synaptic and non-synaptic mitochondrial fractions as well as in a lysosome-enriched fraction characteristic to the ethanol-exposed brain. Immunohistochemical staining of GM2 in the ethanol-treated brain showed strong punctate staining mainly in activated microglia, in which it partially overlapped with staining for LAMP1, a late endosomal/lysosomal marker. Also, there was weaker neuronal staining, which partially co-localized with complex IV, a mitochondrial marker, and was augmented in cleaved caspase 3-positive neurons. In contrast, the control brain showed only faint and diffuse GM2 staining in neurons. Incubation of isolated brain mitochondria with GM2 in vitro induced cytochrome c release in a manner similar to that of GD3 ganglioside. Because ethanol is known to trigger mitochondria-mediated apoptosis with cytochrome c release and caspase 3 activation in the 7-day-old mouse brain, the GM2 elevation in mitochondria may be relevant to neuroapoptosis. Subsequently, activated microglia accumulated GM2, indicating a close relationship between GM2 and ethanol-induced neurodegeneration. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Bessoule, Jean-Jacques; Salin, Bénédicte; Lucas-Guérin, Marine; Manon, Stephen; Dementhon, Karine; Noël, Thierry
2014-01-01
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner. PMID:25486052
Gabriel, Frédéric; Accoceberry, Isabelle; Bessoule, Jean-Jacques; Salin, Bénédicte; Lucas-Guérin, Marine; Manon, Stephen; Dementhon, Karine; Noël, Thierry
2014-01-01
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.
Jiang, Xiaoying; Wei, Rong; Zhang, Tongliang; Gu, Quan
2008-01-01
The function of protein is closely correlated with it subcellular location. Prediction of subcellular location of apoptosis proteins is an important research area in post-genetic era because the knowledge of apoptosis proteins is useful to understand the mechanism of programmed cell death. Compared with the conventional amino acid composition (AAC), the Pseudo Amino Acid composition (PseAA) as originally introduced by Chou can incorporate much more information of a protein sequence so as to remarkably enhance the power of using a discrete model to predict various attributes of a protein. In this study, a novel approach is presented to predict apoptosis protein solely from sequence based on the concept of Chou's PseAA composition. The concept of approximate entropy (ApEn), which is a parameter denoting complexity of time series, is used to construct PseAA composition as additional features. Fuzzy K-nearest neighbor (FKNN) classifier is selected as prediction engine. Particle swarm optimization (PSO) algorithm is adopted for optimizing the weight factors which are important in PseAA composition. Two datasets are used to validate the performance of the proposed approach, which incorporate six subcellular location and four subcellular locations, respectively. The results obtained by jackknife test are quite encouraging. It indicates that the ApEn of protein sequence could represent effectively the information of apoptosis proteins subcellular locations. It can at least play a complimentary role to many of the existing methods, and might become potentially useful tool for protein function prediction. The software in Matlab is available freely by contacting the corresponding author.
Vallejo, Abbe N.; Miller, Norman W.; Harvey, Nancy E.; Cuchens, Marvin A.; Warr, Gregory W.
1992-01-01
Studies were conducted to address further the role(s) of antigen processing and presentation in the induction of immune responses in a phylogenetically lower vertebrate, specifically a teleost, the channel catfish. In particular, studies were aimed at determining the subcellular compartments involved in antigen degradation by channel catfish antigen-presenting cells (APC) as well as ascertaining the reexpression of immunogenic peptides on the surfaces of APC. The results showed that exogenous protein antigens were actively endocytosed by APC as detected by flow cytometry. Use of radiolabeled antigen and subcellular fractionation protocols also showed that antigen localized in endosomes/lysosomes. Furthermore, there was an apparent redistribution of antigen between these organelles and the plasma membrane during the course of antigen pulsing. Functional assays for the induction of in vitro antigen-specific proliferation of immune catfish peripheral blood leukocytes (PBL) showed that membrane preparations from antigen-pulsed autologous APC were highly stimulatory. The magnitude of responses elicited with such membrane preparations was very similar to that of PBL cultures stimulated with native antigen-pulsed and fixed intact APC or prefixed intact APC incubated with a peptide fragment of the nominal antigen. Current data further corroborate our previous findings that steps akin to antigen processing and presentation are clearly important in the induction of immune responses in lower vertebrates like fish, in a manner similar to that seen in mammalian systems. Consequently, it would appear that many immune functions among the diverse taxa of vertebrates are remarkably conserved. PMID:1343103
Bhaskaran, Natarajan; Gupta, Sanjay
2014-01-01
Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it’s binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2′ deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities. PMID:24614817
Sharma, Haripaul; Kanwal, Rajnee; Bhaskaran, Natarajan; Gupta, Sanjay
2014-01-01
Oxidative stress has been linked to prostate carcinogenesis as human prostate tissue is vulnerable to oxidative DNA damage. Apigenin, a dietary plant flavone, possesses anti-proliferative and anticancer effects; however, its antioxidant properties have not been fully elucidated. We investigated sub-cellular distribution of apigenin, it's binding to DNA and protective effects against H2O2-induced DNA damage using transformed human prostate epithelial RWPE-1 cells and prostate cancer LNCaP, PC-3 and DU145 cells. Exposure of cells to apigenin exhibited higher accumulation in RWPE-1 and LNCaP cells, compared to PC-3 and DU145 cells. The kinetics of apigenin uptake in LNCaP cells was estimated with a Km value of 5 µmole/L and Vmax of 190 pmoles/million cells/h. Sub-cellular fractionation demonstrated that nuclear matrix retains the highest concentration of apigenin (45.3%), followed by cytosol (23.9%), nuclear membranes (17.9%) and microsomes (12.9%), respectively. Spectroscopic analysis of apigenin with calf-thymus DNA exhibited intercalation as the dominant binding mode to DNA duplex. Apigenin exposure resulted in significant genoprotective effects in H2O2-stressed RWPE-1 cells by reduction in reactive oxygen species levels. In addition, apigenin exposure suppressed the formation of 8-hydroxy-2' deoxyguanosine and protected exposed cells from apoptosis. Our studies demonstrate that apigenin is readily taken up by normal prostatic epithelial cells and prostate cancer cells, and is incorporated into their nuclei, where its intercalation with nucleic acid bases may account for its antioxidant and chemopreventive activities.
Della Valle, Maria Cecilia; Sleat, David E; Sohar, Istvan; Wen, Ting; Pintar, John E; Jadot, Michel; Lobel, Peter
2006-11-17
Most newly synthesized soluble lysosomal proteins are delivered to the lysosome via the mannose 6-phosphate (Man-6-P)-targeting pathway. The presence of the Man-6-P post-translational modification allows these proteins to be affinity-purified on immobilized Man-6-P receptors. This approach has formed the basis for a number of proteomic studies that identified multiple as yet uncharacterized Man-6-P glycoproteins that may represent new lysosomal proteins. Although the presence of Man-6-P is suggestive of lysosomal function, the subcellular localization of such candidates requires experimental verification. Here, we have investigated one such candidate, ependymin-related protein (EPDR). EPDR is a protein of unknown function with some sequence similarity to ependymin, a fish protein thought to play a role in memory consolidation and learning. Using classical subcellular fractionation on rat brain, EPDR co-distributes with lysosomal proteins, but there is significant overlap between lysosomal and mitochondrial markers. For more definitive localization, we have developed a novel approach based upon a selective buoyant density shift of the brain lysosomes in a mutant mouse lacking NPC2, a lysosomal protein involved in lipid transport. EPDR, in parallel with lysosomal markers, shows this density shift in gradient centrifugation experiments comparing mutant and wild type mice. This approach, combined with morphological analyses, demonstrates that EPDR resides in the lysosome. In addition, the lipidosis-induced density shift approach represents a valuable tool for identification and validation of both luminal and membrane lysosomal proteins that should be applicable to high throughput proteomic studies.
Huang, Jiansheng; Barr, Emily; Rudnick, David A
2013-05-01
The studies reported here were undertaken to define the regulation and functional importance of zinc-dependent histone deacetylase (Zn-HDAC) activity during liver regeneration using the mouse partial hepatectomy (PH) model. The results showed that hepatic HDAC activity was significantly increased in nuclear and cytoplasmic fractions following PH. Further analyses showed isoform-specific effects of PH on HDAC messenger RNA (mRNA) and protein expression, with increased expression of the class I HDACs, 1 and 8, and class II HDAC4 in regenerating liver. Hepatic expression of (class II) HDAC5 was unchanged after PH; however, HDAC5 exhibited transient nuclear accumulation in regenerating liver. These changes in hepatic HDAC expression, subcellular localization, and activity coincided with diminished histone acetylation in regenerating liver. The significance of these events was investigated by determining the effects of suberoylanilide hydroxyamic acid (SAHA, a specific inhibitor of Zn-HDAC activity) on hepatic regeneration. The results showed that SAHA treatment suppressed the effects of PH on histone deacetylation and hepatocellular bromodeoxyuridine (BrdU) incorporation. Further examination showed that SAHA blunted hepatic expression and activation of cell cycle signals downstream of induction of cyclin D1 expression in mice subjected to PH. The data reported here demonstrate isoform-specific regulation of Zn-HDAC expression, subcellular localization, and activity in regenerating liver. These studies also indicate that HDAC activity promotes liver regeneration by regulating hepatocellular cell cycle progression at a step downstream of cyclin D1 induction. Copyright © 2012 American Association for the Study of Liver Diseases.
Rühl, R; Plum, C; Elmazar, M M; Nau, H
2001-09-01
Isotretinoin (13-cis-retinoic acid [13CRA], Accutane) is used for the treatment of dermatological diseases. Isotretinoin is, however, teratogenic in animals and humans. The mechanism of action of its teratogenicity is still not clearly identified. It has little or no binding properties to cytosolic retinoid-binding proteins or nuclear retinoid receptors (RAR, RXR). One hypothesis is that the teratogenicity of 2 approximately equipotent teratogenic doses of 13CRA and all-trans-retinoic acids (ATRA) could mainly be correlated to ATRA in the nuclei, where the retinoic acid receptors (RARs) are located. To test this hypothesis, female mice at gestational day 11 were treated with approximately equipotent teratogenic doses of 13-cis-retinoic acid (100 mg/kg orally) or all-trans-retinoic acid (10 mg/kg orally) and sacrificed 1 h and 4 h after administration. Embryos were homogenized and centrifuged into 4 fractions, and the purity of the fractions was tested by quantification of marker constituents for various cell compartments. We analyzed, by RP-HPLC, nuclear, mitochondrial, microsomal, and cytosolic fractions, as well as embryo homogenate and maternal plasma. After treatment with 13-cis-retinoic acid, this substance was mainly located in the nuclear fraction of the embryo (approximately 82%), whereas all-trans-retinoic acid, after ATRA treatment, was mainly located in the cytosolic supernatant (approximately 64%). The binding to cellular retinoid-binding protein (CRABP) may limit the access of ATRA to the nucleus, in contrast to 13CRA, which does not bind to CRABP. The concentration of ATRA in the nuclear fraction was similar after administration of either 13CRA or ATRA. The teratogenic activity of 13-cis-retinoic acid could therefore be explained by its access to the nucleus and its possible conversion to all-trans-retinoic acids, which will interact with the nuclear retinoid receptors.
Gredilla, Ricardo; Weissman, Lior; Yang, Jenq-Lin; Bohr, Vilhelm A.; Stevnsner, Tinna
2010-01-01
Brain aging is associated with synaptic decline and cognitive impairment. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging process and the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD). In mitochondria, base excision repair (BER) is the main DNA repair pathway for base modifications such as deamination and oxidation, and constitutes an important mechanism to avoid accumulation of mtDNA mutations. Synaptic function is highly dependent on mitochondria, and in the current study we have investigated BER in synaptosomes of mouse brain during normal aging and in an AD model. Synaptosomes are isolated synapses in membranous structures produced by subcellular fractionation of brain tissue. They include the whole presynaptic terminal as well as portions of the postsynaptic terminal. Synaptosomes contain the molecular machinery necessary for uptake, storage, and release of neurotransmitters, including synaptic vesicles and mitochondria. BER activities were measured in synaptosomal fractions from young and old mice and from pre-symptomatic and symptomatic AD mice harboring mutated APP, Tau and PS1 (3xTgAD). During normal aging, a reduction in the BER capacity was observed in the synaptosomal fraction, which was associated with a decrease in the level of BER proteins. However, we did not observe changes between the synaptosomal BER activities of pre-symptomatic and symptomatic AD mice. Our findings suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms in the synaptosomal fraction when the whole brain was analyzed. PMID:20708822
Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A
1995-04-01
1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the heterogeneous distribution of membrane proteins in T-tubules is also presented.
SUBCELLULAR PHARMACOKINETICS AND ITS POTENTIAL FOR LIBRARY FOCUSING (R826652)
Subcellular pharmacokinetics (SP) optimizes biology-related factors in the design of libraries for high throughput screening by defining comparatively narrow ranges of properties (lipophilicity, amphiphilicity, acidity, reactivity, 3D-structural features) of t...
Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.
Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon
2017-03-17
Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.
Critical behavior of subcellular density organization during neutrophil activation and migration.
Baker-Groberg, Sandra M; Phillips, Kevin G; Healy, Laura D; Itakura, Asako; Porter, Juliana E; Newton, Paul K; Nan, Xiaolin; McCarty, Owen J T
2015-12-01
Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration.
Critical behavior of subcellular density organization during neutrophil activation and migration
Baker-Groberg, Sandra M.; Phillips, Kevin G.; Healy, Laura D.; Itakura, Asako; Porter, Juliana E.; Newton, Paul K.; Nan, Xiaolin; McCarty, Owen J.T.
2015-01-01
Physical theories of active matter continue to provide a quantitative understanding of dynamic cellular phenomena, including cell locomotion. Although various investigations of the rheology of cells have identified important viscoelastic and traction force parameters for use in these theoretical approaches, a key variable has remained elusive both in theoretical and experimental approaches: the spatiotemporal behavior of the subcellular density. The evolution of the subcellular density has been qualitatively observed for decades as it provides the source of image contrast in label-free imaging modalities (e.g., differential interference contrast, phase contrast) used to investigate cellular specimens. While these modalities directly visualize cell structure, they do not provide quantitative access to the structures being visualized. We present an established quantitative imaging approach, non-interferometric quantitative phase microscopy, to elucidate the subcellular density dynamics in neutrophils undergoing chemokinesis following uniform bacterial peptide stimulation. Through this approach, we identify a power law dependence of the neutrophil mean density on time with a critical point, suggesting a critical density is required for motility on 2D substrates. Next we elucidate a continuum law relating mean cell density, area, and total mass that is conserved during neutrophil polarization and migration. Together, our approach and quantitative findings will enable investigators to define the physics coupling cytoskeletal dynamics with subcellular density dynamics during cell migration. PMID:26640599
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad
2015-10-01
Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.
Imaging Subcellular Structures in the Living Zebrafish Embryo.
Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne
2016-04-02
In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.
Dynamic changes to survivin subcellular localization are initiated by DNA damage
Asumen, Maritess Gay; Ifeacho, Tochukwu V; Cockerham, Luke; Pfandl, Christina; Wall, Nathan R
2010-01-01
Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK) phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light-initiated DNA damage and that its distribution may be responsible for its multifunctionality. PMID:20856848
Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu
2012-12-01
Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The software and datasets are available at: http://www.csbio.sjtu.edu.cn/bioinf/mpsp.
Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James
2013-01-01
Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or ‘expressology’, thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). PMID:24147765
Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James
2013-12-01
Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Nayoung; Department of Brain Science, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Kyunggi-do, 16499; Song, Jieun
In the eukaryotic circadian clock machinery, negative feedback repression of CLOCK (CLK) and BMAL1 transcriptional activity by PERIOD (PER) and CRYPTOCHROME (CRY) underlies the basis for 24 h rhythmic gene expression. Thus, precise regulation of the time-dependent nuclear entry of circadian repressors is crucial to generating normal circadian rhythms. Here, we sought to identify novel kinase(s) that regulate nuclear entry of mammalian CRY1 (mCRY1) with an unbiased screening using red fluorescent protein (RFP)-tagged human kinome expression plasmids in mammalian cells. Transient expression of human vaccinia-related kinase 3 (hVRK3) reduced the nuclear presence of mCRY1. hVRK3 expression also induced alterations in themore » subcellular localization of other core clock proteins, including mCRY2, mPER2, and BMAL1. In contrast, the subcellular localization of mCLK was not changed. Given that singly expressed mCLK mostly resides in the cytoplasm and that nuclear localization sequence (NLS) mutation of hVRK3 attenuated the effect of hVRK3 co-expression on subcellular localization, ectopically expressed hVRK3 presumably reduces the retention of proteins in the nucleus. Finally, downregulation of hvrk3 using siRNA reduced the amplitude and lengthened the period of the cellular bioluminescence rhythm. Taken together, these data suggest that VRK3 plays a role in setting the amplitude and period length of circadian rhythms in mammalian cells. - Highlights: • Screening was performed to identify kinases that regulate CRY1 subcellular localization. • VRK3 alters the subcellular localization of CRY1, CRY2, PER2, and BMAL1. • VRK3 knock-down alters the circadian bioluminescence rhythm in mammalian cells.« less
Evaluation of several two-dimensional gel electrophoresis techniques in cardiac proteomics.
