Passive Safety Features Evaluation of KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Zhaopeng; Gohar, Yousry
2016-06-01
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine and its commissioning process is underway. It will be used to conduct basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The facility has an electron accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100 MeV electrons. Tungsten or natural uranium is the target material for generating neutrons driving the subcritical assembly. The subcritical assemblymore » is composed of WWR-M2 - Russian fuel assemblies with U-235 enrichment of 19.7 wt%, surrounded by beryllium reflector assembles and graphite blocks. The subcritical assembly is seated in a water tank, which is a part of the primary cooling loop. During normal operation, the water coolant operates at room temperature and the total facility power is ~300 KW. The passive safety features of the facility are discussed in in this study. Monte Carlo computer code MCNPX was utilized in the analyses with ENDF/B-VII.0 nuclear data libraries. Negative reactivity temperature feedback was consistently observed, which is important for the facility safety performance. Due to the design of WWR-M2 fuel assemblies, slight water temperature increase and the corresponding water density decrease produce large reactivity drop, which offset the reactivity gain by mistakenly loading an additional fuel assembly. The increase of fuel temperature also causes sufficiently large reactivity decrease. This enhances the facility safety performance because fuel temperature increase provides prompt negative reactivity feedback. The reactivity variation due to an empty fuel position filled by water during the fuel loading process is examined. Also, the loading mistakes of removing beryllium reflector assemblies and replacing them with dummy assemblies were analyzed. In all these circumstances, the reactivity change results do not cause any safety concerns.« less
Measuring and monitoring KIPT Neutron Source Facility Reactivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng
2015-08-01
Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has k eff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine themore » reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.« less
Medical Isotope Production Analyses In KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, Alberto; Gohar, Yousry
Medical isotope production analyses in Kharkov Institute of Physics and Technology (KIPT) neutron source facility were performed to include the details of the irradiation cassette and the self-shielding effect. An updated detailed model of the facility was used for the analyses. The facility consists of an accelerator-driven system (ADS), which has a subcritical assembly using low-enriched uranium fuel elements with a beryllium-graphite reflector. The beryllium assemblies of the reflector have the same outer geometry as the fuel elements, which permits loading the subcritical assembly with different number of fuel elements without impacting the reflector performance. The subcritical assembly is drivenmore » by an external neutron source generated from the interaction of 100-kW electron beam with a tungsten target. The facility construction was completed at the end of 2015, and it is planned to start the operation during the year of 2016. It is the first ADS in the world, which has a coolant system for removing the generated fission power. Argonne National Laboratory has developed the design concept and performed extensive design analyses for the facility including its utilization for the production of different radioactive medical isotopes. 99Mo is the parent isotope of 99mTc, which is the most commonly used medical radioactive isotope. Detailed analyses were performed to define the optimal sample irradiation location and the generated activity, for several radioactive medical isotopes, as a function of the irradiation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, Y.; Smith, D. L.; Nuclear Engineering Division
2010-04-28
The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried outmore » there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, M. Y. A; Sofu, T.; Zhong, Z.
2008-10-30
A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV electrons deposit their energy faster while the 200-MeV electrons spread their energy deposition further along the beam direction. However in that electron energy range, the energy deposition profiles near the beam window require very thin target plates/disks to limit the temperatures and thermal stresses.« less
Comprehensive Experiments on Subcritical Assemblies of Cascade Reactor Systems
NASA Astrophysics Data System (ADS)
Zavyalov, N. V.; Il'kaev, R. I.; Kolesov, V. F.; Ivanin, I. A.; Zhitnik, A. K.; Kuvshinov, M. I.; Nefedov, Yu. Ya.; Punin, V. T.; Tel'nov, A. V.; Khoruzhi, V. Kh.
2017-12-01
Cascade reactors attract particular attention because of their capability of improving the parameters of pulsed reactors and achieving the feasibility of electronuclear facilities. The paper presents the results of three series of experiments on uranium-neptunium cascade assemblies at the Institute of Nuclear and Radiation Physics of the All-Russian Research Institute of Experimental Physics conducted in 2003-2004. The experiments confirmed theoretical conclusions on positive properties of cascade blankets and effectiveness of using neptunium-237 as a means of creating a one-sided connection between the sections.
Nuclear Criticality Experimental Research Center (NCERC) Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goda, Joetta Marie; Grove, Travis Justin; Hayes, David Kirk
The mission of the National Criticality Experiments Research Center (NCERC) at the Device Assembly Facility (DAF) is to conduct experiments and training with critical assemblies and fissionable material at or near criticality in order to explore reactivity phenomena, and to operate the assemblies in the regions from subcritical through delayed critical. One critical assembly, Godiva-IV, is designed to operate above prompt critical. The Nuclear Criticality Experimental Research Center (NCERC) is our nation’s only general-purpose critical experiments facility and is only one of a few that remain operational throughout the world. This presentation discusses the history of NCERC, the general activitiesmore » that makeup work at NCERC, and the various government programs and missions that NCERC supports. Recent activities at NCERC will be reviewed, with a focus on demonstrating how NCERC meets national security mission goals using engineering fundamentals. In particular, there will be a focus on engineering theory and design and applications of engineering fundamentals at NCERC. NCERC activities that relate to engineering education will also be examined.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francesco Ganda; Jasmina Vujic; Ehud Greenspan
2010-12-01
This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved withmore » the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.« less
Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percher, Catherine
2012-06-19
The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.
NASA Astrophysics Data System (ADS)
Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2012-03-01
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
Production of medical radioactive isotopes using KIPT electron driven subcritical facility.
Talamo, Alberto; Gohar, Yousry
2008-05-01
Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, Alberto; Gohar, Yousry
2016-06-01
This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the timemore » is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.« less
Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly
NASA Astrophysics Data System (ADS)
Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.
2018-03-01
The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.
VIEW OF WATER SUPPLY TANK FOR THE PRESSURIZED SUBCRITICAL EXPERIMENT ...
VIEW OF WATER SUPPLY TANK FOR THE PRESSURIZED SUBCRITICAL EXPERIMENT (PSE), LOCATED IN STAIRWELL ADJACENT TO SP-SE ROOM, LEVEL -15, LOOKING NORTH - Physics Assembly Laboratory, Area A/M, Savannah River Site, Aiken, Aiken County, SC
Th and U fuel photofission study by NTD for AD-MSR subcritical assembly
NASA Astrophysics Data System (ADS)
Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio
2015-07-01
During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.
NASA Astrophysics Data System (ADS)
Bielewicz, Marcin; Kilim, Stanisław; Strugalska-Gola, Elżbieta; Szuta, Marcin; Wojciechowski, Andrzej; Tyutyunnikov, Sergey; Prokofiev, Alexander; Passoth, Elke
2017-09-01
Study of the deep subcritical systems (QUINTA) using relativistic beams is performed within the project "Energy and Transmutation of Radioactive Wastes" (E&T - RAW). The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON). We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn) reactions in yttrium (Y-89) foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn) cross section measurements were carried out at The Svedberg laboratory (TSL) in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.
MYRRHA: A multipurpose nuclear research facility
NASA Astrophysics Data System (ADS)
Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert
2014-12-01
MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.
NASA Astrophysics Data System (ADS)
Cochran, Thomas
2007-04-01
In 2002 and again in 2003, an investigative journalist unit at ABC News transported a 6.8 kilogram metallic slug of depleted uranium (DU) via shipping container from Istanbul, Turkey to Brooklyn, NY and from Jakarta, Indonesia to Long Beach, CA. Targeted inspection of these shipping containers by Department of Homeland Security (DHS) personnel, included the use of gamma-ray imaging, portal monitors and hand-held radiation detectors, did not uncover the hidden DU. Monte Carlo analysis of the gamma-ray intensity and spectrum of a DU slug and one consisting of highly-enriched uranium (HEU) showed that DU was a proper surrogate for testing the ability of DHS to detect the illicit transport of HEU. Our analysis using MCNP-5 illustrated the ease of fully shielding an HEU sample to avoid detection. The assembly of an Improvised Nuclear Device (IND) -- a crude atomic bomb -- from sub-critical pieces of HEU metal was then examined via Monte Carlo criticality calculations. Nuclear explosive yields of such an IND as a function of the speed of assembly of the sub-critical HEU components were derived. A comparison was made between the more rapid assembly of sub-critical pieces of HEU in the ``Little Boy'' (Hiroshima) weapon's gun barrel and gravity assembly (i.e., dropping one sub-critical piece of HEU on another from a specified height). Based on the difficulty of detection of HEU and the straightforward construction of an IND utilizing HEU, current U.S. government policy must be modified to more urgently prioritize elimination of and securing the global inventories of HEU.
U-238 fission and Pu-239 production in subcritical assembly
NASA Astrophysics Data System (ADS)
Grab, Magdalena; Wojciechowski, Andrzej
2018-04-01
The project touches upon an issue of U-238 fission reactions and Pu-239 production reactions in subcritical assembly. The experiment took place in November 2014 at the Dzhelepov Laboratory of Nuclear Problems (JINR, Dubna) using PHASOTRON.Data of this experiment were analyzed in Laboratory of Information Technologies (LIT). Four MCNPX models were considered for simulation: Bertini/Dresnen, Bertini/Abla, INCL4/Drensnen, INCL4/Abla. The main goal of the project was to compare the experimental data and simulation results. We obtain a good agreement of experimental data and computation results especially for detectors placed besides the assembly axis. In addition, the U-238 fission reactions are more probable to be observed in the region of a higher particle energy spectrum, located closer to the assembly axis and the particle beam as well and vice versa Pu-239 production reactions were dominant in the peripheral region of geometry.
Neutron noise measurements at the Delphi subcritical assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szieberth, M.; Klujber, G.; Kloosterman, J. L.
2012-07-01
The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and {sup 252}Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-{alpha}), the autocorrelation (ACF, Rossi-{alpha}) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution.more » This is due to the presence of higher modes in the system. It has been observed that the {alpha} value fitted is higher when the detector is close to the boundary of the core or to the {sup 252}Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, J. P.; Lebrat, J. F.; Soule, R.
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment ismore » planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Y.; Gohar, Y.; Nuclear Engineering Division
In almost every detector counting system, a minimal dead time is required to record two successive events as two separated pulses. Due to the random nature of neutron interactions in the subcritical assembly, there is always some probability that a true neutron event will not be recorded because it occurs too close to the preceding event. These losses may become rather severe for counting systems with high counting rates, and should be corrected before any utilization of the experimental data. This report examines the dead time effects for the pulsed neutron experiments of the YALINA-Booster subcritical assembly. The nonparalyzable modelmore » is utilized to correct the experimental data due to dead time. Overall, the reactivity values are increased by 0.19$ and 0.32$ after the spatial corrections for the YALINA-Booster 36% and 21% configurations respectively. The differences of the reactivities obtained with He-3 long or short detectors at the same detector channel diminish after the dead time corrections of the experimental data for the 36% YALINA-Booster configuration. In addition, better agreements between reactivities obtained from different experimental data sets are also observed after the dead time corrections for the 21% YALINA-Booster configuration.« less
Development of a Research Reactor Protocol for Neutron Multiplication Measurements
Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.; ...
2018-03-20
A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less
Development of a Research Reactor Protocol for Neutron Multiplication Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Jennifer Ann; Bahran, Rian Mustafa; Hutchinson, Jesson D.
A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Montemore » Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP ®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.« less
Characterizing subcritical assemblies with time of flight fixed by energy estimation distributions
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara
2018-04-01
We present the Time of Flight Fixed by Energy Estimation (TOFFEE) as a measure of the fission chain dynamics in subcritical assemblies. TOFFEE is the time between correlated gamma rays and neutrons, subtracted by the estimated travel time of the incident neutron from its proton recoil. The measured subcritical assembly was the BeRP ball, a 4.482 kg sphere of α-phase weapons grade plutonium metal, which came in five configurations: bare, 0.5, 1, and 1.5 in iron, and 1 in nickel closed fitting shell reflectors. We extend the measurement with MCNPX-PoliMi simulations of shells ranging up to 6 inches in thickness, and two new reflector materials: aluminum and tungsten. We also simulated the BeRP ball with different masses ranging from 1 to 8 kg. A two-region and single-region point kinetics models were used to model the behavior of the positive side of the TOFFEE distribution from 0 to 100 ns. The single region model of the bare cases gave positive linear correlations between estimated and expected neutron decay constants and leakage multiplications. The two-region model provided a way to estimate neutron multiplication for the reflected cases, which correlated positively with expected multiplication, but the nature of the correlation (sub or superlinear) changed between material types. Finally, we found that the areal density of the reflector shells had a linear correlation with the integral of the two-region model fit. Therefore, we expect that with knowledge of reflector composition, one could determine the shell thickness, or vice versa. Furthermore, up to a certain amount and thickness of the reflector, the two-region model provides a way of distinguishing bare and reflected plutonium assemblies.
Molybdenum-99 production calculation analysis of SAMOP reactor based on thorium nitrate fuel
NASA Astrophysics Data System (ADS)
Syarip; Togatorop, E.; Yassar
2018-03-01
SAMOP (Subcritical Assembly for Molybdenum-99 Production) has the potential to use thorium as fuel to produce 99Mo after modifying the design, but the production performance has not been discovered yet. A study needs to be done to obtain the correlation between 99Mo production with the mixed fuel composition of uranium and with SAMOP power on the modified SAMOP design. The study aims to obtain the production of 99Mo based thorium nitrate fuel on SAMOP’s modified designs. Monte Carlo N-Particle eXtended (MCNPX) is required to simulate the operation of the assembly by varying the composition of the uranium-thorium nitrate mixed fuel, geometry and power fraction on the SAMOP modified designs. The burnup command on the MCNPX is used to confirm the 99Mo production result. The assembly is simulated to operate for 6 days with subcritical neutron multiplication factor (keff = 0.97-0.99). The neutron multiplication factor of the modified design (keff) is 0.97, the activity obtained from 99Mo is 18.58 Ci at 1 kW power operation.
Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, P.K.; Freemerman, R.L.
1989-11-01
On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as themore » Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.« less
NASA Astrophysics Data System (ADS)
Nevinitsa, V. A.; Dudnikov, A. A.; Blandinskiy, V. Yu.; Balanin, A. L.; Alekseev, P. N.; Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.
2015-12-01
A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing 233U from 232Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.
Advances in the computation of the Sjöstrand, Rossi, and Feynman distributions
Talamo, A.; Gohar, Y.; Gabrielli, F.; ...
2017-02-01
This study illustrates recent computational advances in the application of the Sjöstrand (area), Rossi, and Feynman methods to estimate the effective multiplication factor of a subcritical system driven by an external neutron source. The methodologies introduced in this study have been validated with the experimental results from the KUKA facility of Japan by Monte Carlo (MCNP6 and MCNPX) and deterministic (ERANOS, VARIANT, and PARTISN) codes. When the assembly is driven by a pulsed neutron source generated by a particle accelerator and delayed neutrons are at equilibrium, the Sjöstrand method becomes extremely fast if the integral of the reaction rate frommore » a single pulse is split into two parts. These two integrals distinguish between the neutron counts during and after the pulse period. To conclude, when the facility is driven by a spontaneous fission neutron source, the timestamps of the detector neutron counts can be obtained up to the nanosecond precision using MCNP6, which allows obtaining the Rossi and Feynman distributions.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...
Code of Federal Regulations, 2013 CFR
2013-01-01
... of neutrons used to effect SNM production in the “subcritical assembly.” Agreement for cooperation... International Atomic Energy Agency. Non-nuclear-weapon state is a country not recognized as a nuclear-weapon...-Proliferation of Nuclear Weapons. Nuclear reactor means an apparatus, other than a nuclear explosive device...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nevinitsa, V. A., E-mail: Neviniza-VA@nrcki.ru; Dudnikov, A. A.; Blandinskiy, V. Yu.
2015-12-15
A subcritical molten salt reactor with an external neutron source is studied computationally as a facility for incineration and transmutation of minor actinides from spent nuclear fuel of reactors of VVER-1000 type and for producing {sup 233}U from {sup 232}Th. The reactor configuration is chosen, the requirements to be imposed on the external neutron source are formulated, and the equilibrium isotopic composition of heavy nuclides and the key parameters of the fuel cycle are calculated.
Evaluation of supercritical cryogen storage and transfer systems for future NASA missions
NASA Technical Reports Server (NTRS)
Arif, Hugh; Aydelott, John C.; Chato, David J.
1990-01-01
Conceptual designs of Space Transportation Vehicles (STV), and their orbital servicing facilities, that utilize supercritical, single phase, cryogenic propellant were established and compared with conventional subcritical, two phases, STV concepts. The analytical study was motivated by the desire to avoid fluid management problems associated with the storage, acquisition and transfer of subcritical liquid oxygen and hydrogen propellants in the low gravity environment of space. Although feasible, the supercritical concepts suffer from STV weight penalties and propellant resupply system power requirements which make the concepts impractical.
Evaluation of supercritical cryogen storage and transfer systems for future NASA missions
NASA Technical Reports Server (NTRS)
Arif, Hugh; Aydelott, John C.; Chato, David J.
1989-01-01
Conceptual designs of Space Transportation Vehicles (STV), and their orbital servicing facilities, that utilize supercritical, single phase, cryogenic propellants were established and compared with conventional subcritical, two phase, STV concepts. The analytical study was motivated by the desire to avoid fluid management problems associated with the storage, acquisition and transfer of subcritical liquid oxygen and hydrogen propellants in the low gravity environment of space. Although feasible, the supercritical concepts suffer from STV weight penalties and propellant resupply system power requirements which make the concepts impractical.
Hazard Categorization Reduction via Nature of the Process Argument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelise A. Van De Graaff; Dr. Chad Pope; J. Todd Taylor
2012-05-01
This paper documents the Hazard Categorization (HC) and Critical Safety Evaluation (CSE) for activities performed using an Inspection Object (IO) in excess of the single parameter subcritical limit of 700 g of U-235. By virtue of exceeding the single parameter subcritical limit and the subsequent potential for criticality, the IO HC is initially categorized as HC2. However, a novel application of the nature of the process argument was employed to reduce the IO HC from HC2 to less than HC3 (LTHC3). The IO is composed of five separate uranium metal plates that total no greater than 3.82 kg of U-235more » (U(20)). The IO is planned to be arranged in various configurations. As the IO serves as a standard for experimentation aimed at establishing techniques for detection of fissionable materials, it may be placed in close proximity to various reflectors, moderators, or both. The most reactive configurations of the IO were systematically evaluated and shown that despite the mass of U-235 and potential positioning near various reflectors and moderators, the IO cannot be assembled into a critical configuration. Therefore, the potential for criticality does not exist. With Department of Energy approval, a Hazards Assessment Document with high-level (facility-level) controls on the plates negates the potential for criticality and satisfies the nature of the process argument to reduce the HC from HC2 to LTHC3.« less
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
Monterial, Mateusz; Marleau, Peter; Paff, Marc; ...
2017-01-20
Here, we present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with bothmore » multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.« less
Application of the backward extrapolation method to pulsed neutron sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talamo, Alberto; Gohar, Yousry
We report particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts overmore » time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. Finally, the backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.« less
Application of the backward extrapolation method to pulsed neutron sources
Talamo, Alberto; Gohar, Yousry
2017-09-23
We report particle detectors operated in pulse mode are subjected to the dead-time effect. When the average of the detector counts is constant over time, correcting for the dead-time effect is simple and can be accomplished by analytical formulas. However, when the average of the detector counts changes over time it is more difficult to take into account the dead-time effect. When a subcritical nuclear assembly is driven by a pulsed neutron source, simple analytical formulas cannot be applied to the measured detector counts to correct for the dead-time effect because of the sharp change of the detector counts overmore » time. This work addresses this issue by using the backward extrapolation method. The latter can be applied not only to a continuous (e.g. californium) external neutron source but also to a pulsed external neutron source (e.g. by a particle accelerator) driving a subcritical nuclear assembly. Finally, the backward extrapolation method allows to obtain from the measured detector counts both the dead-time value and the real detector counts.« less
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Paff, Marc; Clarke, Shaun; Pozzi, Sara
2017-04-01
We present the results from the first measurements of the Time-Correlated Pulse-Height (TCPH) distributions from 4.5 kg sphere of α-phase weapons-grade plutonium metal in five configurations: bare, reflected by 1.27 cm and 2.54 cm of tungsten, and 2.54 cm and 7.62 cm of polyethylene. A new method for characterizing source multiplication and shielding configuration is also demonstrated. The method relies on solving for the underlying fission chain timing distribution that drives the spreading of the measured TCPH distribution. We found that a gamma distribution fits the fission chain timing distribution well and that the fit parameters correlate with both multiplication (rate parameter) and shielding material types (shape parameter). The source-to-detector distance was another free parameter that we were able to optimize, and proved to be the most well constrained parameter. MCNPX-PoliMi simulations were used to complement the measurements and help illustrate trends in these parameters and their relation to multiplication and the amount and type of material coupled to the subcritical assembly.
High order statistical signatures from source-driven measurements of subcritical fissile systems
NASA Astrophysics Data System (ADS)
Mattingly, John Kelly
1998-11-01
This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements.
Cryogenic fluid management experiment
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Fester, D. A.
1981-01-01
The cryogenic fluid management experiment (CFME), designed to characterize subcritical liquid hydrogen storage and expulsion in the low-q space environment, is discussed. The experiment utilizes a fine mesh screen fluid management device to accomplish gas-free liquid expulsion and a thermodynamic vent system to intercept heat leak and control tank pressure. The experiment design evolved from a single flight prototype to provision for a multimission (up to 7) capability. A detailed design of the CFME, a dynamic test article, and dedicated ground support equipment were generated. All materials and parts were identified, and components were selected and specifications prepared. Long lead titanium pressurant spheres and the flight tape recorder and ground reproduce unit were procured. Experiment integration with the shuttle orbiter, Spacelab, and KSC ground operations was coordinated with the appropriate NASA centers, and experiment interfaces were defined. Phase 1 ground and flight safety reviews were conducted. Costs were estimated for fabrication and assembly of the CFME, which will become the storage and supply tank for a cryogenic fluid management facility to investigate fluid management in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchini, G.; Burgio, N.; Carta, M.
The GUINEVERE experiment (Generation of Uninterrupted Intense Neutrons at the lead Venus Reactor) is an experimental program in support of the ADS technology presently carried out at SCK-CEN in Mol (Belgium). In the experiment a modified lay-out of the original thermal VENUS critical facility is coupled to an accelerator, built by the French body CNRS in Grenoble, working in both continuous and pulsed mode and delivering 14 MeV neutrons by bombardment of deuterons on a tritium-target. The modified lay-out of the facility consists of a fast subcritical core made of 30% U-235 enriched metallic Uranium in a lead matrix. Severalmore » off-line and on-line reactivity measurement techniques will be investigated during the experimental campaign. This report is focused on the simulation by deterministic (ERANOS French code) and Monte Carlo (MCNPX US code) calculations of three reactivity measurement techniques, Slope ({alpha}-fitting), Area-ratio and Source-jerk, applied to a GUINEVERE subcritical configuration (namely SC1). The inferred reactivity, in dollar units, by the Area-ratio method shows an overall agreement between the two deterministic and Monte Carlo computational approaches, whereas the MCNPX Source-jerk results are affected by large uncertainties and allow only partial conclusions about the comparison. Finally, no particular spatial dependence of the results is observed in the case of the GUINEVERE SC1 subcritical configuration. (authors)« less
NASA Astrophysics Data System (ADS)
Ficaro, Edward Patrick
The ^{252}Cf -source-driven noise analysis (CSDNA) requires the measurement of the cross power spectral density (CPSD) G_ {23}(omega), between a pair of neutron detectors (subscripts 2 and 3) located in or near the fissile assembly, and the CPSDs, G_{12}( omega) and G_{13}( omega), between the neutron detectors and an ionization chamber 1 containing ^{252}Cf also located in or near the fissile assembly. The key advantage of this method is that the subcriticality of the assembly can be obtained from the ratio of spectral densities,{G _sp{12}{*}(omega)G_ {13}(omega)over G_{11 }(omega)G_{23}(omega) },using a point kinetic model formulation which is independent of the detector's properties and a reference measurement. The multigroup, Monte Carlo code, KENO-NR, was developed to eliminate the dependence of the measurement on the point kinetic formulation. This code utilizes time dependent, analog neutron tracking to simulate the experimental method, in addition to the underlying nuclear physics, as closely as possible. From a direct comparison of simulated and measured data, the calculational model and cross sections are validated for the calculation, and KENO-NR can then be rerun to provide a distributed source k_ {eff} calculation. Depending on the fissile assembly, a few hours to a couple of days of computation time are needed for a typical simulation executed on a desktop workstation. In this work, KENO-NR demonstrated the ability to accurately estimate the measured ratio of spectral densities from experiments using capture detectors performed on uranium metal cylinders, a cylindrical tank filled with aqueous uranyl nitrate, and arrays of safe storage bottles filled with uranyl nitrate. Good agreement was also seen between simulated and measured values of the prompt neutron decay constant from the fitted CPSDs. Poor agreement was seen between simulated and measured results using composite ^6Li-glass-plastic scintillators at large subcriticalities for the tank of uranyl nitrate. It is believed that the response of these detectors is not well known and is incorrectly modeled in KENO-NR. In addition to these tests, several benchmark calculations were also performed to provide insight into the properties of the point kinetic formulation.
Plant model of KIPT neutron source facility simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.
2016-02-01
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system ismore » coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.« less
Experimental Fuels Facility Re-categorization Based on Facility Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiss, Troy P.; Andrus, Jason
The Experimental Fuels Facility (EFF) (MFC-794) at the Materials and Fuels Complex (MFC) located on the Idaho National Laboratory (INL) Site was originally constructed to provide controlled-access, indoor storage for radiological contaminated equipment. Use of the facility was expanded to provide a controlled environment for repairing contaminated equipment and characterizing, repackaging, and treating waste. The EFF facility is also used for research and development services, including fuel fabrication. EFF was originally categorized as a LTHC-3 radiological facility based on facility operations and facility radiological inventories. Newly planned program activities identified the need to receive quantities of fissionable materials in excessmore » of the single parameter subcritical limit in ANSI/ANS-8.1, “Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors” (identified as “criticality list” quantities in DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports,” Attachment 1, Table A.1). Since the proposed inventory of fissionable materials inside EFF may be greater than the single parameter sub-critical limit of 700 g of U-235 equivalent, the initial re-categorization is Hazard Category (HC) 2 based upon a potential criticality hazard. This paper details the facility hazard categorization performed for the EFF. The categorization was necessary to determine (a) the need for further safety analysis in accordance with LWP-10802, “INL Facility Categorization,” and (b) compliance with 10 Code of Federal Regulations (CFR) 830, Subpart B, “Safety Basis Requirements.” Based on the segmentation argument presented in this paper, the final hazard categorization for the facility is LTHC-3. Department of Energy Idaho (DOE-ID) approval of the final hazard categorization determined by this hazard assessment document (HAD) was required per the DOE-ID Supplemental Guidance for DOE-STD-1027-92 based on the proposed downgrade of the initial facility categorization of Hazard Category 2.« less
DETERMINATION OF SPECIFIC NEUTRONIC REACTIVITY
Dessauer, G.
1960-05-10
A method is given for production-line determination of the specific neutronic reactivity of such objects as individual nuclear fuel or neutron absorber elements and is notable for rapidity and apparatus simplicity. The object is incorporated in a slightly sub-critical chain fission reactive assembly having a discrete neutron source, thereby establishing a K/sub eff/ within the crucial range of 0.95 to 0.995. The range was found to afford, uniquely, flux- transient damped response in a niatter of seconds simultaneously with acceptable analytical sensitivity. The resulting neutron flux measured at a situs spaced from both object and source within the assembly serves as a calibrable indication of said reactivity.
Cryogenic Fluid Management Experiment (CFME) trunnion verification testing
NASA Technical Reports Server (NTRS)
Bailey, W. J.; Fester, D. A.
1983-01-01
The Cryogenic Fluid Management Experiment (CFME) was designed to characterize subcritical liquid hydrogen storage and expulsion in the low-g space environment. The CFME has now become the storage and supply tank for the Cryogenic Fluid Management Facility, which includes transfer line and receiver tanks, as well. The liquid hydrogen storage and supply vessel is supported within a vacuum jacket to two fiberglass/epoxy composite trunnions which were analyzed and designed. Analysis using the limited available data indicated the trunnion was the most fatigue critical component in the storage vessel. Before committing the complete storage tank assembly to environmental testing, an experimental assessment was performed to verify the capability of the trunnion design to withstand expected vibration and loading conditions. Three tasks were conducted to evaluate trunnion integrity. The first determined the fatigue properties of the trunnion composite laminate materials. Tests at both ambient and liquid hydrogen temperatures showed composite material fatigue properties far in excess of those expected. Next, an assessment of the adequacy of the trunnion designs was performed (based on the tested material properties).
Some Operating Experience and Problems Encountered During Operation of a Free-jet Facility
NASA Technical Reports Server (NTRS)
Mcaulay, John E; Prince, William R
1957-01-01
During a free-jet investigation of a 28-inch ram-jet engine at a Mach number of 2.35, flow pulsation at the engine inlet were discovered which proved to have an effect on the engine performance and operational characteristics, particularly the engine rich blowout limits. This report discusses the finding of the flow pulsations, their elimination, and effect. Other facility characteristics, such as the establishment of flow simulation and the degree of subcritical operation of the diffuser, are also explained.
An intrinsically safe facility for forefront research and training on nuclear technologies
NASA Astrophysics Data System (ADS)
Mansani, L.; Monti, S.; Ricco, G.; Ricotti, M.
2014-04-01
In this short paper the motivations for the development of fast spectrum lead-cooled reactors are briefly summarized. In particular the importance of subcritical research reactors, like the one described in this Focus Point, for the investigation of various scientifical and technological aspects and the training of students, is discussed.
Accelerator driven sub-critical core
McIntyre, Peter M; Sattarov, Akhdiyor
2015-03-17
Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.
NASA Astrophysics Data System (ADS)
Koseoglou, P.; Vagena, E.; Stoulos, S.; Manolopoulou, M.
2016-09-01
Neutron spectrum of the sub-critical nuclear assembly-reactor of Aristotle University of Thessaloniki was measured at three radial distances from the reactor core. The neutron activation technique was applied irradiating 15 thick foils - disc of various elements at each position. The data of 38 (n, γ), (n, p) and (n, α) reactions were analyzed for specific activity determination. Discs instead of foils were used due to the relevant low neutron flux, so the gamma self-absorption as well as the neutron self-shielding factors has been calculated using GEANT simulations in order to determine the activity induced. The specific activities calculated for all isotopes studied were the input to the SANDII code, which was built specifically for the neutron spectrum de-convolution when the neutron activation technique is used. For the optimization of the results a technique was applied in order to minimize the influence of the initial-"guessed" spectrum shape SANDII uses. The neutron spectrum estimated presents a peak in the regions of (i) thermal neutrons ranged between 0.001 and 1 eV peaking at neutron energy ∼0.1 eV and (ii) fast neutrons ranged between 0.1 and 20 MeV peaking at neutron energy ∼1.2 MeV. The reduction of thermal neutrons is higher than the fast one as the distance from the reactor core increases since thermal neutrons capture by natural U-fuel has higher cross section than the fast neutrons.
A review of fracture mechanics life technology
NASA Technical Reports Server (NTRS)
Besuner, P. M.; Harris, D. O.; Thomas, J. M.
