Science.gov

Sample records for subcooled hydrothermal boiling

  1. Aspects of subcooled boiling

    SciTech Connect

    Bankoff, S.G.

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  2. (Investigation of subcooled hydrothermal boiling in ground water flow channels as a source of harmonic tremors)

    SciTech Connect

    Not Available

    1989-01-01

    As a first step toward assessing the ability of hydrothermal boiling to explain geothermal ground noise and volcanic tremor observations, we are investigating the acoustic power spectrum of boiling (the source'' spectrum in the above model). We simulate boiling in the lab by injecting high pressure steam from a boiler into a pressure vessel filled with water. The water pressure fluctuations that result from the repeated formation and collapse of steam bubbles at the steam inlet vents are recorded by a hydrophone whose output is digitized at 2 {times} 10{sup 4} samples/second by a computer. The range of pressure and temperature conditions attainable within the pressure vessel is limited to <3.5 bars, <139{degree}C, due to the finite strength of observation windows affixed to the pressure vessel. Therefore, dimensional analysis will be used to correlate the experimental results with the pertinent experimental variables. Besides the overall shape of the boiling power spectrum, we are investigating the absolute spectral levels in frequency bands typical of geothermal ground noise and volcanic tremor (0.5 Hz-10 Hz), and the ratio of acoustic power liberated to total available power. The values of these parameters are critical to hydrothermal boiling's ability to generate ground motion amplitudes in accordance with observation. If it can be shown that the range of observed ground noise/tremor amplitudes can be accounted for by hydrothermal boiling at reasonable heat transfer rates, this knowledge would be invaluable to designers of seismic monitoring experiments who are interested in geothermal resource exploration/evaluation and volcanic eruption prediction.

  3. Unsteady heat transfer during subcooled film boiling

    NASA Astrophysics Data System (ADS)

    Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

    2015-11-01

    Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

  4. Transition to Film Boiling in Microgravity: Influence of Subcooling

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Fu; Li, Jing; Yan, Na; Wang, Shuang-Feng

    2010-07-01

    The transition process to film pool boiling in microgravity is studied experimentally aboard the Chinese recoverable satellite SJ-8. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Small, primary bubbles are formed and slid on the surface, which coalesce with each other to form a large coalesced bubble. Two ways are observed for the transition from nucleate to film boiling at different subcoolings. At high subcooling, the coalesced bubble with a smooth surface grows slowly. It is then difficult for the coalesced bubble to cover the whole heater surface, resulting in a special region of transition boiling in which nucleate boiling and local dry areas can coexist. In contrast, strong oscillation of the coalesced bubble surface at low subcooling may cause rewetting of local dry areas and activation of more nucleate sites, resulting in an abrupt transition to film boiling.

  5. Improvements in Predicting Void Fraction in Subcooled Boiling

    SciTech Connect

    Ha, Kwi Seok; Lee, Yong Bum; No, Hee Cheon

    2005-06-15

    A simple two-phase thermal-hydraulic tool with the drift-flux model has been used to develop a subcooled boiling model. The tool is composed of four governing equations: mixture mass, vapor mass, mixture momentum, and mixture enthalpy. Using the developed tool, various subcooled boiling models were investigated through the published experimental data. In the process of evaluation, two models were developed associated with the subcooled boiling. First, the Saha and Zuber correlation predicting the point of the net vapor generation was modified to consider the thermal and dynamic effects at the high-velocity region. Second, the pumping factor model was developed using the pi-theorem based on parameters related to the bubble generation mechanism, and it produced an additional parameter: the boiling number. The proposed models and several other models were evaluated against a series of subcooled flow boiling experiments at the pressure range of 1 to 146.8 bars. From the root-mean-square analysis for the predicted void fraction in the subcooled boiling region, the results of the proposed model presented the best predictions for the whole-pressure ranges. Also, the implementation of the developed models into RELAP5/MOD3.3 brought about improved results compared to those of the default model of the code.

  6. Subcooled forced convection boiling of trichlorotrifluoroethane

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Panian, D. J.

    1972-01-01

    Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.

  7. Changes of enthalpy slope in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Collado, Francisco J.; Monné, Carlos; Pascau, Antonio

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, #58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance—the control volume length—in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored.

  8. Stabilization of freon 113 subcooled boiling in forced convection

    SciTech Connect

    Gentile, D.; Benejean, R.; Llory, M.

    1985-09-01

    A simple electronic feedback system allowing to perform tests in subcooled boiling of Freon 113 in the transition region, where systems directly heated by Joule effect are unstable, is presented. A short, electrically heated tube is used where the current is controlled by the measure of the wall temperature. First experiments highlight a hysteresis phenomenon depending on whether the temperature difference between the wall and the boiling liquid is increased or decreased, and the influence of surface conditions on the shape of the boiling curve.

  9. Development of a mechanistic model for forced convection subcooled boiling

    NASA Astrophysics Data System (ADS)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  10. High heat flux burnout in subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1995-09-01

    The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling. The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80 °C), channel orientation (vertical and horizontal). A maximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: T in=30°, p=2.5 MPa, u=40 m/s, D=2.5 mm (smooth channel) Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.

  11. Subcooled pool boiling on thin wire in microgravity

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Wan, S. X.; Liu, G.; Yan, N.; Hu, W. R.

    2009-01-01

    A new set of experimental data of subcooled pool boiling on a thin wire in microgravity aboard the 22nd Chinese recoverable satellite is reported in the present paper. The temperature-controlled heating method is used. The results of the experiments in normal gravity before and after the flight experiment are also presented, and compared with those in microgravity. The working fluid is degassed R113 at 0.1 MPa and subcooled by 26C nominally. A thin platinum wire of 60μm in diameter and 30 mm in length is simultaneously used as heater and thermometer. It is found that the heat transfer of nucleate pool boiling is slightly enhanced in microgravity comparing with those in normal gravity. It is also found that the correlation of Lienhard and Dhir can predict the CHF with good agreement, although the range of the dimensionless radius is extended by three or more decades above the originally set limit. Three critical bubble diameters are observed in microgravity, which divide the observed vapor bubbles into four regimes with different sizes. Considering the Marangoni effect, a qualitative model is proposed to reveal the mechanism underlying the bubble departure processes, and a quantitative agreement can also be acquired.

  12. Interface oscillation of subcooled flow boiling in locally heated microchannels

    NASA Astrophysics Data System (ADS)

    Liu, J. T.; Peng, X. F.

    2009-02-01

    An investigation was conducted to understand flow boiling of subcooled de-ionized water in locally heated parallel microchannels. High-speed visualization technology was employed to visually observe the transient phase change process in an individual microchannel. Signal analysis method was employed in studying the interface movement and phase change process. The phase change at locally heated condition was different from those at entirely heated condition where elongated bubble(s) stayed quasi-stable for a long time without venting out. Diversified and intensive interface oscillation was observed occurring on both of the upstream and downstream bubble caps. Evaporation and condensation modes were characterized with distinguished oscillation frequencies. The film-driven oscillations of both evaporating and condensing interfaces generally operated at higher frequencies than the oscillations driven by nucleation or dropwise condensation.

  13. Thermal interaction effect on nucleation site distribution in subcooled boiling

    SciTech Connect

    Ling Zou; Barclay Joned

    2012-05-01

    An experimental work on subcooled boiling of refrigerant, R134a, to examine nucleation site distributions on both copper and stainless steel heating surfaces was performed. In order to obtain high fidelity active nucleation site density and distribution data, a high-speed digital camera was utilized to record bubble emission images from a view normal to heating surfaces. Statistical analyses on nucleation site data were done and their statistical distributions were obtained. Those experimentally observed nucleation site distributions were compared to the random spatial Poisson distribution. The comparisons showed that, rather than purely random, active nucleation site distributions on boiling surfaces are relatively more uniform. Experimental results also showed that on the copper heating surface, nucleation site distributions are slightly more uniform than on the stainless steel surface. This was concluded as the results of thermal interactions between nucleation sites with different solid thermal conductivities. A two dimensional thermal interaction model was then developed to quantitatively examine the thermal interactions between nucleation sites. The results give a reasonable explanation to the experimental observation on nucleation site distributions.

  14. The effect of water subcooling on film boiling heat transfer from vertical cylinders

    SciTech Connect

    Greene, G.A.; Irvine, T.F. Jr.

    1994-03-01

    The effect of subcooling on the film boiling heat transfer of water from vertical copper cylinders has been investigated experimentally using a transient quench technique. A lumped parameter model was utilized since the Blot numbers were always less than 0.05. The amount of subcooling varied from 0 K to 70 K and the initial cylinder wall temperatures were of the order of 1100 K. Heat transfer coefficient were measured at the midpoint of the cylinders and were obtained over quench times in which they were verified to be constant. Subcooling had a significant effect on both the film boiling heat transfer coefficient and the minimum film boiling temperature. As the subcooling varied from 0 K to 70 K, the h transfer coefficient increased by a factor of five. As the subcooling varied from 0 K to 60 K, the minimum film boiling temperature increased from approximately 600 K to 1000 K. An attempt to correlate the heat transfer coefficient data with a method recently proposed by Sakurai et al. was only successful at subcooled temperature differences less than 10 K. A modified correlation is presented using the Sakurai et al. parameters which better represents the data over the complete subcooling range.

  15. Liquid-solid contact during flow film boiling of subcooled freon-11

    SciTech Connect

    Chang, K.H.; Witte, L.C. )

    1990-05-01

    Liquid-solid contacts were measured for flow film boiling of subcooled Freon-11 over an electrically heated cylinder equipped with a surface microthermocouple probe. No systematic variation of the extent of liquid-solid contact with wall superheat, liquid subcooling, or velocity was detected. Only random small-scale contacts that contribute negligibly to overall heat transfer were detected when the surface was above the homogenous nucleation temperature of the Freon-11. When large-scale contacts were detected, they led to an unexpected intermediate transition from local film boiling to local transition boiling. An explanation is proposed for these unexpected transitions. A comparison of analytical results that used experimentally determined liquid-solid contact parameters to experimental heat fluxes did not show good agreement. It was concluded that the available model for heat transfer accounting for liquid-solid contact is not adequate for flow film boiling.

  16. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    SciTech Connect

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  17. An experimental investigation of transition boiling in subcooled Freon-113 forced flow

    SciTech Connect

    Passos, J.C. ); Gentile, D. )

    1991-05-01

    An experimental study of subcooled boiling in a Freon-113 forced flow is presented. The test section is a short tube (length 50 mm, inner diameter 8 mm, and wall thickness 0.3 mm) heated by the Joule effect. Wall temperature profiles along the tube are presented for different operating points and discussed in terms of the upstream propagation of a temperature front separating regions of nucleate and film boiling. This study emphasizes the effect of axial heat conduction on the boiling processes.

  18. The Characteristics of Steam Bubbles in Subcooled Boiling Flow

    SciTech Connect

    Takatoshi Takemoto; Asi Bunyajitradulya; Mitsuo Matsuzaki; Hiroshige Kikura; Masanori Aritomi

    2002-07-01

    In two-fluid modeling and three-fluid modeling, the accurate prediction of the interfacial area concentration, interfacial heat transfer and interfacial shear stress, were required. In this works, the axial profiles of void fraction, interfacial area concentration and interfacial heat transfer coefficient along the flow direction could be measured. For the steam bubbles whose diameter were less than 8 mm, the interfacial area concentration and the mean bubble diameter had a correlation with void fraction despite the variation of liquid flow rate and subcooling. In case the steam bubble collapse occurred due to an irregular bubble condensation and a turbulence of liquid flow, interfacial heat transfer coefficient with the bubble collapse was about twice of that without a bubble collapse. And the interfacial heat transfer coefficient without bubble collapse showed a good agreement with the correlation proposed by Akiyama. In addition, the supposed image processing method could be applied to the present experimental condition. (authors)

  19. Subcooled flow film boiling across a horizontal cylinder. Part II. Comparison to experimental data

    SciTech Connect

    Chou, X.S.; Sankaran, S.; Witte, L.C. )

    1995-02-01

    In this paper, the results of a rigorous heat transfer analysis of subcooled flow film boiling over a heated cylinder are compared to experimental data. The analysis includes both the influence of the front part of the heater and the wake region behind the heater. Experiments using Freon-113 were conducted at subcooling levels up to 58[degree]C and at velocities up to 3.81 m/s. The configuration was upflowing Freon-113 in crossflow over a 0.635-cm electric heater. A comparison of these data as well as other available experimental data to the analysis of Chou and Witte showed good agreement as long as the subcooling level of the liquid was substantial - that is, for liquid Jakob numbers above about 0.04. This represents a considerable improvement over other models that have been developed to predict subcooled flow boiling heat transfer. A method using a temperature correction to a constant-property heat transfer solution that corresponds to the full variable-property solution is also presented, and applied to water and Freon-113. 11 refs., 5 figs., 2 tabs.

  20. Analysis and Measurement of Bubble Dynamics and Associated Flow Field in Subcooled Nucleate Boiling Flows

    SciTech Connect

    Barclay G. Jones

    2008-10-01

    In recent years, subooled nucleate boiling (SNB) has attrcted expanding research interest owing to the emergence of axial offset anomaly (AOA) or crud-induced power shigt (CIPS) in many operating US PWRs, which is an unexpected deviation in the core axial power distribution from the predicted power curves. Research indicates that the formation of the crud, which directly leads to AOA phenomena, results from the presence of the subcooled nucleate boiling, and is especially realted to bubble motion occurring in the core region.

  1. Bubble Behavior in Subcooled Pool Boiling of Water under Reduced Gravity

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Suzuki, Motohiro; Takahash, Saika; Kawamura, Hirosi; Abe, Yoshiyuki

    2003-01-01

    Subcooled pool boiling of water was conducted in reduced gravity performed by a parabolic flight of aircraft and a drop-shaft facility. A small stainless steel plate was physically burned out in the subcooled water by AC electric power during the parabolic flight. Boiling bubbles grew with increasing heating power but did not detached from the heating surface. The burnout heat fluxes obtained were 200 ~ 400 percent higher than the existing theories. In the ground experiment, boiling bubbles were attached to the heating surface with a flat plate placed over the heating surface, and the experiment was performed by the same heating procedure as practiced under the reduced gravity. Same burnout heat fluxes as under the reduced gravity were obtained by adjusting the plate clearance to the heating surface. As the heating time extended longer than the reduced gravity duration, the burnout heat fluxes decreased gradually and became constant. Contact area of bubbles with heating surface was observed using a transparent heating surface in microgravity performed by a drop-shaft facility. The contact area of bubbles increased significantly at the start of microgravity. It is suggested by the experimental results that the boiling bubbles expand rapidly in the high heat flux region and the rapid evaporation of liquid layer remained between the bubbles and the heating surface raises up the critical heat flux higher than the existing theories in microgravity.

  2. Local pressure gradients due to incipience of boiling in subcooled flows

    SciTech Connect

    Ruggles, A.E.; McDuffee, J.L.

    1995-09-01

    Models for vapor bubble behavior and nucleation site density during subcooled boiling are integrated with boundary layer theory in order to predict the local pressure gradient and heat transfer coefficient. Models for bubble growth rate and bubble departure diameter are used to scale the movement of displaced liquid in the laminar sublayer. An added shear stress, analogous to a turbulent shear stress, is derived by considering the liquid movement normal to the heated surface. The resulting mechanistic model has plausible functional dependence on wall superheat, mass flow, and heat flux and agrees well with data available in the literature.

  3. Effect of subcooling and wall thickness on pool boiling from downward-facing curved surfaces in water

    SciTech Connect

    El-Genk, M.S.; Glebov, A.G.

    1995-09-01

    Quenching experiments were performed to investigate the effects of water subcooling and wall thickness on pool boiling from a downward-facing curved surface. Experiments used three copper sections of the same diameter (50.8 mm) and surface radius (148 mm), but different thickness (12.8, 20 and 30 mm). Local and average pool boiling curves were obtained at saturation and 5 K, 10 K, and 14 K subcooling. Water subcooling increased the maximum heat flux, but decreased the corresponding wall superheat. The minimum film boiling heat flux and the corresponding wall superheat, however, increased with increased subcooling. The maximum and minimum film boiling heat fluxes were independent of wall thickness above 20 mm and Biot Number > 0.8, indicating that boiling curves for the 20 and 30 thick sections were representative of quasi steady-state, but not those for the 12.8 mm thick section. When compared with that for a flat surface section of the same thickness, the data for the 12.8 mm thick section showed significant increases in both the maximum heat flux (from 0.21 to 0.41 MW/m{sup 2}) and the minimum film boiling heat flux (from 2 to 13 kW/m{sup 2}) and about 11.5 K and 60 K increase in the corresponding wall superheats, respectively.

  4. Heating surface material’s effect on subcooled flow boiling heat transfer of R134a

    SciTech Connect

    Ling Zou; Barclay G. Jones

    2012-11-01

    In this study, subcooled flow boiling of R134a on copper (Cu) and stainless steel (SS) heating surfaces was experimentally investigated from both macroscopic and microscopic points of view. By utilizing a high-speed digital camera, bubble growth rate, bubble departure size, and nucleation site density, were able to be observed and analyzed from the microscopic point of view. Macroscopic characteristics of the subcooled flow boiling, such as heat transfer coefficient, were able to be measured as well. Experimental results showed that there are no obvious difference between the copper and the stainless surface with respect to bubble dynamics, such as contact angle, growth rate and departure size. On the contrary, the results clearly showed a trend that the copper surface had a better performance than the stainless steel surface in terms of heat transfer coefficient. It was also observed that wall heat fluxes on both surfaces were found highly correlated with nucleation site density, as bubble hydrodynamics are similar on these two surfaces. The difference between these two surfaces was concluded as results of different surface thermal conductivities.

  5. Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions

    NASA Astrophysics Data System (ADS)

    Le Corre, Jean-Marie

    Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate

  6. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1993

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    Subcooled flow boiling in heated coolant channels is an important heat transfer enhancement technique in the development of fusion reactor components, where high heat fluxes must be accommodated. As energy fluxes increase in magnitude, additional emphasis must be devoted to enhancing techniques such as sub cooling and enhanced surfaces. In addition to subcooling, other high heat flux alternatives such as high velocity helium and liquid metal cooling have been considered as serious contenders. Each technique has its advantages and disadvantages [1], which must be weighed as to reliability and reduced cost of fusion reactor components. Previous studies [2] have set the stage for the present work, which will concentrate on fundamental thermal hydraulic issues associated with the h-international Thermonuclear Experimental Reactor (ITER) and the Engineering Design Activity (EDA). This proposed work is intended to increase our understanding of high heat flux removal alternatives as well as our present capabilities by: (1) including single-side heating effects in models for local predictions of heat transfer and critical heat flux; (2) inspection of the US, Japanese, and other possible data sources for single-side heating, with the aim of exploring possible correlations for both CHF and local heat transfer; and (3) assessing the viability of various high heat flux removal techniques. The latter task includes: (a) sub-cooled water flow boiling with enhancements such as twisted tapes, and hypervapotrons, (b) high velocity helium cooling, and (c) other potential techniques such as liquid metal cooling. This assessment will increase our understanding of: (1) hypervapotron heat transfer via fins, flow recirculation, and flow oscillation, and (2) swirl flow. This progress report contains selective examples of ongoing work. Section II contains an extended abstract, which is part of and evolving technical paper on single-side f heating. Section III describes additional details

  7. Complete Numerical Simulation of Subcooled Flow Boiling in the Presence of Thermal and Chemical Interactions

    SciTech Connect

    V.K. Dhir

    2003-04-28

    At present, guidelines for fuel cycle designs to prevent axial offset anomalies (AOA) in pressurized water reactor (PWR) cores are based on empirical data from several operating reactors. Although the guidelines provide an ad-hoc solution to the problem, a unified approach based on simultaneous modeling of thermal-hydraulics, chemical, and nuclear interactions with vapor generation at the fuel cladding surface does not exist. As a result, the fuel designs are overly constrained with a resulting economic penalty. The objective of present project is to develop a numerical simulation model supported by laboratory experiments that can be used for fuel cycle design with respect to thermal duty of the fuel to avoid economic penalty, as well as, AOA. At first, two-dimensional numerical simulation of the growth and departure of a bubble in pool boiling with chemical interaction is considered. A finite difference scheme is used to solve the equations governing conservation of mass, momentum, energy, and species concentration. The Level Set method is used to capture the evolving liquid-vapor interface. A dilute aqueous boron solution is considered in the simulation. From numerical simulations, the dynamic change in concentration distribution of boron during the bubble growth shows that the precipitation of boron can occur near the advancing and receding liquid-vapor interface when the ambient boron concentration level is 3,000 ppm by weight. Secondly, a complete three-dimensional numerical simulation of inception, growth and departure of a single bubble subjected to forced flow parallel to the heater surface was developed. Experiments on a flat plate heater with water and with boron dissolved in the water were carried out. The heater was made out of well-polished silicon wafer. Numbers of nucleation sites and their locations were well controlled. Bubble dynamics in great details on an isolated nucleation site were obtained while varying the wall superheat, liquid subcooling

  8. Effect of rolling motion on critical heat flux for subcooled flow boiling in vertical tube

    SciTech Connect

    Hwang, J. S.; Park, I. U.; Park, M. Y.; Park, G. C.

    2012-07-01

    This paper presents defining characteristics of the critical heat flux (CHF) for the boiling of R-134a in vertical tube operation under rolling motion in marine reactor. It is important to predict CHF of marine reactor having the rolling motion in order to increase the safety of the reactor. Marine Reactor Moving Simulator (MARMS) tests are conducted to measure the critical heat flux using R-134a flowing upward in a uniformly heated vertical tube under rolling motion. MARMS was rotated by motor and mechanical power transmission gear. The CHF tests were performed in a 9.5 mm I.D. test section with heated length of 1 m. Mass fluxes range from 285 to 1300 kg m{sup -2}s{sup -1}, inlet subcooling from 3 to 38 deg. C and outlet pressures from 13 to 24 bar. Amplitudes of rolling range from 15 to 40 degrees and periods from 6 to 12 sec. To convert the test conditions of CHF test using R-134a in water, Katto's fluid-to-fluid modeling was used in present investigation. A CHF correlation is presented which accounts for the effects of pressure, mass flux, inlet subcooling and rolling angle over all conditions tested. Unlike existing transient CHF experiments, CHF ratio of certain mass flux and pressure are different in rolling motion. For the mass fluxes below 500 kg m{sup -2}s{sup -1} at 13, 16 (region of relative low mass flux), CHF ratio was decreased but was increased above that mass flux (region of relative high mass flux). Moreover, CHF tend to enhance in entire mass flux at 24 bar. (authors)

  9. A Study on Bubble Departure and Bubble Lift-Off in Sub-Cooled Nucleate Boiling Flows

    SciTech Connect

    Wu, Wen; Chen, Peipei; Jones, Barclay G.; Newell, Ty A.

    2006-07-01

    This research examines bubble departure and bubble lift-off phenomena under subcooled nucleate boiling condition, using a high fidelity digital imaging apparatus. Refrigerant R- 134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Images at frame rates up to 4000 frames/s were obtained with varying experimental parameters e.g. pressure, inlet sub-cooled level, and flow rate, etc., showing characteristics of bubble behavior under different conditions. Bubble size and position information was calculated via Canny's algorithm for edge detection and Fitzgibbon's algorithm for ellipse fitting. Bubble departure and lift-off radiuses were obtained and compared with existing bubble forces and detachment models proposed by Thorncroft et al., with good agreement observed. (authors)

  10. Modeling and Thermal Performance Evaluation of Porous Curd Layers in Sub-Cooled Boiling Region of PWRs and Effects of Sub-Cooled Nucleate Boiling on Anomalous Porous Crud Deposition on Fuel Pin Surfaces

    SciTech Connect

    Barclay Jones

    2005-06-27

    A significant number of current PWRs around the world are experiencing anomalous crud deposition in the sub-cooled region of the core, resulting in an axial power shift or Axial Offset Anomaly (AOA), a condition that continues to elude prediction of occurrence and thermal/neutronic performance. This creates an operational difficulty of not being able to accurately determine power safety margin. In some cases this condition has required power ''down rating'' by as much as thirty percent and the concomitant considerable loss of revenue for the utility. This study examines two aspects of the issue: thermal performance of crud layer and effect of sub-cooled nucleate boiling on the solute concentration and its influence on initiation of crud deposition/formation on fuel pin surface.

  11. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    SciTech Connect

    Briere, E.; Larrauri, D.; Olive, J.

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  12. A mechanistic model for critical heat flux of subcooled flow boiling

    SciTech Connect

    Liu, W.; Nariai, H.; Inasaka, F.

    1999-07-01

    This paper presents a mechanistic model for the prediction of CHF of subcooled flow boiling based on liquid sublayer dryout model. In the model, By writing critical wavelength of Helmholtz Instability to both left and right sides of vapor blanket and by assuming these two wavelengths are equal to each other, the vapor blanket velocity U{sub B} can be written as a simple function of average velocity of liquid bulk V{sub {ell}} which can be obtained by the knowledge they have known. Then, on the base of U{sub B}, other important parameters such as vapor blanket length L{sub B} and liquid sublayer thickness {delta} can be calculated easily. The model is simple with explicit physics nature, and is characterized by the absence of empirical constants. To verify the present model, two databases (include about 2,400 points) are used. One gathered by Celata used to verify his model is characterized by high mass velocity and low-medium system pressure. The other gathered by Pei is characterized by high pressure and low-medium mass velocity. The verification showed that present model could keep its validity in a wide range of operating conditions (mass velocity up to 70 Mg/m{sup 2}s, system pressure up to 17.5 MPa). Figure A-1 shows a comparison of calculated versus experimental CHF. About 89% of data points are predicted within {+-}30%. Comparison between Celata model and the present model shows that although present model shows a little worse prediction than Celata model with the data base collected by Eclat, it shows a much better prediction with the data base collected by Pei. A general better prediction than Celata model is obtained with both the databases collected by Celata and Pei.

  13. Numerical investigation of water-based nanofluid subcooled flow boiling by three-phase Euler-Euler, Euler-Lagrange approach

    NASA Astrophysics Data System (ADS)

    Valizadeh, Ziba; Shams, Mehrzad

    2016-08-01

    A numerical scheme for simulating the subcooled flow boiling of water and water-based nanofluids was developed. At first, subcooled flow boiling of water was simulated by the Eulerian multiphase scheme. Then the simulation results were compared with previous experimental data and a good agreement was observed. In the next step, subcooled flow boiling of water-based nanofluid was modeled. In the previous studies in this field, the nanofluid assumed as a homogeneous liquid and the two-phase scheme was used to simulate its boiling. In the present study, a new scheme was used to model the nanofluid boiling. In this scheme, to model the nanofluid flow boiling, three phases, water, vapor and nanoparticles were considered. The Eulerian-Eulerian approach was used for modeling water-vapor interphase and Eulerian-Lagrangian scheme was selected to observe water-nanoparticle interphase behavior. The results from the nanofluid boiling modeling were validated with an experimental investigation. The results of the present work and experimental data were consistent. The addition of 0.0935 % volume fraction of nanoparticles in pure liquid boiling flow increases the vapor volume fraction at the outlet almost by 40.7 %. The results show the three-phase model is a good approach to simulate the nanofluid boiling flow.

  14. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    SciTech Connect

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  15. Detection of sub-cooled boiling heat transfer regimes up to critical heat flux by an accelerometric equipment

    SciTech Connect

    Celata, G.P.; Dell`Orco, G.; Gaspari, G.P.

    1994-12-31

    The design of the Plasma Facing Components of the Fusion Reactor NET/ITER is at present addressing the highest requirement in the field of the heat transfer thermal hydraulics. In particular, the structure inside the toroidal plasma chamber more critically heated is represented by the Divertor structure, placed behind the X-point of the poloidal magnetic field. The more promising heat transfer technique, among the possible using water as coolant, is based on the subcooled boiling and thermal hydraulics in the fully developed regime, with the highest heat transfer coefficient, but avoiding the reaching of the Critical Heat Flux (CHF) and its consequent dangerous Burn Out. To this aim an experimental activity was launched in order to optimize the material, the physical parameters and the structure geometry. This activity is framed within the collaboration between the NET Team, ENEA and SIET Labs. This paper presents the development of an experimental system for the detection of the subcooled boiling phenomenon covering the whole heat transfer regimes, on externally heated cylindrical channels, from the single phase up to the Critical Heat Flux, on the base of the recording, by using quartz accelerometers, of the bubble implosion noises.

  16. Subcooled freon-11 flow boiling in top-heated finned coolant channels with and without a twisted tape

    NASA Technical Reports Server (NTRS)

    Smith, Alvin; Boyd, Ronald D., Sr.

    1989-01-01

    An experimental study was conducted in top-heated finned horizontal tubes to study the effect of enhancement devices on flow boiling heat transfer in coolant channels. The objectives are to examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for circular coolant channels with spiral finned walls and/or spiral fins with a twisted tape, and improve the data reduction technique of a previous investigator. The working fluid is freon-11 with an inlet temperature of 22.2 C (approximately 21 C subcooling). The coolant channel's exit pressure and mass velocity are 0.19 M Pa (absolute) and 0.21 Mg/sq. ms, respectively. Two tube configurations were examined; i.e., tubes had either 6.52 (small pitch) or 4.0 (large pitch) fins/cm of the circumferential length (26 and 16 fins, respectively). The large pitch fins were also examined with a twisted tape insert. The inside nominal diameter of the copper channels at the root of the fins was 1.0 cm. The results show that by adding enhancement devices, boiling occurs almost simultaneously at all axial locations. The case of spiral fins with large pitch resulted in larger mean (circumferentially averaged) heat transfer coefficients, h sub m, at all axial locations. Finally, when twisted tape is added to the tube with large-pitched fins, the power required for the onset of boiling is reduced at all axial and circumferential locations.

  17. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  18. Experimental study of static flow instability in subcooled flow boiling in parallel channels

    SciTech Connect

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L.

    1995-12-31

    Experimental data for static flow instability or flow excursion (FE) at conditions applicable to the Advanced Neutron Source Reactor are very limited. A series of FE tests with light water flowing vertically upward was completed covering a local exit heat flux range of 0.7--18 MW/m{sup 2}, exit velocity range of 2.8--28.4 m/s, exit pressure range of 0.117--1.7 MPa, and inlet temperature range of 40-- 50{degrees}C. Most of the tests were performed in a ``stiff`` (constant flow) system where the instability threshold was detected through the minimum of the pressure-drop curve. A few tests were also conducted using as ``soft`` (constant pressure drop) a system as possible to secure a true FE phenomenon (actual secondary burnout). True critical heat flux experiments under similar conditions were also conducted using a stiff system. The FE data reported in this study considerably extend the velocity range of data presently available worldwide, most of which were obtained at velocities below 10 m/s. The Saha and Zuber correlation had the best fit with the data out of the three correlations compared. However, a modification was necessary to take into account the demonstrated dependence of the St and Nu numbers on subcooling levels, especially in the low subcooling regime. Comparison of Thermal Hydraulic Test Loop (THTL) data, as well as extensive data from other investigators, led to a proposed modification to the Saha and Zuber correlation for onset of significant void, applied to FE prediction. The mean and standard deviation of the THTL data were 0.95 and 15%, respectively, when comparing the THTL data with the original Saha and Zuber correlation, and 0.93 and 10% when comparing them with the modification. Comparison with the worldwide database showed a mean and standard deviation of 1.37 and 53%, respectively, for the original Saha and Zuber correlation and 1.0 and 27% for the modification.

  19. Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Benton, John; Kucner, Robert

    2000-01-01

    A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

  20. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  1. Boils

    MedlinePlus

    ... the boil is very bad or comes back. Antibacterial soaps and creams cannot help much once a ... following may help prevent the spread of infection: Antibacterial soaps Antiseptic (germ-killing) washes Keeping clean (such ...

  2. Influences of subcooling on burnout of horizontal cylindrical heaters

    SciTech Connect

    Elkassabgi, Y.; Lienhard, J.H. )

    1988-05-01

    The peak pool boiling heat flux is observed on horizontal cylindrical heaters in acetone, Freon-113, methanol, and isopropanol over ranges of subcooling from zero to 130C. Photographs, and the data themselves, revealed that there are three distinct burnout mechanisms at different levels of subcooling. Three interpretive models provide the basis for accurate correlations of the present data, and data from the literature, in each of the three regimes. Burnout is dictated by condensation on the walls of the vapor jets and columns at low subcooling. In the intermediate regime, burnout is limited by natural convection, which becomes very effective as vapor near the heater reduces boundary layer resistance. Burnout in the high-subcooling regime is independent of the level of subcooling, and is limited by the process of molecular effusion.

  3. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.

  4. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  5. Condensation on a noncollapsing vapor bubble in a subcooled liquid

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Simoneau, R. J.

    1979-01-01

    An experimental procedure is presented by which an estimate can be made of the condensation coefficient on a noncollapsing stationary vapor bubble in subcooled liquid nitrogen. Film boiling from a thin wire was used to generate vapor bubbles which remain fixed to the wire at their base. A balance was established between the evaporation in the thin annular region along the wire and the condensation in the vapor bubbles.

  6. Boiling incipience and convective boiling of neon and nitrogen

    NASA Technical Reports Server (NTRS)

    Papell, S. S.; Hendricks, R. C.

    1977-01-01

    Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent

  7. High flux film and transition boiling

    SciTech Connect

    Witte, L.C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting, the transition region is good, and points the way to further research that is needed to demonstrate the potential.

  8. High flux film and transition boiling

    NASA Astrophysics Data System (ADS)

    Witte, L. C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of the heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting the transition region is good and points the way to further research that is needed to demonstrate the potential.

  9. The bubble fossil record: insight into boiling nucleation using nanofluid pool-boiling

    NASA Astrophysics Data System (ADS)

    Huitink, David; Ontiveros, Elvis Efren Dominguez; Hassan, Yassin

    2012-02-01

    Subcooled pool boiling of Al2O3/water nanofluid (0.1 vol%) was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to observe surface features of the wire heater where nanoparticles had deposited. A layer of aggregated alumina particles collected on the heated surface, where evidence of fluid shear associated with bubble nucleation and departure was "fossilized" in the fluidized nano-porous surface coating. These structures contain evidence of the fluid forces present in the microlayer prior to departure and provide a unique understanding of boiling phenomena. A unique mode of heat transfer was identified in nanofluid pool boiling.

  10. Boils (Furunculosis)

    MedlinePlus

    ... resulting from the deep infection of a hair follicle. The infection is usually caused by a type ... germ gain entry into and infect the hair follicle, resulting in a boil. Boils may resolve with ...

  11. Self-sustained hydrodynamic oscillations in a natural-circulation two-phase-flow boiling loop

    NASA Technical Reports Server (NTRS)

    Jain, K. C.

    1969-01-01

    Results of an experimental and theoretical study of factors affecting self-sustaining hydrodynamic oscillations in boiling-water loops are reported. Data on flow variables, and the effects of geometry, subcooling and pressure on the development of oscillatory behavior in a natural-circulation two-phase-flow boiling loop are included.

  12. Testing and evaluation of small cavitating venturis with water at low inlet subcooling

    NASA Astrophysics Data System (ADS)

    Liou, S. G.; Chen, I. Y.; Sheu, J. S.

    1998-01-01

    Cavitating venturi (CV) has been widely used as a flow control device in many different industries. In 1990, cavitating venturi was selected as the baseline flow control device in the Space Station Freedom's (SSF's) two-phase active thermal control system (ATCS). However, the design and the operation of the CVs used in SSF's ATCS is quite different in many ways from that typically used in the industry, such as low mass flow rate, small size, low pressure difference between inlet and outlet, and low inlet subcooling. During the prototypic ATCS' testing at NASA/Johnson Space Center, a phenomenon called overflow associated with throat superheat was observed. Although data was obtained and analyzed, no useful correlation for the superheat at rechoking was acquired. The objective of this study is to conduct a performance test on small CVs under low inlet subcooling. Water is used as the working fluid. Data acquisition and analysis are carried out under normal choked flow, over flow and recovery conditions. The effects of CV's size, fluid temperature, flow condition and inlet subcooling on CV performance are evaluated. Analysis of the test results showed that the superheat necessary for the onset of nucleation in pool boiling can be applied for the estimation of superheat required at rechoking for the CVs. With this postulated superheat and the predetermined CV loss coefficient, a equation as a function of inlet subcooling is recommended for predicting the pressure ratio at the recovery for the choked flow control in a mechanically pumped system.

  13. Fluid inclusion evidence for boiling at approx. 370/sup 0/C in the stockwork of the Lasail ophiolitic hydrothermal massive sulfide deposit, Oman

    SciTech Connect

    Spooner, E.T.C.; Bray, C.J.

    1985-01-01

    Four samples of stockwork material from DDHnumber9 through the Lasail ophiolitic massive sulfide deposit in Oman were found to contain satisfactory densities of primary fluid inclusion. Primary fluid inclusions in the latter three samples show evidence typical of boiling: (i) variable phase rations, and (ii) inclusions which homogenize into the liquid or vapor phases over the same temperature interval (360/sup 0/C-400/sup 0/C). The pooled data show two salinity populations: one with a modal composition near that of seawater, (3.5 wt.%TDS), and the other characterized by the bulk of the data concentrated between 4.9 and 6.4 equiv. wt.% NaCl (x 1.4-1.8 seawater) with values as high as 8.6 (x 2.5 seawater). The latter high salinities are interpreted to have been produced by the boiling process. For boiling conditions, fluid inclusion homogenization temperatures = trapping temperatures, with some perturbations. Hence, the mode (372/sup 0/C) and range (360/sup 0/C-400/sup 0/C) of the homogenization temperatures for the high salinity population are estimates of the fluid temperatures during ore deposition. The values are at the upper end of the measured range for black smokers. The pressure given by these boiling temperatures is approx. 230 bars, giving an estimate for original seawater depth of approx. 2-2 1/2 km; figures typical of active spreading ridges. The sample from immediately below massive ore (OM2064) shows a lower hom. T range of 330/sup 0/C-350/sup 0/C, no high salinity population, and no evidence for boiling. These observations are interpreted to reflect high level mixing with cold seawater immediately below the original sea floor.

  14. High flux film and transition boiling. Final report, April 1988--January 1993

    SciTech Connect

    Witte, L.C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting, the transition region is good, and points the way to further research that is needed to demonstrate the potential.

  15. TAURUS II launch vehicle lox subcooler

    NASA Astrophysics Data System (ADS)

    McIntosh, Glen E.

    2012-06-01

    The Orbital Sciences Taurus II medium lift launch vehicle utilizes first stage engines fueled by liquid oxygen and RP-1. Performance of the Taurus II is enhanced by densifying the liquid oxygen from a saturation temperature of 94 K to a subcooled temperature of 77.9 K. Subcooling the 75.07 kg/s liquid oxygen flow is accomplished in a 1.907 megawatt heat exchanger cooled by a flow of 9.62 kg/s ambient pressure liquid nitrogen. Design, fabrication, insulation and testing of the densification heat exchanger is described in this paper.

  16. Sliding bubbles on a hot horizontal wire in a subcooled bath

    NASA Astrophysics Data System (ADS)

    Duchesne, Alexis; Dubois, Charles; Caps, Hervé

    2015-11-01

    When a wire is heated up to the boiling point in a liquid bath some bubbles will nucleate on the wire surface. Traditional nucleate boiling theory predicts that bubbles generate from active nucleate site, grow up and depart from the heating surface due to buoyancy and inertia. However, an alternative scenario is presented in the literature for a subcooled bath: bubbles slide along the horizontal wire before departing. New experiments were performed by using a constantan wire and different liquids, varying the injected power. Silicone oil, water and even liquid nitrogen were tested in order to vary wetting conditions, liquid viscosities and surface tensions. We explored the influence of the wire diameter and of the subcooled bath temperature. We observed, of course, sliding motion, but also a wide range of behaviors from bubbles clustering to film boiling. We noticed that bubbles could change moving sense, especially when encountering with another bubble. The bubble speed is carefully measured and can reach more than 100 mm/s for a millimetric bubble. We investigated the dependence of the speed on the different parameters and found that this speed is, for a given configuration, quite independent of the injected power. We understand these phenomena in terms of Marangoni effects. This project has been financially supported by ARC SuperCool contract of the University of Liège.

  17. Thermodynamics of Flow Boiling Heat Transfer

    NASA Astrophysics Data System (ADS)

    Collado, F. J.

    2003-05-01

    Convective boiling in sub-cooled water flowing through a heated channel is essential in many engineering applications where high heat flux needs to be accommodated. It has been customary to represent the heat transfer by the boiling curve, which shows the heat flux versus the wall-minus-saturation temperature difference. However it is a rather complicated problem, and recent revisions of two-phase flow and heat transfer note that calculated values of boiling heat transfer coefficients present many uncertainties. Quite recently, the author has shown that the average thermal gap in the heated channel (the wall temperature minus the average temperature of the coolant) was tightly connected with the thermodynamic efficiency of a theoretical reversible engine placed in this thermal gap. In this work, whereas this correlation is checked again with data taken by General Electric (task III) for water at high pressure, a possible connection between this wall efficiency and the reversible-work theorem is explored.

  18. Visualization study on pool boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Kamei, Shuya; Hirata, Masaru

    1991-04-01

    The visualized boiling phenomena were observed by means of high speed photographic shadowgraphy using a rotating prism camera (nac HIGH SPEED CAMERA model-16HD) with the speed of about 3500 frames per second. The photographs show that pool boiling heat transfer phenomena are varied for the boiling curve based on the experiments. Experiments have been carried out to investigate pool boiling heat transfer phenomena on a horizontal thin filament in subcooled and saturated distilled water. The experiments were performed for atmospheric pressure,for filament diameters of about 0.3 mm, for region of natural convection to film boiling. The color-film made by high speed movie camera are converted to high speed color video-tape. It is convenient to edit and show the tape for visualization with teaching the students. The high speed color video showed that the successive motion and shape of bubbles during their process of detachment varied with increasing heat flux on the heated surface of a filament. From these results, it was confirmed that the high speed phenomena of boiling by the slow motion video pictures could be estimated clearly.