Li, Zhao Bo; Flint, Paul W; Boluyt, Marvin O
2005-09-01
Two-dimensional gel electrophoresis (2-DE) is currently the best method for separating complex mixtures of proteins, and its use is gradually becoming more common in cardiac proteome analysis. A number of variations in basic 2-DE have emerged, but their usefulness in analyzing cardiac tissue has not been evaluated. The purpose of the present study was to systematically evaluate the capabilities and limitations of several 2-DE techniques for separating proteins from rat heart tissue. Immobilized pH gradient strips of various pH ranges, parameters of protein loading and staining, subcellular fractionation, and detection of phosphorylated proteins were studied. The results provide guidance for proteome analysis of cardiac and other tissues in terms of selection of the isoelectric point separating window for cardiac proteins, accurate quantitation of cardiac protein abundance, stabilization of technical variation, reduction of sample complexity, enrichment of low-abundant proteins, and detection of phosphorylated proteins.
17{beta}-Hydroxysteroid dehydrogenase type 13 is a liver-specific lipid droplet-associated protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horiguchi, Yuka; Araki, Makoto; Motojima, Kiyoto
2008-05-30
17{beta}-Hydroxysteroid dehydrogenase (17{beta}HSD) type 13 is identified as a new lipid droplet-associated protein. 17{beta}HSD type 13 has an N-terminal sequence similar to that of 17{beta}HSD type 11, and both sequences function as an endoplasmic reticulum and lipid droplet-targeting signal. Localization of native 17{beta}HSD type 13 on the lipid droplets was confirmed by subcellular fractionation and Western blotting. In contrast to 17{beta}HSD type 11, however, expression of 17{beta}HSD type 13 is largely restricted to the liver and is not enhanced by peroxisome proliferator-activated receptor {alpha} and its ligand. Instead the expression level of 17{beta}HSD type 13 in the receptor-null mice wasmore » increased several-fold. 17{beta}HSD type 13 may have a distinct physiological role as a lipid droplet-associated protein in the liver.« less
Protein Composition of Trypanosoma brucei Mitochondrial Membranes
Acestor, Nathalie; Panigrahi, Aswini K.; Ogata, Yuko; Anupama, Atashi; Stuart, Kenneth D.
2010-01-01
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane and matrix; each harboring specific functions and structures. In this study, we used mass spectrometry (LC-MS/MS) to characterize the protein composition of Trypanosoma brucei mitochondrial membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mitochondrial membranes with high confidence, and 106 with moderate to low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mitochondrial membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mitochondrial functions. PMID:19834910
The sulphation of chondroitin sulphate in embryonic chicken cartilage
Robinson, H. C.
1969-01-01
1. Whole tissue preparations and subcellular fractions from embryonic chicken cartilage were used to measure the rate of incorporation of inorganic sulphate into chondroitin sulphate in vitro. 2. In cartilage from 14-day-old embryos, [35S]sulphate is incorporated to an equal extent into chondroitin 4-sulphate and chondroitin 6-sulphate at a rate of 1·5nmoles of sulphate/hr./mg. dry wt. of cartilage. 3. Microsomal and soluble enzyme preparations from embryonic cartilage catalyse the transfer of sulphate from adenosine 3′-phosphate 5′-sulphatophosphate into both chondroitin 4-sulphate and chondroitin 6-sulphate. 4. The effects of pH, ionic strength, adenosine 3′-phosphate 5′-sulphatophosphate concentration and acceptor chondroitin sulphate concentration on the soluble sulphotransferase activity were examined. These factors all influence the activity of the sulphotransferase, and pH and incubation time also influence the percentage of chondroitin 4-sulphate formed. PMID:5807213
Zuccoli, Giuliana S; Martins-de-Souza, Daniel; Guest, Paul C; Rehen, Stevens K; Nascimento, Juliana Minardi
2017-01-01
The mechanisms underlying the pathophysiology of psychiatric disorders are still poorly known. Most of the studies about these disorders have been conducted on postmortem tissue or in limited preclinical models. The development of human induced pluripotent stem cells (iPSCs) has helped to increase the translational capacity of molecular profiling studies of psychiatric disorders through provision of human neuronal-like tissue. This approach consists of generation of pluripotent cells by genetically reprogramming somatic cells to produce the multiple neural cell types as observed within the nervous tissue. The finding that iPSCs can recapitulate the phenotype of the donor also affords the possibility of using this approach to study both the disease and control states in a given medical area. Here, we present a protocol for differentiation of human pluripotent stem cells to neural progenitor cells followed by subcellular fractionation which allows the study of specific cellular organelles and proteomic analysis.
Avalos, José L.; Fink, Gerald R.; Stephanopoulos, Gregory
2013-01-01
Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeted expression of metabolic pathways to mitochondria can increase production levels compared with expression of the same pathways in the cytoplasm. Compartmentalisation of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overexpressing only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains reveals that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves higher local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion, and reducing the loss of intermediates to competing pathways. PMID:23417095
Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor
1983-01-01
Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle. PMID:6304116
Matrisian, L M; Planck, S R; Magun, B E
1984-03-10
We previously reported that 125I-labeled epidermal growth factor is processed intracellularly to acidic macromolecules in Rat-1 fibroblasts. The present study defines the precursor-product relationship and localization of the processing steps to subcellular organelles by the use of a single isoelectric species of 125I-epidermal growth factor and Percoll gradient fractionation. The native pI 4.55 125I-epidermal growth factor was rapidly processed to a pI 4.2 species on or near the cell surface and in organelles corresponding to clathrin-coated vesicles, Golgi, and endoplasmic reticulum. This species was then processed to a pI 4.35 species in similar organelles. The pI 4.2 and 4.35 species were converted to a pI 4.0 species in dense, lysosome-like organelles. This species was ultimately degraded and exocytosed from the cell as low molecular weight products.
Fujita, M; Ohta, H; Uezato, T
1981-01-01
Brush borders free of nuclei were isolated by repeated homogenization and centrifugation in iso-osmotic medium. They showed typical morphology under electron microscopy. The mean recovery and enrichment of alkaline phosphatase activity in the brush-border fraction were 50% and 17.5-fold respectively. gamma-Glutamyl transpeptidase showed a close parallelism with alkaline phosphatase and sucrase in subcellular distribution. Microvillar membranes were purified from isolated brush borders; they showed a further enrichment for alkaline phosphatase and were composed of homogeneous vesicles. Both brush-border and microvillar-membrane preparations were analysed for contamination by basolateral and endoplasmic-reticular membranes. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of the microvillar-membrane preparation in six different systems revealed approx. 40 components in the mol.wt. range 15 000-232 000. They were grouped into seven major classes on the basis of molecular weight and electrophoretic patterns. Images PLATE 1 PLATE 2 PMID:7317008
Cardioprotective mIGF-1/SIRT1 signaling induces hypertension, leukocytosis and fear response in mice
Bolasco, Giulia; Calogero, Raffaele; Carrara, Matteo; Al Banchaabouchi, Mumna; Bilbao, Daniel; Mazzoccoli, Gianluigi; Vinciguerra, Manlio
2012-01-01
Locally acting insulin growth factor isoform (mIGF-1) and the NAD+-dependent protein deacetylase SIRT1 are implicated in life and health span. Heart failure is associated with aging and is a major cause of death. mIGF-1 protects the heart from oxidative stresses via SIRT1. SIRT1 subcellular localization and its genomic regulation by mIGF-1 are unknown. We show here that SIRT1 is located in the nuclei of a significant fraction of cardiomyocytes. Using high throughput sequencing approaches in mIGF-1 transgenic mice, we identified new targets of the mIGF-1/SIRT1 signaling. In addition to its potent cardioprotective properties, cardiac-restricted mIGF-1 transgene induced systemic changes such as high blood pressure, leukocytosis and an enhanced fear response, in a SIRT1-dependent manner. Cardiac mIGF-1/SIRT1 signaling may thus modulate disparate systemic functions. PMID:22691943
N,N'-dihydroxyamidines: a new prodrug principle to improve the oral bioavailability of amidines.
Reeh, Christiane; Wundt, Judith; Clement, Bernd
2007-12-27
N, N'-dihydroxybenzamdine represents a model compound for a new prodrug principle to improve the oral bioavailability of drugs containing amidine functions. The activation of the prodrug could be demonstrated in vitro by porcine and human subcellular enzyme fractions, the mitochondrial benzamidoxime reducing system, and porcine hepatocytes. In vivo, the bioavailability of benzamidine after oral application of N, N'-dihydroxybenzamidine was about 91% and exceeded that of benzamidine after oral application of benzamidoxime, being about 74% (Liu, L.; Ling, Y.; Havel, C.; Bashnick, L.; Young, W.; Rai, R.; Vijaykumar, D.; Riggs, J. R.; Ton, T.; Shaghafi, M.; Graupe, D.; Mordenti, J.; Sukbuntherng, J. Species comparison of in vitro and in vivo conversion of five N-hydroxyamidine prodrugs of fVIIA inhibitors to their corresponding active amidines. Presented at the 13th North America ISSX Meeting, Maui, HI, 2005).
Du, Shuoren; Hernández-Gil, Javier; Dong, Hao; Zheng, Xiaoyu; Lyu, Guangming; Bañobre-López, Manuel; Gallo, Juan; Sun, Ling-Dong; Yan, Chun-Hua; Long, Nicholas J
2017-10-17
pH homeostasis is strictly controlled at a subcellular level. A deregulation of the intra/extra/subcellular pH environment is associated with a number of diseases and as such, the monitoring of the pH state of cells and tissues is a valuable diagnostic tool. To date, only a few tools have been developed to measure the pH in living cells with the spatial resolution needed for intracellular imaging. Among the techniques available, only optical imaging offers enough resolution and biocompatibility to be proposed for subcellular pH monitoring. We present herein a ratiometric probe based on upconversion nanoparticles modified with a pH sensitive moiety for the quantitative imaging of pH at the subcellular level in living cells. This system provides the properties required for live cell quantitative imaging i.e. positive cellular uptake, biocompatibility, long wavelength excitation, sensitive response to pH within a biologically relevant range, and self-referenced signal.
Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.
Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G
2013-01-01
Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.
Subcellular Localization of Pseudomonas syringae pv. tomato Effector Proteins in Plants.
Aung, Kyaw; Xin, Xiufang; Mecey, Christy; He, Sheng Yang
2017-01-01
Animal and plant pathogenic bacteria use type III secretion systems to translocate proteinaceous effectors to subvert innate immunity of their host organisms. Type III secretion/effector systems are a crucial pathogenicity factor in many bacterial pathogens of plants and animals. Pseudomonas syringae pv. tomato (Pst) DC3000 injects a total of 36 protein effectors that target a variety of host proteins. Studies of a subset of Pst DC3000 effectors demonstrated that bacterial effectors, once inside the host cell, are localized to different subcellular compartments, including plasma membrane, cytoplasm, mitochondria, chloroplast, and Trans-Golgi network, to carry out their virulence functions. Identifying the subcellular localization of bacterial effector proteins in host cells could provide substantial clues to understanding the molecular and cellular basis of the virulence activities of effector proteins. In this chapter, we present methods for transient or stable expression of bacterial effector proteins in tobacco and/or Arabidopsis thaliana for live cell imaging as well as confirming the subcellular localization in plants using fluorescent organelle markers or chemical treatment.
Bachmann, Talis
2015-01-01
Perceptual phenomena such as spatio-temporal illusions and masking are typically explained by psychological (cognitive) processing theories or large-scale neural theories involving inter-areal connectivity and neural circuits comprising of hundreds or more interconnected single cells. Subcellular mechanisms are hardly used for such purpose. Here, a mechanistic theoretical view is presented on how a subcellular brain mechanism of integration of presynaptic signals that arrive at different compartments of layer-5 pyramidal neurons could explain a couple of spatiotemporal visual-phenomenal effects unfolding along very brief time intervals within the range of the sub-second temporal scale.
Analysis of leukotriene B4 metabolism in human promyelocytic HL-60 cells.
Kasimir, S; Schönfeld, W; Hilger, R A; König, W
1991-10-01
We previously reported that human alveolar macrophages rapidly metabolize the chemotactic active lipid mediator leukotriene B4 (LTB4) into the dihydro-LTB4 by reduction of one of the conjugated double bonds. We herein report that human HL-60 cells (a myeloid precursor which can be differentiated into granulocyte- as well as monocyte-like cells by dimethyl sulphoxide or phorbol myristate acetate) express a highly active LTB4 reductase in the undifferentiated state. Differentiation by dimethyl sulphoxide (1.3%) along the granulocyte lineage, as confirmed by light microscopy, conversion of NitroBlue Tetrazolium into formazan, failed to induce a substantial capacity for omega-oxidation of LTB4; this reaction is exclusively found in mature granulocytes. Studies with the cell homogenate of undifferentiated HL-60 cells indicated that the activity of the enzyme depends on the presence of NADPH, Ca2+ and Mg2+, with a pH optimum of 7.5 at 37 degrees C. The enzyme was not released into the supernatant after stimulation of HL-60 cells with phorbol myristate acetate (100 ng) or Ca2+ ionophore (7.5 microM). Subcellular fractionation revealed evidence that the LTB4 reductase is located within the membrane fraction. Purification of the enzyme by gel filtration and gel electrophoresis suggests an apparent molecular mass of 40 kDa.
Eisosomes Are Dynamic Plasma Membrane Domains Showing Pil1-Lsp1 Heteroligomer Binding Equilibrium
Olivera-Couto, Agustina; Salzman, Valentina; Mailhos, Milagros; Digman, Michelle A.; Gratton, Enrico; Aguilar, Pablo S.
2015-01-01
Eisosomes are plasma membrane domains concentrating lipids, transporters, and signaling molecules. In the budding yeast Saccharomyces cerevisiae, these domains are structured by scaffolds composed mainly by two cytoplasmic proteins Pil1 and Lsp1. Eisosomes are immobile domains, have relatively uniform size, and encompass thousands of units of the core proteins Pil1 and Lsp1. In this work we used fluorescence fluctuation analytical methods to determine the dynamics of eisosome core proteins at different subcellular locations. Using a combination of scanning techniques with autocorrelation analysis, we show that Pil1 and Lsp1 cytoplasmic pools freely diffuse whereas an eisosome-associated fraction of these proteins exhibits slow dynamics that fit with a binding-unbinding equilibrium. Number and brightness analysis shows that the eisosome-associated fraction is oligomeric, while cytoplasmic pools have lower aggregation states. Fluorescence lifetime imaging results indicate that Pil1 and Lsp1 directly interact in the cytoplasm and within the eisosomes. These results support a model where Pil1-Lsp1 heterodimers are the minimal eisosomes building blocks. Moreover, individual-eisosome fluorescence fluctuation analysis shows that eisosomes in the same cell are not equal domains: while roughly half of them are mostly static, the other half is actively exchanging core protein subunits. PMID:25863055
Electron microscopic analysis of rotavirus assembly-replication intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu
2015-03-15
Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally,more » using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.« less
Amylin Enhances Amyloid-β Peptide Brain to Blood Efflux Across the Blood-Brain Barrier
Mohamed, Loqman A.; Zhu, Haihao; Mousa, Youssef M.; Wang, Erming; Qiu, Wei Qiao; Kaddoumi, Amal
2017-01-01
Findings from Alzheimer’s disease (AD) mouse models showed that amylin treatment improved AD pathology and enhanced amyloid-β (Aβ) brain to blood clearance; however, the mechanism was not investigated. Using the Tg2576 AD mouse model, a single intraperitoneal injection of amylin significantly increased Aβ serum levels, and the effect was abolished by AC253, an amylin receptor antagonist, suggesting that amylin effect could be mediated by its receptor. Subsequent mechanistic studies showed amylin enhanced Aβ transport across a cell-based model of the blood-brain barrier (BBB), an effect that was abolished when the amylin receptor was inhibited by two amylin antagonists and by siRNA knockdown of amylin receptor Ramp3. To explain this finding, amylin effect on Aβ transport proteins expressed at the BBB was evaluated. Findings indicated that cells treated with amylin induced LRP1 expression, a major receptor involved in brain Aβ efflux, in plasma membrane fraction, suggesting intracellular translocation of LRP1 from the cytoplasmic pool. Increased LRP1 in membrane fraction could explain, at least in part, the enhanced uptake and transport of Aβ across the BBB. Collectively, our findings indicated that amylin induced Aβ brain to blood clearance through amylin receptor by inducing LRP1 subcellular translocation to the plasma membrane of the BBB endothelium. PMID:28059785
Shotgun proteomics of Aspergillus niger microsomes upon D-xylose induction.
Ferreira de Oliveira, José Miguel P; van Passel, Mark W J; Schaap, Peter J; de Graaff, Leo H
2010-07-01
Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the d-xylose induction of cellulase and hemicellulase enzyme secretion on the protein composition of secretory organelles in Aspergillus niger. We aimed to systematically identify the components involved in the secretion of these enzymes via mass spectrometry of enriched subcellular microsomal fractions. Under each condition, fractions enriched for secretory organelles were processed for tandem mass spectrometry, resulting in the identification of peptides that originate from 1,081 proteins, 254 of which-many of them hypothetical proteins-were predicted to play direct roles in the secretory pathway. d-Xylose induction led to an increase in specific small GTPases known to be associated with polarized growth, exocytosis, and endocytosis. Moreover, the endoplasmic-reticulum-associated degradation (ERAD) components Cdc48 and all 14 of the 20S proteasomal subunits were recruited to the secretory organelles. In conclusion, induction of extracellular enzymes results in specific changes in the secretory subproteome of A. niger, and the most prominent change found in this study was the recruitment of the 20S proteasomal subunits to the secretory organelles.