1986-01-01
Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.
A review of fracture mechanics life technology
NASA Technical Reports Server (NTRS)
Thomas, J. M.; Besuner, P. M.; Harris, D. O.
1985-01-01
Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.
Physical controls on directed virus assembly at nanoscale chemical templates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, C L; Chung, S; Chatterji, A
2006-05-10
Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less
Flux trap effect study in a sub-critical neutron assembly using activation methods
NASA Astrophysics Data System (ADS)
Routsonis, K.; Stoulos, S.; Clouvas, A.; Catsaros, N.; Varvayianni, M.; Manolopoulou, M.
2016-09-01
The neutron flux trap effect was experimentally studied in the subcritical assembly of the Atomic and Nuclear Physics Laboratory of the Aristotle University of Thessaloniki, using delayed gamma neutron activation analysis. Measurements were taken within the natural uranium fuel grid, in vertical levels symmetrical to the Am-Be neutron source, before and after the removal of fuel elements, permitting likewise a basic study of the vertical flux profile. Three identical flux traps of diamond shape were created by removing four fuel rods for each one. Two (n, γ) reactions and one (n, p) threshold reaction were selected for thermal, epithermal and fast flux study. Results of thermal and epithermal flux obtained through the 197Au (n, γ) 198Au and 186W (n, γ) 187W reactions, with and without Cd covers, to differentiate between the two flux regions. The 58Ni (n, p) 58Co reaction was used for the fast flux determination. An interpolation technique based on local procedures was applied to fit the cross sections data and the neutron flux spectrum. End results show a maximum thermal flux increase of 105% at the source level, pointing to a high potential to increase in the available thermal flux for future experiments. The increase in thermal flux is not accompanied by a comparable decrease in epithermal or fast flux, since thermal flux gain is higher than epithermal and fast neutron flux loss. So, the neutron reflection is mainly responsible for the thermal neutron increase, contributing to 89% at the central axial position.
Optimization of a mirror-based neutron source using differential evolution algorithm
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhodko, V. V.
2016-12-01
This study is dedicated to the assessment of capabilities of gas-dynamic trap (GDT) and gas-dynamic multiple-mirror trap (GDMT) as potential neutron sources for subcritical hybrids. In mathematical terms the problem of the study has been formulated as determining the global maximum of fusion gain (Q pl), the latter represented as a function of trap parameters. A differential evolution method has been applied to perform the search. Considered in all calculations has been a configuration of the neutron source with 20 m long distance between the mirrors and 100 MW heating power. It is important to mention that the numerical study has also taken into account a number of constraints on plasma characteristics so as to provide physical credibility of searched-for trap configurations. According to the results obtained the traps considered have demonstrated fusion gain up to 0.2, depending on the constraints applied. This enables them to be used either as neutron sources within subcritical reactors for minor actinides incineration or as material-testing facilities.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.; Symons, E. P.; Kroeger, E. W.
1984-01-01
The Cryogenic Fluid Management Facility (CFMF) is a reusable test bed which is designed to be carried into space in the Shuttle cargo bay to investigate systems and technologies required to efficiently and effectively manage cryogens in space. The facility hardware is configured to provide low-g verification of fluid and thermal models of cryogenic storage, transfer concepts and processes. Significant design data and criteria for future subcritical cryogenic storage and transfer systems will be obtained. Future applications include space-based and ground-based orbit transfer vehicles (OTV), space station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, space-based weapon systems and space-based orbit maneuvering vehicles (OMV). This paper describes the facility and discusses the cryogenic fluid management technology to be investigated. A brief discussion of the integration issues involved in loading and transporting liquid hydrogen within the Shuttle cargo bay is also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R.; Grimm, K.; McKnight, R.
The Zero Power Physics Reactor (ZPPR) fast critical facility was built at the Argonne National Laboratory-West (ANL-W) site in Idaho in 1969 to obtain neutron physics information necessary for the design of fast breeder reactors. The ZPPR-20D Benchmark Assembly was part of a series of cores built in Assembly 20 (References 1 through 3) of the ZPPR facility to provide data for developing a nuclear power source for space applications (SP-100). The assemblies were beryllium oxide reflected and had core fuel compositions containing enriched uranium fuel, niobium and rhenium. ZPPR-20 Phase C (HEU-MET-FAST-075) was built as the reference flight configuration.more » Two other configurations, Phases D and E, simulated accident scenarios. Phase D modeled the water immersion scenario during a launch accident, and Phase E (SUB-HEU-MET-FAST-001) modeled the earth burial scenario during a launch accident. Two configurations were recorded for the simulated water immersion accident scenario (Phase D); the critical configuration, documented here, and the subcritical configuration (SUB-HEU-MET-MIXED-001). Experiments in Assembly 20 Phases 20A through 20F were performed in 1988. The reference water immersion configuration for the ZPPR-20D assembly was obtained as reactor loading 129 on October 7, 1988 with a fissile mass of 167.477 kg and a reactivity of -4.626 {+-} 0.044{cents} (k {approx} 0.9997). The SP-100 core was to be constructed of highly enriched uranium nitride, niobium, rhenium and depleted lithium. The core design called for two enrichment zones with niobium-1% zirconium alloy fuel cladding and core structure. Rhenium was to be used as a fuel pin liner to provide shut down in the event of water immersion and flooding. The core coolant was to be depleted lithium metal ({sup 7}Li). The core was to be surrounded radially with a niobium reactor vessel and bypass which would carry the lithium coolant to the forward inlet plenum. Immediately inside the reactor vessel was a rhenium baffle which would act as a neutron curtain in the event of water immersion. A fission gas plenum and coolant inlet plenum were located axially forward of the core. Some material substitutions had to be made in mocking up the SP-100 design. The ZPPR-20 critical assemblies were fueled by 93% enriched uranium metal because uranium nitride, which was the SP-100 fuel type, was not available. ZPPR Assembly 20D was designed to simulate a water immersion accident. The water was simulated by polyethylene (CH{sub 2}), which contains a similar amount of hydrogen and has a similar density. A very accurate transformation to a simplified model is needed to make any of the ZPPR assemblies a practical criticality-safety benchmark. There is simply too much geometric detail in an exact model of a ZPPR assembly, particularly as complicated an assembly as ZPPR-20D. The transformation must reduce the detail to a practical level without masking any of the important features of the critical experiment. And it must do this without increasing the total uncertainty far beyond that of the original experiment. Such a transformation will be described in a later section. First, Assembly 20D was modeled in full detail--every plate, drawer, matrix tube, and air gap was modeled explicitly. Then the regionwise compositions and volumes from this model were converted to an RZ model. ZPPR Assembly 20D has been determined to be an acceptable criticality-safety benchmark experiment.« less
NASA Astrophysics Data System (ADS)
Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš
2018-04-01
Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.
Švarc-Gajić, Jaroslava; Clavijo, Sabrina; Suárez, Ruth; Cvetanović, Aleksandra; Cerdà, Víctor
2018-03-01
Cherry stems have been used in traditional medicine mostly for the treatment of urinary tract infections. Extraction with subcritical water, according to its selectivity, efficiency and other aspects, differs substantially from conventional extraction techniques. The complexity of plant subcritical water extracts is due to the ability of subcritical water to extract different chemical classes of different physico-chemical properties and polarities in a single run. In this paper, dispersive liquid-liquid microextraction (DLLME) with simultaneous derivatisation was optimised for the analysis of complex subcritical water extracts of cherry stems to allow simple and rapid preparation prior to gas chromatography-mass spectrometry (GC-MS). After defining optimal extracting and dispersive solvents, the optimised method was used for the identification of compounds belonging to different chemical classes in a single analytical run. The developed sample preparation protocol enabled simultaneous extraction and derivatisation, as well as convenient coupling with GC-MS analysis, reducing the analysis time and number of steps. The applied analytical protocol allowed simple and rapid chemical screening of subcritical water extracts and was used for the comparison of subcritical water extracts of sweet and sour cherry stems. Graphical abstract DLLME GC MS analysis of cherry stem extracts obtained by subcritical water.
Space Habitat, assembly and repair facility
NASA Technical Reports Server (NTRS)
Colangelo, Todd A.; Hoetger, Debora C.; Kuo, Addison C.; Lo, Michael C.; Marcus, Leland R.; Tran, Phillip P.; Tutt, Chris J.; Wassmuth, Chad M.; Wildgrube, Gregory M.
1992-01-01
Integrated Space Systems (ISS) has designed a Low Earth Orbit Assembly Facility for submission in the 1992 AIAA/LORAL Team Space Design Competition. This facility, the Space Habitat, Assembly, and Repair Center (SHARC), will be used to construct, assemble, and service space vehicles. SHARC's primary mission will be the construction of interplanetary vehicles, but it will also be able to perform repair and refueling operations of craft which are in an Earth orbit. This facility has been designed using only present and near-present technology. The emphasis is on minimizing cost.
Subcritical water extraction of lipids from wet algal biomass
Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar
2016-05-03
Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.
Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.
Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong
2017-03-30
As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.
Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Bailey, W. J.
1985-01-01
The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maidana, C. O.; Hunt, A. W.; Idaho State University, Department of Physics, PO Box 8106, Pocatello, ID 83209
2007-02-12
As part of the Reactor Accelerator Coupling Experiment (RACE) a set of preliminary studies were conducted to design a transport beam line that could bring a 25 MeV electron beam from a Linear Accelerator to a neutron-producing target inside a subcritical system. Because of the relatively low energy beam, the beam size and a relatively long beam line (implicating a possible divergence problem) different parameters and models were studied before a final design could be submitted for assembly. This report shows the first results obtained from different simulations of the transport line optics and dynamics.
Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Parks, Cecil V; Mueller, Don
2010-01-01
Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transportmore » and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and operational issues and data related to assembly burnup confirmation. The objective of this paper is to summarize the work and significant accomplishments, with references to the technical reports and publications for complete details, and provide a useful resource to others in the burnup credit community.« less
Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications
NASA Astrophysics Data System (ADS)
Powell, Thomas; Bowra, Steve; Cooper, Helen J.
2017-09-01
Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.
Deployment, release and recovery of ocean riser pipes
Person, Abraham; Wetmore, Sherman B.; McNary, James F.
1980-11-18
An ocean thermal energy conversion facility includes a long pipe assembly which is supported at its upper end by the hull of the floating facility. Cold water flows to the facility from deep in the ocean. The pipe assembly comprises an elongate pipe construction and a weight connected to the lower end of the construction by a line of selected length. A floatation collar is connected to the construction at its upper end to cause the construction to have positive buoyancy and a center of buoyancy closer to the upper end of the construction than its center of mass. The weight renders the entire pipe assembly negatively buoyant. In the event that support of the pipe assembly should be lost, as by release of the assembly from the facility hull in an emergency, the assembly sinks to the ocean floor where it is moored by the weight. The pipe construction floats submerged above the ocean floor in a substantially vertical attitude which facilitates recovery of the assembly.
Institutional environmental impact statement, Michoud Assembly Facility, New Orleans, Louisiana
NASA Technical Reports Server (NTRS)
1978-01-01
A description and analysis of Michoud Assembly Facility as an operational base for both NASA and NASA-related programs and various government tenant-agencies and their contractors is given. Tenant-agencies are governmental agencies or governmental agency contractors which are not involved in a NASA program, but utilize office or manufacturing space at the Michoud Assembly Facility. The statements represent the full description of the likely environmental effects of the facility and are used in the process of making program and project decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonnelli, Eduardo; Diniz, Ricardo
2014-11-11
This is a complementary work about the behavior analysis of the neutron lifetimes that was developed in the IPEN/MB-01 nuclear reactor facility. The macroscopic neutron noise technique was experimentally employed using pulse mode detectors for two stages of control rods insertion, where a total of twenty levels of subcriticality have been carried out. It was also considered that the neutron reflector density was treated as an additional group of delayed neutrons, being a sophisticated approach in the two-region kinetic theoretical model.
Containment Prospectus for the PIANO Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhard, N R
2001-03-23
PIANO is a dynamic, subcritical, zero-yield experiment intended for execution in the U1a.102C drift of the U1a complex at the Nevada Test Site (NTS) (Figure 1). The data from the PIANO experiment will be used in the Stockpile Stewardship Program to assess the aging of nuclear weapon components and to better model the long-term performance of the weapons in the enduring stockpile. The PIANO experiment is composed of one experimental package. The experimental package will have high explosive (HE) and special nuclear material (SNM) in a subcritical assembly. The containment plan for the PIANO series of experiments utilizes a two-containment-vesselmore » concept. The first Containment vessel is formed by the primary containment barrier that seals the U1a.102C drift. The second containment vessel is formed by the secondary containment barrier in the U100 drift. The PIANO experiment is the final experiment to be conducted in the U1a.102C alcove. It will be an ''open'' experiment--meaning that PIANO will not utilize a confinement vessel as the previous OBOE experiments in this alcove did. We expect that the SNM from the PIANO experiment will be fully contained within the first containment vessel.« less
Theory and Performance of AIMS for Active Interrogation
NASA Astrophysics Data System (ADS)
Walters, William J.; Royston, Katherine E. K.; Haghighat, Alireza
2014-06-01
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) determination of neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, γ) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water. In the first step, a response-function formulation has been developed to calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, γ) cross sections to find the resulting gamma source distribution. Finally, in the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma flux at a detector window. A code, AIMS (Active Interrogation for Monitoring Special-Nuclear-materials), has been written to output the gamma current for an source-detector assembly scanning across the cargo using the pre-calculated values and takes significantly less time than a reference MCNP5 calculation.
Mechanical weathering and rock erosion by climate-dependent subcritical cracking
NASA Astrophysics Data System (ADS)
Eppes, Martha-Cary; Keanini, Russell
2017-06-01
This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.
Effect of water on critical and subcritical fracture properties of Woodford shale
NASA Astrophysics Data System (ADS)
Chen, Xiaofeng; Eichhubl, Peter; Olson, Jon E.
2017-04-01
Subcritical fracture behavior of shales under aqueous conditions is poorly characterized despite increased relevance to oil and gas resource development and seal integrity in waste disposal and subsurface carbon sequestration. We measured subcritical fracture properties of Woodford shale in ambient air, dry CO2 gas, and deionized water by using the double-torsion method. Compared to tests in ambient air, the presence of water reduces fracture toughness by 50%, subcritical index by 77%, and shear modulus by 27% and increases inelastic deformation. Comparison between test specimens coated with a hydrophobic agent and uncoated specimens demonstrates that the interaction of water with the bulk rock results in the reduction of fracture toughness and enhanced plastic effects, while water-rock interaction limited to the vicinity of the propagating fracture tip by a hydrophobic specimen coating lowers subcritical index and increases fracture velocity. The observed deviation of a rate-dependent subcritical index from the power law K-V relations for coated specimens tested in water is attributed to a time-dependent weakening process resulting from the interaction between water and clays in the vicinity of the fracture tip.
Tornado Recovery Ongoing at NASA’s Michoud Assembly Facility, New Orleans LA
2017-02-07
Teams at NASA’s Michoud Assembly Facility in New Orleans are continuing with recovery efforts following a tornado strike at the facility Tuesday, Feb. 7. Michoud remains closed to all but security and emergency operations crews. For more than half a century, Michoud has been the space agency’s premiere site for manufacturing and assembly of large-scale space structures and systems.
Subcritical unity for the Argonaut reactor (in Portuguese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mongiovi, G.; Aghina, L.O.B.
1971-04-01
tubetype fuel elements aiming at the construction of a subcritical unit employing the internal thermal column of an Argonaut reactor as a source. The results confirmed the feasibility of the use of natural UO/sub 2/ for the proposed arrangement as long as one has a strong source or a subcritical unit diameter greater than 100 cm. (INIS)
Initial condition of stochastic self-assembly
NASA Astrophysics Data System (ADS)
Davis, Jason K.; Sindi, Suzanne S.
2016-02-01
The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.
Development of fundamental power coupler for C-ADS superconducting elliptical cavities
NASA Astrophysics Data System (ADS)
Gu, Kui-Xiang; Bing, Feng; Pan, Wei-Min; Huang, Tong-Ming; Ma, Qiang; Meng, Fan-Bo
2017-06-01
5-cell elliptical cavities have been selected for the main linac of the China Accelerator Driven sub-critical System (C-ADS) in the medium energy section. According to the design, each cavity should be driven with radio frequency (RF) energy up to 150 kW by a fundamental power coupler (FPC). As the cavities work with high quality factor and high accelerating gradient, the coupler should keep the cavity from contamination in the assembly procedure. To fulfil the requirements, a single-window coaxial type coupler was designed with the capabilities of handling high RF power, class 10 clean room assembly, and heat load control. This paper presents the coupler design and gives details of RF design, heat load optimization and thermal analysis as well as multipacting simulations. In addition, a primary high power test has been performed and is described in this paper. Supported by China ADS Project (XDA03020000) and National Natural Science Foundation of China (11475203)
Cygnus Performance in Subcritical Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Corrow, M. Hansen, D. Henderson, S. Lutz, C. Mitton, et al.
2008-02-01
The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational featuresmore » were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented.« less
Subcritical Kelvin-Helmholtz instability in a Hele-Shaw cell.
Meignin, L; Gondret, P; Ruyer-Quil, C; Rabaud, M
2003-06-13
We investigate experimentally the subcritical behavior of the Kelvin-Helmholtz instability for a gas-liquid shearing flow in a Hele-Shaw cell. The subcritical curve separating the solutions of a stable plane interface and a fully saturated nonlinear wave train is determined. Experimental results are fitted by a fifth order complex Ginzburg-Landau equation whose linear coefficients are compared to theoretical ones.
Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes
NASA Technical Reports Server (NTRS)
Hegde, Uday; Hicks, Michael
2013-01-01
The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.
NASA Technical Reports Server (NTRS)
Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.
2015-01-01
Results from the testing of cylinder test article SBKF-P2-CYLTA01 (referred to herein as TA01) are presented. The testing was conducted at the Marshall Space Flight Center (MSFC), November 19?21, 2008, in support of the Shell Buckling Knockdown Factor (SBKF) Project.i The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF project researchers. TA01 is an 8-foot-diameter (96-inches), 78.0-inch long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch vehicle structures and was designed to exhibit global buckling when subjected to compression loads. Five different load sequences were applied to TA01 during testing and included four sub-critical load sequences, i.e., loading conditions that did not cause buckling or material failure, and one final load sequence to buckling and collapse. The sub-critical load sequences consisted of either uniform axial compression loading or combined axial compression and bending and the final load sequence subjected TA01 to uniform axial compression. Traditional displacement transducers and strain gages were used to monitor the test article response at nearly 300 locations and an advanced digital image correlation system was used to obtain low-speed and high-speed full-field displacement measurements of the outer surface of the test article. Overall, the test facility and test article performed as designed. In particular, the test facility successfully applied all desired load combinations to the test article and was able to test safely into the postbuckling range of loading, and the test article failed by global buckling. In addition, the test results correlated well with initial pretest predictions.
1969-01-01
In one of the initial assembly steps for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, complete the lower shroud assembly. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized the eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.
Nevada National Security Site Radiological Control Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radiological Control Managers’ Council
2012-03-26
This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 1 issued in February 2010. Brief Description of Revision: A complete revision to reflect a recent change in name for the NTS; changes in name for some tenant organizations; and to update references to current DOE policies, orders, and guidance documents. Article 237.2 was deleted. Appendix 3B was updated. Article 411.2 was modified. Article 422 was re-written to reflect the wording of DOE O 458.1. Article 431.6.d was modified. The glossary was updated. This manual contains the radiological control requirements to be used for all radiological activities conducted bymore » programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada National Security Site (NNSS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. Current activities at NNSS include operating low-level radioactive and mixed waste disposal facilities for United States defense-generated waste, assembly and execution of subcritical experiments, assembly/disassembly of special experiments, the storage and use of special nuclear materials, performing criticality experiments, emergency responder training, surface cleanup and site characterization of contaminated land areas, environmental activity by the University system, and nonnuclear test operations, such as controlled spills of hazardous materials at the Hazardous Materials Spill Center. Currently, the major potential for occupational radiation exposure is associated with the burial of low-level radioactive waste and the handling of radioactive sources. Remediation of contaminated land areas may also result in radiological exposures.« less
Gnayfeed, M H; Daood, H G; Illés, V; Biacs, P A
2001-06-01
Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.
Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji
2015-01-01
The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... Status Michelin North America, Inc. (Tire Distribution and Wheel Assembly) Baltimore, MD Pursuant to its... warehouse/distribution and wheel assembly facility of Michelin North America, Inc., located in Elkton, MD... tire accessories warehousing and distribution and wheel assembly at the facility of Michelin North...
Effects of supercritical environment on hydrocarbon-fuel injection
NASA Astrophysics Data System (ADS)
Shin, Bongchul; Kim, Dohun; Son, Min; Koo, Jaye
2017-04-01
In this study, the effects of environment conditions on decane were investigated. Decane was injected in subcritical and supercritical ambient conditions. The visualization chamber was pressurized to 1.68 MPa by using nitrogen gas at a temperature of 653 K for subcritical ambient conditions. For supercritical ambient conditions, the visualization chamber was pressurized to 2.52 MPa by using helium at a temperature of 653 K. The decane injection in the pressurized chamber was visualized via a shadowgraph technique and gradient images were obtained by a post processing method. A large variation in density gradient was observed at jet interface in the case of subcritical injection in subcritical ambient conditions. Conversely, for supercritical injection in supercritical ambient conditions, a small density gradient was observed at the jet interface. In a manner similar to that observed in other cases, supercritical injection in subcritical ambient conditions differed from supercritical ambient conditions such as sphere shape liquid. Additionally, there were changes in the interface, and the supercritical injection core width was thicker than that in the subcritical injection. Furthermore, in cases with the same injection conditions, the change in the supercritical ambient normalized core width was smaller than the change in the subcritical ambient normalized core width owing to high specific heat at the supercritical injection and small phase change at the interface. Therefore, the interface was affected by the changing ambient condition. Given that the effect of changing the thermodynamic properties of propellants could be essential for a variable thrust rocket engine, the effects of the ambient conditions were investigated experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Leticia N.; Dos Santos, Adimir
2015-07-01
Multiplying Subcritical Systems were for a long time poorly studied and its theoretical description remains with plenty open questions. Great interest on such systems arose partly due to the improvement of hybrid concepts, such as the Accelerator-Driven Systems (ADS). Along with the need for new technologies to be developed, further study and understanding of subcritical systems are essential also in more practical situations, such as in the case of a PWR criticalization in their physical startup tests. Point kinetics equations are fundamental to continuously monitor the reactivity behavior to a possible variation of external sources intensity. In this case, quicklymore » and accurately predicting power transients and reactivity becomes crucial. It is known that conventional Reactivity Meters cannot operate in subcritical levels nor describe the dynamics of multiplying systems in these conditions, by the very structure of the classical kinetic equations. Several theoretical models have been proposed to characterize the kinetics of such systems with special regard to the reactivity, as the one developed by Gandini and Salvatores among others. This work presents a discussion about the derivation of point kinetics equations for subcritical systems and the importance of considering the external source. From the point of view of the Gandini and Salvatores' point kinetics model and based on the experimental results provided by Lee and dos Santos, it was possible to develop an innovative approach. This article proposes an algorithm that describes the subcritical reactivity with external source, contributing to the advancement of studies in the field. (authors)« less
Development and application of a hybrid transport methodology for active interrogation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Royston, K.; Walters, W.; Haghighat, A.
A hybrid Monte Carlo and deterministic methodology has been developed for application to active interrogation systems. The methodology consists of four steps: i) neutron flux distribution due to neutron source transport and subcritical multiplication; ii) generation of gamma source distribution from (n, 7) interactions; iii) determination of gamma current at a detector window; iv) detection of gammas by the detector. This paper discusses the theory and results of the first three steps for the case of a cargo container with a sphere of HEU in third-density water cargo. To complete the first step, a response-function formulation has been developed tomore » calculate the subcritical multiplication and neutron flux distribution. Response coefficients are pre-calculated using the MCNP5 Monte Carlo code. The second step uses the calculated neutron flux distribution and Bugle-96 (n, 7) cross sections to find the resulting gamma source distribution. In the third step the gamma source distribution is coupled with a pre-calculated adjoint function to determine the gamma current at a detector window. The AIMS (Active Interrogation for Monitoring Special-Nuclear-Materials) software has been written to output the gamma current for a source-detector assembly scanning across a cargo container using the pre-calculated values and taking significantly less time than a reference MCNP5 calculation. (authors)« less
MA transmutation performance in the optimized MYRRHA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malambu, E.; Van den Eynde, G.; Fernandez, R.
MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days ofmore » shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.« less
Accelerator shield design of KIPT neutron source facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.; Gohar, Y.
Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generatedmore » by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)« less
NASA Technical Reports Server (NTRS)
Doggett, William R.
1992-01-01
The topics are presented in viewgraph form and include: automated structures assembly facility current control hierarchy; automated structures assembly facility purposed control hierarchy; end-effector software state transition diagram; block diagram for ideal install composite; and conclusions.
A laboratory facility for research on wind-driven rain intrusion in building envelope assemblies
Samuel V. Glass
2010-01-01
Moisture management is critical for durable, energy-efficient buildings. To address the need for research on wind-driven rain intrusion in wall assemblies, the U.S. Forest Products Laboratory is developing a new facility. This paper describes the underlying principle of this facility and its capabilities.
Subcritical transition to turbulence: What we can learn from the physics of glasses.
Dauchot, Olivier; Bertin, Eric
2012-09-01
In this note, we discuss possible analogies between the subcritical transition to turbulence in shear flows and the glass transition in supercooled liquids. We briefly review recent experimental and numerical results, as well as theoretical proposals, and compare the difficulties arising in assessing the divergence of the turbulence lifetime in subcritical shear flow with that encountered for the relaxation time in the study of the glass transition. In order to go beyond the purely methodological similarities, we further elaborate on this analogy and propose a simple model for the transition to turbulence, inspired by the random energy model (a standard model for the glass transition), with the aim to possibly foster yet-unexplored directions of research in subcritical shear flows.
An assessment and validation study of nuclear reactors for low power space applications
NASA Technical Reports Server (NTRS)
Klein, A. C.; Gedeon, S. R.; Morey, D. C.
1987-01-01
The feasibility and safety of six conceptual small, low power nuclear reactor designs was evaluated. Feasibility evaluations included the determination of sufficient reactivity margins for seven years of full power operation and safe shutdown as well as handling during pre-launch assembly phases. Safety evaluations were concerned with the potential for maintaining subcritical conditions in the event of launch or transportation accidents. These included water immersion accident scenarios both with and without water flooding the core. Results show that most of the concepts can potentially meet the feasibility and safety requirements; however, due to the preliminary nature of the designs considered, more detailed designs will be necessary to enable these concepts to fully meet the safety requirements.
Extraction of antioxidants from Chlorella sp. using subcritical water treatment
NASA Astrophysics Data System (ADS)
Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.
2017-06-01
Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.
NASA Technical Reports Server (NTRS)
Wadlin, Kenneth L; Shuford, Charles L , Jr; Mcgehee, John R
1955-01-01
A theoretical and experimental investigation at subcavitation speeds was made of the effect of the free-water surface and rigid boundaries on the lift and drag of an aspect-ratio-10 hydrofoil at both subcritical and supercritical speeds and of an aspect ratio-4 hydrofoil at supercritical speeds. Approximate theoretical solutions for the effects of the free-water surface and rigid boundaries on drag at subcritical speeds are developed. An approximate theoretical solution for the effects of these boundaries on drag at subcritical speeds is also presented. The agreement between theory and experiment at both supercritical and subcritical speeds is satisfactory for engineering calculations of hydrofoil characteristics from aerodynamic data. The experimental investigation indicated no appreciable effect of the limiting speed of wave propagation on lift-curve slope or angle of zero lift. It also showed that the increase in drag as the critical speed is approached from the supercritical range is gradual. The result is contrary to the abrupt increase at the critical speed predicted by theory.
Bian, Xiaoyu; Jin, Wenbiao; Gu, Qiong; Zhou, Xu; Xi, Yuhe; Tu, Renjie; Han, Song-Fang; Xie, Guo-Jun; Gao, Shu-Hong; Wang, Qilin
2018-02-19
Subcritical co-solvents of n-hexane/isopropanol were primarily utilized to extract lipid from wet microalgal pastes of Scenedesmus obliquus. The effects of key operational parameters were investigated, and the optimal parameters were obtained: solvent ratio of n-hexane to isopropanol was 3:2 (V:V), phase ratio of co-solvents to microalgal biomass was 35:1 (mL:g), reactor stirring speed was 900 rpm, extraction time was 60 min. Additional pretreatment with acid, ultrasonic and microwave as well as enhanced subcritical pressure/heating treatments were also applied to further study their effects on lipid extraction. The results showed that the lipid recovery rate with acid pretreatment was 8.6 and 6.2% higher than ultrasonic and microwave pretreatment; the optimum enhanced subcritical condition was 55 °C with atmospheric pressure. Under optimal operating conditions, the lipid and FAME yield were 13.5 and 7.2%, which was 82.6 and 135.1% higher than the traditional method. The results indicated that the subcritical n-hexane/isopropanol extraction process had promising application potential.
1969-01-01
Workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, hoist the thrust structure assembly for the Saturn IB S-IB (first) stage. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.
Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water
NASA Astrophysics Data System (ADS)
Olanrewaju, Kazeem Bode
The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in converting cellulose to fermentable sugars in subcritical and supercritical water differs because of the difference in their activation energies. Cellulose and starch were both hydrolyzed in micro- and tubular reactors and at subcritical and supercritical conditions. Due to the difficulty involved in generating an aqueous based dissolved cellulose and having it reacted in subcritical water, dissolved starch was used instead. Better yield of water soluble hydrolysates, especially fermentable sugars, were observed from the hydrolysis of cellulose and dissolved starch in subcritical water than at supercritical conditions. The concluding phase of this project focuses on establishing the mode of scission of cellulose chains in the hydrothermal reactor. This was achieved by using the simulated degradation pattern generated based on different scission modes to fingerprint the degradation pattern obtained from experiment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... (Eyewear Assembly/Kitting), Grand Prairie, TX The Metroplex International Trade Development Corporation... facility is located within Site 4 of FTZ 168. The facility is used for the assembly/kitting of eyewear...
NASA Technical Reports Server (NTRS)
Calomino, Anthony Martin
1994-01-01
The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.
2017-11-01
NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.
Automated startup of the MIT research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, K.S.