  19. Boiling incipience in a reboiler tube

    SciTech Connect

    Ali, H.; Alam, S.S. )

    1991-03-01

    This heating surface and liquid temperature distributions were experimentally obtained to identify the boiling incipience conditions in a single vertical tube thermosiphon reboiler with water, acetone, ethanol, and ethylene glycol as test liquids. The test section was an electrically heated stainless steel tube of 25.56-mm i.d. and 1900 mm long. The uniform heat flux values were used in the range of 3800--40 000 W/m{sup 2}, while inlet liquid subcooling were varied from 0.2 to 45.5{degrees} C. The liquid submergence was maintained around 100, 75, 50 and 30%. All the data were generated at 1-atm pressure. The maximum superheats attained around boiling incipience were taken from the wall temperature distributions and correlated with heat flux and physical properties of liquids using the expression of Yin and Abdelmessih. The heated sections required for onset of fully developed boiling with net vapor generation were determined assuming a thermal equilibrium model. In this paper a dimensionless correlation relating these values with heat flux, liquid subcooling, and submergence is proposed.

  20. Pool boiling from rotating and stationary spheres in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.

  1. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1999-01-01

    The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the

  2. Boiling Experiment Facility for Heat Transfer Studies in Microgravity

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; McQuillen, John; Chao, David

    2008-01-01

    Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.

  3. Boiling heat transfer in reduced gravity during quenching of a hot surface with R-113

    SciTech Connect

    Xu, J.J.; Adham-Khodaparast, K.; Kawaji, M.

    1995-12-31

    An experimental study of the flow boiling heat transfer characteristics under microgravity conditions is presented. The experiments were conducted using R-113 by rewetting a heated bottom plate of a rectangular channel, 40 mm wide, 5 mm high and 200 mm long, aboard the KC-135 parabolic aircraft. The local surface heat flux and temperature were measured by a 2-{micro}m thick micro sensor directly fabricated on the surface of the heated plate. The film boiling heat transfer coefficients in microgravity were 70% to 80% of the values in normal gravity, and the results in both gravity conditions showed reasonable agreement with the predictions of Bromley (1953) correlation. Under microgravity, the flow rate had less effect but subcooling had a significant effect on nucleate boiling heat transfer. The effect of microgravity is similar to that due to the absence of subcooling in normal gravity, because both result in a thicker and more stable vapor layer. Also, the nucleate boiling regime covered a wider range of wall superheat below the maximum heat flux in the absence of gravity or subcooling than in the case of high subcooling and normal gravity.

  4. Dynamics of discrete bubble in nucleate pool boiling on thin wires in microgravity

    NASA Astrophysics Data System (ADS)

    Wan, Shixin; Zhao, Jianfu; Liu, Gang

    2009-03-01

    A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22nd Chinese recoverable satellite. The fluid is degassed R113 at 0.1 MPa and subcooled by 26°C nominally. A thin platinum wire of 60 μm in diameter and 30 mm in length is simultaneously used as heater and thermometer. Only the dynamics of the vapor bubbles, particularly the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. It’s found that these distinct behaviors can be explained by the Marangoni convection in the liquid surrounding vapor bubbles. The origin of the Marangoni effect is also discussed.

  5. Film boiling heat transfer from a sphere in natural and forced convection of freon-113

    SciTech Connect

    Dix, D.; Orozco, J. )

    1990-01-01

    Boiling heat transfer fluxes were measured on a 3.84-cm hollow copper sphere, in both forced convection and pool boiling, as a function of angular position in Freon 113. This paper reports on forced-convection tests run at speeds of 0.5 to 1.9 m/s. These tests were conducted in the stable film boiling region of the boiling curve. Significant heat transfer rates were measured in the vapor wake region of the sphere for flow film boiling. Video observations of the boiling process revealed that the flow film boiling vapor removal mechanism consisted of periodic formation and detachment of a vapor wake in the rear of the sphere. For pool boiling it was found that the heated surface had a uniform rate of energy dissipation in the stable film boiling regime, whereas in forced convection the film boiling rate was dependent on angular position. Pool film boiling tests also showed multiple humps (more than one maximum heat flux) in the boiling curve when the liquid was subcooled.

  6. Boiling Heat Transfer Mechanisms in Earth and Low Gravity: Boundary Condition and Heater Aspect Ratio Effects

    NASA Technical Reports Server (NTRS)

    Kim, Jungho

    2004-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across

  7. Cavitation Instability in Subcooled Liquid Nitrogen Nozzle Flows

    NASA Astrophysics Data System (ADS)

    Niiyama, Kazuki; Nozawa, Masakazu; Ohira, Katsuhide; Oike, Mamoru

    Subcooled cryogenic fluids are used in many fields such as a propellant for liquid propulsion rocket systems and a coolant for superconducting systems. However, the fundamental characteristics of subcooled cryogenic cavitating flows have not been clarified. Therefore, a visualization experiment for a cryogenic cavitating flow passing through a converging-diverging nozzle was carried out with liquid nitrogen in the subcooled condition. The results indicate that the cavitation instability is caused by the intersection of the speed of sound in a gas-liquid two-phase flow with the required velocity for cavitation inception and cavitation conservation.

  8. Lateral Motion and Departure of Vapor Bubbles in Nucleate Pool Boiling on Thin Wires in Microgravity

    NASA Astrophysics Data System (ADS)

    Zhao, J. F.; Wan, S. X.; Liu, G.; Li, Z. D.; Lu, Y. H.; Yan, N.

    A space experiment on bubble behavior and heat transfer in subcooled pool boiling phenomenon has been performed utilizing the temperature-controlled pool boiling (TCPB) device both in normal gravity in the laboratory and in microgravity aboard the 22nd Chinese recoverable satellite. The fluid is R113 at 0.lMPa and subcooled by 26°C nominally. A thin platinum wire of 60µm in diameter and 30mm in length is simultaneously used as heater and thermometer. Only the lateral motion and the departure of discrete vapor bubbles in nucleate pool boiling are reported and analyzed in the present paper. A scale analysis on the Marangoni convection surrounding a bubble in the process of subcooled nucleate pool boiling leads to formulas of the characteristic velocity of the lateral motion and its observability. The predictions consist with the experimental observations. Considering the Marangoni effect, a new qualitative model is proposed to reveal the mechanism underlying the bubble departure processes and a quantitative agreement can also be acquired.

  9. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  10. Steady State Vapor Bubble in Pool Boiling

    NASA Astrophysics Data System (ADS)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  11. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  12. Experimental investigation of flow-boiling heat transfer under microgravity

    NASA Astrophysics Data System (ADS)

    Lui, R. K.; Kawaji, M.; Ogushi, T.

    An experimental apparatus has been constructed and used to investigate one-component flow-boiling heat transfer under microgravity conditions. Freon-113 was injected at a constant rate between 35 cu cm/s and 75 cu cm/s into a cylindrical stainless steel test section (L 914.4 mm, O.D. 12.5 mm, I.D. 12.0 mm). The horizontal test section was heated externally up to 30 kW/sq m by a flexible strip heater. The subcooled freon was boiled within the length of the test section to produce two-phase flow. Thermocouples attached to the outer surface of the test section measured the steady tube wall temperature profiles. The resulting two-phase flow was then condensed and cooled before being recirculated in the flow loop. Experiments under microgravity were performed aboard NASA's KC-135 aircraft. Preliminary tests have indicated satisfactory operation of the experimental apparatus. Limited data showed that gravity has a small effect on subcooled boiling heat transfer at high mass velocities (G = 685 km/sq m.s). On the other hand, heat transfer coefficients increased slightly (5%) during microgravity for lower mass velocities (G = 468 kg/sq m.s.). Further experiments aboard the KC-135 are planned for June, 1992.

  13. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  14. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1997

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    The Thermal Science Research Center (TSRC) at Prairie View A&M University is involved in an international fusion reactor technology development program aimed at demonstrating the technical feasibility of magnetic fusion energy. This report highlights: (1) Recent accomplishments and pinpoints thermal hydraulic problem areas of immediate concern to the development of plasma-facing components, and (2) Next generation thermal hydraulic problems which must be addressed to insure safety and reliability in component operation. More specifically, the near-term thermal hydraulic problem entails: (1) generating an appropriate data base to insure the development of single-side heat flux correlations, and (2) evaluating previously developed single-side/uniform heated transformations and correlations to determine which can be used to relate the vast two-phase heat transfer and critical heat flux (CHF) technical literature for uniformly heated flow channels to single-side heated channels.

  15. Local Heat Transfer and CHF for Subcooled Flow Boiling - Annual Report 1996

    SciTech Connect

    Dr. Ronald D. Boyd

    2000-07-01

    For the past decade, efforts have been growing in the development of high heat flux (HHF) components for many applications, including fusion and fission reactor components, advanced electronic components, synchrotrons and optical components, and other advanced HHF engineering applications. From a thermal prospective, work in the fusion reactor development arena has been underway in a number of areas including: (1) Plasma thermal, and electro-magnetics, and particle transport, (2) Fusion material, rheology, development, and expansion and selection; (3) High heat flux removal; and (4) Energy production and efficiency.

  16. Numerical Analysis of Lead-Bismuth-Water Direct Contact Boiling Heat Transfer

    NASA Astrophysics Data System (ADS)

    Yamada, Yumi; Takahashi, Minoru

    Direct contact boiling heat transfer of sub-cooled water with lead-bismuth eutectic (Pb-Bi) was investigated for the evaluation of the performance of steam generation in direct contact of feed water with primary Pb-Bi coolant in upper plenum above the core in Pb-Bi-cooled direct contact boiling water fast reactor. An analytical two-fluid model was developed to estimate the heat transfer numerically. Numerical results were compared with experimental ones for verification of the model. The overall volumetric heat transfer coefficient was calculated from heat exchange rate in the chimney. It was confirmed that the calculated results agreed well with the experimental result.

  17. New methods of subcooled water recognition in dew point hygrometers

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard

    2001-08-01

    Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.

  18. Secondary pool boiling effects

    NASA Astrophysics Data System (ADS)

    Kruse, C.; Tsubaki, A.; Zuhlke, C.; Anderson, T.; Alexander, D.; Gogos, G.; Ndao, S.

    2016-02-01

    A pool boiling phenomenon referred to as secondary boiling effects is discussed. Based on the experimental trends, a mechanism is proposed that identifies the parameters that lead to this phenomenon. Secondary boiling effects refer to a distinct decrease in the wall superheat temperature near the critical heat flux due to a significant increase in the heat transfer coefficient. Recent pool boiling heat transfer experiments using femtosecond laser processed Inconel, stainless steel, and copper multiscale surfaces consistently displayed secondary boiling effects, which were found to be a result of both temperature drop along the microstructures and nucleation characteristic length scales. The temperature drop is a function of microstructure height and thermal conductivity. An increased microstructure height and a decreased thermal conductivity result in a significant temperature drop along the microstructures. This temperature drop becomes more pronounced at higher heat fluxes and along with the right nucleation characteristic length scales results in a change of the boiling dynamics. Nucleation spreads from the bottom of the microstructure valleys to the top of the microstructures, resulting in a decreased surface superheat with an increasing heat flux. This decrease in the wall superheat at higher heat fluxes is reflected by a "hook back" of the traditional boiling curve and is thus referred to as secondary boiling effects. In addition, a boiling hysteresis during increasing and decreasing heat flux develops due to the secondary boiling effects. This hysteresis further validates the existence of secondary boiling effects.

  19. Boiling and nonboiling heat transfer to electrolyte solutions

    SciTech Connect

    Najibi, S.H.; Mueller-Steinhagen, H.; Jamialahmadi, M.

    1996-10-01

    Heat transfer to electrolyte solutions is a common engineering problem in the chemical and petrochemical industries. Nevertheless, only a few experimental investigations of heat transfer to electrolyte solutions can be found in the literature. To improve design of heat transfer equipment and to understand fouling characteristics, it is important to know the clean heat transfer coefficient of electrolyte solutions, and whether heat transfer to electrolyte solutions can be predicted with models found for less complicated fluids. A wide range of experiments were performed to determine the effects of various dissolved salts on forced-convective, pool boiling, and subcooled flow-boiling heat transfer. The effect of dissolved salts on bubble size and nucleation site density were also investigated. The measured heat transfer coefficients are compared with recommended correlations for the different heat transfer modes.

  20. Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention

    SciTech Connect

    Chu, T.Y.; Slezak, S.E.; Bentz, J.H.; Pasedag, W.F.

    1994-03-01

    This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactor vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.

  1. Pool boiling of dielectric liquids on porous graphite and extended copper surfaces

    NASA Astrophysics Data System (ADS)

    Parker, Jack L.

    This work investigated pool boiling of the dielectric liquids HFE-7100 and FC-72 on plane copper and porous graphite and on copper surfaces with corner pins. The work investigated the effects of surface orientation and liquid subcooling and, for the copper surfaces with corner pins, the effect of surface roughness. In addition, investigations were made studying the heat transfer by natural convection and nucleate boiling, as well as the effects of liquid subcooling (up to 30 K) and surface inclination (0°--upward facing, to 180°--downward facing) on nucleate boiling heat transfer and Critical Heat Flux (CHF). The results are applicable to direct immersion cooling by nucleate boiling of high power computer chips dissipating 50 - 100 W/cm2 while maintaining the junction temperature for the chips below the recommended values (˜85 °C). Pool boiling experiments are performed with degassed HFE-7100 and FC-72 liquids using uniformly heated 10 x 10 mm porous graphite and copper surfaces with corner pins. The measured footprint temperatures and thermal power removed from the surfaces are used to construct the pool boiling curves and determine the critical heat flux and corresponding surface superheat. Results are compared with those obtained on plane copper of same heated footprint area. The obtained CHF values are also compared with those reported in the open literature for plane, micro-porous, and macro-structured surfaces. Digital photographs and video are obtained to help explain and interpret the results. For the first time, natural convection correlations for dielectric liquids on plane, porous, and copper with corner pins developed. These correlations are important to electronic cooling in the stand-by mode when the heat dissipation by the chips is only a few watts. Results show that the power removed by natural convection from surfaces with corner pins is 67% more than from plane Si and Cu surfaces at the same surface superheat. Using porous graphite and copper

  2. Momentum effects in steady nucleate pool boiling during microgravity.

    PubMed

    Merte, Herman

    2004-11-01

    Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.

  3. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  4. A study of forced convection boiling under reduced gravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1992-01-01

    This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?

  5. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; Konichi, Chris; Hyounsoon, Lee

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and

  6. Numerical thermal analysis of water's boiling heat transfer based on a turbulent jet impingement on heated surface

    NASA Astrophysics Data System (ADS)

    Toghraie, D.

    2016-10-01

    In this study, a numerical method for simulation of flow boiling through subcooled jet on a hot surface with 800 °C has been presented. Volume fraction (VOF) has been used to simulate boiling heat transfer and investigation of the quench phenomena through fluid jet on a hot horizontal surface. Simulation has been done in a fixed Tsub=55 °C, Re=5000 to Re=50,000 and also in different Tsub =Tsat -Tf between 10 °C and 95 °C. The effect of fluid jet velocity and subcooled temperature on the rewetting temperature, wet zone propagation, cooling rate and maximum heat flux has been investigated. The results of this study show that by increasing the velocity of fluid jet of water, convective heat transfer coefficient at stagnation point increases. More ever, by decreasing the temperature of the fluid jet, convective heat transfer coefficient increases.

  7. Boiling heat transfer enhancement of nanofluids on a smooth surface with agitation

    NASA Astrophysics Data System (ADS)

    Kong, Xin; Qi, Baojin; Wei, Jinjia; Li, Wei; Ding, Jie; Zhang, Yonghai

    2016-02-01

    The pool boiling heat transfer performance on a smooth silicon chip surface with agitation was experimentally investigated in this study. The nanofluids (Ag/alcohol) of 0.02 % volume concentration and ethyl alcohol with purification over 99.9 % were the two contrast working fluids. For each group, subcoolings of 40, 50 and 60 K were conducted under atmospheric pressure. To enhance the heat transfer performance, an agitating device was fixed above the top of the chip. The experimental results indicated that nanofluids could enhance the heat transfer performance especially in the nucleate boiling region. The heat transfer coefficient was significantly increased with nanofluids, while the critical heat flux (CHF) was nearly not changed. In the agitation Reynolds number of 20,300, the heat transfer performance of nanofluids was significantly enhanced in the convection region, and the CHF was increased by more than 25 % for all groups. This boiling phenomenon was observed for both nanofluids and alcohol groups. Meanwhile, the boiling curves of different liquid subcoolings in the nucleate region were quite similar to each other under agitation.

  8. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  9. Transient nucleate pool boiling in microgravity: Some initial results

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, H. S.; Ervin, J. S.

    1994-01-01

    liquid subcooling is sufficiently high and if the imposed heat flux is sufficiently low. This is attributed to suface tension effects at the liquid-vapor-solid junction causing rewetting to take place, sustaining the nucleate boiling. Otherwise, dryout at the heater surface will occur, as observed.

  10. Marangoni Effects in the Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    Ahmed, Sayeed; Carey, Van P.; Motil, Brian

    1996-01-01

    Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.

  11. Hydrothermal Processing

    SciTech Connect

    Elliott, Douglas C.

    2011-03-11

    This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

  12. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  13. Odd-Boiled Eggs

    ERIC Educational Resources Information Center

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  14. Model for boiling and dryout in particle beds. [LMFBR

    SciTech Connect

    Lipinski, R. J.

    1982-06-01

    Over the last ten years experiments and modeling of dryout in particle beds have produced over fifty papers. Considering only volume-heated beds, over 250 dryout measurements have been made, and are listed in this work. In addition, fifteen models to predict dryout have been produced and are discussed. A model is developed in this report for one-dimensional boiling and dryout in a porous medium. It is based on conservation laws for mass, momentum, and energy. The initial coupled differential equations are reduced to a single first-order differential equation with an algebraic equation for the upper boundary condition. The model includes the effects of both laminar and turbulent flow, two-phase friction, and capillary force. The boundary condition at the bed bottom includes the possibility of inflowing liquid and either an adiabatic or a bottom-cooled support structure. The top of the bed may be either channeled or subcooled. In the first case the channel length and the saturation at the base of the channels are predicted. In the latter case, a criterion for penetration of the subcooled zone by channels is obtained.

  15. Enhancement of Nucleate Boiling Heat Flux on Macro/Micro-Structured Surfaces Cooled by Multiple Impinging Jets

    NASA Technical Reports Server (NTRS)

    Kugler, Scott Lee

    1997-01-01

    An experimental investigation of nucleate boiling heat transfer from modified surfaces cooled by multiple in-line impinging circular jets is reported and found to agree with single jet results. A copper block is heated from the back by two electrical arcs, and cooled on the opposite side by three identical liquid jets of distilled water at subcoolings of 25 C 50 C and 77 C and Freon 113 at 24 C subcooling. Liquid flow rates are held constant at 5, 10, and 15 GPH for each of the three jets with jet velocities ranging from 1.4 m/s to 1 1.2 m/s and jet diameters from 0.95 mm to 2.2 mm. To increase the maximum heat flux (CHF) and heat removal rate, the boiling surface was modified by both macro and micro enhancements. Macro modification consists of machined radial grooves in the boiling surface arranged in an optimally designed pattern to allow better liquid distribution along the surface. These grooves also reduce splashing of liquid droplets, and provide 'channels' to sweep away bubbles. Micro modification was achieved by flame spraying metal powder on the boiling surface, creating a porous, sintered surface. With the addition of both micro and macro structured enhancements, maximum heat flux and nucleate boiling can be enhanced by more than 200%. Examination of each surface modification separately and together indicates that at lower superheats, the micro structure provides the enhanced heat transfer by providing more nucleation sites, while for higher superheats the macro structure allows better liquid distribution and bubble removal. A correlation is presented to account for liquid subcoolings and surface enhancements, in addition to the geometrical and fluid properties previously reported in the literature.

  16. Boiling inception in trichlorotrifluoroethane during forced convection at high pressures

    NASA Technical Reports Server (NTRS)

    Dougall, R. S.; Lippert, T. E.

    1972-01-01

    The inception of bubbles during forced convection was studied experimentally by using trichlorotrifluoroethane (R-113 or Freon-113). The experiments were performed in a rectangular channel, 12.7 x 9.5 mm in cross section. Heating was from a 3.2 mm wide strip embedded in the longer side of the channel. The pressures studied ranged from 3.6 to 20.7 bar, mass velocities from 700 to 600 kg/sq m/sec, and inlet subcoolings from 26 to 97 C. Photographs of the flow were used to determine when bubbles first appeared on the heated surface. These data were compared with wall temperature measurements and inception theories. A reasonable method for calculating the complete boiling curve was found to agree with these results.

  17. Critical discharge of initially subcooled water through slits. [PWR; BWR

    SciTech Connect

    Amos, C N; Schrock, V E

    1983-09-01

    This report describes an experimental investigation into the critical flow of initially subcooled water through rectangular slits. The study of such flows is relevant to the prediction of leak flow rates from cracks in piping, or pressure vessels, which contain sufficient enthalpy that vaporization will occur if they are allowed to expand to the ambient pressure. Two new analytical models, which allow for the generation of a metastable liquid phase, are developed. Experimental results are compared with the predictions of both these new models and with a Fanno Homogeneous Equilibrium Model.

  18. Nucleate pool boiling in the long duration low gravity environment of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.; Meserole, J. S.

    1993-01-01

    The results are presented of an experimental study of nucleate pool boiling performed in the low gravity environment of the space shuttle. Photographic observations of pool boiling in Freon 113 were obtained during the 'Tank Pressure Control Experiment,' flown on the Space Transportation System, STS-43 in August 1991. Nucleate boiling data from large (relative to bubble size) flat heating surfaces (0.1046 by 0.0742 m) was obtained at very low heat fluxes (0.22 to 1.19 kW/sq m). The system pressure and the bulk liquid subcooling varied in the range of 40 to 60 kPa and 3 to 5 C respectively. Thirty-eight boiling tests, each of 10-min duration for a given heat flux, were conducted. Measurements included the heater power, heater surface temperature, the liquid temperature and the system pressure as functions of heating time. Video data of the first 2 min of heating was recorded for each test. In some tests the video clearly shows the inception of boiling and the growth and departure of bubbles from the surface during the first 2 min of heating. In the absence of video data, the heater temperature variation during heating shows the inception of boiling and stable nucleate boiling. During the stable nucleate boiling, the wall superheat varied between 2.8 to 3.8 C for heat fluxes in the range of 0.95 to 1.19 kW/sq m. The wall superheat at the inception of boiling varied between 2 to 13 C.

  19. Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.

    2014-01-01

    We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.

  20. Momentum effects in steady nucleate pool boiling during microgravity.

    PubMed

    Merte, Herman

    2004-11-01

    Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer. PMID:15644357

  1. Radiolysis of boiling water

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Katsumura, Yosuke; Yamashita, Shinichi; Matsuura, Chihiro; Hiroishi, Daisuke; Lertnaisat, Phantira; Taguchi, Mitsumasa

    2016-06-01

    γ-radiolysis of boiling water has been investigated. The G-value of H2 evolution was found to be very sensitive to the purity of water. In high-purity water, both H2 and O2 gases were formed in the stoichiometric ratio of 2:1; a negligible amount of H2O2 remained in the liquid phase. The G-values of H2 and O2 gas evolution depend on the dose rate: lower dose rates produce larger yields. To clarify the importance of the interface between liquid and gas phase for gas evolution, the gas evolution under Ar gas bubbling was measured. A large amount of H2 was detected, similar to the radiolysis of boiling water. The evolution of gas was enhanced in a 0.5 M NaCl aqueous solution. Deterministic chemical kinetics simulation elucidated the mechanism of radiolysis in boiling water.

  2. A theory of dropwise condensation at large subcooling including the effect of the sweeping

    NASA Astrophysics Data System (ADS)

    Yamali, C.; Merte, H., Jr.

    The effect of sweeping by the departing droplets on the heat transfer coefficient in dropwise condensation is studied analytically here. Using basic principles, an analytical model for dropwise condensation is devised, which takes into account the elementary processes that make up the dropwise condensation cycle. The analysis is divided into two parts: in the first part, the heat transfer as a result of nucleation and coalescing of the droplets is considered. In the second part, the effect of sweeping is introduced. The results are presented as the variation of nondimensional heat flux versus the distance from the upper edge of the condenser surface at various surface subcoolings. Calculations show that the variation of heat flux with surface subcooling is linear only at small values of subcooling. As the subcooling is increased the slope of the mean heat flux versus subcooling curve decreases, and for a sufficiently high body force passes through a maximum.

  3. Physical interpretation of geysering phenomena and periodic boiling instability at low flows

    SciTech Connect

    Duffey, R.B.; Rohatgi, U.S.

    1996-03-01

    Over 30 years ago, Griffith showed that unstable and periodic initial boiling occurred in stagnant liquids in heated pipes coupled to a cooler or condensing plenum volume. This was called ``geysering``, and is a similar phenomenon to the rapid nucleation and voiding observed in tubes filled with superheated liquid. It is also called ``bumping`` when non-uniformly heated water or a chemical suddenly boils in laboratory glassware. In engineering, the stability and predictability has importance to the onset of bulk boiling in a natural and forced circulation loops. The latest available data show the observed stability and periodicity of the onset of boiling flow when there is a plenum, multiple heated channels, and a sustained subcooling in a circulating loop. We examine the available data, both old and new, and develop a new theory to illustrate the simple physics causing the observed periodicity of the flow. We examine the validity of the theory by comparison to all the geysering data, and develop a useful and simple correlation. We illustrate the equivalence of the onset of geysering to the onset of static instability in subcooled boiling. We also derive the stability boundary for geysering, utilizing turbulent transport analysis to determine the effects of pressure and other key parameters. This new result explains the greater stability region observed at higher pressures. The paper builds on the 30 years of quite independent thermal hydraulic work that is still fresh and useful today. We discuss the physical interpretation of geysering onset with a consistent theory, and show where refinements would be useful to the data correlations.

  4. Pool film boiling from rotating and stationary spheres in liquid nitrogen. [for SSME turbopump ball bearings

    NASA Technical Reports Server (NTRS)

    Cuan, Winston M.; Schwartz, Sidney H.

    1988-01-01

    Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.

  5. Experimental investigation of forced convective boiling flow instabilities in horizontal helically coiled tubes

    NASA Astrophysics Data System (ADS)

    Guo, L. J.; Feng, Z. P.; Chen, X. J.; Thomas, N. H.

    1996-07-01

    An experimental investigation is described for the characteristics of convective boiling flow instabilities in horizontally helically coiled tubes using a steam-water two-phase closed circulation test loop at pressure from 0.5 MPa to 3.5 MPa. Three kinds of oscillation are reported: density waves; pressure drop excursions; thermal fluctuations. We describe their dependence on main system parameters such as system pressure, mass flowrate, inlet subcooling, compressible volume and heat flux. Utilising the experimental data together with conservation constraints, a dimensionless correlation is proposed for the occurrence of density waves.

  6. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  7. Modeling and numerical simulation of oscillatory two-phase flows, with application to boiling water nuclear reactors

    SciTech Connect

    Rosa, M.P.; Podowski, M.Z.

    1995-09-01

    This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.

  8. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  9. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  10. Geysering in boiling channels

    SciTech Connect

    Aritomi, Masanori; Takemoto, Takatoshi; Chiang, Jing-Hsien

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  11. Design inputs document: Boiling behavior during flow instability

    SciTech Connect

    Coutts, D.A.

    1991-12-31

    The coolant flow in a nuclear reactor core under normal operating conditions is kept as a subcooled liquid. This coolant is evenly distributed throughout the multiple flow channels with a uniform pressure profile across each coolant flow channel. If the coolant flow is reduced, the flow through individual channels will also decrease. A decrease in coolant flow will result in higher coolant temperatures if the heat flux is not reduced. When flow is significantly decreased, localized boiling may occur. This localized boiling can restrict coolant flow and the ability to transfer heat out of the reactor system. The maximum operating power for the reactor may be limited by how the coolant system reacts to a flow instability. One of the methods to assure safe operation during a reducing flow instability, is to operate at a power level below that necessary to initiate a flow excursion. Several correlations have been used to predict the conditions which precede a flow excursion. These correlations rely on the steady state behavior of the coolant and are based on steady state testing. This task will evaluate if there are any deviations between the actual transient flow excursion behavior and the flow excursion behavior based on steady state correlations (ONB, OSV, and CHF). Correlations will be developed which will allow a comparison between the time to excursive behavior predicted using steady state techniques and the actual time to excursive behavior.

  12. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.

    PubMed

    Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B

    2002-10-01

    The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).

  13. Hydrothermalism in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Dando, P. R.; Stüben, D.; Varnavas, S. P.

    1999-08-01

    Hydrothermalism in the Mediterranean Sea results from the collision of the African and European plates, with the subduction of the oceanic part of the African plate below Europe. High heat flows in the resulting volcanic arcs and back-arc extensional areas have set-up hydrothermal convection systems. Most of the known hydrothermal sites are in shallow coastal waters, <200 m depth, so that much of the reported fluid venting is of the gasohydrothermal type. The hydrothermal liquids are of varying salinities, both because of phase separation as a result of seawater boiling at the low pressures and because of significant inputs of rainfall into the hydrothermal reservoirs at some sites. The major component of the vented gas is carbon dioxide, with significant quantities of sulphur dioxide, hydrogen sulphide, methane and hydrogen also being released. Acid leaching of the underlying rocks leads to the mobilisation of heavy metals, many of which are deposited sub-surface although there is a conspicuous enrichment of metals in surficial sediments in venting areas. Massive polymetalic sulphides have been reported from some sites. No extant vent-specific fauna have been described from Mediterranean sites. There is a reduced diversity of fauna within the sediments at the vents. In contrast, a high diversity of epifauna has been reported and the vent sites are areas of settlement for exotic thermophilic species. Large numbers of novel prokaryotes, especially hyperthermophilic crenarchaeota, have been isolated from Mediterranean hydrothermal vents. However, their distribution in the subsurface biosphere and their role in the biogeochemistry of the sites has yet to be studied.

  14. How Does Water Boil?

    NASA Astrophysics Data System (ADS)

    Zahn, Dirk

    2004-11-01

    Insight into the boiling of water is obtained from molecular dynamics simulations. The process is initiated by the spontaneous formation of small vacuum cavities in liquid water. By themselves, these defects are very short lived. If, however, several cavities occur at close distances, they are likely to merge into larger vacuum holes. At the liquid-vapor interfaces, single or small groups of water molecules tend to leave the liquid surface. Once the system is propagated beyond the transition state, these evaporation events outnumber the competing reintegration into the hydrogen-bonded network.

  15. Boiling Fluids Behave Quite Differently in Space

    NASA Video Gallery

    The boiling process is really different in space, since the vapor phase of a boiling liquid does not rise via buoyancy. Spacecraft and Earth-based systems use boiling to efficiently remove large am...

  16. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  17. Design and test of a compact optics system for the pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Ling, Jerri S.; Laubenthal, James R.

    1990-01-01

    The experiment described seeks to improve the understanding of the fundamental mechanisms that constitute nucleate pool boiling. The vehicle for accomplishing this is an investigation, including tests to be conducted in microgravity and coupled with appropriate analyses, of the heat transfer and vapor bubble dynamics associated with nucleation, bubble growth/collapse and subsequent motion, considering the interrelations between buoyancy, momentum and surface tension which will govern the motion of the vapor and surrounding liquid, as a function of the heating rate at the heat transfer surface and the temperature level and distribution in the bulk liquid. The experiment is designed to be contained within the confines of a Get-Away-Special Canister (GAS Can) installed in the bay of the space shuttle. When the shuttle reaches orbit, the experiment will be turned on and testing will proceed automatically. In the proposed Pool Boiling Experiment a pool of liquid, initially at a precisely defined pressure and temperature, will be subjected to a step imposed heat flux from a semitransparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. Transient measurements of the heater surface and fluid temperatures near the surface will be made, noting especially the conditions at the onset of boiling, along with motion photography of the boiling process in two simultaneous views, from beneath the heating surface and from the side. The conduct of the experiment and the data acquisition will be completely automated and self-contained. For the initial flight, a total of nine tests are proposed, with three levels of heat flux and three levels of subcooling. The design process used in the development and check-out of the compact photographic/optics system for the Pool Boiling Experiment is documented.

  18. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  19. Theoretical and experimental study of inverted annular film boiling and regime transition during reflood transients

    NASA Astrophysics Data System (ADS)

    Mohanta, Lokanath

    The Loss of Coolant Accident (LOCA) is a design basis accident for light water reactors that usually determines the limits on core power. During a LOCA, film boiling is the dominant mode of heat transfer prior to the quenching of the fuel rods. The study of film boiling is important because this mode of heat transfer determines if the core can be safely cooled. One important film boiling regime is the so-called Inverted Annular Film Boiling (IAFB) regime which is characterized by a liquid core downstream of the quench front enveloped by a vapor film separating it from the fuel rod. Much research have been conducted for IAFB, but these studies have been limited to steady state experiments in single tubes. In the present work, subcooled and saturated IAFB are investigated using high temperature reflood data from the experiments carried out in the Rod Bundle Heat Transfer (RBHT) test facility. Parametric effects of system parameters including the pressure, inlet subcooling, and flooding rate on the heat transfer are investigated. The heat transfer behavior during transition to Inverted Slug Film Boiling (ISFB) regime is studied and is found to be different than that reported in previous studies. The effects of spacer grids on heat transfer in the IAFB and ISFB regimes are also presented. Currently design basis accidents are evaluated with codes in which heat transfer and wall drag must be calculated with local flow parameters. The existing models for heat transfer are applicable up to a void fraction of 0.6, i.e. in the IAFB regime and there is no heat transfer correlation for ISFB. A new semi-empirical heat transfer model is developed covering the IAFB and ISFB regimes which is valid for a void fraction up to 90% using the local flow variables. The mean absolute percentage error in predicting the RBHT data is 11% and root mean square error is 15%. This new semi-empirical model is found to compare well with the reflood data of FLECHT-SEASET experiments as well as data

  20. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  1. When water does not boil at the boiling point.

    PubMed

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  2. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. Diffusion from the upper surface of the drop appears as a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  3. Film boiling of mercury droplets

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Schoessow, G. J.; Chmielewski, C. E.

    1975-01-01

    Vaporization times of mercury droplets in Leidenfrost film boiling on a flat horizontal plate are measured in an air atmosphere. Extreme care was used to prevent large amplitude droplet vibrations and surface wetting; therefore, these data can be compared to film boiling theory. For these data, diffusion from the upper surface of the drop is a dominant mode of mass transfer from the drop. A closed-form analytical film boiling theory is developed to account for the diffusive evaporation. Reasonable agreement between data and theory is seen.

  4. Numerical investigation on boiling flow of liquid nitrogen in a vertical tube using bubble number density approach

    NASA Astrophysics Data System (ADS)

    Shao, Xuefeng; Li, Xiangdong; Wang, Rongshun

    2016-04-01

    An average bubble number density (ABND) model was formulated and numerically resolved for the subcooled flow boiling of liquid nitrogen. The effects of bubble coalescence and breakup were taken into account. Some new closure correlations describing bubble nucleation and departure on the heating surface were selected as well. For the purpose of comparison, flow boiling of liquid nitrogen was also numerically simulated using a modified two-fluid model. The results show that the simulations performed by using the ABND model achieve encouraging improvement in accuracy in predicting heat flux and wall temperature of a vertical tube. Moreover, the influence of the bubble coalescence and breakup is shown to be great on predicting overall pressure beyond the transition point.

  5. Film boiling on spheres in single- and two-phase flows. Final report

    SciTech Connect

    Liu, C.; Theofanous, T.G.

    1994-12-01

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40{degrees}C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900{degrees}C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1-{alpha}){sup 1/4} (with {alpha} being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multisphere structure on the film boiling heat transfer in single- and two-phase flows.

  6. Film boiling on spheres in single- and two-phase flows.

    SciTech Connect

    Liu, C.; Theofanous, T. G.

    2000-08-29

    Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.

  7. Flow Boiling and Condensation Experiment

    NASA Video Gallery

    The Flow Boiling and Condensation Experiment is another investigation that examines the flow of a mixture of liquids and the vapors they produce when in contact with hot space system equipment. Coo...

  8. Micro-bubble emission boiling with the cavitation bubble blow pit

    PubMed Central

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271

  9. Experimental investigation of film boiling on spheres using high-speed video

    NASA Astrophysics Data System (ADS)

    Agaltsov, Andrey; Fedoseenko, Ivan

    2012-04-01

    The experimental investigation of saturated Freon-113 film boiling on spheres with different diameters at atmospheric pressure under conditions of free convection is executed. It was found that with increasing diameter of the sphere and the temperature difference is changing the wave motion of the vapor film with two-dimensional to three-dimensional mode. Also, found that in a range of regime parameters at which observed a three-dimensional interface motion, the destruction method of two-dimensional wave is similar to a series of three or more waves. I.e. was some system memory. When the temperature difference close to critical after the passage of a wave are possible the local contacts of liquid with a heated surface of the sphere. However, these contacts do not lead to degradation of the wave motion of the interface, and the film boiling crisis of saturated Freon-113 occurs smoothly in contrast to the crisis at boiling of saturated and subcooled water.

  10. Micro-bubble emission boiling with the cavitation bubble blow pit.

    PubMed

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors' knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271

  11. Micro-bubble emission boiling with the cavitation bubble blow pit

    NASA Astrophysics Data System (ADS)

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.

    2016-09-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB.

  12. Micro-bubble emission boiling with the cavitation bubble blow pit.

    PubMed

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors' knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB.

  13. When Regional becomes Local: Linking Regional Seismicity to Perturbations at the Boiling Lake, Dominica

    NASA Astrophysics Data System (ADS)

    Robertson, D.; Joseph, E. P.; Fournier, N.

    2015-12-01

    Dominica is one of 11 volcanically active islands located along the Eastern Caribbean arc. The Boiling Lake-Valley of Desolation area is part of a volcano-hydrothermal system on the island and was identified as the most likely location for a future eruption (Lindsay et. al, 2005). The last phreatic eruption on the island took place within the Boiling Lake-Valley of Desolation area in 1997. In addition to these eruptions the Boiling Lake has undergone six brief periods of physical and chemical instabilities during its 150 years of recorded history. The latest period occurred in 2004-2005 when the Boiling Lake experienced erratic disruptions in geothermal activity. It repeatedly emptied and refilled before returning to its long term stable state. Given such long term stability, a significant, but historically infrequent, perturbation is required to upset the Lake's dynamic equilibrium. Prior to 2004-2005, the factor(s) triggering the instabilities have not been identified. The current work is part of a multi-scale approach at understanding volcano-hydrothermal systems from a geophysical perspective, which incorporates modeling and observed data. Here, the author briefly introduces the multi-scale approach and then focuses on the role of regional earthquakes as possible triggers of the Lake's disruptions. This is discussed in terms of seismic events, induced stress-fields, faults systems and hydrodynamic changes. Finally the author reports on a number of significant events which may define the long elusive perturbation affecting the Boiling Lake.

  14. Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.

    1998-01-01

    Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.

  15. D0 Silicon Upgrade: ASME Code and Pressure Calculations for Liquid Nitrogen Subcooler

    SciTech Connect

    Kuwazaki, Andrew; Leicht, Todd; /Fermilab

    1995-10-04

    Included in this engineering note are three separate calculation divisions. The first calculations are the determination of the required thickness of the LN{sub 2} subcooler flat head according to ASME code. This section includes Appendix A-C. The minimum plate thickness determined was 0.563 in. The actual thickness chosen in fabrication was a 3/4-inch plate milled to 0.594-inch at the bolt circle. Along with the plate thickness, this section calculates the required reinforcement area at the top plate penetrations. It was found that a 1/4-inch fillet weld at each penetration was adequate. The next set of calculations were done to prove that the subcooler internal pressure will always be less than 15 psig and therefore will not be classified as a pressure vessel. The subcooler is always open to a vent pipe. Appendix D calculations show that the vent pipe has a capacity of 1042 lbs/hr if 15 psig is present at the subcooler. It goes on to show that the inlet piping would at that flow rate, see a pressure drop of 104 psig. The maximum supply pressure of the LN{sub 2} storage dewar is 50 psig. Appendix E addresses required flow rates for steady state, loss of vacuum, or fire conditions. Page E9 shows a summary which states the maximum pressure would be 1.50 psig at fire conditions and internal pressure.

  16. The study of passive flow control device performance at low inlet subcooling

    NASA Astrophysics Data System (ADS)

    Liou, S. G.; Chen, I. Y.; Chang, S. K.

    1999-01-01

    Passive flow control devices (PFCDs) are normally used for flow measurement and flow regulation in many liquid flow systems. The typical PFCDs are venturis, orifices, nozzles, and capillary tubes. The PFCDs have several advantages over active flow control valves in thermal-fluid systems. They require no electrical power, data, command signal for operation and are not subject to wear or breakage, as well as the need of feedback control. When liquid flow venturi cavitates, it has the ability to passively control the flow in thermal-fluid systems at the choked flow regime. However, when the cavitating venturi (CV) operates at low value of inlet subcooling to conserve electrical power, an all-liquid overflow phenomenon can occur. If cavitation cannot be guaranteed in CV, then the constant flow rate performance of CV could not be obtained. Then, the CV may not be the best choice for the thermal-fluid control systems. For this reason, the main objective of this study is to evaluate the performance of possible PFCDs at low inlet subcooling. Experiments were performed for the alternate PFCDs of orifice, nozzle, and capillary tube at low levels of inlet subcooling in order to explore the physical phenomena of the PFCD relevant to their operation parameters. The test results of PFCDs are compared with CV's performance, and recommendations are made for the best type of passive flow control device at low inlet subcooling for the industrial and aerospace thermal-fluid control system applications.

  17. Characteristics of Transient Boiling Heat Transfer

    SciTech Connect

    Liu, Wei; Monde, Masanori; Mitsutake, Y.

    2002-07-01

    In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)

  18. Transition from Pool to Flow Boiling: The Effect of Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Dhir, Vijay K.