Vallano, M L; Beaman-Hall, C M; Mathur, A; Chen, Q
2000-04-01
Multiple isoforms of type II Ca(2+)-calmodulin-dependent kinase (CaM KII) are composed of two major neuron-specific subunits, designated alpha and beta, and two less well-characterized subunits that are also expressed in non-neuronal tissues, designated delta and gamma. Regulated expression of these 4 gene products, and several variants produced by alternative splicing, shows temporal and regional specificity and influences intracellular targeting. We used immunoblotting and RT-PCR to analyze subunit and variant expression and distribution in cultured cerebellar astrocytes and neurons, and whole cerebellar cortex from rodent brain. The data indicate that: (i) astrocytes express a single splice variant of delta, namely delta(2); (ii) like neurons, astrocytes express two forms of CaM KII gamma; gamma(B) and gamma(A); (iii) these CaM KII variants are enriched in the supernate fraction in astrocytes, and the particulate fraction in neurons; (iv) unlike neurons, astrocytes do not express detectable levels of alpha or beta subunits or their respective splice variants. The results indicate that neurons and astrocytes express distinct CaM KII subunits and variants that localize to distinct subcellular compartments and, by inference, exert distinct cellular functions. Copyright 2000 Wiley-Liss, Inc.
Gouvêa de Barros, Bruno; Weber dos Santos, Rodrigo; Alonso, Sergio
2015-01-01
The inclusion of nonconducting media, mimicking cardiac fibrosis, in two models of cardiac tissue produces the formation of ectopic beats. The fraction of nonconducting media in comparison with the fraction of healthy myocytes and the topological distribution of cells determines the probability of ectopic beat generation. First, a detailed subcellular microscopic model that accounts for the microstructure of the cardiac tissue is constructed and employed for the numerical simulation of action potential propagation. Next, an equivalent discrete model is implemented, which permits a faster integration of the equations. This discrete model is a simplified version of the microscopic model that maintains the distribution of connections between cells. Both models produce similar results when describing action potential propagation in homogeneous tissue; however, they slightly differ in the generation of ectopic beats in heterogeneous tissue. Nevertheless, both models present the generation of reentry inside fibrotic tissues. This kind of reentry restricted to microfibrosis regions can result in the formation of ectopic pacemakers, that is, regions that will generate a series of ectopic stimulus at a fast pacing rate. In turn, such activity has been related to trigger fibrillation in the atria and in the ventricles in clinical and animal studies. PMID:26583127
Weinryb, I; Michel, I M
1975-01-01
Both histamine and tolazoline (2-benzyl-2-imidazoline) stimulated particulate fractions of adenylate cyclase from guinea pig myocardium. Tolazoline was one-tenth as potent, and about two-thirds as active at maximally effective levels, as was histamine. Enhancement of cyclase activity by tolazoline was additive with that by isoproterenol, and the histamine and tolazoline concentration-response curves were parallel, suggesting that tolazoline acted at the same site as histamine. At maximally effective concentrations, tolazoline did not affect ATPase or cyclic AMP phosphodiesterase activities associated with the cyclase preparations. The H1-receptor antagonist mepyramine, and the H2 antagonist, burimamide, blocked stimulation of cyclase by tolazoline at one-tenth the molarity of agonist. Both antagonists were less effective vs. histamine stimulation of heart cyclase in particulate fractions or whole homogenates, with mepyramine being generally more potent. It is suggested that the molecular basis of the stimulatory effect of tolazoline on cardiac tissue may be histaminergic stimulation of adenylate cyclase. Furthermore, the lack of potency of burimamide as a histamine antagonist and its lack of specificity compared to mepyramine, at the subcellular level, indicate that histamine-responsive adenylate cyclase from heart may not be a satisfactory molecular model for the H2 receptor pharmacology of histamine in cardiac tissue.
Semi-supervised protein subcellular localization.
Xu, Qian; Hu, Derek Hao; Xue, Hong; Yu, Weichuan; Yang, Qiang
2009-01-30
Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational method. The location information can indicate key functionalities of proteins. Accurate predictions of subcellular localizations of protein can aid the prediction of protein function and genome annotation, as well as the identification of drug targets. Computational methods based on machine learning, such as support vector machine approaches, have already been widely used in the prediction of protein subcellular localization. However, a major drawback of these machine learning-based approaches is that a large amount of data should be labeled in order to let the prediction system learn a classifier of good generalization ability. However, in real world cases, it is laborious, expensive and time-consuming to experimentally determine the subcellular localization of a protein and prepare instances of labeled data. In this paper, we present an approach based on a new learning framework, semi-supervised learning, which can use much fewer labeled instances to construct a high quality prediction model. We construct an initial classifier using a small set of labeled examples first, and then use unlabeled instances to refine the classifier for future predictions. Experimental results show that our methods can effectively reduce the workload for labeling data using the unlabeled data. Our method is shown to enhance the state-of-the-art prediction results of SVM classifiers by more than 10%.
SubCellProt: predicting protein subcellular localization using machine learning approaches.
Garg, Prabha; Sharma, Virag; Chaudhari, Pradeep; Roy, Nilanjan
2009-01-01
High-throughput genome sequencing projects continue to churn out enormous amounts of raw sequence data. However, most of this raw sequence data is unannotated and, hence, not very useful. Among the various approaches to decipher the function of a protein, one is to determine its localization. Experimental approaches for proteome annotation including determination of a protein's subcellular localizations are very costly and labor intensive. Besides the available experimental methods, in silico methods present alternative approaches to accomplish this task. Here, we present two machine learning approaches for prediction of the subcellular localization of a protein from the primary sequence information. Two machine learning algorithms, k Nearest Neighbor (k-NN) and Probabilistic Neural Network (PNN) were used to classify an unknown protein into one of the 11 subcellular localizations. The final prediction is made on the basis of a consensus of the predictions made by two algorithms and a probability is assigned to it. The results indicate that the primary sequence derived features like amino acid composition, sequence order and physicochemical properties can be used to assign subcellular localization with a fair degree of accuracy. Moreover, with the enhanced accuracy of our approach and the definition of a prediction domain, this method can be used for proteome annotation in a high throughput manner. SubCellProt is available at www.databases.niper.ac.in/SubCellProt.
Long, Yujiao; Ni, Jinren; Wang, Zuhui
2015-11-01
Although the identification of effective oxidant species has been extensively studied, yet the subcellular mechanism of bacterial inactivation has never been clearly elucidated in electrochemical disinfection processes. In this study, subcellular mechanism of Escherichia coli inactivation during electrochemical disinfection was revealed in terms of comprehensive factors such as cell morphology, total organic components, K(+) leakage, membrane permeability, lipid peroxidation, membrane potential, membrane proteins, intracellular enzyme, cellular ATP level and DNA. The electrolysis was conducted with boron-doped diamond anode in three electrolytes including chloride, sulfate and phosphate. Results demonstrated that cell inactivation was mainly attributed to damage to the intracellular enzymatic systems in chloride solution. In sulfate solution, certain essential membrane proteins like the K(+) ion transport systems were eliminated. Thus, the pronounced K(+) leakage from cytosol resulted in gradual collapse of the membrane potential, which would hinder the subcellular localization of cell division-related proteins as well as ATP synthesis and thereby lead to the bacterial inactivation. Remarkable lipid peroxidation was observed, while the intracellular damage was negligible. In phosphate solution, the cells sequentially underwent overall destruction as a whole cell with no captured intermediate state, during which the organic components of the cells were mostly subjected to mineralization. This study provided a thorough insight into the bacterial inactivation mechanism on the subcellular level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Huang, Hsiao-Yun; Hopper, Anita K.
2014-01-01
The importin-β family members (karyopherins) mediate the majority of nucleocytoplasmic transport. Msn5 and Los1, members of the importin-β family, function in tRNA nuclear export. tRNAs move bidirectionally between the nucleus and the cytoplasm. Nuclear tRNA accumulation occurs upon amino acid (aa) or glucose deprivation. To understand the mechanisms regulating tRNA subcellular trafficking, we investigated whether Msn5 and Los1 are regulated in response to nutrient availability. We provide evidence that tRNA subcellular trafficking is regulated by distinct aa-sensitive and glucose-sensitive mechanisms. Subcellular distributions of Msn5 and Los1 are altered upon glucose deprivation but not aa deprivation. Redistribution of tRNA exportins from the nucleus to the cytoplasm likely provides one mechanism for tRNA nuclear distribution upon glucose deprivation. We extended our studies to other members of the importin-β family and found that all tested karyopherins invert their subcellular distributions upon glucose deprivation but not aa deprivation. Glucose availability regulates the subcellular distributions of karyopherins likely due to alteration of the RanGTP gradient since glucose deprivation causes redistribution of Ran. Thus nuclear–cytoplasmic distribution of macromolecules is likely generally altered upon glucose deprivation due to collapse of the RanGTP gradient and redistribution of karyopherins between the nucleus and the cytoplasm. PMID:25057022
Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.
Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing
2018-01-25
The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.
NASA Astrophysics Data System (ADS)
Malik, Zvi; Dishi, M.
1995-05-01
The subcellular localization of endogenous protoporphyrin (endo- PP) during photosensitization in B-16 melanoma cells was analyzed by a novel spectral imaging system, the SpectraCube 1000. The melanoma cells were incubated with 5-aminolevulinic acid (ALA), and then the fluorescence of endo-PP was recorded in individual living cells by three modes: conventional fluorescence imaging, multipixel point by point fluorescence spectroscopy, and image processing, by operating a function of spectral similarity mapping and reconstructing new images derived from spectral information. The fluorescence image of ALA-treated cells revealed vesicular distribution of endo-PP all over the cytosol, with mitochondrial, lysosomal, as well as endoplasmic reticulum cisternael accumulation. Two main spectral fluorescence peaks were demonstrated at 635 and 705 nm, with intensities that differed from one subcellular site to another. Photoirradiation of the cells included point-specific subcellular fluorescence spectrum changes and demonstrated photoproduct formation. Spectral image reconstruction revealed the local distribution of a chosen spectrum in the photosensitized cells. On the other hand, B 16 cells treated with exogenous protoporphyrin (exo-PP) showed a dominant fluorescence peak at 670 nm and a minor peak at 630 nm. Fluorescence was localized at a perinuclear=Golgi region. Light exposure induced photobleaching and photoproduct-spectral changes followed by relocalization. The new localization at subcellular compartments showed pH dependent spectral shifts and photoproduct formation on a subcellular level.
USDA-ARS?s Scientific Manuscript database
The architecture of plant metabolism includes substantial duplication of metabolite pools and enzyme catalyzed reactions in different subcellular compartments. This poses considerable challenges for understanding the regulation of metabolism particularly in primary metabolism and amino acid biosynth...
Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.
Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki
2015-11-01
Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.
Serafim, Angela; Bebianno, Maria João
2007-05-01
The aim of the present study was to determine the response of metallothionein (MT) during Cd accumulation and elimination in different tissues of the estuarine bivalve Ruditapes decussatus exposed to two nominal Cd concentrations (4 and 40 microg/L) for 40 d, followed by a depuration period of 50 d. Cadmium was accumulated in all tissues of R. decussatus at both exposure concentrations, and the accumulation was tissue dependent. Use of the kinetic model showed that in the gills and remaining tissues, Cd was assimilated faster at the beginning of the exposure and decreased with time, possibly limited by the diffusion rate of this metal within the cell. In the digestive gland, however, the Cd was continuously accumulated. This could reflect that the Cd uptake rate is considerably higher than the loss rate and, therefore, that this tissue has a higher capacity to accumulate Cd compared to the other two tissues. Moreover, the application of this kinetic model in the different subcellular fractions showed that the bioconcentration factor was significantly higher in the low-molecular-weight fraction (where MT is found), suggesting that this fraction binds Cd faster, with a high uptake rate (K(u) = 32/d), and eliminates this metal more slowly (K(1) = 0.005/d). During the depuration phase, MT decreased simultaneously with Cd elimination in all tissues, although with a shorter half-life. In conclusion, the MT response prevented Cd in the tissues of R. decussatus from interfering in the normal clam metabolism; therefore, MT acts as a detoxification mechanism of Cd.
Cobos, Enrique J; del Pozo, Esperanza; Baeyens, José M
2007-08-01
We evaluated the effect of haloperidol (HP) and its metabolites on [(3)H](+)-pentazocine binding to sigma(1) receptors in SH-SY5Y human neuroblastoma cells and guinea pig brain P(1), P(2) and P(3) subcellular fractions. Three days after a single i.p. injection in guinea pigs of HP (but not of other sigma(1) antagonists or (-)-sulpiride), [(3)H](+)-pentazocine binding to brain membranes was markedly decreased. Recovery of sigma(1) receptor density to steady state after HP-induced inactivation required more than 30 days. HP-metabolite II (reduced HP, 4-(4-chlorophenyl)-alpha-(4-fluorophenyl)-4-hydroxy-1-piperidinebutanol), but not HP-metabolite I (4-(4-chlorophenyl)-4-hydroxypiperidine), irreversibly blocked sigma(1) receptors in guinea pig brain homogenate and P(2) fraction in vitro. We found similar results in SH-SY5Y cells, which suggests that this process may also take place in humans. HP irreversibly inactivated sigma(1) receptors when it was incubated with brain homogenate and SH-SY5Y cells, but not when incubated with P(2) fraction membranes, which suggests that HP is metabolized to inactivate sigma(1) receptors. Menadione, an inhibitor of the ketone reductase activity that leads to the production of HP-metabolite II, completely prevented HP-induced inactivation of sigma(1) receptors in brain homogenates. These results suggest that HP may irreversibly inactivate sigma(1) receptors in guinea pig and human cells, probably after metabolism to reduced HP.
A novel methodology to investigate isotopic biosignatures
NASA Astrophysics Data System (ADS)
Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.
2012-04-01
An enduring goal of trace metal isotopic studies of Earth History is to find isotopic 'fingerprints' of life or of life's individual physiochemical processes. Generally, such signatures are sought by relating an isotopic effect observed in controlled laboratory conditions or a well-characterized environment to a more complex system or the geological record. However, such an approach is ultimately limited because life exerts numerous isotopic fractionations on any one element so it is hard to dissect the resultant net fractionation into its individual components. Further, different organisms, often with the same apparent cellular function, can express different isotopic fractionation factors. We have used a novel method to investigate the isotopic fractionation associated with a single physiological process-enzyme specific isotopic fractionation. We selected Cd isotopes since only one biological use of Cd is known, CdCA (a Cd/Zn carbonic anhydrase from the coastal diatom T. Weissflogii). Thus, our investigation can also inform the long standing mystery as to why this generally toxic element appears to have a nutrient-like dissolved isotopic and concentration profile in the oceans. We used the pET-15b plasmid to insert the CdCA gene into the E. coli genome. There is no known biochemical function for Cd in E. coli, making it an ideal vector for studying distinct physiological processes within a single organism. The uptake of Cd and associated isotopic fractionation was determined for both normal cells and those expressing CdCA. It was found that whole cells always exhibited a preference for the light isotopes of Cd, regardless of the expression of CdCA; adsorption of Cd to cell surfaces was not seen to cause isotopic fractionation. However, the cleaning procedure employed exerted a strong control on the observed isotopic composition of cells. Using existing protein purification techniques, we measured the Cd isotopic composition of different subcellular fractions of E. coli (e.g. membranes, cytosol, etc.), including the catalytic metal atoms within CdCA. These experiments allow isotopic exchange reactions to be observed in biological systems at an unparalleled resolution, demonstrating that isotopic fractionation can occur, in vivo, on length scales as small as a few Å. We will explore future applications of this technique using the marine geochemistry of Cd as a case study. This experimental approach has great promise for studying the individual isotopic biosignatures of other biochemical reactions, in particular those which may have been active during early Earth History.
Hyslop, P A; Kuhn, C E; Sauerheber, R D
1985-01-01
We examined the effects of the membrane-impermeant amino-group-modifying agent fluorescein isothiocyanate (FITC) on the basal and insulin-stimulated hexose-transport activity of isolated rat adipocytes. Pre-treatment of cells with FITC causes irreversible inhibition of transport measured in subsequently washed cells. Transport activity was inhibited by approx. 50% with 2 mM-FITC in 8 min. The cells respond to insulin, after FITC treatment and removal, and the fold increase in transport above the basal value caused by maximal concentrations of insulin was independent of the concentration of FITC used for pre-treatment over the range 0-2 mM, where basal activity was progressively inhibited. The ability of FITC to modify selectively hexose transporters accessible only to the external milieu was evaluated by two methods. (1) Free intracellular FITC, and the distribution of FITC bound to cellular components, were assessed after dialysis of the homogenate and subcellular fractionation on sucrose gradients by direct spectroscopic measurement of fluorescein. Most (98%) of the FITC was associated with the non-diffusible fractions. Equilibrium sucrose-density-gradient centrifugation of the homogenate demonstrated that the subcellular distribution of the bound FITC correlated with the density distribution of a plasma-membrane marker, but not markers for Golgi, endoplasmic reticulum, mitochondria or protein. Exposing the cellular homogenate, rather than the intact cell preparation, to 2 mM-FITC resulted in a 4-5-fold increase in total bound FITC, and the density-distribution profile more closely resembled the distribution of total protein. (2) Incubation of hexokinase preparations with FITC rapidly and irreversibly inactivates this protein. However, both intracellular hexokinase total activity and its apparent Michaelis constant for glucose were unaffected in FITC-treated intact cells. Further control experiments demonstrated that FITC pre-treatment of cells had no effect on the intracellular ATP concentration or the dose-response curve of insulin stimulation of hexose transport. Since the fold increase of hexose transport induced by insulin is constant over the range of inhibition of surface-labelled hexose transporters, we suggest that insulin-induced insertion of additional transporters into the plasma membrane may not be the major locus of acceleration of hexose transport by the hormone. PMID:3910027
Roberts, Simon C.; Macaulay, Laura J.; Stapleton, Heather M.