1992-01-01
This summary describes the development, implementation, and testing of a generic method for performing automated startups of nuclear reactors described by space-independent kinetics under conditions of closed-loop digital control. The technique entails first obtaining a reliable estimate of the reactor's initial degree of subcriticality and then substituting that estimate into a model-based control law so as to permit a power increase from subcritical on a demanded trajectory. The estimation of subcriticality is accomplished by application of the perturbed reactivity method. The shutdown reactor is perturbed by the insertion of reactivity at a known rate. Observation of the resulting period permitsmore » determination of the initial degree of subcriticality. A major advantage to this method is that repeated estimates are obtained of the same quantity. Hence, statistical methods can be applied to improve the quality of the calculation.« less
Reuse of assembly systems: a great ecological and economical potential for facility suppliers
NASA Astrophysics Data System (ADS)
Weule, Hartmut; Buchholz, Carsten
2001-02-01
In addition to the consumer goods, capital goods offer a great potential for ecological and economic optimization. In view of this fact the project WiMonDi (Re-Use of Assembly Systems as new Business Fields), started in September 1998, focuses a marketable Remanufacturing and Re-Use of modules and components of assembly systems by using technically and organizationally continuous concepts. The objective of the closed Facility-Management-System is to prolong the serviceable lifespan of assembly facilities through the organized dismantling, refurbishment and reconditioning of the assembly facilities as well as their components. Therefore, it is necessary to develop easible and methodical strategies to realize a workable Re-Use concept. Within the project the focus is based on the optimization of Re-Use-strategies - the direct Re-Use, the Re-Use including Refurbishment as well as Material Recycling. The decision for an optimal strategy depends on economical (e.g. residual value, cost/benefit of relevant processes, etc.), ecological (e.g. pollutant components /substances), etc.) and technical parameters (e.g. reliability, etc.). For the purpose to integrate the total cost-of-ownership of products or components, WiMonDi integrates the costs of the use of products as well as the Re-Use costs/benefits. To initiate the conception of new distribution and user models between the supplier and the user of assembly facilities the described approach is conducted in close cooperation between Industry and University.
1969-01-01
In one of the initial assembly steps for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, position the thrust structure. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.
1969-01-01
In one of the initial assembly steps for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, complete the thrust structure. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.
Extinction times in the subcritical stochastic SIS logistic epidemic.
Brightwell, Graham; House, Thomas; Luczak, Malwina
2018-01-31
Many real epidemics of an infectious disease are not straightforwardly super- or sub-critical, and the understanding of epidemic models that exhibit such complexity has been identified as a priority for theoretical work. We provide insights into the near-critical regime by considering the stochastic SIS logistic epidemic, a well-known birth-and-death chain used to model the spread of an epidemic within a population of a given size N. We study the behaviour of the process as the population size N tends to infinity. Our results cover the entire subcritical regime, including the "barely subcritical" regime, where the recovery rate exceeds the infection rate by an amount that tends to 0 as [Formula: see text] but more slowly than [Formula: see text]. We derive precise asymptotics for the distribution of the extinction time and the total number of cases throughout the subcritical regime, give a detailed description of the course of the epidemic, and compare to numerical results for a range of parameter values. We hypothesise that features of the course of the epidemic will be seen in a wide class of other epidemic models, and we use real data to provide some tentative and preliminary support for this theory.
None
2017-12-09
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-21
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
A streamline curvature method for design of supercritical and subcritical airfoils
NASA Technical Reports Server (NTRS)
Barger, R. L.; Brooks, C. W., Jr.
1974-01-01
An airfoil design procedure, applicable to both subcritical and supercritical airfoils, is described. The method is based on the streamline curvature velocity equation. Several examples illustrating this method are presented and discussed.
High Fidelity Simulation of Transcritical Liquid Jet in Crossflow
NASA Astrophysics Data System (ADS)
Li, Xiaoyi; Soteriou, Marios
2017-11-01
Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.
New insights into membrane fouling in submerged MBR under sub-critical flux condition.
Li, Jianfeng; Zhang, Xiuxiu; Cheng, Fangqin; Liu, Yu
2013-06-01
This study investigated the membrane fouling in MBRs under sub-critical flux condition. Results showed membrane fouling at subcritical flux evolved through a three-stage process: a slow linear increase in transmembrane pressure (TMP) (stage I), followed by an exponential increase in TMP (stage II), and finally a rapid linear TMP rise was observed at stage III. It was found that bound EPS would play a significant role in fouling development at stage I, while SMPs appeared to be the major contributor to self-accelerating fouling phenomena observed at stage II. At stage III, the entire membrane was covered by a cake layer of flocs, as the result, the fouling rate was likely determined by floc characteristics. This study offers new insights into the fouling development under sub-critical flux condition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Production of rare sugars from common sugars in subcritical aqueous ethanol.
Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji
2015-05-15
A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ensuring the validity of calculated subcritical limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, H.K.
1977-01-01
The care taken at the Savannah River Laboratory and Plant to ensure the validity of calculated subcritical limits is described. Close attention is given to ANSI N16.1-1975, ''Validation of Calculational Methods for Nuclear Criticality Safety.'' The computer codes used for criticality safety computations, which are listed and are briefly described, have been placed in the SRL JOSHUA system to facilitate calculation and to reduce input errors. A driver module, KOKO, simplifies and standardizes input and links the codes together in various ways. For any criticality safety evaluation, correlations of the calculational methods are made with experiment to establish bias. Occasionallymore » subcritical experiments are performed expressly to provide benchmarks. Calculated subcritical limits contain an adequate but not excessive margin to allow for uncertainty in the bias. The final step in any criticality safety evaluation is the writing of a report describing the calculations and justifying the margin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopper, Calvin Mitchell
In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safetymore » engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.« less
1969-01-01
In the clustering procedure, an initial assembly step for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, position the central liquid-oxygen tank. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.
Molecular bacterial community analysis of clean rooms where spacecraft are assembled.
Moissl, Christine; Osman, Shariff; La Duc, Myron T; Dekas, Anne; Brodie, Eoin; DeSantis, Todd; Desantis, Tadd; Venkateswaran, Kasthuri
2007-09-01
Molecular bacterial community composition was characterized from three geographically distinct spacecraft-associated clean rooms to determine whether such populations are influenced by the surrounding environment or the maintenance of the clean rooms. Samples were collected from facilities at the Jet Propulsion Laboratory (JPL), Kennedy Space Flight Center (KSC), and Johnson Space Center (JSC). Nine clone libraries representing different surfaces within the spacecraft facilities and three libraries from the surrounding air were created. Despite the highly desiccated, nutrient-bare conditions within these clean rooms, a broad diversity of bacteria was detected, covering all the main bacterial phyla. Furthermore, the bacterial communities were significantly different from each other, revealing only a small subset of microorganisms common to all locations (e.g. Sphingomonas, Staphylococcus). Samples from JSC assembly room surfaces showed the greatest diversity of bacteria, particularly within the Alpha- and Gammaproteobacteria and Actinobacteria. The bacterial community structure of KSC assembly surfaces revealed a high presence of proteobacterial groups, whereas the surface samples collected from the JPL assembly facility showed a predominance of Firmicutes. Our study presents the first extended molecular survey and comparison of NASA spacecraft assembly facilities, and provides new insights into the bacterial diversity of clean room environments .
Influence of surrounding environment on subcritical crack growth in marble
NASA Astrophysics Data System (ADS)
Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii
2017-06-01
Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.
NASA Technical Reports Server (NTRS)
Bellan, J.
1999-01-01
A critical review of recent investigations in the real of supercritical (and subcritical) fluid behavior is presented with the goal of obtaining a perspective on the peculiarities of high pressure observations.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... determined to be safely subcritical under the most adverse moderation conditions feasible by unborated water... 10 CFR 50.68 is to maintain spent fuel pools subcritical in an unborated, maximum moderation...
The AXAF technology mirror assembly program - An overview
NASA Technical Reports Server (NTRS)
Wyman, Charles L.; Dailey, Carroll C.; Reily, Cary; Weisskopf, Martin; Mckinnon, Phil
1986-01-01
The manufacture and testing of the Technology Mirror Assembly (TMA), a prototype Wolter I telescope scaled to the dimensions of the innermost element of the High-Resolution Mirror Assembly for the NASA Advanced X-ray Astrophysics Facility (AXAF), are reviewed. Consideration is given to the grinding, polishing, coating, and assembly of the zerodur TMA blanks, the TMA mount design, and the test procedures used at the MSFC X-ray Calibration Facility. Test results indicate FWHM resolution less than 0.5 arcsec, but with significant near-field scattering attributed to ripple; further long-lap polishing is suggested.
Hubble Space Telescope (HST) at Lockheed Facility during preflight assembly
1988-03-31
A mechanical arm positions the axial scientific instrument (SI) module (orbital replacement unit (ORU)) just outside the open doors of the Hubble Space Telescope (HST) Support System Module (SSM) as clean-suited technicians oversee the process. HST assembly is being completed at the Lockheed Facility in Sunnyvale, California.
126. DETAIL OF NORTH PLANT AMMUNITION DEMOLITION FACILITY, WITH ASSEMBLY ...
126. DETAIL OF NORTH PLANT AMMUNITION DEMOLITION FACILITY, WITH ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) IN BACKGROUND, FROM GB MANUFACTURING PLANT. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO
125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY ...
125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) IN BACKGROUND. FROM GB MANUFACTURING PLANT. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO
4. PROPOSED C1 ASSEMBLY AND TESTING FACILITIES FOR THE ORDINANCE ...
4. PROPOSED C-1 ASSEMBLY AND TESTING FACILITIES FOR THE ORDINANCE GUIDED MISSILE CENTER AT REDSTONE ARSENAL, NEAR THE SOUTH END OF MADKIN MOUNTAIN. OCTOBER 1950, HANNES LUEHRSEN COLLECTION, MSFC MASTER PLANNING OFFICE. - Marshall Space Flight Center, East Test Area, Dodd Road, Huntsville, Madison County, AL
SELECTIVE EXTRACTION OF OXYGENATES FROM SAVORY AND PEPPERMINT USING SUBCRITICAL WATER. (R825394)
The yields of oxygenated and non-oxygenated flavour and fragrance compounds from savory (Satureja hortensis) and peppermint (Mentha piperita) were compared using subcritical water extraction, supercritical carbon dioxide extraction (SFE) and hydrodistillation. Extraction rates wi...
A simulation facility for testing Space Station assembly procedures
NASA Technical Reports Server (NTRS)
Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.
1994-01-01
NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAdams, Brian J.; Pearson, Raymond A.
With the continuing trend of decreasing feature sizes in flip-chip assemblies, the reliability tolerance to interfacial flaws is also decreasing. Small-scale disbonds will become more of a concern, pointing to the need for a better understanding of the initiation stage of interfacial delamination. With most accepted adhesion metric methodologies tailored to predict failure under the prior existence of a disbond, the study of the initiation phenomenon is open to development and standardization of new testing procedures. Traditional fracture mechanics approaches are not suitable, as the mathematics assume failure to originate at a disbond or crack tip. Disbond initiation is believedmore » to first occur at free edges and corners, which act as high stress concentration sites and exhibit singular stresses similar to a crack tip, though less severe in intensity. As such, a 'fracture mechanics-like' approach may be employed which defines a material parameter--a critical stress intensity factor (K{sub c})--that can be used to predict when initiation of a disbond at an interface will occur. The factors affecting the adhesion of underfill/polyimide interfaces relevant to flip-chip assemblies were investigated in this study. The study consisted of two distinct parts: a comparison of the initiation and propagation phenomena and a comparison of the relationship between sub-critical and critical initiation of interfacial failure. The initiation of underfill interfacial failure was studied by characterizing failure at a free-edge with a critical stress intensity factor. In comparison with the interfacial fracture toughness testing, it was shown that a good correlation exists between the initiation and propagation of interfacial failures. Such a correlation justifies the continuing use of fracture mechanics to predict the reliability of flip-chip packages. The second aspect of the research involved fatigue testing of tensile butt joint specimens to determine lifetimes at sub-critical load levels. The results display an interfacial strength ranking similar to that observed during monotonic testing. The fatigue results indicate that monotonic fracture mechanics testing may be an adequate screening tool to help predict cyclic underfill failure; however lifetime data is required to predict reliability.« less
Landsbergis, Paul A; Janevic, Teresa; Rothenberg, Laura; Adamu, Mohammed T; Johnson, Sylvia; Mirer, Franklin E
2013-07-01
We examined the association between long work hours, assembly line work and stress-related diseases utilizing objective health and employment data from an employer's administrative databases. A North American automobile manufacturing company provided data for claims for sickness, accident and disability insurance (work absence of at least 4 days) for cardiovascular disease (CVD), hypertension and psychological disorders, employee demographics, and facility hours worked per year for 1996-2001. Age-adjusted claim rates and age-adjusted rate ratios were calculated using Poisson regression, except for comparisons between production and skilled trades workers owing to lack of age denominator data by job category. Associations between overtime hours and claim rates by facility were examined by Poisson regression and multi-level Poisson regression. Claims for hypertension, coronary heart disease, CVD, and psychological disorders were associated with facility overtime hours. We estimate that a facility with 10 more overtime hours per week than another facility would have 4.36 more claims for psychological disorders, 2.33 more claims for CVD, and 3.29 more claims for hypertension per 1,000 employees per year. Assembly plants had the highest rates of claims for most conditions. Production workers tended to have higher rates of claims than skilled trades workers. Data from an auto manufacturer's administrative databases suggest that autoworkers working long hours, and assembly-line workers relative to skilled trades workers or workers in non-assembly facilities, have a higher risk of hypertension, CVD, and psychological disorders. Occupational disease surveillance and disease prevention programs need to fully utilize such administrative data. Copyright © 2013 Wiley Periodicals, Inc.
Luo, F; Han, R; Chen, Z; Nie, Y; Sun, Q; Shi, F; Zhang, S; Tian, G; Song, L; Ruan, X; Ye, M Y
2018-07-01
The accelerator driven subcritical system (ADS) is regarded as a safe and clean nuclear power system, which can be used for the transmutation of nuclear waste and the breeding of nuclear fuel. In this study, in order to validate nuclear data and the neutron transportation performance of the materials related to ADS, we measured the leakage neutron spectra from multiple-slab sample assemblies using 14.8 MeV D-T neutrons. Two types of assemblies comprising A-1 (W+U+C+CH 2 ) and A-2 (U+C+CH 2 ) were both built up gradually starting with the first wall. The measured spectra were compared with those calculated using the Monte Carlo code neutron transport coed (MCNP)-4C. A comparison of the results showed that the experimental leakage neutron spectra for both A-1 or A-2 were reproduced well by the three evaluated nuclear data libraries with discrepancies of less than 15% (A-1) and 12% (A-2), except when below 3 MeV. For 2-cm and 5-cm uranium samples, the CENDL-3.1 calculations exhibited large discrepancies in the energy range of 2-8 MeV and above 13 MeV. Thus, the CENDL-3.1 library for uranium should be reevaluated, especially around this energy range. It was significant that the leakage neuron spectra changed clearly when the latest material layer was added during the building of assemblies A-1 and A-2. Copyright © 2018 Elsevier Ltd. All rights reserved.
1969-01-01
In the clustering procedure, an initial assembly step for the Saturn IB launch vehicle's S-IB (first) stage, workers at the Michoud Assembly Facility (MAF) near New Orleans, Louisiana, place the first of eight outboard fuel tanks atop the central liquid-oxygen tank. Developed by the Marshall Space Flight Center and built by the Chrysler Corporation at Michoud Assembly Facility (MAF), the S-IB utilized eight H-1 engines and each produced 200,000 pounds of thrust, a combined thrust of 1,600,000 pounds.
NASA Technical Reports Server (NTRS)
Duc, M. La; Chen, F.; Kern, R.; Koukol, R.; Baker, A.; Venkateswaran, K.
2001-01-01
A study in which several surface samples, retrieved from both the Mars Odyssey Spacecraft and the Kennedy Space Center (KSC) Spacecraft Assembly and Encapsulation Facility II (SAEF-II), were prcesed and evaluated by both molecular and traditional culture-based methods for the microbial diversity.
1. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATIONS ...
1. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATIONS OF THE R-MAD FACILITY WITH THE COLD ASSEMBLY AREA ON THE LEFT AND THE HOT DISASSEMBLY AREA TO THE RIGHT. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
Simulation of Nonlinear Instabilities in an Attachment-Line Boundary Layer
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1996-01-01
The linear and the nonlinear stability of disturbances that propagate along the attachment line of a three-dimensional boundary layer is considered. The spatially evolving disturbances in the boundary layer are computed by direct numerical simulation (DNS) of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced either by forcing at the in ow or by applying suction and blowing at the wall. Quasi-parallel linear stability theory and a nonparallel theory yield notably different stability characteristics for disturbances near the critical Reynolds number; the DNS results con rm the latter theory. Previously, a weakly nonlinear theory and computations revealed a high wave-number region of subcritical disturbance growth. More recent computations have failed to achieve this subcritical growth. The present computational results indicate the presence of subcritically growing disturbances; the results support the weakly nonlinear theory. Furthermore, an explanation is provided for the previous theoretical and computational discrepancy. In addition, the present results demonstrate that steady suction can be used to stabilize disturbances that otherwise grow subcritically along the attachment line.
Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics
2017-01-01
We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics. PMID:28932256
NASA Technical Reports Server (NTRS)
Swanson, P. L.
1984-01-01
An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.
NASA Astrophysics Data System (ADS)
Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.
2016-12-01
The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in outcrops of granite, sandstone, and quartzite found in Shenandoah National Park, Virginia. Preliminary results reveal that many observed cracking characteristics are consistent with our hypotheses linking subcritical crack growth, weathering stresses and the production of different sized sediment from different rock types.
A smart end-effector for assembly of space truss structures
NASA Technical Reports Server (NTRS)
Doggett, William R.; Rhodes, Marvin D.; Wise, Marion A.; Armistead, Maurice F.
1992-01-01
A unique facility, the Automated Structures Research Laboratory, is being used to investigate robotic assembly of truss structures. A special-purpose end-effector is used to assemble structural elements into an eight meter diameter structure. To expand the capabilities of the facility to include construction of structures with curved surfaces from straight structural elements of different lengths, a new end-effector has been designed and fabricated. This end-effector contains an integrated microprocessor to monitor actuator operations through sensor feedback. This paper provides an overview of the automated assembly tasks required by this end-effector and a description of the new end-effector's hardware and control software.
Facile route to versatile nanoplatforms for drug delivery by one-pot self-assembly.
Zhou, Xing; Che, Ling; Wei, Yanling; Dou, Yin; Chen, Sha; He, Hongmei; Gong, Hao; Li, Xiaohui; Zhang, Jianxiang
2014-06-01
There is still unmet demand for developing powerful approaches to produce polymeric nanoplatforms with versatile functions and broad applications, which are essential for the successful bench-to-bedside translation of polymeric nanotherapeutics developed in the laboratory. We have discovered a facile, convenient, cost-effective and easily scalable one-pot strategy to assemble various lipophilic therapeutics bearing carboxyl groups into nanomedicines, through which highly effective cargo loading and nanoparticle formation can be achieved simultaneously. Besides dramatically improving water solubility, the assembled nanopharmaceuticals showed significantly higher bioavailability and much better therapeutic activity. These one-pot assemblies may also serve as nanocontainers to effectively accommodate other highly hydrophobic drugs such as paclitaxel (PTX). PTX nanomedicines thus formulated display strikingly enhanced in vitro antitumor activity and can reverse the multidrug resistance of tumor cells to PTX therapy. The special surface chemistry offers these assembled entities the additional capability of efficiently packaging and efficaciously transfecting plasmid DNA, with a transfection efficiency markedly higher than that of commonly used positive controls. Consequently, this one-pot assembly approach provides a facile route to multifunctional nanoplatforms for simultaneous delivery of multiple therapeutics with improved therapeutic significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Evaluation of RAPID for a UNF cask benchmark problem
NASA Astrophysics Data System (ADS)
Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.
2017-09-01
This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.
ELUTION OF ORGANIC SOLUTES FROM DIFFERENT POLARITY SORBENTS USING SUBCRITICAL WATER. (R825394)
The intermolecular interactions between organic solutes and sorbent matrices under subcritical water conditions have been investigated at a pressure of 50 bar and temperatures ranging from 50 to 250°C. Both polar and nonpolar organics (chlorophenols, amines, n-alkanes...
Davaatseren, Munkhtugs
2016-01-01
This study investigated the effect of soy protein hydrolysates (SPH) prepared by varying subcritical media on the physicochemical properties of pork patties. For resource of SPH, two different soybean species (Glycine max Merr.) of Daewonkong (DWK) and Saedanbaek (SDB) were selected. SPH was prepared by subcritical processing at 190℃ and 25 MPa under three different of media (water, 20% ethanol and 50% ethanol). Solubility and free amino group content revealed that water was better to yield larger amount of SPH than ethanol/water mixtures, regardless of species. Molecular weight (Mw) distribution of SPH was also similar between two species, while slightly different Mw distribution was obtained by subcritical media. For pork patty application, 50% ethanol treatment showed clear red color comparing to control after 14 d of storage. In addition, ethanol treatment had better oxidative stability than control and water treatment based on thiobarbituric acid-reactive substances (TBARS) analysis. For eating quality, although 20% ethanol treatment in SDB showed slightly higher cooking loss than control, generally addition of SPH did not affect the water-binding properties and hardness of pork patties. Consequently, the present study indicated that 50% ethanol was the best subcritical media to produce SPH possessing antioxidant activity, and the SPH produced from DWK exhibited better antioxidant activity than that produced SDB. PMID:27499657
Liu, Yanchun; Nelson, Tyler; Cromeens, Barrett; Rager, Terrence; Lannutti, John; Johnson, Jed; Besner, Gail E
2016-10-01
The ability to deliver sustained-release, biologically active growth factors through custom designed tissue engineering scaffolds at sites of tissue regeneration offers great therapeutic opportunity. Due to the short in vivo half-lives of most growth factors, it is challenging to deliver these proteins to sites of interest where they may be used before being degraded. The application of subcritical CO2 uses gas-phase CO2 at subcritical pressures ranging from 41 to 62 bar (595-913 PSI) which avoids foaming by reducing the amount of CO2 dissolved in the polymer and maintains completely reversible plasticization. In the current study, heparin-binding EGF-like growth factor (HB-EGF) was embedded into polyglycolic acid (PGA)/Poly-l-latic acid (PLLA) scaffolds via subcritical CO2 exposure for the production of tissue engineered intestine (TEI). PGA fiber morphology after subcritical CO2 exposure was examined by scanning electron microscopy (SEM) and the distribution of HB-EGF embedded in the scaffold fibers was detected by HB-EGF immunofluorescent staining. In vivo implantation of HB-EGF-embedded scaffolds confirmed significantly improved TEI structure as a result of local delivery of the trophic growth factor. These findings may be critical for the production of TEI in the treatment of patients with short bowel syndrome in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Yun-Kyung; Ko, Bo-Bae; Davaatseren, Munkhtugs; Hong, Geun-Pyo
2016-01-01
This study investigated the effect of soy protein hydrolysates (SPH) prepared by varying subcritical media on the physicochemical properties of pork patties. For resource of SPH, two different soybean species (Glycine max Merr.) of Daewonkong (DWK) and Saedanbaek (SDB) were selected. SPH was prepared by subcritical processing at 190℃ and 25 MPa under three different of media (water, 20% ethanol and 50% ethanol). Solubility and free amino group content revealed that water was better to yield larger amount of SPH than ethanol/water mixtures, regardless of species. Molecular weight (Mw) distribution of SPH was also similar between two species, while slightly different Mw distribution was obtained by subcritical media. For pork patty application, 50% ethanol treatment showed clear red color comparing to control after 14 d of storage. In addition, ethanol treatment had better oxidative stability than control and water treatment based on thiobarbituric acid-reactive substances (TBARS) analysis. For eating quality, although 20% ethanol treatment in SDB showed slightly higher cooking loss than control, generally addition of SPH did not affect the water-binding properties and hardness of pork patties. Consequently, the present study indicated that 50% ethanol was the best subcritical media to produce SPH possessing antioxidant activity, and the SPH produced from DWK exhibited better antioxidant activity than that produced SDB.
Electron Accelerator Shielding Design of KIPT Neutron Source Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Zhaopeng; Gohar, Yousry
The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biologicalmore » dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, similar to 0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper. Copyright (C) 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.« less
The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J.; Marshall, William B. J.; Ilas, Germina
Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-29
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
None
2018-01-16
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
LPT. Shield test facility assembly and test building (TAN646), south ...
LPT. Shield test facility assembly and test building (TAN-646), south facade. Camera facing north. High-bay section is pool room. Single-story section at right is control building (TAN-645). Small metal building is post-1970 addition. INEEL negative no. HD-40-7-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Large Deployable Reflector (LDR) Requirements for Space Station Accommodations
NASA Technical Reports Server (NTRS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-01-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
Large Deployable Reflector (LDR) requirements for space station accommodations
NASA Astrophysics Data System (ADS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-04-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
2005-10-25
KENNEDY SPACE CENTER, FLA. - A piece of metal lies on the ground near the NASA Kennedy Space Center’s Vehicle Assembly Building following the wrath of hurricane Wilma as it crossed the state Oct. 24. Kennedy’s facilities sustained minor structural damage, primarily to roofs or from water intrusion. The Vehicle Assembly Building lost some panels on the east and west sides. Some facilities lost power. A total of 13.6 inches of rain was recorded at the Shuttle Landing Facility. The highest wind gust recorded was 94 mph from the north-northwest at Launch Pad 39B, while the maximum sustained wind was 76 mph from the north-northwest at the top of the 492-foot weather tower located north of the Vehicle Assembly Building.
2005-10-25
KENNEDY SPACE CENTER, FLA. - Pieces of metal lie alongside a fence near NASA Kennedy Space Center’s Vehicle Assembly Building following the wrath of hurricane Wilma as it crossed the state Oct. 24. Kennedy’s facilities sustained minor structural damage, primarily to roofs or from water intrusion. The Vehicle Assembly Building lost some panels on the east and west sides. Some facilities lost power. A total of 13.6 inches of rain was recorded at the Shuttle Landing Facility. The highest wind gust recorded was 94 mph from the north-northwest at Launch Pad 39B, while the maximum sustained wind was 76 mph from the north-northwest at the top of the 492-foot weather tower located north of the Vehicle Assembly Building.
diagram which in turn provides a broader understanding of the system behavior in its post-bifurcation also the post-bifurcation regime in both supercritical and subcritical cases despite the fact that it supercritical or subcritical characteristics) without placing the system in the post-bifurcation regime is a
Subcritical water (hot water under enough pressure to maintain the liquid
state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides
from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were
used to determine conditions f...
A space crane concept for performing on-orbit assembly
NASA Technical Reports Server (NTRS)
Dorsey, John T.
1992-01-01
The topics are presented in viewgraph form and include: in-space assembly and construction enhances future mission planning flexibility; in-space assembly and construction facility concept; space crane concept with mobile base; fundamental characteristics; space crane research approach; spacecraft component positioning and assembly test-bed; and articulating joint testbed.
28 CFR 36.308 - Seating in assembly areas.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Seating in assembly areas. 36.308 Section... PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.308 Seating in assembly... in assembly areas shall— (i) Provide a reasonable number of wheelchair seating spaces and seats with...
1977-03-01
This photograph shows the liquid hydrogen tank and liquid oxygen tank for the Space Shuttle external tank (ET) being assembled in the weld assembly area of the Michoud Assembly Facility (MAF). The ET provides liquid hydrogen and liquid oxygen to the Shuttle's three main engines during the first eight 8.5 minutes of flight. At 154-feet long and more than 27-feet in diameter, the ET is the largest component of the Space Shuttle, the structural backbone of the entire Shuttle system, and the only part of the vehicle that is not reusable. The ET is manufactured at the Michoud Assembly Facility near New Orleans, Louisiana, by the Martin Marietta Corporation under management of the Marshall Space Flight Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deyoung, Anemarie; Smith, John R.
2012-05-03
A moratorium was placed on U.S. underground nuclear testing in 1992. In response, the Stockpile Stewardship Program was created to maintain readiness of the existing nuclear inventory through several efforts such as computer modeling, material analysis, and subcritical nuclear experiments (SCEs). As in the underground test era, the Nevada National Security Site (NNSS), formerly the Nevada Test Site, provides a safe and secure environment for SCEs by the nature of its isolated and secure facilities. A major tool for SCE diagnosis installed in the 05 drift laboratory is a high energy x-ray source used for time resolved imaging. This toolmore » consists of two identical sources (Cygnus 1 and Cygnus 2) and is called the Cygnus Dual Beam Radiographic Facility (Figs. 2-6). Each Cygnus machine has 5 major elements: Marx Generator, Pulse Forming Line (PFL), Coaxial Transmission Line (CTL), 3-cell Inductive Voltage Adder (IVA), and Rod Pinch Diode. Each machine is independently triggered and may be fired in separate tests (staggered mode), or in a single test where there is submicrosecond separation between the pulses (dual mode). Cygnus must operate as a single shot machine since on each pulse the diode electrodes are destroyed. The diode is vented to atmosphere, cleaned, and new electrodes are inserted for each shot. There is normally two shots per day on each machine. Since its installation in 2003, Cygnus has participated in: 4 Subcritical Experiments (Armando, Bacchus, Barolo A, and Barolo B), a 12 shot plutonium physics series (Thermos), and 2 plutonium step wedge calibration series (2005, 2011), resulting in well over 1000 shots. Currently the Facility is in preparation for 2 SCEs scheduled for this calendar year - Castor and Pollux. Cygnus has performed well during 8 years of operations at NNSS. Many improvements in operations and performance have been implemented during this time. Throughout its service at U1a, major maintenance and replacement of many hardware items were delayed due to programmatic requirements. It is anticipated that Cygnus will be in service at U1a for another 5 years. With this assumption, it was realized that significant resources and effort should be allotted to bring the hardware back to its original condition, or even to improve elements when appropriate. The Cygnus Refurbishment and Enhancement Project started in April, 2011 with the intent to encompass a major overhaul of Cygnus.« less
Nested subcritical flows within supercritical systems
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.
1985-01-01
In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems.
Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.
2016-01-01
Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella pneumophila, and their corresponding virulence factors were present in all cleanroom samples. This is the first functional metagenomics study describing presence of pathogens and their corresponding virulence factors in cleanroom environments. The results of this study should be considered for microbial monitoring of enclosed environments such as schools, homes, hospitals and more isolated habitation such the International Space Station and future manned missions to Mars. PMID:27667984
Free-floating dual-arm robots for space assembly
NASA Technical Reports Server (NTRS)
Agrawal, Sunil Kumar; Chen, M. Y.
1994-01-01
Freely moving systems in space conserve linear and angular momentum. As moving systems collide, the velocities get altered due to transfer of momentum. The development of strategies for assembly in a free-floating work environment requires a good understanding of primitives such as self motion of the robot, propulsion of the robot due to onboard thrusters, docking of the robot, retrieval of an object from a collection of objects, and release of an object in an object pool. The analytics of such assemblies involve not only kinematics and rigid body dynamics but also collision and impact dynamics of multibody systems. In an effort to understand such assemblies in zero gravity space environment, we are currently developing at Ohio University a free-floating assembly facility with a dual-arm planar robot equipped with thrusters, a free-floating material table, and a free-floating assembly table. The objective is to pick up workpieces from the material table and combine them into prespecified assemblies. This paper presents analytical models of assembly primitives and strategies for overall assembly. A computer simulation of an assembly is developed using the analytical models. The experiment facility will be used to verify the theoretical predictions.
LPT. Shield test facility assembly and test building (TAN646), south ...
LPT. Shield test facility assembly and test building (TAN-646), south end of EBOR helium wing. Camera facing north. Monorail protrudes from upper-level door. Rust marks on concrete wall are from stack. Metal shed is post-1970 addition. INEEL negative no. HD-40-8-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Yang, Xiaoli; Wu, Suilan; Wang, Panhao; Yang, Lin
2018-02-01
The synthesis of well-ordered hierarchical metal-organic frameworks (MOFs) in an efficient manner is a great challenge. Here, a 3D regular ordered meso-/macroporous MOF of Cu-TATAB (referred to as MM-MOF) was synthesized through a facile template-free self-assembly process with pore sizes of 31 nm and 119 nm.