    2004-01-01

    Applications of boiling heat transfer in space can be found in the areas of thermal management, fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids, and for cooling of electronic packages for power systems associated with various instrumentation and control systems. Recent interest in exploration of Mars and other planets, and the concepts of in-situ resource utiliLation on Mars highlights the need to understand the effect of gravity on boiling heat transfer at gravity levels varying from 1>= g/g(sub e) >=10(exp -6). The objective of the proposed work was to develop a mechanistic understanding of nucleate boiling and critical heat flux under low and micro-gravity conditions when the velocity of the imposed flow is small. For pool boiling, the effect of reduced gravity is to stretch both the length scale as well as the time scale for the boiling process. At high flow velocities, the inertia of the liquid determines the time and the length scales and as such the gravitational acceleration plays little role. However, at low velocities and at low gravity levels both liquid inertia and buoyancy are of equal importance. At present, we have little understanding of the interacting roles of gravity and liquid inertia on the nucleate boiling process. Little data that has been reported in the literature does not have much practical value in that it can not serve as a basis for design of heat exchange components to be used in space. Both experimental and complete numerical simulations of the low velocity, low-gravity nucleate boiling process were carried out. A building block type of approach was used in that first the growth and detachment process of a single bubble and flow and heat transfer associated with the sliding motion of the bubble over the heater surface after detachment was studied. Liquid subcooling and flow velocity were varied parametrically. The experiments were conducted at 1 g(sub e

  19. Boiling in variable gravity under the action of an electric field: results of parabolic flight experiments

    NASA Astrophysics Data System (ADS)

    Di Marco, P.; Raj, R.; Kim, J.

    2011-12-01

    Results from the variable gravity pool boiling experiments performed during the 52nd ESA parabolic flight campaign are reported in this paper. During a typical parabola, the gravity acceleration changes from 1.8gE (high gravity) to ~0gE (low gravity) and finally back to 1.8gE. The two high gravity periods and the microgravity period are each roughly maintained for 20 seconds while the transition from high gravity to low gravity and vice versa occurs over a period of 3-5 seconds. Use of the high feedback frequency microheater array allowed quasi-steady boiling data over the continuous range of gravity levels (0gE-1.8gE). The experimental apparatus consisted of a boiling chamber with a 7×7 mm2 microheater array in a 10×10 configuration. Each heater in the array was individually controlled to maintain a constant temperature. The array could be operated in a full configuration or a selectively powered reduced set of 3×3 heaters. Experiments were performed with FC-72 as the test fluid, the pressure was maintained at a constant value between 1 and 1.13 atm and the subcooling ranged from 27 to 11 K. An external electric field was imposed over the boiling surface by means of a grid consisting of 4 rods, laid parallel to the surface; voltages up to 10 kV were applied. The electric field was effective in reducing the size of the detaching bubbles, and increasing the heat transfer compared to the values in low-g, although its effectiveness decayed as the heat flux/superheat increased. The current results compared well with previous results obtained in the ARIEL apparatus that was operated in orbital flight.

  20. Orientation and related buoyancy effects in low-velocity flow boiling.

    PubMed

    Merte, Herman; Schultz, William W; Liu, Quanyi; Keller, Robert B

    2009-04-01

    This work is an extension of experimental results reported previously, which might provide design guidance for approximating certain aspects of the flow boiling process in microgravity but taking place in Earth gravity. In that research the buoyancy effects on the bubble dynamics were minimized by the imposition of a liquid velocity parallel to a flat heater surface in the inverted horizontal position, or nearly horizontal (within +/-5 degrees ), thus holding the heated liquid and vapor formed close to the heater surface. For the fluid used, liquid velocities in the range U= 5-10 cm/s were judged to be critical for changes in the behavior of the flow boiling process. Using the hydraulic diameter of the rectangular duct used, with the heater surface embedded in one side, this velocity range gives rise to flow Reynolds numbers on the order of 4400-8800. It was subsequently judged to be of interest to extend the range of orientation of the flat heater surface relative to gravity to the full circular range of 0-360 degrees, in increments of 45 degrees, and the results of this work are presented here. A solid massive copper heater with a gold-plated boiling heat transfer surface 19 x 38 mm in size, previously used for critical heat flux measurements with boiling, provided a near-uniform surface temperature. Only steady measurements of heat flux and surface temperature were possible with the copper heater. R-113 was the fluid used; the velocity was varied over the interval of 4-28 cm/s; bulk liquid subcooling was varied over 5-11 degrees C; and heat flux varied over 0-10 w/cm(2).

  1. A study of flow boiling phenomena using real time neutron radiography

    NASA Astrophysics Data System (ADS)

    Novog, David Raymond

    The operation and safety of both fossil-fuel and nuclear power stations depend on adequate cooling of the thermal source involved. This is usually accomplished using liquid coolants that are forced through the high temperature regions by a pumping system; this fluid then transports the thermal energy to another section of the power station. However, fluids that undergo boiling during this process create vapor that can be detrimental, and influence safe operation of other system components. The behavior of this vapor, or void, as it is generated and transported through the system is critical in predicting the operational and safety performance. This study uses two advanced penetrating radiation techniques, Real Time Neutron Radiography (RTNR), and High Speed X-Ray Tomography (HS-XCT), to examine void generation and transport behavior in a flow boiling system. The geometries studied were tube side flow boiling in a cylindrical configuration, and a similar flow channel with an internal twisted tape swirl flow generator. The heat transfer performance and pressure drop characteristics were monitored in addition to void distribution measurements, so that the impact of void distribution could be determined. The RTNR and heat transfer pipe flow studies were conducted using boiling Refrigerant 134a at pressures from 500 to 700 kPa, inlet subcooling from 3 to 12°C and mass fluxes from 55 to 170kg/m 2-s with heat fluxes up to 40 kW/m2. RTNR and HS-XCT were used to measure the distribution and size of the vapor phases in the channel for cylindrical tube-side flow boiling and swirl-flow boiling geometries. The results clearly show that the averaged void is similar for both geometries, but that there is a significant difference in the void distribution, velocity and transport behavior from one configuration to the next. Specifically, the void distribution during flow boiling in a cylindrical-tube test section showed that the void fraction was largest near the tube center and

  2. Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Data are presented of an experiment in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressures from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; and orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.

  3. Effect of entry of subcooled cryogen on thermal stratification in a cryogenic storage tank

    NASA Technical Reports Server (NTRS)

    Wang, Pao-lien

    1995-01-01

    The purpose of this study was to predict if subcooled cryogenic liquid entering the bottom of a storage tank will destroy the thermal stratification of the tank. After an extensive literature search, a formula for maximum critical Reynolds Number which used to predict the destratification of a cryogenic tank was found. Example of calculations and graphics to determine the mixing of fluid in the tank were presented.

  4. The myth of the boiling point.

    PubMed

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  5. Computations of Boiling in Microgravity

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Jacqmin, David

    1999-01-01

    The absence (or reduction) of gravity, can lead to major changes in boiling heat transfer. On Earth, convection has a major effect on the heat distribution ahead of an evaporation front, and buoyancy determines the motion of the growing bubbles. In microgravity, convection and buoyancy are absent or greatly reduced and the dynamics of the growing vapor bubbles can change in a fundamental way. In particular, the lack of redistribution of heat can lead to a large superheat and explosive growth of bubbles once they form. While considerable efforts have been devoted to examining boiling experimentally, including the effect of microgravity, theoretical and computational work is limited to very simple models. In this project, the growth of boiling bubbles is studied by direct numerical simulations where the flow field is fully resolved and the effects of inertia, viscosity, surface deformation, heat conduction and convection, as well as the phase change, are fully accounted for. The proposed work is based on previously funded NASA work that allowed us to develop a two-dimensional numerical method for boiling flows and to demonstrate the ability of the method to simulate film boiling. While numerical simulations of multi-fluid flows have been advanced in a major way during the last five years, or so, similar capability for flows with phase change are still in their infancy. Although the feasibility of the proposed approach has been demonstrated, it has yet to be extended and applied to fully three-dimensional simulations. Here, a fully three-dimensional, parallel, grid adaptive code will be developed. The numerical method will be used to study nucleate boiling in microgravity, with particular emphasis on two aspects of the problem: 1) Examination of the growth of bubbles at a wall nucleation site and the instabilities of rapidly growing bubbles. Particular emphasis will be put on accurately capturing the thin wall layer left behind as a bubble expands along a wall, on

  6. Compact counter-flow cooling system with subcooled gravity-fed circulating liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu.; Radovinsky, A.; Zhukovsky, A.; Sasaki, A.; Watanabe, H.; Kawahara, T.; Hamabe, M.; Yamaguchi, S.

    2010-11-01

    A liquid nitrogen (LN2) is usually used to keep the high-temperature superconducting (HTS) cable low temperature. A pump is utilized to circulate LN2 inside the cryopipes. In order to minimize heat leakage, a thermal siphon circulation scheme can be realized instead. Here, we discuss the effectiveness of thermal siphon with counter-flow circulation loop composed of cryogen flow channel and inner cable channel. The main feature of the system is the existence of essential parasitic heat exchange between upwards and downwards flows. Feasibility of the proposed scheme for cable up to 500 m in length has been investigated numerically. Calculated profiles of temperature and pressure show small differences of T and p in the inner and the outer flows at the same elevation, which allows not worrying about mechanical stability of the cable. In the case under consideration the thermal insulating properties of a conventional electrical insulating material (polypropylene laminated paper, PPLP) appear to be sufficient. Two interesting effects were disclosed due to analysis of subcooling of LN2. In case of highly inclined siphon subcooling causes significant increase of temperature maximum that can breakup of superconductivity. In case of slightly inclined siphon high heat flux from outer flow to inner flow causes condensation of nitrogen gas in outer channel. It leads to circulation loss. Results of numerical analyses indicate that counter-flow thermosiphon cooling system is a promising way to increase performance of short-length power transmission (PT) lines, but conventional subcooling technique should be applied carefully.

  7. Performance of Heat Exchanger for Subcooling Liquid Nitrogen with a GM Cryocooler

    NASA Astrophysics Data System (ADS)

    Chang, H. M.; Ryu, S. H.; Kim, M. J.

    2010-04-01

    A heat exchanger to continuously supply subcooled liquid nitrogen at 65˜70 K in thermal contact with a Gifford-McMahon (GM) cryocooler is experimentally investigated. This study is motivated by HTS power applications, where liquid nitrogen is circulated in subcooled state by forced convection and a regenerative cryocooler is used for continuous refrigeration. Since the coldhead of the cooler has a very limited surface area, a cylindrical "cup" made of copper is attached to the coldhead to serve as extended surface. A copper tube for liquid nitrogen flow is spirally wound and silver-brazed on the exterior surface of cylinder. In order to examine the effect of physical dimensions on the cooling performance, different sizes of heat exchangers are fabricated and tested with a commercial GM cooler to subcool liquid nitrogen from 78 K to 65˜70 K. It is clearly shown that there exists an optimal size of heat exchanger cylinder to achieve a maximum cooling of liquid nitrogen. The reason for poor performance with a smaller size is that the cooling surface is not enough, and the reason for poor performance with a larger size is that the effectiveness of extended surface is lower and the heat leak from surroundings is greater.

  8. An experimental study of subcooled choked flow through steam generator tube cracks

    NASA Astrophysics Data System (ADS)

    Vadlamani, Ram Anand

    The Work conducted in this Research involved the simulation of Pressurized Water Reactor Conditions of Steam Generators to study the complex phenomenon of Subcooled Choked Flow or two-phase critical flow that occurs when water leaks from the primary side of a steam generator into the secondary side, thus making it highly relevant to Reactor Safety and Probabilistic Risk assessment methods. Slits of small L/D ratio were manufactured and tested on the Facility for Leak Rate Testing at pressures (6.89 MPa) and high temperatures (280°C) relevant to Pressurized Water Reactors over a range of subcooling. Small flow channel length was used (1.3mm) equivalent to steam generator tube thickness with the study of a variety of geometries with differences in surface roughness. Unique to literature, the samples had very small L/Ds and the study was a controlled parametric study of choked flow. The effect of L/D was examined, compared to recent studies conducted at Purdue University by Wolf and Revankar while contrasting with others in literature. Analytical models were applied highlighting the importance of non-equilibrium effects and contrasted with other studies of different L/Ds. RELAP5, a well developed code widely utilized in industry was studied to analyze its predictive capabilities and conditions for best estimate. L/D effects on mass fluxes were studied and it was observed that mass fluxes were affected to a very small degree by subcooling.

  9. Spray Cooling Modeling: Droplet Sub-Cooling Effect on Heat Transfer

    SciTech Connect

    Johnston, Joseph E.; Selvam, R. P.; Silk, Eric A.

    2008-01-21

    Spray cooling has become increasingly popular as a thermal management solution for high-heat flux (>100 W/cm{sup 2}) applications such as laser diodes and radars. Research has shown that using sub-cooled liquid can increase the heat flux from the hot surface. The objective of this study was to use a multi-phase numerical model to simulate the effect of a sub-cooled droplet impacting a growing vapor bubble in a thin (<100 {mu}m) liquid film. The two-phase model captured the liquid-vapor interface using the level set method. The effects of surface tension, viscosity, gravity and phase change were accounted for by using a modification to the incompressible Navier-Stokes equations, which were solved using the finite difference method. The computed liquid-vapor interface and temperature distributions were visualized for better understanding of the heat removal process. To understand the heat transfer mechanisms of sub-cooled droplet impact on a growing vapor bubble, various initial droplet temperatures were modeled (from 20 deg. C below saturation temperature to saturation temperature). This may provide insights into how to improve the heat transfer in future spray cooling systems.

  10. An application of the non-continuous Trefftz method to the determination of heat transfer coefficient for flow boiling in a minichannel

    NASA Astrophysics Data System (ADS)

    Maciejewska, Beata; Piasecka, Magdalena

    2016-08-01

    The paper presents an application of the semi-analytical method, called the non-continuous Trefftz method, to the calculation of the heat transfer coefficients. It is very effective method for solving direct and inverse problems. The results obtained by this method are consistent with the results obtained by using complicated methods: the FEM and Beck method. Sought local heat transfer coefficients between the heating surface and the boiling liquid flowing through 1 mm deep minichannel were calculated from the Robin boundary condition. The temperature of the heating surface and the derivative of the temperature were was found from solving the inverse problem. The study is limited to the identification of the heat transfer coefficient in the subcooled and the saturated nucleate boiling regions. The article presents also the measurement stand and methodology of conducting the experiment. Presented issues allows verification of state-of-the-art methods of solving the inverse problem by using the authors' empirical data from the experiment.

  11. Using noble gases measured in spring discharge to trace hydrothermal processes in the Norris Geyser Basin, Yellowstone National Park, U.S.A.

    USGS Publications Warehouse

    Gardner, W.P.; Susong, D.D.; Solomon, D.K.; Heasler, H.P.

    2010-01-01

    Dissolved noble gas concentrations in springs are used to investigate boiling of hydrothermal water and mixing of hydrothermal and shallow cool water in the Norris Geyser Basin area. Noble gas concentrations in water are modeled for single stage and continuous steam removal. Limitations on boiling using noble gas concentrations are then used to estimate the isotopic effect of boiling on hydrothermal water, allowing the isotopic composition of the parent hydrothermal water to be determined from that measured in spring. In neutral chloride springs of the Norris Geyser Basin, steam loss since the last addition of noble gas charged water is less than 30% of the total hydrothermal discharge, which results in an isotopic shift due to boiling of ?? 2.5% ??D. Noble gas concentrations in water rapidly and predictably change in dual phase systems, making them invaluable tracers of gas-liquid interaction in hydrothermal systems. By combining traditional tracers of hydrothermal flow such as deuterium with dissolved noble gas measurements, more complex hydrothermal processes can be interpreted. ?? 2010 Elsevier B.V.

  12. Thermosyphon boiling in vertical channels

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Schweitzer, H.

    The thermal characteristics of ebullient cooling systems for VHSIC and VLSI microelectronic component thermal control are studied by experimentally and analytically investigating boiling heat transfer from a pair of flat, closely spaced, isoflux plates immersed in saturated water. A theoretical model for liquid flow rate through the channel is developed and used as a basis for correlating the rate of heat transfer from the channel walls. Experimental results for wall temperature as a function of axial location, heat flux, and plate spacing are presented. The finding that the wall superheat at constant imposed heat flux decreases as the channel is narrowed is explained with the aid of a boiling thermosiphon analysis which yields the mass flux through the channel.

  13. Models and Stability Analysis of Boiling Water Reactors

    SciTech Connect

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  14. Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel

    DOE PAGES

    Forrest, Eric C.; Don, Sarah M.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

    2016-02-29

    The onset of nucleate boiling (ONB) serves as the thermal-hydraulic operating limit for many research and test reactors. However, boiling incipience under forced convection has not been well-characterized in narrow channel geometries or for oxidized surface conditions. This study presents experimental data for the ONB in vertical upflow of deionized (DI) water in a simulated materials test reactor (MTR) coolant channel. The channel gap thickness and aspect ratio were 1.96 mm and 29:1, respectively. Boiling surface conditions were carefully controlled and characterized, with both heavily oxidized and native oxide surfaces tested. Measurements were performed for mass fluxes ranging from 750more » to 3000 kg/m2s and for subcoolings ranging from 10 to 45°C. ONB was identified using a combination of high-speed visual observation, surface temperature measurements, and channel pressure drop measurements. Surface temperature measurements were found to be most reliable in identifying the ONB. For the nominal (native oxide) surface, results indicate that the correlation of Bergles and Rohsenow, when paired with the appropriate single-phase heat transfer correlation, adequately predicts the ONB heat flux. Furthermore, incipience on the oxidized surface occurred at a higher heat flux and superheat than on the plain surface.« less

  15. Development, implementation and assessment of specific, two-fluid closure laws for inverted-annular film-boiling

    SciTech Connect

    Cachard, F. de

    1995-09-01

    Inverted-Annular Film-Boiling (IAFB) is one of the post-burnout heat transfer modes taking place during the reflooding phase of the loss-of-coolant accident, when the liquid at the quench front is subcooled. Under IAFB conditions, a continuous, liquid core is separated from the wall by a superheated vapour film. the heat transfer rate in IAFB is influenced by the flooding rate, liquid subcooling, pressure, and the wall geometry and temperature. These influences can be accounted by a two-fluid model with physically sound closure laws for mass, momentum and heat transfers between the wall, the vapour film, the vapour-liquid interface, and the liquid core. Such closure laws have been developed and adjusted using IAFB-relevant experimental results, including heat flux, wall temperature and void fraction data. The model is extensively assessed against data from three independent sources. A total of 46 experiments have been analyzed. The overall predictions are good. The IAFB-specific closure laws proposed have also intrinsic value, and may be used in other two-fluid models. They should allow to improve the description of post-dryout, low quality heat transfer by the safety codes.

  16. Hydrothermal processes at Mount Rainier, Washington

    SciTech Connect

    Frank, D.G.

    1985-01-01

    Field studies and thermal-infrared mapping at Mount Rainier indicate areas of active hydrothermal alteration where excess surface heat flux is about 9 megawatts. Three representative settings include: (1) An extensive area (greater than 12,000 m/sup 2/) of heated ground and slightly acidic boiling-point fumaroles at 76-82/sup 0/C at East and West Craters on the volcano's summit; (2) A small area (less than 500 m/sup 2/) of heated ground and sub-boiling-point fumaroles at 55-60/sup 0/C on the upper flank at Disappointment Cleaver, and other probably similar areas at Willis Wall, Sunset Amphitheater, and the South Tahoma and Kautz headwalls; (3) Sulfate and carbon dioxide enriched thermal springs at 9-24/sup 0/C on the lower flank of the volcano in valley walls beside the Winthrop and Paradise Glaciers. In addition, chloride- and carbon dioxide-enriched thermal springs issue from thin sediments that overlie Tertiary rocks at, or somewhat beyond, the base of the volcanic edifice in valley bottoms of the Nisqually and Ohanapecosh Rivers where maximum spring temperatures are 19-25/sup 0/C, respectively, and where extensive travertine deposits have developed. The heat flow, distribution of thermal activity, and nature of alteration products indicate that a narrow, central hydrothermal system exists within Mount Rainier forming steam-heated snowmelt at the summit craters and localized leakage of steam-heated fluids within 2 kilometers of the summit. The lateral extent of the hydrothermal system is limited in that only sparse, neutral sulfate-enriched thermal water issues from the lower flank of the cone. Simulations of geochemical mass transfer suggest that the thermal springs may be derived from an acid sulfate-chloride parent fluid which has been neutralized by reaction with andesite and highly diluted with shallow ground water.

  17. EHD enhancement of nucleate boiling. [Electrohydrodynamic

    SciTech Connect

    Cooper, P. )

    1990-05-01

    This paper describes: (a) an experimental investigation into the effect of an electric field applied to pool boiling of Freon (R114) on a finned tube and (b) a theoretical model of electrically enhanced nucleate boiling applicable to simple surfaces only. Experimental results have shown electrohydrodynamic (EHD) enhancement of heat transfer to be manifest in two ways: (1) elimination of boiling hysteresis, (2) augmentation of nulceate boiling heat transfer coefficients by up to an order of magnitude. These effects were also observed in electrically enhanced boiling of Freon/oil mixtures. A new analytical model is described whereby EHD nucleate boiling data from previous studies (employing simple apparatus comprising heated wires with concentric cylinder electrodes) have been correlated for the first time using the concept of an electrical influence number. This dimensionless parameter is based upon the relationship between applied electric field intensity and changes in bubble departure diameter at a heat transfer surface.

  18. Boils

    MedlinePlus

    ... Sections of the JAOCD JAOCD Archive Published Members Online Dermatology Journals Edit This Favorite Name: Category: Share: Yes ... 2/2017 2017 AOCD Spring Current Concepts in Dermatology Meeting more Latest News ... Surveys About AOCD The AOCD was recognized in ...

  19. CHIMNEY FOR BOILING WATER REACTOR

    DOEpatents

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  20. Hydrothermal Mineralization Along the Volcanically Active Mariana Arc

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E.; Hein, J. R.; Embley, R. W.; Stern, R. J.

    2004-12-01

    In March and April, 2004, ROPOS ROV dives took place from the R/V T.G. Thompson along the volcanically active Mariana arc to ground truth CTD data collected a year earlier that indicated hydrothermal activity. Dives took place on seven volcanoes, six of which showed hydrothermal activity. We present data on samples collected from NW Rota-1 (14° , 36'N, 144° , 46'E), E. Diamante (15° , 56'N, 145° , 41'E), and NW Eifuku (21° , 29'N, 144° , 03'E), the three sites most studied. All the hydrothermal systems found are associated with volcano summits, or with resurgent domes inside a caldera. Brimstone vent at NW Rota-1 provided a dramatic display of thick, bellowing, yellow plumes that contained ash and molten sulfur. This site occurs at 500 m water depth and clearly shows closely associated magmatic-hydrothermal discharge. Sulfur was the dominant hydrothermal mineral deposited around the vent and occurs as spheres in the surrounding volcaniclastic sediment, fracture fill and veins, and massive deposits. The Black Forest vent field at E Diamante consists of a sulfide-sulfate chimney system developed at about 650 m water depth. This is the only mature system discovered and consists of numerous tall (up to 9 m) chimneys. The measured fluid temperature of 240° C produces boiling at the depth of the vents. The chimneys and mounds are composed of varying amounts of pyrite, sphalerite, chalcopyrite, barite, and anhydrite. Hydrothermal Mn oxides occur on the surface of inactive chimneys. This mineralogy contrasts with the other two systems, which deposit sulfur as the dominant hydrothermal product. The Cu-Zn-Fe-Ba mineralization is perhaps largely controlled by water/rock interaction. A unique hydrothermal field (Champagne field) was found at NW Eifuku where liquid CO2 is discharging from focused- and diffuse-flow vents at 1600 m water depth. The focused-flow vents consist of small chimneys and mounds up to a meter high that are composed of sulfur and yet to be

  1. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    PubMed

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies. PMID:26117498

  2. Boiling significantly promotes photodegradation of perfluorooctane sulfonate.

    PubMed

    Lyu, Xian-Jin; Li, Wen-Wei; Lam, Paul K S; Yu, Han-Qing

    2015-11-01

    The application of photochemical processes for perfluorooctane sulfonate (PFOS) degradation has been limited by a low treatment efficiency. This study reports a significant acceleration of PFOS photodegradation under boiling condition compared with the non-boiling control. The PFOS decomposition rate increased with the increasing boiling intensity, but declined at a higher hydronium level or under oxygenation. These results suggest that the boiling state of solution resulted in higher effective concentrations of reactants at the gas-liquid interface and enhanced the interfacial mass transfer, thereby accelerating the PFOS decomposition. This study broadens our knowledge of PFOS photodegradation process and may have implications for development of efficient photodegradation technologies.

  3. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  4. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE PAGES

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  5. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  6. METEORIC-HYDROTHERMAL SYSTEMS.

    USGS Publications Warehouse

    Criss, Robert E.; Taylor, Hugh P.

    1986-01-01

    This paper summarizes the salient characteristics of meteoric-hydrothermal systems, emphasing the isotopic systematics. Discussions of permeable-medium fluid dynamics and the geology and geochemistry of modern geothermal systems are also provided, because they are essential to any understanding of hydrothermal circulation. The main focus of the paper is on regions of ancient meteoric-hydrothermal activity, which give us information about the presently inaccessible, deep-level parts of modern geothermal systems. It is shown oxygen and hydrogen isotopes provide a powerful method to discover and map fossil hydrothermal systems and to investigate diverse associated aspects of rock alteration and ore deposition.

  7. An experimental investigation of liquid methane convection and boiling in rocket engine cooling channels

    NASA Astrophysics Data System (ADS)

    Trujillo, Abraham Gerardo

    In the past decades, interest in developing hydrocarbon-fueled rocket engines for deep spaceflight missions has continued to grow. In particular, liquid methane (LCH4) has been of interest due to the weight efficiency, storage, and handling advantages it offers over several currently used propellants. Deep space exploration requires reusable, long life rocket engines. Due to the high temperatures reached during combustion, the life of an engine is significantly impacted by the cooling system's efficiency. Regenerative (regen) cooling is presented as a viable alternative to common cooling methods such as film and dump cooling since it provides improved engine efficiency. Due to limited availability of experimental sub-critical liquid methane cooling data for regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through sub-scale cooling channels. To conduct the experiments, the csETR developed a High Heat Flux Test Facility (HHFTF) where all the channels are heated using a conduction-based thermal concentrator. In this study, two smooth channels with cross sectional geometries of 1.8 mm x 4.1 mm and 3.2 mm x 3.2 mm were tested. In addition, three roughened channels all with a 3.2 mm x 3.2 mm square cross section were also tested. For the rectangular smooth channel, Reynolds numbers ranged between 68,000 and 131,000, while the Nusselt numbers were between 40 and 325. For the rough channels, Reynolds numbers ranged from 82,000 to 131,000, and Nusselt numbers were between 65 and 810. Sub-cooled film-boiling phenomena were confirmed for all the channels presented in this work. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of

  8. Pool Boiling Experiment Has Five Successful Flights

    NASA Technical Reports Server (NTRS)

    Chiaramonte, Fran

    1997-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many earthbound applications in steamgeneration power plants, petroleum plants, and other chemical plants. In addition, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  9. Pool Boiling Experiment Has Successful Flights

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pool Boiling Experiment (PBE) is designed to improve understanding of the fundamental mechanisms that constitute nucleate pool boiling. Nucleate pool boiling is a process wherein a stagnant pool of liquid is in contact with a surface that can supply heat to the liquid. If the liquid absorbs enough heat, a vapor bubble can be formed. This process occurs when a pot of water boils. On Earth, gravity tends to remove the vapor bubble from the heating surface because it is dominated by buoyant convection. In the orbiting space shuttle, however, buoyant convection has much less of an effect because the forces of gravity are very small. The Pool Boiling Experiment was initiated to provide insight into this nucleate boiling process, which has many Earthbound applications, such as steam-generation power plants, petroleum, and other chemical plants. Also, by using the test fluid R-113, the Pool Boiling Experiment can provide some basic understanding of the boiling behavior of cryogenic fluids without the large cost of an experiment using an actual cryogen.

  10. Spray cooling heat-transfer with subcooled trichlorotrifluoroethane (Freon-113) for vertical constant heat flux surfaces

    SciTech Connect

    Kendall, C.M.; Holman, J.P.

    1996-06-06

    Experiments were done using subcooled Freon-113 sprayed vertically downward. Local and average heat transfers were investigated fro Freon-113 sprays with 40 C subcooling, droplet sizes 200-1250{mu}m, and droplet breakup velocities 5-29 m/s. Full-cone type nozzles were used to generate the spray. Test assemblies consisted of 1 to 6 7.62 cm vertical constant heat flux surfaces parallel with each other and aligned horizontally. Distance between heated surfaces was varied from 6.35 to 76.2 mm. Steady state heat fluxes as high as 13 W/cm{sup 2} were achieved. Dependence on the surface distance from axial centerline of the spray was found. For surfaces sufficiently removed from centerline, local and average heat transfers were identical and correlated by a power relation of the form seen for normal-impact sprays which involves the Weber number, a nondimensionalized temperature difference, and a mass flux parameter. For surfaces closer to centerline, the local heat transfer depended on vertical location on the surface while the average heat transfer was described by a semi-log correlation involving the same parameters. The heat transfer was independent of the distance (gap) between the heated surfaces for the gaps investigated.

  11. Experimental study of an upward sub-cooled forced convection in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.

    2016-07-01

    The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.

  12. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems.

  13. Boiling of the interface between two immiscible liquids below the bulk boiling temperatures of both components.

    PubMed

    Pimenova, Anastasiya V; Goldobin, Denis S

    2014-11-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becoming heated above its bulk boiling point. On the contrary, we address the case where both liquids remain below their bulk boiling points. In this paper we construct the theoretical description of the boiling process and discuss the actualisation of the case we consider for real systems. PMID:25403831

  14. Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.

    1998-01-01

    Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.

  15. Outbreak of boils in an Alaskan village

    PubMed Central

    Landen, Michael G; McCumber, Barbara J; Asay, Elvin D; Egeland, Grace M

    2000-01-01

    Objective To determine whether taking steam baths was associated with furunculosis and to evaluate possible risk factors for the occurrence of boils during a large outbreak in Alaska. Design A cohort study of village residents, a case-control study, and assessment of environmental cultures taken from steam baths. Setting Village in southwestern Alaska. Participants 1 adult member from 77 of the 92 house-holds in the village was interviewed; 115 residents with at least one boil occurring between January 1 and December 12, 1996 were considered to be cases; 209 residents without a boil acted as the control group. All 459 village residents were included in the cohort study. Main outcome measure Rate of infection among all residents and residents who regularly took steam baths, risk factors for infection, and relative risk of infection. Results 115 people (25%) had had at least one boil. Men were more likely to have had a boil than women (relative risk 1.5; 95% confidence interval 1.1 to 2.2). The highest rate of infection was among people ages 25-34 years (32/76; 42%). No children younger than 2 years had had boils. Boils were associated with using a steam bath (odds ratio 8.1; 3.3 to 20.1). Among those who used a steam bath, the likelihood of developing boils was reduced by routinely sitting on a towel while bathing, which women were more likely to do, and bathing with fewer than 8 people. Of the 93 samples taken from steam baths, one Staphylococcus aureus isolate was obtained from a bench in an outer dressing room. Conclusion Using a steam bath was associated with developing boils in this outbreak in a village in Alaska. People should be advised to sit on towels while using steam baths. PMID:10778372

  16. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  17. A Mechanistic Study of Nucleate Boiling Heat Transfer Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Hasan, M. M.

    2000-01-01

    Experimental studies of growth and detachment processes of a single bubble and multiple bubbles formed on a heated surface have been conducted in the parabola flights of KC-135 aircraft. Distilled water and PF5060 were used as the test liquids. A micro-fabricated test surface was designed and built. Artificial cavities of diameters 10 microns, 7 microns and 4 microns were made on a thin polished Silicon wafer that was electrically heated by a number of small heating elements on the back side in order to control the surface superheat. Bubble growth period, bubble size and shape from nucleation to departure were measured under subcooled and saturation conditions. Significantly larger bubble departure diameters and bubble growth periods than those at earth normal gravity were observed. Bubble departure diameters as large as 20 mm for water and 6 mm for PF5060 were observed as opposed to about 3 mm for water and less than 1 mm for PF5060 at earth normal gravity respectively. It is found that the bubble departure diameter can be approximately related to the gravity level through the relation D(sub d) proportional 1/g(exp 1/2). For water,the effect of wall superheat and liquid subcooling on bubble departure diameter is found to be small.The growth periods are found to be very sensitive to liquid subcooling at a given wall superheat. However,the preliminary results of single bubble dynamics using PF5060 showed that the departure diameter increases when wall superheat is elevated at the same gravity and subcooling. Growth period of single bubbles in water has been found to vary as t(sub g) proportional g(exp -.93). For water, when the magnitude of horizontal gravitational components was comparable to that of gravity normal to the surface, single bubbles slid along the heater surface and departed with smaller diameter at the same gravity level in the direction normal to the surface. For PF5060, even a very small horizontal gravitational component caused the sliding of

  18. Conceptual design for spacelab pool boiling experiment

    NASA Technical Reports Server (NTRS)

    Lienhard, J. H.; Peck, R. E.

    1978-01-01

    A pool boiling heat transfer experiment to be incorporated with a larger two-phase flow experiment on Spacelab was designed to confirm (or alter) the results of earth-normal gravity experiments which indicate that the hydrodynamic peak and minimum pool boiling heat fluxes vanish at very low gravity. Twelve small sealed test cells containing water, methanol or Freon 113 and cylindrical heaters of various sizes are to be built. Each cell will be subjected to one or more 45 sec tests in which the surface heat flux on the heaters is increased linearly until the surface temperature reaches a limiting value of 500 C. The entire boiling process will be photographed in slow-motion. Boiling curves will be constructed from thermocouple and electric input data, for comparison with the motion picture records. The conduct of the experiment will require no more than a few hours of operator time.

  19. Why Is NASA Boiling Fluids in Space?

    NASA Video Gallery

    Convection and buoyancy work differently in space than on Earth. Learn how NASA uses this information and applies it to everyday life. Boiling fluids in space is easier than it is on Earth. Learn m...

  20. Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant

    NASA Technical Reports Server (NTRS)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2007-01-01

    Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.

  1. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  2. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  3. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  4. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  5. 21 CFR 872.6710 - Boiling water sterilizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Boiling water sterilizer. 872.6710 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6710 Boiling water sterilizer. (a) Identification. A boiling water sterilizer is an AC-powered device that consists of a container for boiling...

  6. Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau Basin

    NASA Astrophysics Data System (ADS)

    Takai, Ken; Nunoura, Takuro; Ishibashi, Jun-Ichiro; Lupton, John; Suzuki, Ryohei; Hamasaki, Hiroshi; Ueno, Yuichiro; Kawagucci, Shinsuke; Gamo, Toshitaka; Suzuki, Yohey; Hirayama, Hisako; Horikoshi, Koki

    2008-06-01

    A newly discovered hydrothermal field called the Mariner field on the Valu Fa Ridge in the southern Lau Basin was explored and characterized with geochemical and microbiological analyses. The hydrothermal fluid discharging from the most vigorous vent (Snow Chimney, maximum discharge temperature 365°C) was boiling at the seafloor at a depth of 1908 m, and two distinct end-member hydrothermal fluids were identified. The fluid chemistry of the typical Cl-enriched and Cl-depleted hydrothermal fluids was analyzed, as was the mineralogy of the host chimney structures. The variability in the fluid chemistry was potentially controlled by the subseafloor phase-separation (vapor loss process) and the microbial community activities. Microbial community structures in three chimney structures were investigated using culture-dependent and -independent techniques. The small subunit (SSU) rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities on the chimney surfaces differed among three chimneys. Cultivation analysis demonstrated significant variation in the culturability of various microbial components among the chimneys, particularly of thermophilic H2-oxidizing (and S-oxidizing) chemolithoautotrophs such as the genera Aquifex and Persephonella. The physical and chemical environments of chimney surface habitats are still unresolved and do not directly extrapolate the environments of possible subseafloor habitats. However, the variability in microbial community found in the chimneys also provides an insight into the different biogeochemical interactions potentially affected by the phase separation of the hydrothermal fluids in the subseafloor hydrothermal habitats. In addition, comparison with other deep-sea hydrothermal systems revealed that the Mariner field microbial communities have unusual characteristics.

  7. SUPERHEATING IN A BOILING WATER REACTOR

    DOEpatents

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  8. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian

    2002-01-01

    The prestart thermal conditioning of the hardware in LOX (liquid oxygen) systems involve heat transfer between LOX and metal where boiling plays a large role. Information is easily found on nucleate boiling, maximum heat flux, minimum heat flux and film boiling for common fluids like water. After looking at these standard correlations it was felt more data was needed for the cool down side transition boiling for the LN2 and LOX. In particular interest is the film boiling values, the temperature at which transition begins and the slope as peak heat flux is approached. The ultimate goal is an array of boiling heat transfer coefficient as a function of surface temperature which can be used in the chilldown model of the feed system, engine and bleed system for X-34. The first experiment consisted of an actual MC-1 LOX Impeller which had been machined backwards, that was instrumented with 17 surface thermocouples and submerged in liquid nitrogen. The thermocouples were installed on metal thicknesses varying from the thin inducer to the thick hub.

  9. Diabatic flow boiling in circular transparent microchannels

    NASA Astrophysics Data System (ADS)

    Silvério, V.; Moreira, A. L. N.

    2012-11-01

    The horizontally assembled circular microchannel (Dh= 543μm, LHT = 60mm) made of transparent borosilicate glass is kept under constant wall heat flux conditions by means of a transparent metallic thin film deposit at the channel external wall as in Silvério and Moreira [1]. Heat transfer and pressure drop measurements are achieved by measuring the temperature and pressure at the channel inlet and outlet. Temperature is also measured along the channel outer wall. Experiments are carried with two different fluids, ethanol and methanol. Inlet liquid subcooling is of 297K, mass fluxes, G, up to 689kg.m-2.s-1 and imposed heat fluxes, q"s, up to 12.5W.cm-2 at ΔTsub from 0.8 to 50K. Synchronized high-speed visualization and microscope optics are used to determine dominant two-phase flow patterns and characterize hydrodynamic instabilities. Vapor qualities, χ, of -0.1 (indicating a subcooled liquid state) to 0.5 are under investigation. Semi-periodic variation of the flow patterns is noticeable for different flow conditions.

  10. Thermal-hydraulic instabilities in pressure tube graphite - moderated boiling water reactors

    SciTech Connect

    Tsiklauri, G.; Schmitt, B.

    1995-09-01

    Thermally induced two-phase instabilities in non-uniformly heated boiling channels in RBMK-1000 reactor have been analyzed using RELAP5/MOD3 code. The RELAP5 model of a RBMK-1000 reactor was developed to investigate low flow in a distribution group header (DGH) supplying 44 fuel pressure tubes. The model was evaluated against experimental data. The results of the calculations indicate that the period of oscillation for the high power tube varied from 3.1s to 2.6s, over the power range of 2.0 MW to 3.0 MW, respectively. The amplitude of the flow oscillation for the high powered tube varied from +100% to -150% of the tube average flow. Reverse flow did not occur in the lower power tubes. The amplitude of oscillation in the subcooled region at the inlet to the fuel region is higher than in the saturated region at the outlet. In the upper fuel region and outlet connectors the flow oscillations are dissipated. The threshold of flow instability for the high powered tubes of a RBMK reactor is compared to Japanese data and appears to be in good agreement.

  11. The hydrothermal system of the Calabozos caldera, central Chilean Andes

    USGS Publications Warehouse

    Grunder, A.L.; Thompson, J.M.; Hildreth, W.

    1987-01-01

    Active thermal springs associated with the late Pleistocene Calabozos caldera complex occur in two groups: the Colorado group which issues along structures related to caldera collapse and resurgence, and the Puesto Calabozos group, a nearby cluster that is chemically distinct and probably unrelated to the Colorado springs. Most of the Colorado group can be related to a hypothetical parent water containing ???400 ppm Cl at ???250??C by dilution with ???50% of cold meteoric water. The thermal springs in the most deeply eroded part of the caldera were derived from the same parent water by boiling. The hydrothermal system has probably been active for at least as long as 300,000 years, based on geologic evidence and calculations of paleo-heat flow. There is no evidence for economic mineralization at shallow depth. The Calabozos hydrothermal system would be an attractive geothermal prospect were its location not so remote. ?? 1987.

  12. Liquid crystal thermography in boiling heat transfer

    SciTech Connect

    Klausner, J.F.; Mei, R.; Chen, W.C.

    1995-12-31

    The utilization of liquid crystal thermography to study heterogeneous boiling phenomena has gained popularity in recent years. In order not to disturb the nucleation process, which occurs in the microstructure of the heating surface, the crystals are applied to the backside of a thin heater. This work critically examines the ability of liquid crystal thermography to quantitatively capture the thermal field on the boiling surface. The thermal field identified experimentally through liquid crystal thermography is compared against that computed in the vicinity of a growing vapor bubble using a simulation which considers the simultaneous heat transfer between three phases: the solid heater, the liquid microlayer, and the growing vapor bubble. The temperature history beneath a growing vapor bubble elucidates the high frequency response required to capture the transient thermal fields commonly encountered in boiling experiments. Examination of the governing equations and numerical results reveal that due to the heater thermal inertia, the temperature variation on the bottom of the heater is significantly different than that on the boiling surface. In addition, the crystals themselves have a finite spatial resolution and frequency response which filter out much of the microscale phenomenon associated with boiling heat transfer. Analysis of existing pool and flow boiling liquid crystal thermographs indicate that the typical spacial resolution is on the order of 0.25 mm and the response time is on the order of 5 ms which are insufficient to resolve the fine spacial and temporal details of the heating surface thermal field. Thus the data obtained from liquid crystal thermography applied to boiling heat transfer must be cautiously interpreted.

  13. Catalytic Hydrothermal Gasification

    SciTech Connect

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  14. Enhancements of Nucleate Boiling Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, W. J.

    2000-01-01

    This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.

  15. Experimental study of condensate subcooling with the use of a model of an air-cooled condenser

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.

    2016-01-01

    Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.

  16. A rapid, semiempirical method of calculating the stability margins of superconductors cooled with subcooled He-II: (Final report)

    SciTech Connect

    Dresner, L.

    1986-01-01

    A rapid, semiempirical method is presented for calculating the stability margins of superconductors cooled with subcooled He-II. Based on a model of Seyfert, the method takes into account both time-dependent Gorter-Mellink heat transport and the effects of interfacial Kapitza resistance. The method has been compared favorably with heat transfer data of Seyfert, stability data of Meuris, and stability data of Pfotenhauer and van Sciver. 4 refs., 7 figs., 1 tab.