2012-01-01
Due to the phaseout of polybrominated diphenyl ether (PBDE) flame retardants, new chemicals, such as 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH), have been used as replacements in some commercial flame retardant mixtures. Both chemicals have been detected in indoor dust at concentrations approaching the concentrations of PBDEs; however, little is known about their fate, metabolism, or toxicity. The goal of this study was to investigate the potential metabolism of these two brominated flame retardants in human and rat tissues by conducting in vitro experiments with liver and intestinal subcellular fractions. In all the experiments, TBB was consistently metabolized to 2,3,4,5-tetrabromobenzoic acid (TBBA) via cleavage of the 2-ethylhexyl chain without requiring any added cofactors. TBBA was also formed in purified porcine carboxylesterase, but at a much faster rate of 6.29 ± 0.58 nmol min-1 mg protein-1. The estimated Km and Vmax values for TBB metabolism in human microsomes were 11.1 ± 3.9 μM and 0.644 ± 0.144 nmol min-1 mg protein-1, respectively. A similar Km of 9.3 ± 2.2 μM was calculated for porcine carboxylesterase, indicating similar enzyme specificity. While the rapid formation of TBBA may reduce the bioaccumulation potential of TBB in mammals and may be useful as a biomarker of TBB exposure, the toxicity of this brominated benzoic acid is unknown and may be a concern based on its structural similarity to other toxic pollutants. In contrast to TBB, no metabolites of TBPH were detected in human or rat subcellular fractions. However, a metabolic product of TBPH, mono(2-ethylhexyl) tetrabromophthalate (TBMEHP), was formed in purified porcine carboxylesterase at an approximate rate of 1.08 pmol min-1 mg protein-1. No Phase II metabolites of TBBA or TBMEHP were observed. More research is needed to understand the in vivo toxicokinetics and health effects of these compounds given their current ubiquitous presence in most US households and the resulting probability of chronic exposure, particularly to young children. PMID:22575079
Tsakiridis, T; Wong, P P; Liu, Z; Rodgers, C D; Vranic, M; Klip, A
1996-02-01
Muscle fibers adapt to ionic challenges of exercise by increasing the plasma membrane Na+-K+ pump activity. Chronic exercise training has been shown to increase the total amount of Na+-K+ pumps present in skeletal muscle. However, the mechanism of adaptation of the Na+-K+ pump to an acute bout of exercise has not been determined, and it is not known whether it involves alterations in the content of plasma membrane pump subunits. Here we examine the effect of 1 h of treadmill running (20 m/min, 10% grade) on the subcellular distribution and expression of Na+-K+ pump subunits in rat skeletal muscles. Red type I and IIa (red-I/IIa) and white type IIa and IIb (white-IIa/IIb) hindlimb muscles from resting and exercised female Sprague-Dawley rats were removed for subcellular fractionation. By homogenization and gradient centrifugation, crude membranes and purified plasma membranes were isolated and subjected to gel electrophoresis and immunoblotting by using pump subunit-specific antibodies. Furthermore, mRNA was isolated from specific red type I (red-I) and white type IIb (white-IIb) muscles and subjected to Northern blotting by using subunit-specific probes. In both red-I/IIa and white-IIa/IIb muscles, exercise significantly raised the plasma membrane content of the alpha1-subunit of the pump by 64 +/- 24 and 55 +/- 22%, respectively (P < 0.05), and elevated the alpha2-polypeptide by 43 +/- 22 and 94 +/- 39%, respectively (P < 0.05). No significant effect of exercise could be detected on the amount of these subunits in an internal membrane fraction or in total membranes. In addition, exercise significantly increased the alpha1-subunit mRNA in red-I muscle (by 50 +/- 7%; P < 0.05) and the beta2-subunit mRNA in white-IIb muscles (by 64 +/- 19%; P < 0.01), but the alpha2- and beta1-mRNA levels were unaffected in this time period. We conclude that increased presence of alpha1- and alpha2-polypeptides at the plasma membrane and subsequent elevation of the alpha1- and beta2-subunit mRNAs may be mechanisms by which acute exercise regulates the Na+-K+ pump of skeletal muscle.
Quintá, HR; Galigniana, MD
2012-01-01
BACKGROUND AND PURPOSE The immunosuppressive macrolide FK506 (tacrolimus) shows neuroregenerative action by a mechanism that appears to involve the Hsp90-binding immunophilin FKBP52. This study analyses some aspects of the early steps of neuronal differentiation and neuroregeneration. EXPERIMENTAL APPROACH Undifferentiated murine neuroblastoma cells and hippocampal neurones isolated from embryonic day-17 rat embryos were induced to differentiate with FK506. Subcellular relocalization of FKBP52, Hsp90 and its co-chaperone p23 was analysed by indirect immunofluorescence confocal microscopy and by Western blots of axonal fractions isolated from cells grown on a porous transwell cell culture chamber. Neuroregeneration was evaluated using a scratch-wound assay. KEY RESULTS In undifferentiated cells, FKBP52, Hsp90 and p23 are located in the cell nucleus, forming an annular structure that disassembles when the differentiation process is triggered by FK506. This was observed in the N2a cell line and in hippocampal neurones. More importantly, the annular structure of chaperones is reassembled after damaging the neurones, whereas FK506 prompts their rapid regeneration, a process linked to the subcellular redistribution of the heterocomplex. CONCLUSIONS AND IMPLICATIONS There is a direct relationship between the disassembly of the chaperone complex and the progression of neuronal differentiation upon stimulation with the immunophilin ligand FK506. Both neuronal differentiation and neuroregeneration appear to be mechanistically linked, so the elucidation of one mechanism may lead to unravel the properties of the other. This study also implies that the discovery of FK506 derivatives, devoid of immunosuppressive action, would be therapeutically significant for neurotrophic use. PMID:22091865
Wang, Di; Yuan, Zhenfang; Inoue, Noriko; Cho, Gota; Shono, Masayuki; Ishikawa, Yasuko
2011-05-01
The mechanisms underlying diabetic xerostomia have not been clarified in relation with aquaporin-5 (AQP5) subcellular localization in salivary glands. Western blotting, real-time PCR, and immunocytochemistry were used to analyse AQP5 protein levels and mRNA expression. AQP5 protein levels were measured in the apical plasma membrane (APM) and detergent-insoluble fraction prepared from streptozotocin-diabetic rat parotid glands. Despite an increase in AQP5 mRNA, AQP5 protein levels were decreased in diabetic parotid glands compared with controls. Immunohistochemical studies indicated that AQP5, under unstimulated conditions, colocalised with flotillin-2 and GM1 with a diffuse pattern in the apical cytoplasm of acinar and duct cells in both control and diabetic rats. Ten minutes after intravenous injection of muscarinic agonist cevimeline, AQP5 was dramatically increased together with flotillin-2 and GM1 in the APM of parotid acinar and duct cells of control but not diabetic rats. Sixty minutes after injection, AQP5 was located in a diffuse pattern in the apical cytoplasm in both rats. Treatment of the parotid tissues with cevimeline for 10min increased the Triton X-100 solubility of AQP5 in control but not diabetic rats. Administration of insulin to diabetic rats tended to restore the cevimeline-induced translocation of AQP5. Lack of AQP5 translocation in the salivary gland in response to a muscarinic agonist and downregulation of AQP5 protein might lead to diabetic xerostomia. Cevimeline is useful to cure diabetic xerostomia under insulin administration. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J
1999-11-01
To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.
In vivo imaging of microscopic structures in the rat retina
Geng, Ying; Greenberg, Kenneth P.; Wolfe, Robert; Gray, Daniel C.; Hunter, Jennifer J.; Dubra, Alfredo; Flannery, John G.; Williams, David R.; Porter, Jason
2010-01-01
Purpose The ability to resolve single retinal cells in rodents in vivo has applications in rodent models of the visual system and retinal disease. We have characterized the performance of a fluorescence adaptive optics scanning laser ophthalmoscope (fAOSLO) that provides cellular and subcellular imaging of rat retina in vivo. Methods Green fluorescent protein (eGFP) was expressed in retinal ganglion cells of normal Sprague Dawley rats via intravitreal injections of adeno-associated viral vectors. Simultaneous reflectance and fluorescence retinal images were acquired using the fAOSLO. fAOSLO resolution was characterized by comparing in vivo images with subsequent imaging of retinal sections from the same eyes using confocal microscopy. Results Retinal capillaries and eGFP-labeled ganglion cell bodies, dendrites, and axons were clearly resolved in vivo with adaptive optics (AO). AO correction reduced the total root mean square wavefront error, on average, from 0.30 μm to 0.05 μm (1.7-mm pupil). The full width at half maximum (FWHM) of the average in vivo line-spread function (LSF) was ∼1.84 μm, approximately 82% greater than the FWHM of the diffraction-limited LSF. Conclusions With perfect aberration compensation, the in vivo resolution in the rat eye could be ∼2× greater than that in the human eye due to its large numerical aperture (∼0.43). While the fAOSLO corrects a substantial fraction of the rat eye's aberrations, direct measurements of retinal image quality reveal some blur beyond that expected from diffraction. Nonetheless, subcellular features can be resolved, offering promise for using AO to investigate the rodent eye in vivo with high resolution. PMID:19578019
Cao, Ruiwen; Liu, Yongliang; Wang, Qing; Dong, Zhijun; Yang, Dinglong; Liu, Hui; Ran, Wen; Qu, Yi; Zhao, Jianmin
2018-06-17
Mounting evidence has demonstrated the combined effects of ocean acidification (OA) and other environmental stressors on marine organisms. Although metal pollution is widely distributed in coasts and estuaries, the combined effects of OA and metal pollution have received little attention until recent years. In this study, the accumulation and subcellular distribution of cadmium (Cd) and the physiological responses of the oyster Crassostrea gigas were investigated after 31 days of exposure to OA and Cd, either alone or in combination. Increased Cd accumulation was found both in gills (about 57% increase at pH 7.8, 22% increase at pH 7.6) and digestive glands (about 38% increase at pH 7.8, 22% increase at pH 7.6) of C. gigas under elevated pCO 2 exposure. Although a similar total Cd accumulation pattern was seen in oyster gills and digestive glands, a higher partition of Cd in the BIM (biologically inactive metal) fractions of gills (about 60%) was found in Cd-exposed treatments compared to the digestive glands (about 45%), which might correspond to the generally lower toxicity in gills. Moreover, synergetic effects of Cd and OA on the oxidative stresses, histopathological damage, and apoptosis of exposed oysters were observed in this study, which might be explained by significant interactions of these two factors on increased generation of ROS. These findings demonstrated that OA could aggravate the toxicity of metals in marine organisms, with significant implications for coastal benthic ecosystems regarding the widespread metal contamination and the concurrent increase of acidified seawater. Copyright © 2018 Elsevier B.V. All rights reserved.
Changes in biochemical processes in cerebellar granule cells of mice exposed to methylmercury.
Bellum, Sairam; Bawa, Bhupinder; Thuett, Kerry A; Stoica, Gheorghe; Abbott, Louise C
2007-01-01
At postnatal day 34, male and female C57BL/6J mice were exposed orally once a day to a total of five doses totaling 1.0 or 5.0 mg/kg of methylmercuric chloride or sterile deionized water in moistened rodent chow. Eleven days after the last dose cerebellar granule cells were acutely isolated to measure reactive oxygen species (ROS) levels and mitochondrial membrane potential using CM-H(2)DCFDA and TMRM dyes, respectively. For visualizing intracellular calcium ion distribution using transmission electron microscopy, mice were perfused 11 days after the last dose of methylmercury (MeHg) using the oxalate-pyroantimonate method. Cytosolic and mitochondrial protein fractions from acutely isolated granule cells were analyzed for cytochrome c content using Western blot analysis. Histochemistry (Fluoro-Jade dye) and immunohistochemistry (activated caspase 3) was performed on frozen serial cerebellar sections to label granule cell death and activation of caspase 3, respectively. Granule cells isolated from MeHg-treated mice showed elevated ROS levels and decreased mitochondrial membrane potential when compared to granule cells from control mice. Electron photomicrographs of MeHg-treated granule cells showed altered intracellular calcium ion homeostasis ([Ca(2+)](i)) when compared to control granule cells. However, in spite of these subcellular changes and moderate relocalization of cytochrome c into the cytosol, the concentrations of MeHg used in this study did not produce significant neuronal cell death/apoptosis at the time point examined, as evidenced by Fluoro-Jade and activated caspase 3 immunostaining, respectively. These results demonstrate that short-term in vivo exposure to total doses of 1.0 and 5.0 mg/kg MeHg through the most common exposure route (oral) can result in significant subcellular changes that are not accompanied by overt neuronal cell death.
SASH1, a new potential link between smoking and atherosclerosis.
Weidmann, Henri; Touat-Hamici, Zahia; Durand, Herve; Mueller, Christian; Chardonnet, Solenne; Pionneau, Cedric; Charlotte, Frédéric; Janssen, Klaus-Peter; Verdugo, Ricardo; Cambien, Francois; Blankenberg, Stefan; Tiret, Laurence; Zeller, Tanja; Ninio, Ewa
2015-10-01
We have previously reported that SASH1 expression is increased in circulating human monocytes from smokers and was positively correlated with the number of carotid atherosclerotic plaques. The aim of this study was to further validate the link between smoking, SASH1 and atherosclerosis within the vascular wall and to assess the impact of SASH1 expression on endothelial cell functions. Human carotids with atherosclerotic plaques were obtained from 58 patients (45 of them with known smoking status: smoker, non-smoker, ex-smokers), and were processed for gene expression analyses and immunostaining. To investigate its function, SASH1 was silenced in human aortic endothelial cells (HAECs) using two different siRNA and subcellular localization of SASH1 was determined by immunostaining and subcellular fractionation. Subsequently the transcriptomic analyses and functional experiments (wound healing, WST-1 proliferation or Matrigel assays) were performed to characterize SASH1 function. SASH1 was expressed in human vascular cells (HAECs, smooth muscle cells) and in monocytes/macrophages. Its tissue expression was significantly higher in the atherosclerotic carotids of smokers compared to non-smokers (p < 0.01). In HAECs, SASH1 was expressed mostly in the cytoplasm and SASH1 knockdown resulted in an increased cell migration, proliferation and angiogenesis. Transcriptomic and pathway analyses showed that SASH1 silencing results in a decreased CYP1A1 expression possibly through the inhibition of TP53 activity. We showed that SASH1 expression is increased in atherosclerotic carotids in smokers and its silencing affects endothelial angiogenic functions; therefore we provide a potential link between smoking and atherosclerosis through SASH1 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.
2013-01-01
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097
Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula
2014-01-01
Aims Phenformin, resveratrol and AICAR stimulate the energy sensor 5′-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Methods Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. Results AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. Conclusions AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents, nucleolin represents a potential biomarker for the development of drugs that diminish diabetic renal hypertrophy. PMID:24498249
Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula
2014-01-01
Phenformin, resveratrol and AICAR stimulate the energy sensor 5'-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents, nucleolin represents a potential biomarker for the development of drugs that diminish diabetic renal hypertrophy.