A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...
Subcritical (hot) water with ethanol as modifier was used
to extract nonylphenol polyethoxy carboxylates (NPECs)
with 1-4 ethoxy groups from sludge samples. Quantitative
recovery of native NPECs from sludge was accomplished
by extracting 0.25 g samples for 20 min w...
2014-09-25
CAPE CANAVERAL, Fla. – Coupled Florida East Coast Railway, or FEC, locomotives No. 433 and No. 428 pass the Vehicle Assembly Building in Launch Complex 39 at NASA’s Kennedy Space Center in Florida on their way to NASA's Locomotive Maintenance Facility. Kennedy's Center Planning and Development Directorate has enlisted the locomotives to support a Rail Vibration Test for the Canaveral Port Authority. The purpose of the test is to collect amplitude, frequency and vibration test data utilizing two Florida East Coast locomotives operating on KSC tracks to ensure that future railroad operations will not affect launch vehicle processing at the center. Buildings instrumented for the test include the Rotation Processing Surge Facility, Thermal Protection Systems Facility, Vehicle Assembly Building, Orbiter Processing Facility and Booster Fabrication Facility. Photo credit: NASA/Daniel Casper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balanin, A. L.; Boyarinov, V. F.; Glushkov, E. S.
The application of experimental information on measured axial distributions of fission reaction rates for development of 3D numerical models of the ASTRA critical facility taking into account azimuthal asymmetry of the assembly simulating a HTGR with annular core is substantiated. Owing to the presence of the bottom reflector and the absence of the top reflector, the application of 2D models based on experimentally determined buckling is impossible for calculation of critical assemblies of the ASTRA facility; therefore, an alternative approach based on the application of the extrapolated assembly height is proposed. This approach is exemplified by the numerical analysis ofmore » experiments on measurement of efficiency of control rods mockups and protection system (CPS).« less
A debugger-interpreter with setup facilities for assembly programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolinskii, I.S.; Zisel`man, I.M.; Belotskii, S.L.
1995-11-01
In this paper a software program allowing one to introduce and debug the descriptions of the von Nuemann architecture processors and their assemblers, efficiently debug assembly programs, and investigate the instruction sets of the described processors is considered. For a description of the processor sematics and assembler syntax, a metassembly language is suggested.
Noninterceptive transverse emittance measurements using BPM for Chinese ADS R&D project
NASA Astrophysics Data System (ADS)
Wang, Zhi-Jun; Feng, Chi; He, Yuan; Dou, Weiping; Tao, Yue; Chen, Wei-long; Jia, Huan; Liu, Shu-hui; Wang, Wang-sheng; Zhang, Yong; Wu, Jian-qiang; Zhang, Sheng-hu; Zhang, X. L.
2016-04-01
The noninterceptive four-dimensional transverse emittance measurements are essential for commissioning the high power continue-wave (CW) proton linacs as well as their operations. The conventional emittance measuring devices such as slits and wire scanners are not well suited under these conditions due to sure beam damages. Therefore, the method of using noninterceptive Beam Position Monitor (BPM) is developed and demonstrated on Injector Scheme II at the Chinese Accelerator Driven Sub-critical System (China-ADS) proofing facility inside Institute of Modern Physics (IMP) [1]. The results of measurements are in good agreements with wire scanners and slits at low duty-factor pulsed (LDFP) beam. In this paper, the detailed experiment designs, data analysis and result benchmarking are presented.
Studies on Materials for Heavy-Liquid-Metal-Cooled Reactors in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minoru Takahashi; Masayuki Igashira; Toru Obara
2002-07-01
Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo Institute of Technology. A target material corrosion test was performed in the project of Transmutation Experimental Facility for ADS in Japan Atomic Energy Research Institute (JAERI). Steel corrosion test was started in Mitsui Engineering and Shipbuilding Co., LTD (MES). The feasibility study for FR cycle performed in Japanmore » Nuclear Cycle Institute (JNC) are described. (authors)« less
Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwin, Jennifer Louise; Zhang, Ning
Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP ® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), tomore » which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM_Solver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) “Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.”). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the k eff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.« less
Space transportation node - The Atrium Facility
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
1990-01-01
A conceptual design for a space transportation node is presented with a view to the fulfilment of assembly platform support requirements associated with a lunar transportation system. This 'Atrium Facility', which will support lunar base activities before, during, and after the lunar base buildup phase, encompasses a central assembly area surrounded by hangars and workstation platforms; six permanent crewmembers will be supported, as well as four to six transient lunar and Space Shuttle crewmembers. The Atrium Facility dry mass of nearly 320,000 kg excludes cryogenic propellant stowage and the traslunar vehicle envisioned for transportation.
In-situ verification techniques for fast critical assembly cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brumbach, S.B.; Amundson, P.I.; Roche, C.T.
1979-01-01
Active and passive autoradiographic techniques were used to obtain piece counts of fuel plates in fast critical assembly drawers and to verify the assembly loading pattern. Active autoradiography using prompt-fission and fission-product radiation was more successful with uranium fuel while passive autoradiography was more successful with plutonium fuel. A source multiplication technique was used to measure changes in reactivity when small quantities (2-2.5 kg) of fissile material were removed from a subcritical reference core of the Zero Power Plutonium Reactor. Efforts to compensate for unsuccessful. Some compensation was achieved by replacing U-238 with polyethylene. The sensitivity for detection of partiallymore » compensated fuel removed from minimum worth regions was approximately 2.5 kg (fissile) for a core containing 2600 kg (fissile). Substitution of polyethylene was detected with a spectral index which was the ratio of the rate of the In-115 (n,..gamma..) reaction to the rate of the In-115 (n,n') reaction. This spectral index was sensitive to the presence of an 0.64-cm-thick, 5.08-cm-high polyethylene column 10-15 cm away from the indium foil. The reactivity worth of Pu-239 was also obtained as a function of location in the reactor core with the use of an inverse kinetics technique. Reactivity worths for Pu-239 varied from a maximum of 58.67 Ih/kg near the core center to a minimum of 14.86 Ih/kg at the core edge.« less
Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobin, Stephen Joseph; Fugate, Michael Lynn; Trellue, Holly Renee
2016-10-28
A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly tomore » confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).« less
235U Holdup Measurements in the 321-M Exhaust Elbows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salaymeh, S.R.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability, and to meetmore » criticality safety controls. This report covers holdup measurements of uranium residue in the exhaust piping elbows removed from the roof the 321-M facility.« less
ANL Critical Assembly Covariance Matrix Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKnight, Richard D.; Grimm, Karl N.
2014-01-15
This report discusses the generation of a covariance matrix for selected critical assemblies that were carried out by Argonne National Laboratory (ANL) using four critical facilities-all of which are now decommissioned. The four different ANL critical facilities are: ZPR-3 located at ANL-West (now Idaho National Laboratory- INL), ZPR-6 and ZPR-9 located at ANL-East (Illinois) and ZPPr located at ANL-West.
2009-06-11
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, employees gather to watch the Ares I-X forward assembly (comprising the frustum, forward skirt extension and forward skirt) as it moves out of the Assembly and Refurbishment Facility. The assembly is being transferred to the Vehicle Assembly Building's High Bay 4 for processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller
Aeroelastic Response of Swept Aircraft Wings in a Compressible Flow Field
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2000-01-01
The present study addresses the subcritical aeroelastic response of swept wings, in various flight speed regimes, to arbitrary time-dependent external excitations. The methodology based on the concept of indicial functions is carried out in time and frequency domains. As a result of this approach, the proper unsteady aerodynamic loads necessary to study the subcritical aeroelastic response of the open/closed loop aeroelastic systems, and of flutter instability, respectively are obtained. Validation of the aeroelastic model is provided, and applications to subcritical aeroelastic response to blast pressure signatures are illustrated. In this context, an original representation of the aeroelastic response in the phase-space is displayed, and pertinent conclusions on the implications of a number of selected parameters of the system are outlined.
Long-Time Behavior and Critical Limit of Subcritical SQG Equations in Scale-Invariant Sobolev Spaces
NASA Astrophysics Data System (ADS)
Coti Zelati, Michele
2018-02-01
We consider the subcritical SQG equation in its natural scale-invariant Sobolev space and prove the existence of a global attractor of optimal regularity. The proof is based on a new energy estimate in Sobolev spaces to bootstrap the regularity to the optimal level, derived by means of nonlinear lower bounds on the fractional Laplacian. This estimate appears to be new in the literature and allows a sharp use of the subcritical nature of the L^∞ bounds for this problem. As a by-product, we obtain attractors for weak solutions as well. Moreover, we study the critical limit of the attractors and prove their stability and upper semicontinuity with respect to the strength of the diffusion.
NASA Astrophysics Data System (ADS)
Kemah, Elif; Akkaya, Recep; Tokgöz, Seyit Rıza
2017-02-01
In recent years, the accelerator driven subcritical reactors have taken great interest worldwide. The Accelerator Driven System (ADS) has been used to produce neutron in subcritical state by the external proton beam source. These reactors, which are hybrid systems, are important in production of clean and safe energy and conversion of radioactive waste. The ADS with the selection of reliability and robust target materials have been the new generation of fission reactors. In addition, in the ADS Reactors the problems of long-lived radioactive fission products and waste actinides encountered in the fission process of the reactor during incineration can be solved, and ADS has come to the forefront of thorium as fuel for the reactors.
The role of accelerators in the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Hiroshi.
1990-01-01
The use of neutrons produced by the medium energy proton accelerator (1 GeV--3 GeV) has considerable potential in reconstructing the nuclear fuel cycle. About 1.5 {approximately} 2.5 ton of fissile material can be produced annually by injecting a 450 MW proton beam directly into fertile materials. A source of neutrons, produced by a proton beam, to supply subcritical reactors could alleviate many of the safety problems associated with critical assemblies, such as positive reactivity coefficients due to coolant voiding. The transient power of the target can be swiftly controlled by controlling the power of the proton beam. Also, the usemore » of a proton beam would allow more flexibility in the choice of fuel and structural materials which otherwise might reduce the reactivity of reactors. This paper discusses the rate of accelerators in the transmutation of radioactive wastes of the nuclear fuel cycles. 34 refs., 17 figs., 9 tabs.« less
Generating functions and stability study of multivariate self-excited epidemic processes
NASA Astrophysics Data System (ADS)
Saichev, A. I.; Sornette, D.
2011-09-01
We present a stability study of the class of multivariate self-excited Hawkes point processes, that can model natural and social systems, including earthquakes, epileptic seizures and the dynamics of neuron assemblies, bursts of exchanges in social communities, interactions between Internet bloggers, bank network fragility and cascading of failures, national sovereign default contagion, and so on. We present the general theory of multivariate generating functions to derive the number of events over all generations of various types that are triggered by a mother event of a given type. We obtain the stability domains of various systems, as a function of the topological structure of the mutual excitations across different event types. We find that mutual triggering tends to provide a significant extension of the stability (or subcritical) domain compared with the case where event types are decoupled, that is, when an event of a given type can only trigger events of the same type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bruyn, D.; Engelen, J.; Ortega, A.
MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of threemore » years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)« less
SP-100 GES/NAT radiation shielding systems design and development testing
NASA Astrophysics Data System (ADS)
Disney, Richard K.; Kulikowski, Henry D.; McGinnis, Cynthia A.; Reese, James C.; Thomas, Kevin; Wiltshire, Frank
1991-01-01
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield, the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.
Molecular Microbial Analyses of the Mars Exploration Rovers Assembly Facility
NASA Technical Reports Server (NTRS)
Venkateswaran, Kasthuri; LaDuc, Myron T.; Newcombe, David; Kempf, Michael J.; Koke, John. A.; Smoot, James C.; Smoot, Laura M.; Stahl, David A.
2004-01-01
During space exploration, the control of terrestrial microbes associated with robotic space vehicles intended to land on extraterrestrial solar system bodies is necessary to prevent forward contamination and maintain scientific integrity during the search for life. Microorganisms associated with the spacecraft assembly environment can be a source of contamination for the spacecraft. In this study, we have monitored the microbial burden of air samples of the Mars Exploration Rovers' assembly facility at the Kennedy Space Center utilizing complementary diagnostic tools. To estimate the microbial burden and identify potential contaminants in the assembly facility, several microbiological techniques were used including culturing, cloning and sequencing of 16S rRNA genes, DNA microarray analysis, and ATP assays to assess viable microorganisms. Culturing severely underestimated types and amounts of contamination since many of the microbes implicated by molecular analyses were not cultivable. In addition to the cultivation of Agrobacterium, Burkholderia and Bacillus species, the cloning approach retrieved 16s rDNA sequences of oligotrophs, symbionts, and y-proteobacteria members. DNA microarray analysis based on rational probe design and dissociation curves complemented existing molecular techniques and produced a highly parallel, high resolution analysis of contaminating microbial populations. For instance, strong hybridization signals to probes targeting the Bacillus species indicated that members of this species were present in the assembly area samples; however, differences in dissociation curves between perfect-match and air sample sequences showed that these samples harbored nucleotide polymorphisms. Vegetative cells of several isolates were resistant when subjected to treatments of UVC (254 nm) and vapor H202 (4 mg/L). This study further validates the significance of non-cultivable microbes in association with spacecraft assembly facilities, as our analyses have identified several non-cultivable microbes likely to contaminate the surfaces of spacecraft hardware.
Servicing communication satellites in geostationary orbit
NASA Technical Reports Server (NTRS)
Russell, Paul K.; Price, Kent M.
1990-01-01
The econmic benefits of a LEO space station are quantified by identifying alternative operating scenarios utilizing the space station's transportation facilities and assembly and repair facilities. Particular consideration is given to the analysis of the impact of on-orbit assembly and servicing on a typical communications satellite is analyzed. The results of this study show that on-orbit servicing can increase the internal rate of return by as much as 30 percent.
LPT. Shield test facility assembly and test building (TAN646). East ...
LPT. Shield test facility assembly and test building (TAN-646). East facade of ebor helium wing addition. Camera facing west. Note asbestos-cement siding on stair enclosure and upper-level. Concrete siding at lower level. Metal stack. Monorail protrudes from upper level of south wall at left of view. INEEL negative no. HD-40-7-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
1. GENERAL VIEW TO THE WEST OF THE EMAD FACILITY ...
1. GENERAL VIEW TO THE WEST OF THE E-MAD FACILITY AND THE SURROUNDING ENVIRONMENTAL AND TOPOGRAPHICAL SETTING. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV
Subcritical crack growth in soda-lime glass in combined mode I and mode II loading
NASA Technical Reports Server (NTRS)
Singh, Dileep; Shetty, Dinesh K.
1990-01-01
Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.
Su, Y C; Huang, C P; Pan, Jill R; Lee, H C
2008-01-01
Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.
Yang, Tianhua; Wang, Jian; Li, Bingshuo; Kai, Xingping; Li, Rundong
2017-04-01
This study investigated the influence of temperature and residence time on liquefaction of rice straw in subcritical CO 2 -subcritical water (subCO 2 -subH 2 O) and in subcritical CO 2 -supercritical ethanol (subCO 2 -scEtOH), considering the final reaction temperatures (270-345°C) and residence times (15 and 30min). Residence time was identified as a crucial parameter in the subCO 2 -subH 2 O liquefaction, whereas residence time had a marginal influence on subCO 2 -scEtOH liquefaction. When reaction conditions were 320°C and 15min, solvents have weak impact on the quality of bio-oil, HHV 28.57MJ/kg and 28.62MJ/kg, respectively. There was an obvious difference between the subCO 2 -subH 2 O and subCO 2 -scEtOH liquefaction mechanisms. In subCO 2 -subH 2 O, CO 2 promoted the carbonyl reaction. In subCO 2 -scEtOH, supercritical ethanol have the function of donating hydrogen and promoting the reaction of hydroxyl-alkylation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bifurcations and chaos in convection taking non-Fourier heat-flux
NASA Astrophysics Data System (ADS)
Layek, G. C.; Pati, N. C.
2017-11-01
In this Letter, we report the influences of thermal time-lag on the onset of convection, its bifurcations and chaos of a horizontal layer of Boussinesq fluid heated underneath taking non-Fourier Cattaneo-Christov hyperbolic model for heat propagation. A five-dimensional nonlinear system is obtained for a low-order Galerkin expansion, and it reduces to Lorenz system for Cattaneo number tending to zero. The linear stability agreed with existing results that depend on Cattaneo number C. It also gives a threshold Cattaneo number, CT, above which only oscillatory solutions can persist. The oscillatory solutions branch terminates at the subcritical steady branch with a heteroclinic loop connecting a pair of saddle points for subcritical steady-state solutions. For subcritical onset of convection two stable solutions coexist, that is, hysteresis phenomenon occurs at this stage. The steady solution undergoes a Hopf bifurcation and is of subcritical type for small value of C, while it becomes supercritical for moderate Cattaneo number. The system goes through period-doubling/noisy period-doubling transition to chaos depending on the control parameters. There after the system exhibits Shil'nikov chaos via homoclinic explosion. The complexity of spiral strange attractor is analyzed using fractal dimension and return map.
Benchmarking criticality analysis of TRIGA fuel storage racks.
Robinson, Matthew Loren; DeBey, Timothy M; Higginbotham, Jack F
2017-01-01
A criticality analysis was benchmarked to sub-criticality measurements of the hexagonal fuel storage racks at the United States Geological Survey TRIGA MARK I reactor in Denver. These racks, which hold up to 19 fuel elements each, are arranged at 0.61m (2 feet) spacings around the outer edge of the reactor. A 3-dimensional model was created of the racks using MCNP5, and the model was verified experimentally by comparison to measured subcritical multiplication data collected in an approach to critical loading of two of the racks. The validated model was then used to show that in the extreme condition where the entire circumference of the pool was lined with racks loaded with used fuel the storage array is subcritical with a k value of about 0.71; well below the regulatory limit of 0.8. A model was also constructed of the rectangular 2×10 fuel storage array used in many other TRIGA reactors to validate the technique against the original TRIGA licensing sub-critical analysis performed in 1966. The fuel used in this study was standard 20% enriched (LEU) aluminum or stainless steel clad TRIGA fuel. Copyright © 2016. Published by Elsevier Ltd.
Turbulence effect on crossflow around a circular cylinder at subcritical Reynolds numbers
NASA Technical Reports Server (NTRS)
Sadeh, W. Z.; Saharon, D. B.
1982-01-01
An investigation of the effect of freestream turbulence on the flow around a smooth circular cylinder at subcritical Reynolds numbers from 5.2 x 10 to the 4th power to 2.09 x 10 to the 5th power was conducted. Measurements show that the interaction of incident turbulence with the initial laminar boundary layer: (1) modifies the characteristics of the mean surface pressure distribution; (2) induces an aft shift in the separation point ranging from 5 to 50 beyond the laminar separation angle of 80 degrees; and, (3) reduces the mean drag coefficient to values between 97 and 46% of its nearly constant laminar counterpart. The extent of these changes depends on the particular Reynolds number background turbulence combination. These results demonstrate that a boundary-layer flow similar to that found in critical, supercritical and/or transcritical flow regimes is induced by turbulence at subcritical Reynolds numbers and, hence, the effect of turbulence is equivalent to an effective increase in the Reynolds number. The change in the nature and properties of the boundary layer in the subcritical regime, consequent upon the penetration of turbulence into it, is in agreement with the model proposed by the vorticity-amplification theory.
28 CFR 36.308 - Seating in assembly areas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Seating in assembly areas. 36.308 Section 36.308 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.308 Seating in assembly...
28 CFR 36.308 - Seating in assembly areas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Seating in assembly areas. 36.308 Section 36.308 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.308 Seating in assembly...
28 CFR 36.308 - Seating in assembly areas.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Seating in assembly areas. 36.308 Section 36.308 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.308 Seating in assembly...
28 CFR 36.308 - Seating in assembly areas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Seating in assembly areas. 36.308 Section 36.308 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Specific Requirements § 36.308 Seating in assembly...
Durability of polymer/metal interfaces under cyclic loading
NASA Astrophysics Data System (ADS)
Du, Tianbao
Fatigue crack growth along metal/epoxy interface was examined in an aqueous environment and under mixed-mode conditions. A stress corrosion cracking mechanism was identified in this process. The fatigue crack growth rate in an aqueous environment was increased by several orders of magnitude and the fatigue threshold decreased by a factor of 10. The loss of adhesion in the aqueous environment was induced by the hydration of the surface oxide which resulted in a hydroxide with poor adhesion to the substrate metal. Self-assembled monolayer of long chain alkyl phosphonic acid and amino phosphonic acid were synthesized to enhance the adhesion and improve the durability of Al/epoxy interfacial bonding system. The same approach was taken to promote adhesion between copper and epoxy, where a two-component coupling system of 11-mercapto-1-undercanol and 3-aminopropyltriethoxysilane provided the most significant improvement in the copper/epoxy adhesion. The mixed-mode was applied by a piezoelectric actuator. Subcritical crack growth was observed along the epoxy/aluminum interface and the growth rate was found to depend on the magnitude of the applied electric field. Kinetics of the crack growth was correlated with the piezoelectric driving force. The resulting crack growth behavior was compared with the results from the conventional mechanical testing technique. Large differences were found between these two methods. Using this newly developed technique, effects of loading mode and frequency were studied. The fatigue resistance was found to increase with the mode II component and was expressed as a function of the KII/K I ratio. A strong frequency effect was observed for the subcritical crack growth along the Al/Epoxy interface, their fatigue resistance increased with the testing frequency.
2008-04-18
Technicians at the NASA Dryden Aircraft Operations Facility in Palmdale, Calif., removed the German-built primary mirror assembly from the Stratospheric Observatory for Infrared Astronomy, or SOFIA, April 18, 2008 in preparation for the final finish coating of the mirror. A precision crane lifted the more than two-ton mirror assembly from its cavity in the rear fuselage of the highly modified Boeing 747SP. The assembly was then secured in its transport dolly and moved to a clean room where it was prepared for shipment to NASA Ames Research Center at Moffett Field near Mountain View, Calif. where it would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.
2009-06-11
CAPE CANAVERAL, Fla. – At the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, Robert Lightfoot, acting center director of NASA's Marshall Space Flight Center, speaks to employees who were involved in the processing of the Ares I-X forward assembly (comprising the frustum, forward skirt extension and forward skirt) . The forward assembly is being moved to the Vehicle Assembly Building's High Bay 4 for processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller
Radio frequency measurements and tuning of the China Material Irradiation Facility RFQ
NASA Astrophysics Data System (ADS)
Li, Chenxing; He, Yuan; Wang, Fengfeng; Yu, Peiyan; Yang, Lei; Li, Chunlong; Wang, Wenbin; Xu, Xianbo; Shi, Longbo; Ma, Wei; Sun, Liepeng; Lu, Liang; Wang, Zhijun; Shi, Aimin; Wang, Tieshan
2018-05-01
The full assembly and alignment of the China Material Irradiation Facility RFQ have been completed. Before the completion, the assembly and braze of single segments had been done. Radio frequency measurements of each module with dummy extension undercuts were performed before and after braze. The results reveal that there is no unexpected deformation after braze. After the full assembly, RF measurements and tuning have been performed in order to compensate the errors originated from the fabrication, braze and assembly. The impact of these errors on the field distribution is depressed to a level that is restricted by beam dynamics simulation. In this paper, the procedure of radio frequency measurement and tuning will be expatiated and the ultimate RF parameters of the cavity after tuning will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, H.J.; Niihara, Koichi
1997-01-15
Subcritical crack growth (SCG), the propagation of surface and subsurface flaws under subcritical stress, i.e., any stress less than that necessary to catastrophically propagate the flaw, is a general phenomenon frequently observed in ceramics. Recently, electrical devices are miniaturized and used under quite severe atmospheres. Such environments often lead to the initiation and propagation of cracks due to the repeated electrical cycling, stresses by the mismatch in thermal expansion coefficient between devices and other constituents and thermal shock. In this study, the authors fabricated BaTiO{sub 3} and BaTiO{sub 3}-based composites containing nano-sized SiC particulates. The SCG phenomenon and fractography weremore » discussed based on the data obtained from indentation-induced-fracture (IIF) method.« less
An experimental investigation on the subcritical instability in plane Poieseuille flow
NASA Technical Reports Server (NTRS)
Nishioka, T.; Honda, S.; Kamibayashi, S.
1981-01-01
The relationship between the three dimensional properties of the fundamental flow of a plane Poieseuille flow and subcritical stability was studied. An S-T wave was introduced into the flow and the three dimensional development of the wave observed. Results indicate that: (1) the T-S wave has three dimensional properties which are synchronous with the fundamental flow, but there is damping at microamplitude; (2) when the amplitude reaches a certain threshold, subcritical instability and peak valley bifurcation occur simultaneously and a peak valley structure is formed; (3) this threshold depends to a great extent on the frequency; and (4) after the peak valley bifurcation there is a transition to a turbulent flow by the process of laminar flow collapse identical to that in Blasius flow.
2009-06-11
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the Ares I-X forward assembly (comprising the frustum, forward skirt extension and forward skirt) begins to move out of the Assembly and Refurbishment Facility. It is being transferred to the Vehicle Assembly Building for stacking operations with other segments. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller
2009-06-11
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X forward assembly (comprising the frustum, forward skirt extension and forward skirt) is ready to be moved to the Vehicle Assembly Building for stacking operations with other segments. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller
A Design for an Orbital Assembly Facility for Complex Missions
NASA Astrophysics Data System (ADS)
Feast, S.; Bond, A.
A design is presented for an Operations Base Station (OBS) in low earth orbit that will function as an integral part of a space transportation system, enabling assembly and maintenance of a Cis-Lunar transportation infrastructure and integration of vehicles for other high energy space missions to be carried out. Construction of the OBS assumes the use of the SKYLON Single-Stage-to-Orbit (SSTO) spaceplane, which imposes design and assembly constraints due to its payload mass limits and payload bay dimensions. It is assumed that the space transport infrastructure and high mission energy vehicles would also make use of SKYLON to deploy standard transport equipment and stages bound by these same constraints. The OBS is therefore a highly modular arrangement, incorporating some of these other vehicle system elements in its layout design. Architecturally, the facilities of the OBS are centred around the Assembly Dock which is in the form of a large cylindrical spaceframe structure with two large doors on either end incorporating a skin of aluminised Mylar to enclose the dock. Longitudinal rails provide internal tether attachments to anchor vehicles and components while manipulators are used for the handling and assembling of vehicle structures. The exterior of the OBS houses the habitation modules for workforce and vehicle crews along with propellant farms and other operational facilities.
NASA Technical Reports Server (NTRS)
Chopra, Arsh; Ramirez, Gustavo A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.
2011-01-01
Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 mRad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.
NASA Technical Reports Server (NTRS)
Chopra, Arsh; Ramirez, Gustavo A.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.
2011-01-01
Spore forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate extreme environmental conditions such as radiation, desiccation, and high temperatures. Since the Viking era (early 1970's), spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. There is a growing concern that desiccation and extreme radiation resistant spore forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequently proliferate on another solar body. Such forward contamination would certainly jeopardize future life detection or sample return technologies. It is important to recognize that different classes of organisms are critical while calculating the probability of contamination, and methods must be devised to estimate their abundances. Microorganisms can be categorized based on radiation sensitivity as Type A, B, C, and D. Type C represents spores resistant to radiation (10% or greater survival above 0.8 Mrad gamma radiation). To address these questions we have purified 96 spore formers, isolated during planetary protection efforts of Mars Science Laboratory assembly for gamma radiation resistance. The spores purified and stored will be used to generate data that can be used further to model and predict the probability of forward contamination.
Descent Stage of Mars Science Laboratory During Assembly
2008-11-19
This image from early October 2008 shows personnel working on the descent stage of NASA Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.
Blister formation at subcritical doses in tungsten irradiated by MeV protons
NASA Astrophysics Data System (ADS)
Gavish Segev, I.; Yahel, E.; Silverman, I.; Makov, G.
2017-12-01
The material response of tungsten to irradiation by MeV protons has been studied experimentally, in particular with respect to bubble and blister formation. Tungsten samples were irradiated by 2.2 MeV protons at the Soreq Applied Research Accelerator Facility (SARAF) to doses of the order of 1017 protons/cm2 which are below the reported critical threshold for blister formation derived from keV range irradiation studies. Large, well-developed blisters are observed indicating that for MeV range protons the critical threshold is at least an order of magnitude lower than the lowest value reported previously. The effects of fluence, flux, and corresponding temperature on the distribution and characteristics of the obtained blisters were studied. FIB cross sections of several blisters exposed their depth and structure.
NASA Astrophysics Data System (ADS)
Chen, F.; La Duc, M. T.; Baker, A.; Koukol, R.; Barengoltz, J.; Kern, R.; Venkateswaran, K.
2001-12-01
Europa has attracted much attention as evidence suggests the presence of a liquid ocean beneath this Jupiter moon's frozen crust. Such an environment might be conducive to the origins of life. Since robotic exploration of Europa is being planned, it becomes crucial to prepare for bio-burden reduction of hardware assembled for Europa missions to avoid contamination of Europa's pristine environment. In this study, we examined the microbial diversity of samples collected from two flight-ready circuit boards and their assembly facility. Also, because Jupiter's strong radiation environment may be able to reduce the viable microbial contamination on flight components, we have also studied the effects of radiation on microbial communities found to be associated with the space-flight hardware and/or present in the assembly facility. Surface samples thought to be representative of considerable human contact were collected from two circuit boards and various locations within the assembly facility using polyester swabs (swab samples). Likewise, sterile wipes were used to sample a shelf above the workstation where the circuit boards were assembled and the floor of the facility (wipe samples). The swab and wipe samples were pooled separately and divided into two halves, one of which was irradiated with 1Mrad gamma radiation for 5.5 hours, the other was not irradiated. About 1.2x104 and 6x104 CFUs/m2 cultivable microbes were detected in the swab and wipe samples, respectively. Radiation proved effective in inhibiting the growth of most microbes. Further characterization of the bacterial colonies observed in the irradiated swab and wipe samples is necessary to determine the degree of the radiation resistance. The16S rDNA sequence analysis of the cultivable microbes indicated that the assembly facility consists mostly of the members of actinobacteria, corynebacteria and pseudomonads. However, the swab samples that include the circuit boards were predominantly populated with Bacillus and Staphylococcus. Molecular microbial diversity was also studied by cloning the 16S rDNA PCR fragment from the samples. The non-irradiated swab samples were largely populated by species of Exiguobacter and Bacillus whereas the irradiated swab samples were dominated by Bacillus and E. coli. Radiation damage of microorganisms was also investigated by epifluorescence microscopy. In summary, our study has shown that gamma radiation can inhibit the growth of most of the cultivable microbes, but preliminary results suggest that radiation such as this has little adverse effect on the DNA molecules of these microorganisms.
Environmental Control and Life Support Systems Test Facility at MSFC
NASA Technical Reports Server (NTRS)
2001-01-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.
SP-100 GES/NAT radiation shielding systems design and development testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disney, R.K.; Kulikowski, H.D.; McGinnis, C.A.