  17. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    DOEpatents

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  18. Boiling on Microconfigured Composite Surfaces Enhanced

    NASA Technical Reports Server (NTRS)

    Chao, David F.

    2000-01-01

    Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future

  19. Boiling as household water treatment in Cambodia: a longitudinal study of boiling practice and microbiological effectiveness.

    PubMed

    Brown, Joseph; Sobsey, Mark D

    2012-09-01

    This paper focuses on the consistency of use and microbiological effectiveness of boiling as it is practiced in one study site in peri-urban Cambodia. We followed 60 randomly selected households in Kandal Province over 6 months to collect longitudinal data on water boiling practices and effectiveness in reducing Escherichia coli in household drinking water. Despite > 90% of households reporting that they used boiling as a means of drinking water treatment, an average of only 31% of households had boiled water on hand at follow-up visits, suggesting that actual use may be lower than self-reported use. We collected 369 matched untreated and boiled water samples. Mean reduction of E. coli was 98.5%; 162 samples (44%) of boiled samples were free of E. coli (< 1 colony-forming unit [cfu]/100 mL), and 270 samples (73%) had < 10 cfu/100 mL. Storing boiled water in a covered container was associated with safer product water than storage in an uncovered container.

  20. Boiling as Household Water Treatment in Cambodia: A Longitudinal Study of Boiling Practice and Microbiological Effectiveness

    PubMed Central

    Brown, Joseph; Sobsey, Mark D.

    2012-01-01

    This paper focuses on the consistency of use and microbiological effectiveness of boiling as it is practiced in one study site in peri-urban Cambodia. We followed 60 randomly selected households in Kandal Province over 6 months to collect longitudinal data on water boiling practices and effectiveness in reducing Escherichia coli in household drinking water. Despite > 90% of households reporting that they used boiling as a means of drinking water treatment, an average of only 31% of households had boiled water on hand at follow-up visits, suggesting that actual use may be lower than self-reported use. We collected 369 matched untreated and boiled water samples. Mean reduction of E. coli was 98.5%; 162 samples (44%) of boiled samples were free of E. coli (< 1 colony-forming unit [cfu]/100 mL), and 270 samples (73%) had < 10 cfu/100 mL. Storing boiled water in a covered container was associated with safer product water than storage in an uncovered container. PMID:22826487

  1. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  2. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    DOEpatents

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  3. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  4. A two-phase model for subcooled and superheated liquid jets

    SciTech Connect

    Muralidhar, R.; Jersey, G.R.; Krambeck, F.J.; Sundaresan, S.

    1995-12-31

    This paper describes a two-phase jet model for predicting the liquid rainout (capture) and composition of subcooled and superheated HF/additive pressurized liquid releases. The parent droplets of the release mixture constitute the fist phase. The second phase can in general be a vapor-liquid fog. The drops are not in equilibrium with the fog phase with which they exchange mass and energy. The fog at any location is assumed to be in local equilibrium. Correlations are developed for predicting the initial drop size for hydrodynamic breakup of jets. Applications are discussed in this paper for HF/additive mixtures. The fog phase calculations account for HF oligomerization and HF-water complex formation in the vapor phase and equilibrium between the liquid and vapor in the fog. The model incorporates jet trajectory calculations and hence can predict the amount of liquid rained out (liquid capture) and the capture distance. The HF captures predicted by the model for various release conditions are in agreement with small and large scale release experiments.

  5. Significant role of climatic trends on hydrothermal activity Coso Hot Springs, California

    SciTech Connect

    Lofgren, B.E. )

    1990-05-01

    The hydrothermal features of Coso Hot Springs have attracted visitors for 130 yr and scientific investigators for two decades. In 1978, anticipating effects of major geothermal developments nearby, the Naval Weapons Center (NWC) initiated a comprehensive monitoring program at a dozen hydrothermal sites in the Coso Hot Springs area. Nine years of monitoring preceded power production in the nearby Coso geothermal field in July 1987. During this period, steam was rising from numerous vents and gently boiling mud pots. Local rainfall caused increased boiling activity in several mud pots, with some overflowing during wet periods. Then in August 1988, a year after geothermal power production began major changes in hot spring activity commenced. Small mud pots and steamers started to grow and coalesce. In March 1989, mud-pot activity became more violent. Many buried wells failed causing surface activity in other areas to diminish. During ensuing months, large mud cones developed and much of the steam and boiling water occurred in a few major pots. Because the abrupt changes in hydrothermal activity followed so closely after nearby geothermal production began, the obvious cause has been attributed to geothermal developments. Studies of NWC baseline monitoring data indicate, however, that no effects of geothermal developments have been felt in the hot springs area. Rainfall and barometric effects account for most of the fluctuations in records of the past decade. Early accounts and field evidence suggest similar changes have occurred in the past.

  6. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  7. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  8. Electrohydrodynamic Pool Boiling in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.; Stahl, S. L.

    1996-01-01

    This research is concerned with studying the effects of applied electric fields on pool boiling in a reduced-gravity environment. Experiments are conducted at the NASA Lewis 2.2 sec Drop tower using a drop rig constructed at UC Davis. In the experiments, a platinum wire is heated while immersed in saturated liquid refrigerants (FC-72 and FC-87), or water, causing vapor formation at the wire surface. Electric fields are applied between the wire surface and an outer screen electrode that surrounds the wire. Preliminary normal-gravity experiments with water have demonstrated that applied electric fields generated by the rig electronics can influence boiling characteristics. Reduced-gravity experiments will be performed in the summer of 1996. The experiments will provide fundamental data on electric field strengths required to disrupt film boiling (for various wire heat generation input rates) in reduced gravity for a cylindrical geometry. The experiments should also shed light on the roles of characteristic bubble generation times and charge relaxation times in determining the effects of electric fields on pool boiling. Normal-gravity comparison experiments will also be performed.

  9. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  10. Cryogenic Propellant Boil-Off Reduction System

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Christie, R. J.; Carlberg, E.; Feller, J. R.

    2008-03-01

    Lunar missions under consideration would benefit from incorporation of high specific impulse propellants such as LH2 and LO2, even with their accompanying boil-off losses necessary to maintain a steady tank pressure. This paper addresses a cryogenic propellant boil-off reduction system to minimize or eliminate boil-off. Concepts to do so were considered under the In-Space Cryogenic Propellant Depot Project. Specific to that was an investigation of cryocooler integration concepts for relatively large depot sized propellant tanks. One concept proved promising—it served to efficiently move heat to the cryocooler even over long distances via a compressed helium loop. The analyses and designs for this were incorporated into NASA Glenn Research Center's Cryogenic Analysis Tool. That design approach is explained and shown herein. Analysis shows that, when compared to passive only cryogenic storage, the boil-off reduction system begins to reduce system mass if durations are as low as 40 days for LH2, and 14 days for LO2. In addition, a method of cooling LH2 tanks is presented that precludes development issues associated with LH2 temperature cryocoolers.

  11. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffery

    2014-01-01

    The Cryogenic Boil-Off Reduction System was tested with LH2 and LOX in a vacuum chamber to simulate space vacuum and the temperatures of low Earth orbit. Testing was successful and results validated the scaling study model that predicts active cooling reduces upper stage cryogenic propulsion mass for loiter periods greater than 2 weeks.

  12. The Plausibility of Boiling Geysers on Triton

    NASA Technical Reports Server (NTRS)

    Duxbury, N. S.; Brown, R. H.

    1995-01-01

    A mechanism is suggested and modeled whereby there may be boiling geysers on Triton. The geysers would be of nitrogen considering that Voyager detected cryovolcanic activity, that solid nitrogen conducts heat much less than water ice, and that there is internal heat on Triton.

  13. Classic and Hard-Boiled Detective Fiction.

    ERIC Educational Resources Information Center

    Reilly, John M.

    Through an analysis of several stories, this paper defines the similarities and differences between classic and hard-boiled detective fiction. The characters and plots of three stories are discussed: "The Red House" by A. A. Milne; "I, The Jury" by Mickey Spillane; and "League of Frightened Men" by Rex Stout. The classic detective story is defined…

  14. Big Bubbles in Boiling Liquids: Students' Views

    ERIC Educational Resources Information Center

    Costu, Bayram

    2008-01-01

    The aim of this study was to elicit students' conceptions about big bubbles in boiling liquids (water, ethanol and aqueous CuSO[subscript 4] solution). The study is based on twenty-four students at different ages and grades. The clinical interviews technique was conducted to solicit students' conceptions and the interviews were analyzed to…

  15. Cryogenic Boil-Off Reduction System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2014-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.

  16. Proteomic Investigation of Protein Profile Changes and Amino Acid Residue Level Modification in Cooked Lamb Meat: The Effect of Boiling.

    PubMed

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2015-10-21

    Hydrothermal treatment (heating in water) is a common method of general food processing and preparation. For red-meat-based foods, boiling is common; however, how the molecular level effects of this treatment correlate to the overall food properties is not yet well-understood. The effects of differing boiling times on lamb meat and the resultant cooking water were here examined through proteomic evaluation. The longer boiling time was found to result in increased protein aggregation involving particularly proteins such as glyceraldehyde-3-phosphate dehydrogenase, as well as truncation in proteins such as in α-actinin-2. Heat-induced protein backbone cleavage was observed adjacent to aspartic acid and asparagine residues. Side-chain modifications of amino acid residues resulting from the heating, including oxidation of phenylalanine and formation of carboxyethyllysine, were characterized in the cooked samples. Actin and myoglobin bands from the cooked meat per se remained visible on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, even after significant cooking time. These proteins were also found to be the major source of observed heat-induced modifications. This study provides new insights into molecular-level modifications occurring in lamb meat proteins during boiling and a protein chemistry basis for better understanding the effect of this common treatment on the nutritional and functional properties of red-meat-based foods.

  17. Radiogenic Isotope Constraints on Fluid Sources in the Yellowstone Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Scott, S. R.; Sims, K. W. W.; Role, A.; Shock, E.; Boyd, E. S.

    2015-12-01

    For decades, researchers in Yellowstone National Park (YNP) have used major and trace element and light stable isotope geochemistry to evaluate fluid sources and geochemical reactions in the Yellowstone hydrothermal system. However, the results can be affected by mixing, boiling and vapor-phase separation. We present new strontium (Sr), neodymium (Nd), and lead (Pb) isotopic data from hydrothermal waters and fumarole condensates that allow us to evaluate fluid sources independent of near-surface mixing and boiling. Our sample set was selected to explore the range of fluid compositions found in the Yellowstone hydrothermal system, including waters/fluids that are thought to be exclusively meteoric, exclusively from the deep hydrothermal system, and those which are a mixture of these end members and/or that have been influenced by various hydrothermal processes such as boiling or gas/water interaction. We have identified at least three isotopic endmembers that persist in various features throughout the YNP hydrothermal system. The first endmember has relatively unradiogenic Pb with Sr, Nd, and Pb isotopic compositions that are consistent with Yellowstone basalts and rhyolites. This endmember is typified by low pH features. We interpret this fluid as surface water and shallow groundwater that has interacted with volcanic rocks associated with the YNP magmatic system, with the acidity derived from oxidation of volcanic gases. The second endmember has relatively radiogenic Pb, radiogenic Sr, and unradiogenic Nd. This endmember is typified by neutral pH features and near neutral fumarole condensates. We interpret this endmember to represent the hypothesized deep hydrothermal reservoir that interacts with and reflects the isotopic composition of the host rock. The third endmember contains radiogenic Pb, unradiogenic Nd, and unradiogenic Sr. We observe this endmember in neutral features, which are interpreted as hydrothermal waters (shallow, deep, or mixtures) that have

  18. Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures

    NASA Technical Reports Server (NTRS)

    V. Carey; Sun, C.; Carey, V. P.

    2000-01-01

    In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this

  19. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1999-01-01

    In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a

  20. Implementation of Sub-Cooling of Cryogenic Propellants by Injection of Non-condensing Gas to the Generalized Fluid Systems Simulation Program (GFSSP)

    NASA Technical Reports Server (NTRS)

    Huggett, Daniel J.; Majumdar, Alok

    2013-01-01

    Cryogenic propellants are readily heated when used. This poses a problem for rocket engine efficiency and effective boot-strapping of the engine, as seen in the "hot" LOX (Liquid Oxygen) problem on the S-1 stage of the Saturn vehicle. In order to remedy this issue, cryogenic fluids were found to be sub-cooled by injection of a warm non-condensing gas. Experimental results show that the mechanism behind the sub-cooling is evaporative cooling. It has been shown that a sub-cooled temperature difference of approximately 13 deg F below saturation temperature [1]. The phenomenon of sub-cooling of cryogenic propellants by a non-condensing gas is not readily available with the General Fluid System Simulation Program (GFSSP) [2]. GFSSP is a thermal-fluid program used to analyze a wide variety of systems that are directly impacted by thermodynamics and fluid mechanics. In order to model this phenomenon, additional capabilities had to be added to GFSSP in the form of a FORTRAN coded sub-routine to calculate the temperature of the sub-cooled fluid. Once this was accomplished, the sub-routine was implemented to a GFSSP model that was created to replicate an experiment that was conducted to validate the GFSSP results.

  1. Hydrothermal reactivity of saponite.

    USGS Publications Warehouse

    Whitney, G.

    1983-01-01

    The nature and extent of the reactions of synthetic Fe-free saponite have been investigated under experimental hydrothermal conditions as a first step towards understanding saponite reactivity under relatively simple conditions. Saponite crystallizes from amorphous gel of ideal saponite composition within 7 days at 300o-550oC under P = 1 kbar. Reactions subsequent to this initial crystallization depend on reaction T and interlayer cations. Saponite is found to react hydrothermally, over a period of 200 days, at T down to 400oC, at least 150oC lower than previously reported, but showed no signs of reaction below 400oC. At 450oC, a mixture of talc/saponite and saponite/phlogopite clays forms from K-saponite via intracrystalline layer transformations, while above 450oC the initial K-saponite dissolves, with talc and phlogopite forming as discrete phases. After 200 days reactions at 400-450oC were not complete, so that given sufficient time to reach equilibrium, a lower hydrothermal stability limit for saponite is possible. Further study of the Fe-bearing saponite system will be required before experimental results can be applied to natural systems.-D.F.B.

  2. Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Konno, Uta; Tsunogai, Urumu; Nakagawa, Fumiko; Nakaseama, Miwako; Ishibashi, Jun-ichiro; Nunoura, Takuro; Nakamura, Ko-ichi

    2006-08-01

    We determined the chemical and isotopic compositions of the liquid CO2 found on Yonaguni IV knoll hydrothermal site, as well as those in hydrothermal fluid venting from the surrounding chimneys. The δ13C of both CO2 and CH4 in the liquid CO2 almost coincide with those in the hydrothermal fluid, suggesting that the liquid CO2 must be derived from the hydrothermal fluid. While showing homogeneous δ13C, the hydrothermal fluids exhibit wide variation in gas contents. Active phase separation must be taking place within the conduits. Besides, H2-depletion in the liquid CO2 suggests formation of solid CO2-hydrate must also precede the venting of liquid CO2. In conclusion, liquid CO2 must be produced through following subseafloor processes: phase separation of hydrothermal fluid due to boiling, formation of solid CO2-hydrate due to cooling of vapor phase, and melting of the solid CO2-hydrate to liquid CO2 due to a temperature increase within the sedimentary layer.

  3. First in-situ sensing of volcanic gas plume composition at Boiling Lake (Dominica, West Indies)

    NASA Astrophysics Data System (ADS)

    Di Napoli, R.; Aiuppa, A.; Allard, P.

    2012-12-01

    Dominica, a small Caribbean island between Martinique (to the South) and Guadeloupe (to the North), is, because of the high number of potentially active volcanic centres, one of the most susceptible sites to volcanic risk in the Lesser Antilles arc. Seven major volcanic centres, active during the last 10ka, are considered likely to erupt again, and one of these is the Valley of Desolation volcanic complex. This is an area of 0.5 km2, located in on SW Dominica, where a number of small explosion craters, hot springs, bubbling pools and fumaroles testify for vigorous and persistent hydrothermal activity. Two main phreatic explosions have been documented in historical time (1880 and 1997), and the most likely centre of future activity is the Boiling Lake, a nearby high-T volcanic crater lake produced by an undated phreatic/phreato-magmatic explosion. Hot (80 to 90°C) and acidic (4-6) waters normally characterize the steady-state activity of the lake, whereby which vigorous gas upwelling in the lake's centre feeds a persistent steaming plume. Stability of the Boiling Lake has occasionally been interrupted in the past (since 1876) by crises, the most recent in 2004, involving rapid draining of the lake and changes in water temperature and pH, likely as a result of drastic decrease of hydrothermal fluid input into the lake. While the chemical and isotopic composition of the lake waters is well characterised, there are no compositional data available for the gas plume leaving the lake, due to inherent difficulties in direct gas sampling. Here, we present the results of the first direct measurements of the Boiling Lake's plume, performed by using the MultiGAS technique in February 2012. We acquired 0.5 Hz time-series of H2O, CO2, H2S and SO2 plume concentrations, which were seen to peak (with maximum background-corrected concentrations of 3680, 101 and 25 ppm for respectively H2O, CO2 and H2S) during phases of visible increase in lake outgassing. SO2 was virtually absent

  4. Vertical boil propagation from a submerged estuarine sill

    NASA Astrophysics Data System (ADS)

    Chickadel, C. Chris; Horner-Devine, Alexander R.; Talke, Stefan A.; Jessup, Andrew T.

    2009-05-01

    Surface disruptions by boils during strong tidal flows over a rocky sill were observed in thermal infrared imagery collected at the Snohomish River estuary in Washington State. Locations of boil disruptions and boil diameters at the surface were quantified and are used to test an idealized model of vertical boil propagation. The model is developed as a two-dimensional approximation of a three-dimensional vortex loop, and boil vorticity is derived from the flow shear over the sill. Predictions of boil disruption locations were determined from the modeled vertical velocity, the sill depth, and the over-sill velocity. Predictions by the vertical velocity model agree well with measured locations (rms difference 3.0 m) and improve by using measured velocity and shear (rms difference 1.8 m). In comparison, a boil-surfacing model derived from laboratory turbulent mixed-layer wakes agrees with the measurements only when stratification is insignificant.

  5. Melting point, boiling point, and symmetry.

    PubMed

    Abramowitz, R; Yalkowsky, S H

    1990-09-01

    The relationship between the melting point of a compound and its chemical structure remains poorly understood. The melting point of a compound can be related to certain of its other physical chemical properties. The boiling point of a compound can be determined from additive constitutive properties, but the melting point can be estimated only with the aid of nonadditive constitutive parameters. The melting point of some non-hydrogen-bonding, rigid compounds can be estimated by the equation MP = 0.772 * BP + 110.8 * SIGMAL + 11.56 * ORTHO + 31.9 * EXPAN - 240.7 where MP is the melting point of the compound in Kelvin, BP is the boiling point, SIGMAL is the logarithm of the symmetry number, EXPAN is the cube of the eccentricity of the compound, and ORTHO indicates the number of groups that are ortho to another group.

  6. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  7. Enhanced Droplet Control by Transition Boiling

    PubMed Central

    Grounds, Alex; Still, Richard; Takashina, Kei

    2012-01-01

    A droplet of water on a heated surface can levitate over a film of gas produced by its own evaporation in the Leidenfrost effect. When the surface is prepared with ratchet-like saw-teeth topography, these droplets can self-propel and can even climb uphill. However, the extent to which the droplets can be controlled is limited by the physics of the Leidenfrost effect. Here, we show that transition boiling can be induced even at very high surface temperatures and provide additional control over the droplets. Ratchets with acute protrusions enable droplets to climb steeper inclines while ratchets with sub-structures enable their direction of motion to be controlled by varying the temperature of the surface. The droplets' departure from the Leidenfrost regime is assessed by analysing the sound produced by their boiling. We anticipate these techniques will enable the development of more sophisticated methods for controlling small droplets and heat transfer. PMID:23056912

  8. European simplified boiling water reactor (ESBWR) plant

    SciTech Connect

    Posta, B.A.; Goldenberg, E.A.; Sawhney, P.S.; Rao, A.S.

    1996-07-01

    This paper covers innovative ideas which made possible the redesign of the US 660-MW Simplified Boiling Water Reactor (SBWR) Reactor Island for a 1,200-MW size reactor while actually reducing the building cost. This was achieved by breaking down the Reactor Island into multiple buildings separating seismic-1 from non-seismic-1 areas, providing for better space utilization, shorter construction schedule, easier maintainability and better postaccident accessibility.

  9. Fundamental Boiling and RP-1 Freezing Experiments

    NASA Technical Reports Server (NTRS)

    Goode, Brian; Turner, Larry D. (Technical Monitor)

    2001-01-01

    This paper describes results from experiments performed to help understand certain aspects of the MC-1 engine prestart thermal conditioning procedure. The procedure was constrained by the fact that the engine must chill long enough to get quality LOX at the LOX pump inlet but must be short enough to prevent freezing of RP-1 in the fuel pump. A chill test of an MC-1 LOX impeller was performed in LN2 to obtain data on film boiling, transition boiling and impeller temperature histories. The transition boiling data was important to the chill time so a subsequent experiment was performed chilling simple steel plates in LOX to obtain similar data for LOX. To address the fuel freezing concern, two experiments were performed. First, fuel was frozen in a tray and its physical characteristics were observed and temperatures of the fuel were measured. The result was physical characteristics as a function of temperature. Second was an attempt to measure the frozen thickness of RP-1 on a cold wall submerged in warm RP-1 and to develop a method for calculating that thickness for other conditions.

  10. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with

  11. Critical heat flux on micro-structured zircaloy surfaces for flow boiling of water at low pressures

    SciTech Connect

    Haas, C.; Miassoedov, A.; Schulenberg, T.; Wetzel, T.

    2012-07-01

    The influence of surface structure on critical heat flux for flow boiling of water was investigated for Zircaloy tubes in a vertical annular test section. The objectives were to find suitable surface modification processes for Zircaloy tubes and to test their critical heat flux performance in comparison to the smooth tube. Surface structures with micro-channels, porous layer, oxidized layer, and elevations in micro- and nano-scale were produced on a section of a Zircaloy cladding tube. These modified tubes were tested in an internally heated vertical annulus with a heated length of 326 mm and an inner and outer diameter of 9.5 and 18 mm. The experiments were performed with mass fluxes of 250 and 400 kg/(m{sup 2}s), outlet pressures between 120 and 300 kPa, and constant inlet subcooling enthalpy of 167 kJ/kg. Only a small influence of modified surface structures on critical heat flux was observed for the pressure of 120 kPa in the present test section geometry. However, with increasing pressure the critical heat flux could increase up to 29% using the surface structured tubes with micro-channels, porous and oxidized layers. Capillary effects and increased nucleation site density are assumed to improve the critical heat flux performance. (authors)

  12. Effect of Residual Noncondensables on Pressurization and Pressure Control of a Zero-Boil-Off Tank in Microgravity

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Hylton, Sonya; Kartizova, Olga

    2013-01-01

    The Zero-Boil-Off Tank (ZBOT) Experiment is a small-scale experiment that uses a transparent ventless Dewar and a transparent simulant phase-change fluid to study sealed tank pressurization and pressure control with applications to on-surface and in-orbit storage of propellant cryogens. The experiment will be carried out under microgravity conditions aboard the International Space Station in the 2014 timeframe. This paper presents preliminary results from ZBOT's ground-based research that focuses on the effects of residual noncondensable gases in the ullage on both pressurization and pressure reduction trends in the sealed Dewar. Tank pressurization is accomplished through heating of the test cell wall in the wetted and un-wetted regions simultaneously or separately. Pressure control is established through mixing and destratification of the bulk liquid using a temperature controlled forced jet flow with different degrees of liquid jet subcooling. A Two-Dimensional axisymmetric two-phase CFD model for tank pressurization and pressure control is also presented. Numerical prediction of the model are compared to experimental 1g results to both validate the model and also indicate the effect of the noncondensable gas on evolution of pressure and temperature distributions in the ullage during pressurization and pressure control. Microgravity simulations case studies are also performed using the validated model to underscore and delineate the profound effect of the noncondensables on condensation rates and interfacial temperature distributions with serious implications for tank pressure control in reduced gravity.

  13. Boiling radial flow in fractures of varying wall porosity

    SciTech Connect

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  14. Enceladus: Starting Hydrothermal Activity

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    We describe a process for starting the hydrothermal activity in Enceladus' South Polar Region. The process takes advantage of fissures that reach the water table, about 1 kilometer below the surface. Filling these fissures with fresh ocean water initiates a flow of water up from an ocean that can be self-sustaining. In this hypothesis the heat to sustain the thermal anomalies and the plumes comes from a slightly warm ocean at depth. The heat is brought to the surface by water that circulates up, through the crust and then returns to the ocean.

  15. Cody hydrothermal system

    SciTech Connect

    Heasler, H.P.

    1982-01-01

    The hot springs of Colter's Hell are the surface manifestations of a much larger hydothermal system. That system has been studied to define its extent, maximum temperature, and mechanism of operation. The study area covers 2700 km/sup 2/ (1040 mi/sup 2/) in northwest Wyoming. Research and field work included locating and sampling the hot springs, geologic mapping, thermal logging of available wells, measuring thermal conductivities, analyzing over 200 oil and gas well bottom-hole temperatures, and compiling and analyzing hydrologic data. These data were used to generate a model for the hydrothermal system.

  16. Geochemical characteristics of sinking particles in the Tonga arc hydrothermal vent field, southwestern Pacific

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jeek; Kim, Jonguk; Pak, Sang Joon; Ju, Se-Jong; Yoo, Chan Min; Kim, Hyun Sub; Lee, Kyeong Yong; Hwang, Jeomshik

    2016-10-01

    Studies of sinking particles associated with hydrothermal vent fluids may help us to quantify mass transformation processes between hydrothermal vent plumes and deposits. Such studies may also help us understand how various types of hydrothermal systems influence particle flux and composition. However, the nature of particle precipitation out of hydrothermal vent plumes in the volcanic arcs of convergent plate boundaries has not been well studied, nor have the characteristics of such particles been compared with the characteristics of sinking particles at divergent boundaries. We examined sinking particles collected by sediment traps for about 10 days at two sites, each within 200 m of identified hydrothermal vents in the south Tonga arc of the southwestern Pacific. The total mass flux was several-fold higher than in the non-hydrothermal southwest tropical Pacific. The contribution of non-biogenic materials was dominant (over 72%) and the contribution of metals such as Fe, Mn, Cu, and Zn was very high compared to their average levels in the upper continental crust. The particle flux and composition indicate that hydrothermal authigenic particles are the dominant source of the collected sinking particles. Overall, our elemental ratios are similar to observations of particles at the divergent plate boundary in the East Pacific Rise (EPR). Thus, the nature of the hydrothermal particles collected in the south Tonga arc is probably not drastically different from particles in the EPR region. However, we observed consistent differences between the two sites within the Tonga arc, in terms of the contribution of non-biogenic material, the radiocarbon content of sinking particulate organic carbon, the ratios of iron to other metals (e.g. Cu/Fe and Zn/Fe), and plume maturity indices (e.g. S/Fe). This heterogeneity within the Tonga arc is likely caused by differences in physical environment such as water depth, phase separation due to subcritical boiling and associated sub

  17. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    SciTech Connect

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili; Guo, Xiangyun

    2011-11-15

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: {yields} SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. {yields} The dopped MCM-41 materials show a wormhole-like mesoporous structure. {yields} The thermal stability of the dopped materials have an increment of almost 100 {sup o}C compared with the pure MCM-41. {yields} The hydrothermal stability of the dopped materials is also better than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N{sub 2} physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 {sup o}C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.

  18. Absolute dynamic viscosity measurements of subcooled liquid oxygen from 0.15 MPa to 1.0 MPa

    NASA Astrophysics Data System (ADS)

    Hilton, D. K.; Van Sciver, S. W.

    2008-01-01

    New absolute dynamic viscosity measurements of subcooled liquid oxygen are presented which were acquired in the pressure and temperature domains from 0.15 MPa to 1.0 MPa and from 55.20 K to 90.19 K, respectively. The measurements were acquired with an uncertainty of 1% at a 95% confidence level using a pressurized gravitational capillary (PGC) viscometer specifically designed for subcooled liquefied gases. The measurements are summarized by Arrhenius-Eyring plot parameters ( μ = Ae E/ RT), and interpreted with respect to the chemical reaction rate theory of viscosity by Eyring. The Arrhenius-Eyring plot parameters reproduce the dynamic viscosity measurements with only a 2% RMS error, which is remarkable considering just two parameters are involved, A, the factor which includes the weak pressure dependence of the dynamic viscosity, and E/ R, the barrier energy of the flow, where R is the universal gas constant. Although the Arrhenius-Eyring plot parameters do not have a discernible pressure dependence in the present work, the pressure coefficient versus temperature for the dynamic viscosity was determined from line plots of the dynamic viscosity versus pressure. The pressure coefficients suggest that the pressure dependence is very weak, yet positive, and increases with decreasing temperature. Measurements at pressures an order-of-magnitude higher are required to confirm this suggestion.

  19. A review on boiling heat transfer enhancement with nanofluids.

    PubMed

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-04-04

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  20. Water boiling inside carbon nanotubes: toward efficient drug release.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2011-07-26

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNTs) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting transition into an unusual phase, where pressure is gas-like and grows linearly with temperature, while the diffusion constant is temperature-independent. Precise control over boiling by CNT diameter, together with the rapid growth of inside pressure above the boiling point, suggests a novel drug delivery protocol. Polar drug molecules are packaged inside CNTs; the latter are delivered into living tissues and heated by laser. Solvent boiling facilitates drug release.

  1. A review on boiling heat transfer enhancement with nanofluids

    PubMed Central

    2011-01-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement. PMID:21711794

  2. A review on boiling heat transfer enhancement with nanofluids

    NASA Astrophysics Data System (ADS)

    Barber, Jacqueline; Brutin, David; Tadrist, Lounes

    2011-12-01

    There has been increasing interest of late in nanofluid boiling and its use in heat transfer enhancement. This article covers recent advances in the last decade by researchers in both pool boiling and convective boiling applications, with nanofluids as the working fluid. The available data in the literature is reviewed in terms of enhancements, and degradations in the nucleate boiling heat transfer and critical heat flux. Conflicting data have been presented in the literature on the effect that nanofluids have on the boiling heat-transfer coefficient; however, almost all researchers have noted an enhancement in the critical heat flux during nanofluid boiling. Several researchers have observed nanoparticle deposition at the heater surface, which they have related back to the critical heat flux enhancement.

  3. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, David W.; Johnson, Wesley L.; Feller, Jeffrey R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  4. Selective hypersensitivity to boiled razor shell.

    PubMed

    Martín-García, C; Carnés, J; Blanco, R; Martínez-Alonso, J C; Callejo-Melgosa, A; Frades, A; Colino, T

    2007-01-01

    Many types of seafood require cooking before ingestion and it has been demonstrated that this cooking process may affect the antigenicity and allergenicity of the food. We describe a case of anaphylaxis caused by selective sensitization to razor shell, a mollusc. In vivo and in vitro studies confirmed sensitization to boiled razor shell. Analysis of the nature of the allergen yielded results that were consistent with the findings of other authors and suggested that allergens involved in seafood allergy are commonly high molecular weight proteins that, in most cases, are heat stable.

  5. Hydrothermal venting within a coral reef ecosystem, Ambitle Island, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Pichler, Thomas; Dix, George R.

    1996-05-01

    Shallow-water (5 10 m) hydrothermal venting in a nearshore coral reef environment at Ambitle Island in the Tabar-Feni island arc, east of Papua New Guinea, occurs as focused discharge of boiling fluid from discrete ports 10 15 cm in diameter, and as dispersed discharge of diffuse bubble streams that issue through the sandy mixed carbonate-volcaniclastic sea floor. Abiotic aragonite and microcrystalline ferroan, low-Mg calcite, interlaminated with Fe-oxyhydroxides, are the prominent hydrothermal precipitates. Geochemical attributes of aragonite (δ18O, δ13C, and fluid inclusions) suggest that cements formed from a solution with salinities <5‰ at temperatures of ˜100 °C, with probable contribution of hydrothermal CO2. Sr isotope ratios in abiotic (hydrothermal) aragonite (˜ 0.704 15) are similar to those in island-arc basalt and denote considerable subsurface water-rock interaction of meteoric water derived from the adjacent volcanic island. The Sr isotope ratio of a coral sample (0.707 46) collected adjacent to a vent portal suggests coral growth within a mixed seawater-hydrothermal environment.

  6. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores

    USGS Publications Warehouse

    Sturchio, N.C.; Keith, T.E.C.; Muehlenbachs, K.

    1990-01-01

    Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199??C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The ??18O values of the thirty-two analyzed silica samples (quartz, chalcedony, ??-cristobalite, and ??-cristobalite) range from -7.5 to +2.8???. About one third of the silica 7samples have ??18O values that are consistent with isotopic equilibrium with present thermal waters; most of the other silica samples appear to have precipitated from water enriched in 18O (up to 4.7???) relative to present thermal water, assuming precipitation at present in situ temperatures. Available data on fluid-inclusion homogenization temperatures in hydrothermal quartz indicate that silica precipitation occurred mostly at temperatures above those measured during drilling and imply that 15O enrichments in water during silica precipitation were generally larger than those estimated from present conditions. Similarly, clay minerals (celadonite and smectite) have ??18O values higher (by 3.5 to 7.9???) than equilibrium values under present conditions. In contrast, all eight analyzed calcite samples are close to isotopic equilibrium with present thermal waters. The frequent incidence of apparent 18O enrichment in thermal water from which the hydrothermal minerals precipitated may indicate that a higher proportion of strongly 18O-enriched deep hydrothermal fluid once circulated through shallow portions of the Yellowstone system, or that a recurring transient 18O-enrichment effect occurs at shallow depths and is caused either by sudden decompressional boiling or by isotopic exchange at low water/rock ratios in new fractures. The mineralogy and apparent 18O enrichments of hydrothermal fracture-filling minerals are consistent with deposition

  7. Hydrothermal corrosion of silicon carbide joints without radiation

    DOE PAGES

    Koyanagi, Takaaki; Katoh, Yutai; Terrani, Kurt A.; Kim, Young-Jin; Kiggans, James O.; Hinoki, Tatsuya

    2016-09-28

    In this paper, hydrothermal corrosion of four types of the silicon carbide (SiC) to SiC plate joints were investigated under pressurized water reactor and boiling water reactor relevant chemical conditions without irradiation. The joints were formed by metal diffusion bonding using molybdenum or titanium interlayer, reaction sintering using Ti—Si—C system, and SiC nanopowder sintering. Most of the joints withstood the corrosion tests for five weeks. The recession of the SiC substrates was limited. Based on the recession of the bonding layers, it was concluded that all the joints except for the molybdenum diffusion bond are promising under the reducing environmentsmore » without radiation. Finally, the SiC nanopowder sintered joint was the most corrosion tolerant under the oxidizing environment among the four joints.« less

  8. Zero Boil-Off System Testing

    NASA Technical Reports Server (NTRS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  9. Development boiling to sprinkled tube bundle

    NASA Astrophysics Data System (ADS)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  10. Zero boil-off system testing

    NASA Astrophysics Data System (ADS)

    Plachta, D. W.; Johnson, W. L.; Feller, J. R.

    2016-03-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration plans due to their high specific impulse for rocket motors of upper stages. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for long duration missions. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler temperature to control tank pressure. The technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.

  11. Thermohydrodynamics of boiling in binary compressible fluids.

    PubMed

    Liu, Jiewei; Do-Quang, Minh; Amberg, Gustav

    2015-10-01

    We numerically study the thermohydrodynamics of boiling for a CO(2) + ethanol mixture on lyophilic and lyophobic surfaces in both closed and open systems, based on a diffuse interface model for a two-component system. The corresponding wetting boundary conditions for an isothermal system are proposed and verified in this paper. New phenomena due to the addition of another component, mainly the preferential evaporation of the more volatile component, are observed. In the open system and the closed system, the physical process shows very different characteristics. In the open system, except for the movement of the contact line, the qualitative features are rather similar for lyophobic and lyophilic surfaces. In the closed system, the vortices that are observed on a lyophobic surface are not seen on a lyophilic surface. More sophisticated wetting boundary conditions for nonisothermal, two-component systems might need to be further developed, taking into account the variations of density, temperature, and surface tension near the wall, while numerical results show that the boundary conditions proposed here also work well even in boiling, where the temperature is nonuniform.

  12. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  13. Exploration strategies for hydrothermal deposits.

    PubMed

    Horn, R A

    1996-01-01

    With unlimited money the most certain strategy for finding most hydrothermal metal deposits would be by drilling to 5000 m at 50 m spacing. However, the cost would far outweigh the benefit of the discoveries. Geological knowledge and exploration techniques may be used to obtain the greatest benefit for minimum cost, and to concentrate human and material resources in the most economic way in areas with the highest probability of discovery. This paper reviews the economic theory of exploration based on expected value, and the application of geological concepts and exploration techniques to exploration for hydrothermal deposits. Exploration techniques for hydrothermal-systems on Mars would include geochemistry and particularly passive geophysical methods.

  14. Sulfur speciation in natural hydrothermal waters, Iceland

    NASA Astrophysics Data System (ADS)

    Kaasalainen, Hanna; Stefánsson, Andri

    2011-05-01

    The speciation of aqueous dissolved sulfur was determined in hydrothermal waters in Iceland. The waters sampled included hot springs, acid-sulfate pools and mud pots, sub-boiling well discharges and two-phase wells. The water temperatures ranged from 4 to 210 °C, the pH T was between 2.20 and 9.30 at the discharge temperature and the SO 4 and Cl concentrations were 0.020-52.7 and <0.01-10.0 mmol kg -1, respectively. The analyses were carried out on-site within ˜10 min of sampling using ion chromatography (IC) for sulfate (SO 42-), thiosulfate (S 2O 32-) and polythionates (S xO 62-) and titration and/or colorimetry for total dissolved sulfide (S 2-). Sulfite (SO 32-) could also be determined in a few cases using IC. Alternatively, for few samples in remote locations the sulfur oxyanions were stabilized on a resin on site following elution and analysis by IC in the laboratory. Dissolved sulfate and with few exceptions also S 2- were detected in all samples with concentrations of 0.02-52.7 mmol kg -1 and <1-4100 μmol kg -1, respectively. Thiosulfate was detected in 49 samples of the 73 analyzed with concentrations in the range of <1-394 μmol kg -1 (S-equivalents). Sulfite was detected in few samples with concentrations in the range of <1-3 μmol kg -1. Thiosulfate and SO 32- were not detected in <100 °C well waters and S 2O 32- was observed only at low concentrations (<1-8 μmol kg -1) in ˜200 °C well waters. In alkaline and neutral pH hot springs, S 2O 32- was present in significant concentrations sometimes corresponding to up to 23% of total dissolved sulfur (S TOT). In steam-heated acid-sulfate waters, S 2O 32- was not a significant sulfur species. The results demonstrate that S 2O 32- and SO 32- do not occur in the deeper parts of <150 °C hydrothermal systems and only in trace concentrations in ˜200-300 °C systems. Upon ascent to the surface and mixing with oxygenated ground and surface waters and/or dissolution of atmospheric O 2, S 2- is degassed and

  15. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Sleep, N.H.

    1983-01-01

    This chapter discusses the initial entry of hydrothermal seawater into deep levels of the oceanic crust, the effectiveness of hydrothermal circulation in cooling the crust, the geometry of hydrothermal circulation, the relationship between the hydrothermal circulation and the magma chamber, the reaction of the oceanic crust with the seawater, and the identification of the hydrothermal fluid which alters a rock sample. Topics considered include the crack front, observation relevant to the crack front, the limitations of the crack front hypothesis, the observed pattern of hydrothermal alteration, the nature of the hydrothermal fluid, the physics of large scale convection, and convection through crack zones. Knowledge of hydrothermal circulation at the ridge axis is based on sampling of the hydrothermal fluid, indirect geophysical measurements of the oceanic crust, and studies of rocks which are believed to have undergone hydrothermal alteration at the ridge axis. Includes 2 drawings.

  16. Migration of hydrothermal systems in an evolving collisional orogen, New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, D.; Upton, P.; Horton, T.; Williams, J.

    2013-02-01

    The Pacific-Australian tectonic plate boundary through the South Island of New Zealand consists of the transpressional Southern Alps mountain belt and the transcurrent Marlborough Fault System, both of which have active tectonically driven hydrothermal systems, with topographically driven meteoric incursion and warm springs. The Southern Alps hydrothermal system is relatively diffuse, with little or no fault control, and is channelled through scattered extensional sites beneath the mountains, where gold mineralisation is occurring locally. The hydrothermal activity along the Marlborough Fault System is controlled by the principal faults in well-defined valleys separated by narrow high ridges. Lateral evolution of Marlborough fault strands southwestwards into the Southern Alps has caused diversion of diffuse Southern Alps hydrothermal activity into the structural superimposition zone, where fluid flow is increasingly being controlled by faults. This hydrothermal diversion was accompanied by major topographic reorientation and river drainage reversal in the late Quaternary. Vein swarms now exposed in the remnants of the Southern Alps north of the superimposition zone formed at shallow levels, with some evidence for fluid boiling, from a mixture of meteoric and deep-sourced fluid. These veins, some of which contain gold, are part of an abandoned <1 million-year-old hydrothermal zone beneath the fossil topographic divide of the Southern Alps that has now been dismembered by lateral incursion of the Marlborough fault strands. Observations on this active plate boundary provide some insights into processes that controlled orogenic gold mineralisation in ancient belts, particularly with respect to relationships between hydrothermal fluid flow, structure and topography.

  17. Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States

    USGS Publications Warehouse

    Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.