The neuregulin receptor ErbB-4 interacts with PDZ-containing proteins at neuronal synapses
Garcia, Rolando A. G.; Vasudevan, Kuzhalini; Buonanno, Andres
2000-01-01
Neuregulins regulate the expression of ligand- and voltage-gated channels in neurons and skeletal muscle by the activation of their cognate tyrosine kinase receptors, ErbB 1–4. The subcellular distribution and mechanisms that regulate the localization of ErbB receptors are unknown. We have found that ErbB receptors are present in brain subcellular fractions enriched for postsynaptic densities (PSD). The ErbB-4 receptor is unique among the ErbB proteins because its C-terminal tail (T-V-V) conforms to a sequence that binds to a protein motif known as the PDZ domain. Using the yeast two-hybrid system, we found that the C-terminal region of ErbB-4 interacts with the three related membrane-associated guanylate kinases (MAGUKs) PSD-95/SAP90, PSD-93/chapsyn-110, and SAP 102, which harbor three PDZ domains, as well as with β2-syntrophin, which has a single PDZ domain. As with N-methyl-d-aspartate (NMDA) receptors, ErbB4 interacts with the first two PDZ domains of PSD-95. Using coimmunoprecipitation assays, we confirmed the direct interactions between ErbB-4 and PSD-95 in transfected heterologous cells, as well as in vivo, where both proteins are coimmunoprecipitated from brain lysates. Moreover, evidence for colocalization of these proteins was also observed by immunofluorescence in cultured hippocampal neurons. ErbB-4 colocalizes with PSD-95 and NMDA receptors at a subset of excitatory synapses apposed to synaptophysin-positive presynaptic terminals. The capacity of ErbB receptors to interact with PDZ-domain proteins at cell junctions is conserved from invertebrates to mammals. As discussed, the interactions found between receptor tyrosine kinases and MAGUKs at neuronal synapses may have important implications for activity-dependent plasticity. PMID:10725395
Gemmink, Anne; Bosma, Madeleen; Kuijpers, Helma J H; Hoeks, Joris; Schaart, Gert; van Zandvoort, Marc A M J; Schrauwen, Patrick; Hesselink, Matthijs K C
2016-05-01
In contrast to insulin-resistant individuals, insulin-sensitive athletes possess high intramyocellular lipid content (IMCL), good mitochondrial function and high perilipin 5 (PLIN5) levels, suggesting a role for PLIN5 in benign IMCL storage. We hypothesised a role for PLIN5 in modulating fasting-mediated insulin resistance. Twelve men were fasted for 60 h, before and after which muscle biopsies were taken and stained for lipid droplets (LDs), PLIN5 and laminin. Confocal microscopy images were analysed for LD size, number, PLIN5 association and subcellular distribution. Fasting elevated IMCL content 2.8-fold and reduced insulin sensitivity (by 55%). Individuals with the most prominent increase in IMCL showed the least reduction in insulin sensitivity (r = 0.657; p = 0.028) and mitochondrial function (r = 0.896; p = 0.006). During fasting, PLIN5 gene expression or PLIN5 protein content in muscle homogenates was unaffected, microscopy analyses revealed that the fraction of PLIN5 associated with LDs (PLIN5+) increased significantly (+26%) upon fasting, suggesting PLIN5 redistribution. The significant increase in LD number (+23%) and size (+23%) upon fasting was entirely accounted for by PLIN5+ LDs, not by LDs devoid of PLIN5. Also the association between IMCL storage capacity and insulin resistance and mitochondrial dysfunction was only apparent for PLIN5+ LDs. Fasting results in subcellular redistribution of PLIN5 and promotes the capacity to store excess fat in larger and more numerous PLIN5-decorated LDs. This associates with blunting of fasting-induced insulin resistance and mitochondrial dysfunction, suggesting a role for PLIN5 in the modulation of fasting-mediated lipotoxicity. trialregister.nl NTR 2042.
Huang, Youhua; Huang, Xiaohong; Zhang, Jing; Gui, Jianfang; Zhang, Qiya
2007-01-01
G protein-coupled receptors (GPCRs) constitute a large superfamily involved in various types of signal transduction pathways, and play an important role in coordinating the activation and migration of leukocytes to sites of infection and inflammation. Viral GPCRs, on the other hand, can help the virus to escape from host immune surveillance and contribute to viral pathogenesis. Lymphocystis disease virus isolated in China (LCDV-C) contains a putative homolog of cellular GPCRs, LCDV-C GPCR. In this paper, LCDV-C GPCR was cloned, and the subcellular localization and characterization of GPCR protein were investigated in fish cells. LCDV-C GPCR encoded a 325 amino acid peptide, containing a typical seven-transmembrane domain characteristic of the chemokine receptors and a conserved DRY motif that is usually essential for receptor activation. Transient transfection of GPCR-EGFP in fathead minnow (FHM) cells and epithelioma papulosum cyprini (EPC) cells indicated that LCDV-C GPCR was expressed abundantly in both the cytoplasm and nucleoplasm. Transient overexpression of GPCR in these two cells cannot induce obvious apoptosis. FHM cells stably expressing GPCR showed enhanced cell proliferation and significant anchorage-independent growth. The effects of GPCR protein on external apoptotic stimuli were examined. Few apoptotic bodies were observed in cells expressing GPCR treated with actinomycin D (ActD). Quantitative analysis of apoptotic cells indicated that a considerable decrease in the apoptotic fraction of cells expressing GPCR, compared with the control cells, was detected after exposure to ActD and cycloheximide. These data suggest that LCDV-C GPCR may inhibit apoptosis as part of its potential mechanism in mediating cellular transformation.
The Roles of APOBEC3G Complexes in the Incorporation of APOBEC3G into HIV-1
Zhang, Quan; Liu, Zhenlong; Jia, Pingping; Zhou, Jinming; Guo, Fei; You, Xuefu; Yu, Liyan; Zhao, Lixun; Jiang, Jiandong; Cen, Shan
2013-01-01
Background The incorporation of human APOBEC3G (hA3G) into HIV is required for exerting its antiviral activity, therefore the mechanism underlying hA3G virion encapsidation has been investigated extensively. hA3G was shown to form low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. The function of different forms of hA3G in its viral incorporation remains unclear. Methodology/Principal Findings In this study, we investigated the subcellular distribution and lipid raft association of hA3G using subcellular fractionation, membrane floatation assay and pulse-chase radiolabeling experiments respectively, and studied the correlation between the ability of hA3G to form the different complex and its viral incorporation. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation. Conclusions/Significance Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G. PMID:24098356
Qiu, Jian-Ding; Luo, San-Hua; Huang, Jian-Hua; Sun, Xing-Yu; Liang, Ru-Ping
2010-04-01
Apoptosis proteins have a central role in the development and homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. As a result of genome and other sequencing projects, the gap between the number of known apoptosis protein sequences and the number of known apoptosis protein structures is widening rapidly. Because of this extremely unbalanced state, it would be worthwhile to develop a fast and reliable method to identify their subcellular locations so as to gain better insight into their biological functions. In view of this, a new method, in which the support vector machine combines with discrete wavelet transform, has been developed to predict the subcellular location of apoptosis proteins. The results obtained by the jackknife test were quite promising, and indicated that the proposed method can remarkably improve the prediction accuracy of subcellular locations, and might also become a useful high-throughput tool in characterizing other attributes of proteins, such as enzyme class, membrane protein type, and nuclear receptor subfamily according to their sequences.
Sapountzi, Vasileia; Logan, Ian R; Nelson, Glyn; Cook, Susan; Robson, Craig N
2008-01-01
Tat-interactive protein 60 kDa is a nuclear acetyltransferase that both coactivates and corepresses transcription factors and has a definitive function in the DNA damage response. Here, we provide evidence that Tat-interactive protein 60 kDa is phosphorylated by protein kinase C epsilon. In vitro, protein kinase C epsilon phosphorylates Tat-interactive protein 60 kDa on at least two sites within the acetyltransferase domain. In whole cells, activation of protein kinase C increases the levels of phosphorylated Tat-interactive protein 60 kDa and the interaction of Tat-interactive protein 60 kDa with protein kinase C epsilon. A phosphomimetic mutant Tat-interactive protein 60 kDa has distinct subcellular localisation compared to the wild-type protein in whole cells. Taken together, these findings suggest that the protein kinase C epsilon phosphorylation sites on Tat-interactive protein 60 kDa are important for its subcellular localisation. Regulation of the subcellular localisation of Tat-interactive protein 60 kDa via phosphorylation provides a novel means of controlling Tat-interactive protein 60 kDa function.
Prediction of protein subcellular localization by weighted gene ontology terms.
Chi, Sang-Mun
2010-08-27
We develop a new weighting approach of gene ontology (GO) terms for predicting protein subcellular localization. The weights of individual GO terms, corresponding to their contribution to the prediction algorithm, are determined by the term-weighting methods used in text categorization. We evaluate several term-weighting methods, which are based on inverse document frequency, information gain, gain ratio, odds ratio, and chi-square and its variants. Additionally, we propose a new term-weighting method based on the logarithmic transformation of chi-square. The proposed term-weighting method performs better than other term-weighting methods, and also outperforms state-of-the-art subcellular prediction methods. Our proposed method achieves 98.1%, 99.3%, 98.1%, 98.1%, and 95.9% overall accuracies for the animal BaCelLo independent dataset (IDS), fungal BaCelLo IDS, animal Höglund IDS, fungal Höglund IDS, and PLOC dataset, respectively. Furthermore, the close correlation between high-weighted GO terms and subcellular localizations suggests that our proposed method appropriately weights GO terms according to their relevance to the localizations. Copyright 2010 Elsevier Inc. All rights reserved.
Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F
2014-03-01
Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires <1 min and <5 min for 2D and 3D images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.
Smartphone-based imaging of the corneal endothelium at sub-cellular resolution
NASA Astrophysics Data System (ADS)
Toslak, Devrim; Thapa, Damber; Erol, Muhammet Kazim; Chen, Yanjun; Yao, Xincheng
2017-07-01
This aim of this study was to test the feasibility of smartphone-based specular microscopy of the corneal endothelium at a sub-cellular resolution. Quantitative examination of endothelial cells is essential for evaluating corneal disease such as determining a diagnosis, monitoring progression and assessing treatment. Smartphone-based technology promises a new opportunity to develop affordable devices to foster quantitative examination of endothelial cells in rural and underserved areas. In our study, we incorporated an iPhone 6 and a slit lamp to demonstrate the feasibility of smartphone-based microscopy of the corneal endothelium at a sub-cellular resolution. The sub-cellular resolution images allowed quantitative calculation of the endothelial cell density. Comparative measurements revealed a normal endothelial cell density of 2978 cells/mm2 in the healthy cornea, and a significantly reduced cell density of 1466 cells/mm2 in the diseased cornea with Fuchs' dystrophy. Our ultimate goal is to develop a smartphone-based telemedicine device for low-cost examination of the corneal endothelium, which can benefit patients in rural areas and underdeveloped countries to reduce health care disparities.
Thapa, Dharendra; Shepherd, Danielle L.
2014-01-01
Cardiac tissue contains discrete pools of mitochondria that are characterized by their subcellular spatial arrangement. Subsarcolemmal mitochondria (SSM) exist below the cell membrane, interfibrillar mitochondria (IFM) reside in rows between the myofibrils, and perinuclear mitochondria are situated at the nuclear poles. Microstructural imaging of heart tissue coupled with the development of differential isolation techniques designed to sequentially separate spatially distinct mitochondrial subpopulations have revealed differences in morphological features including shape, absolute size, and internal cristae arrangement. These findings have been complemented by functional studies indicating differences in biochemical parameters and, potentially, functional roles for the ATP generated, based upon subcellular location. Consequently, mitochondrial subpopulations appear to be influenced differently during cardiac pathologies including ischemia/reperfusion, heart failure, aging, exercise, and diabetes mellitus. These influences may be the result of specific structural and functional disparities between mitochondrial subpopulations such that the stress elicited by a given cardiac insult differentially impacts subcellular locales and the mitochondria contained within. The goal of this review is to highlight some of the inherent structural and functional differences that exist between spatially distinct cardiac mitochondrial subpopulations as well as provide an overview of the differential impact of various cardiac pathologies on spatially distinct mitochondrial subpopulations. As an outcome, we will instill a basis for incorporating subcellular spatial location when evaluating the impact of cardiac pathologies on the mitochondrion. Incorporation of subcellular spatial location may offer the greatest potential for delineating the influence of cardiac pathology on this critical organelle. PMID:24778166
Li, Shijun; Ehrhardt, David W.; Rhee, Seung Y.
2006-01-01
Cells are organized into a complex network of subcellular compartments that are specialized for various biological functions. Subcellular location is an important attribute of protein function. To facilitate systematic elucidation of protein subcellular location, we analyzed experimentally verified protein localization data of 1,300 Arabidopsis (Arabidopsis thaliana) proteins. The 1,300 experimentally verified proteins are distributed among 40 different compartments, with most of the proteins localized to four compartments: mitochondria (36%), nucleus (28%), plastid (17%), and cytosol (13.3%). About 19% of the proteins are found in multiple compartments, in which a high proportion (36.4%) is localized to both cytosol and nucleus. Characterization of the overrepresented Gene Ontology molecular functions and biological processes suggests that the Golgi apparatus and peroxisome may play more diverse functions but are involved in more specialized processes than other compartments. To support systematic empirical determination of protein subcellular localization using a technology called fluorescent tagging of full-length proteins, we developed a database and Web application to provide preselected green fluorescent protein insertion position and primer sequences for all Arabidopsis proteins to study their subcellular localization and to store experimentally verified protein localization images, videos, and their annotations of proteins generated using the fluorescent tagging of full-length proteins technology. The database can be searched, browsed, and downloaded using a Web browser at http://aztec.stanford.edu/gfp/. The software can also be downloaded from the same Web site for local installation. PMID:16617091
Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G
2011-01-01
Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.
Subcellular targeting and interactions among the Potato virus X TGB proteins.
Samuels, Timmy D; Ju, Ho-Jong; Ye, Chang-Ming; Motes, Christy M; Blancaflor, Elison B; Verchot-Lubicz, Jeanmarie
2007-10-25
Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts. GFP:TGBp2 and TGBp3:GFP were both seen in the ER, ER-associated granular vesicles, and perinuclear X-bodies suggesting that these proteins interact in the same subdomains of the endomembrane network. When plasmids expressing CFP:TGBp2 and TGBp3:GFP were co-delivered to tobacco leaf epidermal cells, the fluorescent signals overlapped in ER-associated granular vesicles indicating that these proteins colocalize in this subcellular compartment. GFP:TGBp1 was seen in the nucleus, cytoplasm, rod-like inclusion bodies, and in punctate sites embedded in the cell wall. The puncta were reminiscent of previous reports showing viral proteins in plasmodesmata. Experiments using CFP:TGBp1 and YFP:TGBp2 or TGBp3:GFP showed CFP:TGBp1 remained in the cytoplasm surrounding the endomembrane network. There was no evidence that the granular vesicles contained TGBp1. Yeast two hybrid experiments showed TGBp1 self associates but failed to detect interactions between TGBp1 and TGBp2 or TGBp3. These experiments indicate that the PVX TGB proteins have complex subcellular accumulation patterns and likely cooperate across subcellular compartments to promote virus infection.
PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases
Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M
2006-01-01
Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016
Shen, Hong-Bin; Chou, Kuo-Chen
2007-04-20
Proteins may simultaneously exist at, or move between, two or more different subcellular locations. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. For instance, among the 6408 human protein entries that have experimentally observed subcellular location annotations in the Swiss-Prot database (version 50.7, released 19-Sept-2006), 973 ( approximately 15%) have multiple location sites. The number of total human protein entries (except those annotated with "fragment" or those with less than 50 amino acids) in the same database is 14,370, meaning a gap of (14,370-6408)=7962 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the gap, so far all the existing methods for predicting human protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Hum-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Hum-mPLoc is freely accessible to the public as a web server at http://202.120.37.186/bioinf/hum-multi. Meanwhile, for the convenience of people working in the relevant areas, Hum-mPLoc has been used to identify all human protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited in a downloadable file prepared with Microsoft Excel and named "Tab_Hum-mPLoc.xls". This file is available at the same website and will be updated twice a year to include new entries of human proteins and reflect the continuous development of Hum-mPLoc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yan; Lv, Liyang; Du, Juan
2013-09-20
Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizationsmore » may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.« less
NASA Astrophysics Data System (ADS)
Zamil, Mohammad Shafayet
The physical and mechanical properties of cell walls, their shape, how they are arranged and interact with each other determine the architecture of plant organs and how they mechanically respond to different environmental and loading conditions. Due to the distinctive hierarchy from subcellular to tissue scale, plant materials can exhibit remarkably different mechanical properties. To date, how the subcellular scale arrangement and the mechanical properties of plant cell wall structural constituents give rise to macro or tissue scale mechanical responses is not yet well understood. Although the tissue scale plant cell wall samples are easy to prepare and put to different types of mechanical tests, the hierarchical features that emerge when moving towards a higher scale make it complicated to link the macro scale results to micro or subcellular scale structural components. On the other hand, the microscale size of cell brings formidable challenges to prepare and grip samples and carry mechanical tests under tensile loading at subcellular scale. This study attempted to develop a set of test protocols based on microelectromechanical system (MEMS) tensile testing devices for characterizing plant cell wall materials at different length scales. For the ease of sample preparation and well established database of the composition and conformation of its structural constituents, onion epidermal cell wall profile was chosen as the study material. Based on the results and findings of multiscale mechanical characterization, a framework of architecture-based finite element method (FEM) computational model was developed. The computational model laid the foundation of bridging the subcellular or microscale to the tissue or macroscale mechanical properties. This study suggests that there are important insights of cell wall mechanics and structural features that can only be investigated by carrying tensile characterization of samples not confounded by extracellular parameters. To the best of our knowledge, the plant cell wall at subcellular scale was never characterized under tensile loading. By coupling the structure based multiscale modeling and mechanical characterizations at different length scales, an attempt was made to provide novel insights towards understanding the mechanics and architecture of cell wall. This study also suggests that a multiscale investigation is essential for garnering fundamental insights into the hierarchical deformation of biological systems.
Dorney, Kevin M; Sizemore, Ioana E P; Alqahtani, Tariq; Adragna, Norma C; Lauf, Peter K
2013-01-01
The quaternary benzo-phenanthridine alkaloid (QBA) chelerythrine (CET) is a pro-apoptotic drug and Na(+)/K(+) pump (NKP) inhibitor in human lens epithelial cells (HLECs). In order to obtain further insight into the mechanism of NKP inhibition by CET, its sub-cellular distribution was quantified in cytosolic and membrane fractions of HLEC cultures by surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by the Creighton method were concentrated, and size-selected using a one-step tangential flow filtration approach. HLECs cultures were exposed to 50 μM CET in 300 mOsM phosphate-buffered NaCl for 30 min. A variety of cytosolic extracts, crude and purified membranes, prepared in lysing solutions in the presence and absence of a non-ionic detergent, were incubated with AgNPs and subjected to SERS analysis. Determinations of CET were based on a linear calibration plot of the integrated CET SERS intensity at its 659 cm(-1) marker band as a function of CET concentration. SERS detected chemically unaltered CET in both cytosol and plasma membrane fractions. Normalized for protein, the CET content was some 100 fold higher in the crude and purified plasma membrane fraction than in the soluble cytosolic extract. The total free CET concentration in the cytosol, free of membranes or containing detergent-solubilized membrane material, approached that of the incubation medium of HLECs. Given a negative membrane potential of HLECs the data suggest, but do not prove, that CET may traverse the plasma membrane as a positively charged monomer (CET(+)) accumulating near or above passive equilibrium distribution. These findings may contribute to a recently proposed hypothesis that CET binds to and inhibits the NKP through its cytosolic aspect. © 2014 S. Karger AG, Basel.
Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D.
2013-01-01
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr258 + Ser259 motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation. PMID:23979140
Arapulisamy, Obulakshmi; Mannangatti, Padmanabhan; Jayanthi, Lankupalle D
2013-10-04
Neurokinin-1 receptor (NK1R) mediates down-regulation of human norepinephrine (NE) transporter (hNET) via protein kinase C (PKC). However, native NET regulation by NK1R and the mechanism by which NK1R targets NET among other potential effectors are unknown. Effect of NK1R activation on native NET regulation and NET/NK1R interaction were studied using rat brain synaptosomes expressing native NET and NK1R as well as human placental trophoblast (HTR) cells coexpressing WT-hNET or NK1R/PKC-resistant hNET-T258A,S259A double mutant (NET-DM) and hNK1R. The selective NK1R agonist, GR73632, and Substance-P (SP) inhibited NE transport and reduced plasma membrane expression of NET and NK1R. Pretreatment with the NK1R antagonist, EMEND (aprepitant) prevented these NK1R-mediated effects. Immunoprecipitation experiments showed that NET forms stable complexes with NK1R. In HTR cells, combined biotinylation and immunoprecipitation studies revealed plasma membrane localization of NET·NK1R complexes. Receptor activation resulted in the internalization of NET·NK1R complexes. Lipid raft and immunoprecipitation analyses revealed the presence of NET·NK1R complexes exclusively in non-raft membrane fractions under basal/unstimulated conditions. However, NK1R activation led to translocation of NET·NK1R complexes to raft-rich membrane fractions. Importantly, PKCα was found in association with raft-localized NET following SP treatment. Similar to WT-NET, PKC-resistant NET-DM was found in association with NK1R exclusively in non-raft fractions. However, SP treatment failed to translocate NET-DM·NK1R complexes from non-raft fractions to raft fractions. Collectively, these results suggest that NK1R forms physical complexes with NET and that the receptor-mediated Thr(258) + Ser(259) motif-dependent translocation of NET·NK1R complexes into raft-rich microdomains facilitates NET/NK1R interaction with PKCα to coordinate spatially restricted NET regulation.
A proteomics dissection of Arabidopsis thaliana vacuoles isolated from cell culture
Jaquinod, Michel; Villiers, Florent; Kieffer-Jaquinod, Sylvie; Hugouvieux, Véronique; Bruley, Christophe; Garin, Jérôme; Bourguignon, Jacques
2007-01-01
To better understand the mechanisms governing cellular traffic, storage of various metabolites and their ultimate degradation, Arabidopsis thaliana vacuoles proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker α-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42 fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomic study. Therefore, a proteomic approach was developed in order to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, (iii) a pre-fractionation of proteins by short migration on SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, 2/3 of which copurify with the membrane hydrophobic fraction and 1/3 with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were previously known to be associated with vacuolar activities. The proteins identified are involved in: ion and metabolite transport (26%), stress response (9%), signal transduction (7%), metabolism (6%) or have been described to be involved in typical vacuolar activities, such as protein- and sugar-hydrolysis. The sub-cellular localization of several putative vacuolar proteins was confirmed by transient expression of GFP-fusion constructs. PMID:17151019
DeepLoc: prediction of protein subcellular localization using deep learning.
Almagro Armenteros, José Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae; Nielsen, Henrik; Winther, Ole
2017-11-01
The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict protein subcellular localization relying only on sequence information. At its core, the prediction model uses a recurrent neural network that processes the entire protein sequence and an attention mechanism identifying protein regions important for the subcellular localization. The model was trained and tested on a protein dataset extracted from one of the latest UniProt releases, in which experimentally annotated proteins follow more stringent criteria than previously. We demonstrate that our model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), outperforming current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_localization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php. jjalma@dtu.dk. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
mLASSO-Hum: A LASSO-based interpretable human-protein subcellular localization predictor.
Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan
2015-10-07
Knowing the subcellular compartments of human proteins is essential to shed light on the mechanisms of a broad range of human diseases. In computational methods for protein subcellular localization, knowledge-based methods (especially gene ontology (GO) based methods) are known to perform better than sequence-based methods. However, existing GO-based predictors often lack interpretability and suffer from overfitting due to the high dimensionality of feature vectors. To address these problems, this paper proposes an interpretable multi-label predictor, namely mLASSO-Hum, which can yield sparse and interpretable solutions for large-scale prediction of human protein subcellular localization. By using the one-vs-rest LASSO-based classifiers, 87 out of more than 8000 GO terms are found to play more significant roles in determining the subcellular localization. Based on these 87 essential GO terms, we can decide not only where a protein resides within a cell, but also why it is located there. To further exploit information from the remaining GO terms, a method based on the GO hierarchical information derived from the depth distance of GO terms is proposed. Experimental results show that mLASSO-Hum performs significantly better than state-of-the-art predictors. We also found that in addition to the GO terms from the cellular component category, GO terms from the other two categories also play important roles in the final classification decisions. For readers' convenience, the mLASSO-Hum server is available online at http://bioinfo.eie.polyu.edu.hk/mLASSOHumServer/. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen
2017-10-06
Information of the proteins' subcellular localization is crucially important for revealing their biological functions in a cell, the basic unit of life. With the avalanche of protein sequences generated in the postgenomic age, it is highly desired to develop computational tools for timely identifying their subcellular locations based on the sequence information alone. The current study is focused on the Gram-negative bacterial proteins. Although considerable efforts have been made in protein subcellular prediction, the problem is far from being solved yet. This is because mounting evidences have indicated that many Gram-negative bacterial proteins exist in two or more location sites. Unfortunately, most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions important for both basic research and drug design. In this study, by using the multi-label theory, we developed a new predictor called "pLoc-mGneg" for predicting the subcellular localization of Gram-negative bacterial proteins with both single and multiple locations. Rigorous cross-validation on a high quality benchmark dataset indicated that the proposed predictor is remarkably superior to "iLoc-Gneg", the state-of-the-art predictor for the same purpose. For the convenience of most experimental scientists, a user-friendly web-server for the novel predictor has been established at http://www.jci-bioinfo.cn/pLoc-mGneg/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier Inc. All rights reserved.
Subcellular Localized Chemical Imaging of Benthic Algal Nutritional Content via HgCdTe Array FT-IR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetzel, D.; Murdock, J; Dodds, W
2008-01-01
Algae respond rapidly and uniquely to changes in nutrient availability by adjusting pigment, storage product, and organelle content and quality. Cellular and subcellular variability of the relative abundance of macromolecular pools (e.g. protein, lipid, carbohydrate, and phosphodiesters) within the benthic (bottom dwelling) alga Cladophora glomerata (a common nuisance species in fresh and saline waters) was revealed by FT-IR microspectroscopic imaging. Nutrient heterogeneity was compared at the filament, cellular, and subcellular level, and localized nutrient uptake kinetics were studied by detecting the gradual incorporation of isotopically labeled nitrogen (N) (as K15NO3) from surrounding water into cellular proteins. Nutritional content differed substantiallymore » among filament cells, with differences driven by protein and lipid abundance. Whole cell imaging showed high subcellular macromolecular variability in all cells, including adjacent cells on a filament that developed clonally. N uptake was also very heterogeneous, both within and among cells, and did not appear to coincide with subcellular protein distribution. Despite high intercellular variability, some patterns emerged. Cells acquired more 15N the further they were away from the filament attachment point, and 15N incorporation was more closely correlated with phosphodiester content than protein, lipid, or carbohydrate content. Benthic algae are subject to substantial environmental heterogeneity induced by microscale hydrodynamic factors and spatial variability in nutrient availability. Species specific responses to nutrient heterogeneity are central to understanding this key component of aquatic ecosystems. FT-IR microspectroscopy, modified for benthic algae, allows determination of algal physiological responses at scales not available using current techniques.« less
Caillaud, Marie-Cécile; Piquerez, Sophie J M; Fabro, Georgina; Steinbrenner, Jens; Ishaque, Naveed; Beynon, Jim; Jones, Jonathan D G
2012-01-01
Filamentous phytopathogens form sophisticated intracellular feeding structures called haustoria in plant cells. Pathogen effectors are likely to play a role in the establishment and maintenance of haustoria in addition to their better-characterized role in suppressing plant defence. However, the specific mechanisms by which these effectors promote virulence remain unclear. To address this question, we examined changes in subcellular architecture using live-cell imaging during the compatible interaction between the oomycete Hyaloperonospora arabidopsidis (Hpa) and its host Arabidopsis. We monitored host-cell restructuring of subcellular compartments within plant mesophyll cells during haustoria ontogenesis. Live-cell imaging highlighted rearrangements in plant cell membranes upon infection, in particular to the tonoplast, which was located close to the extra-haustorial membrane surrounding the haustorium. We also investigated the subcellular localization patterns of Hpa RxLR effector candidates (HaRxLs) in planta. We identified two major classes of HaRxL effector based on localization: nuclear-localized effectors and membrane-localized effectors. Further, we identified a single effector, HaRxL17, that associated with the tonoplast in uninfected cells and with membranes around haustoria, probably the extra-haustorial membrane, in infected cells. Functional analysis of selected effector candidates in planta revealed that HaRxL17 enhances plant susceptibility. The roles of subcellular changes and effector localization, with specific reference to the potential role of HaRxL17 in plant cell membrane trafficking, are discussed with respect to Hpa virulence. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...
Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin
2014-01-01
Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.
Chevalier, Adrien S; Chaumont, François
2015-05-01
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Quantitative imaging with fluorescent biosensors.
Okumoto, Sakiko; Jones, Alexander; Frommer, Wolf B
2012-01-01
Molecular activities are highly dynamic and can occur locally in subcellular domains or compartments. Neighboring cells in the same tissue can exist in different states. Therefore, quantitative information on the cellular and subcellular dynamics of ions, signaling molecules, and metabolites is critical for functional understanding of organisms. Mass spectrometry is generally used for monitoring ions and metabolites; however, its temporal and spatial resolution are limited. Fluorescent proteins have revolutionized many areas of biology-e.g., fluorescent proteins can report on gene expression or protein localization in real time-yet promoter-based reporters are often slow to report physiologically relevant changes such as calcium oscillations. Therefore, novel tools are required that can be deployed in specific cells and targeted to subcellular compartments in order to quantify target molecule dynamics directly. We require tools that can measure enzyme activities, protein dynamics, and biophysical processes (e.g., membrane potential or molecular tension) with subcellular resolution. Today, we have an extensive suite of tools at our disposal to address these challenges, including translocation sensors, fluorescence-intensity sensors, and Förster resonance energy transfer sensors. This review summarizes sensor design principles, provides a database of sensors for more than 70 different analytes/processes, and gives examples of applications in quantitative live cell imaging.
NASA Astrophysics Data System (ADS)
Kimura, Hiroaki; Momiyama, Masashi; Tomita, Katsuro; Tsuchiya, Hiroyuki; Hoffman, Robert M.
2010-11-01
We demonstrate the development of a long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular. To observe cytoplasmic and nuclear dynamics of cancer cells in the living mouse, 143B human osteosarcoma cells are labeled with green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm. These dual-color cells are injected by a vascular route in an abdominal skin flap in nude mice. The mice are then imaged with the Olympus MVX10 macroview fluorescence microscope. With the MVX10, the nuclear and cytoplasmic behavior of cancer cells trafficking in blood vessels of live mice is observed. We also image lung metastases in live mice from the macro- to the subcellular level by opening the chest wall and imaging the exposed lung in live mice. Injected splenocytes, expressing cyan fluorescent protein, could also be imaged on the lung of live mice. We demonstrate that the MVX10 microscope offers the possibility of full-range in vivo fluorescence imaging from macro- to subcellular and should enable widespread use of powerful imaging technologies enabled by genetic reporters and other fluorophores.
Avaritt, Brittany R; Swaan, Peter W
2015-06-01
Internalization and intracellular trafficking of dendrimer-drug conjugates play an important role in achieving successful drug delivery. In this study, we aimed to elucidate the endocytosis mechanisms and subcellular localization of poly-l-lysine (PLL) dendrimers in Caco-2 cells. We also investigated the impact of fluorophore conjugation on cytotoxicity, uptake, and transepithelial transport. Oregon green 514 (OG) was conjugated to PLL G3 at either the dendrimer periphery or the core. Chemical inhibitors of clathrin-, caveolin-, cholesterol-, and dynamin-mediated endocytosis pathways and macropinocytosis were employed to establish internalization mechanisms, while colocalization with subcellular markers was used to determine dendrimer trafficking. Cell viability, internalization, and uptake were all influenced by the site of fluorophore conjugation. Uptake was found to be highly dependent on cholesterol- and dynamin-mediated endocytosis as well as macropinocytosis. Dendrimers were trafficked to endosomes and lysosomes, and subcellular localization was impacted by the fluorophore conjugation site. The results of this study indicate that PLL dendrimers exploit multiple pathways for cellular entry, and internalization and trafficking can be impacted by conjugation. Therefore, design of dendrimer-drug conjugates requires careful consideration to achieve successful drug delivery.
Fandiño, Anabel S; Nägele, Edgar; Perkins, Patrick D
2006-02-01
The identification and structure elucidation of drug metabolites is one of the main objectives in in vitro ADME studies. Typical modern methodologies involve incubation of the drug with subcellular fractions to simulate metabolism followed by LC-MS/MS or LC-MS(n) analysis and chemometric approaches for the extraction of the metabolites. The objective of this work was the software-guided identification and structure elucidation of major and minor buspirone metabolites using capillary LC as a separation technique and ion trap MS(n) as well as electrospray ionization orthogonal acceleration time-of-flight (ESI oaTOF) mass spectrometry as detection techniques. Buspirone mainly underwent hydroxylation, dihydroxylation and N-oxidation in S9 fractions in the presence of phase I co-factors and the corresponding glucuronides were detected in the presence of phase II co-factors. The use of automated ion trap MS/MS data-dependent acquisition combined with a chemometric tool allowed the detection of five small chromatographic peaks of unexpected metabolites that co-eluted with the larger chromatographic peaks of expected metabolites. Using automatic assignment of ion trap MS/MS fragments as well as accurate mass measurements from an ESI oaTOF mass spectrometer, possible structures were postulated for these metabolites that were previously not reported in the literature. Copyright 2006 John Wiley & Sons, Ltd.
Shotgun Proteomics of Aspergillus niger Microsomes upon d-Xylose Induction▿ †
de Oliveira, José Miguel P. Ferreira; van Passel, Mark W. J.; Schaap, Peter J.; de Graaff, Leo H.
2010-01-01
Protein secretion plays an eminent role in cell maintenance and adaptation to the extracellular environment of microorganisms. Although protein secretion is an extremely efficient process in filamentous fungi, the mechanisms underlying protein secretion have remained largely uncharacterized in these organisms. In this study, we analyzed the effects of the d-xylose induction of cellulase and hemicellulase enzyme secretion on the protein composition of secretory organelles in Aspergillus niger. We aimed to systematically identify the components involved in the secretion of these enzymes via mass spectrometry of enriched subcellular microsomal fractions. Under each condition, fractions enriched for secretory organelles were processed for tandem mass spectrometry, resulting in the identification of peptides that originate from 1,081 proteins, 254 of which—many of them hypothetical proteins—were predicted to play direct roles in the secretory pathway. d-Xylose induction led to an increase in specific small GTPases known to be associated with polarized growth, exocytosis, and endocytosis. Moreover, the endoplasmic-reticulum-associated degradation (ERAD) components Cdc48 and all 14 of the 20S proteasomal subunits were recruited to the secretory organelles. In conclusion, induction of extracellular enzymes results in specific changes in the secretory subproteome of A. niger, and the most prominent change found in this study was the recruitment of the 20S proteasomal subunits to the secretory organelles. PMID:20453123
Lopez-Cruzan, M; Sharma, R; Tiwari, M; Karbach, S; Holstein, D; Martin, C R; Lechleiter, J D; Herman, B
2016-02-15
Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro -cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2 -/- mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2 -/- cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2 -/- primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis.
Louie, D. F.; Gloor, K. K.; Galasinski, S. C.; Resing, K. A.; Ahn, N. G.