1991-01-10
Advanced Energy Systems (AES) of Westinghouse Electric Corporation is under subcontract to the General Electric Company to supply nuclear radiation shielding components for the SP-100 Ground Engineering System (GES) Nuclear Assembly Test to be conducted at Westinghouse Hanford Company at Richland, Washington. The radiation shielding components are integral to the Nuclear Assembly Test (NAT) assembly and include prototypic and non-prototypic radiation shielding components which provide prototypic test conditions for the SP-100 reactor subsystem and reactor control subsystem components during the GES/NAT operations. W-AES is designing three radiation shield components for the NAT assembly; a prototypic Generic Flight System (GFS) shield,more » the Lower Internal Facility Shield (LIFS), and the Upper Internal Facility Shield (UIFS). This paper describes the design approach and development testing to support the design, fabrication, and assembly of these three shield components for use within the vacuum vessel of the GES/NAT. The GES/NAT shields must be designed to operate in a high vacuum which simulates space operations. The GFS shield and LIFS must provide prototypic radiation/thermal environments and mechanical interfaces for reactor system components. The NAT shields, in combination with the test facility shielding, must provide adequate radiation attenuation for overall test operations. Special design considerations account for the ground test facility effects on the prototypic GFS shield. Validation of the GFS shield design and performance will be based on detailed Monte Carlo analyses and developmental testing of design features. Full scale prototype testing of the shield subsystems is not planned.« less
Change in hyporheic zone residence time under different surface flow states
NASA Astrophysics Data System (ADS)
Liu, Suning; Chui, Ting Fong May
2017-04-01
Hyporheic zone (HZ), which is the ecotone immediately below or adjacent to a stream, plays an important role in a stream ecological system. One of the most common metrics in evaluating the functioning of an HZ is residence time (RT) which is the duration a water molecule or a solute remains within the HZ. Many factors, such as meandering of a stream, heterogeneity of streambed, can influence the RT of an HZ. Stream discharge is another governing but less discussed factor. Different discharge values produce different flow states (i.e.., subcritical, critical and supercritical) and alluvial stream bed forms. This study examined the changes of RT in discharges of different states and their corresponding induced bed forms. It employed a toolbox developed by Stonedahl et al. (2015) within Netlogo to simulate the RT of an HZ, considering three discharge values in each of the supercritical, critical and subcritical states. It approximated the bed forms as sinusoidal waves with amplitudes and periods selected for each flow state. The simulated results suggest that the RT is minimum when the flow is critical, and it is longer for both subcritical and supercritical flows. For subcritical flow, the RT, as well as the fraction remained within the streambed during particle tracing, increases with the increase in discharge value. However, there is no such variation among the different discharge values of supercritical flow. Therefore, for supercritical flow, one combination of discharge value and bed form might be sufficient and representative. However, for subcritical flow, the variations of discharge values and their induced bed forms should be considered. Reference: Stonedahl, S.H., Roche, K.R., Stonedahl, F., & Packman, A.I. (2015). Visualizing Hyporheic Flow Through Bedforms Using Dye Experiments and Simulation. J. Vis. Exp. (105), e53285. doi: 10.3791/53285
Materials and Fuels Complex Tour
Miley, Don
2017-12-11
The Materials and Fuels Complex at Idaho National Laboratory is home to several facilities used for the research and development of nuclear fuels. Stops include the Fuel Conditioning Facility, the Hot Fuel Examination Facility (post-irradiation examination), and the Space and Security Power System Facility, where radioisotope thermoelectric generators (RTGs) are assembled for deep space missions.
The Michoud Assembly Facility (MAF)
NASA Technical Reports Server (NTRS)
2000-01-01
NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Visible on the right, is one of two brick smokestacks from the original refinery that still stand before the Michoud facility today.
The Michoud Assembly Facility (MAF)
NASA Technical Reports Server (NTRS)
2000-01-01
NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Two brick smokestacks from the original refinery still stand before the Michoud facility today.
NASA Technical Reports Server (NTRS)
Chao, L. Y.; Singh, D.; Shetty, D. K.
1988-01-01
A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.
Global Solutions for the zero-energy Novikov–Veselov equation by inverse scattering
NASA Astrophysics Data System (ADS)
Music, Michael; Perry, Peter
2018-07-01
Using the inverse scattering method, we construct global solutions to the Novikov–Veselov equation for real-valued decaying initial data q 0 with the property that the associated Schrödinger operator is nonnegative. Such initial data are either critical (an arbitrarily small perturbation of the potential makes the operator nonpositive) or subcritical (sufficiently small perturbations of the potential preserve non-negativity of the operator). Previously, Lassas, Mueller, Siltanen and Stahel proved global existence for critical potentials, also called potentials of conductivity type. We extend their results to include the much larger class of subcritical potentials. We show that the subcritical potentials form an open set and that the critical potentials form the nowhere dense boundary of this open set. Our analysis draws on previous work of the first author and on ideas of Grinevich and Manakov.
A compendium of existing HOV lane facilities in the United States
DOT National Transportation Integrated Search
2008-12-01
The compendium provides an assembly of available information on existing HOV lane facilities in the United States. While it is comprehensive and thought to include virtually all existing facilities at this time, it is possible that there are isolated...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-65,762] Chrysler, LLC, Sterling Heights Assembly Plant Including On-Site Leased Workers From Caravan Knight Facilities Management LLC and... Chrysler, LLC, Sterling Heights Assembly Plant, Sterling Heights, Michigan. The notice was published in the...
Treatment planning capability assessment of a beam shaping assembly for accelerator-based BNCT.
Herrera, M S; González, S J; Burlon, A A; Minsky, D M; Kreiner, A J
2011-12-01
Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT) a theoretical study was performed to assess the treatment planning capability of different configurations of an optimized beam shaping assembly for such a facility. In particular this study aims at evaluating treatment plans for a clinical case of Glioblastoma. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Purves, Lloyd R. (Inventor)
1992-01-01
A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.
Pan, Z.; Chou, I-Ming; Burruss, R.C.
2009-01-01
The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water.
Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek
2016-01-01
This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less
Accelerator–Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
2015-01-01
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focused on issues of interest, e.g. the impact of the energy required to run the accelerator and associated systems onmore » the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are a critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also reviewed the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity versus a critical fast reactor with recycle of uranium and plutonium.« less
Accelerator-Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Heidet, Florent; Brown, Nicholas R.; Haj Tahar, Malek
This article is a review of several accelerator-reactor interface issues and nuclear fuel cycle applications of accelerator-driven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.
Improving Robotic Assembly of Planar High Energy Density Targets
NASA Astrophysics Data System (ADS)
Dudt, D.; Carlson, L.; Alexander, N.; Boehm, K.
2016-10-01
Increased quantities of planar assemblies for high energy density targets are needed with higher shot rates being implemented at facilities such as the National Ignition Facility and the Matter in Extreme Conditions station of the Linac Coherent Light Source. To meet this growing demand, robotics are used to reduce assembly time. This project studies how machine vision and force feedback systems can be used to improve the quantity and quality of planar target assemblies. Vision-guided robotics can identify and locate parts, reducing laborious manual loading of parts into precision pallets and associated teaching of locations. On-board automated inspection can measure part pickup offsets to correct part drop-off placement into target assemblies. Force feedback systems can detect pickup locations and apply consistent force to produce more uniform glue bond thickness, thus improving the performance of the targets. System designs and performance evaluations will be presented. Work supported in part by the US DOE under the Science Undergraduate Laboratory Internships Program (SULI) and ICF Target Fabrication DE-NA0001808.
Massively Parallel Nanostructure Assembly Strategies for Sensing and Information Technology. Phase 2
2013-05-25
field. This work has focused on the synthesis of new functional materials and the development of high-throughput, facile methods to assemble...Hong (Seoul National University, Korea). Specifically, gapped nanowires (GNW) were identified as candidate materials for synthesis and assembly as...Throughout the course of this grant, we reported major accomplishments both in the synthesis and assembly of such structures. Synthetically, we report three
HEU Holdup Measurements in 321-M B and Spare U-Al Casting Furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salaymeh, S.R.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. This report covers holdup measurements in two uranium aluminum alloy (U-Al) casting furnaces. Our results indicate an upper limit of 235U content for the B and Spare furnaces of 51 and 67 g respectively. This report discusses themore » methodology, non-destructive assay (NDA) measurements, and results of the uranium holdup on the two furnaces.« less
2009-06-11
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, the Ares I-X forward assembly (comprising the frustum, forward skirt extension and forward skirt) moves out of the Assembly and Refurbishment Facility. It is being transferred to the Vehicle Assembly Building's High Bay 4 for processing and stacking to the upper stage. Ares I-X is the flight test for the Ares I which will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller
Assembling, maintaining and servicing Space Station
NASA Technical Reports Server (NTRS)
Doetsch, K. H.; Werstiuk, H.; Creasy, W.; Browning, R.
1987-01-01
The assembly, maintenance, and servicing of the Space Station and its facilities are discussed. The tools and facilities required for the assembly, maintenance, and servicing of the Station are described; the ground and transportation infrastructures needed for the Space Station are examined. The roles of automation and robotics in reducing the EVAs of the crew, minimizing disturbances to the Space Station environment, and enhancing user friendliness are investigated. Servicing/maintenance tasks are categorized based on: (1) urgency, (2) location of servicing/maintenance, (3) environmental control, (4) dexterity, (5) transportation, (6) crew interactions, (7) equipment interactions, and (8) Space Station servicing architecture. An example of a servicing mission by the Space Station for the Hubble Space Telescope is presented.
Experiences with welding multi-assembly sealed baskets at Palisades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agace, S.; Worrell, S.; Stewart, L.
1995-12-01
Four utilities were using operational canister-based dry storage facilities at year-end, and seven more have contracts to establish similar facilities. Consumers Power`s Palisades Nuclear Power Plant has successfully completed loading its eighth dry storage canister with the Ventilated Storage Cask (VSC) system, under license to Sierra Nuclear Corporation. The VSC has a Multi-Assembly Sealed Basket (MSB) containing 24 specially-selected and aged spent fuel assemblies. MSB closure occurs when two independent lids are welded at the utility. The canister wall and lids are SA-516 Grade 70 carbon steel. This paper discusses the welding system design, closure operations and MSB closure operationsmore » at Palisades.« less
1967-01-01
NASA used barges for transporting full-sized stages for the Saturn I, Saturn IB, and Saturn V vehicles between the Marshall Space Flight Center (MSFC), the manufacturing plant at the Michoud Assembly Facility (MAF), the Mississippi Test Facility for testing, and the Kennedy Space Center. The barges traveled from the MSFC dock to the MAF, a total of 1,086.7 miles up the Tennessee River and down the Mississippi River. The barges also transported the assembled stages of the Saturn vehicle from the MAF to the Kennedy Space Center, a total of 932.4 miles along the Gulf of Mexico and up along the Atlantic Ocean, for the final assembly and the launch. This photograph shows the barge Orion at the MSFC dock.
Energy Sourcebook for Educational Facilities.
ERIC Educational Resources Information Center
Council of Educational Facility Planners, Columbus, OH.
The Council of Educational Facility Planners, International (CEFP/I) has assembled an authoritative and comprehensive sourcebook for the design and management of energy efficient educational facilities. Information that bridges the gap between scientific energy theory/research/technology and the needs of the educational community is published in…
NASA Technical Reports Server (NTRS)
1994-01-01
Lockheed Space Operations Company workers in the Extended Duration Orbiter (EDO) Facility, located inside the Vehicle Assembly Building (VAB), carefully hoist the Orbiter Docking System (ODS) from its shipping container into a test stand. The ODS was ship
Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system
NASA Astrophysics Data System (ADS)
Yan, Fang; Pei, Shilun; Geng, Huiping; Meng, Cai; Zhao, Yaliang; Sun, Biao; Cheng, Peng; Yang, Zheng; Ouyang, Huafu; Li, Zhihui; Tang, Jingyu; Wang, Jianli; Sui, Yefeng; Dai, Jianping; Sha, Peng; Ge, Rui
2015-05-01
The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC) spoke cavities with β =0.12 . The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β =0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ˜5 MeV . Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.
X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility
NASA Technical Reports Server (NTRS)
O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall
2003-01-01
In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary features --- fixed aperture mask and movable sub-aperture mask --- to facilitate X-ray characterization of the optics. Although the OAPZ was designed to- have low sensitivity to temperature offsets and gradients, analyses showed the necessity of active temperature control for the X-ray performance testing. Thus, the Smithsonian Astrophysical Observatory (SAO) implemented a thermal control and monitoring system, designed to hold the OAP2 close to its assembly.
1968-10-01
The Saturn IB and Saturn V flight vehicles first stages were manufactured at the Michoud Assembly Facility located 24 kilometers (approximately 15 miles) east of downtown New Orleans, Louisiana. The basic manufacturing building boasted 43 acres under one roof. By 1964, NASA added a separate engineering and office building, vertical assembly building, and test stage building. By 1966, other changes to the site included enlarged barge facilities and other miscellaneous support buildings. The image is a view of various vehicle components in the manufacturing plant.
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... affected facility. 60.390 Section 60.390 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and...
Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.
Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji
2014-02-26
Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique.
NASA Astrophysics Data System (ADS)
Wei, Guang-Tao; Wei, Chao-Hai; He, Feng-Mei; Wu, Chao-Fei
Bifunctional Fe/ZrO2 was prepared by mechanical mixing method, and its bifunctional effect on reductive dechlorination of chlorobenzene in subcritical water was studied. Dechlorination efficiency increased with increasing iron content in catalyst and catalyst amount. Dechlorination efficiency slowed when the iron content in catalyst reached 30%; bifunctional catalyst of Fe/ZrO2 was more efficient in dechlorination of chlorobenzene than Fe alone. Catalyst of Fe (30%)/ZrO2 was characterized by means of X-ray diffraction (XRD), H2 temperature programmed desorption (H2-TPD), and N2 adsorption. The possible mechanism of dechlorination in subcritical water by this bifunctional catalyst was proposed. H+ produced in the water dissociation formed the highly reactive spillover hydrogen on the surface of catalyst, and then reacted with chlorobenzene adsorbed on the catalyst surface by ZrO2 to form benzene and chloride ions.
Droux, S; Roy, M; Félix, G
2014-10-01
We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonnelli, E.; Diniz, R.; Dos Santos, A.
The presented work shows the preliminary results of an experimental procedure to overcome the helium-3 detectors shortage in the IPEN/MB-01 nuclear reactor and be feasible the study of the high subcritical states with less sensitivity detectors. The main principle was employing the input logic nuclear module which was possible to execute logic operations with the neutron signals. Though these signals was possible to construct the Auto Power Spectral Densities (APSD) and obtain the Prompt Neutron Constant Decay (α). Two different kinds of thermal neutron detectors were used ({sup 3}He and BF{sub 3}). The arrangement was initially constituted by one ofmore » each type detector and, posteriorly, for a more complete data acquisition, in groups of two detectors for all subcritical configurations. The experiment was carried out using the control banks (BC-1 and BC-2) insertion to achieve all the subcritical states studied in this work. (authors)« less
Fan, Rui; Li, Nan; Xu, Honggao; Xiang, Jun; Wang, Lei; Gao, Yanxiang
2016-01-01
To improve the bioactivity and sweetness properties of glycyrrhizic acid (GL), the hydrothermal hydrolysis of GL into glycyrrhetinic acid (GA) and glycyrrhetinic acid 3-O-mono-β-D-glucuronide (GAMG) in subcritical water was investigated. The effects of temperature, time and their interaction on the conversion ratios were analyzed and the reactions were elaborated with kinetics and thermodynamics. The results showed that GL hydrothermal hydrolysis was significantly (P < 0.05) affected by reaction time and temperature, as well as their interaction, and could be fitted into first-order kinetics. The thermodynamic analysis indicated that the hydrolysis of GL was endergonic and non-spontaneous. The hydrolytic pathways were composed of complex consecutive and parallel reactions. It was concluded that subcritical water may be a potential medium for producing GAMG and GA. Copyright © 2015 Elsevier Ltd. All rights reserved.
A microfluidic sub-critical water extraction instrument
NASA Astrophysics Data System (ADS)
Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank
2017-11-01
This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.
Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan
2017-03-01
A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
14. INTERIOR VIEW TO THE SOUTH OF ROOM 136, COLD ...
14. INTERIOR VIEW TO THE SOUTH OF ROOM 136, COLD ASSEMBLY BAY NO. 2. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
13. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 101, COLD ...
13. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 101, COLD ASSEMBLY BAY NO. 1. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
2009-06-08
CAPE CANAVERAL, Fla. – The Ares I-X aft skirt moves past the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida on its way to the Rotation, Processing and Surge Facility. In the RPSF, it will be stacked with the aft motor to form the aft assembly. The complete Ares I-X will be assembled in the Vehicle Assembly Building. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Jim Grossmann
2009-06-08
CAPE CANAVERAL, Fla. – The Ares I-X aft skirt moves past the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida on its way to the Rotation, Processing and Surge Facility. In the RPSF, it will be stacked with the aft motor to form the aft assembly. The complete Ares I-X will be assembled in the Vehicle Assembly Building. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Jim Grossmann
2007-11-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the integrated cargo carrier-lite, or ICC-L, into the payload canister below. The ICC-L is an unpressurized cross-bay carrier providing launch and return transportation with the space shuttle. It rests on a keel yoke assembly, seen underneath. The ICC-L carries three elements: a nitrogen tank assembly that is part of the external active thermal control system on the International Space Station, the European technology Exposure Facility composed of nine science instruments and an autonomous temperature measurement unit, and the SOLAR payload designed for sun observation. The nitrogen tank assembly is mounted underneath. The exposure facility is seen at left on top, and the SOLAR is on the right. The SOLAR will be transferred and stowed on the Columbus module during the third spacewalk of the mission. STS-122 is targeted for launch on Dec. 6 on space shuttle Atlantis. Photo credit: NASA/Amanda Diller
2007-11-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the integrated cargo carrier-lite, or ICC-L, into the payload canister below. The ICC-L is an unpressurized cross-bay carrier providing launch and return transportation with the space shuttle. It rests on a keel yoke assembly, seen underneath. The ICC-L carries three elements: a nitrogen tank assembly that is part of the external active thermal control system on the International Space Station, the European technology Exposure Facility composed of nine science instruments and an autonomous temperature measurement unit, and the SOLAR payload designed for sun observation. The nitrogen tank assembly is mounted underneath. The exposure facility is seen at left on top, and the SOLAR is on the right. The SOLAR will be transferred and stowed on the Columbus module during the third spacewalk of the mission. STS-122 is targeted for launch on Dec. 6 on space shuttle Atlantis. Photo credit: NASA/Amanda Diller
Isolation of the Paenibacillus phoenicis, a Spore-Forming Bacterium
NASA Technical Reports Server (NTRS)
Benardini, James N.; Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Osman, Shariff; Satomi, Masataka
2010-01-01
A microorganism was isolated from the surfaces of the cleanroom facility in which the Phoenix lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Paenibacillus and represents a novel species. Bacillus spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Spores of Bacillus species are of particular concern to planetary protection due to the extreme resistance of some members of the genus to space environmental conditions such as UV and gamma radiation, vacuum, oxidation, and temperature fluctuation. These resistive spore phenotypes have enhanced potential for transfer, and subsequent proliferation, of terrestrial microbes on another solar body. Due to decreased nutrient conditions within spacecraft assembly facility clean rooms, the vegetative cells of Bacillus species and other spore-forming Paenibacillus species are induced to sporulate, thereby enhancing their survivability of bioreduction
Hardy Bacterium Isolated From Two Geographically Distinct Spacecraft Assembly Cleanroom Facilities
NASA Technical Reports Server (NTRS)
Vaisham-payan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra; Moissl-Eichinger, Christine
2012-01-01
Earlier studies have confirmed that a tenacious hardy bacterial population manages to persist and survive throughout a spacecraft assembly process. The widespread detection of these organisms underscores the challenges in eliminating them completely. Only comprehensive and repetitive microbial diversity studies of geographically distinct cleanroom facilities will bolster the understanding of planetary protection relevant microbes. Extensive characterizations of the physiological traits demonstrated by cleanroom microbes will aid NASA in gauging the forward contamination risk that hardy bacteria (such as Tersicoccus phoenicis) pose to spacecraft. This study reports on the isolation and identification of two gram-positive, non-motile, non-spore-forming bacterial strains from the spacecraft assembly facilities at Kennedy Space Center, Florida, USA and Centre Spatial Guyanais, Kourou, French Guiana. DNA-DNA relatedness values between the novel strains indicates that these novel strains were indeed members of a same species. Phylogenetic evidence derived from a 16S ribosomal DNA analysis indicated that both the novel strains are less closely related to all other Arthrobacter species.
Dynamic pathways for viral capsid assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, Michael F.; Chandler, David
2006-02-09
We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss themore » relationship between these mechanisms and experimental evaluations of capsid assembly processes.« less
Posttest examination of Sodium Loop Safety Facility experiments. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.
In-reactor, safety experiments performed in the Sodium Loop Safety Facility (SLSF) rely on comprehensive posttest examinations (PTE) to characterize the postirradiation condition of the cladding, fuel, and other test-subassembly components. PTE information and on-line instrumentation data, are analyzed to identify the sequence of events and the severity of the accident for each experiment. Following in-reactor experimentation, the SLSF loop and test assembly are transported to the Hot Fuel Examination Facility (HFEF) for initial disassembly. Goals of the HFEF-phase of the PTE are to retrieve the fuel bundle by dismantling the loop and withdrawing the test assembly, to assess the macro-conditionmore » of the fuel bundle by nondestructive examination techniques, and to prepare the fuel bundle for shipment to the Alpha-Gamma Hot Cell Facility (AGHCF) at Argonne National Laboratory.« less
4. EXTERIOR VIEW TO THE EAST OF THE WEST ELEVATION ...
4. EXTERIOR VIEW TO THE EAST OF THE WEST ELEVATION OF THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
PBF Reactor Building (PER620). Fuel rod test assembly is on ...
PBF Reactor Building (PER-620). Fuel rod test assembly is on display at PBF. Date: 1982. INEEL negative no. 82-4893 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
View of parking (resting) frame that supported the Shuttle assembly ...
View of parking (resting) frame that supported the Shuttle assembly when the hydrodynamic supports were not engaged (removed from structure). - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
56. V2 ASSEMBLY BUILDING (BUILDING 1538): VIEW FROM NORTHEAST, WITH ...
56. V-2 ASSEMBLY BUILDING (BUILDING 1538): VIEW FROM NORTHEAST, WITH MILL BUILDING IN BACKGROUND AT FAR RIGHT - White Sands Missile Range, V-2 Rocket Facilities, Near Headquarters Area, White Sands, Dona Ana County, NM
Application of real-time digitization techniques in beam measurement for accelerators
NASA Astrophysics Data System (ADS)
Zhao, Lei; Zhan, Lin-Song; Gao, Xing-Shun; Liu, Shu-Bin; An, Qi
2016-04-01
Beam measurement is very important for accelerators. In this paper, modern digital beam measurement techniques based on IQ (In-phase & Quadrature-phase) analysis are discussed. Based on this method and high-speed high-resolution analog-to-digital conversion, we have completed three beam measurement electronics systems designed for the China Spallation Neutron Source (CSNS), Shanghai Synchrotron Radiation Facility (SSRF), and Accelerator Driven Sub-critical system (ADS). Core techniques of hardware design and real-time system calibration are discussed, and performance test results of these three instruments are also presented. Supported by National Natural Science Foundation of China (11205153, 10875119), Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-N27), and the Fundamental Research Funds for the Central Universities (WK2030040029),and the CAS Center for Excellence in Particle Physics (CCEPP).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, D.T.; Davis, J.R.
This report assesses the nuclear criticality safety associated with the decontaminated salt solution after passing through the In-Tank Precipitation (ITP) filters, through the stripper columns and into Tank 50H for interim storage until transfer to the Saltstone facility. The criticality safety basis for the ITP process is documented. Criticality safety in the ITP filtrate has been analyzed under normal and process upset conditions. This report evaluates the potential for criticality due to the precipitation or crystallization of fissionable material from solution and an ITP process filter failure in which insoluble material carryover from salt dissolution is present. It is concludedmore » that no single inadvertent error will cause criticality and that the process will remain subcritical under normal and credible abnormal conditions.« less
1967-01-01
NASA used barges for transporting full-sized stages for the Saturn I, Saturn IB, and Saturn V vehicles between the Marshall Space Flight Center (MSFC), the manufacturing plant at the Michoud Assembly Facility (MAF), the Mississippi Test Facility for testing, and the Kennedy Space Center. The barges traveled from the MSFC dock to the MAF, a total of 1,086.7 miles up the Tennessee River and down the Mississippi River. The barges also transported the assembled stages of the Saturn vehicle from the MAF to the Kennedy Space Center, a total of 932.4 miles along the Gulf of Mexico and up along the Atlantic Ocean, for the final assembly and the launch. Pictured is the barge Palaemon carrying Saturn IV S-IB flight stage enroute to MSFC.
An assembler for the MOS Technology 6502 microprocessor as implemented in jolt (TM) and KIM-1 (TM)
NASA Technical Reports Server (NTRS)
Lilley, R. W.
1976-01-01
Design of low-cost, microcomputer-based navigation receivers, and the assembler are described. The development of computer software for microprocessors is materially aided by the assembler program using mnemonic variable names. The flexibility of the environment provided by the IBM's Virtual Machine Facility and the Conversational Monitor System, make possible the convenient assembler access. The implementation of the assembler for the microprocessor chip serves a part of the present need and forms a model for support of other microprocessors.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Canadian Space Agency astronaut Chris Hadfield address the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Roger Elliot with United Space Alliance addresses the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Vehicle Assembly Building (VAB)
2017-09-27
NASA's Vehicle Assembly Building at Kennedy Space Center in Florida was used to assemble and house American-crewed launch vehicles from 1968 to 2011. AT 3,684,883 cubic meters, it is one of the largest buildings in the world by volume. Inside the facility, High Bay 3 is being upgraded and modified to support processing of the agency's Space Launch System rocket and Orion spacecraft.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Center Director Bob Cabana speaks to the attendees at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
Droplet turbulence interactions under subcritical and supercritical conditions
NASA Technical Reports Server (NTRS)
Coy, E. B.; Greenfield, S. C.; Ondas, M. S.; Song, Y.-H.; Spegar, T. D.; Santavicca, D. A.
1993-01-01
The goal of this research is to experimentally characterize the behavior of droplets in vaporizing liquid sprays under conditions typical of those encountered in high pressure combustion systems such as liquid fueled rocket engines. Of particular interest are measurements of droplet drag, droplet heating, droplet vaporization, droplet distortion, and secondary droplet breakup, under both subcritical and supercritical conditions. The paper presents a brief description of the specific accomplishments which have been made over the past year.
NASA Astrophysics Data System (ADS)
Moss, Tyler; Was, Gary S.
2017-04-01
The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in
2015-03-15
The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less
Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.
Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul
2016-01-01
Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.
NASA Astrophysics Data System (ADS)
Stacey, W. M.
2009-09-01
The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-12
..., CDI, Syncreon and Caravan Knight Facilities Management LLC; Detriot, MI; Amended Certification... workers from Aerotek, CDI, Syncreon and Caravan Knight Facilities Management LLC, Detroit, Michigan, who...
10. INTERIOR VIEW TO THE NORTH OF THE HALLWAY WITHIN ...
10. INTERIOR VIEW TO THE NORTH OF THE HALLWAY WITHIN THE ADMINISTRATION PORTION OF THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
15. INTERIOR VIEW TO THE EAST OF ROOM 102, A ...
15. INTERIOR VIEW TO THE EAST OF ROOM 102, A MACHINE SHOP ADJACENT TO ASSEMBLY BAY NO. 1. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC.
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. STA emerges from Barge Pegasus.
Accelerator-driven transmutation of spent fuel elements
Venneri, Francesco; Williamson, Mark A.; Li, Ning
2002-01-01
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing
Duality in an asset exchange model for wealth distribution
NASA Astrophysics Data System (ADS)
Li, Jie; Boghosian, Bruce M.
2018-05-01
Asset exchange models are agent-based economic models with binary transactions. Previous investigations have augmented these models with mechanisms for wealth redistribution, quantified by a parameter χ, and for trading bias favoring wealthier agents, quantified by a parameter ζ. By deriving and analyzing a Fokker-Planck equation for a particular asset exchange model thus augmented, it has been shown that it exhibits a second-order phase transition at ζ / χ = 1, between regimes with and without partial wealth condensation. In the "subcritical" regime with ζ / χ < 1, all of the wealth is classically distributed; in the "supercritical" regime with ζ / χ > 1, a fraction 1 - χ / ζ of the wealth is condensed. Intuitively, one may associate the supercritical, wealth-condensed regime as reflecting the presence of "oligarchy," by which we mean that an infinitesimal fraction of the total agents hold a finite fraction of the total wealth in the continuum limit. In this paper, we further elucidate the phase behavior of this model - and hence of the generalized solutions of the Fokker-Planck equation that describes it - by demonstrating the existence of a remarkable symmetry between its supercritical and subcritical regimes in the steady-state. Noting that the replacement { ζ → χ , χ → ζ } , which clearly has the effect of inverting the order parameter ζ / χ, provides a one-to-one correspondence between the subcritical and supercritical states, we demonstrate that the wealth distribution of the subcritical state is identical to that of the corresponding supercritical state when the oligarchy is removed from the latter. We demonstrate this result analytically, both from the microscopic agent-level model and from its macroscopic Fokker-Planck description, as well as numerically. We argue that this symmetry is a kind of duality, analogous to the famous Kramers-Wannier duality between the subcritical and supercritical states of the Ising model, and to the Maldacena duality that underlies AdS/CFT theory.
On the finite element modeling of the asymmetric cracked rotor
NASA Astrophysics Data System (ADS)
AL-Shudeifat, Mohammad A.
2013-05-01
The advanced phase of the breathing crack in the heavy duty horizontal rotor system is expected to be dominated by the open crack state rather than the breathing state after a short period of operation. The reason for this scenario is the expected plastic deformation in crack location due to a large compression stress field appears during the continuous shaft rotation. Based on that, the finite element modeling of a cracked rotor system with a transverse open crack is addressed here. The cracked rotor with the open crack model behaves as an asymmetric shaft due to the presence of the transverse edge crack. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix which yields a linear time-periodic system. The harmonic balance method (HB) is used for solving the finite element (FE) equations of motion for studying the dynamic behavior of the system. The behavior of the whirl orbits during the passage through the subcritical rotational speeds of the open crack model is compared to that for the breathing crack model. The presence of the open crack with the unbalance force was found only to excite the 1/2 and 1/3 of the backward critical whirling speed. The whirl orbits in the neighborhood of these subcritical speeds were found to have nearly similar behavior for both open and breathing crack models. While unlike the breathing crack model, the subcritical forward whirling speeds have not been observed for the open crack model in the response to the unbalance force. As a result, the behavior of the whirl orbits during the passage through the forward subcritical rotational speeds is found to be enough to distinguish the breathing crack from the open crack model. These whirl orbits with inner loops that appear in the neighborhood of the forward subcritical speeds are then a unique property for the breathing crack model.
NASA Astrophysics Data System (ADS)
Eppes, M. C.; Hancock, G. S.; Dewers, T. A.; Chen, X.; Eichhubl, P.