    2014-01-01

    Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  18. The Effect of Subcooling on the Flow and Heat Transfer Characteristics in a Two-Phase Loop Thermosyphon

    NASA Astrophysics Data System (ADS)

    Imura, Hideaki; Takeshita, Kazuhiro; Doi, Kyoji; Noda, Ken-Ichi

    A two-phase loop thermosyphon is used as a heat transfer device in an energy-saving heat transportation system and so forth, because it transports thermal energy without any external power supply such as a pump under a body force field. We previously performed a fundamental study on the flow and heat transfer characteristics in a two-phase loop thermosyphon installed with a single heated tube evaporator both experimentally and theoretically which was made under the condition of near saturation temperature of liquid in a reservoir. In the present study, the effects of liquid subcooling and the heat input on the circulation mass flow rates, pressure and temperature distributions, and heat transfer coefficients in the evaporator were examined experimentally using water, ethanol, benzene and Freon 113 as the working fluids. On the other hand, the circulation mass flow rates, pressure and temperature distributions were theoretically calculated and compared with the experimental results.

  19. Pressure distribution in a converging-diverging nozzle during two-phase choked flow of subcooled nitrogen

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.

  20. Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

    NASA Astrophysics Data System (ADS)

    Tomita, M.; Suzuki, K.; Fukumoto, Y.; Ishihara, A.; Akasaka, T.; Kobayashi, Y.; Maeda, A.; Takayasu, M.

    2015-12-01

    A 2 m length Twisted Stacked-Tape Cable (TSTC) conductor which was fabricated by 32-YBCO-tapes (4 mm width) with a 200 mm twist pitch was investigated at various temperatures near 77 K in subcooled- and pressurized-liquid nitrogen. The critical current of the TSTC cable which was 1.45 kA at 77 K measured from 64 K to 85 K by controlling the equilibrium vapor pressure of nitrogen bath and were varied from 3.65 kA at 64 K to 0.42 kA at 85 K. The temperature dependence of cables’ critical current agrees with that of the 4 mm width YBCO tape. These results are encouraging for applications of a compact Twisted Stacked-Tape Cable application in railway systems.

  1. Characteristics of Subcooled Liquid Methane During Passage Through a Spray-Bar Joule-Thompson Thermodynamic Vent System

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Schnell, A.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance.

  2. Hydrothermal Chemotrophic Biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Westall, F.; Campbell, K. A.; Gautret, P.; Bréhéret, J.; Foucher, F.; Vago, J.; Kminek, G.; Hubert, A.; Hickman-Lewis, K.; Cockell, C. S.

    2016-05-01

    Hydrothermal chemotrophic biosignatures (morphological and geo-organochemical) were common in shallow water on the anaerobic early Earth, preserved by silicification. They are representative also of shallow crustal biosignatures.

  3. 17. RW Meyer Sugar Mill: 18761889. Boiling House, 1878. View: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. RW Meyer Sugar Mill: 1876-1889. Boiling House, 1878. View: Southwest corner of boiling house. The amimal-powered cane mill is located in the undergrowth in the right foreground, - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  4. 18. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Detail of floor with molasses pits below floor level. The remaining floor boards indicate the structure of the floor covering the entire inside of the boiling house. In the left background the base of the centrifugals are in view. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  5. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  6. Boiling treatment of ABS and PS plastics for flotation separation.

    PubMed

    Wang, Chong-qing; Wang, Hui; Wu, Bao-xin; Liu, Qun

    2014-07-01

    A new physical method, namely boiling treatment, was developed to aid flotation separation of acrylonitrile-butadiene-styrene (ABS) and polystyrene (PS) plastics. Boiling treatment was shown to be effective in producing a hydrophilic surface on ABS plastic. Fourier Transform Infrared analysis was conducted to investigate the mechanism of boiling treatment of ABS. Surface rearrangement of polymer may be responsible for surface change of boiling treated ABS, and the selective influence of boiling treatment on the floatability of boiling treated plastics may be attributed to the difference in the molecular mobility of polymer chains. The effects of flotation time, frother concentration and particle size on flotation behavior of simple plastic were investigated. Based on flotation behavior of simple plastic, flotation separation of boiling treatment ABS and PS with different particle sizes was achieved efficiently. The purity of ABS and PS was up to 99.78% and 95.80%, respectively; the recovery of ABS and PS was up to 95.81% and 99.82%, respectively. Boiling treatment promotes the industrial application of plastics flotation and facilitates plastic recycling.

  7. Effects of water in film boiling over liquid metal melts

    SciTech Connect

    Greene, G.A.; Finfrock, C.; Burson, S.B.

    1986-01-01

    Liquid-liquid boiling experiments have been performed with H/sub 2/O and liquid metal melts in the 100-series test matrix (Runs 121, 126, 127) and the VE test matrix. Some of the pre-explosion unstable film boiling data as well as observations from the explosive series have been previously reported.

  8. Prospective Primary School Teachers' Perceptions on Boiling and Freezing

    ERIC Educational Resources Information Center

    Senocak, Erdal

    2009-01-01

    The aim of this study was to investigate the perceptions of prospective primary school teachers on the physical state of water during the processes of boiling and freezing. There were three stages in the investigation: First, open-ended questions concerning the boiling and freezing of water were given to two groups of prospective primary school…

  9. Turning bubbles on and off during boiling using charged surfactants.

    PubMed

    Cho, H Jeremy; Mizerak, Jordan P; Wang, Evelyn N

    2015-10-21

    Boiling--a process that has powered industries since the steam age--is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles 'on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications.

  10. Conversion of direct process high-boiling residue to monosilanes

    DOEpatents

    Brinson, Jonathan Ashley; Crum, Bruce Robert; Jarvis, Jr., Robert Frank

    2000-01-01

    A process for the production of monosilanes from the high-boiling residue resulting from the reaction of hydrogen chloride with silicon metalloid in a process typically referred to as the "direct process." The process comprises contacting a high-boiling residue resulting from the reaction of hydrogen chloride and silicon metalloid, with hydrogen gas in the presence of a catalytic amount of aluminum trichloride effective in promoting conversion of the high-boiling residue to monosilanes. The present process results in conversion of the high-boiling residue to monosilanes. At least a portion of the aluminum trichloride catalyst required for conduct of the process may be formed in situ during conduct of the direct process and isolation of the high-boiling residue.

  11. Microbiological effectiveness of disinfecting water by boiling in rural Guatemala.

    PubMed

    Rosa, Ghislaine; Miller, Laura; Clasen, Thomas

    2010-03-01

    Boiling is the most common means of treating water in the home and the benchmark against which alternative point-of-use water treatment options must be compared. In a 5-week study in rural Guatemala among 45 households who claimed they always or almost always boiled their drinking water, boiling was associated with a 86.2% reduction in geometric mean thermotolerant coliforms (TTC) (N = 206, P < 0.0001). Despite consistent levels of fecal contamination in source water, 71.2% of stored water samples from self-reported boilers met the World Health Organization guidelines for safe drinking water (0 TTC/100 mL), and 10.7% fell within the commonly accepted low-risk category of (1-10 TTC/100 mL). As actually practiced in the study community, boiling significantly improved the microbiological quality of drinking water, though boiled and stored drinking water is not always free of fecal contaminations.

  12. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  13. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  14. The Physics of Boiling at Burnout

    NASA Technical Reports Server (NTRS)

    Theofanous, T. G.; Tu, J. P.; Dinh, T. N.; Salmassi, T.; Dinh, A. T.; Gasljevic, K.

    2000-01-01

    The basic elements of a new experimental approach for the investigation of burnout in pool boiling are presented. The approach consists of the combined use of ultrathin (nano-scale) heaters and high speed infrared imaging of the heater temperature pattern as a whole, in conjunction with highly detailed control and characterization of heater morphology at the nano and micron scales. It is shown that the burnout phenomenon can be resolved in both space and time. Ultrathin heaters capable of dissipating power levels, at steady-state, of over 1 MW/square m are demonstrated. A separation of scales is identified and it is used to transfer the focus of attention from the complexity of the two-phase mixing layer in the vicinity of the heater to a micron-scaled microlayer and nucleation and associated film-disruption processes within it.

  15. Self-propelled film-boiling liquids

    NASA Astrophysics Data System (ADS)

    Linke, Heiner; Taormina, Michael; Aleman, Benjamin; Melling, Laura; Dow-Hygelund, Corey; Taylor, Richard; Francis, Matthew

    2006-03-01

    We report that liquids perform self-propelled motion when they are placed in contact with hot surfaces with asymmetric (ratchet-like) topology. Millimeter-sized droplets or slugs accelerate at rates up to 0.1 g and reach terminal velocities of several cm/s, sustained over distances up to a meter. The pumping effect is observed when the liquid is in the film-boiling regime, for many liquids and over a wide temperature range. We propose that liquid motion is driven by a viscous force exerted by vapor flow between the solid and the liquid. This heat-driven pumping mechanism may be of interest in cooling applications, eliminating the need for an additional power source.

  16. High level disinfection of a home care device; to boil or not to boil?

    PubMed

    Winthrop, K L; Homestead, N

    2012-03-01

    We developed a percutaneous electrical transducer for home therapy of chronic pain, a device that requires high level disinfection between uses. The utility of boiling water to provide high level disinfection was evaluated by inoculating transducer pads with potential skin pathogens (Staphylococcus aureus, Mycobacterium terrae, Pseudomonas aeruginosa, Candida albicans) and subjecting them to full immersion in water boiling at 4200 feet elevation (95 °C). Log10 reductions in colony-forming units (cfu) at 10 min were 7.1, >6.3 and >5.5 for S. aureus, P. aeruginosa and C. albicans, respectively, but only 4.6 for M. terrae. At 15 min the reductions had increased to 7.5, >6.8, >6.6 and >7.5 cfu, respectively.

  17. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    PubMed

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination.

  18. Silica Transport and Distribution in Saline, Immiscible Fluids: Application to Subseafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Steele-Macinnis, M.; Bodnar, R. J.; Lowell, R.; Rimstidt, J. D.

    2009-05-01

    Quartz is a nearly ubiquitous gangue mineral in hydrothermal mineral deposits, most often constituting the bulk of hydrothermal mineralization. The dissolution, transport and precipitation of quartz is controlled by the solubility of silica; in particular, in hot hydrothermal fluids in contact with quartz, silica saturation can generally be assumed, as rates of dissolution and precipitation are generally much faster than fluid flow rates. The solubility of silica in aqueous fluids can be used to understand the evolution of hydrothermal systems by tracing the silica distribution in these systems through time. The solubility of quartz in an aqueous fluid is dependent upon the pressure, temperature and composition (PTX) of the fluid. Silica solubility in pure water as a function of pressure and temperature is well understood. However, natural fluids contain variable amounts of dissolved ionic species, thus it is necessary to include the effects of salinity on silica solubility to accurately predict quartz distribution in hydrothermal systems. In particular, addition of NaCl results in enhanced quartz solubility over a wide range of PT conditions. Furthermore, if phase separation occurs in saline fluids, silica is preferentially partitioned into the higher salinity brine phase; if vapor is removed from the system, the bulk salinity in the system evolves towards the brine end member, and overall silica solubility is enhanced. There is abundant evidence from natural fluid inclusions for fluid immiscibility in hydrothermal ore deposits. Additionally, recent hydrothermal models that include fluid phase equilibria effects predict that phase separation may be an important control on the distribution of dissolved components in seafloor hydrothermal systems. An empirical equation describing the solubility of silica in salt-bearing hydrothermal solutions over a wide range of PTX conditions has been incorporated into a multiphase fluid flow model for seafloor hydrothermal

  19. Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Konno, U.; Tsunogai, U.; Nakagawa, F.; Nakaseama, M.; Ishibashi, J.; Nunoura, T.; Nakamura, K.

    2006-12-01

    In 2000, an active hydrothermal site, venting high-temperature fluid up to 300 oC, was discovered by Shinkai 6500 on the top of Yonaguni Knoll IV during YK 00-06 cruise in Okinawa Trough. During the subsequent subseafloor survey using Shinkai 6500 in 2003 (YK03-05), vents of liquid CO2 droplets were found at the site. Similar liquid CO2 droplets had previously been found at the active hydrothermal sites at JADE hydrothermal field, Okinawa Trough, during the extensive seafloor survey using submersibles in 1989 [Sakai et al., 1990]. Besides, similar liquid CO2 venting has also been recognized in NW Eifuku hydrothermal site on Izu-Bonin- Mariana arc. It thus appears that liquid CO2 venting might be usual phenomenon in some submarine arc volcanoes. The detailed relation between seafloor venting liquid CO2 and the surrounding high-temperature hydrothermal fluid, however, was not clarified in their studies. Furthermore, no definite evidence was obtained for the presence of CO2-hydrate in the subsurface. In this study, in order to discuss the subseafloor processes responsible for producing liquid CO2 at the Yonaguni Knoll IV site, as well as the possibility of the occurrence of solid CO2-hydrate within the sediments, we determined the chemical and isotopic compositions of the liquid CO2 found on the site, as well as those in hydrothermal fluid venting from the surrounding chimneys. In consequence, the ^13C of both CO2 and CH4 in the liquid CO2 almost coincide with those in the hydrothermal fluid, suggesting that the liquid CO2 must be derived from the hydrothermal fluid. While showing homogeneous ^13C, the hydrothermal fluids exhibit wide variation in gas contents. Active phase separation must be taking place within the conduits. Besides, H2-depletion in the liquid CO2 suggests formation of solid CO2-hydrate must also precede the venting of liquid CO2. In conclusion, liquid CO2 must be produced through following subseafloor processes: phase separation of hydrothermal

  20. Transition boiling heat transfer and the film transition regime

    NASA Technical Reports Server (NTRS)

    Ramilison, J. M.; Lienhard, J. H.

    1987-01-01

    The Berenson (1960) flat-plate transition-boiling experiment has been recreated with a reduced thermal resistance in the heater, and an improved access to those portions of the transition boiling regime that have a steep negative slope. Tests have been made in Freon-113, acetone, benzene, and n-pentane boiling on horizontal flat copper heaters that have been mirror-polished, 'roughened', or teflon-coated. The resulting data reproduce and clarify certain features observed by Berenson: the modest surface finish dependence of boiling burnout, and the influence of surface chemistry on both the minimum heat flux and the mode of transition boiling, for example. A rational scheme of correlation yields a prediction of the heat flux in what Witte and Lienhard (1982) previously identified as the 'film-transition boiling' region. It is also shown how to calculate the heat flux at the boundary between the pure-film, and the film-transition, boiling regimes, as a function of the advancing contact angle.

  1. A fundamental study of nucleate pool boiling under microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1991-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, and the bulk liquid temperatures. High speed photography was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  2. A Fundamental Study of Nucleate Pool Boiling Under Microgravity

    NASA Technical Reports Server (NTRS)

    Ervin, Jamie S.; Merte, Herman, Jr.

    1996-01-01

    An experimental study of incipient boiling in short-term microgravity and with a/g = +/- 1 for pool boiling was performed. Calibrated thin gold films sputtered on a smoothly polished quartz surface were used simultaneously for thermal-resistance measurements and heating of the boiling surface. The gold films were used for both transient and quasi-steady heating surface temperature measurements. Two test vessels were constructed for precise measurement and control of fluid temperature and pressure: a laboratory pool boiling vessel for the a/g = +/- 1 experiments and a pool boiling vessel designed for the 131 m free-fall in the NASA Lewis Research Center Microgravity Research Facility for the microgravity tests. Measurements included the heater surface temperature, the pressure near the heating surface, the bulk liquid temperatures. High speed photography (up to 1,000 frames per second) was used in the experiments. With high quality microgravity and the measured initial temperature of the quiescent test fluid, R113, the temperature distribution in the liquid at the moment of boiling inception resulting from an imposed step in heat flux is known with a certainty not possible previously. The types of boiling propagation across the large flat heating surface, some observed here for the first time, are categorized; the conditions necessary for their occurrence are described. Explosive boiling propagation with a striking pattern of small scale protuberances over the entire vapor mass periphery not observed previously at low heat flux levels (on the order of 5 W/cm(exp 2)) is described. For the heater surface with a/g = -1, a step in the heater surface temperature of short duration was imposed. The resulting liquid temperature distribution at the moment of boiling inception was different from that obtained with a step in heat flux.

  3. Pool and flow boiling in variable and microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1994-01-01

    As is well known, boiling is an effective mode of heat transfer in that high heat flux levels are possible with relatively small temperature differences. Its optimal application requires that the process be adequately understood. A measure of the understanding of any physical event lies in the ability to predict its behavior in terms of the relevant parameters. Despite many years of research the predictability of boiling is currently possible only for quite specialized circumstances, e.g., the critical heat flux and film boiling for the pool boiling case, and then only with special geometries. Variable gravity down to microgravity provides the opportunity to test this understanding, but possibly more important, by changing the dimensional and time scales involved permits more detailed observations of elements involved in the boiling process, and perhaps discloses phenomena heretofore unknown. The focus here is on nucleate boiling although, as will be demonstrated below, under but certain circumstances in microgravity it can take place concurrently with the dryout process. In the presence of earth gravity or forced convection effects, the latter process is usually referred to as film boiling. However, no vapor film as such forms with pool boiling in microgravity, only dryout. Initial results are presented here for pool boiling in microgravity, and were made possible at such an early date by the availability of the Get-Away-Specials (GAS). Also presented here are some results of ground testing of a flow loop for the study of low velocity boiling, eventually to take place also in microgravity. In the interim, variable buoyancy normal to the heater surface is achieved by rotation of the entire loop relative to earth gravity. Of course, this is at the expense of varying the buoyancy parallel to the heater surface. Two questions which must be resolved early in the study of flow boiling in microgravity are (1) the lower limits of liquid flow velocity where buoyancy

  4. Hydrothermal alteration facies within the intrusive-hosted Salave gold prospect, NW Spain

    SciTech Connect

    Harris, M.

    1985-01-01

    The Salave gold prospect occurs within an Hercynian granodioritic complex intruding Cambro-Ordovician metasediments and a heterogeneous gabbroic body. Mineralization consists mostly of disseminated and veinlet pyrite, arsenopyrite, molybdenite, stibnite, and lesser sphalerite associated with a zoned sequence of hydrothermal alteration. Gold occurs as free particles and/or intergrown with the sulfides. Mathematical appraisal of analytical data suggests that the hydrothermal alteration resulted from largely isochemical redistribution processes imposed on the mineralogy of the host granodiorite by influxes of sporadically boiling fluids rich in CO/sub 2/. Hydrothermal alteration is described in terms of a zonal sequence inward from unaltered host rock through (1) chlorite-sericite alteration-(2) propylitic to advanced propylitic alterations-(3)albitites-(4) an auriferous (greater than or equal to 1g/t Au) sericite-carbonate-albite-(+/-)quartz-sulfide cataclastic facies. The zonation corresponds to increasing carbonatization, sericitization, albitization, desilification, and destruction of the original igneous texture. Aventurine alteration is common and is thought to be the product of late stage hydrothermal oxidizing conditions. Potassic alteration in the form of K-feldspar or biotite was occasionally observed.

  5. Hydrothermal alteration in research drill hole Y-3, Lower Geyser Basin, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Bargar, Keith E.; Beeson, Melvin H.

    1985-01-01

    Y-3, a U.S. Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of 156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an older, unnamed rhyolite flow) of the Central Plateau Member of the Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in most of the drill core. The surficial deposits are largely cemented by silica and zeolite minerals; and the two rhyolite flows are, in part, bleached by thermal water that deposited numerous hydrothermal minerals in cavities and fractures. Hydrothermal minerals containing sodium as a dominant cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smectite, and pectolite) in the sedimentary section of the drill core. In the volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, laumontite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscottite) are predominant over sodium-bearing minerals (aegirine, mordenite, and Na-smectite). Hydrothermal minerals that contain significant amounts of potassium (alunite and lepidolite in the sediments and illitesmectite in the rhyolite flows) are found in the two drill-core intervals. Drill core y:.3 also contains hydrothermal silica minerals (opal, [3-cristobalite, chalcedony, and quartz), other clay minerals (allophane, halloysite, kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of calcium-bearing hydrothermal minerals in the lower rhyolitic section of the y:.3 drill core appears to be due to loss of calcium, along with potassium, during adiabatic cooling of an ascending boiling water.

  6. Structure of a seafloor hydrothermal system in volcanic sediment: distribution of hydrothermal clay minerals, at the Iheya North Knoll, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Miyoshi, Y.; Ishibashi, J.; Faure, K.; Uehara, S.

    2012-12-01

    conditions, the kaolinite may be related to the vapor phase component enriched in CO2 and H2S, which would be generated by boiling of the hydrothermal fluid below the seafloor. In summary, occurrence of different facies of hydrothermal clay minerals reflects substantial variation in both temperature and chemical conditions between the upper and lower sediment layer. This difference may be related to discrete fluid flow within these sediment layers.

  7. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Sucha, V.; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  8. Hydrothermal systems and volcano geochemistry

    USGS Publications Warehouse

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  9. Introduction to Atlantic Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.; Thompson, Geoffrey

    1993-06-01

    Seafloor hydrothermal research has advanced rapidly from local to global scope through a sequence of discoveries. Hydrothermal research at seafloor spreading centers began in the mid-1960s with the discovery of hot metalliferous brines and sediments ponded in deeps along the slow spreading (half rate 1 cm yr-1) axis of the Red Sea [Chamock, 1964; Miller, 1964; Swallow and Crease, 1965; Miller et al., 1966; Hunt et al., 1967; Bischoff, 1969]. At the same time a hydrothermal metalliferous component was identified in sediments of the East Pacific Rise [Skomyakova, 1965; Arrhenins and Bonatti, 1965; Boström and Peterson, 1966]. Geophysicists recognized that heat flow measurements at spreading centers could only be explained by convective cooling of the crust with circulating seawater [Elder, 1967; Lister, 1972].

  10. Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTx summary from 300° to 500°C

    USGS Publications Warehouse

    Bischoff, James L.

    1991-01-01

    Experimental data for densities of liquids and vapors on the two-phase surface of the system NaCl-H2O were compiled and evaluated to provide a complete summary between 300° and 500°C. The results are added to a previously published PTx summary compiled in the same manner to provide a PVTx summary of the present state of knowledge. Results are in table form of use to the understanding of two-phase behaviour in boiling hydrothermal systems and to theoretical modeling of this important system. 

  11. Prediction of subcooled vapor pressures (log PL) of 399 polychlorinated trans-azoxybenzenes by using the QSPR and ANN approach.

    PubMed

    Piliszek, Sławomir; Wilczyńska-Piliszek, Agata J; Falandysz, Jerzy

    2012-01-01

    Environmentally relevant partitioning properties such as the sub-cooled vapor pressures (log PL) have been predicted for 399 congeners of chloro-trans-azoxybenzene (C-t-AOBs) by two computational methods. The quantitative structure-property relationship (QSPR), an approach which is based on geometry optimalization and quantum-chemical structural descriptors in RM1 and DFT methods and artificial neural networks (ANNs), an approach that predicts abilities that give similar results of estimated log P(L) and the accuracy of the methods was also similar. The RM1 method was less time consuming and less costly compared to calculations by the DFT method. Estimated from the RM1 and DFT methods of log P(L) values of 399 Ct-AOBs varied between -1.98 to -0.93 and -1.83 to -0.79 for Mono-, 3.12 to -1.46 and -3.00 to -1.46 for Di-, -4.03 to -1.39 and -3.53 to -1.67 for Tri-, -4.75 to -2.33 and -4.59 to -1.91 for Tetra-, -5.37 to -2.59 and -5.42 to -2.09 for Penta-, -5.82 to -2.88 and -5.66 to -2.58 for Hexa-, -5.88 to -3.24 and -5.60 to -2.93 for Hepta-, -6.28 to -4.33 and -5.60 to -4.29 for Octa-, -6.54 to -5.28 and -5.66 to -4.93 for NonaCt-AOBs, and -6.59 and -5.61 for DecaCt-AOB. According to a common classification of environmental contaminants and by sub-cooled vapor pressure values, MonoCt-AOBs and a few of the Di- and TriCt-AOBs (log P(L)from -2 to 0) fall into the group of compounds that are relatively well mobile in the ambient environment, while most of the Di- to HeptaCt-AOBs (log P(L) < -4 to -2) mobility is relatively weak. Octa- and NonaCt-AOBs and DecaCt-AOB (log P(L) < -4) are also weak mobile contaminants.

  12. A microgravity boiling and convective condensation experiment

    NASA Technical Reports Server (NTRS)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-01-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  13. Optimal boiling temperature for ORC installation

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Jarosław; Mikielewicz, Dariusz

    2012-09-01

    In the paper a research on cost-effective optimum design boiling temperature for Organic Rankine Cycle utilizing low-temperature heat sources is presented. The ratio of the heat exchanger area of the boiler to the power output is used as the objective function. Analytical relations for heat transfer area as well power of the cycle are formulated. Evaporation temperature and inlet temperature of the heat source medium as well its mass flow rate are varied in the optimization method. The optimization is carried out for three working fluids, i.e. R 134a, water and ethanol. The objective function (economics profitability, thermodynamic efficiency) leads to different optimal working conditions in terms of evaporating temperature. Maximum power generation in the near-critical conditions of subcritical ORC is the highest. The choice of the working fluid can greatly affect the objective function which is a measure of power plant cost. Ethanol exhibits a minimum objective function but not necessarily the maximum cycle efficiency.

  14. Hydrothermal Activity and Volcanism on the Southern Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Haase, K. M.; Scientific Party, M.

    2005-12-01

    In April 2005 four recently discovered different hydrothermal fields on the slow-spreading Mid-Atlantic Ridge (MAR) south of the Equator were studied and sampled using a remotely operated vehicle (ROV) during cruise METEOR 64/1. Three of these hydrothermally active fields (called Turtle Pits, Red Lion, and Wideawake) occur at about 3000 m water depth in the centre of a MAR segment at 4° 48'S which appears to be volcanically very active. The youngest lava flow partly covers the low-temperature, diffuse flow Wideawake mussel field and is thus probably only a few years old. The high-temperature Turtle Pits hydrothermal field with four active vent structures lies some 300 m west of the diffuse vent field and is characterized by boiling fluids with temperatures close to 400° C. The mineral assemblage recovered from inactive hydrothermal mounds includes massive magnetite+hematite+sulfate and differs from that of the presently active vents and indicates more oxidizing conditions during the earlier activity. The vent fluids at Turtle Pits contain relatively high contents of hydrogen which may have formed during iron oxidation processes when basaltic magmas crystallized. The high fluid temperatures, the change to more reducing conditions, and the relatively high hydrogen contents in the fluids are most likely due to the ascent of magmas from the mantle that fed the very recent eruption. The high-temperature Red Lion hydrothermal field lies some 2 km north of the Turtle Pits field and consists of at least four active black smokers surrounded by several inactive sulfide mounds. The composition of the Red Lion fluids differs significantly from the Turtle Pits fluids, possibly owing largely to a difference in the temperature of the two systems. The fourth hydrothermally active field on the southern MAR, the Liliput field, was discovered near 9° 33'S in a water depth of 1500 m and consists of several low-temperature vents. A shallow hydrothermal plume in the water column

  15. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  16. Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa.

    PubMed

    Romeo, Raffaella; Giuliano Albo, P Alberto; Lorefice, Salvatore; Lago, Simona

    2016-02-21

    In this work, accurate density measurements of subcooled water (freshly double-distilled water) were performed along eight constant-mass curves in the temperature range of (243 to 283) K and in the pressure range of (140 to 400) MPa, by a pseudo-isochoric method. The experimental apparatus mainly consisted of a high pressure vessel, especially designed for this experiment, of known volume as a function of temperature and pressure, used to perform measurements in the T-p range under study. The density of subcooled water was obtained by measuring the equilibrium pressure at different temperatures, keeping the mass constant. All terms contributing to the uncertainty of subcooled water density measurements were considered; the estimated relative uncertainty, in the investigated temperature and pressure range, is about 0.07%. The experimental results were compared with the literature densities. In particular, the trend of density versus temperature for a constant mass of sample observed experimentally differs from the trend calculated by the equation provided by the International Association for Properties of Water and Steam (IAPWS-95) outside the range of validity, i.e., in the metastable region. PMID:26896989

  17. Density measurements of subcooled water in the temperature range of (243 and 283) K and for pressures up to 400 MPa.

    PubMed

    Romeo, Raffaella; Giuliano Albo, P Alberto; Lorefice, Salvatore; Lago, Simona

    2016-02-21

    In this work, accurate density measurements of subcooled water (freshly double-distilled water) were performed along eight constant-mass curves in the temperature range of (243 to 283) K and in the pressure range of (140 to 400) MPa, by a pseudo-isochoric method. The experimental apparatus mainly consisted of a high pressure vessel, especially designed for this experiment, of known volume as a function of temperature and pressure, used to perform measurements in the T-p range under study. The density of subcooled water was obtained by measuring the equilibrium pressure at different temperatures, keeping the mass constant. All terms contributing to the uncertainty of subcooled water density measurements were considered; the estimated relative uncertainty, in the investigated temperature and pressure range, is about 0.07%. The experimental results were compared with the literature densities. In particular, the trend of density versus temperature for a constant mass of sample observed experimentally differs from the trend calculated by the equation provided by the International Association for Properties of Water and Steam (IAPWS-95) outside the range of validity, i.e., in the metastable region.

  18. Boiling local heat transfer enhancement in minichannels using nanofluids.

    PubMed

    Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

    2013-03-18

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

  19. BOILING HOUSE, INTERIOR, SECOND FLOOR, CLARIFIERS, SIEP TO THE LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, CLARIFIERS, SIEP TO THE LEFT, WITH CLARIFIER FLASH TANK ABOVE, SAMPLING STATION TO THE LEFT. VIEW FROM THE SOUTHEAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  20. BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, GROUND FLOOR, ABANDONED SUGAR BIN IN CENTER. IN BACKGROUND, THE ELEVATOR AND STAIRS GOING UP. VIEW FROM SOUTHWEST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  1. 20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  2. BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, HIGH GRADE VACUUM PANS BEYOND THE SYRUP TANKS. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  3. BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, GROUND FLOOR. WAREHOUSE TO LEFT REAR, MASSECUITTE HEATERS ABOVE RIGHT, LOW GRADE CENTRIFUGALS BELOW. CRYSTALLIZER HOT WATER TANK TO REAR. VIEW FROM NORTHEAST - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  4. Turning bubbles on and off during boiling using charged surfactants

    PubMed Central

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-01-01

    Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275

  5. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    SciTech Connect

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  6. Boiling local heat transfer enhancement in minichannels using nanofluids

    PubMed Central

    2013-01-01

    This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

  7. BOILING HOUSE, SECOND FLOOR, FROM TOP OF GARVER CLARIFIER, MUD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, SECOND FLOOR, FROM TOP OF GARVER CLARIFIER, MUD FILTERS AND CAUSTIC SODA TANKS TO THE LEFT. VIEW FROM THE EAST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  8. BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS OF LONG TUBE EVAPORATORS IN BACKGROUND. VIEW FROM NORTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  9. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    ERIC Educational Resources Information Center

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  10. 16. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Looking from west to east through boiling house. The sorghum pan is on the right. The beams; joists, and trusses are of northwest pine; side boards are of redwood. A foundation line of a loading dock and smokestack are in the foreground. Both end walls have deteriorated completely. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  11. Boiling incipience and heat transfer on smooth and enhanced surfaces

    SciTech Connect

    Shakir, S.

    1987-01-01

    A comprehensive experimental study in nucleate pool boiling of binary mixtures was carried out to investigate the effects of mixture composition on boiling incipient and deactivation superheats and heat-transfer coefficients. All experiments were performed at a pressure of 1.01 bar on conventional smooth surfaces and an enhanced surface (High Flux of Union Carbide Corporation). Contact angles were also measured for the same mixtures on the smooth surfaces of brass and copper. The incipience and deactivation of boiling sites on the enhanced surface occurred at much lower wall superheats than on the smooth ones. For the mixture systems investigated, the incipient superheats were observed to be higher than the corresponding deactivation superheats. The classical boiling nucleation criterion was found to be inadequate in predicting the measured incipient superheats. The boiling-heat-transfer coefficients obtained on the smooth surfaces showed a deterioration when compared with the values obtained from a simple linear mixing law between the single-component values. The enhanced surface-heat-transfer coefficients for boiling of the same mixtures showed both positive and negative deviations from the linear mixing law between the pure component values.

  12. Infrared thermometry study of nanofluid pool boiling phenomena

    PubMed Central

    2011-01-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754

  13. Infrared thermometry study of nanofluid pool boiling phenomena.

    PubMed

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-Wen; McKrell, Thomas

    2011-03-16

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  14. Infrared thermometry study of nanofluid pool boiling phenomena

    NASA Astrophysics Data System (ADS)

    Gerardi, Craig; Buongiorno, Jacopo; Hu, Lin-Wen; McKrell, Thomas

    2011-12-01

    Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement.

  15. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    PubMed

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.

  16. Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials.

    PubMed

    Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li

    2015-12-22

    Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures. PMID:26529570

  17. High-resolution water column survey to identify active sublacustrine hydrothermal discharge zones within Lake Rotomahana, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Walker, Sharon L.; de Ronde, Cornel E. J.; Fornari, Daniel; Tivey, Maurice A.; Stucker, Valerie K.

    2016-03-01

    Autonomous underwater vehicles were used to conduct a high-resolution water column survey of Lake Rotomahana using temperature, pH, turbidity, and oxidation-reduction potential (ORP) to identify active hydrothermal discharge zones within the lake. Five areas with active sublacustrine venting were identified: (1) the area of the historic Pink Terraces; (2) adjacent to the western shoreline subaerial "Steaming Cliffs," boiling springs and geyser; (3) along the northern shoreline to the east of the Pink Terrace site; (4) the newly discovered Patiti hydrothermal system along the south margin of the 1886 Tarawera eruption rift zone; and (5) a location in the east basin (northeast of Patiti Island). The Pink Terrace hydrothermal system was active prior to the 1886 eruption of Mount Tarawera, but venting along the western shoreline, in the east basin, and the Patiti hydrothermal system appear to have been initiated in the aftermath of the eruption, similar to Waimangu Valley to the southwest. Different combinations of turbidity, pH anomalies (both positive and negative), and ORP responses suggest vent fluid compositions vary over short distances within the lake. The seasonal period of stratification limits vertical transport of heat to the surface layer and the hypolimnion temperature of Lake Rotomahana consequently increases with an average warming rate of ~ 0.010 °C/day due to both convective hydrothermal discharge and conductive geothermal heating. A sudden temperature increase occurred during our 2011 survey and was likely the response to an earthquake swarm just 11 days prior.

  18. Effects of glacial ice on subsurface temperatures of hydrothermal systems in Yellowstone National Park, Wyoming: Fluid-inclusion evidence

    SciTech Connect

    Bargar, K.E.; Fournier, R.O. )

    1988-12-01

    Hydrothermal quartz and fluorite crystals containing liquid-rich fluid inclusions (coexisting vapor-rich fluid inclusions were not observed) were found in drill cores from eight relatively shallow research holes drilled by the US Geological Survey in and near major geyser basins of Yellowstone National Park. Homogenization temperatures (T{sub h}) for mostly secondary fluid inclusions show variations in temperature that have occurred at give depths since precipitation of the host minerals. Within major hydrothermal upflow zones, fluid-inclusion T{sub h} values all were found to be equal to or higher (commonly 20-50 C and up to 155 C higher) than present temperatures at the depths sampled. During periods when thick glacial ice covered the Yellowstone National Park region, pore-fluid pressures in the underlying rock were increased in proportion to the weight of the overlying column of ice. Accordingly, theoretical reference boiling-point curves that reflect the maximum temperature attainable in a hot-water geothermal system at a given depth were elevated, and temperatures within zones of major hydrothermal upflow (drill holes Y-2, Y-3, Y-6, Y-11, Y-13, and upper part of Y-5) increased. The thicknesses of ice required to elevate boiling-point curves sufficiently to account for the observed fluid-inclusion T{sub h} values are within the ranges estimated by glacial geologic studies. At the margins of major hydrothermal upflow zones (drill holes Y-4 and Y-9), fluid-inclusion T{sub h} values at given depths range from 57 C lower to about the same as the current temperature measurements because of a previous decrease in the rate of discharge of warm water and/or an increase in the rate of recharge of cold water into the hydrothermal system.

  19. Hydrothermal processes at seafloor spreading centers,

    SciTech Connect

    Rona, P.A.; Bostrom, K.; Laubier, L.; Smith, K.L.

    1983-01-01

    This book examines research on the description and interpretation of hydrothermal and associated phenomena at seafloor spreading centers. An interdisciplinary overview of the subject is presented, including geological, geophysical, geochemical, and biological discoveries. The implications of the discoveries for understanding the earth's heat transfer, geochemical mass balances and cycles, mineralization, and biological adaptation are discussed. Topics considered include geologic setting (e.g., the four dimensions of the spreading axis, geological processes of the mid-ocean ridge), hydrothermal convection (e.g., oxygen and hydrogen isotope studies, the basic physics of water penetration into hot rock), Iceland and oceanic ridges (e.g., chemical evidence from Icelandic geothermal systems, the physical environment of hydrothermal systems), mass balances and cycles (e.g., reduced gases and bacteria in hydrothermal fluids, the effects of hydrothermal activity on sedimentary organic matter), ferromanganese deposits, hydrothermal mineralization, and the biology of hydrothermal vents.

  20. Vapliq hydrothermal systems, and the vertical permeability of Los Azufres, Mexico, geothermal reservoir

    SciTech Connect

    Iglesias, Eduardo R.; Arellano, Victor M.

    1988-01-01

    We identify a new category of natural hydrothermal systems intermediate between liquid- and vapor-dominated. This category is characterized by a “vapliq” vertical pressure profile, which is nearly vaporstatic in the shallower portion of the system, and nearly boiling-point-for-depth at depth. The prototype of these systems is the geothermal field of Los Azufres, Mexico. To explore the thermohydrological conditions conducent to this type of system, we propose a 1-D vertical scenario based on generally accepted conceptual models of liquid- and vapor-dominated geothermal reservoirs. We use the corresponding mass and thermal energy transport equations to establish that a necessary condition for the existence of 2-phase hydrothermal systems is that the absolute value of the vertical thermal flux must exceed Q{sub min}, a parameter that depends only on the values of the pressure and of the thermal conductivity at the boiling point of the system. The values of Q{sub min} are typically 1-4 times the average terrestrial flux. We also find that geothermal systems in which convective heat transport is accomplished by the well-known heat-pipe mechanism can exist only if the corresponding heat flux exceeds Q{sub min} and the permeability at the boiling point of the system is smaller than k{sub Bmax}, a parameter that depends only on the values of the pressure and of the thermal conductivity at the boiling point. Typical values of k{sub Bmax} are 1-3 {times} 10{sup -18} m{sup 2}, suggesting a reason for the fact that all vapor-dominated systems are associated with very-low matrix permeability formations. Applying these insights, and the mass and heat transport equations to Los Azufres, we conclude that a contrast of 1-3 orders of magnitude exists between the vertical permeability at the boiling point and that corresponding to the vapor-dominated portion of the system. We propose that similar permeability contrasts may be responsible for the characteristic composite pressure

  1. Hydrothermal Monitoring in a Quiescent Volcanic Arc: Cascade Range, Northwestern United States

    NASA Astrophysics Data System (ADS)

    Gelwick, K.; Randolph-Flagg, N. G.; Crankshaw, I. M.; McCulloch, C. L.; Lundstrom, E. A.; Murveit, A. M.; Bergfeld, D.; Spicer, K.; Tucker, D.; Schmidt, M. E.; Mariner, R. H.; Evans, W.; Ingebritsen, S.

    2013-12-01

    Ongoing (1996-present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major-ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the U.S. Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade Range volcanic arc, from Mount Baker near the Canadian border to Mount Lassen in northern California. A concerted effort was made to develop hourly records of temperature and (or) hydrothermal solute flux spanning multiple years, suitable for comparison with other continuous geophysical monitoring data. Monitored sites included summit-fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and (or) large fluxes of magmatic CO2 or heat. As of 2009-2012 measured summit-fumarole temperatures in the Cascade Range were generally near or below the local pure-water boiling point; the maximum observed superheat was <+2.5°C at Mount Baker. Temporal variability in ground-temperature records from the summit-fumarole sites is temperature-dependent, with the hottest sites tending to show less variability. Seasonal variability in the flux of hydrothermally sourced major anions from the springs varied from essentially undetectable to a factor of 5-10. This range of observed behavior owes mainly to the local climate regime, with strongly snowmelt-influenced springs and streams exhibiting more variability. As of the end of the 2012 field season, there had been 87 occurrences of local seismic energy densities ~>0.001 J/m3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multi-decadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in

  2. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  3. Enhanced boiling heat transfer in horizontal test bundles

    SciTech Connect

    Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

    1994-08-01

    Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

  4. Droplet impingement dynamics: effect of surface temperature during boiling and non-boiling conditions

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liburdy, James A.; Pence, Deborah V.; Narayanan, Vinod

    2009-11-01

    This study investigates the hydrodynamic characteristics of droplet impingement on heated surfaces and compares the effect of surface temperature when using water and a nanofluid on a polished and nanostructured surface. Results are obtained for an impact Reynolds number and Weber number of approximately 1700 and 25, respectively. Three discs are used: polished silicon, nanostructured porous silicon and gold-coated polished silicon. Seven surface temperatures, including single-phase (non-boiling) and two-phase (boiling) conditions, are included. Droplet impact velocity, transient spreading diameter and dynamic contact angle are measured. Results of water and a water-based single-wall carbon-nanotube nanofluid impinging on a polished silicon surface are compared to determine the effects of nanoparticles on impinging dynamics. The nanofluid results in larger spreading velocities, larger spreading diameters and an increase in early-stage dynamic contact angle. Results of water impinging on both polished silicon and nanostructured silicon show that the nanostructured surface enhances the heat transfer for evaporative cooling at lower surface temperatures, which is indicated by a shorter evaporation time. Using a nanofluid or a nanostructured surface can reduce the total evaporation time up to 20% and 37%, respectively. Experimental data are compared with models that predict dynamic contact angle and non-dimensional maximum spreading diameter. Results show that the molecular-kinetic theory's dynamic contact angle model agrees well with current experimental data for later times, but over-predicts at early times. Predictions of maximum spreading diameter based on surface energy analyses indicate that these models over-predict unless empirical coefficients are adjusted to fit the test conditions. This is a consequence of underestimates of the dissipative energy for the conditions studied.