2000-01-01
High mobility group (HMG) proteins 14 and 17 are nonhistone nuclear proteins that have been implicated in control of transcription and chromatin structure. To examine the posttranslational modifications of HMG-14 and -17 in vivo, HMG proteins were prepared from nuclear vs. cytosolic fractions of human K562 cells treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or okadaic acid (OA) and examined by electrospray mass spectrometry. Analysis of full-length masses demonstrated mono-, di-, and triphosphorylation of HMG-14 and mono- and diphosphorylation of HMG-17 from OA treated cells, whereas HMG-14 and -17 from TPA treated cells were monophosphorylated. Peptide mass and sequence analysis showed major and minor phosphorylation sites, respectively, at Ser24 and Ser28 in HMG-17, and Ser20 and Ser24 in HMG-14. These sites were found in the consensus sequence RRSARLSAK, within the nucleosomal binding domain of each protein. A third phosphorylation site in HMG-14 was located at either Ser6 or Ser7. Interestingly, the proportion of HMG-14 and -17 found in cytosolic pools increased significantly after 1 h of treatment compared to control cells and showed preferential phosphorylation compared with proteins from nuclear fractions. These results suggest that phosphorylation of HMG-14 and -7 interferes with nuclear localization mechanisms in a manner favoring release from nuclei. PMID:10739259
Louie, D F; Gloor, K K; Galasinski, S C; Resing, K A; Ahn, N G
2000-01-01
High mobility group (HMG) proteins 14 and 17 are nonhistone nuclear proteins that have been implicated in control of transcription and chromatin structure. To examine the posttranslational modifications of HMG-14 and -17 in vivo, HMG proteins were prepared from nuclear vs. cytosolic fractions of human K562 cells treated with 12-O-tetradecanoylphorbol 13-acetate (TPA) or okadaic acid (OA) and examined by electrospray mass spectrometry. Analysis of full-length masses demonstrated mono-, di-, and triphosphorylation of HMG-14 and mono- and diphosphorylation of HMG-17 from OA treated cells, whereas HMG-14 and -17 from TPA treated cells were monophosphorylated. Peptide mass and sequence analysis showed major and minor phosphorylation sites, respectively, at Ser24 and Ser28 in HMG-17, and Ser20 and Ser24 in HMG-14. These sites were found in the consensus sequence RRSARLSAK, within the nucleosomal binding domain of each protein. A third phosphorylation site in HMG-14 was located at either Ser6 or Ser7. Interestingly, the proportion of HMG-14 and -17 found in cytosolic pools increased significantly after 1 h of treatment compared to control cells and showed preferential phosphorylation compared with proteins from nuclear fractions. These results suggest that phosphorylation of HMG-14 and -7 interferes with nuclear localization mechanisms in a manner favoring release from nuclei.
Daher, Zeina; Recorbet, Ghislaine; Solymosi, Katalin; Wienkoop, Stefanie; Mounier, Arnaud; Morandi, Dominique; Lherminier, Jeannine; Wipf, Daniel; Dumas-Gaudot, Eliane; Schoefs, Benoît
2017-01-01
During arbuscular mycorrhizal symbiosis, arbuscule-containing root cortex cells display a proliferation of plastids, a feature usually ascribed to an increased plant anabolism despite the lack of studies focusing on purified root plastids. In this study, we investigated mycorrhiza-induced changes in plastidic pathways by performing a label-free comparative subcellular quantitative proteomic analysis targeted on plastid-enriched fractions isolated from Medicago truncatula roots, coupled to a cytological analysis of plastid structure. We identified 490 root plastid protein candidates, among which 79 changed in abundance upon mycorrhization, as inferred from spectral counting. According to cross-species sequence homology searches, the mycorrhiza-responsive proteome was enriched in proteins experimentally localized in thylakoids, whereas it was depleted of proteins ascribed predominantly to amyloplasts. Consistently, the analysis of plastid morphology using transmission electron microscopy indicated that starch depletion associated with the proliferation of membrane-free and tubular membrane-containing plastids was a feature specific to arbusculated cells. The loss of enzymes involved in carbon/nitrogen assimilation and provision of reducing power, coupled to macromolecule degradation events in the plastid-enriched fraction of mycorrhizal roots that paralleled lack of starch accumulation in arbusculated cells, lead us to propose that arbuscule functioning elicits a nutrient starvation and an oxidative stress signature that may prime arbuscule breakdown. © 2016 Scandinavian Plant Physiology Society.
Salehi-Reyhani, Ali; Gesellchen, Frank; Mampallil, Dileep; Wilson, Rab; Reboud, Julien; Ces, Oscar; Willison, Keith R; Cooper, Jonathan M; Klug, David R
2015-02-17
We exploit the mechanical action of surface acoustic waves (SAW) to differentially lyse human cancer cells in a chemical-free manner. The extent to which cells were disrupted is reported for a range of SAW parameters, and we show that the presence of 10 μm polystyrene beads is required to fully rupture cells and their nuclei. We show that SAW is capable of subcellular fractionation through the chemical-free isolation of nuclei from whole cells. The concentration of protein was assessed in lysates with a sensitive microfluidic antibody capture (MAC) chip. An antibody-based sandwich assay in a microfluidic microarray format was used to detect unlabeled human tumor suppressor protein p53 in crude lysates, without any purification step, with single-molecule resolution. The results are digital, enabling sensitive quantification of proteins with a dynamic range >4 orders of magnitude. For the conditions used, the efficiency of SAW-induced mechanical lysis was determined to be 12.9% ± 0.7% of that for conventional detergent-based lysis in yielding detectable protein. A range of possible loss mechanisms that could lead to the drop in protein yield are discussed. Our results show that the methods described here are amenable to an integrated point-of-care device for the assessment of tumor protein expression in fine needle aspirate biopsies.
Differential subcellular distribution of ion channels and the diversity of neuronal function.
Nusser, Zoltan
2012-06-01
Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J.; Chen, Yingjie
2013-01-01
Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r2 = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload. PMID:24086300
Fassett, John T; Xu, Xin; Kwak, Dongmin; Wang, Huan; Liu, Xiaoyu; Hu, Xinli; Bache, Robert J; Chen, Yingjie
2013-01-01
Aberrant cardiomyocyte microtubule growth is a feature of pressure overload induced cardiac hypertrophy believed to contribute to left ventricular (LV) dysfunction. Microtubule Actin Cross-linking Factor 1 (MACF1/Acf7) is a 600 kd spectraplakin that stabilizes and guides microtubule growth along actin filaments. MACF1 is expressed in the heart, but its impact on cardiac microtubules, and how this influences cardiac structure, function, and adaptation to hemodynamic overload is unknown. Here we used inducible cardiac-specific MACF1 knockout mice (MACF1 KO) to determine the impact of MACF1 on cardiac microtubules and adaptation to pressure overload (transverse aortic constriction (TAC).In adult mouse hearts, MACF1 expression was low under basal conditions, but increased significantly in response to TAC. While MACF1 KO had no observable effect on heart size or function under basal conditions, MACF1 KO exacerbated TAC induced LV hypertrophy, LV dilation and contractile dysfunction. Interestingly, subcellular fractionation of ventricular lysates revealed that MACF1 KO altered microtubule distribution in response to TAC, so that more tubulin was associated with the cell membrane fraction. Moreover, TAC induced microtubule redistribution into this cell membrane fraction in both WT and MACF1 KO mice correlated strikingly with the level of contractile dysfunction (r(2) = 0.786, p<.001). MACF1 disruption also resulted in reduction of membrane caveolin 3 levels, and increased levels of membrane PKCα and β1 integrin after TAC, suggesting MACF1 function is important for spatial regulation of several physiologically relevant signaling proteins during hypertrophy. Together, these data identify for the first time, a role for MACF1 in cardiomyocyte microtubule distribution and in adaptation to hemodynamic overload.
AKAP3 Selectively Binds PDE4A Isoforms in Bovine Spermatozoa1
Bajpai, Malini; Fiedler, Sarah E.; Huang, Zaohua; Vijayaraghavan, Srinivasan; Olson, Gary E.; Livera, Gabriel; Conti, Marco; Carr, Daniel W.
2006-01-01
Cyclic AMP plays an important role in regulating sperm motility and acrosome reaction through activation of cAMP-dependent protein kinase A (PKA). Phosphodiesterases (PDEs) modulate the levels of cyclic nucleotides by catalyzing their degradation. Although PDE inhibitors specific to PDE1 and PDE4 are known to alter sperm motility and capacitation in humans, little is known about the role or subcellular distribution of PDEs in spermatozoa. The localization of PKA is regulated by A-kinase anchoring proteins (AKAPs), which may also control the intracellular distribution of PDE. The present study was undertaken to investigate the role and localization of PDE4 during sperm capacitation. Addition of Rolipram or RS25344, PDE4-specific inhibitors significantly increased the progressive motility of bovine spermatozoa. Immunolocalization techniques detected both PDE4A and AKAP3 (formerly known as AKAP110) in the principal piece of bovine spermatozoa. The PDE4A5 isoform was detected primarily in the Triton X-100-soluble fraction of caudal epididymal spermatozoa. However, in ejaculated spermatozoa it was seen primarily in the SDS-soluble fraction, indicating a shift in PDE4A5 localization into insoluble organelles during sperm capacitation. AKAP3 was detected only in the SDS-soluble fraction of both caudal and ejaculated sperm. Immunoprecipitation experiments using COS cells cotransfected with AKAP3 and either Pde4a5 or Pde4d provide evidence that PDE4A5 but not PDE4D interacts with AKAP3. Pulldown assays using sperm cell lysates confirm this interaction in vitro. These data suggest that AKAP3 binds both PKA and PDE4A and functions as a scaffolding protein in spermatozoa to regulate local cAMP concentrations and modulate sperm functions. PMID:16177223
The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.
Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B
2014-11-01
Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.
MacDonald, Matthew L.; Ciccimaro, Eugene; Prakash, Amol; Banerjee, Anamika; Seeholzer, Steven H.; Blair, Ian A.; Hahn, Chang-Gyu
2012-01-01
Synaptic architecture and its adaptive changes require numerous molecular events that are both highly ordered and complex. A majority of neuropsychiatric illnesses are complex trait disorders, in which multiple etiologic factors converge at the synapse via many signaling pathways. Investigating the protein composition of synaptic microdomains from human patient brain tissues will yield valuable insights into the interactions of risk genes in many disorders. These types of studies in postmortem tissues have been limited by the lack of proper study paradigms. Thus, it is necessary not only to develop strategies to quantify protein and post-translational modifications at the synapse, but also to rigorously validate them for use in postmortem human brain tissues. In this study we describe the development of a liquid chromatography-selected reaction monitoring method, using a stable isotope-labeled neuronal proteome standard prepared from the brain tissue of a stable isotope-labeled mouse, for the multiplexed quantification of target synaptic proteins in mammalian samples. Additionally, we report the use of this method to validate a biochemical approach for the preparation of synaptic microdomain enrichments from human postmortem prefrontal cortex. Our data demonstrate that a targeted mass spectrometry approach with a true neuronal proteome standard facilitates accurate and precise quantification of over 100 synaptic proteins in mammalian samples, with the potential to quantify over 1000 proteins. Using this method, we found that protein enrichments in subcellular fractions prepared from human postmortem brain tissue were strikingly similar to those prepared from fresh mouse brain tissue. These findings demonstrate that biochemical fractionation methods paired with targeted proteomic strategies can be used in human brain tissues, with important implications for the study of neuropsychiatric disease. PMID:22942359
Parafati, Maddalena; Lascala, Antonella; Morittu, Valeria Maria; Trimboli, Francesca; Rizzuto, Antonia; Brunelli, Elvira; Coscarelli, Francesca; Costa, Nicola; Britti, Domenico; Ehrlich, James; Isidoro, Ciro; Mollace, Vincenzo; Janda, Elzbieta
2015-09-01
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in industrialized countries. Defective autophagy of lipid droplets (LDs) in hepatocytes, also known as lipophagy, has recently been identified as a possible pathophysiological mechanism of NAFLD. Experimental and epidemiological evidence suggests that dietary polyphenols may prevent NAFLD. To address this hypothesis and analyze the underlying mechanisms, we supplemented bergamot polyphenol fraction (BPF) to cafeteria (CAF) diet-fed rats, a good model for pediatric metabolic syndrome and NAFLD. BPF treatment (50 mg/kg/day supplemented with drinking water, 3 months) potently counteracted the pathogenic increase of serum triglycerides and had moderate effects on blood glucose and obesity in this animal model. Importantly, BPF strongly reduced hepatic steatosis as documented by a significant decrease in total lipid content (-41.3% ± 12% S.E.M.), ultrasound examination and histological analysis of liver sections. The morphometric analysis of oil-red stained sections confirmed a dramatic reduction in LDs parameters such as total LD area (48.5% ± 15% S.E.M.) in hepatocytes from CAF+BPF rats. BPF-treated livers showed increased levels of LC3 and Beclin 1 and reduction of SQSTM1/p62, suggesting autophagy stimulation. Consistent with BPF stimulation of lipophagy, higher levels of LC3II were found in the LD subcellular fractions of BPF-expose livers. This study demonstrates that the liver and its lipid metabolism are the main targets of bergamot flavonoids, supporting the concept that supplementation of BPF is an effective strategy to prevent NAFLD. Copyright © 2015 Elsevier Inc. All rights reserved.
Matindoost, Leila; Nielsen, Lars K; Reid, Steve
2015-05-05
To replace the in vivo production of baculovirus-based biopesticides with a more convenient in vitro produced product, the limitations imposed by in vitro production have to be solved. One of the main problems is the low titer of HearNPV budded virions (BV) in vitro as the use of low BV titer stocks can result in non-homogenous infections resulting in multiple virus replication cycles during scale up that leads to low Occlusion Body yields. Here we investigate the baculovirus traffic in subcellular fractions of host cells throughout infection with an emphasis on AcMNPV/Sf9 and HearNPV/HzAM1 systems distinguished as "good" and "bad" BV producers, respectively. qPCR quantification of viral DNA in the nucleus, cytoplasm and extracellular fractions demonstrated that although the HearNPV/HzAM1 system produces twice the amount of vDNA as the AcMNPV/Sf9 system, its percentage of BV to total progeny vDNA was lower. vDNA egress from the nucleus to the cytoplasm is sufficient in both systems, however, a higher percentage of vDNA in the HearNPV/HzAM1 system remain in the cytoplasm and do not bud out of the cells compared to the AcMNPV/Sf9 system. In both systems more than 75% of the vDNA produced in the nuclear fraction go unused, without budding or being encapsulated in OBs showing the capacity for improvements that could result from the engineering of the virus/cell line systems to achieve better productivities for both BV and OB yields.
Isaac, R E
1987-01-01
The hydrolysis of the insect neuropeptide proctolin (Arg-Tyr-Leu-Pro-Thr) by enzyme preparations from the nervous tissue of the desert locust (Schistocerca gregaria) was investigated. Neural homogenate degraded proctolin (100 microM) at neutral pH by cleavage of the Arg-Tyr and Tyr-Leu bonds to yield Tyr-Leu-Pro-Thr, Arg-Tyr and free tyrosine. Arg-Tyr was detected as a major metabolite when the aminopeptidase inhibitors amastatin and bestatin were present to prevent Arg-Tyr breakdown. Around 50% of the proctolin-degrading activity was isolated in a 30,000 g membrane fraction and was shown to be almost entirely due to aminopeptidase activity. The aminopeptidase had an apparent Km of 23 microM, a pH optimum of 7.0 and was inhibited by 1 mM-EDTA and amastatin [IC50 = 0.3 microM], but was relatively insensitive to bestatin, actinonin and puromycin. Phenylmethanesulphonyl fluoride (1 mM) and p-chloromercuriphenylsulphonic acid (1 mM) had no effect on this enzyme activity. Although the bulk of the Tyr-Leu hydrolytic activity was located in the 30,000 g supernatant, some weak activity was detected in a washed membrane preparation. This peptidase displayed a high affinity for proctolin (Km = 0.35 microM) and optimal activity at around pH 7.0. Synaptosome- and mitochondria-rich fractions were prepared from crude neural membranes. The aminopeptidase activity was concentrated in the synaptic-membrane preparation, whereas activity giving rise to Arg-Tyr was predominantly localized in the mitochondrial fraction. The subcellular localization of the membrane aminopeptidase is consistent with a possible physiological role for this enzyme in the inactivation of synaptically released proctolin. PMID:2889451
Vincent, B; Vincent, J P; Checler, F
1994-04-01
We examined the occurrence of various endopeptidases and exopeptidases and their subcellular partition within soluble and membrane-associated compartments of 15-day-old astrocytes and 4-day-old primary cultured neurons. Peptidases were monitored with chromogenic or fluorimetric substrates and identified by means of specific inhibitors. We assessed the contribution of these peptidases in the catabolism of two related neuropeptides, neurotensin and neuromedin N. Metabolites were separated by HPLC and the identity of the proteolytic activities involved in their formation was established using specific inhibitors. Neuromedin N and neurotensin undergo both quantitative and qualitative differential proteolysis. Initial maximal rates of neuromedin N degradation were higher than those of neurotensin in both cell types. Furthermore, the two peptides were inactivated much more rapidly by the soluble than by the membrane-associated fractions prepared from both cell cultures. Neuromedin N was rapidly broken down by an aminopeptidase M/leucine aminopeptidase attack, leading to the functionally silent Des-Lys1-neuromedin N metabolite. In the astrocytic membrane-associated fraction, neuromedin N underwent an additional minor endoproteolytic cleavage at the Pro3-Tyr4 bond elicited by endopeptidase 24.11, as suggested by the protective effect of its blocking agent phosphoramidon. Unlike neuromedin N, neurotensin totally resisted hydrolysis by aminopeptidases. Primary inactivating cleavages detected in both cell types appeared mainly located at the Arg8-Arg9 and Pro10-Tyr11 bonds, leading to the formations of neurotensin-(1-8) and neurotensin-(1-10) as the major biologically inactive neurotensin catabolites. Endopeptidase 24.15 appeared mainly responsible for neurotensin-(1-8) formation by the soluble fraction of neurons and astrocytes. In contrast, endopeptidase 24.16 was involved in neurotensin-(1-10) formation by both soluble and membrane-associated fractions of the two cell types. An additional cleavage leading to neurotensin-(1-11) formation and ascribed to endopeptidase 24.11 was detected mainly in the membrane-associated fraction from astrocytes. Finally, the secondary processing of neurotensin degradation products indicated that: (a) neurotensin-(1-11) was converted into neurotensin-(1-8) in the membrane fraction prepared from astrocytes; (b) neurotensin-(1-10) was transformed into neurotensin-(1-8) by an unidentified peptidase belonging to the class of metalloenzymes. The significance of distinct quantitative and qualitative catabolic fates of neuromedin N and neurotensin in cultured astrocytes and neurons is discussed.