2017-12-01
There is a disconnect between measured rates of rock erosion and regolith production and our understanding of the factors and processes that drive them. Here we examine the mechanical weathering (cracking) characteristics of natural, bare bedrock outcrops characterized by 10Be derived erosion rates that vary from 2 to 40 m/my in the Blue Ridge Mountains, VA. Observed erosion rate variance generally correlates with rock type; we seek to characterize and quantify to what extent the mechanical weathering properties of the different rock types drive erosion rates. We assert that subcritical cracking constitutes the primary mechanism by which the outcrops increase their porosity and subsequently weather and erode. We therefore hypothesize that rock parameters that control rates and styles of subcritical cracking set the outcrop erosion rates. For each outcrop, we measured crack characteristics along transects: for every crack >2 cm length, we measured its length, width, orientation, and weathering characteristics (rounded vs sharp edges); and we measured the thickness of all `steps' (spallation remnants) encountered in the transects. For most outcrops, we collected surface samples in order to characterize their mineralogy and microcracking characteristics through thin section analysis. For each rock type, we collected samples for which we measured fracture toughness, as well as the subcritical crack growth index under different moisture conditions. Preliminary analysis of the field crack data indicates that each rock type (granite, sandstone, quartzite) is characterized by unique macro- and micro-scale crack characteristics consistent with known generic subcritical cracking parameters for those rocks. Crack density and length correlate with erosion rates in faster eroding rock types, but not slowly eroding ones. Overall, we hope these data will help to shed light on the driving and limiting factors for the mechanical production of porosity in rock at and near Earth's surface.
Breaking rocks made easy: subcritical processes and tectonic predesign
NASA Astrophysics Data System (ADS)
Voigtlaender, Anne; Krautblatter, Michael
2017-04-01
In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of the forms we study, and break rocks easily.
2009-01-01
for a fundamental physical understanding of electronic properties . The Materials Processing Facility includes appa- ratuses for powder production by...situ. Facilities to process powder into bulk specimens by hot and cold isostatic pressing permit a variety of consolidation possibilities. The iso...Synthesis/ Property Measurement Facility has special emphasis on polymers, surface-film processing , and directed self-assembly. The Chemical Vapor
30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF ...
30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF SOUTH SIDE OF FACILITY, INCLUDING BUNKER, CABLE CHASE, SHIELDING TANK, AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-2. INEL INDEX CODE NUMBER: 075 0701 851 151971. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
2009-02-20
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility of NASA's Kennedy Space Center, workers remove the cover from the frustum, the last newly manufactured section of the Ares I-X test rocket. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. Weighing in at approximately 13,000 pounds, the 10-foot-long section is composed of two aluminum rings attached to a truncated conic section. The large diameter of the cone is 18 feet and the small diameter is 12 feet. The cone is 1.25 inches thick. The frustum will be integrated with the forward skirt and forward skirt extension, which already are in the Assembly and Refurbishment Facility. That will complete the forward assembly. The assembly then will be moved to the Vehicle Assembly Building for stacking operations, which are scheduled to begin in April. Manufactured by Major Tool and Machine Inc. in Indiana under a subcontract with Alliant Techsystems Inc., or ATK, the Ares I-X is targeted to launch in the summer of 2009. The flight will provide NASA with an early opportunity to test and prove hardware, facilities and ground operations associated with the Ares I launch vehicle. The flight test also will bring NASA a step closer to its exploration goals of sending humans to the moon and destinations beyond. Photo credit: NASA/Kim Shiflett
2009-02-20
CAPE CANAVERAL, Fla. – The last newly manufactured section of the Ares I-X test rocket, the frustum, arrives at the Assembly and Refurbishment Facility of NASA's Kennedy Space Center. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. Weighing in at approximately 13,000 pounds, the 10-foot-long section is composed of two aluminum rings attached to a truncated conic section. The large diameter of the cone is 18 feet and the small diameter is 12 feet. The cone is 1.25 inches thick. The frustum will be integrated with the forward skirt and forward skirt extension, which already are in the Assembly and Refurbishment Facility. That will complete the forward assembly. The assembly then will be moved to the Vehicle Assembly Building for stacking operations, which are scheduled to begin in April. Manufactured by Major Tool and Machine Inc. in Indiana under a subcontract with Alliant Techsystems Inc., or ATK, the Ares I-X is targeted to launch in the summer of 2009. The flight will provide NASA with an early opportunity to test and prove hardware, facilities and ground operations associated with the Ares I launch vehicle. The flight test also will bring NASA a step closer to its exploration goals of sending humans to the moon and destinations beyond. Photo credit: NASA/Kim Shiflett
2009-02-20
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility of NASA's Kennedy Space Center, workers remove the cover from the frustum, the last newly manufactured section of the Ares I-X test rocket. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. Weighing in at approximately 13,000 pounds, the 10-foot-long section is composed of two aluminum rings attached to a truncated conic section. The large diameter of the cone is 18 feet and the small diameter is 12 feet. The cone is 1.25 inches thick. The frustum will be integrated with the forward skirt and forward skirt extension, which already are in the Assembly and Refurbishment Facility. That will complete the forward assembly. The assembly then will be moved to the Vehicle Assembly Building for stacking operations, which are scheduled to begin in April. Manufactured by Major Tool and Machine Inc. in Indiana under a subcontract with Alliant Techsystems Inc., or ATK, the Ares I-X is targeted to launch in the summer of 2009. The flight will provide NASA with an early opportunity to test and prove hardware, facilities and ground operations associated with the Ares I launch vehicle. The flight test also will bring NASA a step closer to its exploration goals of sending humans to the moon and destinations beyond. Photo credit: NASA/Kim Shiflett
2009-02-20
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility of NASA's Kennedy Space Center, the last newly manufactured section of the Ares I-X test rocket, the frustum, is revealed after removal of the shipping covers. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. Weighing in at approximately 13,000 pounds, the 10-foot-long section is composed of two aluminum rings attached to a truncated conic section. The large diameter of the cone is 18 feet and the small diameter is 12 feet. The cone is 1.25 inches thick. The frustum will be integrated with the forward skirt and forward skirt extension, which already are in the Assembly and Refurbishment Facility. That will complete the forward assembly. The assembly then will be moved to the Vehicle Assembly Building for stacking operations, which are scheduled to begin in April. Manufactured by Major Tool and Machine Inc. in Indiana under a subcontract with Alliant Techsystems Inc., or ATK, the Ares I-X is targeted to launch in the summer of 2009. The flight will provide NASA with an early opportunity to test and prove hardware, facilities and ground operations associated with the Ares I launch vehicle. The flight test also will bring NASA a step closer to its exploration goals of sending humans to the moon and destinations beyond. Photo credit: NASA/Kim Shiflett
2009-02-20
CAPE CANAVERAL, Fla. – The last newly manufactured section of the Ares I-X test rocket, the frustum, is offloaded in the Assembly and Refurbishment Facility of NASA's Kennedy Space Center. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. Weighing in at approximately 13,000 pounds, the 10-foot-long section is composed of two aluminum rings attached to a truncated conic section. The large diameter of the cone is 18 feet and the small diameter is 12 feet. The cone is 1.25 inches thick. The frustum will be integrated with the forward skirt and forward skirt extension, which already are in the Assembly and Refurbishment Facility. That will complete the forward assembly. The assembly then will be moved to the Vehicle Assembly Building for stacking operations, which are scheduled to begin in April. Manufactured by Major Tool and Machine Inc. in Indiana under a subcontract with Alliant Techsystems Inc., or ATK, the Ares I-X is targeted to launch in the summer of 2009. The flight will provide NASA with an early opportunity to test and prove hardware, facilities and ground operations associated with the Ares I launch vehicle. The flight test also will bring NASA a step closer to its exploration goals of sending humans to the moon and destinations beyond. Photo credit: NASA/Kim Shiflett
Louisiana Governor John Bel Edwards Tours NASA Michoud Assembly Facility
2017-11-01
This B-roll video shows Louisiana Gov. John Bel Edwards when visited NASA’s Michoud Assembly Facility in New Orleans on Nov. 1, 2017. He spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. He toured Michoud with Todd May, the director of NASA’s Marshall Space Flight Center, which manages Michoud. NASA is building its new deep space rocket, the Space Launch System (SLS), and the Orion spacecraft at Michoud. New Orleans Mayor Mitch Landrieu and Michoud Director Keith Hefner, along with members of the Louisiana Economic Development accompanied the Edwards and May on the tour. They saw the Vertical Assemby Center where large structures of the SLS core stage are welded.
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
40 CFR 91.504 - Maintenance of records; submittal of information.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paper) or reduced to microfilm, floppy disk, or some other method of data storage, depending upon the... shipped from the assembly plant, associated storage facility or port facility, and the date the engine was...
Thermal neutron streaming effects and WIMS analysis of the Penn State subcritical graphite pile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Zediak, C.S.; Jester, W.A.
1997-12-01
This analysis was performed on the Pennsylvania State University (PSU) subcritical reactor to find more accurate values for such nuclear parameters as the thermal fuel utilization factor, thermal diffusion length in the graphite, migration area, k{sub eff}, etc. The analysis involved using the Winfrith Integrated Multigroup Scheme (WIMS) code as well as various hand calculations to find and compare those parameters. The data found in this analysis will be used by future students in the Penn State laboratory courses.
A thermodynamic analysis of propagating subcritical cracks with cohesive zones
NASA Technical Reports Server (NTRS)
Allen, David H.
1993-01-01
The results of the so-called energetic approach to fracture with particular attention to the issue of energy dissipation due to crack propagation are applied to the case of a crack with cohesive zone. The thermodynamic admissibility of subcritical crack growth (SCG) is discussed together with some hypotheses that lead to the derivation of SCG laws. A two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed by an example of its possible application.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Canadian Space Agency astronaut Chris Hadfield (left) and NASA astronaut Gregory C. Johnson attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, United Space Alliance employees gather and hold up a banner at a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
1990-02-01
Aging effects Aging of metalic surfaces Aqueous cleaning Circuit- card assembly Cleanability Closed-loop soldering Conformal coating Defect...5 Standard Electronic Circuit Card Assembly System ....................................... 7 Douglas Green Lockheed-Sanders Corp. Nashua, New...Facility Naval Weapons Center NAVIRSA Detachment 5 NWC TP 7066 EMPF TR 0010 STANDARD ELECTRONIC CIRCUTT CARD ASSEMBLY SYSTEM (SECAS PROJECT) by Douglas
16. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 137, A ...
16. INTERIOR VIEW TO THE SOUTHEAST OF ROOM 137, A REACTOR CONTROL LAB ADJACENT TO ASSEMBLY BAY NO. 2. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP ...
20. INTERIOR VIEW TO THE EAST OF THE ACCESS RAMP TO THE HOT DISASSEMBLY AREA FROM THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
PBF Reactor Building (PER620). PBF crane holds fuel test assembly ...
PBF Reactor Building (PER-620). PBF crane holds fuel test assembly aloft prior to lowering into reactor for test. Date: 1982. INEEL negative no. 82-4909 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Epstein, R.; Rosenberg, M. J.; Solodov, A. A.; Myatt, J. F.; Regan, S. P.; Seka, W.; Hohenberger, M.; Barrios, M. A.; Moody, J. D.
2015-11-01
The Mn/Co isoelectronic emission-line ratio from a microdot source in planar CH foil targets was measured to infer the electron temperature (Te) in the ablating plasma during two-plasmon-decay experiments at the National Ignition Facility (NIF). We examine the systematic uncertainty in the Te estimate based on the temperature and density sensitivities of the line ratio in conjunction with plausible density constraints, and its contribution to the total Te estimate uncertainty. The potential advantages of alternative microdot elements (e.g., Ti/Cr and Sc/V) are considered. The microdot mass was selected to provide ample line strength while minimizing the effect of self-absorption on the line emission, which is of particular concern, given the narrow linewidths of mid- Z emitters at subcritical electron densities. Atomic line-formation theory and detailed atomic-radiative simulations show that the straight forward interpretation of the isoelectronic ratio solely in terms of its temperature independence remains valid with lines of moderate optical thickness (up to ~ 10) at line center. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Historical Photograph of the Michoud Assembly Facility (MAF)
NASA Technical Reports Server (NTRS)
1963-01-01
NASA's Michoud Assembly Facility, located in eastern New Orleans, Louisiana, is an 832 acre site that is a government-owned, contractor-operated component of the George C. Marshall Space Flight Center (MSFC). The facility was acquired by NASA in 1961 at the recommendation of Dr. Wernher von Braun and his rocket team in Huntsville Alabama. The cavernous plant served as the assembly facility for the Saturn launch vehicles and most recently the external tank (ET) used for the Space Shuttle Program. The facility features one of the world's biggest manufacturing plants with 43 acres under one roof and a port with deep-water access for the transportation of large space structures. When completed, space hardware is towed on a barge across the Gulf of Mexico, around Florida and up to Kennedy Space Center. The original tract of land was part of a 34,500 acre French Royal land grant to local merchant, Gilbert Antoine de St. Maxent in 1763. Later, the land was acquired by French transplant Antoine Michoud, the son of Napoleon's Administrator of Domains, who moved to the city in 1827. Michoud operated a sugar cane plantation and refinery on the site until his death in 1863. His heirs continued operating the refinery and kept the original St. Maxent estate intact into the 20th century. Two brick smokestacks from the original refinery still stand before the Michoud facility today as seen in the lower half of this photograph taken in the 1960's, while the upper half reflects the area during the time of the sugar cane plantation workers.
Efficient collective influence maximization in cascading processes with first-order transitions
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-01-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988
Nobody knew turbulent transition could be so complicated
NASA Astrophysics Data System (ADS)
Barkley, Dwight
2017-11-01
Explaining the route to turbulence in wall-bounded shear flows has been a long and tortuous journey. After years of missteps, controversies, and uncertainties, we are at last converging on a unified and fascinating picture of transition in flows such as pipes, channels, and ducts. Classically, subcritical transition (such as in a pipe), was thought to imply a discontinuous route to turbulence. We now know that this is not the case - subcritical shear flows may, and often do, exhibit continuous transition. I will discuss recent developments in experiments, simulations, and theory that have established a deep connection between transition in subcritical shear flows and a class of non-equilibrium statistical phase transitions known as directed percolation. From this we understand how to define precise critical points for systems without linear instabilities and how to characterize the onset of turbulence in terms of non-trivial, but universal power laws. I will discuss the physics responsible for the complex turbulent structures ubiquitously observed near transition and end with thoughts on outstanding open questions.
NASA Astrophysics Data System (ADS)
Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Daniel M.
2017-05-01
The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.
Extraction of astaxanthin from Euphausia pacific using subcritical 1, 1, 1, 2-tetrafluoroethane
NASA Astrophysics Data System (ADS)
Han, Yuqian; Ma, Qinchuan; Wang, Lan; Xue, Changhu
2012-12-01
Euphausia pacific is an important source of natural astaxanthin. Studies were carried out to assess the extractability of astaxanthin from E. pacific using subcritical 1, 1, 1, 2-tetrafluoroethane (R134a). To examine the effects of multiple process variables on the extraction yield, astaxanthin was extracted under various conditions of pressure (30-150 bar), temperature (303-343 K), time (10-50 min), flow rate (2-10 g min-1), moisture content (5.5%-63.61%), and particle size (0.25-0.109 mm). The results showed that the extraction yield increased with temperature, pressure, time and flow rate, but decreased with moisture content and particle size. A maximum yield of 87.74% was obtained under conditions of 100 bar, 333 K, and 30 min with a flow rate of 6 g min-1 and a moisture content of 5.5%. The substantial astaxanthin yield obtained under low-pressure conditions demonstrates that subcritical R134a is a good alternative to CO2 for extraction of astaxanthin from E. pacific.
Xia, H; Matharu, A S
2017-09-21
Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.
Jokić, Stela; Gagić, Tanja; Knez, Željko; Šubarić, Drago; Škerget, Mojca
2018-06-11
Large amounts of residues are produced in the food industries. The waste shells from cocoa processing are usually burnt for fuel or used as a mulch in gardens to add nutrients to soil and to suppress weeds. The objectives of this work were: (a) to separate valuable compounds from cocoa shell by applying sustainable green separation process—subcritical water extraction (SWE); (b) identification and quantification of active compounds, sugars and sugar degradation products in obtained extracts using HPLC; (c) characterization of the antioxidant activity of extracts; (d) optimization of separation process using response surface methodology (RSM). Depending on applied extraction conditions, different concentration of theobromine, caffeine, theophylline, epicatechin, catechin, chlorogenic acid and gallic acid were determined in the extracts obtained by subcritical water. Furthermore, mannose, glucose, xylose, arabinose, rhamnose and fucose were detected as well as their important degradation products such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid, lactic acid and formic acid.
Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; ...
2017-05-17
The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381°C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as themore » water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. As a result, using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.« less
Efficient collective influence maximization in cascading processes with first-order transitions
NASA Astrophysics Data System (ADS)
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-03-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.
Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation
NASA Astrophysics Data System (ADS)
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2018-05-01
A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.
Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jammes, C. C.; Imel, G. R.; Geslot, B.
2006-07-01
The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were lessmore » than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)« less
17. INTERIOR VIEW TO THE EAST OF ROOM 215, A ...
17. INTERIOR VIEW TO THE EAST OF ROOM 215, A SECOND FLOOR OFFICE ABOVE ROOM 137 IN THE COLD ASSEMBLY AREA. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. ...
15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. PROCESSES IN THIS MODULE OCCURRED UNDER HIGH PRESSURES AND TEMPERATURES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO
Hazardous Waste Cleanup: GM Assembly Division in Linden, New Jersey
The General Motors Assembly Division (GM) site is 35 acres and is located at 1016 West Edgar Road in an area zoned for residential, commercial and manufacturing/industrial uses in Linden, New Jersey. The facility has operated since 1935 as a manufacturing
Diversity of anaerobic microbes in spacecraft assembly clean rooms.
Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L; Venkateswaran, Kasthuri
2010-05-01
Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities.
Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower
1966-05-25
An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A. This test vehicle, designated the Apollo/Saturn 500-F, is being used to verify launch facilities, train launch crews, and develop test and checkout procedures.
NASA Astrophysics Data System (ADS)
Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev
2017-05-01
Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.
NASA Astrophysics Data System (ADS)
Al-Shudeifat, Mohammad A.; Butcher, Eric A.
2011-01-01
The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.
Subcritical thermal convection of liquid metals in a rapidly rotating sphere
NASA Astrophysics Data System (ADS)
Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.
2017-12-01
Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ek<10-6 when Pr=0.01. Here the strong branch persists even as the thermal forcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.
International Space Station (ISS)
2001-02-01
The Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. Scientists and engineers at the MSFC are working together to provide the ISS with systems that are safe, efficient, and cost-effective. These compact and powerful systems are collectively called the Environmental Control and Life Support Systems, or simply, ECLSS. In this photograph, the life test area on the left of the MSFC ECLSS test facility is where various subsystems and components are tested to determine how long they can operate without failing and to identify components needing improvement. Equipment tested here includes the Carbon Dioxide Removal Assembly (CDRA), the Urine Processing Assembly (UPA), the mass spectrometer filament assemblies and sample pumps for the Major Constituent Analyzer (MCA). The Internal Thermal Control System (ITCS) simulator facility (in the module in the right) duplicates the function and operation of the ITCS in the ISS U.S. Laboratory Module, Destiny. This facility provides support for Destiny, including troubleshooting problems related to the ITCS.
Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan
2018-05-09
It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.
Extravehicular activity training and hardware design consideration
NASA Technical Reports Server (NTRS)
Thuot, P. J.; Harbaugh, G. J.
1995-01-01
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.
Critical factors for assembling a high volume of DNA barcodes
Hajibabaei, Mehrdad; deWaard, Jeremy R; Ivanova, Natalia V; Ratnasingham, Sujeevan; Dooh, Robert T; Kirk, Stephanie L; Mackie, Paula M; Hebert, Paul D.N
2005-01-01
Large-scale DNA barcoding projects are now moving toward activation while the creation of a comprehensive barcode library for eukaryotes will ultimately require the acquisition of some 100 million barcodes. To satisfy this need, analytical facilities must adopt protocols that can support the rapid, cost-effective assembly of barcodes. In this paper we discuss the prospects for establishing high volume DNA barcoding facilities by evaluating key steps in the analytical chain from specimens to barcodes. Alliances with members of the taxonomic community represent the most effective strategy for provisioning the analytical chain with specimens. The optimal protocols for DNA extraction and subsequent PCR amplification of the barcode region depend strongly on their condition, but production targets of 100K barcode records per year are now feasible for facilities working with compliant specimens. The analysis of museum collections is currently challenging, but PCR cocktails that combine polymerases with repair enzyme(s) promise future success. Barcode analysis is already a cost-effective option for species identification in some situations and this will increasingly be the case as reference libraries are assembled and analytical protocols are simplified. PMID:16214753
Extravehicular activity training and hardware design consideration.
Thuot, P J; Harbaugh, G J
1995-07-01
Preparing astronauts to perform the many complex extravehicular activity (EVA) tasks required to assemble and maintain Space Station will be accomplished through training simulations in a variety of facilities. The adequacy of this training is dependent on a thorough understanding of the task to be performed, the environment in which the task will be performed, high-fidelity training hardware and an awareness of the limitations of each particular training facility. Designing hardware that can be successfully operated, or assembled, by EVA astronauts in an efficient manner, requires an acute understanding of human factors and the capabilities and limitations of the space-suited astronaut. Additionally, the significant effect the microgravity environment has on the crew members' capabilities has to be carefully considered not only for each particular task, but also for all the overhead related to the task and the general overhead associated with EVA. This paper will describe various training methods and facilities that will be used to train EVA astronauts for Space Station assembly and maintenance. User-friendly EVA hardware design considerations and recent EVA flight experience will also be presented.
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, John Casper, Assistant Space Shuttle Program manager and Kennedy Center Director Bob Cabana talk with each other during a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2014-01-01
We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields. PMID:24917701
Direct-write assembly of microperiodic planar and spanning ITO microelectrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Bok Y; Lorang, David J; Duoss, Eric B.
2010-01-01
Printed Sn-doped In{sub 2}O{sub 3} (ITO) microelectrodes are fabricated by direct-write assembly of sol–gel inks with varying concentration. This maskless, non-lithographic approach provides a facile route to patterning transparent conductive features in planar arrays and spanning architectures.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. STA hardware completely free of barge and flanked by tug boats.
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. ...
VIEW OF FLIGHT CREW SYSTEMS, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING SOUTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...
DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
2004-03-26
KENNEDY SPACE CENTER, FLA. -- An aerial photo of the hangar and storage facility near the KSC Shuttle Landing Facility. The hangar was used to collect and evaluate the pieces of Columbia debris before they were moved to permanent storage in the Vehicle Assembly Building.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., health care quality, or health care outcomes; and (A) Which are assembled or developed by a provider for... (includes a group practice), long term care facility, behavior health residential treatment facility..., psychologist, certified social worker, registered dietitian or nutrition professional, physical or occupational...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., health care quality, or health care outcomes; and (A) Which are assembled or developed by a provider for... (includes a group practice), long term care facility, behavior health residential treatment facility..., psychologist, certified social worker, registered dietitian or nutrition professional, physical or occupational...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., health care quality, or health care outcomes; and (A) Which are assembled or developed by a provider for... (includes a group practice), long term care facility, behavior health residential treatment facility..., psychologist, certified social worker, registered dietitian or nutrition professional, physical or occupational...
Preliminary Consideration of the ADS Research in China
NASA Astrophysics Data System (ADS)
Fang, Shouxian; Fu, Shinian
2002-08-01
Power supply is a key issue for China's further economic development. To meet the needs of our economic growth in the next century, the part of nuclear energy in the total newly increased power supply must become larger. However, the present nuclear power stations dominated by the PWR in the world are facing some troubles. Recently, a new concept, called ADS (Accelerator Driven Subcritical system), can avoid these troubles and it is recognized as a most prospective power system for fission energy. So during the early time of nuclear power development in our country, it is worthwhile to exploit this novel idea. In this paper, the ADS research program and a proposed verification facility are described. It consists of an 300MeV/3mA low energy accelerator, a swimming pool reactor and some basic research equipment. Beam physics, such as beam halo formation, in the intense-beam accelerator is also discussed.
LBE water interaction in sub-critical reactors: First experimental and modelling results
NASA Astrophysics Data System (ADS)
Ciampichetti, A.; Agostini, P.; Benamati, G.; Bandini, G.; Pellini, D.; Forgione, N.; Oriolo, F.; Ambrosini, W.
2008-06-01
This paper concerns the study of the phenomena involved in the interaction between LBE and pressurised water which could occur in some hypothetical accidents in accelerator driven system type reactors. The LIFUS 5 facility was designed and built at ENEA-Brasimone to reproduce this kind of interaction in a wide range of conditions. The first test of the experimental program was carried out injecting water at 70 bar and 235 °C in a reaction vessel containing LBE at 1 bar and 350 °C. A pressurisation up to 80 bar was observed in the test section during the considered transient. The SIMMER III code was used to simulate the performed test. The calculated data agree in a satisfactory way with the experimental results giving confidence in the possibility to use this code for safety analyses of heavy liquid metal cooled reactors.
General view of the Space Shuttle Main Engine (SSME) assembly ...
General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-Pressure Fuel Turbopump (LPFTP) on the upper left of the engine assembly, the LPFTP Discharge Duct looping around the assembly, the Gimbal Bearing on the top center of the assembly, the Electrical Interface Panel sits just below the Gimbal Bearing and the Low-Pressure Oxidizer Turbopump is mounted on the top right of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Theoretical prediction of airplane stability derivatives at subcritical speeds
NASA Technical Reports Server (NTRS)
Tulinius, J.; Clever, W.; Nieman, A.; Dunn, K.; Gaither, B.
1973-01-01
The theoretical development and application is described of an analysis for predicting the major static and rotary stability derivatives for a complete airplane. The analysis utilizes potential flow theory to compute the surface flow fields and pressures on any configuration that can be synthesized from arbitrary lifting bodies and nonplanar thick lifting panels. The pressures are integrated to obtain section and total configuration loads and moments due side slip, angle of attack, pitching motion, rolling motion, yawing motion, and control surface deflection. Subcritical compressibility is accounted for by means of the Gothert similarity rule.
Orbital storage and supply of subcritical liquid nitrogen
NASA Technical Reports Server (NTRS)
Aydelott, John C.
1990-01-01
Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.
Subcritical flutter testing and system identification
NASA Technical Reports Server (NTRS)
Houbolt, J. C.
1974-01-01
Treatment is given of system response evaluation, especially in application to subcritical flight and wind tunnel flutter testing of aircraft. An evaluation is made of various existing techniques, in conjuction with a companion survey which reports theoretical and analog experiments made to study the identification of system response characteristics. Various input excitations are considered, and new techniques for analyzing response are explored, particularly in reference to the prevalent practical case where unwanted input noise is present, such as caused by gusts or wind tunnel turbulence. Further developments are also made of system parameter identification techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingey, J.M.; Fulton, J.L.; Smith, R.D.
1990-03-08
The van der Waals attractive interactions between aqueous droplets in water-in-oil type microemulsions have been investigated for a range of continuous-phase solvents including the alkanes from methane to isooctane and the noble gases, krypton and xenon. Hamaker constants for water droplets with surfactant shells of the sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in subcritical and supercritical solvents were calculated by using Lifshitz theory and the resulting interaction potential calculations qualitatively account for many features of the phase behavior of these systems.
5. EXTERIOR VIEW TO THE SOUTHEAST OF THE NORTH AND ...
5. EXTERIOR VIEW TO THE SOUTHEAST OF THE NORTH AND WEST ELEVATIONS, WITH THE COLD ASSEMBLY AREA TO THE RIGHT AND THE HOT DISASSEMBLY AREA TO THE LEFT. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
3. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATION ...
3. EXTERIOR VIEW TO THE NORTH OF THE SOUTH ELEVATION OF THE ADMINISTRATION AREA IN THE COLD ASSEMBLY AREA, WITH THE MAIN ENTRANCE 'KENNEDY DOORS' IN THE MIDDLE. - Nevada Test Site, Reactor Maintenance Assembly & Dissassembly Facility, Area 25, Jackass Flats, Junction of Roads F & G, Mercury, Nye County, NV
40 CFR 1033.630 - Staged-assembly and delegated assembly exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... temporary exemption to allow you to complete production of your engines and locomotives at different facilities, as long as you maintain control of the engines until they are in their certified configuration. We may require you to take specific steps to ensure that such locomotives are in their certified...
Mixed Oxide Fresh Fuel Package Auxiliary Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yapuncich, F.; Ross, A.; Clark, R.H.
2008-07-01
The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less
Fabrication and characterization of SPR chips with the modified bovine serum albumin
NASA Astrophysics Data System (ADS)
Chen, Xing; Zhang, Lu-lu; Cui, Da-fu
2016-03-01
A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.
NASA Astrophysics Data System (ADS)
Rettberg, P.; Horneck, G.; Fritze, D.; Stackebrandt, E.; Kminek, G.
The first step in the implementation of planetary protection guidelines encompasses a qualitative and quantitative inventory of the bioburden of spacecraft assembly facilities. In such an artificial environment mainly microorganisms are to be expected that are brought in by the humans themselves and that are able to withstand the controlled air circulation, the low relative humidity, the moderately high temperature and the low-nutrient conditions in the clean rooms of the assembly facilities. With informations about the composition of these microbial communities the development and/or optimization of adequate cleaning and sterilization procedures for spacecraft preparation before launch will be possible. The bioburden assessment in spacecraft assembly facilities requires a standardized procedure for sampling the air and surfaces in the facilities as well as of the spacecraft, a transfer of the biological samples under controlled conditions to the analyzing laboratory and a scientifically approved set of methods for analysis. In the ESA project MiDiv we started to investigate the bioburden of spacecrafts using the satellites SMART-1 and ROSETTA as test objects. The analysis of the samples included so far cultivation on different media at different pH and temperatures with and without oxygen with and without pasteurization, establishment of a culture collection of bacteria and partial 16S rRNA gene analysis. The results of these preliminary measurements, the total number of microorganisms, the numbers of colony forming units, differentiated according to the subgroups of aerobes, facultative anaerobes and anaerobes, and the phylogenetic classification, will be assessed with respect to the physiological potential of the identified microorganisms to withstand the different cleaning and sterilizing procedures used up to now for planetary protection measures. In the next step the ability of selected microorganisms to survive has to tested under environmental conditions as they occur for example on Mars.
Muster, N; Derecho, I; Dallal, F; Alvarez, R; McCoy, K B; Mogul, R
2015-04-01
Herein, we report on the purification, characterization, and sequencing of catalase from Acinetobacter gyllenbergii 2P01AA, an extremely oxidation-resistant bacterium that was isolated from the Mars Phoenix spacecraft assembly facility. The Acinetobacter are dominant members of the microbial communities that inhabit spacecraft assembly facilities and consequently may serve as forward contaminants that could impact the integrity of future life-detection missions. Catalase was purified by using a 3-step chromatographic procedure, where mass spectrometry provided respective subunit and intact masses of 57.8 and 234.6 kDa, which were consistent with a small-subunit tetrameric catalase. Kinetics revealed an extreme pH stability with no loss in activity between pH 5 and 11.5 and provided respective kcat/Km and kcat values of ∼10(7) s(-1) M(-1) and 10(6) s(-1), which are among the highest reported for bacterial catalases. The amino acid sequence was deduced by in-depth peptide mapping, and structural homology suggested that the catalases from differing strains of A. gyllenbergii differ only at residues near the subunit interfaces, which may impact catalytic stability. Together, the kinetic, alkali-tolerant, and halotolerant properties of the catalase from A. gyllenbergii 2P01AA are significant, as they are consistent with molecular adaptations toward the alkaline, low-humidity, and potentially oxidizing conditions of spacecraft assembly facilities. Therefore, these results support the hypothesis that the selective pressures of the assembly facilities impact the microbial communities at the molecular level, which may have broad implications for future life-detection missions.
NASA Astrophysics Data System (ADS)
Tobin, S. J.; Menlove, H. O.; Swinhoe, M. T.; Schear, M. A.
2011-10-01
The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy has funded a multi-lab/multi-university collaboration to quantify the plutonium mass in spent nuclear fuel assemblies and to detect the diversion of pins from them. The goal of this research effort is to quantify the capability of various non-destructive assay (NDA) technologies as well as to train a future generation of safeguards practitioners. This research is "technology driven" in the sense that we will quantify the capabilities of a wide range of safeguards technologies of interest to regulators and policy makers; a key benefit to this approach is that the techniques are being tested in a unified manner. When the results of the Monte Carlo modeling are evaluated and integrated, practical constraints are part of defining the potential context in which a given technology might be applied. This paper organizes the commercial spent fuel safeguard needs into four facility types in order to identify any constraints on the NDA system design. These four facility types are the following: future reprocessing plants, current reprocessing plants, once-through spent fuel repositories, and any other sites that store individual spent fuel assemblies (reactor sites are the most common facility type in this category). Dry storage is not of interest since individual assemblies are not accessible. This paper will overview the purpose and approach of the NGSI spent fuel effort and describe the constraints inherent in commercial fuel facilities. It will conclude by discussing implementation and calibration of measurement systems. This report will also provide some motivation for considering a couple of other safeguards concepts (base measurement and fingerprinting) that might meet the safeguards need but not require the determination of plutonium mass.
Subcritical and supercritical fuel injection and mixing in single and binary species systems
NASA Astrophysics Data System (ADS)
Roy, Arnab
Subcritical and supercritical fluid injection using a single round injector into a quiescent atmosphere comprising single and binary species was investigated using optical diagnostics. Different disintegration and mixing modes are expected for the two cases. In the binary species case, the atmosphere comprised an inert gas of a different composition than that of the injected fluid. In single species case, the atmosphere consisted of the same species as that of the injected fluid. Density values were quantified and density gradient profiles were inferred from the experimental data. A novel method was applied for the detection of detailed structures throughout the entire jet center plane. Various combinations of injectant and chamber conditions were tested and a wide range of density ratios were covered. The subcritical cases demonstrated the importance of surface tension and inertial forces, while the supercritical cases showed no signs of surface tension and, in most situations, resembled the mixing characteristics of a gaseous jet injected into a gaseous environment. A comparison between the single and binary species systems has also been provided. A detailed laser calibration procedure was undertaken to account for the laser absorption through the gas and liquid phases and for fluorescence in the non-linear excitation regime for high laser pulse energy. Core lengths were measured for binary species cases and correlated with visualization results. An eigenvalue approach was taken to determine the location of maximum gradients for determining the core length. Jet divergence angles were also calculated and were found to increase with chamber-to-injectant density ratio for both systems. A model was proposed for the spreading angle dependence on density ratio for both single and binary species systems and was compared to existing theoretical studies and experimental work. Finally, a linear stability analysis was performed for the jet injected into both subcritical and supercritical atmospheres. The subcritical cases showed good correlation with previous and current experimental results. The supercritical solutions, which have not yet been solved earlier by researchers, are found here through an asymptotic solution of the dispersion equation for exceedingly high Weber numbers.
Louisiana Governor John Bel Edwards Visits NASA’s Rocket Factory
2017-11-01
NASA officials were joined by Louisiana Gov. John Bel Edwards and New Orleans Mayor Mitch Landrieu, who toured the Michoud Assembly Facility in New Orleans and got a first-hand look at NASA’s new deep space vehicles being built at the facility.
Diversity of Anaerobic Microbes in Spacecraft Assembly Clean Rooms ▿ †
Probst, Alexander; Vaishampayan, Parag; Osman, Shariff; Moissl-Eichinger, Christine; Andersen, Gary L.; Venkateswaran, Kasthuri
2010-01-01
Although the cultivable and noncultivable microbial diversity of spacecraft assembly clean rooms has been previously documented using conventional and state-of-the-art molecular techniques, the occurrence of obligate anaerobes within these clean rooms is still uncertain. Therefore, anaerobic bacterial communities of three clean-room facilities were analyzed during assembly of the Mars Science Laboratory rover. Anaerobic bacteria were cultured on several media, and DNA was extracted from suitable anaerobic enrichments and examined with conventional 16S rRNA gene clone library, as well as high-density phylogenetic 16S rRNA gene microarray (PhyloChip) technologies. The culture-dependent analyses predominantly showed the presence of clostridial and propionibacterial strains. The 16S rRNA gene sequences retrieved from clone libraries revealed distinct microbial populations associated with each clean-room facility, clustered exclusively within gram-positive organisms. PhyloChip analysis detected a greater microbial diversity, spanning many phyla of bacteria, and provided a deeper insight into the microbial community structure of the clean-room facilities. This study presents an integrated approach for assessing the anaerobic microbial population within clean-room facilities, using both molecular and cultivation-based analyses. The results reveal that highly diverse anaerobic bacterial populations persist in the clean rooms even after the imposition of rigorous maintenance programs and will pose a challenge to planetary protection implementation activities. PMID:20228115
Initial utilization of the CVIRB video production facility
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Busquets, Anthony M.; Hogge, Thomas W.
1987-01-01
Video disk technology is one of the central themes of a technology demonstrator workstation being assembled as a man/machine interface for the Space Station Data Management Test Bed at Johnson Space Center. Langley Research Center personnel involved in the conception and implementation of this workstation have assembled a video production facility to allow production of video disk material for this propose. This paper documents the initial familiarization efforts in the field of video production for those personnel and that facility. Although the entire video disk production cycle was not operational for this initial effort, the production of a simulated disk on video tape did acquaint the personnel with the processes involved and with the operation of the hardware. Invaluable experience in storyboarding, script writing, audio and video recording, and audio and video editing was gained in the production process.
NASA Astrophysics Data System (ADS)
Wong, Dillon
Graphene, a two-dimensional (2D) honeycomb lattice of sp 2-bonded carbon atoms, is renowned for its many extraordinary properties. Not only does it have an extremely high carrier mobility, exceptional mechanical strength, and fascinating optical behavior, graphene additionally has an interesting energy-momentum relationship that is emergent from its space group symmetry. Graphene's low-energy electronic excitations consist of quasiparticles whose energies disperse linearly with wavevector and obey a 2D massless Dirac equation with a modified speed of light. This fortuitous circumstance allows for the exploration of ultra-relativistic phenomena using conventional tabletop techniques common to solid state physics and material science. Here I discuss experiments that probe these ultra-relativistic effects via application of scanning tunneling microscopy (STM) and spectroscopy (STS) to graphene field-effect transistors (FETs) in proximity with charged impurities. The first part of this dissertation focuses on the ultra-relativistic Coulomb problem. Depending on the strength of the potential, the Coulomb problem for massless Dirac particles is divided into two regimes: the subcritical and the supercritical. The subcritical regime is characterized by an electron-hole asymmetry in the local density of states (LDOS) and, unlike in nonrelativistic quantum mechanics, does not support bound states. In contrast, the supercritical regime hosts quasi-bound states that are analogous to "atomic collapse" orbits predicted to occur in atoms with nuclear charge Z > 170. By using an STM tip to directly position calcium (Ca) impurities on a graphene surface, we assembled "artificial nuclei" and observed a transition between the subcritical and supercritical regimes with increasing nuclear charge. We also investigated the screening of these charged impurities by massless Dirac fermions while varying the graphene carrier concentration with an electrostatic gate. The second part of this dissertation focuses on the ultra-relativistic harmonic oscillator. We developed a method for manipulating charged defects inside the boron nitride (BN) substrate underneath graphene to construct circular graphene p-n junctions. These p-n junctions were effectively quantum dots that electrostatically trapped graphene's relativistic charge carriers, and we imaged the interference patterns corresponding to this quantum confinement. The observed energy-level spectra in our p-n junctions closely matched a theoretical spectrum obtained by solving the 2D massless Dirac equation with a quadratic potential, allowing us to identify each observed state with principal and angular momentum quantum numbers. The results discussed here provide insight into fundamental aspects of relativistic quantum mechanics and into graphene properties pertinent to technological applications. In particular, graphene's response to electrostatic potentials determines the scope in which its charge carriers can be directed and harnessed for useful purposes. Furthermore, many of the results contained in this dissertation are expected to generalize to other Dirac materials.
NASA Technical Reports Server (NTRS)
Tietzel, F. A.
1979-01-01
One hundred individuals representing universities, technical institutes, government agencies, and industrial facilities were surveyed to determine potential commercial use of a self-contained, automated assembly for the space processing of materials during frequent shuttle flights for the 1981 to 1987 period. The approach used and the results of the study are summarized. A time time-phased projection (traffic model) of commercial usage of the materials experiment assembly is provided.
Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs
Bemporad, Alessandro; Mancuso, Salvatore
2012-01-01
White-light coronagraphic images of Coronal Mass Ejections (CMEs) observed by SOHO/LASCO C2 have been used to estimate the density jump along the whole front of two CME-driven shocks. The two events are different in that the first one was a “radio-loud” fast CME, while the second one was a “radio quiet” slow CME. From the compression ratios inferred along the shock fronts, we estimated the Alfvén Mach numbers for the general case of an oblique shock. It turns out that the “radio-loud” CME shock is initially super-critical around the shock center, while later on the whole shock becomes sub-critical. On the contrary, the shock associated with the “radio-quiet” CME is sub-critical at all times. This suggests that CME-driven shocks could be efficient particle accelerators at the shock nose only at the initiation phases of the event, if and when the shock is super-critical, while at later times they lose their energy and the capability to accelerate high energetic particles. PMID:25685431
Subcritical and supercritical water oxidation of CELSS model wastes
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Wydeven, T.; Koo, C.
1989-01-01
A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.
Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M
2016-01-01
Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.
Modeling new coal projects: supercritical or subcritical?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrino, A.J.; Jones, R.B.
Decisions made on new build coal-fired plants are driven by several factors - emissions, fuel logistics and electric transmission access all provide constraints. The crucial economic decision whether to build supercritical or subcritical units often depends on assumptions concerning the reliability/availability of each technology, the cost of on-fuel operations including maintenance, the generation efficiencies and the potential for emissions credits at some future value. Modeling the influence of these key factors requires analysis and documentation to assure the assets actually meet the projected financial performance. This article addresses some of the issue related to the trade-offs that have the potentialmore » to be driven by the supercritical/subcritical decision. Solomon Associates has been collecting cost, generation and reliability data on coal-fired power generation assets for approximately 10 years using a strict methodology and taxonomy to categorize and compare actual plant operations data. This database provides validated information not only on performance, but also on alternative performance scenarios, which can provide useful insights in the pro forma financial analysis and models of new plants. 1 ref., 1 fig., 3 tabs.« less
Lekar, Anna V; Borisenko, Sergey N; Vetrova, Elena V; Filonova, Olga V; Maksimenko, Elena V; Borisenko, Nikolai I; Minkin, Vladimir I
2015-11-01
The aim of this work was to study an application of a previously developed expedient acid-free technique for the preparation of glycyrrhetinic acid from ammonium glycyrrhizinate that requires no use of acids and toxic organic solvents. Subcritical water that serves as a reactant and a solvent was used in order to obtain glycyrrhetinic acid in good yields starting from ammonium glycyrrhizinate. It has been shown that variation of only one parameter of the process (temperature) allows alteration to thecomposition of the hydrolysis products. A new method was used for the synthesis of glycyrrhetinic acid (glycyrrhizic acid aglycone) and its monoglycoside. HPLC combined with mass spectrometry and NMR spectroscopy were used to determine the quantitative and qualitative compositions of the obtained products. The method developed for the production of glycyrrhetinic acid in subcritical water is environmentally friendly and faster than conventional hydrolysis methods that use acids and-expensive and toxic organic solvents. The proposed technique has a potential for the future development of inexpensive and environmentally friendly technologies for production of new pharmaceutical plant-based substances.
Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi
2017-10-22
The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.
NASA Astrophysics Data System (ADS)
Mahlobo, MGR; Premlall, K.; Olubambi, PA
2017-12-01
Carbon dioxide (CO2) is considered to be easier to transport over moderate distances when turned into supercritical state (dense phase) than at any other state. Because of this reason, the transportation of CO2 during carbon capture and storage requires CO2 to be at its supercritical state. CO2 temperature profile from different regions causes CO2 to deviate between supercritical and subcritical state (gas/liquid phase). In this study the influence of sulphur dioxide (SO2) on the corrosion of carbon steel was evaluated under different SO2 concentrations (0.5, 1.5 and 5%) in combination with subcritical CO2. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Energy-Dispersive X-ray Spectroscopy (EDS) were used to characterize the CO2 corrosion product layer formed on the carbon steel surface. The weight loss results showed that corrosion rate increased with SO2 concentration with corrosion rate up to 7.45 mm/year while at 0% SO2 the corrosion rate was 0.067 mm/year.
Quasi-equilibrium size distribution of subcritical nuclei in amorphous phase change AgIn-Sb2Te
NASA Astrophysics Data System (ADS)
Darmawikarta, Kristof; Lee, Bong-Sub; Shelby, Robert M.; Raoux, Simone; Bishop, Stephen G.; Abelson, John R.
2013-07-01
We investigate the effect of low temperature annealing or of extended storage at room temperature on the subsequent nucleation behavior of amorphous AgIn-incorporated Sb2Te (AIST), a material for phase change memories. Time-resolved reflectivity measurements during pulsed laser crystallization reveal the rates of solid-phase transformation, while fluctuation transmission electron microscopy detects the nanoscale order in the amorphous phase prior to crystallization. The nanoscale order is postulated to consist of subcritical nuclei that coarsen upon annealing at temperatures ranging from 25 °C (for months) or 100 °C (for hours). Samples that have been annealed remain fully amorphous as evaluated by conventional diffraction experiments. Shorter nucleation times are consistently associated with the observation of increased nanoscale order. The effect of annealing is observed to saturate: there is no further reduction in nucleation time or increase in nanoscale order for annealing at 100 °C beyond three hours. This result supports the general prediction of classical nucleation theory that the size distribution of subcritical nuclei increases from the as-deposited state to a quasi-equilibrium.
Subcritical water extractor for Mars analog soil analysis.
Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To
2008-06-01
Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).
2009-06-12
CAPE CANAVERAL, Fla. – In the Rotation, Processing, and Surge Facility at NASA's Kennedy Space Center in Florida, the Ares I-X aft skirt is mated to the aft segment. The complete Ares I-X will be assembled in the Vehicle Assembly Building. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Jack Pfaller
2009-06-12
CAPE CANAVERAL, Fla. – In the Rotation, Processing, and Surge Facility at NASA's Kennedy Space Center in Florida, the Ares I-X aft skirt is mated to the aft segment. The complete Ares I-X will be assembled in the Vehicle Assembly Building. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Jack Pfaller
2009-06-12
CAPE CANAVERAL, Fla. – In the Rotation, Processing, and Surge Facility at NASA's Kennedy Space Center in Florida, the Ares I-X aft skirt is mated to the aft segment. The complete Ares I-X will be assembled in the Vehicle Assembly Building. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Jack Pfaller
20 CFR 654.417 - Fire, safety, and first aid.
Code of Federal Regulations, 2013 CFR
2013-04-01
... facilities, and common assembly rooms shall have at least two doors remotely separated so as to provide... rooms on the second story shall have a stairway, and a permanent, affixed exterior ladder or a second stairway. (e) Sleeping and common assembly rooms located above the second story shall comply with the State...
20 CFR 654.417 - Fire, safety, and first aid.
Code of Federal Regulations, 2012 CFR
2012-04-01
... facilities, and common assembly rooms shall have at least two doors remotely separated so as to provide... rooms on the second story shall have a stairway, and a permanent, affixed exterior ladder or a second stairway. (e) Sleeping and common assembly rooms located above the second story shall comply with the State...
20 CFR 654.417 - Fire, safety, and first aid.
Code of Federal Regulations, 2014 CFR
2014-04-01
... facilities, and common assembly rooms shall have at least two doors remotely separated so as to provide... rooms on the second story shall have a stairway, and a permanent, affixed exterior ladder or a second stairway. (e) Sleeping and common assembly rooms located above the second story shall comply with the State...
20 CFR 654.417 - Fire, safety, and first aid.
Code of Federal Regulations, 2011 CFR
2011-04-01
... facilities, and common assembly rooms shall have at least two doors remotely separated so as to provide... rooms on the second story shall have a stairway, and a permanent, affixed exterior ladder or a second stairway. (e) Sleeping and common assembly rooms located above the second story shall comply with the State...
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. After leaving the Vehicle Assembly Building, the external tank seen here points its way toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. STA approaches Test Stand 4693, SLS LH2 test Stand, on way to Bldg. 4619
Thermal vacuum life test facility for radioisotope thermoelectric generators
NASA Astrophysics Data System (ADS)
Deaton, R. L.; Goebel, C. J.; Amos, W. R.
In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.
Qi, Ruijie; Nie, Jinhui; Liu, Mingyang; Xia, Mengyang; Lu, Xianmao
2018-04-26
Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.
The Alignment Test System for AXAF-I's High Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
Waldman, Mark
1995-01-01
The AXAF-1 High Resolution Mirror Assembly (HRMA) consists of four nested mirror pairs of Wolter Type-1 grazing incidence optics. The HRMA assembly and alignment will take place in a vibration-isolated, cleanliness class 100, 18 meter high tower at an Eastman Kodak Company facility in Rochester, NY. Each mirror pair must be aligned such that its image is coma-free, and the four pairs must be aligned such that their images are coincident. In addition, both the HRMA optical axis and focal point must be precisely known with respect to physical references on the HRMA. The alignment of the HRMA mirrors is measured by the HRMA Alignment Test System (HATS), which is an integral part of the tower facility. The HATS is configured as a double-pass, autocollimating Hartmann test where each mirror aperture is scanned to determine the state of alignment. This paper will describe the design and operation of the HATS.
STS-114: Crew Training Clip from JSC
NASA Technical Reports Server (NTRS)
2003-01-01
STS-114 Discovery crew is shown in various training exercises at Johnson Space Center. The crew consists of Eileen Collins, Commander; James Kelley, Pilot; Charles Camarda, Mission Specialist; Wendy Lawrence, Mission Specialist; Soichi Noguchi, Mission Specialist; Steve Robinson, Mission Specialist; and Andy Thomas, Mission Specialist. The exercises include: 1) EVA training in the VR lab; 2) Neutral Buoyancy Laboratory (NBL) EVA Training; 3) Walk to Motion Base Simulator; 4) EVA Preparations in ISS Airlock; and 7) Emergency Egress from Crew Compartment Trainer (CCT). A crew photo session is also presented. Footage of The Space Shuttle Atlantis inside the Kennedy Space Center Vehicle Assembly Building (VAB) after its demating from the Solid Rocket Booster and External Tank is shown. The video ends with techniques for inspecting and repairing Thermal Protection System tiles, a video of external tank production at the Michoud Assembly Facility (MAF) and redesign of the foam from the bipod ramp at Michoud Assembly Facility (MAF).
Balancing Multiple Needs through Innovative Facility Design.
ERIC Educational Resources Information Center
Romano, C. Renee; Hanish, Jan
2003-01-01
Designing buildings that incorporate and integrate a number of departments and functions is one way that colleges and universities are balancing financial challenges and facility needs. These buildings can transform the campus, but they require planning and coordination from a carefully assembled design team. (Contains 18 references.) (Author)
2003-11-05
KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
The new design of final optics assembly on SG-III prototype facility
NASA Astrophysics Data System (ADS)
Li, Ping; Zhao, Runchang; Wang, Wei; Jia, Huaiting; Chen, Liangmin; Su, Jingqin
2014-09-01
To improve the performance of SG-III prototype facility (TIL-Technical Integration Line), final optics assembly (FOA) is re-designed. It contains that stray light and focusing ghosts are optimized, operational performance and environments are improved and the total thickness of optics is reduced. With the re-designed FOA, Some performance advantages are achieved. First, the optics damages are mitigated obviously, especially crystals and Focus lens; Second, stray light and focusing ghosts are controlled better that organic contamination sources inside FOA are eliminated; Third, maintenance and operation are more convenient for the atoms environment; Fourth, the focusable power on target is increased for lower B-integral.
1997-11-11
KENNEDY SPACE CENTER, FLA. -- The orbiter Atlantis, riding atop the modified Boeing 747 Shuttle Carrier Aircraft, departed Kennedy Space Center (KSC) at 1:53 p.m. on Nov. 11 en route to Palmdale, Calif., for the planned Orbiter Maintenance Down Period. Atlantis departed from KSC’s Shuttle Landing Facility Runway 33 for Palmdale’s Orbiter Assembly Facility, where it will remain until August 1998. At Palmdale, modifications and structural inspections will be conducted in preparation for Atlantis’ future missions to support International Space Station assembly activities. Atlantis’ next flight into space is scheduled to be Space Shuttle mission STS-92, targeted for launch from KSC in January 1999
2009-05-21
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder
2009-05-21
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder
2009-05-21
CAPE CANAVERAL, Fla. – In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center in Florida, the Ares I-X frustum is being mated to the forward skirt and forward skirt extension to complete the forward assembly. The assembly will be moved to the Vehicle Assembly Building for stacking operations. Resembling a giant funnel, the frustum's function is to transition the primary flight loads from the rocket's upper stage to the first stage. The frustum is located between the forward skirt extension and the upper stage of the Ares I-X. The launch of Ares I-X is targeted for August 2009. Photo credit: NASA/Troy Cryder
Closeup view of the Solid Rocket Booster Frustum and Nose ...
Close-up view of the Solid Rocket Booster Frustum and Nose Cap assembly undergoing preparations and assembly procedures in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The Nose Cap contains the Pilot and Drogue Chutes and the Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. In this view the assembly is rotated so that the four Separation Motors are in view and aligned with the approximate centerline of the image. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favalli, Andrea; Vo, D.; Grogan, Brandon R.
The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less
Favalli, Andrea; Vo, D.; Grogan, Brandon R.; ...
2016-02-26
The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/ 137Cs, 134Cs/ 137Cs, 106Ru/ 137Cs, and 144Ce/ 137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less
Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yak, H.K.; Wenclawiak, B.W.; Cheng, I.F.
1999-04-15
A method for remediation of PCB-contaminated soil and sediments is described that uses zerovalent iron as the dechlorination agent and subcritical water extraction (SWE) as the transporting medium. By using 100-mesh iron powder and SWE conditions of 250 C and 10 MPa on Aroclor 1260 for 1--8 h, the higher chlorine-substituted homologues were completely reduced to their lower substituted counterparts. The lower-substituted congeners were subsequently near-completely dechlorinated. The initial findings indicate that this technique may be a viable method for remediation of PCB-contaminated soil and sediments.
Magnus effects at high angles of attack and critical Reynolds numbers
NASA Technical Reports Server (NTRS)
Seginer, A.; Ringel, M.
1983-01-01
The Magnus force and moment experienced by a yawed, spinning cylinder were studied experimentally in low speed and subsonic flows at high angles of attack and critical Reynolds numbers. Flow-field visualization aided in describing a flow model that divides the Magnus phenomenon into a subcritical region, where reverse Magnus loads are experienced, and a supercritical region where these loads are not encountered. The roles of the spin rate, angle of attack, and crossflow Reynolds number in determining the boundaries of the subcritical region and the variations of the Magnus loads were studied.
NASA Astrophysics Data System (ADS)
Guitar, María Agustina; Suárez, Sebastián; Prat, Orlando; Duarte Guigou, Martín; Gari, Valentina; Pereira, Gastón; Mücklich, Frank
2018-05-01
This work evaluates the effect of a destabilization treatment combined with a subcritical diffusion (SCD) and a subsequent quenching (Q) steps on precipitation of secondary carbides and their influence on the wear properties of HCCI (16%Cr). The destabilization of the austenite at high temperature leads to a final microstructure composed of eutectic and secondary carbides, with an M7C3 nature, embedded in a martensitic matrix. An improved wear resistance was observed in the SCD + Q samples in comparison with the Q one, which was attributed to the size of secondary carbides.
A useful observable for estimating keff in fast subcritical systems
NASA Astrophysics Data System (ADS)
Saracco, Paolo; Borreani, Walter; Chersola, Davide; Lomonaco, Guglielmo; Ricco, Gianni; Ripani, Marco
2017-09-01
The neutron multiplication factor keff is a key quantity to characterize subcritical neutron multiplying devices and for understanting their physical behaviour, being related to the fundamental eigenvalue of Boltzmann transport equation. Both the maximum available power - and all quantities related to it, like, e.g. the effectiveness in burning nuclear wastes - as well as reactor kinetics and dynamics depend on keff. Nevertheless, keff is not directly measurable and its determination results from the solution of an inverse problem: minimizing model dependence of the solution for keff then becomes a critical issue, relevant both for practical and theoretical reasons.
NASA Technical Reports Server (NTRS)
Nussdorfer, Theodore J; Obery, Leonard J; Englert, Gerald W
1952-01-01
A study of a 20 degree and a 25 degree half-angle high mass-flow ratio conical supersonic inlet was made on a 16-inch ram jet in the 8- by 6-foot supersonic tunnel. A greater range of stable subcritical operation was obtained with the low mass-flow ratio inlets; a greater range was obtained with the 25 degree than with the 20 degree half-angle low mass-flow ratio inlet. The high mass-flow ratio inlet had the least drag.
Variable gravity research facility
NASA Technical Reports Server (NTRS)
Allan, Sean; Ancheta, Stan; Beine, Donna; Cink, Brian; Eagon, Mark; Eckstein, Brett; Luhman, Dan; Mccowan, Daniel; Nations, James; Nordtvedt, Todd
1988-01-01
Spin and despin requirements; sequence of activities required to assemble the Variable Gravity Research Facility (VGRF); power systems technology; life support; thermal control systems; emergencies; communication systems; space station applications; experimental activities; computer modeling and simulation of tether vibration; cost analysis; configuration of the crew compartments; and tether lengths and rotation speeds are discussed.
29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, ...
29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, CABLE CHASE, SHIELDING TANK AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-1. INEL INDEX CODE NUMBER: 075 0701 851 151970. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
Facilities Guidelines. North Carolina Public Schools.
ERIC Educational Resources Information Center
North Carolina State Dept. of Public Instruction, Raleigh.
In July 1987, the North Carolina General Assembly enacted legislation to provide funds for public school construction to assist county governments in meeting their capital building needs and to provide additional funds for selected counties with the most critical school facility needs. This document, in accordance with the legislation's direction,…
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...
40 CFR 60.390 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Performance for Automobile and Light Duty Truck Surface Coating Operations § 60.390 Applicability and... facilities in an automobile or light-duty truck assembly plant: each prime coat operation, each guide coat... to coat plastic body components or all-plastic automobile or light-duty truck bodies on separate...
Protection of Department of Defense Facilities from Airborne CBR Threats: An Annotated Bibliography
2004-09-01
resistance. The use and control of smoke or isolation dampers plays a key role, along with the definition of smoke control zones and sandwich ...educational facilities; and other areas of public assembly such as stadiums, coliseums, and vehicle tunnels and subways . This scope also pertains to
View of debris assembled at the Kennedy Space Center from STS 51-L
NASA Technical Reports Server (NTRS)
1986-01-01
Pieces of the external tank from the STS 51-L accident are assembled in a tent near the Logistics Facility at the Kennedy Space Center. Most of the pieces were recovered by the Coast Guard and Navy following the accident. The pieces were assembled so that the side which normally would face the Orbiter Challenger is in the center of the tent. The picture was taken from the right side of the rear of the tank facing toward the top.
2015-08-24
microcontact printing techniques to deposit and pattern intrinsically polar self - assembled monolayers (SAMs) on smooth template-stripped gold films...and large piezoresponse. Stamp Stamp Gold Gold 10 μm 10 μ m 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 nm Fig. 7. Patterned self - assembled monolayers of...SAM. Importantly, deposition and patterning of thiol self - assembled monolayers on gold surfaces is facile, creating in intrinsically polar film for
2010-09-28
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill McArthur, (left) Space Shuttle Program Orbiter Projects manager; John Casper, Assistant Space Shuttle Program manager; John Shannon, Space Shuttle Program manager and Canadian Space Agency astronaut Chris Hadfield attend a ceremony being held to commemorate the move from Kennedy's Assembly Refurbishment Facility (ARF) to the Vehicle Assembly Building (VAB) of the Space Shuttle Program's final solid rocket booster structural assembly -- the right-hand forward. The move was postponed because of inclement weather. Photo credit: NASA/Kim Shiflett
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the nitrogen tank assembly is moved toward the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the nitrogen tank assembly is lowered onto the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the nitrogen tank assembly is lowered toward the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
1977-09-09
The first Space Shuttle External Tank, the Main Propulsion Test Article (MPTA), rolls off the assembly line September 9, 1977 at the Michoud Assembly Facility in New Orleans. The MPTA was then transported to the National Space Technology Laboratories in southern Mississippi where it was used in the first static firing of the three main engines. Marshall Space Flight Center had management responsibility for Space Shuttle propulsion elements, including the External Tank. Martin Marietta was the prime contractor who designed and assembled the tanks at Michoud.
The ERDA/LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Forestieri, A. F.
1977-01-01
A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system.
Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal
NASA Astrophysics Data System (ADS)
Herrero, J. J.; Rochman, D.; Leray, O.; Vasiliev, A.; Pecchia, M.; Ferroukhi, H.; Caruso, S.
2017-09-01
In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.
NASA Astrophysics Data System (ADS)
Muratov, V. G.; Lopatkin, A. V.
An important aspect in the verification of the engineering techniques used in the safety analysis of MOX-fuelled reactors, is the preparation of test calculations to determine nuclide composition variations under irradiation and analysis of burnup problem errors resulting from various factors, such as, for instance, the effect of nuclear data uncertainties on nuclide concentration calculations. So far, no universally recognized tests have been devised. A calculation technique has been developed for solving the problem using the up-to-date calculation tools and the latest versions of nuclear libraries. Initially, in 1997, a code was drawn up in an effort under ISTC Project No. 116 to calculate the burnup in one VVER-1000 fuel rod, using the MCNP Code. Later on, the authors developed a computation technique which allows calculating fuel burnup in models of a fuel rod, or a fuel assembly, or the whole reactor. It became possible to apply it to fuel burnup in all types of nuclear reactors and subcritical blankets.
Strategic facility planning improves capital decision making.
Reeve, J R
2001-03-01
A large, Midwestern IDS undertook a strategic facility-planning process to evaluate its facility portfolio and determine how best to allocate future investments in facility development. The IDS assembled a facility-planning team, which initiated the planning process with a market analysis to determine future market demands and identify service areas that warranted facility expansion. The team then analyzed each of the IDS's facilities from the perspective of uniform capacity measurements, highest and best use compared with needs, building condition and investment-worthiness, and facility growth and site development opportunities. Based on results of the analysis, the strategy adopted entailed, in part, shifting some space from inpatient care to ambulatory care services and demolishing and replacing the 11 percent of facilities deemed to be in the worst condition.
Passive gamma analysis of the boiling-water-reactor assemblies
NASA Astrophysics Data System (ADS)
Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.
2016-09-01
This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.
Passive gamma analysis of the boiling-water-reactor assemblies
Vo, D.; Favalli, A.; Grogan, B.; ...
2016-09-01
This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden’s Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in themore » past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.« less
General view of the Aft Rocket Motor mated with the ...
General view of the Aft Rocket Motor mated with the External Tank Attach Ring and Aft Skirt Assembly being transported from the Rotation Processing and Surge Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... structural elements and construction assemblies must be in accordance with ASTM E 119-98 (incorporated by... necessary, they must be protected by self-closing or automatic Class A fire doors, or equivalent doors that... such areas with 4-hour rated construction assemblies. (p) Equipment rows running perpendicular to the...
2004-04-28
KENNEDY SPACE CENTER, FLA. - With employees walking alongside, the external tank atop its transporter turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
2004-04-28
KENNEDY SPACE CENTER, FLA. - Atop a transporter, the external tank seen here turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. With employees walking alongside, the external tank atop its transporter turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Atop a transporter, the external tank seen here turns the corner from the Vehicle Assembly Building toward the Turn Basin and the Banana River. The tank will be loaded onto the waiting barge and transferred to the Michoud Space Systems Assembly Facility near New Orleans where redesign of the external tank is underway for Return to Flight.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) refrigerant to be returned to a refrigerant reclamation facility that will process it to the appropriate ARI... and Assembly Processes (Process FMEA) and Effects Analysis for Machinery (Machinery FMEA). SAE... Manufacturing and Assembly Processes (Process FMEA), and Potential Failure Mode and Effects Analysis for...
PBF Reactor Building (PER620). Detail of fuel test assembly in ...
PBF Reactor Building (PER-620). Detail of fuel test assembly in preparation for test. When complete, it will fit into in-pile tube. The maximum outside diameter of which must be about 8.25 inches. Date: 1982. INEEL negative no. 82-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-06
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing. Members of MSFC Logistics Office and Move Team members gather for last minute instructions and safety briefing before off-loading STA hardware.
Major safety and operational concerns for fuel debris criticality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonoike, K.; Sono, H.; Umeda, M.
2013-07-01
It can be seen from the criticality control viewpoint that the requirement divides the decommissioning work into two parts. One is the present condition where it is requested to prevent criticality and to monitor subcritical condition while the debris is untouched. The other is future work where the subcritical condition shall be ensured even if the debris condition is changed intentionally by raising water level, debris retrieval, etc. Repair of damages on the containment vessel (CV) walls is one of the most important objectives at present in the site. On completion of this task, it will become possible to raisemore » water levels in the CVs and to shield the extremely high radiation emitted from the debris but there is a dilemma: raising the water level in the CVs implies to bring the debris closer to criticality because of the role of water for slowing down neutrons. This may be solved if the coolant water will start circulating in closed loops, and if a sufficient concentration of soluble neutron poison (borated water for instance) will be introduced in the loop. It should be still noted that this solution has a risk of worsening corrosion of the CV walls. Design of the retrieval operation of debris should be proposed as early as possible, which must include a neutron poison concentration required to ensure that the debris chunk is subcritical. In parallel, the development of the measurement system to monitor subcritical condition of the debris chunk should be conducted in case the borated water cannot be used continuously. The system would be based on a neutron counter with a high sensitivity and an appropriate shield for gamma-rays, and the adequate statistical signal processing.« less
Internal hydrogen-induced subcritical crack growth in austenitic stainless steels
NASA Astrophysics Data System (ADS)
Huang, J. H.; Altstetter, C. J.
1991-11-01
The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.
NASA Astrophysics Data System (ADS)
Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha
2017-06-01
The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.
Subcritical and supercritical technology for the production of second generation bioethanol.
Rostagno, Mauricio A; Prado, Juliana M; Mudhoo, Ackmez; Santos, Diego T; Forster-Carneiro, Tânia; Meireles, M Angela A
2015-01-01
There is increased interest in reducing our reliance on fossil fuels and increasing the share of renewable raw materials in our energy supply chain due to environmental and economic concerns. Ethanol is emerging as a potential alternative to liquid fuels due to its eco-friendly characteristics and relatively low production costs. As ethanol is currently produced from commodities also used for human and animal consumption, there is an urgent need of identifying renewable raw materials that do not pose a competitive problem. Lignocellulosic agricultural residues are an ideal choice since they can be effectively hydrolyzed to fermentable sugars and integrated in the context of a biorefinery without competing with the food supply chain. However, the conventional hydrolysis methods still have major issues that need to be addressed. These issues are related to the processing rate and generation of fermentation inhibitors, which can compromise the quality of the product and the cost of the process. As the knowledge of the processes taking place during hydrolysis of agricultural residues is increasing, new techniques are being exploited to overcome these drawbacks. This review gives an overview of the state-of-the-art of hydrolysis with subcritical and supercritical water in the context of reusing agricultural residues for the production of suitable substrates to be processed during the fermentative production of bioethanol. Presently, subcritical and/or supercritical water hydrolysis has been found to yield low sugar contents mainly due to concurrent competing degradation of sugars during the hydrothermal processes. In this line of thinking, the present review also revisits the recent applications and advances to provide an insight of future research trends to optimize on the subcritical and supercritical process kinetics.
Rock fracture processes in chemically reactive environments
NASA Astrophysics Data System (ADS)
Eichhubl, P.
2015-12-01
Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the hostrock can independently affect fracture opening displacement and thus fracture aperture profiles and aperture distribution.
Ionic self-assembly for functional hierarchical nanostructured materials.
Faul, Charl F J
2014-12-16
CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons, specifically deoxyguanosine monophosphate. This approach proved, in combination with block copolymer (BCP) self-assembly, very fruitful for the construction of complex and hierarchical functional materials across multiple length scales. Molecular frustration and incommensurability, which played a major role in structure formation in combination with nucleotide assembly, have now become important tools to tune supramolecular structure formation. These concepts, that is, the use of BCP assembly and incommensurability, in combination with metal-containing polymeric materials, have provided access to novel supramolecular morphologies and, more importantly, design rules to prepare such constructs. These design rules are now also being applied to the assembly of electroactive oligo(aniline)-based materials for the preparation of highly ordered functional soft materials, and present an opportunity for materials development for applications in energy storage. In this Account, we therefore discuss investigations into (i) the inclusion and preparation of supramolecular photoactive and electroactive materials; (ii) the exploitation and control over multiple noncovalent interactions to fine-tune function, internal structure, and long-range order and (iii) exploration of construction over multiple length scales by combination of ISA with well-known BCP self-assembly. Combination of ISA with tuning of volume fractions, mutual compatibility, and molecular frustration now provides a versatile tool kit to construct complex and hierarchical functional materials in a facile noncovalent way. A direct challenge for future ISA activities would certainly be the construction of functional mesoscale objects. However, within a broader scientific context, the challenge would be to exploit this powerful assembly tool for application in areas of research with societal impact, for example, energy storage and generation. The hope is that this Account will provide a platform for such future research activities and opportunities.
SHARC: Space Habitat, Assembly and Repair Center
NASA Technical Reports Server (NTRS)
Colangelo, Todd; Hoetger, Debora; Kuo, Addison; Lo, Michael; Marcus, Leland; Tran, Philip; Tutt, Chris; Wassmuth, Chad; Wildgrube, Gregory
1992-01-01
Integrated Space Systems (ISS) has taken on the task of designing a Space Habitat, Assembly and Repair Center (SHARC) in Low Earth Orbit to meet the future needs of the space program. Our goal is to meet the general requirements given by the 1991/1992 AIAA/LORAL Team Space Design competition with an emphasis on minimizing the costs of such a design. A baseline structural configuration along with preliminary designs of the major subsystems was created. Our initial mission requirements, which were set by AIAA, were that the facility be able to: support simultaneous assembly of three major vehicles; conduct assembly operations and minimal extra vehicular activity (EVA); maintain orbit indefinitely; and assemble components 30 feet long with a 10 foot diameter in a shirtsleeve environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmell, T.; Folga, S., Frey, G.; Molberg, J.
2001-05-04
This volume of the Technical Resource Document (TRD) for the ''Environmental Impact Statement (EIS) for the Design, Construction and Operation of One or More Pilot Test Facilities for Assembled Chemical Weapons Destruction Technologies at One or More Sites'' (PMACWA 2001g) pertains to the destruction of assembled chemical weapons (ACW) stored at Anniston Army Depot (ANAD), located outside Anniston, Alabama. This volume presents technical and process information on each of the destruction technologies applicable to treatment of the specific ACW stored at ANAD. The destruction technologies described are those that have been demonstrated as part of the Assembled Chemical Weapons Assessmentmore » (ACWA) selection process (see Volume 1).« less
General view of a Space Shuttle Main Engine (SSME) mounted ...
General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping around the right side and underneath the assembly, the High-Pressure Fuel Turbopump located on the lower left portion of the assembly, the Engine Controller and Main Fuel Valve Hydraulic Actuator located on the upper portion of the assembly and the Low-Pressure Oxidizer Turbopump Discharge Duct at the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2017-06-29
This video shows the Space Launch System liquid hydrogen tank structural qualification test article being moved to Building 110, Cell at NASA's Michoud Assembly Facility in New Orleans. The rocket's liquid hydrogen tank, which is the propellant tank that joins to the engine section of the 212-foot tall core stage, will carry cryogenic liquid hydrogen that propels the rocket. This test article build at Michoud is being prepared for testing at NASA's Marshall Space Flight Center in Huntsville, Alabama. There, it will be subjected to millions of pounds of force during testing to ensure the hardware can withstand the incredible stresses of launch.
Study of robotics systems applications to the space station program
NASA Technical Reports Server (NTRS)
Fox, J. C.
1983-01-01
Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed.
NASA Technical Reports Server (NTRS)
Dejong, J.; Spencer, E. A.
1983-01-01
A 205 mm transfer standard orifice plate meter assembly, consisting of two orifice plates in series separated by a length of pipe containing a flow straightener, was calibrated in two water flow facilities. Results show that the agreement in the characteristics of such a differential pressure transfer standard package is within 0.17% over a 10:1 range from flow rates of approximately 8 to 80 l/sec. When the range over which the comparison was made was limited to that for which the calibration graphs gave straight lines, the agreement is 0.1% in 3 of the 4 calibrations (0.17% in the fourth).
Orbital construction demonstration study. Volume 3: Requirements document
NASA Technical Reports Server (NTRS)
1977-01-01
A comprehensive set of requirements that defines the objective, scope and configuration of the orbital test facility needed to demonstrate the necessary automated fabrication, construction and assembly technology is provided. In addition to the requirements for the orbital demonstration facility, a detailed list of experiment requirements is included for various areas of technology.
40 CFR 63.3176 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... facility which assembles automobiles or light-duty trucks, including coating facilities and processes. Bake oven air seal means an entry or entry vestibule to or an exit or exit vestibule from a bake oven which isolates the bake oven from the area immediately preceding (for an entry or entry vestibule) or immediately...
40 CFR 63.3176 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... facility which assembles automobiles or light-duty trucks, including coating facilities and processes. Bake oven air seal means an entry or entry vestibule to or an exit or exit vestibule from a bake oven which isolates the bake oven from the area immediately preceding (for an entry or entry vestibule) or immediately...
40 CFR 63.3176 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... facility which assembles automobiles or light-duty trucks, including coating facilities and processes. Bake oven air seal means an entry or entry vestibule to or an exit or exit vestibule from a bake oven which isolates the bake oven from the area immediately preceding (for an entry or entry vestibule) or immediately...
Barrier-Free School Facilities for Handicapped Students. ERS Information Aid.
ERIC Educational Resources Information Center
Kunder, Linda H.
The purpose of this document is to assemble and summarize suggestions, recommendations, and regulations--most of which have been made in the light of increasing local, state, and federal mandates--that might be helpful to school officials in making educational facilities barrier-free for handicapped students. Three survey forms are included to…
Louisiana Governor John Bel Edwards Visits NASA’s Rocket Factory
2017-11-01
Louisiana Gov. John Bel Edwards visited NASA’s Michoud Assembly Facility in New Orleans and spoke about the state’s partnerships with NASA and the 20 companies and government agencies located at the facility. NASA is building its new deep space rocket, the Space Launch System, and the Orion spacecraft at Michoud.
Engineering study for closure of 209E facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brevick, C.H.; Heys, W.H.; Johnson, E.D.
1997-07-07
This document is an engineering study for evaluating alternatives to determine the most cost effective closure plan for the 209E Facility, Critical Mass Laboratory. This laboratory is located in the 200 East Area of the Hanford Site and contains a Critical Assembly Room and a Mix room were criticality experiments were once performed.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis approaches the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis is towed from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis nears the Vehicle Assembly Building (VAB). It is being towed from the Orbiter Processing Facility (OPF) to allow work to be performed in the bay that can only be accomplished while it is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
2003-12-05
KENNEDY SPACE CENTER, FLA. - The Space Shuttle orbiter Atlantis awaits transport from the Orbiter Processing Facility (OPF) to the Vehicle Assembly Building (VAB). The move will allow work to be performed in the OPF that can only be accomplished while the bay is empty. Work scheduled in the processing facility includes annual validation of the bay's cranes, work platforms, lifting mechanisms, and jack stands. Atlantis will remain in the VAB for about 10 days, then return to the OPF as work resumes to prepare it for launch in September 2004 on the first return-to-flight mission, STS-114.
Volterra Series Approach for Nonlinear Aeroelastic Response of 2-D Lifting Surfaces
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Marzocca, Piergiovanni; Librescu, Liviu
2001-01-01
The problem of the determination of the subcritical aeroelastic response and flutter instability of nonlinear two-dimensional lifting surfaces in an incompressible flow-field via Volterra series approach is addressed. The related aeroelastic governing equations are based upon the inclusion of structural nonlinearities, of the linear unsteady aerodynamics and consideration of an arbitrary time-dependent external pressure pulse. Unsteady aeroelastic nonlinear kernels are determined, and based on these, frequency and time histories of the subcritical aeroelastic response are obtained, and in this context the influence of geometric nonlinearities is emphasized. Conclusions and results displaying the implications of the considered effects are supplied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Steven Karl; Determan, John C.
Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS modelmore » tailored to this particular class using fissile fuel.« less
Supercritical convection, critical heat flux, and coking characteristics of propane
NASA Technical Reports Server (NTRS)
Rousar, D. C.; Gross, R. S.; Boyd, W. C.
1984-01-01
The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.
Properties of extracts from defatted rice bran by its subcritical water treatment.
Wiboonsirikul, Jintana; Kimura, Yukitaka; Kadota, Megumi; Morita, Hisahiro; Tsuno, Takuo; Adachi, Shuji
2007-10-17
Defatted rice bran was extracted with water and subcritical water at 50-250 degrees C for 5 min. The highest extract yield was achieved at 200 degrees C, at which the maximum amounts of protein and carbohydrate were also obtained. The total phenolic and furfural contents, radical scavenging activity, and antioxidative activity for the autoxidation of linoleic acid increased with increasing treatment temperature. The bran extracts exhibited emulsifying activity except for the extract prepared at 250 degrees C, which was concomitant with the disappearance of its high-molecular-mass substances. The extract prepared at 200 degrees C also had the highest emulsion-stabilizing activity.
Gravity-driven soap film dynamics in subcritical regimes
NASA Astrophysics Data System (ADS)
Auliel, M. I.; Castro, F.; Sosa, R.; Artana, G.
2015-10-01
We undertake the analysis of soap-film dynamics with the classical approach of asymptotic expansions. We focus our analysis in vertical soap film tunnels operating in subcritical regimes with elastic Mach numbers Me=O(10-1) . Considering the associated set of nondimensional numbers that characterize this flow, we show that the flow behaves as a two-dimensional (2D) divergence free flow with variable mass density. When the soap film dynamics agrees with that of a 2D and almost constant mass density flow, the regions where the second invariant of the velocity gradient is non-null correspond to regions where the rate of change of film thickness is non-negligible.
Metal elution from Ni- and Fe-based alloy reactors under hydrothermal conditions.
Faisal, Muhammad; Quitain, Armando T; Urano, Shin-Ya; Daimon, Hiroyuki; Fujie, Koichi
2004-05-20
Elution of metals from Ni- and Fe-based alloy (i.e. Inconel 625 and SUS 316) under hydrothermal conditions was investigated. Results showed that metals could be eluted even in a short contact time. At subcritical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo, and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. Several factors including temperature and contact time were found to affect elution behavior. The presence of air in the fluid even promoted elution under subcritical conditions.
Cryogenic Orbital Nitrogen Experiment (CONE): Phase A/B design study
NASA Technical Reports Server (NTRS)
Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.
1991-01-01
Subcritical cryogenic fluid management (CFM) has long been recognized as an enabling technology for future space missions. Subcritical liquid storage and supply are two of the five CFM technology areas that need to be studied in the low gravity on-orbit environment. The Cryogenic Orbital Nitrogen Experiment (CONE) is a LN2 cryogenic storage and supply system demonstration placed in orbit by the National Space Transportation System (NSTS) Orbiter and operated as an in-bay payload. In-space demonstration of CFM using LN2 with a few well defined areas of focus would provide the confidence level required to implement subcritical cryogen use and is the first step towards the more far reaching issue of cryogen transfer and tankage resupply. A conceptual approach for CONE was developed and an overview of the program is described including the following: (1) a description of the background and scope of the technology objectives; (2) a description of the payload design and operation; and (3) the justification for CONE relating to potential near term benefits and risk mitigation for future systems. Data and criteria is provided to correlate in-space performance with analytical and numerical modeling of CFM systems.
Graphite Recycling from Spent Lithium-Ion Batteries.
Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha
2016-12-20
The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO 2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO 2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO 2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subcritical saturation of the magnetorotational instability through mean magnetic field generation
NASA Astrophysics Data System (ADS)
Xie, Jin-Han; Julien, Keith; Knobloch, Edgar
2018-03-01
The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
Subcritical crack growth in SiNx thin-film barriers studied by electro-mechanical two-point bending
NASA Astrophysics Data System (ADS)
Guan, Qingling; Laven, Jozua; Bouten, Piet C. P.; de With, Gijsbertus
2013-06-01
Mechanical failure resulting from subcritical crack growth in the SiNx inorganic barrier layer applied on a flexible multilayer structure was studied by an electro-mechanical two-point bending method. A 10 nm conducting tin-doped indium oxide layer was sputtered as an electrical probe to monitor the subcritical crack growth in the 150 nm dielectric SiNx layer carried by a polyethylene naphthalate substrate. In the electro-mechanical two-point bending test, dynamic and static loads were applied to investigate the crack propagation in the barrier layer. As consequence of using two loading modes, the characteristic failure strain and failure time could be determined. The failure probability distribution of strain and lifetime under each loading condition was described by Weibull statistics. In this study, results from the tests in dynamic and static loading modes were linked by a power law description to determine the critical failure over a range of conditions. The fatigue parameter n from the power law reduces greatly from 70 to 31 upon correcting for internal strain. The testing method and analysis tool as described in the paper can be used to understand the limit of thin-film barriers in terms of their mechanical properties.
Theory and methods for measuring the effective multiplication constant in ADS
NASA Astrophysics Data System (ADS)
Rugama Saez, Yolanda
2001-10-01
In the thesis an absolute measurements technique for the subcriticality determination is presented. The ADS is a hybrid system where a subcritical system is fed by a proton accelerator. There are different proposals to define an ADS, one is to use plutonium and minor actinides from power plants waste as fuel to be transmuted into non radioactive isotopes (transmuter/burner, ATW). Another proposal is to use a Th232-U233 cycle (Energy Amplifier), being that thorium is an interesting and abundant fertile isotope. The development of accelerator driven systems (ADS) requires the development of methods to monitor and control the subcriticality of this kind of system without interfering with its normal operation mode. With this finality, we have applied noise analysis techniques that allow us to characterise the system when it is operating. The method presented in this thesis is based on the stochastic neutron and photon transport theory that can be implemented by presently available neutron/photon transport codes. In this work, first we analyse the stochastic transport theory which has been applied to define a parameter to determine the subcritical reactivity monitoring measurements. Finally we give the main limitations and recommendations for these subcritical monitoring methodology. As a result of the theoretical methodology, done in the first part of this thesis, a monitoring measurement technique has been developed and verified using two coupled Monte Carlo programs. The first one, LAHET, simulates the spallation collisions and the high energy transport and the other, MCNP-DSP, is used to estimate the counting statistics from a neutron/photon ray counter in a fissile system, as well as the transport for neutron with energies less than 20 MeV. From the coupling of both codes we developed the LAHET/MCNP-DSP code which, has the capability to simulate the total process in the ADS from the proton interaction to the signal detector processing. In these simulations, we compute the cross power spectral densities between pairs of detectors located inside the system which, is defined as the measured parameter. From the comparison of the theoretical predictions with the Monte Carlo simulations, we obtain some practical and simple methods to determine the system multiplication constant. (Abstract shortened by UMI.)
Development of new critical fluid-based processing methods for nutraceuticals and natural products
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. W.
2004-01-01
The development of new supercritical fluid processing technology as applied to nutraceuticals and natural products is no longer confined to using just supercritical fluid extraction (SFE) and supercritical carbon dioxide (SC-CO{sub 2}). Recently reported advances have been focused on modifying natural products and improving functionality of an end product using newer experimental techniques and fluid phases. In this presentation four focus areas will be emphasized: (1) control of particle size/morphology and encapsulation of the nutraceutical ingredients, (2) the use of combinatorial methodology to optimize critical fluid processing, (3) application of sub-critical water as a complementary medium for processing natural products,more » and (4) an assessment of the current state of products and processing which use critical fluid to produce nutraceutical and natural products for the food and cosmetic marketplace. Application of the various particle fomiation processes conducted in the presence of critical fluid media, such as: CPF, SAS, DELOS, RESS, PGSS, and GAS, can be used to produce particles of small and uniform distribution, having unique morphologies, that facilitate rapid dissolution or sustained release of many nutraceutical ingredients. These substances have included: therapeutic spices, phystosterols, vitamins, phospholpids, and carotenoids. Accelerating the development of critical fluid processing has been the application of combinatorial methodology to optimize extraction, fractionation, and/or reactions in near-, SC-, or subcritical fluid media. This is frequently accomplished by using sequential or multichannel automated instrumentation that was originally designed for analytical purposes. Several examples will be provided of rapidly assessing the extraction of anthocyanins with sub-critical water and the SFE of natural products. However, differences do exist in conducting experiments on the above instrumentation vs. scaled-up continuous processes, which will be noted. Sub-critical water is finding increase use as an extraction/fractionation or reaction medium. The literature reports applications for the extraction spices, natural antioxidants (rosemary, anthocyanins, etc.), and herbal components (tea and coffee ingredients), Our studies and the literature provide adequate correlations of solute solubility in sub-critical water as well as models for the kinetics of extraction in this medium. Finally, the current state of critical fluid technology as applied to natural products and nutraceuticals will be assessed; noting specific processes, organizations, and products that exist.« less
Shielding and Activation Analyses for BTF Facility at SNS
NASA Astrophysics Data System (ADS)
Popova, Irina; Gallmeier, Franz X.
2017-09-01
The beam test facility (BTF), which simulates front end of the Spallation Neutron Source (SNS), has been built at the SNS, and is preparing for commissioning. The BTF has been assembled and will operate in one of service buildings at the site. The 2.5 MeV proton beam, produced in the facility, will be stopped in the beam dump. In order to support BTF project from radiation protection site, neutronics simulations and activation analyses were performed to evaluate the necessary shielding around the facility and radionuclide inventory of the beam stop.
Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition
NASA Astrophysics Data System (ADS)
Horton, Patrick; Eaton, David
2017-07-01
Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.
In-orbit assembly mission for the Space Solar Power Station
NASA Astrophysics Data System (ADS)
Cheng, ZhengAi; Hou, Xinbin; Zhang, Xinghua; Zhou, Lu; Guo, Jifeng; Song, Chunlin
2016-12-01
The Space Solar Power Station (SSPS) is a large spacecraft that utilizes solar power in space to supply power to an electric grid on Earth. A large symmetrical integrated concept has been proposed by the China Academy of Space Technology (CAST). Considering its large scale, the SSPS requires a modular design and unitized general interfaces that would be assembled in orbit. Facilities system supporting assembly procedures, which include a Reusable Heavy Lift Launch Vehicle, orbital transfer and space robots, is introduced. An integrated assembly scheme utilizing space robots to realize this platform SSPS concept is presented. This paper tried to give a preliminary discussion about the minimized time and energy cost of the assembly mission under best sequence and route This optimized assembly mission planning allows the SSPS to be built in orbit rapidly, effectively and reliably.
Space Fabrication Demonstration System
NASA Technical Reports Server (NTRS)
1978-01-01
The completion of assembly of the beam builder and its first automatic production of truss is discussed. A four bay, hand assembled, roll formed members truss was built and tested to ultimate load. Detail design of the fabrication facility (beam builder) was completed and designs for subsystem debugging are discussed. Many one bay truss specimens were produced to demonstrate subsystem operation and to detect problem areas.
1977-01-01
trays are placed on a cart (206-pound net explosive). These carts are moved by driverless tractor to an 8-hour hold in a nearby building while quality...by driverless tractor to a 40-hour hold for quality assurance inspection. After inspection, the grenades are returned to the loading, assembling, and
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. Historic Saturn 1-C test stand on far left, blockhouse 4670 on far right, SLS LH2 test stand, 4693, in center.
The SLS Stages Intertank Structural Test Assembly (STA) arrives at MSFC
2018-03-08
The SLS Stages Intertank Structural Test Assembly (STA) is rolling off the NASA Pegasus Barge at the MSFC Dock enroute to the MSFC 4619 Load Test Annex test facility for qualification testing via MSFC West Test Area. STA enters West Test Area from intersection of Dodd and Saturn roads. Onlookers take photos with Historic Dynamic Test Stand in background.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
International Space Station Research and Facilities for Life Sciences
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Ruttley, Tara M.
2009-01-01
Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tianfu; Ma, Zhuang; Li, Guoping
Electrostatic self-assembly in organic solvent without intensively oxidative or corrosive environments, was adopted to prepare Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials as an energy generating material. The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. This spontaneous assembly method without any surfactant chemistry or other chemical and biological moieties decreased the aggregation of the same nanoparticles largely, moreover, the poor interfacial contact between the Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles was improved significantly, which was the key characteristic ofmore » high performance nanostructured energetic materials. In addition, the assembly process was confirmed as Diffusion-Limited Aggregation. The assembled Al/Fe{sub 2}O{sub 3}/MWCNT nanostructured energetic materials showed excellent performance with heat release of 2400 J/g, peak pressure of 0.42 MPa and pressurization rate of 105.71 MPa/s, superior to that in the control group Al/Fe{sub 2}O{sub 3} nanostructured energetic materials prepared by sonication with heat release of 1326 J/g, peak pressure of 0.19 MPa and pressurization rate of 33.33 MPa/s. Therefore, the approach, which is facile, opens a promising route to the high performance nanostructured energetic materials. - Graphical abstract: The negatively charged MWCNT was used as a glue-like agent to direct the self-assembly of the well dispersed positively charged Al (fuel) and Fe{sub 2}O{sub 3} (oxide) nanoparticles. - Highlights: • A facile spontaneous electrostatic assembly strategy without surfactant was adopted. • The fuels and oxidizers assembled into densely packed nanostructured composites. • The assembled nanostructured energetic materials have excellent performance. • This high performance energetic material can be scaled up for practical application. • This strategy can be applied into other nanostructured energetic material systems.« less
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians prepare to lift the nitrogen tank assembly to move it to the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians watch closely as an overhead crane lifts the nitrogen tank assembly to move it to the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians check the nitrogen tank assembly before lifting and moving it to the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians check the nitrogen tank assembly closely as an overhead crane lifts and moves it to the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians check the nitrogen tank assembly closely as an overhead crane lifts and moves it to the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians check the nitrogen tank assembly closely as an overhead crane lifts and moves it to the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians check the placement of the nitrogen tank assembly on the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
2009-08-17
CAPE CANAVERAL, Fla. – In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians check closely as the nitrogen tank assembly is lowered closer to the Express Logistics Carrier 1, or ELC-1. The carrier is part of the STS-129 payload on space shuttle Atlantis, which will deliver to the International Space Station two spare gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. STS-129 is targeted to launch Nov. 12. Photo credit: NASA/Jim Grossmann
Closeup view of the Solid Rocket Booster (SRB) Forward Skirt, ...
Close-up view of the Solid Rocket Booster (SRB) Forward Skirt, Frustum and Nose Cap mated assembly undergoing final preparations in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center. The prominent feature in this view is the Forward Thrust Attach Fitting which mates up with the Forward Thrust Attach Fitting of the External Tank (ET) at the ends of the SRB Beam that runs through the ET's Inter Tank Assembly. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Astrophysics Data System (ADS)
Vaishampayan, Parag
2016-07-01
In compliance with Planetary Protection policy, NASA monitors the total microbial burden of spacecraft and associated environments as a means for minimizing forward contamination. Despite numerous characterizations of microbial populations in spacecraft assembly cleanrooms, understanding the metabolic traits responsible for their persistence and survival remains a significant challenge. The principal objective of this study is to establish functional traits by exploring the entire gene content (metagenome) of the cleanroom microbial community. DNA-based techniques are incapable of distinguishing viable microorganisms from dead microbial cells in samples. Consequently, metagenomic analyses based on total environmental DNA extracts do not render a meaningful understanding of the metabolic and/or functional characteristics of living microorganisms in cleanrooms. A molecular viability marker was applied to samples collected from a cleanroom facility, and subsequent metagenomic sequencing experiments showed considerable differences between the resulting viable-only and total microbiomes. Nevertheless, analyses of sequence abundance suggested that the viable microbiome was influenced by both the human microbiome and the ambient ecosystem external to the facility, which resulted in a complex community profile. Also detected were the first viral signatures ever retrieved from a cleanroom facility: the genomes of human cyclovirus 7078A and Propionibacterium phage P14.4. We also wanted to evaluate if the strict cleaning and decontamination procedures selectively favor survival and growth of hardy microrganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: Dawn, Phoenix, and Mars Science Laboratory. Potential pathogens and their corresponding virulence factors were present in all the samples. Decreased microbial and pathogenic diversity during spacecraft assembly, compared to before and after, indicates that decontamination and preventative measures were effective and well implemented. The findings presented here, as well as the innovative methods that enabled their discovery, promise to have profound implications for the design and interpretation of ongoing and future studies in cleanrooms, indoor environments, and potential future human missions to Mars.
On the generation of magnetized collisionless shocks in the large plasma device
NASA Astrophysics Data System (ADS)
Schaeffer, D. B.; Winske, D.; Larson, D. J.; Cowee, M. M.; Constantin, C. G.; Bondarenko, A. S.; Clark, S. E.; Niemann, C.
2017-04-01
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, background magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. The results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, D. B.; Winske, D.; Larson, D. J.
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less
On the generation of magnetized collisionless shocks in the large plasma device
Schaeffer, D. B.; Winske, D.; Larson, D. J.; ...
2017-03-22
Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less
2003-10-22
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, STS-115 Mission Specialist Joseph Tanner (second from left, foreground) works with technicians to learn more about the Japanese Experiment Module (JEM), known as Kibo. The JEM consists of six components: two research facilities - the Pressurized Module and the Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. Equipment familiarization is a routine part of astronaut training and launch preparations.