  5. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO{sub 2} using ionic liquid as a template

    SciTech Connect

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-03-15

    Mesoporous silicas and Fe-SiO{sub 2} with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 {sup o}C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 {sup o}C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 {sup o}C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO{sub 2} has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 {sup o}C for 12 d or steam-treated at 600 {sup o}C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO{sub 2} with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: {yields} Increasing aging temperature improved the hydrothermal stability of materials. {yields}Addition of NaF enhanced the polymerization degree of silicates. {yields} Mesoporous SiO{sub 2} and Fe-SiO{sub 2} obtained have remarkable hydrothermal stability.

  6. VLA Shows "Boiling" in Atmosphere of Betelgeuse

    NASA Astrophysics Data System (ADS)

    1998-04-01

    progressively outwards. Although its existence was not previously suspected, this lower-temperature gas turns out to be the most abundant constituent of Betelgeuse's atmosphere. "This alters our basic understanding of red-supergiant star atmospheres," explains Lim. "Instead of the star's atmosphere expanding uniformly because of gas heated to very high temperatures near its surface, it now appears that several giant convection cells propel gas from the star's surface into its atmosphere. This creates the complex structure we observe for Betelgeuse's atmosphere." Betelgeuse can be likened to an enormous "boiling" ball of gas heated by the release of energy from nuclear fusion in its core. The circulating boiling pattern -- convection -- appears as large regions of hot upwelling gas on the star's surface. "The idea that red-supergiant stars have enormous convection cells is not new," noted Marson. "This was suggested by Martin Schwarzschild more than 20 years ago, and was seen in optical images of Betelgeuse's surface in 1990." The new picture of Betelgeuse's atmosphere also helps resolve the mystery of how massive amounts of dust and gas are expelled from red supergiant stars, an important source of enrichment for the interstellar medium. If their atmospheres were entirely very hot at lower levels, dust grains would not be able to condense there. Dust grains could possibly condense at higher levels, but there they would not get enough "push" from the star's radiation to explain their outward movement. In the new picture, the relatively cool environment at lower levels allows dust grains to condense effectively; here they can be strongly propelled by the more-intense starlight, carrying gas with them. Indeed, dust has previously been inferred to form sporadically near Betelgeuse's surface, but its presence there was difficult to reconcile with the old picture. "This method for propelling the mass outflows of red giant and supergiant stars was proposed by Sun Kwok in the same year

  7. Boron isotope systematics of hydrothermal fluids from submarine hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Yamaoka, K.; Hong, E.; Ishikawa, T.; Gamo, T.; Kawahata, H.

    2013-12-01

    Boron is highly mobile in submarine hydrothermal systems and useful to trace the process of water-rock reaction. In this study, we measured the boron content and isotopic composition of vent fluids collected from arc-backarc hydrothermal systems in the western Pacific. In sediment-starved hydrothermal systems (Manus Basin, Suiyo Seamount, and Mariana Trough), the boron content and isotopic composition of vent fluids are dependent on type of host rock. The end member fluids from MORB-like basalt-hosted Vienna Woods in the Manus Basin showed low boron content and high δ11B value (0.53 mM, 29.8‰), while dacite-hosted PACMANUS and the Suiyo Seamount showed high boron contents and low δ11B values (1.45 and 1.52 mM, 13.6 and 18.5‰, respectively). The Alice Springs and Forecast Vent field in the Mariana Trough showed values intermediate between them (0.72 and 0.63 mM, 19.9 and 24.0‰, respectively), reflecting reaction of seawater and basalt influenced by slab material. In phase separated hydrothermal systems (North Fiji Basin), boron content and isotopic composition of vent fluids (0.44-0.56 mM, 34.5-35.9‰) were similar to those in the Vienna Woods. Considering little fractionation of boron and boron isotope during phase separation demonstrated by the previous experimental studies, it is suggested that the host rock in the North Fiji Basin is MORB-like basalt. In sediment-hosted hydrothermal system (Okinawa Trough), the reaction with boron-enriched sediment following seawater-rock reaction resulted in significantly high boron contents and low δ11B values of vent fluids (4.4-5.9 mM, 1.5-2.6‰). The water-sediment ratio was estimated to be ~2. In spite of the different geological settings, the end member fuids from all vent fields are enriched in B relative to seawater (0.41 mM, 39.6‰) and the δ11B values are inversely propotional to the boron concentrations. It suggests that boron isotopic composition of vent fluid predominantly depends on the amount of

  8. Magmatic contributions to hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Muffler, L. J. Patrick; Hedenquist, Jeffrey W.; Kesler, Stephen E.; Izawa, Eiji

    Although there is agreement that many hydrothermal systems in the upper crust derive their thermal energy from magmas, debate continues over the extent to which magmas contribute water, metals, and sulfur to hydrothermal systems. A multidisciplinary seminar was held November 10-16, 1991, in Ebino and Kagoshima, Japan, to establish current understanding about this topic and to explore the major unanswered questions and the most promising research directions. The thirty-eight participants were from Japan (eighteen), the U.S. (thirteen), Canada and New Zealand (two each), and England, the Philippines, and Russia (one each). Disciplines represented were volcanology, geochemistry (volcanic-gas, water, isotopes, experimental, and modeling), igneous petrology, geothermal geology, economic geology, fluid-inclusion study, geophysics, and physical modeling.

  9. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO 2 using ionic liquid as a template

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-03-01

    Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 °C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 °C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 °C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 °C for 12 d or steam-treated at 600 °C for 6 h.

  10. 3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  11. Boiling heat transfer enhancement in subsurface horizontal and vertical tunnels

    SciTech Connect

    Pastuszko, Robert

    2008-09-15

    Complex experimental investigations of boiling heat transfer on structured surfaces covered with perforated foil were taken up. Experimental data were discussed for two kinds of enhanced surfaces formed by joined horizontal and vertical tunnels: tunnel structures (TS) and narrow tunnel structures (NTS). The experiments were carried out with water, ethanol and R-123 at atmospheric pressure. The TS and NTS surfaces were manufactured out of perforated copper foil of 0.05 mm thickness (hole diameters: 0.3, 0.4, 0.5 mm) sintered with the mini-fins, formed on the vertical side of the 5 mm high rectangular fins and horizontal inter-fin surface. The effects of hole (pore) diameters, tunnel pitch for TS and tunnel width for NTS on nucleate pool boiling were examined. Substantial enhancement of heat transfer coefficient was observed. The investigated surfaces showed boiling heat transfer coefficients similar to those of existing structures with subsurface tunnels, but at higher heat fluxes range. (author)

  12. Hysteresis of boiling heat transfer on porous covering

    SciTech Connect

    Poniewski, M.E.; Wojcik, T.M.; Afanasiev, B.A.

    1995-12-31

    The paper discusses the results of experimental investigations of boiling heat transfer on a porous covering of the heating surface. The boiling curves were obtained at the increasing and decreasing heat flux which allowed one to detect the hysteresis phenomenon of different types. The classification of the hysteresis phenomena based on the results and available in the literature is presented. It is based on the procedure of shape change of the boiling curves. Investigation of the hysteresis of the type depending on a distribution of pore cells size in metallic fiber covering was mainly carried out during the discussed experiments. Since this can be used to control the heat transfer process the authors call it a ``controlled hysteresis.``

  13. Pool boiling on a large horizontal flat resistance heater

    SciTech Connect

    Reguillot, F.; Witte, L.; Lienhard, J.; Poniewski, M. Kielce University of Technology, )

    1992-08-01

    Results are presented of experiments on n-pentane/Freon-113 system, carried out to investigate the film-transition boiling region where liquid-solid contacts contribute significantly to the local heat flux, using a large flat horizontal resistance heater mounted on a ceramic insulating substrate. After steady film boiling was reached, the heat flux was decreased and recorded simultaneously with the temperature measured by thermocouples attached to the lower side of the heater surface. It is shown that the observed data on the quasi-linear film boiling regime are better represented by Berenson's (1960) correlation than by Klimenko's (1981) correlation. Burnout values measured for Freon-113 compared reasonably well to available correlations for the flat plate geometry. 10 refs.

  14. The boiling crisis phenomenon on capillary-porous covering

    SciTech Connect

    Afanasiev, B.A.; Smirnov, G.F.; Poniewski, M.E.; Wojcik, T.M.

    1995-12-31

    Physical foundations and mathematical model of the boiling crisis phenomenon on capillary-porous covering -- based on modified Kutateladze-Zuber hydrodynamic hypothesis -- have been formulated. The modification has included new factors in boiling mechanism on capillary-porous covering, such as energy losses due to liquid and vapor transportation through pores, droplet ejection, and capillary potential. The theoretical model was verified against experimental data for water and ethanol, and for metallic screen coverings featuring varying parameters, such as porosity, thickness of the porous layer, pore cell diameter, and pressure. A semi-empirical formula that was drawn up from the model matches the experimental data quite well. It will allow one to determine the optimum porous structure to transfer maximum heat flux in heat pipes and other types of boiling heat transfer devices with porous coverings.

  15. Visualization of pool boiling from complex surfaces with internal tunnels

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert

    2012-04-01

    The paper presents experimental investigations of boiling heat transfer for a system of connected narrow horizontal and vertical tunnels. These extended surfaces, named narrow tunnel structure (NTS), can be applied to electronic element cooling. The experiments were carried out with ethanol at atmospheric pressure. The tunnel external covers were manufactured out of 0.1 mm thick perforated copper foil (hole diameters 0.5 mm), sintered with the mini-fins, formed on the vertical side of the 10 mm high rectangular fins and horizontal inter-fin surface. Visualization studies were conducted with a transparent structured model of joined narrow tunnels limited with the perforated foil. The visualization investigations aimed to formulate assumptions for the boiling model through distinguishing boiling types and defining all phases of bubble growth.

  16. Boiling heat transfer on fins - experimental and numerical procedure

    NASA Astrophysics Data System (ADS)

    Orzechowski, T.; Tyburczyk, A.

    2014-03-01

    The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

  17. On mechanism of explosive boiling in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  18. Defluoridation of drinking water by boiling with brushite and calcite.

    PubMed

    Larsen, M J; Pearce, E I F

    2002-01-01

    Existing methods for defluoridating drinking water involve expensive high technology or are slow, inefficient and/or unhygienic. A new method is now suggested, encompassing brushite and calcite suspension followed by boiling. Our aim was to examine the efficiency of the method and the chemical reactions involved. Brushite, 0.3-0.5 g, and an equal weight of calcite were suspended in 1 litre water containing 5-20 ppm fluoride. The suspensions were boiled in an electric kettle, left to cool and the calcium salts to sediment. Solution ion concentrations were determined and sediments were examined by X-ray diffraction. In distilled water initially containing 5, 10 and 20 ppm fluoride the concentration was reduced to 0.06, 0.4 and 5.9 ppm, respectively. Using Aarhus tap water which contained 2.6 mmol/l calcium the final concentrations were 1.2, 2.5 and 7.7 ppm, respectively, and runs without calcite gave results similar to those with calcite. Without boiling the fluoride concentration remained unaltered, as did the brushite and calcite salts, despite occasional agitation by hand. All solutions were supersaturated with respect to fluorapatite and hydroxyapatite and close to saturation with respect to brushite. Boiling produced well-crystallised apatite and traces of calcite, while boiling of brushite alone left a poorly crystallised apatite. We conclude that boiling a brushite/calcite suspension rapidly converts the two salts to apatite which incorporates fluoride if present in solution, and that this process may be exploited to defluoridate drinking water.

  19. Effect of surface properties on nucleate pool boiling

    SciTech Connect

    Haze, Ikuya; Tomemori, Hideki; Motoya, Daiju; Osakabe, Masahiro

    1999-07-01

    A series of experiments on nucleate pool boiling was performed by use of an oxygen-free copper rod and platinum wires of different surface properties under both normal gravity condition and microgravity condition. As a result of the experiments, under normal gravity condition, the bubbling on thick cracked silicone-coated surfaces and that on scale surfaces were more vigorous than that on mirror-finished (copper) surfaces, that on bare (Pt) surfaces, that on thin silicone-coated surfaces and that on thick silicone-coated surfaces. The boiling curves on the mirror-finished surface, the bare surface, the thin silicone-coated surface and the thick cracked silicone-coated surface were equal to those predicted by the Rohsenow's correlation. The superheats on the thick silicone-coated surface and the scale surface were larger than those predicted by the Rohsenow's correlation. The boiling curves on the non-cracked silicone-coated surface and the scale surface corrected by those heat resistance were equal to those predicted by the Rohsenow's correlation. The superheat on the thick silicone-coated surface corrected by its heat resistance was smaller than that predicted by the Rohsenow's correlation. The thick cracked silicone-coated surface enhanced the nucleate boiling heat transfer. On the other hand, under microgravity condition, the bubbles stayed around heated surfaces except scale surfaces. The boiling curve on the bare surface under microgravity condition was equal to that under normal gravity condition. The effect of surface properties on the nucleate boiling heat transfer under microgravity condition was equal to that under normal gravity condition.

  20. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    SciTech Connect

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required.

  1. Conditions leading to a recent small hydrothermal explosion at Yellowstone National Park

    USGS Publications Warehouse

    Fournier, R.O.; Thompson, J.M.; Cunningham, C.G.; Hutchinson, R.A.

    1991-01-01

    Porkchop Geyser, in Yellowstone National Park, was the site of a small hydrothermal explosion on September 5, 1989. The geyser column suddenly rose to a height of 20-30 m, followed immediately by the explosive ejection of sinter blocks up to 1.88 m in maximum dimension and formation of an irregular crater 13.9 m long and 11.7 m wide. The ejected blocks show a variety of siliceous deposits indicative of changing environments of deposition with time, and possibly of prior hydrothermal explosive activity at this site. Water samples from Porkchop were collected and analyzed once in the 1920s, again in 1951, ten times between 1960 and mid-1989, and once in January 1990 after the explosion. It is hypothesized that a sudden breaking loose of the constriction at the exit of the geyser tube, likely triggered by a seasonal increase in subsurface boiling throughout Norris Basin, allowed water and steam to be discharged from Porkchop much more rapidly than previously. This resulted in a drop in pressure within the geyser tube, causing water in adjacent connected chambers to become superheated. An ensuing rapid flashing of superheated water to steam within relatively confined spaces resulted in the hydrothermal explosion. -after Authors

  2. 23. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: North Wall of boiling house. In the original structure the three windows on the right admitted light and air from the outside. A shed occupied the left side of the wall outside (hence no windows). in 1881 the construction of the cooling shed closed in the right three windows. The sorghum is in the foreground. The centrifugals are in the left rear. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  3. Molecular connectivity. II: Relationship to water solubility and boiling point.

    PubMed

    Hall, L H; Kier, L B; Murray, W J

    1975-12-01

    The connectivity index, easily computed by arithmetic and based upon the degree of connectedness at each vertex in the molecular skeleton, is shown to give highly significant correlations with water solubility of branched, cyclic, and straight-chain alcohols and hydrocarbons as well as with boiling points of alcohols. These correlations are superior to those based on well-founded theory relating to solvent cavity surface area. An empirical modification to the connectivity index gave an improved correlation for both solubilities and boiling points.

  4. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    NASA Astrophysics Data System (ADS)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  5. Ethyl alcohol boiling heat transfer on multilayer meshed surfaces

    NASA Astrophysics Data System (ADS)

    Dåbek, Lidia; Kapjor, Andrej; Orman, Łukasz J.

    2016-06-01

    The paper presents the problem of heat transfer enhancement with the application of multilayer metal mesh structures during boiling of ethyl alcohol at ambient pressure. The preparation of samples involved sintering fine copper meshes with the copper base in the reduction atmosphere in order to prevent oxidation of the samples. The experiments included testing up to 4 layers of copper meshes. Significant augmentation of boiling heat transfer is possible, however, considerable number of meshes actually hinders heat transfer conditions and leads to the reduction in the heat flux transferred from the heater surface.

  6. Hysteresis of boiling for different tunnel-pore surfaces

    NASA Astrophysics Data System (ADS)

    Pastuszko, Robert; Piasecka, Magdalena

    2015-05-01

    Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS), narrow tunnel structures (NTS) and mini-fins covered with the copper wire net (NTS-L). The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  7. On Boiling of Crude Oil under Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  8. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c

  9. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    NASA Astrophysics Data System (ADS)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  10. Hydrothermal upgrading of algae paste in a continuous flow reactor.

    PubMed

    Patel, Bhavish; Hellgardt, Klaus

    2015-09-01

    This investigation demonstrates the utility of a novel laboratory scale continuous plug flow reactor for fast Hydrothermal Liquefaction (HTL) of microalgae in a quartz lined chamber. Reactions were carried out between 300 and 380 °C and residence times of 0.5-4 min. Cyclohexane was used as a co-solvent to enhance extraction and prevent char formation. Highest biocrude yield of 38 wt.% was achieved at 380 °C and 30 s as well as Water Soluble Fraction containing up to 60 wt.% matter recovered. Analysis of the biocrude showed that the extent of deoxygenation and denitrogenation after HTL varied and is dependent on the reaction conditions, Fourier Transform Infrared Spectroscopy analysis showed that biocrude contains similar functional moieties with only a small difference observed at different reaction conditions. Conversely, the Simulated Distillation and Size Exclusion Chromatography data showed that harsher conditions produced marginally better biocrude with improved boiling point profile and lower molecular weight compounds, respectively which was confirmed using Gas Chromatography-Mass Spectrometry. PMID:25908412

  11. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    SciTech Connect

    Mas, G.R.; Bengochea, L.; Mas, L.C.

    1996-12-31

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Maquinas, Tennas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H{sub 2}SO{sub 4}, by atmospheric oxidation at the water table in a steam heated environment of H{sub 2}S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hydrothermal solutions and the major structures of the area are analyzed.

  12. Hydrothermal pretreatment of coal before molten caustic leaching

    SciTech Connect

    Akhtar, S.S.; Chriswell, C.D.

    1993-10-01

    A hydrothermal pretreatment of coal samples before caustic leaching results in efficient sulfur removal using reduced amounts of caustic and to recovery of a higher fraction of the energy content of the feed coal than caustic leaching without the pretreatment. Pretreating an Illinois No. 6 coal with boiling water followed by a float-sink separation using 50% aqueous NaOH as the heavy medium, and then leaching the floated coal with only the caustic adhering to the float portion (less than 1 part caustic to 1 part water to 1 part coal) at 390{degrees}C for 15 minutes led to the same residual levels of sulfur in the cleaned coal (0.5%) as was obtained performing the float-sink procedure and leaching procedures on a non-prewashed coal using 2.4 parts caustic to 1 part coal. When prewashed Illinois No. 6 coal was leached with lesser amounts of caustic, the energy recoveries in the cleaned coal were about 5--10% higher than when non-prewashed coal was leached with the larger amounts of caustic.

  13. Hydrothermal upgrading of algae paste in a continuous flow reactor.

    PubMed

    Patel, Bhavish; Hellgardt, Klaus

    2015-09-01

    This investigation demonstrates the utility of a novel laboratory scale continuous plug flow reactor for fast Hydrothermal Liquefaction (HTL) of microalgae in a quartz lined chamber. Reactions were carried out between 300 and 380 °C and residence times of 0.5-4 min. Cyclohexane was used as a co-solvent to enhance extraction and prevent char formation. Highest biocrude yield of 38 wt.% was achieved at 380 °C and 30 s as well as Water Soluble Fraction containing up to 60 wt.% matter recovered. Analysis of the biocrude showed that the extent of deoxygenation and denitrogenation after HTL varied and is dependent on the reaction conditions, Fourier Transform Infrared Spectroscopy analysis showed that biocrude contains similar functional moieties with only a small difference observed at different reaction conditions. Conversely, the Simulated Distillation and Size Exclusion Chromatography data showed that harsher conditions produced marginally better biocrude with improved boiling point profile and lower molecular weight compounds, respectively which was confirmed using Gas Chromatography-Mass Spectrometry.

  14. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR)...

  15. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off...

  16. Boiling heat transfer and droplet spreading of nanofluids.

    PubMed

    Murshed, S M Sohel; de Castro, C A Nieto

    2013-11-01

    Nanofluids- a new class of heat transfer fluids have recently been a very attractive area of research due to their fascinating thermophysical properties and numerous potential benefits and applications in many important fields. However, there are many controversies and inconsistencies in reported arguments and experimental results on various thermal characteristics such as effective thermal conductivity, convective heat transfer coefficient and boiling heat transfer rate of nanofluids. As of today, researchers have mostly focused on anomalous thermal conductivity of nanofluids. Although investigations on boiling and droplet spreading are very important for practical application of nanofluids as advanced coolants, considerably fewer efforts have been made on these thermal features of nanofluids. In this paper, recent research and development in boiling heat transfer and droplet spreading of nanofluids are reviewed together with summarizing most related patents on nanofluids published in literature. Review reveals that despite some inconsistent results nanofluids exhibit significantly higher boiling heat transfer performance compared to their base fluids and show great promises to be used as advanced heat transfer fluids in numerous applications. However, there is a clear lack of in-depth understanding of heat transport mechanisms during phase change of nanofluids. It is also found that the nanofluids related patents are limited and among them most of the patents are based on thermal conductivity enhancement and synthesising processes of specific type of nanofluids.

  17. Direct numerical simulations of EHD-enhanced film boiling

    NASA Astrophysics Data System (ADS)

    Sharifi, Payam; Esmaeeli, Asghar

    2007-11-01

    Boiling is one of the most efficient modes of heat exchange. Yet, in applications involving boiling in micro-devices or under microgravity conditions it is extremely desirable to enhance the heat transfer rate even further to increase the efficiency of these systems. An enhancement mechanism that is particularly attractive is the one due to application of an electric field to the bulk of fluid. Here, the dielectric mismatch between the liquid and vapor phases results in convective flows and, therefore, a higher heat transfer coefficient. While the enhancement of heat and mass transfer by electric field has been known for decades, a fundamental understanding of the problem is still lacking primarily due to difficulties in conduct of experimental and theoretical studies. The current advances in development of numerical methods for direct simulations of multiphase flows, however, have opened up enormous possibilities for detailed understanding of this problem. Such simulations can make it possible to capture the highly unsteady dynamics of the boiling flows. Here, we present a front tracking algorithm in conjunction with a leaky-dielectric electrohydrodynamic (EHD) model to study EHD-enhanced film boiling on horizontal surfaces. The goal is to compare the average wall Nusselt number at different strengths of the electric field and to correlate the macroscopic behavior of the flow with the dynamics of the phase boundary.

  18. Electrochemical study of aluminum corrosion in boiling high purity water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  19. Experimental demonstration of contaminant removal from fractured rock by boiling.

    PubMed

    Chen, Fei; Liu, Xiaoling; Falta, Ronald W; Murdoch, Lawrence C

    2010-08-15

    This study was conducted to experimentally demonstrate removal of a chlorinated volatile organic compound from fractured rock by boiling. A Berea sandstone core was contaminated by injecting water containing dissolved 1,2-DCA (253 mg/L) and sodium bromide (144 mg/L). During heating, the core was sealed except for one end, which was open to the atmosphere to simulate an open fracture. A temperature gradient toward the outlet was observed when boiling occurred in the core. This indicates that steam was generated and a pressure gradient developed toward the outlet, pushing steam vapor and liquid water toward the outlet. As boiling occurred, the concentration of 1,2-DCA in the condensed effluent peaked up to 6.1 times higher than the injected concentration. When 38% of the pore volume of condensate was produced, essentially 100% of the 1,2-DCA was recovered. Nonvolatile bromide concentration in the condensate was used as an indicator of the produced steam quality (vapor mass fraction) because it can only be removed as a solute, and not as a vapor. A higher produced steam quality corresponds to more concentrated 1,2-DCA removal from the core, demonstrating that the chlorinated volatile compound is primarily removed by partitioning into vapor phase flow. This study has experimentally demonstrated that boiling is an effective mechanism for CVOC removal from the rock matrix.

  20. Flow Boiling Critical Heat Flux in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  1. Research on radiation detectors, boiling transients, and organic lubricants

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  2. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel system under § 154.703(c) must meet §§ 154.706 through 154.709. (b) The piping in the cargo boil-off fuel... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo boil-off as fuel: General. 154.705 Section...

  3. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel system under § 154.703(c) must meet §§ 154.706 through 154.709. (b) The piping in the cargo boil-off fuel... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: General. 154.705 Section...

  4. 46 CFR 154.705 - Cargo boil-off as fuel: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pressure and Temperature Control § 154.705 Cargo boil-off as fuel: General. (a) Each cargo boil-off fuel system under § 154.703(c) must meet §§ 154.706 through 154.709. (b) The piping in the cargo boil-off fuel... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo boil-off as fuel: General. 154.705 Section...

  5. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  6. Magmatic intrusions and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Gulick, Virginia Claire

    1993-01-01

    This dissertation investigates the possible role of hydrothermally driven ground-water outflow in the formation of fluvial valleys on Mars. Although these landforms have often been cited as evidence for a past warmer climate and denser atmosphere, recent theoretical modeling precludes such climatic conditions on early Mars when most fluvial valleys formed. Because fluvial valleys continued to form throughout Mars' geological history and the most Earth-like stream valleys on Mars formed well after the decline of the early putative Earth-like climate, it may be unnecessary to invoke drastically different climatic conditions for the formation of the earliest stream valleys. The morphology of most Martian fluvial valleys indicates formation by ground-water sapping which is consistent with a subsurface origin. Additionally, many Martian fluvial valleys formed on volcanoes, impact craters, near fractures, or adjacent to terrains interpreted as igneous intrusions; all are possible locales of vigorous, geologically long-lived hydrothermal circulation. Comparison of Martian valley morphology to similar features on Earth constrains valley genesis scenarios. Volumes of measured Martian fluvial valleys range from 1010 to 1013 m3. Based on terrestrial analogs, total water volumes required to erode these valleys range from approximately 1010 to 1015 m3. The clustered distribution of Martian valleys within a given terrain type, the sapping dominated morphology, and the general lack of associated runoff valleys all indicate the importance of localized ground-water outflow in the formation of these fluvial systems. An analytic model of a conductively cooling cylindrical intrusion is coupled with the U.S. Geological Survey's numerical ground-water computer code SUTRA to evaluate the magnitude of ground-water outflow expected from magmatically-driven hydrothermal systems on Mars. Results indicate that magmatic intrusions of several 102 km3 or larger can provide sufficient ground

  7. Numerical Investigation of Microgravity Tank Pressure Rise Due to Boiling

    NASA Technical Reports Server (NTRS)

    Hylton, Sonya; Ibrahim, Mounir; Kartuzova, Olga; Kassemi, Mohammad

    2015-01-01

    The ability to control self-pressurization in cryogenic storage tanks is essential for NASAs long-term space exploration missions. Predictions of the tank pressure rise in Space are needed in order to inform the microgravity design and optimization process. Due to the fact that natural convection is very weak in microgravity, heat leaks into the tank can create superheated regions in the liquid. The superheated regions can instigate microgravity boiling, giving rise to pressure spikes during self-pressurization. In this work, a CFD model is developed to predict the magnitude and duration of the microgravity pressure spikes. The model uses the Schrage equation to calculate the mass transfer, with a different accommodation coefficient for evaporation at the interface, condensation at the interface, and boiling in the bulk liquid. The implicit VOF model was used to account for the moving interface, with bounded second order time discretization. Validation of the models predictions was carried out using microgravity data from the Tank Pressure Control Experiment, which flew aboard the Space Shuttle Mission STS-52. Although this experiment was meant to study pressurization and pressure control, it underwent boiling during several tests. The pressure rise predicted by the CFD model compared well with the experimental data. The ZBOT microgravity experiment is scheduled to fly on February 2016 aboard the ISS. The CFD model was also used to perform simulations for setting parametric limits for the Zero-Boil-Off Tank (ZBOT) Experiments Test Matrix in an attempt to avoid boiling in the majority of the test runs that are aimed to study pressure increase rates during self-pressurization. *Supported in part by NASA ISS Physical Sciences Research Program, NASA HQ, USA

  8. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  9. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  10. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  11. Evaluation of commercial enhanced tubes in pool boiling: Topical report

    SciTech Connect

    Jung, C.; Bergles, A.E.

    1989-03-01

    In support of a study of shellside boiling with enhanced tubes, a pool boiling apparatus was developed and used to test single tubes with various structured boiling surfaces in R-113. The basic design of the tube-bundle test section was carried out and certain critical design features were tested experimentally. Copper tubes, 3/4 in. o.d. and 4 in. long, were selected with 1/4 in. diameter cartridge heaters. Four thermocouples were inserted in 3/32 in. diameter, 2 in. long holes. The pool boiling characteristics of a plain tube agree well with previous tests. Wolverine Turbo-B tubes with small, medium, and large features performed identically for a heat flux greater than 20 kW/m/sup 2/. For lower heat flux, however, the Turbo-B S was slightly superior. In general, the Wolverine Turbo-B tubes had more favorable boiling characteristics than the single Wieland Gewa-T tube that was tested. The test procedure is deemed entirely adequate for screening enhanced tubes to see which ones should be used in the tube-bundle test section. Three different ways of mounting the tubes were tested in R-113 at 65/degree/C and 5 bar gage pressure. As all three constructions sealed well, the simplest design is recommended in which a snap ring fixes the tube to the wall and an O-ring seals against the pressure. The general design features of the tube bundle test chamber are also presented. 14 refs.

  12. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs)....

  13. Whole Algae Hydrothermal Liquefaction Technology Pathway

    SciTech Connect

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  14. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus. PMID:25762281

  15. Ongoing hydrothermal activities within Enceladus.

    PubMed

    Hsu, Hsiang-Wen; Postberg, Frank; Sekine, Yasuhito; Shibuya, Takazo; Kempf, Sascha; Horányi, Mihály; Juhász, Antal; Altobelli, Nicolas; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Tachibana, Shogo; Sirono, Sin-iti; Moragas-Klostermeyer, Georg; Srama, Ralf

    2015-03-12

    Detection of sodium-salt-rich ice grains emitted from the plume of the Saturnian moon Enceladus suggests that the grains formed as frozen droplets from a liquid water reservoir that is, or has been, in contact with rock. Gravitational field measurements suggest a regional south polar subsurface ocean of about 10 kilometres thickness located beneath an ice crust 30 to 40 kilometres thick. These findings imply rock-water interactions in regions surrounding the core of Enceladus. The resulting chemical 'footprints' are expected to be preserved in the liquid and subsequently transported upwards to the near-surface plume sources, where they eventually would be ejected and could be measured by a spacecraft. Here we report an analysis of silicon-rich, nanometre-sized dust particles (so-called stream particles) that stand out from the water-ice-dominated objects characteristic of Saturn. We interpret these grains as nanometre-sized SiO2 (silica) particles, initially embedded in icy grains emitted from Enceladus' subsurface waters and released by sputter erosion in Saturn's E ring. The composition and the limited size range (2 to 8 nanometres in radius) of stream particles indicate ongoing high-temperature (>90 °C) hydrothermal reactions associated with global-scale geothermal activity that quickly transports hydrothermal products from the ocean floor at a depth of at least 40 kilometres up to the plume of Enceladus.

  16. One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity

    SciTech Connect

    Yang Dongjiang; Xu Yao Wu Dong; Sun Yuhan

    2008-09-15

    Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 deg. C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N{sub 2} adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The {sup 29}Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH{sub 3} groups have been introduced into the materials. The {sup 27}Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH{sub 3} temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH{sub 3} groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts. - Graphical abstract: Based on the nonsurfactant method, a facile one-step synthesis route has been developed to prepare methyl-modified mesoporous aluminosilicates that possessed hydrothermal stability and strong acidity.

  17. Protist genetic diversity in the acidic hydrothermal environments of Lassen Volcanic National Park, USA.

    PubMed

    Brown, Patricia B; Wolfe, Gordon V

    2006-01-01

    We examined eukaryote genetic diversity in the hydrothermal environments of Lassen Volcanic National Park (LVNP), Northern California. We sampled hydrothermal areas of the Bumpass Hell, Sulfur Works, Devil's Kitchen, and Boiling Springs Lake sites, all of which included diverse acidic pools, mud pots, and streams with visible algal mats and biofilms. Temperatures varied from 15 to 85 degrees C and pH from 1.7 to 5.8. DNA extraction methods compared by denaturing gradient gel electrophoresis fingerprinting exhibited similar patterns, and showed limited diversity of eukaryotic small subunit (SSU) rRNA genes compared with prokaryotes. We successfully amplified eukaryotic SSU rRNA genes from most environments up to 68 degrees C. Cloned rDNA sequences reveal acidophilic protists dominate eukaryotes in LVNP hydrothermal environments. Most sites showed phototrophic assemblages dominated by chlorophytes and stramenopiles (diatoms and chrysophytes). Heterotrophic taxa, though less abundant, included diverse alveolates (ciliates), amoebae, and flagellates. Fungi were also found at most sites, and metazoans (hexapods, nematodes, platyhelminths) were sometimes detected in less acidic environments, especially in algal mats. While many cloned rDNA sequences showed 95%-99% identity to known acidophilic isolates or environmental clones from other acidic sites (Rio Tinto), sequence diversity generally declined both with decreasing pH and increasing temperature, and both were controlling physical variables on the abundance and distribution of organisms at our sites. However, a pool at 68 degrees C with pH 1.7 yielded the greatest number of distinct sequences. While some were likely contaminants from nearby cooler sites, we suggest that Lassen's acidic hydrothermal features may harbor novel protists.

  18. How Does Boiling in the Earth's Crust Influence Metal Speciation and Transport?

    NASA Astrophysics Data System (ADS)

    Kam, K.; Lemke, K.

    2014-12-01

    The presence of large quantities of precious metals, such as gold and copper, near the Earth's surface (upper crust) is commonly attributed to transport in aqueous solution and precipitation upon variations in temperature and pressure. As a consequence, gold exploration is closely linked to solution chemistry, i.e. hydrothermal processes involving aqueous fluids with densities of around unity. However, as crustal fluids buoyantly ascend, boiling produces a coexisting low-density aqueous liquid with fundamentally different physical and chemical properties, and a, most importantly, a high affinity for coinage metals (Heinrich et al., Econ Geol., 1992, 87, 1566). From recent experimental studies of Au (Hurtig and Williams-Jones, 2014, Geochim. Cosmochim. Acta,, 127, 304), we know that metal speciation in this low-density phase differs fundamentally from that observed in bulk solution, clearly, with important implications for Au, and metal speciation in general, transport and ore concentrations processes (these processes would also be operable in industrial geothermal plants given the quite special solvent properties of steam). In brief, this study focuses on the speciation of select metal halides in bulk solution as well as in water vapor, and is driven by our need to understand the solvent properties of around 2.0x109 cubic kilometers of free water (or 2,500 times as much water as stored in all lakes and rivers) present in the Earth's crust. The scope of this study has particular applications in the geothermal and oil industries, as both deal with high temperature low-density aqueous fluids. Understanding how metal halide species behave upon boiling can also provide insight into how metals, such as copper and silver, coat turbine equipment and steam piping in geothermal plants, ultimately rendering these components inoperable. This study will also provide preliminary results from mass spectrometric experiments of transition metal halides, and will be augmented with

  19. Zero Boil Off Cryogen Storage for Future Launchers

    NASA Technical Reports Server (NTRS)

    Valentian, D.; Plachta, D.; Kittel, P.; Hastings, L. J.; Salerno, Louis J.; Arnold, James O. (Technical Monitor)

    2001-01-01

    Zero boil off (ZBO) cryogen storage using both cryocoolers and passive insulation technologies will enable long-term exploration missions by allowing designers to optimize tankage without the need for excess cryogen storage to account for boil off. Studies of ZBO (zero boil off) have been on-going in the USA for several years. More recently, a review of the needs of advanced space propulsion took place in Europe. This showed the interest of the European community in cryogenic propulsion for planetary missions as well as the use of liquid hydrogen for large power electric propulsion (manned Mars missions). Although natural boiling could be acceptable for single leg missions, passive insulation techniques yield roughly a I% per month cryogen loss and this would not be cost effective for robotic planetary missions involving storage times greater than one year. To make economic sense, long-term exploration missions require lower tank capacity and longer storage times. Recent advances in cryocooler technology, resulting in vast improvements in both cooler efficiency and reliability, make ZBO is a clear choice for planetary exploration missions. Other, more near term applications of ZBO include boil-off reduction or elimination applied to first and upper stages of future earth-to-orbit (ETO) launchers. This would extend launch windows and reduce infrastructure costs. Successors to vehicles like Ariane 5 could greatly benefit by implementing ZBO. Zero Boil Off will only be successful in ETO launcher applications if it makes economic sense to implement. The energy cost is only a fraction of the total cost of buying liquid cryogen, the rest being transportation and other overhead. Because of this, higher boiling point cryogens will benefit more from on-board liquefaction, thus reducing the infrastructure costs. Since hydrogen requires a liquefier with at least a 17% efficiency just to break even from a cost standpoint, one approach for implementing ZBO in upper stages would

  20. A New Theory of Nucleate Pool Boiling in Arbitrary Gravity

    NASA Technical Reports Server (NTRS)

    Buyevich, Y. A.; Webbon, Bruce W.

    1995-01-01

    Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different

  1. Minerals produced during cooling and hydrothermal alteration of ash flow tuff from Yellowstone drill hole Y-5

    USGS Publications Warehouse

    Keith, T.E.C.; Muffler, L.J.P.

    1978-01-01

    A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + ??-cristobalite ?? tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic ??-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz. Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling. Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been

  2. Fluid evolution in submarine magna-hydrothermal systems at the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Kelley, Deborah S.; Gillis, Kathryn M.; Thompson, Geoff

    1993-11-01

    Fluid inclusion in a suite of gabbro, quartz-breccia, and metabasalt samples recovered from the Mid-Atlantic Ridge Kane Fracture Zone (MARK) area on the Mid-Atlanitc Ridge are the product of a complex hydrothermal history involving late stage magmatic fluids at temperatures greater than 700 C and penetration by modified seawater at 300-400 C. The evolution of volatiles during the early stage of solidification and cooling of magma bodies near the ridge-transform intersection is marked by exsolution of a CO2 fluid, entrapped within primary inclusions in fluorapatites. Attendant with progressive melt fractionation, residual evolved melts reached water saturation, and locally, supercritical CO2+H2O+NaCl+/-Fe brines (greater than 50 wt % NaCl) and cogenetic H2O+CO2-rich vapors (1-2 wt % NaCl) were exsolved as immiscible phases. Concomitant or subsequent fracturing, perhaps in response to volatile exsolution from the melts, allowed migration of these fluids along microfracture networks at greater than 700 C. Trondhjemitic-hosted inclusions, which homogenize by halite dissolution, indicate that the last fluids exsolved from the melts may have been 35-40 wt % brines. The transition from magmatic to seawater-dominated hydrothermal conditions in the gabbros is marked by initial penetration of lower salinity fluids (1-7 wt % NaCl) at temperatures in excess of 400 C, with the general cessation of fluid flow occurring at minimum temperatures of approximately = 250 C. The relative enrichment and depletion of NaCl with respect to seawater in these fluids may record supercitical phases separation of seawater or boiling of hydrothermal fluids enriched in NaCl. Migration along microfracture networks of Ch4-rich, 350 C fluids, may reflect deeper seated hydrothermal processes involving hydration of underlying mantle material in response to fluid flow along deeply penetrating fault systems. In shallow crustal rocks, circulation of seawater-derived fluids fluids occurred at temperatures

  3. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  4. Transport processes in boiling and two-phase systems, including near-critical fluids

    NASA Technical Reports Server (NTRS)

    Hsu, Y.-Y.; Graham, R. W.

    1976-01-01

    Aspects of pool boiling are considered, taking into account nucleate boiling, the nucleate boiling mechanism, film boiling, and the transition between nucleate and film boiling. The characteristics of two-phase flow are also investigated, giving attention to two-phase flow parameters and equations, the flow pattern in two-phase flow, the pressure drop in two-phase flow, heat transfer in two-phase flow, two-phase flow dynamics, the boiling crisis in two-phase flow, the critical flow rate, the propagation of the pressure pulse and the sonic velocity in two-phase media, instrumentation for two-phase flow, and geometry and field effects on boiling and two-phase flow. Near-critical fluids are also considered.

  5. Relationships between lava types, seafloor morphology, and the occurrence of hydrothermal venting in the ASHES vent field of Axial Volcano. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Hammond, S.R. )

    1990-08-10

    Deep-towed and submersible photographic surveys within the caldera of Axial Volcano have been integrated with high-resolution bathmetry to produce a geological map of the most active vent field in the caldera. Locations for over 2,000 photographs in and near the vent field were determined using a seafloor transponder network. Then each photograph was described utilizing a classification system which provides detailed information concerning lava type, hydrothermal activity, sediment cover, geological structure, and biology. Resulting data were entered into a digital data base, and computer-generated maps were created that portray spatial relationships between selected geological variables. In general, the entire ASHES field is characterized by pervasive low-temperature venting. The most vigorous venting is concentrated in an approximately 80 m {times} 80 m area where there are several high-temperature vents including some which are producing high-temperature vapor-phase fluids derived from a boiling hydrothermal system. Lava types within the ASHES vent field are grouped into three distinct morphologies: (1) smooth (flat-surfaced, ropy, and whorled) sheet flows, (2) lobate flows, and (3) jumbled-sheet flows. The most intense hydrothermal venting is concentrated in the smooth sheet flows and the lobate flows. The location of the ASHES field is mainly attributable to faulting which defines the southwest caldera wall, but the concentration of intense venting appears to be related also to the spatial distribution of lava types in the vent field and their contrasting permeabilities. Other structural trends of faults and fissures within the field also influence the location of individual events.

  6. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  7. Tungsten enriched in submarine hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Kishida, Koichi; Sohrin, Yoshiki; Okamura, Kei; Ishibashi, Jun-ichiro

    2004-06-01

    Here we report the first data for W in hydrothermal vent fluids in the deep oceans. Vented hydrothermal fluids were collected from the Kairei Field, a mid ocean ridge hydrothermal field at the Rodriguez Triple Junction, Central Indian Ridge, and from arc-backarc hydrothermal systems at the Suiyo Seamount in the Izu-Bonin Arc, North Pacific Ocean and at the Hatoma and Yonaguni Knolls in the Okinawa Trough, East China Sea. While the dissolved W concentration in hydrothermal fluids linearly increased with a decrease in the Mg concentration for each system, the W concentration in endmember fluids was very different. It was 0.21 nmol/kg at the Kairei Field, 15 nmol/kg at the Suiyo Seamount, and 123 nmol/kg at the Hatoma Knoll, which was 4 orders of magnitude above the ambient level in seawater. The W concentration was not a simple function of Cl, alkalinity, B, and NH 4. The hydrothermal fields are efficiently enriched with W through reaction with fractionated calc-alkaline dacite and with terrigenous sediments. Although Mo is a chemical analogue of W in oxic seawater, the Mo concentration decreased in the hydrothermal fluids to 2-7 nmol/kg probably due to precipitation of Mo sulfide.