Wendler, Sergej; Otto, Andreas; Ortseifen, Vera; Bonn, Florian; Neshat, Armin; Schneiker-Bekel, Susanne; Walter, Frederik; Wolf, Timo; Zemke, Till; Wehmeier, Udo F; Hecker, Michael; Kalinowski, Jörn; Becher, Dörte; Pühler, Alfred
2015-07-01
Acarbose is an α-glucosidase inhibitor produced by Actinoplanes sp. SE50/110 that is medically important due to its application in the treatment of type2 diabetes. In this work, a comprehensive proteome analysis of Actinoplanes sp. SE50/110 was carried out to determine the location of proteins of the acarbose (acb) and the putative pyochelin (pch) biosynthesis gene cluster. Therefore, a comprehensive state-of-the-art proteomics approach combining subcellular fractionation, shotgun proteomics and spectral counting to assess the relative abundance of proteins within fractions was applied. The analysis of four different proteome fractions (cytosolic, enriched membrane, membrane shaving and extracellular fraction) resulted in the identification of 1582 of the 8270 predicted proteins. All 22 Acb-proteins and 21 of the 23 Pch-proteins were detected. Predicted membrane-associated, integral membrane or extracellular proteins of the pch and the acb gene cluster were found among the most abundant proteins in corresponding fractions. Intracellular biosynthetic proteins of both gene clusters were not only detected in the cytosolic, but also in the enriched membrane fraction, indicating that the biosynthesis of acarbose and putative pyochelin metabolites takes place at the inner membrane. Actinoplanes sp. SE50/110 is a natural producer of the α-glucosidase inhibitor acarbose, a bacterial secondary metabolite that is used as a drug for the treatment of type 2 diabetes, a disease which is a global pandemic that currently affects 387 million people and accounts for 11% of worldwide healthcare expenditures (www.idf.org). The work presented here is the first comprehensive investigation of protein localization and abundance in Actinoplanes sp. SE50/110 and provides an extensive source of information for the selection of genes for future mutational analysis and other hypothesis driven experiments. The conclusion that acarbose or pyochelin family siderophores are synthesized at the inner side of the cytoplasmic membrane determined from this work, indicates that studying corresponding intermediates will be challenging. In addition to previous studies on the genome and transcriptome, the work presented here demonstrates that the next omic level, the proteome, is now accessible for detailed physiological analysis of Actinoplanes sp. SE50/110, as well as mutants derived from this and related species. Copyright © 2015 Elsevier B.V. All rights reserved.
Chou, Kuo-Chen; Shen, Hong-Bin
2007-05-01
One of the critical challenges in predicting protein subcellular localization is how to deal with the case of multiple location sites. Unfortunately, so far, no efforts have been made in this regard except for the one focused on the proteins in budding yeast only. For most existing predictors, the multiple-site proteins are either excluded from consideration or assumed even not existing. Actually, proteins may simultaneously exist at, or move between, two or more different subcellular locations. For instance, according to the Swiss-Prot database (version 50.7, released 19-Sept-2006), among the 33,925 eukaryotic protein entries that have experimentally observed subcellular location annotations, 2715 have multiple location sites, meaning about 8% bearing the multiplex feature. Proteins with multiple locations or dynamic feature of this kind are particularly interesting because they may have some very special biological functions intriguing to investigators in both basic research and drug discovery. Meanwhile, according to the same Swiss-Prot database, the number of total eukaryotic protein entries (except those annotated with "fragment" or those with less than 50 amino acids) is 90,909, meaning a gap of (90,909-33,925) = 56,984 entries for which no knowledge is available about their subcellular locations. Although one can use the computational approach to predict the desired information for the blank, so far, all the existing methods for predicting eukaryotic protein subcellular localization are limited in the case of single location site only. To overcome such a barrier, a new ensemble classifier, named Euk-mPLoc, was developed that can be used to deal with the case of multiple location sites as well. Euk-mPLoc is freely accessible to the public as a Web server at http://202.120.37.186/bioinf/euk-multi. Meanwhile, to support the people working in the relevant areas, Euk-mPLoc has been used to identify all eukaryotic protein entries in the Swiss-Prot database that do not have subcellular location annotations or are annotated as being uncertain. The large-scale results thus obtained have been deposited at the same Web site via a downloadable file prepared with Microsoft Excel and named "Tab_Euk-mPLoc.xls". Furthermore, to include new entries of eukaryotic proteins and reflect the continuous development of Euk-mPLoc in both the coverage scope and prediction accuracy, we will timely update the downloadable file as well as the predictor, and keep users informed by publishing a short note in the Journal and making an announcement in the Web Page.
Wang, Xiao; Zhang, Jun; Li, Guo-Zheng
2015-01-01
It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible at http://biomed.zzuli.edu.cn/bioinfo/gpos-ecc-mploc/ and http://biomed.zzuli.edu.cn/bioinfo/gneg-ecc-mploc/ respectively.
A genome-wide resource for the analysis of protein localisation in Drosophila
Sarov, Mihail; Barz, Christiane; Jambor, Helena; Hein, Marco Y; Schmied, Christopher; Suchold, Dana; Stender, Bettina; Janosch, Stephan; KJ, Vinay Vikas; Krishnan, RT; Krishnamoorthy, Aishwarya; Ferreira, Irene RS; Ejsmont, Radoslaw K; Finkl, Katja; Hasse, Susanne; Kämpfer, Philipp; Plewka, Nicole; Vinis, Elisabeth; Schloissnig, Siegfried; Knust, Elisabeth; Hartenstein, Volker; Mann, Matthias; Ramaswami, Mani; VijayRaghavan, K; Tomancak, Pavel; Schnorrer, Frank
2016-01-01
The Drosophila genome contains >13000 protein-coding genes, the majority of which remain poorly investigated. Important reasons include the lack of antibodies or reporter constructs to visualise these proteins. Here, we present a genome-wide fosmid library of 10000 GFP-tagged clones, comprising tagged genes and most of their regulatory information. For 880 tagged proteins, we created transgenic lines, and for a total of 207 lines, we assessed protein expression and localisation in ovaries, embryos, pupae or adults by stainings and live imaging approaches. Importantly, we visualised many proteins at endogenous expression levels and found a large fraction of them localising to subcellular compartments. By applying genetic complementation tests, we estimate that about two-thirds of the tagged proteins are functional. Moreover, these tagged proteins enable interaction proteomics from developing pupae and adult flies. Taken together, this resource will boost systematic analysis of protein expression and localisation in various cellular and developmental contexts. DOI: http://dx.doi.org/10.7554/eLife.12068.001 PMID:26896675
Shiota, Masa; Knobel, Susan M.; Piston, David W.; Cherrington, Alan D.; Magnuson, Mark A.
2001-01-01
Hepatic glucokinase (GK) is acutely regulated by binding to its nuclear-anchored regulatory protein (GKRP). Although GK release by GKRP is tightly coupled to the rate of glycogen synthesis, the nature of this association is obscure. To gain insight into this coupling mechanism under physiological stimulating conditions in primary rat hepatocytes, we analyzed the subcellular distribution of GK and GKRP with immunofluorescence, and glycogen deposition with glycogen cytochemical fluorescence, using confocal microscopyand quantitative image analysis. Following stimulation, a fraction of the GK signal translocated from the nucleus to the cytoplasm. The reduction in the nuclear to cytoplasmic ratio of GK, an index of nuclear export, correlated with a >50% increase in glycogen cytochemical fluorescence over a 60min stimulation period. Furthermore, glycogen accumulation was initially deposited in a peripheral pattern in hepatocytes similar to that of GK. These data suggest that a compartmentalization exists of both active GK and the initial sites of glycogen deposition at the hepatocyte surface. PMID:12369705
Salido, Eduardo C.; Li, Xiao M.; Lu, Yang; Wang, Xia; Santana, Alfredo; Roy-Chowdhury, Namita; Torres, Armando; Shapiro, Larry J.; Roy-Chowdhury, Jayanta
2006-01-01
Mutations in the alanine–glyoxylate amino transferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. We generated a null mutant mouse by targeted mutagenesis of the homologous gene, Agxt, in embryonic stem cells. Mutant mice developed normally, and they exhibited hyperoxaluria and crystalluria. Approximately half of the male mice in mixed genetic background developed calcium oxalate urinary stones. Severe nephrocalcinosis and renal failure developed after enhancement of oxalate production by ethylene glycol administration. Hepatic expression of human AGT1, the protein encoded by AGXT, by adenoviral vector-mediated gene transfer in Agxt−/− mice normalized urinary oxalate excretion and prevented oxalate crystalluria. Subcellular fractionation and immunofluorescence studies revealed that, as in the human liver, the expressed wild-type human AGT1 was predominantly localized in mouse hepatocellular peroxisomes, whereas the most common mutant form of AGT1 (G170R) was localized predominantly in the mitochondria. PMID:17110443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishiwata, K.; Ido, T.; Yanai, K.
Carbon-11 (/sup 11/C) pargyline, which is a suicide inactivator of Type B monoamine oxidase (MAO), was synthesized by the reaction of N-demethylpargyline with /sup 11/CH/sub 3/l. Biodistribution was investigated in mice, and positron tomographic images of the heart and lung in a rabbit were obtained. The distribution of /sup 11/C after administration of (/sup 11/C)pargyline was measured in several organs and blood at various time intervals. After 30 min its concentrations in the organs were constant. Subcellular distribution studies in the brain, lung, liver, and kidney showed that 59-70% of the /sup 11/C became acid-insoluble and 9-33% was present inmore » the crude mitochondrial fraction at 60 min after injection. The uptakes of the /sup 11/C in each organ except for the kidney and spleen seemed to correlate with the in vitro enzymatic activity of Type B MAO. At high loading dose a nonspecific uptake was observed.« less
Infrared and Raman Microscopy in Cell Biology
Matthäus, Christian; Bird, Benjamin; Miljković, Miloš; Chernenko, Tatyana; Romeo, Melissa; Diem, Max
2009-01-01
This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have been developed for this task. One of them is infrared micro-spectroscopy, in which an average snapshot of a cell’s biochemical composition is collected at a spatial resolution of typically 25 mm. This technique, which is extremely sensitive and can collect such a snapshot in fractions of a second, is particularly suited for studying gross biochemical changes. The other technique, Raman microscopy (also known as Raman micro-spectroscopy), is ideally suited to study variations of cellular composition on the scale of subcellular organelles, since its spatial resolution is as good as that of fluorescence microscopy. Both techniques exhibit the fingerprint sensitivity of vibrational spectroscopy toward biochemical composition, and can be used to follow a variety of cellular processes. PMID:19118679
Purification and characterisation of a novel iso-propanol dehydrogenase from Phytomonas sp.
Uttaro, A D; Opperdoes, F R
1997-04-01
An alcohol dehydrogenase with two identical subunits and a subunit molecular mass of 40,000 was purified from Phytomonas sp. isolated from the lactiferous tubes of Euphorbia characias. Digitonin titration and subcellular fractionation suggest that the enzyme is present in the mitochondrion. It utilises as substrates, primary and secondary alcohols, is specific for NAD+ as coenzyme and is inhibited by HgCl(2). The pH optimum for the oxidation of ethanol is 9.5, and for the reverse reaction 8.5. The apparent Km values for iso-propanol and ethanol are 40 and 34 microM, respectively and for the reverse reaction, with acetone as substrate, 14 microM. The respective specific activities with iso-propanol and ethanol as substrate, as measured in crude extracts are 300 and 16 mU (milligram of protein)-1. In isoelectric focusing the enzyme showed three major bands with slightly differing isoelectric points that ranged from 6.4 to 6.8. The name, iso-propanol dehydrogenase is proposed for this enzyme.
Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S
2014-01-01
Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011
Hernández-Fernaud, Juan R; Salido, Eduardo
2010-11-01
Mutations in the alanine-glyoxylate aminotransferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. A deeper understanding of the changes in the metabolic pathways secondary to the lack of AGXT expression is needed in order to explore substrate depletion as a therapeutic strategy to limit oxalate production in primary hyperoxaluria type I. We have developed an Agxt knockout (AgxtKO) mouse that reproduces some key features of primary hyperoxaluria type I. To improve our understanding of the metabolic adjustments subsequent to AGXT deficiency, we performed a proteomic analysis of the changes in expression levels of various subcellular fractions of liver and kidney metabolism linked to the lack of AGXT. In this article, we report specific changes in the liver and kidney proteome of AgxtKO mice that point to significant variations in gluconeogenesis, glycolysis and fatty acid pathways. Journal compilation © 2010 FEBS. No claim to original German government works.
Wu, Si; Brown, Roslyn N.; Payne, Samuel H.; ...
2013-01-01
The periplasm of Gram-negative bacteria is a dynamic and physiologically important subcellular compartment where the constant exposure to potential environmental insults amplifies the need for proper protein folding and modifications. Top-down proteomics analysis of the periplasmic fraction at the intact protein level provides unrestricted characterization and annotation of the periplasmic proteome, including the post-translational modifications (PTMs) on these proteins. Here, we used single-dimension ultra-high pressure liquid chromatography coupled with the Fourier transform mass spectrometry (FTMS) to investigate the intact periplasmic proteome of Novosphingobium aromaticivorans . Our top-down analysis provided the confident identification of 55 proteins in the periplasm and characterizedmore » their PTMs including signal peptide removal, N-terminal methionine excision, acetylation, glutathionylation, pyroglutamate, and disulfide bond formation. This study provides the first experimental evidence for the expression and periplasmic localization of many hypothetical and uncharacterized proteins and the first unrestrictive, large-scale data on PTMs in the bacterial periplasm.« less
Nucleocytoplasmic shuttling of hexokinase II in a cancer cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neary, Catherine L., E-mail: nearycl@umdnj.edu; Pastorino, John G.
2010-04-16
In yeast, the hexokinase type II enzyme (HXKII) translocates to the nucleus in the presence of excess glucose, and participates in glucose repression. However, no evidence has suggested a nuclear function for HXKII in mammalian cells. Herein, we present data showing nuclear localization of HXKII in HeLa cells, both by immunocytochemistry and subcellular fractionation. HXKII is extruded from the nucleus, at least in part, by the activity of the exportin 1/CrmA system, as demonstrated by increased nuclear expression and decreased cytoplasmic expression after incubation with leptomycin B, a bacterially-derived exportin inhibitor. Furthermore, cytoplasmic localization of HXKII is dependent on itsmore » enzymatic activity, as inhibiting HXKII activity using 2-deoxy-D-glucose (2DG) increased nuclear localization. This effect was more significant in cells incubated in the absence of glucose for 24 h prior to addition of 2DG. Regulated translocation of HXKII to the nucleus of mammalian cells could represent a previously unknown glucose-sensing mechanism.« less
Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubicek, C.P.; Schreferl-Kunar, G.; Woehrer, W.
1988-03-01
Oxalate accumulation of up to 8 g/liter was induced in Aspergillus niger by shifting the pH from 6 to 8. This required the presence of P/sub i/ and a nitrogen source and was inhibited by the protein synthesis inhibitor cycloheximide. Exogenously added /sup 14/CO/sub 2/ was not incorporated into oxalate, but was incorporated into acetate and malate, thus indicating the biosynthesis of oxalate by hydrolytic cleavage of oxaloacetate. Inhibition of mitochondrial citrate metabolism by fluorocitrate did not significantly decrease the oxalate yield. The putative enzyme that was responsible for this oxaloacetate hydrolase (EC 3.7.1.1), which was induced de novo duringmore » the pH shift. Subcellular fractionation of oxalic acid-forming mycelia of A. niger showed that this enzyme is located in the cytoplasm of A. niger. The results are consistent with a cytoplasmic pathway of oxalate formation which does not involve the tricarboxylic acid cycle.« less
Brill, Elizabeth; van Thournout, Michel; White, Rosemary G.; Llewellyn, Danny; Campbell, Peter M.; Engelen, Steven; Ruan, Yong-Ling; Arioli, Tony; Furbank, Robert T.
2011-01-01
Sucrose (Suc) synthase (Sus) is the major enzyme of Suc breakdown for cellulose biosynthesis in cotton (Gossypium hirsutum) fiber, an important source of fiber for the textile industry. This study examines the tissue-specific expression, relative abundance, and temporal expression of various Sus transcripts and proteins present in cotton. A novel isoform of Sus (SusC) is identified that is expressed at high levels during secondary cell wall synthesis in fiber and is present in the cell wall fraction. The phylogenetic relationships of the deduced amino acid sequences indicate two ancestral groups of Sus proteins predating the divergence of monocots and dicots and that SusC sequences form a distinct branch in the phylogeny within the dicot-specific clade. The subcellular location of the Sus isoforms is determined, and it is proposed that cell wall-localized SusC may provide UDP-glucose for cellulose and callose synthesis from extracellular sugars. PMID:21757635