  8. Arctic Ocean: hydrothermal activity on Gakkel Ridge.

    PubMed

    Jean-Baptiste, Philippe; Fourré, Elise

    2004-03-01

    In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.

  9. Critical heat flux maxima during boiling crisis on textured surfaces

    PubMed Central

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K.

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  10. Catastrophe characteristics of the condensation and pool boiling phenomena

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Xu, Dunqi; Lin, Jifang

    1995-02-01

    Recently, Utaka proposed two types of the transition modes of dropwise condensation, i.e. the continuous and the jumping modes, and presented a criterion for determining the condensation transition mode. Stylianous and Rose proposed two hypotheses, the coalescence-limited transition and the nucleation site saturation transition. Neither Utaka's criterion nor Rose's hypotheses could clearly interpret the physical mechanisms of the transition both from filmwise to dropwise and from dropwise to pseudofilm condensation, and explicitly presented the main factors affecting the transitions. Kalinin hs given a general review of the transition boiling heat transfer. The catastrophe theory will be applied here to eluicidate the complex phenomena of the transitions of the condensation and boiling pattern states.

  11. 15. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: North side of sorghum pan and boiling range flue, with furnace-end in background. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace end (in background) to the smokestack end (in foreground). After the hot cane juice moved through the separate compartments until it reached the final compartment (now missing two sides) where it was drawn out from the copper lip in the corner. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  12. Numerical analysis of contaminant removal from fractured rock during boiling.

    PubMed

    Chen, Fei; Falta, Ronald W; Murdoch, Lawrence C

    2012-06-01

    A multiphase heat transfer numerical model is used to simulate a laboratory experiment of contaminant removal at boiling temperatures from a rock core representing the matrix adjacent to a fracture. The simulated temperature, condensate production, contaminant and bromide concentrations are similar to experimental data. A key observation from the experiment and simulation is that boiling out approximately 1/2 pore volume (50 mL) of water results in the removal of essentially 100% of the dissolved volatile contaminant (1,2-DCA). A field-scale simulation using the multiple interacting continua (MINC) discretization approach is conducted to illustrate possible applications of thermal remediation of fractured geologic media, assuming uniform heating. The results show that after 28% of the pore water (including both steam vapor and liquid water) was extracted, and essentially all the 1,2-DCA mass (more than 99%) was removed.

  13. Acoustic measurement of boiling instabilities in a solar receiver

    SciTech Connect

    Beattie, A. G.

    1980-11-01

    An acoustic technique was developed and used to search for boiling instabilities in the prototype receiver for the Barstow 10 MW Solar Thermal Pilot Plant. Instabilities, consisting of movements of the transition zone between regions of nucleate and film boiling, were observed. The periods of these fluctuations ranged between three and fifteen seconds with no indications of preferred frequencies. The peak to peak amplitudes of the fluctuations averaged 0.4 meters under steady state conditions at absorbed power levels between 2.0 and 3.2 MW. Transient fluctuations with amplitudes up to 2.0 meters were also seen. These transients usually lasted between 30 and 300 seconds. It was not possible to pinpoint the causes of these transients.

  14. Critical heat flux maxima during boiling crisis on textured surfaces.

    PubMed

    Dhillon, Navdeep Singh; Buongiorno, Jacopo; Varanasi, Kripa K

    2015-01-01

    Enhancing the critical heat flux (CHF) of industrial boilers by surface texturing can lead to substantial energy savings and global reduction in greenhouse gas emissions, but fundamentally this phenomenon is not well understood. Prior studies on boiling crisis indicate that CHF monotonically increases with increasing texture density. Here we report on the existence of maxima in CHF enhancement at intermediate texture density using measurements on parametrically designed plain and nano-textured micropillar surfaces. Using high-speed optical and infrared imaging, we study the dynamics of dry spot heating and rewetting phenomena and reveal that the dry spot heating timescale is of the same order as that of the gravity and liquid imbibition-induced dry spot rewetting timescale. Based on these insights, we develop a coupled thermal-hydraulic model that relates CHF enhancement to rewetting of a hot dry spot on the boiling surface, thereby revealing the mechanism governing the hitherto unknown CHF enhancement maxima. PMID:26346098

  15. Considerations in predicting burnout of cylinders in flow boiling

    SciTech Connect

    Sadasivan, P.; Lienhard, J.H. )

    1992-02-01

    Previous investigations of the critical heat flux in flow boiling have resulted in widely different hydrodynamic mechanisms for the occurrence of burnout. Results of the present study indicate that existing models are not completely realistic representations of the process. The present study sorts out the influences of the far-wake bubble breakoff and vapor sheet characteristics, gravity, surface wettability, and heater surface temperature distribution on the peak heat flux in flow boiling on cylindrical heaters. The results indicate that burnout is dictated by near-surface effects. The controlling factor appears to be the vapor escape pattern close to the heater surface. It is also shown that a deficiency of liquid at the downstream end of the heater surface is not the cause of burnout.

  16. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a

  17. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  18. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  19. Hydrothermal Occurrences in Gusev Crater

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Farmer, J. D.; Milliken, R.; Mills, V. W.; Shock, E.

    2011-12-01

    Exploration of the Gusev crater landing site by the Spirit rover has revealed for the first time, in situ evidence of hydrothermal activity on Mars. Most compelling are eroded outcrops of opaline silica found adjacent to "Home Plate" [1], an eroded stack of volcaniclastic deposits stratigraphically overlain by a vesicular basalt unit [2]. Recent work [3] demonstrates that the silica outcrops occur in a stratiform unit that possibly surrounds Home Plate. The outcrops are dominated by opal-A with no evidence for diagenesis to other silica phases. No other hydrous or alteration phases have been identified within the outcrops; most notable is a lack of sulfur phases. The outcrops have porous and in some cases, brecciated microtextures. Taken together, these observations support the interpretation that the opaline silica outcrops were produced in a hot spring or perhaps geyser environment. In this context, they are silica sinter deposits precipitated from silica-rich hydrothermal fluids, possibly related to the volcanism that produced the Home Plate volcanic rocks. On Earth, debris aprons in which sinter is brecciated, reworked, and cemented, are common features of hot springs and geysers and are good analogs for the Martian deposits. An alternative hypothesis is that the silica resulted from acid-sulfate leaching of precursor rocks by fumarolic steam condensates. But stratigraphic, textural, and chemical observations tend to diminish this possibility [3]. We are conducting extensive laboratory and field investigations of silica from both hot spring/geyser and fumarole environments to understand the full range of mineralogical, chemical, textural, and morphological variations that accompany its production, in order to shed more light on the Home Plate occurrence. The recent discovery of abundant Mg-Fe carbonate (16-34 wt%) in outcrops named Comanche provides possible evidence for additional hydrothermal activity in Gusev [4]. However, the carbonate is hosted by olivine

  20. Seawater bicarbonate removal during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  1. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    PubMed

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux.

  2. A review on saturated boiling of liquids on tube bundles

    NASA Astrophysics Data System (ADS)

    Swain, Abhilas; Das, Mihir Kumar

    2014-05-01

    A review of recent investigation on boiling of saturated liquids over plain and enhanced tube bundles has been carried out taking the earlier review works as reference point. The experimental observations of various geometry and performance parameters studied by researchers are analyzed keeping current demand of industries in design and development of compact, efficient heat exchanging devices. The study shows that tube spacing plays an important role in determination of compactness of the heat exchanger.

  3. Characteristics of slush and boiling methane and methane mixtures.

    NASA Technical Reports Server (NTRS)

    Sindt, C. F.; Ludtke, P. R.

    1971-01-01

    Methane gas of two purities, 99.97% and 99%, was condensed to study the characteristics of the boiling liquid and the slush. In addition, binary mixtures of nitrogen and methane, and those of ethane and methane, and propane and methane, were also studied. Potential advantages of these gases when employed as fuels for high-performance aircraft, rocket engines, and motor vehicles are emphasized.

  4. Effect of Running Parameters on Flow Boiling Instabilities in Microchannels.

    PubMed

    Zong, Lu-Xiang; Xu, Jin-Liang; Liu, Guo-Hua

    2015-04-01

    Flow boiling instability (FBI) in microchannels is undesirable because they can induce the mechanical vibrations and disturb the heat transfer characteristics. In this study, the synchronous optical visualization experimental system was set up. The pure acetone liquid was used as the working fluid, and the parallel triangle silicon microchannel heat sink was designed as the experimental section. With the heat flux ranging from 0-450 kW/m2 the microchannel demand average pressure drop-heater length (Δp(ave)L) curve for constant low mass flux, and the demand pressure drop-mass flux (Δp(ave)G) curve for constant length on main heater surface were obtained and studied. The effect of heat flux (q = 188.28, 256.00, and 299.87 kW/m2), length of main heater surface (L = 4.5, 6.25, and 8.00 mm), and mass flux (G = 188.97, 283.45, and 377.94 kg/m2s) on pressure drops (Ap) and temperatures at the central point of the main heater surface (Twc) were experimentally studied. The results showed that, heat flux, length of the main heater surface, and mass flux were identified as the important parameters to the boiling instability process. The boiling incipience (TBI) and critical heat flux (CHF) were early induced for the lower mass flux or the main heater surface with longer length. With heat flux increasing, the pressure drops were linearly and slightly decreased in the single liquid region but increased sharply in the two phase flow region, in which the flow boiling instabilities with apparent amplitude and long period were more easily triggered at high heat flux. Moreover, the system pressure was increased with the increase of the heat flux. PMID:26353523

  5. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    DOEpatents

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  6. What Defines a Separate Hydrothermal System

    SciTech Connect

    Lawless, J.V.; Bogie, I.; Bignall, G.

    1995-01-01

    Separate hydrothermal systems can be defined in a variety of ways. Criteria which have been applied include separation of heat source, upflow, economic resource and geophysical anomaly. Alternatively, connections have been defined by the effects of withdrawal of economically useful fluid and subsidence, effects of reinjection, changes in thermal features, or by a hydrological connection of groundwaters. It is proposed here that: ''A separate hydrothermal system is one that is fed by a separate convective upflow of fluid, at a depth above the brittle-ductile transition for the host rocks, while acknowledging that separate hydrothermal systems can be hydrologically interconnected at shallower levels''.

  7. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  8. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    USGS Publications Warehouse

    Janik, C.J.; McLaren, M.K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270 ??C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220-240 ??C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (??? 161 ??C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N-S oriented normal faulting and E-W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5-10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal

  9. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    NASA Astrophysics Data System (ADS)

    Janik, Cathy J.; McLaren, Marcia K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220-240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤ 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N-S oriented normal faulting and E-W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5-10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal

  10. Electrical control and enhancement of boiling heat transfer during quenching

    NASA Astrophysics Data System (ADS)

    Shahriari, Arjang; Hermes, Mark; Bahadur, Vaibhav

    2016-02-01

    Heat transfer associated with boiling degrades at elevated temperatures due to the formation of an insulating vapor layer at the solid-liquid interface (Leidenfrost effect). Interfacial electrowetting (EW) fields can disrupt this vapor layer to promote liquid-surface wetting. We experimentally analyze EW-induced disruption of the vapor layer and measure the resulting enhanced cooling during the process of quenching. Imaging is employed to visualize the fluid-surface interactions and understand boiling patterns in the presence of an electrical voltage. It is seen that EW fields fundamentally change the boiling pattern, wherein a stable vapor layer is replaced by intermittent wetting of the surface. Heat conduction across the vapor gap is thus replaced with transient convection. This fundamental switch in the heat transfer mode significantly accelerates cooling during quenching. An order of magnitude increase in the cooling rate is observed, with the heat transfer seen approaching saturation at higher voltages. An analytical model is developed to extract voltage dependent heat transfer rates from the measured cooling curve. The results show that electric fields can alter and tune the traditional cooling curve. Overall, this study presents an ultralow power consumption concept to control the mechanical properties and metallurgy, by electrically tuning the cooling rate during quenching.

  11. A Study of Nucleate Boiling with Forced Convection in Microgravity

    NASA Technical Reports Server (NTRS)

    Merte, Herman, Jr.

    1996-01-01

    Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.

  12. Increasing Boiling Heat Transfer using Low Conductivity Materials

    PubMed Central

    Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew

    2015-01-01

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches. PMID:26281890

  13. Prediction of boiling points of organic compounds by QSPR tools.

    PubMed

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds.

  14. Increasing Boiling Heat Transfer using Low Conductivity Materials

    NASA Astrophysics Data System (ADS)

    Mahamudur Rahman, Md; Pollack, Jordan; McCarthy, Matthew

    2015-08-01

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.

  15. Prediction of boiling points of organic compounds by QSPR tools.

    PubMed

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. PMID:23792208

  16. Increasing Boiling Heat Transfer using Low Conductivity Materials.

    PubMed

    Rahman, Md Mahamudur; Pollack, Jordan; McCarthy, Matthew

    2015-08-18

    We report the counterintuitive mechanism of increasing boiling heat transfer by incorporating low-conductivity materials at the interface between the surface and fluid. By embedding an array of non-conductive lines into a high-conductivity substrate, in-plane variations in the local surface temperature are created. During boiling the surface temperature varies spatially across the substrate, alternating between high and low values, and promotes the organization of distinct liquid and vapor flows. By systematically tuning the peak-to-peak wavelength of this spatial temperature variation, a resonance-like effect is seen at a value equal to the capillary length of the fluid. Replacing ~18% of the surface with a non-conductive epoxy results in a greater than 5x increase in heat transfer rate at a given superheat temperature. This drastic and counterintuitive increase is shown to be due to optimized bubble dynamics, where ordered pathways allow for efficient removal of vapor and the return of replenishing liquid. The use of engineered thermal gradients represents a potentially disruptive approach to create high-efficiency and high-heat-flux boiling surfaces which are naturally insensitive to fouling and degradation as compared to other approaches.

  17. Boiling of an emulsion in a yield stress fluid.

    PubMed

    Guéna, Geoffroy; Wang, Ji; d'Espinose, Jean-Baptiste; Lequeux, François; Talini, Laurence

    2010-11-01

    We report the boiling behavior of pentane emulsified in a yield stress fluid, a colloidal clay (Laponite) suspension. We have observed that a superheated state is easily reached: the emulsion, heated more than 50 °C above the alkane boiling point, does not boil. Superheating is made possible by the suppression of heterogeneous nucleation in pentane, resulting from the emulsification process, a phenomenon evidenced decades ago in studies of the superheating of two phase fluids. We have furthermore studied the growth of isolated bubbles nucleated in the emulsion. The rate of increase of the bubble radius with time depends on both the temperature and emulsion volume fraction but, rather unexpectedly, does not depend on the fluid rheology. We show that the bubbles grow by diffusion of the alkane through the aqueous phase between liquid droplets and bubbles, analogously to an Ostwald ripening process. The peculiarity of the process reported here is that a layer depleted in oil droplets forms around the bubble, layer to which the alkane concentration gradient is confined. We successfully describe our experimental results with a simple transfer model.

  18. Gas geothermometry for typical and atypical hydrothermal gases: A case study of Mount Mageik and Trident Volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Taryn, Lopez; Tassi, Franco; Capecchiacci, Francesco; Chiodini, Giovanni; Fiebig, Jens; Rizzo, Andrea; Caliro, Stefano

    2016-04-01

    The chemical and isotopic composition of volcanic gases can be used to detect subsurface magma, qualitatively constrain magma degassing depth, evaluate temperature and pressure conditions of hydrothermal reservoirs, and constrain volatile sources, all of which are important for volcano monitoring, eruption forecasting and hazard mitigation. Two persistently degassing and seismically active volcanoes from the Katmai Volcanic Complex, Alaska, were targeted during this study to characterize subvolcanic conditions. Fumarole and steam condensate samples were collected for chemical and isotopic analysis from Mount Mageik and Trident Volcanoes in July 2013. These volcanoes are located within 10 km of each other, both show evidence for active hydrothermal systems, and both have boiling point temperature fumaroles, yet emit notably different gas compositions. Mount Mageik's gases are composed primarily of H20, CO2, H2S, and N2, with minor CH4, CO and H2 and negligible HCl amounts, reflecting a typical "hydrothermal" gas composition. Although, Trident's gases are somewhat similar in composition to those of Mount Mageik, they show several unusual features for hydrothermal fluids, most notably extremely high concentrations of reduced gas species. Specifically, the H2/H2O values are ≈1 log-unit lower (i.e. more reducing) than those produced by the rock redox buffers commonly dominating in a hydrothermal environment. These anomalous ratios are accompanied by relatively high concentrations high-temperature (CO, and H2S), and low temperature (CH4) gases, suggesting a strong chemical disequilibrium and/or chemical-physical conditions far from those typically acting on hydrothermal fluids. Additionally, when δ13C ratios of methane, ethane and propane are considered, a deviation from the expected "hydrothermal" carbon number trend is observed for Trident volcano, suggesting an "abiogenic reversal". Gas geothermometry in the H2O-CO2-H2-CO-CH4 system provides estimated temperatures

  19. Development of potential ecological niches in impact-induced hydrothermal systems: The small-to-medium size impacts

    NASA Astrophysics Data System (ADS)

    Versh, Evelin; Kirsimäe, Kalle; Jõeleht, Argo

    2006-12-01

    Effect of meteorite impact on the biological evolution is usually considered by its catastrophic consequences. However, the impacts can create opportunity for other organisms and the structures themselves can serve as suitable ecological niches (oases) for life. In this contribution we present results of modeling of an impact-induced hydrothermal (IHT) system in a small-to-medium sized impact crater, where the development of zones habitable for primitive hydrothermal thermophilic and hypethermophilic microorganisms was studied. The impact and geothermal modeling was verified against the 4-km diameter Kärdla complex structure, Hiiumaa Island, Estonia. If there is an sufficient amount of water present in the target (e.g., sea cover, groundwater or permafrost resources) then the differential temperature fields created by the impact initiate a hydrothermal circulation system within the crater. The results of transient fluid flow and heat transfer simulations in Kärdla suggest that immediately after impact the temperatures in the central area, which contains the most hydrothermal alteration, were well above the boiling point. However, due to efficient heat loss at the groundwater vaporization front, the vapor-dominated area disappears within a few decades. In the central uplift area, the conditions favorable for thermophilic microorganisms (temperatures <100 °C) were reached in 500-1000 years after the impact. The overall cooling to ambient temperatures in the deeper parts of the central uplift lasted for thousands of years. In the crater depression and rim area the initial temperatures, suggested by the impact modeling, were much lower - from 150 °C to ambient temperatures, except locally in fracture zones and suevite pockets. Our data suggest that in small-to-medium size impact craters with insignificant melting, the suitable conditions for hydrothermal microbial communities are established shortly (tens to few hundreds of years as maximum) after the impact in

  20. Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea

    USGS Publications Warehouse

    Reeves, Eoghan P.; Seewald, Jeffrey S.; Saccocia, Peter; Bach, Wolfgang; Craddock, Paul R.; Shanks, Wayne C.; Sylva, Sean P.; Walsh, Emily; Pichler, Thomas; Rosner, Martin

    2011-01-01

    Processes controlling the composition of seafloor hydrothermal fluids in silicic back-arc or near-arc crustal settings remain poorly constrained despite growing evidence for extensive magmatic-hydrothermal activity in such environments. We conducted a survey of vent fluid compositions from two contrasting sites in the Manus back-arc basin, Papua New Guinea, to examine the influence of variations in host rock composition and magmatic inputs (both a function of arc proximity) on hydrothermal fluid chemistry. Fluid samples were collected from felsic-hosted hydrothermal vent fields located on Pual Ridge (PACMANUS and Northeast (NE) Pual) near the active New Britain Arc and a basalt-hosted vent field (Vienna Woods) located farther from the arc on the Manus Spreading Center. Vienna Woods fluids were characterized by relatively uniform endmember temperatures (273-285 degrees C) and major element compositions, low dissolved CO2 concentrations (4.4 mmol/kg) and high measured pH (4.2-4.9 at 25 degrees C). Temperatures and compositions were highly variable at PACMANUS/NE Pual and a large, newly discovered vent area (Fenway) was observed to be vigorously venting boiling (358 degrees C) fluid. All PACMANUS fluids are characterized by negative delta DH2O values, in contrast to positive values at Vienna Woods, suggesting substantial magmatic water input to circulating fluids at Pual Ridge. Low measured pH (25 degrees C) values (~2.6-2.7), high endmember CO2 (up to 274 mmol/kg) and negative delta 34SH2S values (down to -2.7 permille) in some vent fluids are also consistent with degassing of acid-volatile species from evolved magma. Dissolved CO2 at PACMANUS is more enriched in 13C (-4.1 permille to -2.3 permille) than Vienna Woods (-5.2 permille to -5.7 permille), suggesting a contribution of slab-derived carbon. The mobile elements (e.g. Li, K, Rb, Cs and B) are also greatly enriched in PACMANUS fluids reflecting increased abundances in the crust there relative to the Manus

  1. Boiling and Evaporation on Micro/nanoengineered Surfaces

    NASA Astrophysics Data System (ADS)

    Dai, Xianming

    Two-phase transport is widely used in energy conversion and storage, energy efficiency and thermal management. Surface roughness and interfacial wettability are two major impact factors for two-phase transport. Micro/nanostructures play important roles in varying the surface roughness and improving interfacial wettability. In this doctoral study, five types of micro/nanoengineered surfaces were developed to systematically study the impacts of interfacial wettability and flow structures on nucleate boiling and capillary evaporation. These surfaces include: 1) superhydrophilic atomic layer deposition (ALD) coatings; 2) partially hydrophobic and partially hydrophilic composite interfaces; 3) micromembrane-enhanced hybrid wicks; 4) superhydrophilic micromembrane-enhnaced hybrid wicks, and 5) functionalized carbon nanotube coated micromembrane-enhnaced hybrid wicks. Type 1 and 2 surfaces were developed to investigate the impacts of intrinsic superhydrophilicity and hydrophobic-hydrophilic composite wettability on nucleate boiling. Superhydrophilicity was achieved by depositing nano-thick ALD TiO 2 coatings, which were used to enable intrinsically superhydrophilic boiling surfaces on the microscale copper woven meshes. Critical heat flux (CHF) was substantially increased because of the superwetting property and delayed local dryout. Carbon nanotube (CNT) enabled partially hydrophobic and partially hydrophilic interfaces were developed to form ideal cavities for nucleate boiling. The hydrophobic-hydrophilic composite interfaces were synthesized from functionalized multiwall carbon nanotubes (FMWCNTs) by introducing hydrophilic functional groups on the surfaces of pristine MWCNTs. The nanoscale FMWCNTs with heterogeneous wettabilities were coated on the micromeshes to form hierarchical surfaces, which effectively increase the heat transfer coefficient (HTC) and CHF of pool boiling. To enhance capillary evaporation, micromembrane-enhanced capillary evaporating surfaces, i

  2. Rheological properties and structural changes in different sections of boiled abalone meat

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Zhixu, Tang; Zhaohui, Zhang; Hiroo, Ogawa

    2003-04-01

    Changes in tissue structures, rheological properties of cross- and vertical section boiled abalone meat were studied in relation to boiling time. The adductor muscle of abalone Haliotis discus which was removed from the shell, was boiled for 1, 2, and 3 h, respectively. Then it was cut up and separated into cross- and vertical section meat. When observed by a light microscope and a scanning electron microscope, structural changes in the myofibrils were greatest in the cross section meat compared with the vertical section meat. When boiling time was increased from 1 h to 3 h, the instantaneous modulus E 0 and rupture strength of both section meat decreased gradually with increased boiling time, and no significant differences were observed between these two section meat for the same boiling time. When boiled for 1 h, the relaxation time of cross section meat was much longer than that of vertical section meat. There were no significant changes in the relaxation time of vertical section for different boiling time, but the relaxation time of cross section meat was reduced gradually with increasing boiling time. These results confirmed that the difference in rheological properties between the cross- and vertical section meat was mainly due to the denaturation level of myofibrils when heated for 1 h, as well as due to the changes in the amount of denatured proteins, and the manner in which the inner denatured protein components were exchanged after boiling time was increased from 1 h to 3 h.

  3. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    SciTech Connect

    Fraser, D.W.H.; Abdelmessih, A.H.

    1995-09-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.

  4. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  5. Rare earth element systematics in hydrothermal fluids

    SciTech Connect

    Michard, A. )

    1989-03-01

    Rare earth element concentrations have been measured in hydrothermal solutions from geothermal fields in Italy, Dominica, Valles Caldera, Salton Sea and the Mid-Atlantic Ridge. The measured abundances show that hydrothermal activity is not expected to affect the REE balance of either continental or oceanic rocks. The REE enrichment of the solutions increases when the pH decreases. High-temperature solutions (> 230{degree}C) percolating through different rock types may show similar REE patterns.

  6. Hydrothermal industrialization: direct heat development. Final report

    SciTech Connect

    Not Available

    1982-05-01

    A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

  7. Topographic control of a dispersing hydrothermal plume

    NASA Astrophysics Data System (ADS)

    German, C. R.; Richards, K. J.; Rudnicki, M. D.; Lam, M. M.; Charlou, J. L.; Flame Scientific Party

    1998-03-01

    Deep-sea hydrothermal vents represent a major source of heat and chemicals to the oceans and support endemic chemosynthetic biological communities. To fully understand the impact of hydrothermal activity upon the oceans, however, requires investigation of both the physical and the biogeochemical processes which are active in hydrothermal plumes and which serve to determine the net hydrothermal flux to the oceans. We have recently conducted a detailed multidisciplinary study of the lateral dispersion of the hydrothermal plume emitted from the Rainbow vent site near 36°15'N, Mid-Atlantic Ridge. Combining velocity measurements from a lowered ADCP, optical back scatter measurements from a deep-tow CTD and methane measurements from bottle samples we are able, for the first time in the Atlantic, to trace a neutrally buoyant plume for a distance of over 50 km. The path of the plume is seen to be heavily controlled by the local topography with a general northeast movement of water. Both particle and methane concentrations decrease downstream over the length of the observed plume. The dataset provides an excellent opportunity to study the mixing and biogeochemical processes active in a hydrothermal plume and estimate fluxes of biogeochemical constituents.

  8. Hydrothermal origin of halogens at Home Plate, Gusev Crater

    USGS Publications Warehouse

    Schmidt, M.E.; Ruff, S.W.; McCoy, T.J.; Farrand, W. H.; Johnson, J. R.; Gellert, Ralf; Ming, D. W.; Morris, R.V.; Cabrol, N.; Lewis, K.W.; Schroeder, C.

    2008-01-01

    In the Inner Basin of the Columbia Hills, Gusev Crater is Home Plate, an 80 m platform of layered elastic rocks of the Barnhill class with microscopic and macroscopic textures, including a bomb sag, suggestive of a phreatomagmatic origin. We present data acquired by the Spirit Mars Exploration Rover by Alpha Particle X-Ray Spectrometer (APXS), Mo??ssbauer Spectrometer, Miniature Thermal Emission Spectrometer (Mini-TES), and Panoramic Camera (Pancam) for the Barnhill class rocks and nearby vesicular Irvine class basalts. In major element concentrations (e.g., SiO2, Al2O3, MgO, and FeO*), the two rock classes are similar, suggesting that they are derived from a similar magmatic source. The Barnhill class, however, has higher abundances of Cl, Br, Zn, and Ge with comparable SO3 to the Irvine basalts. Nanophase ferric oxide (np ox) and volcanic glass were detected in the Barnhill class rocks by Mo??ssbauer and Mini-TES, respectively, and imply greater alteration and cooling rates in the Barnhill than in the Irvine class rocks. The high volatile elements in the Barnhill class agree with volcanic textures that imply interaction with a briny groundwater during eruption and (or) by later alteration. Differences in composition between the Barnhill and Irvine classes allow the fingerprinting of a Na-Mg-Zn-Ge-Cl-Br (??Fe ?? Ca ?? CO2) brine with low S. Nearby sulfate salt soils of fumarolic origin may reflect fractionation of an acidic S-rich vapor during boiling of a hydrothermal brine at depth. Persistent groundwater was likely present during and after the formation of Home Plate. Copyright 2008 by the American Geophysical Union.

  9. Large-scale hydrothermal fluid discharges in the Norris-Mammoth corridor, Yellowstone National Park, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Sorey, M.L.; Thordsen, J.J.

    2000-01-01

    Norris–Mammoth corridor is a complex subsidence structure that extends ∼40 km northward from the 0.6 Ma Yellowstone caldera, and contains many hydrothermal features with high fluid discharges totaling ∼1000 l/s. About 150–250 l/s of hydrothermal water, which attains boiling temperature at surface and 360°C at depth, discharge from the Norris Geyser Basin, adjacent to the caldera. The highest thermal water and gas discharges in the corridor are from Mammoth Hot Springs, where 500–600 l/s thermal water with surface temperatures of up to 73°C and calculated subsurface temperatures of ∼100°C issue from ∼100 hot springs scattered over a score of step-like travertine terraces that range in age from ∼0.4 Ma to recent. All the thermal water is meteoric, likely recharged in the Gallatin Range at 2.5–3.0 km elevations. The isotopic and chemical compositions of thermal waters and solutes can be interpreted to indicate a common magmatic source for heat and volatile solutes located near Norris. However, the chemical and isotopic compositions of gases, especially the 3He/4He ratios, provide strong evidence for a separate magmatic source for the Mammoth system.

  10. Hydrothermal alteration in the EPF replacement wells, Olkaria Geothermal field, Kenya

    SciTech Connect

    Mungania, J.

    1996-12-31

    Olkaria Geothermal area is located in the central sector of the Kenya, Rift Valley. A 45MW Geothermal power station has been operational at Olkaria since 1985 supplied by 22 of the 26 wells drilled in the Eastern production field (EPF). Between 1988 and 1993, eight more wells referred to as {open_quote}replacement wells{close_quote} were drilled in the same field to boost steam supply to the station. Petrographic analyses of the drill cuttings is usually done to determine detail stratigraphy of the field, extends of hydrothermal activity, subsurface structures and other parameters which may influence production potential of a well. Analyses of the drill cuttings from the EPF wells show that: Variations in the whole rock alteration intensities correlate with differences in rocktypes. Permeable horizons, especially the productive feeder zones are well marked by enhanced hydrothermal minerals depositions, mainly quartz, calcite, pyrite and epidote. Other aspects of state of reservoir like boiling are signified by presence of bladed calcite.

  11. Synthesis of hydrothermally stable, hierarchically mesoporous aluminosilicate Al-SBA-1 and their catalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Na; Wang, Jin-Gui; Xu, Jian-Xiong; Liu, Jin-Yu; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2012-03-01

    Hydrothermally stable mesoporous aluminosilicates Al-SBA-1 with hierarchical pore structure have been successfully synthesized under alkaline condition at 120 °C by employing organic mesomorphous complexes of polyelectrolyte (poly(acrylic acid) (PAA)) and cationic surfactant (hexadecyl pyridinium chloride (CPC)) as template. The Si/Al ratio could be as high as 5 and the incorporation of Al into the silica framework did not disturb the well-ordered cubic Pm3&cmb.macr;n mesostructure. Meanwhile, the incorporation of Al could greatly increase the specific surface area and pore volume of the samples. The Al-SBA-1 materials exhibited a high hydrothermal stability and remained stable even after being treated in boiling water for 10 days. The catalytic activity of the Al-SBA-1 materials was investigated by employing the Friedel-Crafts alkylation of toluene with benzyl alcohol as a model reaction and they exhibited excellent catalytic property due to the incorporated acid sites and the hierarchically mesoporous structure.

  12. Hydrothermal flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Schiffman, P.; Williams, A.E.

    1984-01-01

    This detailed three-dimensional model of the natural flow regime of the Cerro Prieto geothermal field, before steam production began, is based on patterns of hydrothermal mineral zones and light stable isotopic ratios observed in rock samples from more than 50 deep wells, together with temperature gradients, wireline logs and other data. At the level so far penetrated by drilling, this hydrothermal system was heated by a thermal plume of water close to boiling, inclined at 45/sup 0/, rising from the northeast and discharging to the west. To the east a zone of cold water recharge overlies the inclined thermal plume. Fission track annealing studies show the reservoir reached 170/sup 0/C only 10/sup 4/ years ago. Oxygen isotope exchange data indicate that a 12 km/sup 3/ volume of rock subsequently reacted with three times its volume of water hotter than 200/sup 0/C. Averaged over the duration of the heating event this would require a flow velocity through a typical cross-section of the reservoir of about 6 m/year. The heat in storage in that part of the reservoir hotter than 200/sup 0/C and shallower than 3 km depth is equivalent to that which would be released by the cooling of about 1 or 2 km/sup 3/ of basalt or gabbro magma.

  13. Understanding the structural features of high-amylose maize starch through hydrothermal treatment.

    PubMed

    Yang, Jianing; Xie, Fengwei; Wen, Wenqiang; Chen, Ling; Shang, Xiaoqin; Liu, Peng

    2016-03-01

    In this study, high-amylose starches were hydrothermally-treated and the structural changes were monitored with time (up to 12h) using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). When high-amylose starches were treated in boiling water, half-shell-like granules were observed by SEM, which could be due to the first hydrolysis of the granule inner region (CLSM). This initial hydrolysis could also immediately (0.5h) disrupt the semi-crystalline lamellar regularity (SAXS) and dramatically reduce the crystallinity (XRD); but with prolonged time of hydrothermal treatment (≥2 h), might allow the perfection or formation of amylose single helices, resulting in slightly increased crystallinity (XRD and DSC). These results show that the inner region of granules is composed of mainly loosely-packed amylopectin growth rings with semi-crystalline lamellae, which are vulnerable under gelatinization or hydrolysis. In contrast, the periphery is demonstrated to be more compact, possibly composed of amylose and amylopectin helices intertwined with amylose molecules, which require greater energy input (higher temperature) for disintegration.

  14. Permeability Reduction in Passively Degassing Seawater-dominated Volcanic-hydrothermal systems: Processes and Perils on Raoul Island, Kermadecs (NZ)

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; Reyes, A. G.

    2014-12-01

    The 2006 eruption from Raoul Island occurred apparently in response to local tectonic swarm activity, but without any precursory indication of volcanic unrest within the hydrothermal system on the island. The eruption released some 200 T of SO2, implicating the involvement of a deep magmatic vapor input into the system during/prior to the event. In the absence of any recognized juvenile material in the eruption products, previous explanations for this eruptive event focused on this vapor being a driving force for the eruption. In 2004, at least 80 T/d of CO2 was escaping from the hydrothermal system, but mainly through areas that did not correspond to the 2006 eruption vents. The lack of a pre-eruptive hydrothermal system response related to the seismic event in 2006 can be explained by the presence of a hydrothermal mineralogic seal in the vent area of the volcano. Evidence for the existence of such a seal was found in eruption deposits in the form of massive fracture fillings of aragonite, calcite and anhydrite. Fluid inclusion homogenization temperatures in these phases range from ca. 140 °C to 220 °C which, for pure water indicate boiling point depths of between 40 and 230 m assuming a cold hydrostatic pressure constraint. Elevated pressures behind this seal are consistent with the occurrence of CO2 clathrates in some inclusion fluids, indicating CO2 concentrations approaching 1 molal in the parent fluids. Reactive transport modeling of magmatic volatile inputs into what is effectively a seawater-dominated hydrothermal system provide valuable insights into seal formation. Carbonate mineral phases ultimately come to saturation along this flow path, but we suggest that focused deposition of the observed massive carbonate seal is facilitated by near-surface boiling of these CO2-enriched altered seawaters, leading to large degrees of supersaturation which are required for the formation of aragonite. As the seal grew and permeability declined, pore pressures

  15. Structure of two hydrothermal megaplumes

    SciTech Connect

    D`asaro, E.; Walker, S.; Baker, E. |

    1994-10-01

    The dynamic signatures of two megaplumes above the Juan de Fuca Ridge are analyzed. The chemical properties of these two lenslike masses of water were described by Baker at al. (1989) and clearly indicate that they were generated by massive and rapid ventings of hot hydrothermal fluid from the ridge. Both are nearly circular with radii of about 6.5 km. The isopycnals bow upward around these cores of anomalous water, leading to an anticyclonic circulation. A cyclogeostrophic balance gives maximum currents at the edge of the core of 0.11 m/s for the first megaplume (MP1) and 0.07 m/s for the second megaplume (MP2). Currents extend beyond the core to a radius of 12-15 km. The centers of the cores are in nearly solid body rotation with relative vorticities of -0.5f (MP2) and potential vorticity anomalies, expressed in units of equivalent relative vorticity, of -0.8f (MP1) and -0.6f (MP2), where f is the Coriolis frequency. The aspect ratio of each megaplume gives a Burger number of 0.22. In terms of these nondimensional numbers, the megaplumes are very similar to eddies of Mediterranean water found in the eastern Atlantic (meddies), despite their very different origin.

  16. A novel role of three dimensional graphene foam to prevent heater failure during boiling.

    PubMed

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG).

  17. Compliance with advice to boil drinking water during an outbreak of cryptosporidiosis. Outbreak Investigation Team.

    PubMed

    Willocks, L J; Sufi, F; Wall, R; Seng, C; Swan, A V

    2000-06-01

    All 2000 employees of a hospital in an area of the North Thames region where 300,000 households were advised to boil tap water before consumption during a large outbreak of cryptosporidiosis were surveyed about compliance with and adverse events linked to the boil water notice. Eighty-five per cent (408/479) of respondents who lived in the boil water area said that they used boiled water while the notice was in place, 72% (347) used bottled water, and 12% (59) did not continue to boil water for the whole 16 days. Although 88% believed that they were following the advice, 20% washed food that would be eaten raw in unboiled tap water and 57% used it to clean their teeth. If a boil water notice is applied for more than a few days it may be helpful to issue a detailed follow up letter.

  18. A Novel Role of Three Dimensional Graphene Foam to Prevent Heater Failure during Boiling

    PubMed Central

    Ahn, Ho Seon; Kim, Ji Min; Park, Chibeom; Jang, Ji-Wook; Lee, Jae Sung; Kim, Hyungdae; Kaviany, Massoud; Kim, Moo Hwan

    2013-01-01

    We report a novel boiling heat transfer (NBHT) in reduced graphene oxide (RGO) suspended in water (RGO colloid) near critical heat flux (CHF), which is traditionally the dangerous limitation of nucleate boiling heat transfer because of heater failure. When the heat flux reaches the maximum value (CHF) in RGO colloid pool boiling, the wall temperature increases gradually and slowly with an almost constant heat flux, contrary to the rapid wall temperature increase found during water pool boiling. The gained time by NBHT would provide the safer margin of the heat transfer and the amazing impact on the thermal system as the first report of graphene application. In addition, the CHF and boiling heat transfer performance also increase. This novel boiling phenomenon can effectively prevent heater failure because of the role played by the self-assembled three-dimensional foam-like graphene network (SFG). PMID:23743619

  19. Effect of Magnetic Fields on the Boiling Heat Transfer Characteristics of Nanofluids

    NASA Astrophysics Data System (ADS)

    Naphon, Paisarn

    2015-11-01

    The main focus of the present study is to investigate the effect of magnetic fields on the pool boiling heat transfer characteristics on the cylindrical surface of nanofluids. The nanofluids with suspended TiO2 nanoparticles in the base fluid refrigerant R141b are used as the working fluid. Effects of magnetic field strength, nanoparticle concentration, and boiling pressure on the pool boiling heat transfer coefficient and the boiling bubble characteristics are considered. In this study, magnetic fields with strengths of 5.0× 10^{-4} T, 7.5× 10^{-4} T, and 10.0× 10^{-4} T are applied to exert a force on the boiling surface with permanent magnets. According to the experimental results, it is found that the magnetic fields have a significant effect on the pool boiling heat transfer enhancement with a maximum enhancement of 27.91 %.

  20. Hydrothermal convection and mordenite precipitation in the cooling Bishop Tuff, California, USA

    NASA Astrophysics Data System (ADS)

    Randolph-Flagg, N. G.; Breen, S. J.; Hernandez, A.; Self, S.; Manga, M.

    2014-12-01

    We present field observations of erosional columns in the Bishop Tuff and then use laboratory results and numerical models to argue that these columns are evidence of relict convection in a cooling ignimbrite. Many square kilometers of the Bishop Tuff have evenly-spaced, vertical to semi-vertical erosional columns, a result of hydrothermal alteration. These altered regions are more competent than the surrounding tuff, are 0.1-0.7 m in diameter, are separated by ~ 1 m, and in some cases are more than 8 m in height. JE Bailey (U. of Hawaii, dissertation, 2005) suggested that similar columns in the Bandelier Tuff were formed when slumping allowed water to pool at the surface of the still-cooling ignimbrite. As water percolated downward it boiled generating evenly spaced convection cells similar to heat pipes. We quantify this conceptual model and apply it the Bishop Tuff to understand the physics within ignimbrite-borne hydrothermal systems. We use thin sections to measure changing porosity and use scanning electron microscope (SEM) and x-ray diffraction (XRD) analyses to show that pore spaces in the columns are cemented by the mineral mordenite, a low temperature zeolite that precipitates between 120-200 oC (Bish et al., 1982), also found in the Bandelier Tuff example. We then use scaling to show 1) that water percolating into the cooling Bishop Tuff would convect and 2) that the geometry and spacing of the columns is predicted by the ignimbrite temperature and permeability. We use the computer program HYDROTHERM (Hayba and Ingebritsen, 1994; Kipp et al., 2008) to model 2-phase convection in the Bishop Tuff. By systematically changing permeability, initial temperature, and topography we can identify the pattern of flows that develop when the ignimbrite is cooled by water from above. Hydrothermally altered columns in ignimbrite are the natural product of coupled heat, mass, and chemical transport and have similarities to other geothermal systems, economic ore deposits

  1. A review on augmentation of heat transfer in boiling using surfactants/additives

    NASA Astrophysics Data System (ADS)

    Acharya, Anil; Pise, Ashok

    2016-09-01

    Studies of heat transfer enhancement in boiling under various conditions and configurations have given different results. Understanding the boiling behaviour from these studies, literature is reviewed in terms of surface texture, heater geometry and orientation, experimental and numerical studies in presence of surfactant/additives. After understanding different behaviour in boiling, the effect of environment friendly surfactant is studied through literature review. Benchmarking of experimental procedure is done by experimenting and comparing some surfactants studied in literature.

  2. Effects of boiling on the IgE-binding properties of tropomyosin of shrimp (Litopenaeus vannamei).

    PubMed

    Liu, Guang-Ming; Cheng, Hsiaopo; Nesbit, Jacqueline B; Su, Wen-Jin; Cao, Min-Jie; Maleki, Soheila J

    2010-01-01

    The thermal stability and IgE binding of raw and boiled shrimp extracts and the tropomyosins (TM) have not been reported. In this study, we compare the stability of raw and boiled shrimp TM of Litopenaeus vannamei and evaluate how boiling may alter the allergenicity of L. vannamei. Extracts were prepared from raw and boiled shrimp and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis. The IgE-binding of the extracts was determined by western-blot and competitive inhibition enzyme-linked immunosorbent assay (iELISA). The TM was then purified from raw and boiled shrimp, the secondary structures analyzed by circular dichroism (CD) spectroscopy, and the IgE binding compared by slot blot analysis. The soluble protein content decreased and the higher molecular weight proteins increased in the extracts from boiled versus raw shrimp. Similar IgE binding characteristics were seen by extracts when using western blot analysis. Although iELISA results showed that extracts from raw shrimp bound higher IgE than extracts from boiled shrimp, dot-blot assay demonstrates higher IgE binding to purified TM from boiled shrimp than raw shrimp. The purified TM had a typical alpha-helical secondary structure and the stability of boiled TM was lower than that of raw TM. Extracts from boiled shrimp produce lower IgE binding than extracts from raw shrimp, which suggest that boiling can be used as a tool in attempting to reduce shrimp allergenicity. However, the purified TM from boiled shrimp, which shows enhanced IgE binding over that of raw shrimp, may be a more effective antigen in diagnosing shrimp allergy through immunoassay.

  3. Hydrothermal Venting at Kick'Em Jenny Submarine Volcano (West Indies)

    NASA Astrophysics Data System (ADS)

    Carey, S.; Croff Bell, K. L.; Dondin, F. J. Y.; Roman, C.; Smart, C.; Lilley, M. D.; Lupton, J. E.; Ballard, R. D.

    2014-12-01

    Kick'em Jenny is a frequently-erupting, shallow submarine volcano located ~8 km off the northwest coast of Grenada in the West Indies. The last eruption took place in 2001 but did not breach the sea surface. Focused and diffuse hydrothermal venting is taking place mainly within a small (~100 x 100 m) depression within the 300 m diameter crater of the volcano at depths of about 265 meters. Near the center of the depression clear fluids are being discharged from a focused mound-like vent at a maximum temperature of 180o C with the simultaneous discharge of numerous bubble streams. The gas consists of 93-96% CO2 with trace amounts of methane and hydrogen. A sulfur component likely contributes 1-4% of the gas total. Gas flux measurements on individual bubble streams ranged from 10 to 100 kg of CO2 per day. Diffuse venting with temperatures 5 to 35o C above ambient occurs throughout the depression and over large areas of the main crater. These zones are extensively colonized by reddish-yellow bacterial mats with the production of loose Fe-oxyhydroxides largely as a surface coating and in some cases, as fragile spires up to several meters in height. A high-resolution photo mosaic of the crater depression was constructed using the remotely operated vehicle Hercules on cruise NA039 of the E/V Nautilus. The image revealed prominent fluid flow patterns descending the sides of the depression towards the base. We speculate that the negatively buoyant fluid flow may be the result of second boiling of hydrothermal fluids at Kick'em Jenny generating a dense saline component that does not rise despite its elevated temperature. Increased density may also be the result of high dissolved CO2 content of the fluids, although we were not able to measure this directly. The low amount of sulphide mineralization on the crater floor suggests that deposition may be occurring mostly subsurface, in accord with models of second boiling mineralization from other hydrothermal vent systems.

  4. Hydrothermal activity and subsurface soil complexity: implication for outgassing processes at Solfatara crater, Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Mayer, Klaus; Scheu, Bettina; Isaia, Roberto; Mangiacapra, Annarita; Gresse, Marceau; Vandemeulebrouck, Jean; Moretti, Roberto; Dingwell, Donald B.

    2016-04-01

    The Solfatara area and its fumaroles are the main surface phenomena of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. The existing fault system appears to have a major control on outgassing which in turn leads to a strong alteration of the volcanic products. Moreover the maar-nature of the crater, and its filling by more recent volcanic deposits, resulted in a complex fractured and multilayered cap to the rising gases. As a consequence the hydrothermal alteration differently affects the rocks within the crater, including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias and lavas. The induced changes in both original microstructure and physical and mechanical properties of the rocks control the outgassing behavior. Here, we report results from a measurement survey conducted in July 2015, and aimed to characterize the in-situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties. The survey also included a mapping of the surficial hydrothermal features and their distributions. Chemical analyses and laboratory measurements (porosity, granulometry) of selected samples were additionally performed. Results show that the crater floor area comprises very different kinds of soils, from fine grained, thin laminated deposits around the two bubbling Fangaia mud pools, to crusted hummock formations along the SE and NE border of the crater. Dry and solid alunite-rich deposits are present in the western and southern part. Furthermore we observed evidences of a beginning of crust formation within the central part of the crater. A large range of surface temperatures, from boiling point to ambient temperature, were measured throughout the surveyed area. Outgassing occurs mainly along the crack system, which has also generated the crusted hummocks. Elsewhere the fluid circulation in the subsoil is favored by the presence of coarse and highly porous sulfur-hardened levels, whereas

  5. Generic safety insights for inspection of boiling water reactors

    SciTech Connect

    Higgins, J.C.; Taylor, J.H.; Fresco, A.N.; Hillman, B.M.

    1987-01-01

    As the number of operating nuclear power plants (NPPs) increases, safety inspection has increased in importance. Over the last 2 yr, probabilistic risk assessment (PRA) techniques have been developed to aid in the inspection process. Broad interest in generic PRA-based methods has arisen in the past year, since only approx. 25% of the US nuclear power plants have completed PRAs, and also, inspectors want PRA-based tools for these plants. This paper describes the Brookhaven National Lab. program to develop generic boiling water reactor (BWR) PRA-based inspection insights or inspection guidance designed to be applied to plants without PRAs.

  6. Numerical simulation of boiling water reactor ventclearing hydrodynamics

    SciTech Connect

    Nichols, B.D.; Hirt, C.W.

    1980-02-01

    Pressure suppression pools used in nuclear reactors are subject to hydrodynamic processes involving complicated free surface configurations. A new numerical method, SOLA-VOF, developed to handle such problems is described and evaluated through comparisons with laboratory test data. Results from numerous computations provide a detailed understanding of the hydrodynamic phenomena associated with boiling water reactor vent-clearing processes. In addition, calculations show the sensitivity of the results to variations in the water vapor content, vent submergence depth, vent orifice size, and to the influence of fluid-structure interactions.

  7. Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Linehard, J. H.; Dhir, V. K.

    1973-01-01

    The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.

  8. Experimental evidence of the vapor recoil mechanism in the boiling crisis.

    PubMed

    Nikolayev, V S; Chatain, D; Garrabos, Y; Beysens, D

    2006-11-01

    Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.

  9. The 2006 Eruption of Raoul Volcano (Kermadecs): A Phreato-magmatic Event From a Hydrothermally-Sealed Volcanic Conduit System.

    NASA Astrophysics Data System (ADS)

    Christenson, B. W.; Reyes, A. G.; Werner, C. A.

    2006-12-01

    The March 17, 2006 eruption from Raoul volcano (Kermadec Islands, NZ), which tragically claimed the life of NZ Department of Conservation staff member Mark Kearney, is being interpreted as a magmatic-hydrothermal event triggered by shaking associated with regional earthquake swarm activity. Although the eruption released ca. 200 T of SO2, thus confirming its magmatic nature, it occurred without significant precursory volcanic seismicity, and without any of the precursory responses of the volcanic hydrothermal system which were observed prior to the last eruption in 1964. Raoul Island has a long and varied eruption history dating back > 1.4 ma, and has been hydrothermally active throughout historic time. Present day fumarolic and hotspring discharges within Raoul caldera point to the existence of a small but well established, mixed meteoric - seawater hydrothermal system within the volcano. Magmatic signatures are apparent in fumarolic gas discharges, but are heavily masked by their interaction with hydrothermal system fluids (eg. near complete scrubbing of sulphur and halogen gases from the boiling point fumarolic discharges). A diffuse degassing study conducted in 2004 revealed that ca. 80 T/d CO2 is passively discharged from the volcano, suggesting that ongoing (albeit low level) convective degassing of magma occurs at depth. Interestingly, vent locations from the 2006 eruption correspond to areas of relatively low CO2 discharge on the crater floor in 2004. This, in conjunction with the preliminary findings of abundant hydrothermal mineralisation (calcite, anhydrite, quartz) in eruption ejecta, suggests that the main volcanic conduits had become effectively sealed during the interval since the last eruption. Calcite-hosted fluid inclusions are CO2 clathrate-bearing, and have relatively low homogenisation temperatures (165-180 °C), suggesting that the seal environment was both gas-charged and shallowly seated (< 200 m). Shaking associated with the regional

  10. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal

  11. Marine diagenesis of hydrothermal sulfide

    SciTech Connect

    Moammar, M.O.

    1985-01-01

    An attempt is made to discuss the artificial and natural oxidation and hydrolysis of hydrothermal sulfide upon interaction with normal seawater. Synthetic and natural ferrosphalerite particles used in kinetic oxidation and hydrolysis studies in seawater develop dense, crystalline coatings consisting of ordered and ferrimagnetic delta-(Fe, Zn)OOH. Due to the formation of this reactive diffusion barrier, the release of Zn into solution decreases rapidly, and sulfide oxidation is reduced to a low rate determined by the diffusion of oxygen through the oxyhydroxide film. This also acts as an efficient solvent for ions such as Zn/sup 2 +/, Ca/sup 2 +/, and possibly Cd/sup 2 +/, which contribute to the stabilization of the delta-FeOOH structure. The oxidation of sulfide occurs in many seafloor spreading areas, such as 21/sup 0/N on the East Pacific Ridge. In these areas the old surface of the sulfide chimneys are found to be covered by an orange stain, and sediment near the base of nonactive vents is also found to consist of what has been referred to as amorphous iron oxide and hydroxide. This thesis also discusses the exceedingly low solubility of zinc in seawater, from delta-(Fe, Zn)OOH and the analogous phase (zinc-ferrihydroxide) and the zinc exchange minerals, 10-A manganate and montmorillonite. The concentrations of all four are of the same magnitude (16, 36.4, and 12 nM, respectively) as the zinc concentration in deep ocean water (approx. 10 nM), which suggests that manganates and montmorillonite with iron oxyhydroxides control zinc concentration in the deep ocean.

  12. Geochemistry of the volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Taran, Yuri; Fischer, Tobias P.; Pokrovsky, Boris; Sano, Yuji; Armienta, Maria Aurora; Macias, Jose Luis

    The 1982 eruption of El Chichón volcano ejected more than 1km3 of anhydrite-bearing trachyandesite pyroclastic material to form a new 1-km-wide and 300-m-deep crater and uncovered the upper 500m of an active volcano-hydrothermal system. Instead of the weak boiling-point temperature fumaroles of the former lava dome, a vigorously boiling crater spring now discharges / 20kg/s of Cl-rich ( 15 000mg/kg) and sulphur-poor ( / 200mg/kg of SO4), almost neutral (pHup to 6.7) water with an isotopic composition close to that of subduction-type magmatic water (δD=-15‰, δ18O=+6.5‰). This spring, as well as numerous Cl-free boiling springs discharging a mixture of meteoric water with fumarolic condensates, feed the crater lake, which, compared with values in 1983, is now much more diluted ( 3000mg/kg of Cl vs 24 030mg/kg), less acidic (pH=2.6 vs 0.56) and contains much lower amounts of S ( / 200mg/kg of SO4, vs 3550mg/kg) with δ34S=0.5-4.2‰ (+17‰ in 1983). Agua Caliente thermal waters, on the southeast slope of the volcano, have an outflow rate of approximately 100kg/s of 71 °C Na-Ca-Cl water and are five times more concentrated than before the eruption (B. R. Molina, unpublished data). Relative N2, Ar and He gas concentrations suggest extensional tectonics for the El Chichón volcanic centre. The 3He/4He and 4He/20Ne ratios in gases from the crater fumaroles (7.3Ra, 2560) and Agua Caliente hot springs (5.3Ra, 44) indicate a strong magmatic contribution. However, relative concentrations of reactive species are typical of equilibrium in a two-phase boiling aquifer. Sulphur and C isotopic data indicate highly reducing conditions within the system, probably associated with the presence of buried vegetation resulting from the 1982 eruption. All Cl-rich waters at El Chichón have a common source. This water has the appearence of a "partially matured" magmatic fluid: condensed magmatic vapour neutralized by interaction with fresh volcaniclastic deposits and depleted in S

  13. Preliminary hydrogeologic appraisal of selected hydrothermal systems in northern and central Nevada

    USGS Publications Warehouse

    Olmsted, F.H.; Glancy, P.A.; Harrill, J.R.; Rush, F.E.; Van Denburgh, A.S.

    1975-01-01

    annual air temperature (8?-12?C at most places) to boiling or slightly hotter. Geochemical data indicate that, in the major systems, subsurface temperatures at which thermal waters equilibrate with reservoir rocks range from 150? to more than 200?C. These data also indicate that the major systems are of the hot-water type rather than the vapor-dominated type. Depths of thermal-water circulation probably range from 2 to 6 kilometres in areas of 'normal' regional heat flow (~2 heatflow units) and from 1 to 3 kilometres in areas of high heat flow (~3-4 heat-flow units) such as near Battle Mountain. Most of the heat is discharged from the hydrothermal systems studied by (1) conduction through near-surface materials heated as a consequence of thermal-water convection, (2) convection as springflow, and (3) convection as steam discharge from spring pools, vents, fumaroles, and cracks. The mate of heat discharge by radiation from warm ground and by convection as lateral ground-water outflow is believed to be small in most systems and is not estimated. Estimates of net heat discharge from the systems studied range from about 0.8 x 106 calories per second at Buffalo Valley Hot Springs to about 14 x 106 calories per second at Stillwater. These estimates represent the approximate magnitude of the excess heat discharge from the thermal areas that results from the upward convection of hot water from deep sources. Water discharges from the hydrothermal systems by springflow, evapotranspiration, steam discharge, and lateral ground-water outflow. Estimated discharges range from about 0.2 x 106cubic metres per year from the Buffalo Valley Hot Springs system to about 3 x 106 cubic metres per year from the Stillwater system. In most of the hydrothermal systems studied and, by inference, in other similar systems in northern and central Nevada, the scale for potential .commercial development for production of electricity or for other uses may be constrained by the

  14. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  15. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  16. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  17. Hydrothermal processing of new fly ash cement

    SciTech Connect

    Jiang, W.; Roy, D.M. )

    1992-04-01

    The recent Mount Pinatubo volcanic eruption in the Philippines, in which at least 268 people died, shows that volcanic eruptions can be highly destructive. The eruption shot ash and debris over the countryside; six towns near the volcano faced a high risk of devastating mudslides, and nearly 2000 U.S. service members and their families were evacuated from two nearby military bases. However, this paper reports that not all the consequences of volcanic eruptions are bad. Under hydrothermal conditions, volcanic ash can be transformed into zeolitic tuff and, eventually, into clay minerals that constitute agricultural soils. The Materials Research Laboratory (MRL) has recently used some artificial pozzolanas (fly ash) that when mixed with lime, under hydrothermal conditions, also produced a new type of cementitious material. This was categorized as a new fly ash cement. The formation of a new hydrothermally treated wood-fiber-reinforced composite has also been demonstrated. It is apparent, however, that with respect to concerns about detailed knowledge of the reactivity of calcium silicate-based materials under hydrothermal conditions, the application of the technology far outweighs the understanding of the underlying principles of reactivity. It would seem that an understanding of reactions on the molecular level is just beginning, and that work on hydrothermal reactions is still a potentially lucrative area of research.

  18. Parametric study of boiling heat transfer in porous media

    SciTech Connect

    Shi, B.; Jones, B.G.; Pan, C.

    1996-04-01

    Detailed numerical modeling and parametric variation studies were conducted on boiling heat transfer processes in porous deposits with emphasis on applications associated with light water nuclear power reactor systems. The processes of boiling heat transfer in the porous corrosion deposits typically involve phase changes in finite volumetric regions in the porous media. The study examined such processes in two porous media configurations, without chimneys (homogeneous porous structures) and with chimneys (heterogeneous porous structures). A 1-D model and a 2-D model were developed to simulate two-phase flows with phase changes, without dry-out, inside the porous media for both structural configurations. For closure of the governing equations, an empirical correlation of the evaporation rate for phase changes inside the porous media was introduced. In addition, numerical algorithms were developed to solve the coupled nonlinear equations of mass, momentum, energy, capillary pressure, and evaporation rate. The distributions of temperature, thermodynamic saturation, liquid pressure, vapor pressure, liquid velocity, and vapor velocity were predicted. Furthermore, the effects of heat flux, system pressure, porosity, particle diameter, chimney population density, chimney radius, and crud thickness on the all superheat, critical heat flux, and minimum saturation were examined. The predictions were found to be in good agreement with the available experimental results.

  19. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  20. Water inventory management in condenser pool of boiling water reactor

    DOEpatents

    Gluntz, D.M.

    1996-03-12

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  1. A second look at electrokinetic phenomena in boiling

    NASA Astrophysics Data System (ADS)

    Snyder, Trevor J.; Schneider, John B.; Chung, Jacob N.

    1996-05-01

    In the article by V. Asch [J. Appl. Phys. 37, 2654 (1966)], experiments were performed to study the influence of an electrostatic field on nucleate boiling of Freon-113(R-113). We have found that Asch might not have properly considered the effects of his experimental setup and therefore came to incorrect conclusions concerning electrophoretic and dielectrophoretic forces. Asch's analysis of the electric field distribution led him to conclude that the dielectrophoretic forces were small, however, we show in this article that, in general, there are strong dielectrophoretic forces in the vicinity of the heater wire. This article presents the results from a set of experiments performed with an apparatus similar to that of Asch's with test fluids of R-113 and FC-72. The experimental results show that vapor bubbles can be attracted to either the anode or cathode depending on the potentials with respect to the heater wire on which the boiling takes place. This is contrary to the results obtained by Asch which led him to conclude that the bubbles were always attracted to the anode. The bubble movement appears to be the result of a combination of dielectrophoretic forces (which are very strong but highly localized), electrophoretic forces, and bulk electroconvective flow. Furthermore, the combined effects of these forces away from the wire can lead to unstable behavior. 1996 American Institute of Physics.

  2. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  3. Boiling water neutronic reactor incorporating a process inherent safety design

    DOEpatents

    Forsberg, Charles W.

    1987-01-01

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (non-borated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  4. Boiling on spatially controlled heterogeneous surfaces: Wettability patterns on microstructures

    NASA Astrophysics Data System (ADS)

    Jo, HangJin; Yu, Dong In; Noh, Hyunwoo; Park, Hyun Sun; Kim, Moo Hwan

    2015-05-01

    We investigated nucleate boiling heat transfer with precisely controlled wetting patterns and micro-posts, to gain insights into the impact of surface heterogeneity. To create heterogeneous wetting patterns, self-assembled monolayers (SAMs) were spatially patterned. Even at a contact angle <90°, bubble nucleation and bubble frequency were accelerated on SAM patterns, since this contact angle is larger than that found on plain surfaces. Micro-posts were also fabricated on the surface, which interrupted the expansion of generated bubbles. This surface structuring induced smaller bubbles and higher bubble frequency than the plain surface. The resistance provided by surface structures to bubble expansion broke the interface between the vapor mushroom and the heating surface, and water could therefore be continuously supplied through these spaces at high heat flux. To induce synergistic effects with wetting patterns and surface structures on boiling, we fabricated SAM patterns onto the heads of micro-posts. On this combined surface, bubble nucleation was induced from the head of the micro-posts, and bubble growth was influenced by both the SAM pattern and the micro-post structures. In particular, separation of the vapor path on the SAM patterns and the liquid path between micro-post structures resulted in high heat transfer performance without critical heat flux deterioration.

  5. Does boiling affect the bioaccessibility of selenium from cabbage?

    PubMed

    Funes-Collado, Virginia; Rubio, Roser; López-Sánchez, J Fermín

    2015-08-15

    The bioaccessible selenium species from cabbage were studied using an in vitro physiologically-based extraction test (PBET) which establishes conditions that simulate the gastric and gastrointestinal phases of human digestion. Samples of cabbage (Brassica oleracea) grown in peat fortified with different concentrations of Se(IV) and Se(VI) were analysed, and several enzymes (pepsin, pancreatin and amylase) were used in the PBET. The effect of boiling before extraction was also assayed. Selenium speciation in the PBET extracts was determined using anionic exchange and LC-ICP/MS. The selenocompounds in the extracts were Se(IV), SeMet and, mostly, Se(VI) species. The results show that the activity of the enzymes increased the concentration of the selenocompounds slightly, although the use of amylase had no effect on the results. The PBET showed the concentration of inorganic selenium in the extracts from boiled cabbage decreased as much as 4-fold while the release of SeMet and its concentration increased (up to 6-fold), with respect to raw cabbage.

  6. Genetic toxicity of high-boiling petroleum substances.

    PubMed

    McKee, Richard H; Schreiner, Ceinwen A; Nicolich, Mark J; Gray, Thomas M

    2013-11-01

    There are several specific types of high-boiling petroleum substances (HBPS) having final boiling points >343°C), in which genetic toxicity can be related to the content of polycyclic aromatic compounds (PACs), specifically crude oils, gas oils, heavy fuel oils, lubricant base oils, waxes and aromatic extracts. Evaluation of optimized Salmonella tests covering over 250 samples from 43 types of HBPS revealed that gene mutation can be determined for these substances using a protocol optimized for the detection of mutagenic PAC. The outcomes of modified Salmonella assays can be predicted using HBPS compositional information as input to a newly developed statistical model. The general outcome of the optimized Salmonella assay can be predicted for an untested substance based on its Aromatic Ring Class (ARC) profile. Review of the results from numerous cytogenetic tests showed that although a few positive study results have been reported, most HBPS do not produce chromosomal effects when tested in rodent bone marrow assays or in in vitro chromosomal aberration assays. Results of both bacterial and cytogenetic studies can be used to satisfy genetic toxicity endpoints for the HBPS category substances. PMID:23685115

  7. Effect of superheat and electric field on saturated film boiling

    NASA Astrophysics Data System (ADS)

    Pandey, Vinod; Biswas, Gautam; Dalal, Amaresh

    2016-05-01

    The objective of this investigation is to study the influence of superheat temperature and applied uniform electric field across the liquid-vapor interface during film boiling using a coupled level set and volume of fluid algorithm. The hydrodynamics of bubble growth, detachment, and its morphological variation with electrohydrodynamic forces are studied considering the medium to be incompressible, viscous, and perfectly dielectric at near critical pressure. The transition in interfacial instability behavior occurs with increase in superheat, the bubble release being periodic both in space and time. Discrete bubble growth occurs at a smaller superheat whereas vapor columns form at the higher superheat values. Destabilization of interfacial motion due to applied electric field results in decrease in bubble separation distance and increase in bubble release rate culminating in enhanced heat transfer rate. A comparison of maximum bubble height owing to application of different intensities of electric field is performed at a smaller superheat. The change in dynamics of bubble growth due to increasing superheat at a high intensity of electric field is studied. The effect of increasing intensity of electric field on the heat transfer rate at different superheats is determined. The boiling characteristic is found to be influenced significantly only above a minimum critical intensity of the electric field.

  8. Genetic toxicity of high-boiling petroleum substances.

    PubMed

    McKee, Richard H; Schreiner, Ceinwen A; Nicolich, Mark J; Gray, Thomas M

    2013-11-01

    There are several specific types of high-boiling petroleum substances (HBPS) having final boiling points >343°C), in which genetic toxicity can be related to the content of polycyclic aromatic compounds (PACs), specifically crude oils, gas oils, heavy fuel oils, lubricant base oils, waxes and aromatic extracts. Evaluation of optimized Salmonella tests covering over 250 samples from 43 types of HBPS revealed that gene mutation can be determined for these substances using a protocol optimized for the detection of mutagenic PAC. The outcomes of modified Salmonella assays can be predicted using HBPS compositional information as input to a newly developed statistical model. The general outcome of the optimized Salmonella assay can be predicted for an untested substance based on its Aromatic Ring Class (ARC) profile. Review of the results from numerous cytogenetic tests showed that although a few positive study results have been reported, most HBPS do not produce chromosomal effects when tested in rodent bone marrow assays or in in vitro chromosomal aberration assays. Results of both bacterial and cytogenetic studies can be used to satisfy genetic toxicity endpoints for the HBPS category substances.

  9. Inactivation of Salmonella enteritidis during boiling of eggs.

    PubMed

    Grijspeerdt, Koen; Herman, Lieve

    2003-01-26

    A series of inactivation curves for Salmonella enteritidis were determined for boiling eggs using different conditions of time and temperature. No significant influence of egg weight could be found on the temperature evolution in the yolk. The inactivation curves consistently showed an initial slow decline in bacterial number at lower temperatures, after which a very rapid inactivation took place. It was not possible to reproduce this behavior using a traditional inactivation model. A pragmatic model existing in two parts was therefore constructed. When the temperature is below a certain threshold, the inactivation follows a second order temperature dependence. Above the temperature threshold, standard Bigelow inactivation kinetics are assumed. This model could describe the data reasonably well, provided that the decimal reduction time in the Bigelow model was assumed to be different for a fast or slow heating process, respectively. The results suggest that the bacteria are more resistant towards a slower heating process, which is confirmed by analyzing the raw data. A fail-safe model can be obtained by using the parameters associated with the slow heating process. The statistical properties of the calibrated model are satisfactory, and a cross-validation shows that it can be used for egg boiling conditions outside its calibration range.

  10. A depletable micro-layer model for nucleate pool boiling

    NASA Astrophysics Data System (ADS)

    Sato, Yohei; Niceno, Bojan

    2015-11-01

    A depletable micro-layer model has been developed for the simulation of nucleate pool boiling within the framework of Computational Fluid Dynamics (CFD) modeling using an interface-tracking method. A micro-layer model is required for the CFD simulation to take into account vaporization from the thin liquid film - called the micro-layer - existing beneath a growing vapor bubble on a hot surface. In our model, the thickness of the micro-layer is a variable defined at each discretized fluid cell adjacent to the heat-transfer surface; the layer decreases due to vaporization, and can finally disappear. Compared to existing micro-region models, most of them based on the concept of contact-line evaporation, as originally proposed by Stephan and Busse, and by Lay and Dhir, our model incorporates simplified modeling ideas, but can nonetheless predict the temperature field beneath the growing bubble accurately. The model proposed in this paper has been validated against measurements of pool boiling in water at atmospheric pressure. Specifically, the bubble principal dimensions and the temperature distribution over the heat-transfer surface are in good agreement with experimental data.

  11. Nucleate boiling pressure drop in an annulus: Book 5

    SciTech Connect

    Not Available

    1992-11-01

    The application of the work described in this report is the production reactors at the Savannah River Site, and the context is nuclear reactor safety. The Loss of Coolant Accident (LOCA) scenario considered involves a double-ended break of a primary coolant pipe in the reactor. During a LOCA, the flow through portions of the reactor may reverse direction or be greatly reduced, depending upon the location of the break. The reduced flow rate of coolant (D{sub 2}O) through the fuel assembly channels of the reactor -- downflow in this situation -- can lead to boiling and to the potential for flow instabilities which may cause some of the fuel assembly channels to overheat and melt. That situation is to be avoided. The experimental approach is to provide a test annulus which simulates geometry, materials, and flow conditions in a Mark-22 fuel assembly (Coolant Channel 3) to the extent possible. The key analysis approaches are: To compare the minima in the measured demand curves with analytical criteria, in particular the Saha-Zuber (1974) model; and to compare the pressure and temperature as a function of length in the annulus with an integral model for flow boiling in a heated channel. Nineteen test series and a total of 178 tests were performed. Testing addressed the effects of: Heat flux; pressure; helium gas; power tilt; ribs; asymmetric heat flux. This document consists solely of the plato file index from 11/87 to 11/90.

  12. Development and Capabilities of ISS Flow Boiling and Condensation Experiment

    NASA Technical Reports Server (NTRS)

    Nahra, Henry; Hasan, Mohammad; Balasubramaniam, R.; Patania, Michelle; Hall, Nancy; Wagner, James; Mackey, Jeffrey; Frankenfield, Bruce; Hauser, Daniel; Harpster, George; Nawrocki, David; Clapper, Randy; Kolacz, John; Butcher, Robert; May, Rochelle; Chao, David; Mudawar, Issam; Kharangate, Chirag R.; O'Neill, Lucas E.

    2015-01-01

    An experimental facility to perform flow boiling and condensation experiments in long duration microgravity environment is being designed for operation on the International Space Station (ISS). This work describes the design of the subsystems of the FBCE including the Fluid subsystem modules, data acquisition, controls, and diagnostics. Subsystems and components are designed within the constraints of the ISS Fluid Integrated Rack in terms of power availability, cooling capability, mass and volume, and most importantly the safety requirements. In this work we present the results of ground-based performance testing of the FBCE subsystem modules and test module which consist of the two condensation modules and the flow boiling module. During this testing, we evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, heat loss from different modules and components, and performance of the test modules. These results will be used in the refinement of the flight system design and build-up of the FBCE which is manifested for flight in late 2017-early 2018.

  13. Hydrothermal brecciation in the Jemez Fault zone, Valles Caldera, New Mexico: Results from CSDP (Continental Scientific Drilling Program) corehole VC-1

    SciTech Connect

    Hulen, J.B.; Nielson, D.L.

    1987-06-01

    Paleozoic and Precambrian rocks intersected deep in Continental Scientific Drilling Program corehole VC-1, adjacent to the late Cenozoic Valles caldera complex, have been disrupted to form a spectacular breccia sequence. The breccias are of both tectonic and hydrothermal origin, and probably formed in the Jemez fault zone, a major regional structure with only normal displacement since mid-Miocene. Tectonic breccias are contorted, crushed, sheared, and granulated; slickensides are commmon. Hydrothermal breccias, by contrast, lack these frictional textures, but arej commonly characterized by fluidized matrix foliation and prominent clast rounding. Fluid inclusions in the hydrothermal breccias are dominantly two-phase, liquid-rich at room temperature, principally secondary, and form two distinctly different compositional groups. Older inclusions, unrelated to brecciation, are highly saline and homogenize to the liquid phase in the temperature range 189 to 246/sup 0/C. Younger inclusions, in part of interbreccia origin, are low-salinity and homogenize (also to liquid) in the range 230 to 283/sup 0/C. Vapor-rich inclusions locally trapped along with these dilute liquid-rich inclusions document periodic boiling. These fluid-inclusion data, together with alteration assemblages and textures as well as the local geologic history, have been combined to model hydrothermal brecciation at the VC-1 site.

  14. Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin

    NASA Astrophysics Data System (ADS)

    Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

    2006-12-01

    A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

  15. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal

  16. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  17. Thermodynamics of Strecker synthesis in hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Shock, Everett

    1995-01-01

    Submarine hydrothermal systems on the early Earth may have been the sites from which life emerged. The potential for Strecker synthesis to produce biomolecules (amino and hydroxy acids) from starting compounds (ketones, aldehydes, HCN and ammonia) in such environments is evaluated quantitatively using thermodynamic data and parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. Although there is an overwhelming thermodynamic drive to form biomolecules by the Strecker synthesis at hydrothermal conditions, the availability and concentration of starting compounds limit the efficiency and productivity of Strecker reactions. Mechanisms for concentrating reactant compounds could help overcome this problem, but other mechanisms for production of biomolecules may have been required to produce the required compounds on the early Earth. Geochemical constraints imposed by hydrothermal systems provide important clues for determining the potential of these and other systems as sites for the emergence of life.

  18. Characterization of advanced preprocessed materials (Hydrothermal)

    SciTech Connect

    Rachel Emerson; Garold Gresham

    2012-09-01

    The initial hydrothermal treatment parameters did not achieve the proposed objective of this effort; the reduction of intrinsic ash in the corn stover. However, liquid fractions from the 170°C treatments was indicative that some of the elements routinely found in the ash that negatively impact the biochemical conversion processes had been removed. After reviewing other options for facilitating ash removal, sodium-citrate (chelating agent) was included in the hydrothermal treatment process, resulting in a 69% reduction in the physiological ash. These results indicated that chelation –hydrothermal treatment is one possible approach that can be utilized to reduce the overall ash content of feedstock materials and having a positive impact on conversion performance.

  19. Hydrothermal Ni Prospectivity Analysis of Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvalez, I.; Porwal, A.; McCuaig, T. C.

    2009-04-01

    Tasmania contains the largest hydrothermal Ni deposit in Australia: Avebury (118,000 Ni metal tonnes). This Devonian deposit was discovered in 1998 in the Dundas geological region, and represents an outstanding example of hydrothermal Nickel sulphide mineralization type. Avebury Ni deposit is a system of hydrothermal Ni ore bodies. It is hosted by an intensely altered and serpentinized Cambrian ultramafic suite in close proximity to major structural features. The mineralization is considered to be the result of hydrothermal scavenging and remobilization of the original nickel content of the mafic/ultramafic rocks in the area, and subsequent re-deposition in favourable structural traps. The mineralization is spatially and temporally related to a large granitic intrusion, the Heemskirk Granite, which is considered to be the source of the hydrothermal fluids as well as the necessary thermal gradients for the circulation of the fluids. Tasmania is largely covered by the Jurassic Ferrar Continental Flood basalt Province in the East and presents early Cambrian ultramafic-mafic complexes in the West. The Ferrar large igneous province (LIP) extends over to Antarctica and is related to the Karoo Province in southern Africa that comprises tholeiitic lava flows, sills, and dyke swarms. The Ferrar and Karoo provinces were associated with the same thermal anomaly that was involved in the break up of Gondwana. The presence of mafic/ultramafic rocks in favourable lithological packages and/or structural traps along the margins of the province, as well as several prospective reduced or reactive sedimentary packages within and around the Ferrar indicate that this LIP could represent a novel promising ground for Ni hydrothermal exploration. Based on this prospective geological background, a prospectivity analysis for hydrothermal Ni deposits was carried out on regional scale for the entire state of Tasmania. A conceptual model of hydrothermal nickel mineral system was used to

  20. Hydrothermal Ni Prospectivity Analysis of Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Porwal, A.; McCuaig, T. C.; Maier, W.

    2009-04-01

    Tasmania contains the largest hydrothermal Ni deposit in Australia: Avebury (118,000 Ni metal tonnes). This Devonian deposit was discovered in 1998 in the Dundas geological region, and consists of a system of hydrothermal Ni ore bodies. They are hosted by an intensely altered and serpentinized Cambrian ultramafic suite in close proximity to major structural features. The mineralization is considered to be the result of hydrothermal scavenging and remobilization of the original nickel content of mafic/ultramafic rocks in the area, and subsequent re-deposition in favourable structural traps. This is based on the low sulphur, low Cu and Platinum element content of the mineralization. The mineralization is spatially (at the edge) and temporally related to a large granitic intrusion, the Heemskirk Granite, which is considered to be the source of the hydrothermal fluids as well as the necessary thermal gradients for the circulation of the fluids. Tasmania is largely covered by the Jurassic Ferrar continental flood basalt province in the East and constrains a number of early Cambrian ultramafic-mafic complexes in the West. The Ferrar large igneous province (LIP) extends over to Antarctica and is temporally and genetically related to the Karoo igneous province in southern Africa that comprises tholeiitic lava flows, sills, and dyke swarms. The Ferrar and Karoo igneous provinces were associated with the same thermal anomaly that was responsible for the break up of eastern Gondwana at ca 180 Ma. Despite of timeframe differences between the Avebury Ni deposits and the Ferrar LIP emplacement, similar geological settings to the Avebury could be duplicated along the Ferrar LIP. The presence of mafic/ultramafic rocks in favourable lithological packages and/or structural traps along the margins of the province indicate that this LIP could represent a possible exploration target for Ni hydrothermal deposits. Based on this background, a prospectivity analysis for hydrothermal Ni

  1. Hydrothermal treatment of electric arc furnace dust.

    PubMed

    Yu, Bing-Sheng; Wang, Yuh-Ruey; Chang, Tien-Chin

    2011-06-15

    In this study, ZnO crystals were fabricated from electric arc furnace dust (EAFD) after alkaline leaching, purification and hydrothermal treatment. The effects of temperature, duration, pH, and solid/liquid ratio on ZnO crystal morphology and size were investigated. Results show a high reaction temperature capable of accelerating the dissolution of ZnO precursor, expediting the growth of 1D ZnO, and increasing the L/D ratio in the temperature range of 100-200°C. ZnO crystals with high purity can also be obtained, using the one-step hydrothermal treatment with a baffle that depends on the different solubility of zincite and franklinite in the hydrothermal conditions.

  2. Hydrothermal processing of radioactive combustible waste

    SciTech Connect

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-09-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO{sub 2} and H{sub 2}O, with 30 wt.% H{sub 2}O{sub 2} as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture.

  3. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices.

    PubMed

    Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin

    2013-11-01

    Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample).

  4. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  5. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on October 4, 2011, Room...

  6. Quantitative correlation of anesthetic potencies of halogenated hydrocarbons with boiling point and molecular connectivity.

    PubMed

    Bindal, M C; Singh, P; Gupta, S P

    1980-01-01

    The anesthetic potencies of halogenated hydrocarbons are found by the regression analysis to have a fairly good correlation with boiling point and first-order valence molecular connectivity (1 chi v). Also a significant correlation is found between boiling point and 1 chi v themselves.

  7. The effects of boiling on the allergenic properties of tropomyosin of shrimp (litopenaeus vannamei).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shrimp play an important role in human nutrition, and is responsible for severe hypersensitivity reactions. The thermal stability of raw and boiled shrimp tropomyosins (TM) has never been reported. The aims of the study were to compare the stability of raw and boiled shrimp TM of Litopenaeus vanname...

  8. Experimental analysis of nanofluid pool boiling heat transfer in copper bead packed porous layers

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Ji

    2016-07-01

    Coupling the nanofluid as working fluid and the copper beads packed porous structure on heating surface were employed to enhance the pool boiling heat transfer by changing the fluid properties with the adjunction of nanoparticles in liquid and altering the heating surface with a bead porous layer. Due to the higher thermal conductivity, the copper beads served as an extended heating surface and the boiling nucleation sites rose, but the flow resistance increased. The CuO-water and SiO2-water nanofluids as well as the pure water were respectively employed as working fluids in the pool boiling experiments. Comparing with the base fluid of water, the higher thermal conductivity and lower surface tension occur in the nanofluids and those favor the boiling heat transfer, but the higher viscosity and density of nanofluids serve as deteriorative factors. So, the concentration region of the nanofluids should be chosen properly. The maximum relative error between the collected experimental data of the pure water on a flat surface and the theoretical prediction of pool boiling using the Rohsenow correlation was less than 12 %. The comparisons of the pool boiling heat transfer characteristics were also conducted between the pure water and the nanofluids respectively on the horizontal flat surface and on the heating surface packed with a copper bead porous layer. Besides, the boiling bubble generation, integration and departure have a great affect on the pool boiling and were recorded with a camera in the bead stacked porous structures at different heat flux.

  9. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    ERIC Educational Resources Information Center

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  10. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  11. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  12. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  13. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection...

  14. The effects of freezing, boiling and degreasing on the microstructure of bone.

    PubMed

    Lander, S L; Brits, D; Hosie, M

    2014-04-01

    The histology of bone has been a useful tool in research. It is commonly used to estimate the age of an individual at death, to assess if the bone is of human or non-human origin and in trauma analysis. Factors that affect the histology of bone include age, sex, population affinity and burning to name but a few. Other factors expected to affect bone histology are freezing, boiling and degreasing but very little information is available for freezing and the effect thereof, and it is unknown if boiling and degreasing affects bone histology. The aim of this study was to assess the effects of freezing, freezing and boiling, and freezing, boiling and degreasing on the histological structure of compact bone. Five cadaver tibiae were frozen at -20°C for 21 days followed by segments being boiled in water for three days and degreased in trichloroethylene at 82°C for three days. Anterior midshaft sections were prepared as ground sections and for Scanning Electron Microscopy (SEM). Quantitatively, there were no significant differences between freezing, boiling and degreasing; however, qualitative differences were observed using SEM. After being frozen the bone displayed cracks and after boiling the bones displayed erosion pits on the surface. It is suggested that further research, using different durations and temperatures for boiling and freezing be undertaken on bone samples representing different ages and various skeletal elements.

  15. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: Valves. 154.708 Section 154.708 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...

  16. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo boil-off as fuel: Valves. 154.708 Section 154.708 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...

  17. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo boil-off as fuel: Ventilation. 154.707 Section 154.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS...

  18. 46 CFR 154.708 - Cargo boil-off as fuel: Valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Pressure and Temperature Control § 154.708 Cargo boil-off as fuel: Valves. (a) Gas fuel lines to the gas... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo boil-off as fuel: Valves. 154.708 Section 154.708 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES...

  19. 46 CFR 154.707 - Cargo boil-off as fuel: Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Cargo Pressure and Temperature Control § 154.707 Cargo boil-off as fuel: Ventilation. (a) A... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: Ventilation. 154.707 Section 154.707 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS...

  20. 46 CFR 154.709 - Cargo boil-off as fuel: Gas detection equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Cargo Pressure and Temperature Control § 154.709 Cargo boil-off as fuel: Gas detection equipment... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo boil-off as fuel: Gas detection equipment. 154.709 Section 154.709 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK...