Sample records for subduction zone thrust

  1. Crustal earthquake triggering by pre-historic great earthquakes on subduction zone thrusts

    USGS Publications Warehouse

    Sherrod, Brian; Gomberg, Joan

    2014-01-01

    Triggering of earthquakes on upper plate faults during and shortly after recent great (M>8.0) subduction thrust earthquakes raises concerns about earthquake triggering following Cascadia subduction zone earthquakes. Of particular regard to Cascadia was the previously noted, but only qualitatively identified, clustering of M>~6.5 crustal earthquakes in the Puget Sound region between about 1200–900 cal yr B.P. and the possibility that this was triggered by a great Cascadia thrust subduction thrust earthquake, and therefore portends future such clusters. We confirm quantitatively the extraordinary nature of the Puget Sound region crustal earthquake clustering between 1200–900 cal yr B.P., at least over the last 16,000. We conclude that this cluster was not triggered by the penultimate, and possibly full-margin, great Cascadia subduction thrust earthquake. However, we also show that the paleoseismic record for Cascadia is consistent with conclusions of our companion study of the global modern record outside Cascadia, that M>8.6 subduction thrust events have a high probability of triggering at least one or more M>~6.5 crustal earthquakes.

  2. Forearc deformation and great subduction earthquakes: implications for cascadia offshore earthquake potential.

    PubMed

    McCaffrey, R; Goldfinger, C

    1995-02-10

    The maximum size of thrust earthquakes at the world's subduction zones appears to be limited by anelastic deformation of the overriding plate. Anelastic strain in weak forearcs and roughness of the plate interface produced by faults cutting the forearc may limit the size of thrust earthquakes by inhibiting the buildup of elastic strain energy or slip propagation or both. Recently discovered active strike-slip faults in the submarine forearc of the Cascadia subduction zone show that the upper plate there deforms rapidly in response to arc-parallel shear. Thus, Cascadia, as a result of its weak, deforming upper plate, may be the type of subduction zone at which great (moment magnitude approximately 9) thrust earthquakes do not occur.

  3. Formation of an active thrust triangle zone associated with structural inversion in a subduction setting, eastern New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, Philip M.; Nicol, Andrew

    2004-02-01

    We analyze a thrust triangle zone, which underlies the continental shelf of Hawke Bay, eastern New Zealand, within the Hikurangi subduction margin. This triangle zone differs from many other examples in that it is active, 90 km from the leading edge of the overriding plate, and formed due to polyphase deformation involving opposed dipping thrust duplex and backthrust, with the later structure forming in response to inversion of an extensional graben. The component structures of the zone mainly developed sequentially rather than synchronously. High-quality marine seismic reflection lines, tied to well and seabed samples, reveal the three-dimensional structure of the zone, together with its 25 Myr evolution and late Quaternary activity. The triangle zone occurs in the lateral overlap between a stack of NW dipping blind thrusts, and a principal backthrust, the Kidnappers fault. The NW dipping thrusts initiated in the early-middle Miocene during the early stages of subduction, with subsequent thrust duplex formation producing major uplift and erosion in the late Miocene-early Pliocene. The active backthrust formed during the late Miocene to early Pliocene as a thin-skinned listric extensional fault confined to the cover sequence. Structural inversion of the extensional fault commenced in the early-middle Pliocene, produced the backthrust and marks the formation of the thrust triangle zone. The thrust duplex and backthrust accrued strain following inversion; however, the later structure accommodated most of the surface deformation in the Quaternary. Section balancing of the triangle zone together with a detailed analysis of reverse displacements along the backthrust reveal spatial and temporal variations of strain accumulation on the two principal components of the zone. Although the formation of the triangle zone is strongly influenced by regional tectonics of the subduction system, these variations may also, in part, reflect local fault interaction. For example, high Quaternary displacement rates on the backthrust accounts for ˜70% of the displacement loss that occurs on the southern segments of the overlapping, Lachlan fault. Understanding the tectonic evolution of such complex, polyphase thrust triangle zones requires the preservation of growth strata that record sequential deformation history. In the absence of such data, synchroneity of opposed dipping thrusts in triangle zones cannot be assumed.

  4. Yakataga fold-and-thrust belt: Structural geometry and tectonic implications of a small continental collision zone

    NASA Astrophysics Data System (ADS)

    Wallace, Wesley K.

    Collision of the Yakutat terrane with southern Alaska created a collisional fold-and-thrust belt along the Pacific-North America plate boundary. This southerner fold-and-thrust belt formed within continental sedimentary rocks but with the seaward vergence and tectonic position typical of an accretionary wedge. Northward exposure of progressively older rocks reflects that the fold-and-thrust belt forms a southward-tapered orogenic wedge that increases northward in structural relief and depth of erosion. Narrow, sharp anticlines separate wider, flat-bottomed synclines. Relatively steep thrust faults commonly cut the forelimbs of anticlines. Fold shortening and fault displacement both generally increase northward, whereas fault dip generally decreases northward. The coal-bearing lower part of the sedimentary section serves as a detachment for both folds and thrust faults. The folded and faulted sedimentary section defines a regional south dip of about 8°. The structural relief combined with the low magnitude of shortening of the sedimentary section suggest that the underlying basement is structurally thickened. I propose a new interpretation in which this thickening was accommodated by a passive-roof duplex with basement horses that are separated from the overlying folded and thrust-faulted sedimentary cover by a roof thrust with a backthrust sense of motion. Basement horses are ˜7 km thick, based on the thickness between the inferred roof thrust and the top of the basement in offshore seismic reflection data. This thickness is consistent with the depth of the zone of seismicity onshore. The inferred zone of detachment and imbrication of basement corresponds with the area of surface exposure of the fold-and-thrust belt within the Yakutat terrane and with the Wrangell subduction zone and arc farther landward. By contrast, to the west, the crust of the Yakutat terrane has been carried down a subduction zone that extends far landward with a gentle dip, corresponding with a gap in arc magmatism, anomalous topography, and the rupture zone of the 1964 great southern Alaska earthquake. I suggest that, to the east, detachment and imbrication of basement combined with coupling in the fold-and-thrust belt allowed the delaminated dense mantle lithosphere to subduct with a steeper dip than to the west, where buoyant Yakutat terrane crust remains attached to the subducted lithosphere. According to this interpretation, the Wrangell subduction zone is lithosphere of the Yakutat terrane, not Pacific Ocean lithosphere subducted beneath the Yakutat terrane. The Pacific-North America plate boundary would be within the northern deformed part of the Yakutat terrane, not along the boundary between the undeformed southern part of the Yakutat terrane and oceanic crust of the Pacific Ocean. The plate boundary is an evolving zone of distributed deformation in which most of the convergent component has been accommodated within the fold-and-thrust belt south of the northern boundary of the Yakutat terrane, the Chugach-St. Elias thrust fault, and most of the right-lateral component likely has been accommodated on the Bagley Icefield fault just to the north.

  5. Structural deformation and detailed architecture of accretionary wedge in the northern Manila subduction zone

    NASA Astrophysics Data System (ADS)

    Gao, J.; Wu, S.; Yao, Y.; Chen, C.

    2017-12-01

    The South China Sea (SCS) which located at the southeast edge of the Eurasian plate, is heavily influenced by the Philippine Sea plate and the Indo-Australian plate. As eastern boundary of the SCS, Manila subduction zone was created by the northwestern movement of the Philippine Sea plate, recorded the key information on formation and evolution of the SCS and often triggered off earthquakes and tsunami in the East and South Asia. Using high resolution multi-channel seismic data across the northern Manila subduction zone, this study analyzed sedimentary characteristics of oceanic basin and trench, and fine described features of structural deformation and architecture of accretionary wedge and magmatism to discuss the time of subduction inception, thrust motion and influence of seamount subduction on the geometry of the Manila trench. Results show that lower slope of accretionary wedge mainly consist of imbricated thrusts with blind thrust as the frontal fault and structural wedge whereas upper slope was obscure for intensely structural deformation and magmatism. All the thrust faults merged into a detachment fault/surface which may root in Lower Miocene or even older strata, cut off the Miocene near buried seamount and extended the Pliocene upward, suggesting that this detachment fault was obviously influenced by buried seamount and basement high below the accretionary wedge. Magmatism began to be active from late Miocene and continued to be intense during Pliocene and Quaternary in the oceanic basin, trench and accretionary wedge. Based on characteristics of sedimentary and structural deformation, this study proposed that accretionary wedge of the northern Manila subduction zone formed before 16.5 Ma and propagated to the SCS through piggyback propagation thrusting when seafloor spreading of the SCS was still ongoing before 15 Ma. Subduction of extended continental crust in the northeastern SCS created a significantly concaving eastward to geometric shape of the northern Manila trench. With the subducting of fossil ridge of the SCS to the Manila trench and ridge/trench collision happening in the future, the convexly westward arc feature of Manila trench was changed to flat and will be even concave eastward.

  6. a Revision to the Tectonics of the Flores Back-Arc Thrust Zone, Indonesia?

    NASA Astrophysics Data System (ADS)

    Tikku, A. A.

    2011-12-01

    The Flores and Bali Basins are continental basins in the Flores back-arc thrust zone associated with Eocene subduction of the Indo-Australian plate beneath the Sunda plate followed by Miocene to present-day inversion/thrusting. The basins are east of Java and north of the islands of Bali, Lombok, Sumbawa and Flores in the East Java Sea area of Indonesia. The tectonic interpretation of these basins is based on seismic, bathymetry and gravity data and is also supported by present-day GPS measurements that demonstrate subduction is no longer active across the Flores thrust zone. Current thinking about the area is that the Flores Basin (on the east end of the thrust zone) had the most extension in the back-arc thrust and may be a proto-oceanic basin, though the option of a purely continental extensional basin can not be ruled out. The Bali Basin (on the west end of the thrust zone) is thought to be shallower and have experienced less continental thinning and extension than the Flores Basin. Depth to basement estimates from recently collected marine magnetic data indicate the depth of the Bali Basin may be comparable to the depth of the Flores Basin. Analysis of the marine magnetic data and potential implications of relative plate motions will be presented.

  7. Shallow depth of seismogenic coupling in southern Mexico: implications for the maximum size of earthquakes in the subduction zone

    NASA Astrophysics Data System (ADS)

    Suárez, Gerardo; Sánchez, Osvaldo

    1996-01-01

    Studies of locally recorded microearthquakes and the centroidal depths of the largest earthquakes analyzed using teleseismic data show that the maximum depth of thrust faulting along the Mexican subduction zone is anomalously shallow. This observed maximum depth of about 25 ± 5 km is about half of that observed in most subduction zones of the world. A leveling line that crosses the rupture zone of the 19 September 1985 Michoacan event was revisited after the earthquake and it shows anomalously low deformation during the earthquake. The comparison between the observed coseismic uplift and dislocation models of the seismogenic interplate contact that extend to depths ranging from 20 to 40 km shows that the maximum depth at which seismic slip took place is about 20 km. This unusually shallow and narrow zone of seismogenic coupling apparently results in the occurrence of thrust events along the Mexican subduction zone that are smaller than would be expected for a trench where a relatively young slab subducts at a rapid rate of relative motion. A comparison with the Chilean subduction zone shows that the plate interface in Mexico is half that in Chile, not only in the down-dip extent of the seismogenic zone of plate contact, but also in the distance of the trench from the coast and in the thickness of the upper continental plate. It appears that the narrow plate contact produced by this particular plate geometry in Mexico is the controlling variable defining the size of the largest characteristic earthquakes in the Mexican subduction zone.

  8. Along-strike complex geometry of subduction zones - an experimental approach

    NASA Astrophysics Data System (ADS)

    Midtkandal, I.; Gabrielsen, R. H.; Brun, J.-P.; Huismans, R.

    2012-04-01

    Recent knowledge of the great geometric and dynamic complexity insubduction zones, combined with new capacity for analogue mechanical and numerical modeling has sparked a number of studies on subduction processes. Not unexpectedly, such models reveal a complex relation between physical conditions during subduction initiation, strength profile of the subducting plate, the thermo-dynamic conditions and the subduction zones geometries. One rare geometrical complexity of subduction that remains particularly controversial, is the potential for polarity shift in subduction systems. The present experiments were therefore performed to explore the influence of the architecture, strength and strain velocity on complexities in subduction zones, focusing on along-strike variation of the collision zone. Of particular concern were the consequences for the geometry and kinematics of the transition zones between segments of contrasting subduction direction. Although the model design to some extent was inspired by the configuration along the Iberian - Eurasian suture zone, the results are also of significance for other orogens with complex along-strike geometries. The experiments were set up to explore the initial state of subduction only, and were accordingly terminated before slab subduction occurred. The model wasbuilt from layers of silicone putty and sand, tailored to simulate the assumed lithospheric geometries and strength-viscosity profiles along the plate boundary zone prior to contraction, and comprises two 'continental' plates separated by a thinner 'oceanic' plate that represents the narrow seaway. The experiment floats on a substrate of sodiumpolytungstate, representing mantle. 24 experimental runs were performed, varying the thickness (and thus strength) of the upper mantle lithosphere, as well as the strain rate. Keeping all other parameters identical for each experiment, the models were shortened by a computer-controlled jackscrew while time-lapse images were recorded. After completion, the models were saturated with water and frozen, allowing for sectioning and profile inspection. The experiments were invariably characterized by different along-strike patterns of deformation, so that three distinct structural domains could be distinguished in all cases. Model descriptions are subdivided accordingly, including domain CC, simulating a continent-continent collision, domain OC, characterized by continent-ocean-continent collision and domain T, representing the transition zone between domain CC and domain OC. The latter zone varied in width and complexity depending on the contrast in structural style developed in the two other domains; in cases where domain OC developed very differently from domain CC, the transition zone was generally wider and more complex. A typical experiment displayed the following features and strain history: In domain CC two principal thrust sheets are displayed, which obviously developed in an in-sequence foreland-directed fashion. The lowermost detachment nucleated at the base of the High Strength Lithospheric Mantle analogue, whereas the uppermost thrust was anchored within the "lower crust". The two thrusts operated in concert, the surface trace of the deepest dominating in the west, and the shallowest in the east. The kinematic development of domain CC could be subdivided into four stages, including initiation of a symmetrical anticline with a minute amplitude and situated directly above the velocity discontinuity defined by the plate contact (stage 1), contemporaneous development of the two thrusts (stage 2) and an associated asymmetrical anticline (stage 3) with a central collapse graben in the latest phase (stage 4). It is noted that the segment CC as seen in a clear majority of the experiments followed this pattern of development. In contrast, the configuration of domain OC displayed greater variation, and included north and south-directed subduction, folding, growth of pop-up-structures and triangle zones. In the "ocean crust" domain, stage 1 was characterized by the growth of a fault-propagation anticline with an E-W-oriented fold axis, ending with the surfacing of a north-vergent thrust. In stage 2, the contraction was concentrated to the south in the oceanic domain, again ending with the surfacing of a thrust, here with top-south transport. By continued movement (stage 3), the thrust fault propagated towards the east, crossing into the "continental" domain and linking with the fault systems of the segment CC. The structure of domain T is dominated by the interference of faults propagating westwards from the domain CC and eastwards from the domain OC, respectively. The zone of overlap in the experiment was significant, and its central part had the geometry of a double "crocodile structure" (sensuMeissner 1989), separating the two areas of northerly and southerly subduction. Hence, its development is less easily subdivided into stages. Reference: Meissner,R., 1989: Rupture, creep lamellae and crocodiles: happenings in the continental crust. Terra Nova, 1, 17-28.

  9. Foreshock occurrence rates before large earthquakes worldwide

    USGS Publications Warehouse

    Reasenberg, P.A.

    1999-01-01

    Global rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured, using earthquakes listed in the Harvard CMT catalog for the period 1978-1996. These rates are similar to rates ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering, which is based on patterns of small and moderate aftershocks in California, and were found to exceed the California model by a factor of approximately 2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events a large majority, composed of events located in shallow subduction zones, registered a high foreshock rate, while a minority, located in continental thrust belts, measured a low rate. These differences may explain why previous surveys have revealed low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggest the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich.

  10. On the initiation of subduction

    NASA Technical Reports Server (NTRS)

    Mueller, Steve; Phillips, Roger J.

    1991-01-01

    Estimates of shear resistance associated with lithospheric thrusting and convergence represent lower bounds on the force necessary to promote trench formation. Three environments proposed as preferential sites of incipient subduction are investigated: passive continental margins, transform faults/fracture zones, and extinct ridges. None of these are predicted to convert into subduction zones simply by the accumulation of local gravitational stresses. Subduction cannot initiate through the foundering of dense oceanic lithosphere immediately adjacent to passive continental margins. The attempted subduction of buoyant material at a mature trench can result in large compressional forces in both subducting and overriding plates. This is the only tectonic force sufficient to trigger the nucleation of a new subduction zone. The ubiquitous distribution of transform faults and fracture zones, combined with the common proximity of these features to mature subduction complexes, suggests that they may represent the most likely sites of trench formation if they are even marginally weaker than normal oceanic lithosphere.

  11. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate

    NASA Astrophysics Data System (ADS)

    Mukoyoshi, Hideki; Kaneki, Shunya; Hirono, Tetsuro

    2018-03-01

    Understanding variations of slip distance along major thrust systems at convergent margins is an important issue for evaluation of near-trench slip and the potential generation of large tsunamis. We derived quantitative estimates of slip along ancient subduction fault systems by using the maturity of carbonaceous material (CM) of discrete slip zones as a proxy for temperature. We first obtained the Raman spectra of CM in ultracataclasite and pseudotachylyte layers in discrete slip zones at depths below the seafloor of 1-4 km and 2.5-5.5 km, respectively. By comparing the area-under-the-peak ratios of graphitic and disordered bands in those Raman spectra with spectra of experimentally heated CM from surrounding rocks, we determined that the ultracataclasite and pseudotachylyte layers had been heated to temperatures of up to 700 and 1300 °C, respectively. Numerical simulation of the thermal history of CM extracted from rocks near the two slip zones, taking into consideration these temperature constraints, indicated that slip distances in the ultracataclasite and pseudotachylyte layers were more than 3 and 7 m, respectively. Thus, potential distance of coseismic slip along the subduction-zone fault system could have regional variations even at shallow depth (≤ 5.5 km). The slip distances we determined probably represent minimum slips for subduction-zone thrusts and thus provide an important contribution to earthquake preparedness plans in coastal areas facing the Nankai and Sagami Troughs.

  12. Sandbox Simulations of the Evolution of a Subduction Wedge following Subduction Initiation

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Ma, K. F.; DeWolf, W.

    2012-12-01

    Subduction wedges at accreting subduction zones are bounded by a landward dipping pro-shear zone (= subduction thrust) and a seaward-dipping retro-shear zone in the overriding plate. For the Cascadia subduction zone, the surface trace of the retro-shear zone corresponds to the east side of the Coast Ranges of Oregon and Washington and the Insular Mountains of Vancouver Island. This coastal high or forearc high shows clear evidence of long-term uplift and erosion along its entire length, indicating that it is an active part of the Cascadia subduction wedge. The question addressed here is what controls the location of the retro-shear zone? In the popular double-sided wedge model of Willet et al (Geology 1993), the retro-shear zone remains pinned to the S point, which is interpreted to represent where the upper-plate Moho intersects the subduction zone. For this interpretation, the relatively strong mantle is considered to operate as a flat backstop. That model, however. is somewhat artificial in that the two plates collide in a symmetric fashion with equal crustal thicknesses on both sides. Using sandbox experiments, we explore a more realistic configuration where the upper and lower plate are separated by a gentle dipping (10 degree) pro-shear zone, to simulate the initial asymmetric geometry of the subduction thrust immediately after initiation of subduction. The entire lithosphere must fail along some plane for subduction to begin and this failure plane must dip in the direction of subduction. Thus, the initial geometry of the overriding plate is better approximated as a tapered wedge than as a layer of uniform thickness, as represented in the Willett et al models. We demonstrate this model using time-lapse movies of a sand wedge above a mylar subducting plate. We use particle image velocimetry (PIV) to show the evolution of strain and structure within the overriding plate. Material accreted to the tapered end of the overriding plate drives deformation and causes the retro-shear zone to propagate rearward with time. The main conclusion is that the rearward propagation will cease only when 1) the retro shear zone reaches the S point (i.e. the mantle cutoff in the upper plate) or 2) the erosion outflux from the subduction wedge matches the accretionary influx. Given the location of the upper plate Moho at Cascadia, it seems that erosion is the control factor in pinning the retro shear zone there.

  13. Structural evidence for northeastward movement on the Chocolate Mountains thrust, southeasternmost Calfornia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-11-10

    The Late Cretaceous Chocolate Mountains thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the regionally distinctive Orocopia Schist. The Chocolate Mountains thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal (exhumation, unroofing, uplift) fault. The Chocolate Mountains thrust zone contains sparse to locally abundant mesoscopic asymmetric folds. Fabric relations indicate that these folds are an integral part of and coeval with the thrust zone. On a lower hemisphere equal-area plot representing the orientation and sensemore » of asymmetry of 80 thrust zone folds from 36 localities, spread over an area 60 by 10 km, Z folds plot northwest of and S folds plot southeast of a northeast-southwest striking vertical plane of overall monoclinic symmetry. The only sense of movement consistent with the collective asymmetry of the thrust zone folds is top to the northeast. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. The essential point is that movement of the upper plate of the Chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. Alternative tectonic models involving subduction of the Orocopia Schist eastward beneath continental southern California circumvent the suture problem but are presently not supported by any direct structural evidence.« less

  14. Electrical resistivity structures and tectonic implications of Main Karakorum Thrust (MKT) in the western Himalayas: NNE Pakistan

    NASA Astrophysics Data System (ADS)

    Shah, Syed Tallataf Hussain; Zhao, Junmeng; Xiao, Qibin; Bhatti, Zahid Imran; Khan, Nangyal Ghani; Zhang, Heng; Deng, Gong; Liu, Hongbing

    2018-06-01

    We discovered a conductive zone along Main Karakoram Thrust which could be an indication of flat subduction of Kohistan island arc beneath the Eurasian plate. Kohistan island arc collided with the Karakoram Block of the Eurasian Plate in the Early Cretaceous. However, according to findings of many researchers, the subduction ceased about 75 Ma ago. The presence of the conductive zone is an indication of current magmatism or hydrothermal fluids. Maximum low-frequency band data from Fourteen sites with recording periods of 10-2-103 s was acquired along a profile crossing MKT. Our results reveal the existence of multiple low resistivity zones beneath the region extending from shallow to the depths of more than 100 km. These low-resistivity zones might be a signature of the ongoing magmatic activities or hydrothermal fluids along the Shyok Suture Zone. In addition, we discovered another large conductive body towards the south of the study area which could be a result of uprising magmatic plumes generated by the subducting Indian plate along the Indian suture zone and their entrapment in the overlying Kohistan block.

  15. Cyclic stressing and seismicity at strongly coupled subduction zones

    USGS Publications Warehouse

    Taylor, M.A.J.; Zheng, G.; Rice, J.R.; Stuart, W.D.; Dmowska, R.

    1996-01-01

    We use the finite element method to analyze stress variations in and near a strongly coupled subduction zone during an earthquake cycle. Deformation is assumed to be uniform along strike (plane strain on a cross section normal to the trench axis), and periodic earthquake slip is imposed consistent with the long-term rate of plate convergence and degree of coupling. Simulations of stress and displacement rate fields represent periodic fluctuations in time superimposed on an average field. The oceanic plate, descending slab, and continental lithosphere are assumed here to respond elastically to these fluctuations, and the remaining mantle under and between plates is assumed to respond as Maxwell viscoelastic. In the first part of the analysis we find that computed stress fluctuations in space and time are generally consistent with observed earthquake mechanism variations with time since a great thrust event. In particular, trench-normal extensional earthquakes tend to occur early in the earthquake cycle toward the outer rise but occur more abundantly late in the cycle in the subducting slab downdip of the main thrust zone. Compressional earthquakes, when they occur at all, have the opposite pattern. Our results suggest also that the actual timing of extensional outer rise events is controlled by the rheology of the shallow aseismic portion of the thrust interface. The second part of the analysis shows the effects of mantle relaxation on the rate of ground surface deformation during the earthquake cycle. Models without relaxation predict a strong overall compressional strain rate in the continental plate above the main thrust zone, with the strain rate constant between mainshocks. However with significant relaxation present, a localized region of unusually low compressional, or even slightly extensional, strain rate develops along the surface of the continental plate above and somewhat inland from the downdip edge of the locked main thrust zone. The low strain rate starts in the middle or late part of the cycle, depending on position. This result suggests that the negligible or small contraction measured on the Shumagin Islands, Alaska, during 1980 to 1991, may not invalidate an interpretation of that region as being a moderately coupled subduction zone. In contrast, mantle relaxation causes only modest temporal nonuniformity of uplift rates in the overriding plate and of extensional stress rates in the subducting plate, even when the Maxwell time is an order of magnitude less than the recurrence interval.

  16. Using the Vertical Component of the Surface Velocity Field to Map the Locked Zone at Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.

    2014-12-01

    At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and lower plates, and also use realistic constitutive models to represent the locked zone. Another important advantage is that the 3D model provides a full representation of the interseismic deformation, which is important for interpreting GPS data.

  17. Landward vergence in accretionary prism, evidence for frontal propagation of earthquakes?

    NASA Astrophysics Data System (ADS)

    cubas, Nadaya; Souloumiac, Pauline

    2016-04-01

    Landward vergence in accretionary wedges is rare and have been described at very few places: along the Cascadia subduction zone and more recently along Sumatra where the 2004 Mw 9.1 Sumatra-Andaman event and the 2011 tsunami earthquake occurred. Recent studies have suggested a relation between landward thrust faults and frontal propagation of earthquakes for the Sumatra subduction zone. The Cascadia subduction zone is also known to have produced in 1700 a Mw9 earthquake with a large tsunami across the Pacific. Based on mechanical analysis, we propose to investigate if specific frictional properties could lead to a landward sequence of thrusting. We show that landward thrust requires very low effective friction along the megathrust with a rather high internal effective friction. We also show that landward thrust appears close to the extensional critical limit. Along Cascadia and Sumatra, we show that to get landward vergence, the effective basal friction has to be lower than 0.08. This very low effective friction is most likely due to high pore pressure. This high pore pressure could either be a long-term property or due to dynamic effects such as thermal pressurization. The fact that landward vergence appears far from the compressional critical limit favors a dynamic effect. Landward vergence would then highlight thermal pressurization due to occasional or systematic propagation of earthquakes to the trench. As a consequence, the vergence of thrusts in accretionary prism could be used to improve seismic and tsunamigenic risk assessment.

  18. Reducing risk where tectonic plates collide

    USGS Publications Warehouse

    Gomberg, Joan S.; Ludwig, Kristin A.

    2017-06-19

    Most of the world’s earthquakes, tsunamis, landslides, and volcanic eruptions are caused by the continuous motions of the many tectonic plates that make up the Earth’s outer shell. The most powerful of these natural hazards occur in subduction zones, where two plates collide and one is thrust beneath another. The U.S. Geological Survey’s (USGS) “Reducing Risk Where Tectonic Plates Collide—A USGS Plan to Advance Subduction Zone Science” is a blueprint for building the crucial scientific foundation needed to inform the policies and practices that can make our Nation more resilient to subduction zone-related hazards.

  19. Subduction-Related Structure in the Mw 9.2, 1964 Megathrust Rupture Area Offshore Kodiak Island, Alaska

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; von Huene, R.; Klaeschen, D.; Miller, J. J.

    2016-12-01

    Some of the largest earthquakes worldwide, including the 1964 9.2 Mw megathrust earthquake, occurred in Alaskan subduction zones. To better understand rupture processes and their mechanisms, we relate seafloor morphology from multibeam and regional bathymetric compilations with sub-seafloor images and seismic P-wave velocity structures. We re-processed legacy multichannel seismic (MCS) data including shot- and intra-shotgather interpolation, multiple removal and Kirchhoff depth migration. These images even reveal the shallow structure of the subducting oceanic crust. Traveltime tomography of a coincident vintage (1994) wide angle dataset reveals the P-wave velocity distribution as well as the deep structure of the subducting plate to the ocean crust Moho. The subducting oceanic crust morphology is rough and partly hidden by a thick sediment cover that reaches 3 km depth at the trench axis. Bathymetry shows two major contrasting upper plate morphologies: the shallow dipping lower slope consists of trench-parallel ridges that form the accreted prism whereas the steep rough middle and upper slopes are composed of competent older rock.Thrust faults are distributed across the entire slope, some of which connect with the subducted plate interface. A subtle change in seafloor gradient from the lower to the middle slope coincides with a thrust fault zone marking the boundary between the margin framework and the frontal prism. It corresponds to the most prominent lateral increase in seismic P-wave velocities, 25 km landward of the trench axis.Major thrusts in several MCS-lines are correlated with bathymetric data, showing their > 100 km lateral extent, which might also be tsunamigenic paths of earthquake rupture from the seismogenic zone to the seafloor.

  20. The Ms = 8 tensional earthquake of 9 December 1950 of northern Chile and its relation to the seismic potential of the region

    NASA Astrophysics Data System (ADS)

    Kausel, Edgar; Campos, Jaime

    1992-08-01

    The only known great ( Ms = 8) intermediate depth earthquake localized downdip of the main thrust zone of the Chilean subduction zone occurred landward of Antofagasta on 9 December 1950. In this paper we determine the source parameters and rupture process of this shock by modeling long-period body waves. The source mechanism corresponds to a downdip tensional intraplate event rupturing along a nearly vertical plane with a seismic moment of M0 = 1 × 10 28 dyn cm, of strike 350°, dip 88°, slip 270°, Mw = 7.9 and a stress drop of about 100 bar. The source time function consists of two subevents, the second being responsible for 70% of the total moment release. The unusually large magnitude ( Ms = 8) of this intermediate depth event suggests a rupture through the entire lithosphere. The spatial and temporal stress regime in this region is discussed. The simplest interpretation suggests that a large thrust earthquake should follow the 1950 tensional shock. Considering that the historical record of the region does not show large earthquakes, a 'slow' earthquake can be postulated as an alternative mechanism to unload the thrust zone. A weakly coupled subduction zone—within an otherwise strongly coupled region as evidenced by great earthquakes to the north and south—or the existence of creep are not consistent with the occurrence of a large tensional earthquake in the subducting lithosphere downdip of the thrust zone. The study of focal mechanisms of the outer rise earthquakes would add more information which would help us to infer the present state of stress in the thrust region.

  1. New Orogenic Model for Taiwan Collision Zone Inferred From Three-dimensional P- and S-wave Velocity Structures and Seismicity

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Hirata, N.; Sato, H.

    2008-12-01

    The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate (PSP) and the Eurasian Plate (EUP). Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. However, their details have not been known enough, especially under the Central Range. We suggest a new orogenic model for Taiwan orogeny, named 'Upper Crustal Stacking Model', inferred from our tomographic images using three temporary seismic networks with the Central Weather Bureau Seismic Network. These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense array observations across central and southern Taiwan, respectively. Tomographic images by the double-difference tomography [Zhang and Thurber, 2003] show a lateral alternate variation of high- and low-velocity, which are well correlated to surface geology and separated by east-dipping boundaries. These images have reliable high-resolution by dense arrays to be able to discuss this alternate variation. We found three high-velocity zones (> 6.0km/s). The westernmost zone corresponds to the subducting EUP. Other two zones are located beneath the Hsuehshan Range and the Eastern Central Range with trends of eastward dipping, respectively. And, we could image low-velocity zone located beneath Backbone Range between the two high-velocity zones clearly. We interpret that these east-dipping high- and low-velocity zones can be divided into two layered blocks and the subducting EUP, each of which consists of a high-velocity body under low-velocity one. Layered blocks can be interpreted as stacked thrust sheets between the subducting EUP and the Northern Luzon Arc, a part of PSP. These thrust sheets are parts of upper- and mid-crust detached from the subducting EUP. The model of continental subduction followed by buoyancy-driven exhumation can explain the existence of stacked thrust sheets. Thus we propose a new orogenic model, as referred to as the 'Upper Crustal Stacking Model'.

  2. Foreshock occurrence before large earthquakes

    USGS Publications Warehouse

    Reasenberg, P.A.

    1999-01-01

    Rates of foreshock occurrence involving shallow M ??? 6 and M ??? 7 mainshocks and M ??? 5 foreshocks were measured in two worldwide catalogs over ???20-year intervals. The overall rates observed are similar to ones measured in previous worldwide and regional studies when they are normalized for the ranges of magnitude difference they each span. The observed worldwide rates were compared to a generic model of earthquake clustering based on patterns of small and moderate aftershocks in California. The aftershock model was extended to the case of moderate foreshocks preceding large mainshocks. Overall, the observed worldwide foreshock rates exceed the extended California generic model by a factor of ???2. Significant differences in foreshock rate were found among subsets of earthquakes defined by their focal mechanism and tectonic region, with the rate before thrust events higher and the rate before strike-slip events lower than the worldwide average. Among the thrust events, a large majority, composed of events located in shallow subduction zones, had a high foreshock rate, while a minority, located in continental thrust belts, had a low rate. These differences may explain why previous surveys have found low foreshock rates among thrust events in California (especially southern California), while the worldwide observations suggests the opposite: California, lacking an active subduction zone in most of its territory, and including a region of mountain-building thrusts in the south, reflects the low rate apparently typical for continental thrusts, while the worldwide observations, dominated by shallow subduction zone events, are foreshock-rich. If this is so, then the California generic model may significantly underestimate the conditional probability for a very large (M ??? 8) earthquake following a potential (M ??? 7) foreshock in Cascadia. The magnitude differences among the identified foreshock-mainshock pairs in the Harvard catalog are consistent with a uniform distribution over the range of observation.

  3. Potential Seismic Signatures of Megathrust Preparatory Zones

    NASA Astrophysics Data System (ADS)

    Parameswaran, R. M.; Maheswari, K.; Rajendran, K.

    2017-12-01

    The Mw 9.2, 2004 Sumatra earthquake awakened the otherwise inactive Andaman-Sumatra subduction zone (ASSZ), pushing it into an era of amplified seismicity. The subduction zone has since witnessed an array of inter- and intra-plate events along and around its trench. Several intra-plate events like the 2012 Wharton Basin earthquakes (Mw 8.6 and 8.2), are believed to be the triggered response of the plateward transmission of stresses due to the 2004 earthquake (Ishii et al., 2013). On the other hand, the Mw 7.5, 2009 33-km-deep intra-plate normal-faulting event in the northern Andaman segment is an example of outer-rise seismicity resulting from the post-seismic relaxation of the subducting slab (Andrade and Rajendran, 2011). These are aftermaths of a drastic change in the stress regime from compressional to extensional, following the 2004 megathrust event. But, pre-megathrust, aside from the inter-plate thrust mechanisms that are widely observed along the trench, how does the plate-motion-driven compression manifest in the regional seismicity? What happens to the stresses accumulating within the bending subducting slab; does it source deeper compressional events prior to a megathrust? The 2009 normal outer-rise earthquake was preceded by the 13 September 2002, Mw 6.5 Diglipur outer-rise thrust earthquake (22 km depth), both occurring at the northern terminus of the 2004-rupture, in the compressing forearc that experienced surface uplift pre-megathrust (Rajendran et al., 2003; Rajendran et al., 2007). This work, therefore, examines the slip models of such pre-event outer-rise thrust earthquakes along the stretch of the 2004 rupture zone in the ASSZ. The work is also being extended to understand the preparatory zones of other global megathrust earthquakes.

  4. Subduction zone and crustal dynamics of western Washington; a tectonic model for earthquake hazards evaluation

    USGS Publications Warehouse

    Stanley, Dal; Villaseñor, Antonio; Benz, Harley

    1999-01-01

    The Cascadia subduction zone is extremely complex in the western Washington region, involving local deformation of the subducting Juan de Fuca plate and complicated block structures in the crust. It has been postulated that the Cascadia subduction zone could be the source for a large thrust earthquake, possibly as large as M9.0. Large intraplate earthquakes from within the subducting Juan de Fuca plate beneath the Puget Sound region have accounted for most of the energy release in this century and future such large earthquakes are expected. Added to these possible hazards is clear evidence for strong crustal deformation events in the Puget Sound region near faults such as the Seattle fault, which passes through the southern Seattle metropolitan area. In order to understand the nature of these individual earthquake sources and their possible interrelationship, we have conducted an extensive seismotectonic study of the region. We have employed P-wave velocity models developed using local earthquake tomography as a key tool in this research. Other information utilized includes geological, paleoseismic, gravity, magnetic, magnetotelluric, deformation, seismicity, focal mechanism and geodetic data. Neotectonic concepts were tested and augmented through use of anelastic (creep) deformation models based on thin-plate, finite-element techniques developed by Peter Bird, UCLA. These programs model anelastic strain rate, stress, and velocity fields for given rheological parameters, variable crust and lithosphere thicknesses, heat flow, and elevation. Known faults in western Washington and the main Cascadia subduction thrust were incorporated in the modeling process. Significant results from the velocity models include delineation of a previously studied arch in the subducting Juan de Fuca plate. The axis of the arch is oriented in the direction of current subduction and asymmetrically deformed due to the effects of a northern buttress mapped in the velocity models. This buttress occurs under the North Cascades region of Washington and under southern Vancouver Island. We find that regional faults zones such as the Devils Mt. and Darrington zones follow the margin of this buttress and the Olympic-Wallowa lineament forms its southern boundary east of the Puget Lowland. Thick, high-velocity, lower-crustal rocks are interpreted to be a mafic/ultramafic wedge occuring just above the subduction thrust. This mafic wedge appears to be jointly deformed with the arch, suggesting strong coupling between the subducting plate and upper plate crust in the Puget Sound region at depths >30 km. Such tectonic coupling is possible if brittle-ductile transition temperatures for mafic/ultramafic rocks on both sides of the thrust are assumed. The deformation models show that dominant north-south compression in the coast ranges of Washington and Oregon is controlled by a highly mafic crust and low heat flow, allowing efficient transmission of margin-parallel shear from Pacific plate interaction with North America. Complex stress patterns which curve around the Puget Sound region require a concentration of northwest-directed shear in the North Cascades of Washington. The preferred model shows that greatest horizontal shortening occurs across the Devils Mt. fault zone and the east end of the Seattle fault.

  5. On the frequency-magnitude distribution of converging boundaries

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Laura, S.; Heuret, A.; Funiciello, F.

    2011-12-01

    The occurrence of the last mega-thrust earthquake in Japan has clearly remarked the high risk posed to society by such events in terms of social and economic losses even at large spatial scale. The primary component for a balanced and objective mitigation of the impact of these earthquakes is the correct forecast of where such kind of events may occur in the future. To date, there is a wide range of opinions about where mega-thrust earthquakes can occur. Here, we aim at presenting some detailed statistical analysis of a database of worldwide interplate earthquakes occurring at current subduction zones. The database has been recently published in the framework of the EURYI Project 'Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', and it provides a unique opportunity to explore in detail the seismogenic process in subducting lithosphere. In particular, the statistical analysis of this database allows us to explore many interesting scientific issues such as the existence of different frequency-magnitude distributions across the trenches, the quantitative characterization of subduction zones that are able to produce more likely mega-thrust earthquakes, the prominent features that characterize converging boundaries with different seismic activity and so on. Besides the scientific importance, such issues may lead to improve our mega-thrust earthquake forecasting capability.

  6. A Thick, Deformed Sedimentary Wedge in an Erosional Subduction Zone, Southern Costa Rica

    NASA Astrophysics Data System (ADS)

    Silver, E. A.; Kluesner, J. W.; Edwards, J. H.; Vannucchi, P.

    2014-12-01

    A paradigm of erosional subduction zones is that the lower part of the wedge is composed of strong, crystalline basement (Clift and Vannucchi, Rev. Geophys., 42, RG2001, 2004). The CRISP 3D seismic reflection study of the southern part of the Costa Rica subduction zone shows quite the opposite. Here the slope is underlain by a series of fault-cored anticlines, with faults dipping both landward and seaward that root into the plate boundary. Deformation intensity increases with depth, and young, near-surface deformation follows that of the deeper structures but with basin inversions indicating a dynamic evolution (Edwards et al., this meeting). Fold wavelength increases landward, consistent with the folding of a landward-thickening wedge. Offscraping in accretion is minimal because incoming sediments on the lower plate are very thin. Within the wedge, thrust faulting dominates at depth in the wedge, whereas normal faulting dominates close to the surface, possibly reflecting uplift of the deforming anticlines. Normal faults form a mesh of NNW and ENE-trending structures, whereas thrust faults are oriented approximately parallel to the dominant fold orientation, which in turn follows the direction of roughness on the subducting plate. Rapid subduction erosion just prior to 2 Ma is inferred from IODP Expedition 334 (Vannucchi et al., 2013, Geology, 49:995-998). Crystalline basement may have been largely removed from the slope region during this rapid erosional event, and the modern wedge may consist of rapidly redeposited material (Expedition 344 Scientists, 2013) that has been undergoing deformation since its inception, producing a structure quite different from that expected of an eroding subduction zone.

  7. Geological perspectives of shallow slow earthquakes deduced from deformation in subduction mélanges

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Saishu, H.; Kinoshita, T.; Nishiyama, N.; Otsubo, M.; Ohta, K.; Yamashita, Y.; Ito, Y.

    2017-12-01

    Shallow (< 15 km depth) slow earthquakes are important to understand, as they occur along the subduction thrust where devastating tsunamis are generated. Geophysical studies have revealed that shallow slow earthquakes are not restricted to specific temperature conditions and depths but occur in regions of high fluid pressure. In the Nankai subduction zone, the shallow slow slip appears to trigger tremor and very-low-frequency-earthquake. However, the geologic perspectives for shallow slow earthquakes remain enigmatic. The Makimine mélange in the Late Cretaceous Shimanto accretionary complex of southwest Japan was formed during the subduction of young oceanic plate. Within the mélange, the quartz-filled veins and viscous shear zones are concentrated in the zones of 10 to 60 m-thick. The veins consist of shear veins showing low-angle thrust or normal faulting mechanisms and extension veins parallel or at high angle to mélange foliation. The geometrical relationship between shear and extension veins indicates that shear slip and tensile fracturing occur by small differential stress under elevated fluid pressure. The shear and extension veins typically show crack-seal textures defined by the solid inclusions bands. The time scale of each crack-seal event, which is determined from the quartz kinetics considering inclusion band spacing and vein length, is a few years. The shear slip increments estimated from the spacing of inclusions bands at dilational jogs are 0.1 mm. The viscous shear is accommodated by pressure solution creep and consistently shows low-angle thrust shear sense. These geologic features are suggested to explain seismogenic environment for shallow slow earthquakes. The shear veins and viscous shear zones showing low-angle thrust faulting mechanism could represent episodic tremor and slip, while the shear veins showing low-angle normal faulting mechanism may represent the tremor that occurred after the passage of slow slip front.

  8. Describing earthquakes potential through mountain building processes: an example within Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Huai; Shi, Yaolin; Mary, Baptiste; Wang, Liangshu

    2016-04-01

    How to reconcile earthquake activities, for instance, the distributions of large-great event rupture areas and the partitioning of seismic-aseismic slips on the subduction interface, into geological mountain building period is critical in seismotectonics. In this paper, we try to scope this issue within a typical and special continental collisional mountain wedge within Himalayas across the 2015 Mw7.8 Nepal Himalaya earth- quake area. Based on the Critical Coulomb Wedge (CCW) theory, we show the possible predictions of large-great earthquake rupture locations by retrieving refined evolutionary sequences with clear boundary of coulomb wedge and creeping path inferred from interseismic deformation pattern along the megathrust-Main Himalaya Thrust (MHT). Due to the well-known thrusting architecture with constraints on the distribution of main exhumation zone and of the key evolutionary nodes, reasonable and refined (with 500 yr interval) thrusting sequences are retrieved by applying sequential limit analysis (SLA). We also use an illustration method-'G' gram to localize the relative positions of each fault within the tectonic wedge. Our model results show that at the early stage, during the initial wedge accumulation period, because of the small size of mountain wedge, there's no large earthquakes happens in this period. Whereas, in the following stage, the wedge is growing outward with occasionally out-of-sequence thrusting, four thrusting clusters (thrusting 'families') are clarified on the basis of the spatio-temporal distributions in the mountain wedge. Thrust family 4, located in the hinterland of the mountain wedge, absorbed the least amount of the total convergence, with no large earthquakes occurrence in this stage, contributing to the emplacement of the Greater Himalayan Complex. The slips absorbed by the remnant three thrust families result in large-great earthquakes rupturing in the Sub-Himalaya, Lesser Himalaya, and the front of Higher Himalaya. The portion rupturing in Sub-Himalaya is mainly great Himalaya earthquakes (M>8), with enough energy to rupture the whole MHT, while the thrusting family 2 and 3 will cause mainly large earthquakes. The averaged lifespan of single segment (inclined short lines) is growing from the deformation front to the hinterland, while the occurrence frequency is just in the opposite way. Thrusting slips in family 1-3 will enhance the coulomb wedge development resulting in mountain building. Note that, all the large earthquake behaviors described in this paper is a statistical characteristic, just the tendency distribution on the MHT in one interval. Although our research domain is a section of the Nepal Himalaya, the treatment proposed in this paper has universality in continental collisional orogenic belt which having the same interseismic pattern. We also summary the differences of seismogenic zones in oceanic subduction zone (Cascadia subduction zone) and arc-continental subduction zone (Taiwan area). The different types of interseismic pattern(mechanical patterns) are the controlling factors controlling seismic potential on megathrust and thus impacting the mountain building history.

  9. Thermal State, Slab Metamorphism, and Interface Seismicity in the Cascadia Subduction Zone Based On 3-D Modeling

    NASA Astrophysics Data System (ADS)

    Ji, Yingfeng; Yoshioka, Shoichi; Banay, Yuval A.

    2017-09-01

    Giant earthquakes have repeatedly ruptured the Cascadia subduction zone, and similar earthquakes will likely also occur there in the near future. We employ a 3-D time-dependent thermomechanical model that incorporates an up-to-date description of the slab geometry to study the Cascadia subduction thrust. Results show a distinct band of 3-D slab dehydration that extends from Vancouver Island to the Seattle Basin and farther southward to the Klamath Mountains in northern California, where episodic tremors cluster. This distribution appears to include a region of increased dehydration in northern Cascadia. The phenomenon of heterogeneous megathrust seismicity associated with oblique subduction suggests that the presence of fluid-rich interfaces generated by slab dehydration favors megathrust seismogenesis in the northern part of this zone. The thin, relatively weakly metamorphosed Explorer, Juan de Fuca, and Gorda Plates are associated with an anomalous lack of thrust earthquakes, and metamorphism that occurs at temperatures of 500-700°C near the Moho discontinuity may represent a key factor in explaining the presence of the associated episodic tremor and slip (ETS), which requires a young oceanic plate to subduct at a small dip angle, as is the case in Cascadia and southwestern Japan. The 3-D intraslab dehydration distribution suggests that the metamorphosed plate environment is more complex than had previously been believed, despite the existence of channeling vein networks. Slab amphibolization and eclogitization near the continental Moho depth is thus inferred to account for the resultant overpressurization at the interface, facilitating the generation of ETS and the occurrence of small to medium thrust earthquakes beneath Cascadia.

  10. Dynamics of subduction, accretion, exhumation and slab roll-back: Mediterranean scenarios

    NASA Astrophysics Data System (ADS)

    Tirel, C.; Brun, J.; Burov, E. B.; Wortel, M. J.; Lebedev, S.

    2010-12-01

    A dynamic orogen reveals various tectonic processes brought about by subduction: accretion of oceanic and continental crust, exhumation of UHP-HP rocks, and often, back-arc extension. In the Mediterranean, orogeny is strongly affected by slab retreat, as in the Aegean and Tyrrhenian Seas. In order to examine the different dynamic processes in a self-consistent manner, we perform a parametric study using the fully coupled thermo-mechanical numerical code PARAFLAM. The experiments reproduce a subduction zone in a slab pull mode, with accretion of one (the Tyrrhenian case) and two continental blocks (the Aegean case) that undergo, in sequence, thrusting, burial and exhumation. The modeling shows that despite differences in structure between the two cases, the deformation mechanisms are fundamentally similar and can be described as follows. The accretion of a continental block at the trench beneath the suture zone begins with its burial to UHP-HP conditions and thrusting. Then the continental block is delaminated from its subducting lithosphere. During the subduction-accretion process, the angle of the subducting slab increases due to the buoyancy of the continental block. When the oceanic subduction resumes, the angle of the slab decreases to reach a steady-state position. The Aegean and Tyrrhenian scenarios diverge at this stage, due naturally to the differences of their accretion history. When continental accretion is followed by oceanic subduction only, the continental block that has been accreted and detached stays at close to the trench and does not undergo further deformation, despite the continuing rollback. The extensional deformation is located further within the overriding plate, resulting in continental breakup and the development of an oceanic basin, as in the Tyrrhenian domain. When the continental accretion is followed first by oceanic subduction and then by accretion of another continental block, however, the evolution of the subduction zone is different. The angle of the subducting slab increases again, following the arrival of the second continental block. The first continental block is now disconnected from the trench and is strongly heated by the asthenosphere that rises to just below the Moho. The locus of extension, originally in the overriding plate, moves to the first continental block, resulting in the development of metamorphic core complexes, as in the Aegean domain. Simultaneously, the second continent undergoes burial to UHP-HP conditions, thrusting and exhumation.

  11. The 2009 Samoa-Tonga great earthquake triggered doublet

    USGS Publications Warehouse

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  12. Tsunamigenic earthquake simulations using experimentally derived friction laws

    NASA Astrophysics Data System (ADS)

    Murphy, S.; Di Toro, G.; Romano, F.; Scala, A.; Lorito, S.; Spagnuolo, E.; Aretusini, S.; Festa, G.; Piatanesi, A.; Nielsen, S.

    2018-03-01

    Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth as a result of different pre-stress and frictional conditions. A wealth of earthquakes of different sizes and different source features (e.g. rupture duration) can be generated in subduction zones, including tsunami earthquakes, some of which can produce extreme tsunamigenic events. Here, we offer a geological perspective principally accounting for depth-dependent frictional conditions, while adopting a simplified distribution of on-fault tectonic pre-stress. We combine a lithology-controlled, depth-dependent experimental friction law with 2D elastodynamic rupture simulations for a Tohoku-like subduction zone cross-section. Subduction zone fault rocks are dominantly incohesive and clay-rich near the surface, transitioning to cohesive and more crystalline at depth. By randomly shifting along fault dip the location of the high shear stress regions ("asperities"), moderate to great thrust earthquakes and tsunami earthquakes are produced that are quite consistent with seismological, geodetic, and tsunami observations. As an effect of depth-dependent friction in our model, slip is confined to the high stress asperity at depth; near the surface rupture is impeded by the rock-clay transition constraining slip to the clay-rich layer. However, when the high stress asperity is located in the clay-to-crystalline rock transition, great thrust earthquakes can be generated similar to the Mw 9 Tohoku (2011) earthquake.

  13. The 2009 Samoa-Tonga great earthquake triggered doublet.

    PubMed

    Lay, Thorne; Ammon, Charles J; Kanamori, Hiroo; Rivera, Luis; Koper, Keith D; Hutko, Alexander R

    2010-08-19

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.

  14. Basement thrust sheets in the Clearwater orogenic zone, central Idaho and western Montana

    NASA Astrophysics Data System (ADS)

    Skipp, Betty

    1987-03-01

    The Clearwater orogenic zone in central Idaho and western Montana contains at least two major northeast-directed Cordilleran thrust plates of Early Proterozoic metasedimentary and metaigneous rocks that overrode previously folded Middle Proterozoic rocks of the Belt basin in Cretaceous time. The northeastward migration of the resultant thickened wedge of crustal material combined with Cretaceous subduction along the western continental margin produced a younger northern Bitterroot lobe of the Idaho batholith relative to an older southern Atlanta lobe. Eocene extensional unroofing and erosion of the Bitterroot lobe has exposed the roots of the thick Cordilleran thrust sheets.

  15. In search of transient subduction interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-09-01

    In this paper we study the Alpine metamorphic history of a major tectonic zone which formed during Alpine orogeny, the Dent Blanche Thrust (DBT). This contact, located in the Northern Western Alps, juxtaposes some ophiolitic metasediment-rich remnants of the Liguro-Piemontese ocean (Tsaté Complex) with a composite continental, km-sized complex (Dent Blanche Tectonic System, DBTS) of Adriatic affinity thrusted over the ophiolite. In order to better understand the geodynamic meaning of the DBT region and adjacent units, we have reconstructed the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr geochronology, and field relationships. We show that the Tsaté Complex is formed by a stack of km-thick calcschists-bearing tectonic slices having experienced variable maximum burial temperatures between 360 °C and 490 °C at depths of ca. 25-40 km. Associated deformation ages span a range between 37 Ma and 41 Ma. The Arolla gneissic mylonites at the base of the DBTS experienced high-pressure (12-14 kbar), top-to-NW deformation at ca. 450 °C between 43 and 48 Ma. A first age of ca. 58 Ma has been obtained for high-pressure ductile deformation in the Valpelline shear zone, atop Arolla gneisses. Some of the primary, peak metamorphic fabrics have been reworked and later backfolded during exhumation and collisional overprint (ca. 20 km depth, 37-40 Ma) leading to the regional greenschist-facies retrogression which is particularly prominent within Tsaté metasediments. We interpret the Dent Blanche Thrust, at the base of the Arolla unit, as a fossilized subduction interface active between 43 and 48 Ma. Our geochronological results on the shear zone lining the top of the Arolla unit, together with previous P-T-t estimates on equivalent blueschist-facies shear zones cutting the Sesia unit, indicate an older tectonic activity between 58 and 65 Ma. We demonstrate here that observed younger ages towards lowermost structural levels are witness of the transient, downwards migration of the Alpine early Cenozoic blueschist-facies subduction interface. This down-stepping is interpreted to reflect the progressive underplating acting between 30 and 40 km depth in the Alpine subduction zone between late Cretaceous and late Eocene. Underplating involved first continental material derived from the stretched Adriatic margin followed by underplating of ocean-derived rocks in the Eocene. These results shed light on subduction-zone accretion processes and therefore provide a new perspective for the understanding of geophysical results imaging the plate-interface region in active subduction zones.

  16. Early history and reactivation of the rand thrust, southern California

    NASA Astrophysics Data System (ADS)

    Postlethwaite, Clay E.; Jacobson, Carl E.

    The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.

  17. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults

    USGS Publications Warehouse

    Lin, J.; Stein, R.S.

    2004-01-01

    We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ???1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales. Copyright 2004 by the American Geophysical Union.

  18. Subduction Initiation under Unfavorable Conditions and New Fault Formation

    NASA Astrophysics Data System (ADS)

    Mao, X.; Gurnis, M.; May, D.

    2017-12-01

    How subduction initiates with unfavorable dipping lithospheric heterogeneities is an important and rarely studied topic. We build a geodynamic model starting with a vertical weak zone for the Puysegur incipient subduction zone (PISZ). A true free surface is tracked in pTatin3D, based on the Arbitrary Lagrangian Eulerian (ALE) finite element method, and is used to follow the dynamic mantle-surface interaction and topographic evolution. A simplified surface process, based on linear topography diffusion, is implemented. Density and free water content for different phase assemblages are gained by referring to precalculated 4D (temperature, pressure, rock type and total water content) phase maps using Perplex. Darcy's law is used to migrate free water, and a linear water weakening is applied to the mantle material. A new visco-elastic formulation called Elastic Viscous Stress Splitting (EVSS) method is also included. Our predictions fit the morphology of the Puysegur Trench and Ridge and the deformation history on the overriding plate. We show a new thrust fault forms and evolves into a smooth subduction interface, and the preexisting weak zone becomes a vertical fault inboard of the thrust fault during subduction initiation, which explains the two-fault system at PISZ. Our model suggests that the PISZ may not yet be self-sustaining. We propose that the Snares Trough is caused by plate coupling differences between shallower and deeper parts, the tectonic sliver between two faults experiences strong rotation, and low density materials accumulate beneath the Snares trough. Extended models show that with favorable dipping heterogeneities, no new fault forms, and subduction initiates with smaller resisting forces.

  19. Permeability and strength structure around an ancient exhumed subduction-zone fault

    NASA Astrophysics Data System (ADS)

    Kato, A.; Sakaguchi, A.; Yoshida, S.; Kaneda, Y.

    2003-12-01

    Investigating the transporting properties of subduction zone faults is crucial for understanding shear strength and slip-stability, or instability, of subduction zone faults. Despite the influence of pore pressure on a wide range of subduction-zone fault processes, few previous studies have evaluated the permeability structure around the fault placed in a well-defined structural context. In this study, the aim is to gain the entire permeability and the shear strength structure around the ancient subduction zone fault. We have conducted a series of permeability measurements and shear failure experiments in seismogenic environments using intact rocks sampled at the outcrop of an exhumed fault zone in the Cretaceous Shimanto accretionary complex, in Shikoku, SW Japan, where a typical evidence for seismic fault rock of pseudotachylyte has been demonstrated [Ikesawa et al., 2003]. This fault zone is located at boundary between the sandstone-dominant coherent unit of the Nonokawa Formation and the Okitsu mélange. The porosity of each rock sample is less than 1 %, except for the shear zone. Cylindrical test specimens (length = 40 mm, diameter = 20 mm) were cored to an accuracy of within 0.02 mm. Most of values of permeability were evaluated at confining pressure Pc of 140 MPa and pore pressure Pp of 115 MPa simulating the depth of 5 km (suprahydrostatic pore pressure). It is found that the permeability at room temperature shows the heterogeneous structure across the fault zone. The permeability of sandstone-dominant coherent unit is the lowest (10-19 m2) across the fault zone. In contrast, high shear zone has the highest permeability (10-16 m2). Following the increase in temperature, permeability evolution has been investigated. The permeability at 250oC continuously decreases with hold time for all types of rock specimens, and the reduction rate of permeability against hold time seems to become small with hold time. It seems that the reduction rate does not significantly depend on the rock types. The specimen was loaded at a strain rate of 2*E-6 /s under the conditions (Pc, Pp, T) = (140 MPa, 105 MPa, 250oC) to conduct the shear fracture experiments. High shear zone has a minimum value in strength profile. In contrast, the largest shear strength is observed at sandstone in coherent unit. From the seismic reflection surveys in the Nankai Trough, Park et al. [2002] delineated reflections with negative polarities beneath the Nankai accretionary prism 20-60 km landward of the frontal thrust, which are located deeper than the negative polarity décollement near the frontal thrust. They interpreted that the DSRs indicate the elevated fluid pressures. The fault zone studied in this paper is consistent with the duplex-model, and corresponds to the area where the décollement near the frontal thrust stepped down. Present results show the possibility that the coherent sandstone acts as a cap rock for fluid flow, and shear zone as a conduit for the flow, which leads to the elevated pore pressures along the roof thrust.

  20. Valemount strain zone: A dextral oblique-slip thrust system linking the Rocky Mountain and Omineca belts of the southeastern Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    McDonough, Michael R.; Simony, Philip S.

    1989-03-01

    The Valemount strain zone (VSZ), a narrow zone of high orogen-parallel (OP) strain in pebble conglomerate of the Late Proterozoic Miette Group, is the footwall expression of a thrust fault on the western edge of the Rocky Mountain belt, marking the eastern limit of a wide zone of OP fabrics distributed through the Omineca crystalline and western Rocky Mountain belts of the southeastern Canadian Cordillera. Kinematic indicators from the VSZ and the adjacent Bear Foot thrust zone show that both thrust and dextral displacement are associated with folding and thrust motion in the Rocky Mountains, thereby linking the southern Rocky Mountain belt to the Omineca belt by an oblique-slip thrust regime that is tectonically unrelated to the Southern Rocky Mountain Trench. Transverse shortening of thrust sheets and subsequent distribution of OP shear are invoked to explain the parallelism of stretching lineations and fold axes. Strain and kinematic data and the thrust-belt geometry of the VSZ suggest that OP lineations are a product of a large amount of transverse shortening during slightly oblique A-type subduction. Thus, OP lineations are not representative of relative plate motions between North America and accreted terranes, but probably are a function of footwall buttressing of thrust sheets, a mechanism that may be widely applicable to the internal zones of collisional orogens.

  1. Core-Log-Seismic Integrative Study of a Subduction Zone Megasplay Fault -An Example from the Nobeoka Thrust, Shimanto Belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hamahashi, M.; Tsuji, T.; Saito, S.; Tanikawa, W.; Hamada, Y.; Hashimoto, Y.; Kimura, G.

    2016-12-01

    Investigating the mechanical properties and deformation patterns of megathrusts in subduction zones is important to understand the generation of large earthquakes. The Nobeoka Thrust, a fossilized megasplay fault in Kyushu Shimanto Belt, southwest Japan, exposes foliated fault rocks that were formed under the temperature range of 180-350° (Kondo et al., 2005). During the Nobeoka Thrust Drilling Project (2011), core samples and geophysical logging data were obtained recovering a continuous distribution of multiple fault zones, which provide the opportunity to examine their structure and physical properties in various scales (Hamahashi et al., 2013; 2015). By performing logging data analysis, discrete sample physical property measurements, and synthetic modeling of seismic reflections along the Nobeoka Thrust, we conducted core-log-seismic integrative study to characterize the effects of damage zone architecture and structural anisotropy towards the physical properties of the megasplay. A clear contrast in physical properties across the main fault core and surrounding damage zones were identified, where the fault rocks preserve the porosity of 4.8% in the hanging wall and 7.6% in the footwall, and P-wave velocity of 4.8 km/s and 4.2 km/s, respectively. Multiple sandstone-rich- and shale-rich damage zones were found from the drilled cores, in which velocity decreases significantly in the brecciated zones. The internal structure of these foliated fault rocks consist of heterogeneous lithology and texture, and velocity anisotropy ranges 1-18% (P-wave) and 1.5-80% (S-wave), affected by structural dip angle, foliation density, and sandstone/mudstone ratio. To evaluate the fault properties at the seismogenic depth, we developed velocity/earth models and synthetic modeling of seismic reflection using acoustic logs across the thrust and parameterized lithological and structural elements in the identified multiple damage zones.

  2. Buoyant subduction on Venus: Implications for subduction around coronae

    NASA Astrophysics Data System (ADS)

    Burt, J. D.; Head, J. W.

    1993-03-01

    Potentially low lithospheric densities, caused by high Venus surface and perhaps mantle temperatures, could inhibit the development of negative buoyancy-driven subduction and a global system of plate tectonics/crustal recycling on that planet. No evidence for a global plate tectonic system was found so far, however, specific features strongly resembling terrestrial subduction zones in planform and topographic cross-section were described, including trenches around large coronae and chasmata in eastern Aphrodite Terra. The cause for the absence, or an altered expression, of plate tectonics on Venus remains to be found. Slab buoyancy may play a role in this difference, with higher lithospheric temperatures and a tendency toward positive buoyancy acting to oppose the descent of slabs and favoring under thrusting instead. The effect of slab buoyancy on subduction was explored and the conditions which would lead to under thrusting versus those allowing the formation of trenches and self-perpetuating subduction were defined. Applying a finite element code to assess the effects of buoyant forces on slabs subducting into a viscous mantle, it was found that mantle flow induced by horizontal motion of the convergent lithosphere greatly influences subduction angle, while buoyancy forces produce a lesser effect. Induced mantle flow tends to decrease subduction angle to near an under thrusting position when the subducting lithosphere converges on a stationary overriding lithosphere. When the overriding lithosphere is in motion, as in the case of an expanding corona, subduction angles are expected to increase. An initial stage involved estimating the changes in slab buoyancy due to slab healing and pressurization over the course of subduction. Modeling a slab, descending at a fixed angle and heated by conduction, radioactivity, and the heat released in phase changes, slab material density changes due to changing temperature, phase, and pressure were derived.

  3. Supercycles at subduction thrusts controlled by seismogenic zone downdip width

    NASA Astrophysics Data System (ADS)

    van Dinther, Y.; Herrendoerfer, R.; Gerya, T.; Dalguer, L. A.

    2014-12-01

    Supercycles in subduction zones describe a long-term cluster of megathrust earthquakes, which recur in a similar way (Sieh et al. 2008,Goldfinger et al. 2013). It consists of two complete failures of a given subduction segment in between which, after a long period of relative quiescence, partial ruptures occur. We recognize that supercycles were proposed in those subduction zones (Sieh et al. 2008,Goldfinger et al. 2013, Metois et al. 2014, Chlieh et al. 2014) for which the seismogenic zone downdip width is estimated to be larger than average (Heuret et al. 2011, Hayes et al. 2012). We show with a two-dimensional numerical model of a subduction zone that the seismogenic zone downdip width indeed has a strong influence on the long-term seismicity pattern and rupture styles. Increasing the downdip width of the seismogenic zone leads to a transition from ordinary cycles of similar sized crack-like ruptures to supercycles consisting of a range of rupture sizes and styles. Our model demonstrates how interseismic deformation accompanied by subcritical and pulse-like ruptures effectively increases the stress throughout the seismogenic zone towards a critical state at which a crack-like superevent releases most of the accumulated stresses. We propose such stress evolution along the dip of the megathrust as the simplest explanation for supercycles. This conceptual model suggests that larger than thus far observed earthquakes could occur as part of a supercycle in subduction zones with a larger than average seismogenic zone downdip width (>120-150 km).

  4. Fault structure, properties and activity of the Makran Accretionary Prism and implications for seismogenic potential

    NASA Astrophysics Data System (ADS)

    Smith, G. L.; McNeill, L. C.; Henstock, T.; Bull, J. M.

    2011-12-01

    The Makran subduction zone is the widest accretionary prism in the world (~400km), generated by convergence between the Arabian and Eurasian tectonic plates. It represents a global end-member, with a 7km thick incoming sediment section. Accretionary prisms have traditionally been thought to be aseismic due to the presence of unconsolidated sediment and elevated basal pore pressures. The seismogenic potential of the Makran subduction zone is unclear, despite a Mw 8.1 earthquake in 1945 that may have been located on the plate boundary beneath the prism. In this study, a series of imbricate landward dipping (seaward verging) thrust faults have been interpreted across the submarine prism (outer 70 km) using over 6000km of industry multichannel seismic data and bathymetric data. A strong BSR (bottom simulating reflector) is present throughout the prism (excluding the far east). An unreflective décollement is interpreted from the geometry of the prism thrusts. Two major sedimentary units are identified in the input section, the lower of which contains the extension of the unreflective décollement surface. Between 60%-100% of the input section is currently being accreted. The geometry of piggy-back basin stratigraphy shows that the majority of thrusts, including those over 50km from the trench, are recently active. Landward thrusts show evidence for reactivation after periods of quiescence. Negative polarity fault plane reflectors are common in the frontal thrusts and in the eastern prism, where they may be related to increased fault activity and fluid expulsion, and are rarer in older landward thrusts. Significant NE-SW trending basement structures (The Murray Ridge and Little Murray Ridge) on the Arabian plate intersect the deformation front and affect sediment input to the subduction zone. Prism taper and structure are apparently primarily controlled by sediment supply and the secondary influence of subducting basement ridges. The thick, likely distal, sediment section in the west produces a prism with a simple imbricate structure. As basement depth is reduced over the Little Murray Ridge, the accretionary prism structure (fault spacing and deformation front position) changes. In the east, proximity to the Murray Ridge and triple junction is expressed through a reduction in prism width and reduced fault activity. The resulting prism structure and morphology can ultimately be used to assess likely sediment properties and hence seismic potential at the plate boundary.

  5. A Hydrous Seismogenic Fault Rock Indicating A Coupled Lubrication Mechanism

    NASA Astrophysics Data System (ADS)

    Okamoto, S.; Kimura, G.; Takizawa, S.; Yamaguchi, H.

    2005-12-01

    In the seismogenic subduction zone, the predominant mechanisms have been considered to be fluid induced weakening mechanisms without frictional melting because the subduction zone is fundamentally quite hydrous under low temperature conditions. However, recently geological evidence of frictional melting has been increasingly reported from several ancient accretionary prisms uplifted from seismogenic depths of subduction zones (Ikesawa et al., 2003; Austrheim and Andersen, 2004; Rowe et al., 2004; Kitamura et al., 2005) but relationship between conflicting mechanisms; e.g. thermal pressurization of fluid and frictional melting is still unclear. We found a new exposure of pseudotachylyte from a fossilized out-of-sequence thrust (OOST) , Nobeoka thrust in the accretionary complex, Kyushu, southwest Japan. Hanging-wall and foot-wall are experienced heating up to maximum temperature of about 320/deg and about 250/deg, respectively. Hanging-wall rocks of the thrust are composed of shales and sandstones deformed plastically. Foot-wall rocks are composed of shale matrix melange with sandstone and basaltic blocks deformed in a brittle fashion (Kondo et al, 2005). The psudotachylyte was found from one of the subsidiary faults in the hanging wall at about 10 m above the fault core of the Nobeoka thrust. The fault is about 1mm in width, and planer rupture surface. The fault maintains only one-time slip event because several slip surfaces and overlapped slip textures are not identified. The fault shows three deformation stages: The first is plastic deformation of phyllitic host rocks; the second is asymmetric cracking formed especially in the foot-wall of the fault. The cracks are filled by implosion breccia hosted by fine carbonate minerals; the third is frictional melting producing pseudotachylyte. Implosion breccia with cracking suggests that thermal pressurization of fluid and hydro-fracturing proceeded frictional melting.

  6. Basement thrust sheets in the Clearwater orogenic zone, central Idaho and western Montana ( USA).

    USGS Publications Warehouse

    Skipp, B.

    1987-01-01

    The Clearwater orogenic zone in central Idaho and W Montana contains at least 2 major NE-directed Cordilleran thrust plates of Early Proterozoic metasedimentary and metaigneous rocks that overrode previously folded Middle Proterozoic rocks of the Belt basin in Cretaceous time. The northeastward migration of the resultant thickened wedge of crustal material combined with Cretaceous subduction along the W continental margin produced a younger N Bitterroot lobe of the Idaho batholith relative to an older S Atlanta lobe. Eocene extensional unroofing and erosion of the Bitterroot lobe has exposed the roots of the thick Cordilleran thrust sheets.-Author

  7. Development of a Shallow Decollement Along the South-Central Chile Margin from 2D Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Bangs, N. L.; Arnulf, A. F.; Trehu, A. M.; Contreras Reyes, E.

    2017-12-01

    In January and February, 2017, we acquired approximately 5,000 km of deep-penetrating 2D seismic reflection data along the Chile trench between 30° - 44°S as a part of the 2017 Crustal Examination from Valdivia to Illapel to Characterize Huge Earthquakes (CEVICHE) project, on the R/V Langseth. We used a 6,600 in3 airgun source to shoot every 50 m and recorded shots on a 15,100 m, 1212 channel streamer. This survey targeted the structure of this subduction zone across the slip regions of the 2015 Illapel (Mw 8.3), the 2010 Maule (Mw 8.8), and 1960 Valdivia (Mw 9.5) earthquakes. Two dip lines between 37.5°S and 39°S, within the overlapping slip areas of the Maule and Valdivia earthquakes, show a range in the style of initial thrust faulting at the deformation front. At 37.5°S, just south of the Arauco Peninsula, protothrusts at the deformation front are typical of many well-sedimented trench sections in subduction zones worldwide. Here we observe incipient landward-dipping thrusts consisting of 15 faults with typical horizontal spacing of 750 m that can be seen to extend down through the entire 2.5 km thick sediment sequence to the top of the subducting ocean crust. Some form conjugate fault pairs, but all have small offsets of 10-50 m. These thrusts appear to sole into a proto-decollement located just above the top of the ocean crust; however, farther landward beneath the lower slope, a thick, 2.5 km, sequence of layered sediment can be traced > 20 km into the subduction zone. The position of the primary decollement appears to be located near the top of the trench sediment sequence, well above the proto-decollement, allowing subduction of the entire trench sequence. A second line at 39°S across the deformation front shows no frontal thrusts or apparent deformation within the 1.5 km thick section of trench sediment. All of the incoming sediment appears to be subducting beneath a stable decollement that we can image near the top of the trench sediment sequence. The decollement along the northern line may be currently stepping down and transitioning from minimal accretion, typical of this segment of the Chile margin, to accretion of the entire trench section. Alternatively, the initial deformation at the toe may cease and allow slip to shift upward to the shallow decollement and continue to subduct the entire trench sediment section.

  8. The Story of a Yakima Fold and How It Informs Late Neogene and Quaternary Backarc Deformation in the Cascadia Subduction Zone, Manastash Anticline, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kelsey, Harvey M.; Ladinsky, Tyler C.; Staisch, Lydia; Sherrod, Brian L.; Blakely, Richard J.; Pratt, Thomas L.; Stephenson, William J.; Odum, Jack K.; Wan, Elmira

    2017-10-01

    The Yakima folds of central Washington, USA, are prominent anticlines that are the primary tectonic features of the backarc of the northern Cascadia subduction zone. What accounts for their topographic expression and how much strain do they accommodate and over what time period? We investigate Manastash anticline, a north vergent fault propagation fold typical of structures in the fold province. From retrodeformation of line- and area-balanced cross sections, the crust has horizontally shortened by 11% (0.8-0.9 km). The fold, and by inference all other folds in the fold province, formed no earlier than 15.6 Ma as they developed on a landscape that was reset to negligible relief following voluminous outpouring of Grande Ronde Basalt. Deformation is accommodated on two fault sets including west-northwest striking frontal thrust faults and shorter north to northeast striking faults. The frontal thrust fault system is active with late Quaternary scarps at the base of the range front. The fault-cored Manastash anticline terminates to the east at the Naneum anticline and fault; activity on the north trending Naneum structures predates emplacement of the Grande Ronde Basalt. The west trending Yakima folds and west striking thrust faults, the shorter north to northeast striking faults, and the Naneum fault together constitute the tectonic structures that accommodate deformation in the low strain rate environment in the backarc of the Cascadia Subduction Zone.

  9. The story of a Yakima fold and how it informs Late Neogene and Quaternary backarc deformation in the Cascadia subduction zone, Manastash anticline, Washington, USA

    USGS Publications Warehouse

    Kelsey, Harvey M.; Ladinsky, Tyler C.; Staisch, Lydia; Sherrod, Brian; Blakely, Richard J.; Pratt, Thomas; Stephenson, William; Odum, Jackson K.; Wan, Elmira

    2017-01-01

    The Yakima folds of central Washington, USA, are prominent anticlines that are the primary tectonic features of the backarc of the northern Cascadia subduction zone. What accounts for their topographic expression and how much strain do they accommodate and over what time period? We investigate Manastash anticline, a north vergent fault propagation fold typical of structures in the fold province. From retrodeformation of line- and area-balanced cross sections, the crust has horizontally shortened by 11% (0.8–0.9 km). The fold, and by inference all other folds in the fold province, formed no earlier than 15.6 Ma as they developed on a landscape that was reset to negligible relief following voluminous outpouring of Grande Ronde Basalt. Deformation is accommodated on two fault sets including west-northwest striking frontal thrust faults and shorter north to northeast striking faults. The frontal thrust fault system is active with late Quaternary scarps at the base of the range front. The fault-cored Manastash anticline terminates to the east at the Naneum anticline and fault; activity on the north trending Naneum structures predates emplacement of the Grande Ronde Basalt. The west trending Yakima folds and west striking thrust faults, the shorter north to northeast striking faults, and the Naneum fault together constitute the tectonic structures that accommodate deformation in the low strain rate environment in the backarc of the Cascadia Subduction Zone.

  10. Seismic reflection imaging of two megathrust shear zones in the northern Cascadia subduction zone.

    PubMed

    Calvert, Andrew J

    2004-03-11

    At convergent continental margins, the relative motion between the subducting oceanic plate and the overriding continent is usually accommodated by movement along a single, thin interface known as a megathrust. Great thrust earthquakes occur on the shallow part of this interface where the two plates are locked together. Earthquakes of lower magnitude occur within the underlying oceanic plate, and have been linked to geochemical dehydration reactions caused by the plate's descent. Here I present deep seismic reflection data from the northern Cascadia subduction zone that show that the inter-plate boundary is up to 16 km thick and comprises two megathrust shear zones that bound a >5-km-thick, approximately 110-km-wide region of imbricated crustal rocks. Earthquakes within the subducting plate occur predominantly in two geographic bands where the dip of the plate is inferred to increase as it is forced around the edges of the imbricated inter-plate boundary zone. This implies that seismicity in the subducting slab is controlled primarily by deformation in the upper part of the plate. Slip on the shallower megathrust shear zone, which may occur by aseismic slow slip, will transport crustal rocks into the upper mantle above the subducting oceanic plate and may, in part, provide an explanation for the unusually low seismic wave speeds that are observed there.

  11. Coseismic and postseismic stress changes in a subducting plate: Possible stress interactions between large interplate thrust and intraplate normal-faulting earthquakes

    NASA Astrophysics Data System (ADS)

    Mikumo, Takeshi; Yagi, Yuji; Singh, Shri Krishna; Santoyo, Miguel A.

    2002-01-01

    A large intraplate, normal-faulting earthquake (Mw = 7.5) occurred in 1999 in the subducting Cocos plate below the downdip edge of the ruptured thrust fault of the 1978 Oaxaca, Mexico, earthquake (Mw = 7.8). This situation is similar to the previous case of the 1997 normal-faulting event (Mw = 7.1) that occurred beneath the rupture area of the 1985 Michoacan, Mexico, earthquake (Mw = 8.1). We investigate the possibility of any stress interactions between the preceding 1978 thrust and the following 1999 normal-faulting earthquakes. For this purpose, we estimate the temporal change of the stress state in the subducting Cocos plate by calculating the slip distribution during the 1978 earthquake through teleseismic waveform inversion, the dynamic rupture process, and the resultant coseismic stress change, together with the postseismic stress variations due to plate convergence and the viscoelastic relaxation process. To do this, we calculate the coseismic and postseismic changes of all stress components in a three-dimensional space, incorporating the subducting slab, the overlying crust and uppermost mantle, and the asthenosphere. For the coseismic stress change we solve elastodynamic equations, incorporating the kinematic fault slip as an observational constraint under appropriate boundary conditions. To estimate postseismic stress accumulations due to plate convergence, a virtual backward slip is imposed to lock the main thrust zone. The effects of viscoelastic stress relaxations of the coseismic change and the back slip are also included. The maximum coseismic increase in the shear stress and the Coulomb failure stress below the downdip edge of the 1978 thrust fault is estimated to be in the range between 0.5 and 1.5 MPa, and the 1999 normal-faulting earthquake was found to take place in this zone of stress increase. The postseismic variations during the 21 years after the 1978 event modify the magnitude and patterns of the coseismic stress change to some extent but are not large enough to overcome the coseismic change. These results suggest that the coseismic stress increase due to the 1978 thrust earthquake may have enhanced the chance of occurrence of the 1999 normal-faulting event in the subducting plate. If this is the case, one of the possible mechanisms could be static fatigue of rock materials around preexisting weak planes involved in the subducting plate, and it is speculated that that one of these planes might have been reactivated and fractured because of stress corrosion cracking under the applied stress there for 21 years.

  12. Exhumation history of the NW Indian Himalaya revealed by fission track and 40Ar/39Ar ages

    USGS Publications Warehouse

    Schlup, Micha; Steck, Albrecht; Carter, Andrew; Cosca, Michael; Epard, Jean-Luc; Hunziker, Johannes

    2011-01-01

    High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (

  13. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    NASA Astrophysics Data System (ADS)

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-03-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  14. Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths

    USGS Publications Warehouse

    Li, Duo; McGuire, Jeffrey J.; Liu, Yajing; Hardebeck, Jeanne L.

    2018-01-01

    The Mendocino Triple Junction region is the most seismically active part of the Cascadia Subduction Zone. The northward moving Pacific plate collides with the subducting Gorda plate causing intense internal deformation within it. Here we show that the stress field rotates rapidly with depth across the thrust interface from a strike-slip regime within the subducting plate, reflecting the Pacific plate collision, to a thrust regime in the overriding plate. We utilize a dense focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our results indicate that the shear stress on the plate boundary fault is likely no more than about ∼50 MPa at ∼20 km depth. Regardless of the assumed mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of ∼0 to 0.2 at seismogenic depths. Such a low value for the effective friction coefficient requires a combination of high fluid pressures and/or fault-zone minerals with low inherent friction in the region where a great earthquake is expected in Cascadia.

  15. Slab1.0: A three-dimensional model of global subduction zone geometries

    NASA Astrophysics Data System (ADS)

    Hayes, Gavin P.; Wald, David J.; Johnson, Rebecca L.

    2012-01-01

    We describe and present a new model of global subduction zone geometries, called Slab1.0. An extension of previous efforts to constrain the two-dimensional non-planar geometry of subduction zones around the focus of large earthquakes, Slab1.0 describes the detailed, non-planar, three-dimensional geometry of approximately 85% of subduction zones worldwide. While the model focuses on the detailed form of each slab from their trenches through the seismogenic zone, where it combines data sets from active source and passive seismology, it also continues to the limits of their seismic extent in the upper-mid mantle, providing a uniform approach to the definition of the entire seismically active slab geometry. Examples are shown for two well-constrained global locations; models for many other regions are available and can be freely downloaded in several formats from our new Slab1.0 website, http://on.doi.gov/d9ARbS. We describe improvements in our two-dimensional geometry constraint inversion, including the use of `average' active source seismic data profiles in the shallow trench regions where data are otherwise lacking, derived from the interpolation between other active source seismic data along-strike in the same subduction zone. We include several analyses of the uncertainty and robustness of our three-dimensional interpolation methods. In addition, we use the filtered, subduction-related earthquake data sets compiled to build Slab1.0 in a reassessment of previous analyses of the deep limit of the thrust interface seismogenic zone for all subduction zones included in our global model thus far, concluding that the width of these seismogenic zones is on average 30% larger than previous studies have suggested.

  16. Splay Fault Branching from the Hikurangi Subduction Shear Zone: Implications for Slow Slip and Fluid Flow

    NASA Astrophysics Data System (ADS)

    Henrys, S. A.; Plaza-Faverola, A. A.; Pecher, I. A.; Klaeschen, D.; Wallace, L.

    2016-12-01

    Seismic reflection data along the East Coast of the New Zealand North Island are used to map the offshore character and geometry of the central Hikurangi subduction thrust and outer wedge in a region of short term ( 2-3 weeks duration) geodetically determined slow-slip events (SSEs). Pre-stack depth migration of line 05CM-38 was used to derive subducting slab geometry and upper crustal structure together with a Vp image of the crust that is resolved to 14 km depth. The subduction interface is a shallow dipping thrust at < 7 km deep near the trench and steps down to 14 km depth along an approximately 18 km long ramp, beneath Porangahau Ridge. This bend in the subducted plate is associated with splay fault branching and coincides with the zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. We infer that the step down in the décollement transfers slip on the plate interface from the top of subducting sediments to the oceanic crust and drives underplating beneath the inner margin of central Hikurangi margin. Low-velocity subducting sediments (LVZ) beneath the plate interface, updip of the plate interface ramp, are interpreted as being capped with a low permeability condensed layer of chalk and interbedded mudstones. We interpret this LVZ as fluid-rich overpressured sediments that have been displaced and later imbricated by splay faults in a region that may mark the up-dip transition from seismic to aseismic behavior. Further, we hypothesize that fluids derived from the overpressured sediment are channeled along splay faults to the shallow sub-seafloor near Porangahau Ridge where seafloor seepage and an upwarping of the gas hydrate Bottom-Simulating Reflector have been documented.

  17. An Examination of Seismicity Linking the Solomon Islands and Vanuatu Subduction Zones

    NASA Astrophysics Data System (ADS)

    Neely, J. S.; Furlong, K. P.

    2015-12-01

    The Solomon Islands-Vanuatu composite subduction zone represents a tectonically complex region along the Pacific-Australia plate boundary in the southwest Pacific Ocean. Here the Australia plate subducts under the Pacific plate in two segments: the South Solomon Trench and the Vanuatu Trench. The two subducting sections are offset by a 200 km long, transform fault - the San Cristobal Trough (SCT) - which acts as a Subduction-Transform Edge Propagator (STEP) fault. The subducting segments have experienced much more frequent and larger seismic events than the STEP fault. The northern Vanuatu trench hosted a M8.0 earthquake in 2013. In 2014, at the juncture of the western terminus of the SCT and the southern South Solomon Trench, two earthquakes (M7.4 and M7.6) occurred with disparate mechanisms (dominantly thrust and strike-slip respectively), which we interpret to indicate the tearing of the Australia plate as its northern section subducts and southern section translates along the SCT. During the 2013-2014 timeframe, little seismic activity occurred along the STEP fault. However, in May 2015, three M6.8-6.9 strike-slip events occurred in rapid succession as the STEP fault ruptured east to west. These recent events share similarities with a 1993 strike-slip STEP sequence on the SCT. Analysis of the 1993 and 2015 STEP earthquake sequences provides constraints on the plate boundary geometry of this major transform fault. Preliminary research suggests that plate motion along the STEP fault is partitioned between larger east-west oriented strike-slip events and smaller north-south thrust earthquakes. Additionally, the differences in seismic activity between the subducting slabs and the STEP fault can provide insights into how stress is transferred along the plate boundary and the mechanisms by which that stress is released.

  18. Reflection signature of seismic and aseismic slip on the northern Cascadia subduction interface.

    PubMed

    Nedimović, Mladen R; Hyndman, Roy D; Ramachandran, Kumar; Spence, George D

    2003-07-24

    At the northern Cascadia margin, the Juan de Fuca plate is underthrusting North America at about 45 mm x yr(-1) (ref. 1), resulting in the potential for destructive great earthquakes. The downdip extent of coupling between the two plates is difficult to determine because the most recent such earthquake (thought to have been in 1700) occurred before instrumental recording. Thermal and deformation studies indicate that, off southern Vancouver Island, the interplate interface is presently fully locked for a distance of approximately 60 km downdip from the deformation front. Great thrust earthquakes on this section of the interface (with magnitudes of up to 9) have been estimated to occur at an average interval of about 590 yr (ref. 3). Further downdip there is a transition from fully locked behaviour to aseismic sliding (where high temperatures allow ductile deformation), with the deep aseismic zone exhibiting slow-slip thrust events. Here we show that there is a change in the reflection character on seismic images from a thin sharp reflection where the subduction thrust is inferred to be locked, to a broad reflection band at greater depth where aseismic slip is thought to be occurring. This change in reflection character may provide a new technique to map the landward extent of rupture in great earthquakes and improve the characterization of seismic hazards in subduction zones.

  19. Tectonic stratification and seismicity of the accretionary prism of the Azerbaijani part of Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Alizade, Akif; Kangarli, Talat; Aliyev, Fuad

    2013-04-01

    The Greater Caucasus has formed during last stage of the tectogenesis in a geodynamic condition of the lateral compression, peculiar to the zone pseudo-subduction interaction zone between Northern and Southern Caucasian continental microplates. Its present day structure formed as a result of horizontal movements of the different phases and sub-phases of Alpine tectogenesis (from late Cimmerian to Valakhian), and is generally regarded as zone where, along Zangi deformation, the insular arc formations of the Northern edge of South Caucasian microplate thrust under the Meso-Cenozoic substantial complex contained in the facials of marginal sea of Greater Caucasus. The last, in its turn, has been pushed beneath the North-Caucasus continental margin of the Scythian plate along Main Caucasus Thrust fault. Data collected from the territory of Azerbaijan and its' sector of the Caspian area stands for pseudo-subduction interaction of microplates which resulted in the tectonic stratification of the continental slope of Alpine formations, marginal sea and insular arc into different scale plates of south vergent combined into napping complexes. In the orogeny's present structure, tectonically stratified Alpine substantial complex of the marginal sea of Greater Caucasus bordered by Main Caucasus and Zangi thrusts, is represented by allochthonous south vergent accretionary prism in the front of first deformation with its' root buried under the southern border of Scythian plate. Allocated beneath mentioned prism, the autochthonous bedding is presented by Meso-Cenosoic complex of the Northern flank of the South-Caucasian miroplate, which is in its' turn crushed and lensed into southward shifted tectonic microplates gently overlapping the northern flank of Kura flexure along Ganykh-Ayrichay-Alyat thrust. Data of real-time GPS measurement of regional geodynamics indicates that pseudo-subduction of South Caucasian microplate under the North Caucasian microplate still continues during present stage of alpine tectogenesis. Among others, ongoing pseudo-subduction is indicated by data of regional seismicity which is irregularly distributed by depth (foci levels 2-6; 8-12; 17-22; 25-45 km). Horizontal and vertical seismic zoning is explained by Earth crust's block divisibility and tectonic stratification, within the structure of which the earthquake focuses are mainly confined to the crossing nodes of differently oriented ruptures, or to the planes of deep tectonic disruptions and lateral displacements along unstable contacts of the substantial complexes with various degree of competence. At present stage of tectogenesis, seismically most active are the structures of the northern flank of South Caucasian microplate, controlled by Ganyx-Ayrichay-Alyat deep thrust with "General Caucasus" spread in the west, and sub-meridian right-lateral strike slip zone of the Western Caspian fault in the east of Azerbaijani part of Greater Caucasus.

  20. Stress Rotation Across the Cascadia Megathrust Requires a Weak Subduction Plate Boundary at Seismogenic Depths

    NASA Astrophysics Data System (ADS)

    Li, D.; McGuire, J. J.; Liu, Y.; Hardebeck, J.

    2017-12-01

    Despite the great effort spent investigating subduction zones, there are very limited constraints on the stress state on the plate boundary fault at the depth of megathrust earthquakes. Here we utilize a focal mechanism dataset, including observations from the Cascadia Initiative ocean bottom seismograph experiment, to constrain the stress orientations. We present a high-resolution inversion for the principal stress orientations both above and below the thrust interface in the southern Cascadia Subduction zone. The distinctive stresses above and below the interface require a significant stress rotation within 10 km of the plate boundary. To quantify the implications of this rotation for the strength of the plate boundary, we designed an inversion that solves for the absolute stress tensors in a three-layer model subject to assumptions about the strength of the subducting mantle. Our approach utilizes the continuous traction boundary conditions between layers as well as the observed principal stress orientations and the relative magnitude ratios in the crust and subducting mantle as constraints. Our results indicate that the shear stress on the plate boundary fault is likely no more than about 50 MPa at 20 km depth. Regardless of the assumed upper mantle strength, we infer a relatively weak megathrust fault with an effective friction coefficient of 0 to 0.2 at seismogenic depths. The central question for the Cascadia subduction zone is why it remains seismically quiet despite the 300+ years of stress accumulation since the last megathrust earthquake. For example, we also document that no thrust earthquakes were recorded by the 2-year Cascadia Initiative expedition down to magnitude 2.0, despite the stress perturbation generated by a nearby Mw5.7 earthquake on Jan 28th, 2015, on the Mendocino Transform fault. To help answer that question, we provide a new and fundamental constraint on the absolute level of stress accumulation to date in the current seismic cycle. Our technique for evaluating the absolute level of stress in subduction zones can be applied at a number of regions around the globe as datasets improve.

  1. Retrodeforming the Arabia-Eurasia collision zone : Age of collision and magnitude of continental subduction

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; van Hinsbergen, D. J. J.

    2012-04-01

    When did continents collide, and how is convergence partitioned after collision are first order questions that seem to defy consensus along the Alpine-Himalyan orogen. Estimates on the age of collision for Arabia and Eurasia range from late Cretaceous to Pliocene, based on a wide variety of presumed geologic responses. Both lower Miocene synorgenic strata with growth structures adjacent to the main Zagros fault and upper Oligocene to lower Miocene overlap strata over post-collisional thrusts are derived from Eurasia and require that collision was underway at least by ~25-24 Ma. However, upper plate deformation, exhumation and sedimentation are used to argue for an older, 35 Ma collision age. Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations provides precise estimates of the relative positions between the northern Arabian margin and the southern Eurasia margin. Plate circuits indicate, from NW to SE along the collision zone 490-650 km of post-25 Ma Arabia-Eurasia convergence and 810-1070 km since 35 Ma. To assess the consequences of these collision ages for the amount of Arabian continental subduction, we compile all documented shortening within the orogen. The Zagros fold-thrust belt consists of thrusted upper crust that was offscraped from subducted Arabian continental lithosphere. Balanced cross-sections give 105-180 km of Zagros shortening (including estimates from the Zagros proper, 45-90 km, and the Zagros "crush" zone, 60-90 km). Shortening within Eurasia is estimated to be 53-75 km through the Kopet Dagh and Alborz Mountains, plus 38 km across Central Iran. These estimates suggest that the orogen has shortened 200 to 300 km since the early Miocene. Both a 25 and a 35 Ma collision estimate thus requires that a considerable portion of the Arabian plate subducted without recognized accretion of its upper crust. To balance plate circuits and documented shortening requires whole-sale subduction of ~500-800 km of continental crust since 35 Ma; for a 25 Ma collision this would be between 190-450 km. The ophiolitic fragments preserved along the suture zone allow us to test the magnitude of possible continental subduction. The Oman Ophiolite preserves the geometry and distance over which ophiolites obduced over the northern margin of Arabia in the late Cretaceous. The distance from the southwestern edge of the ophiolite to the northeastern edge of the continent is 180 km, suggesting that the Arabian continental margin plus overlying ophiolites may have extended ~200 km beyond the Main Zagros fault. Assuming that 200 km of Arabian continental margin and overlying ophiolites subducted entirely, except the few remnant ophiolite slivers remaining in the suture zone, would reconstruct ~ 400-500 km of post-collisional Arabia-Eurasia convergence, consistent with a ~25 Ma collision age. As much as 500-800 km of continental subduction required by an earlier (~35 Ma) collision age seems unlikely.

  2. Extensional reactivation of the Chocolate Mountains subduction thrust in the Gavilan Hills of southeastern California

    USGS Publications Warehouse

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    1997-01-01

    The NE vergent Chocolate Mountains fault of south-eastern California has been interpreted as either a subduction thrust responsible for burial and prograde metamorphism of the ensimatic Orocopia Schist or as a normal fault involved in the exhumation of the schist. Our detailed structural analysis in the Gavilan Hills area provides new evidence to confirm the latter view. A zone of deformation is present at the top of the Orocopia Schist in which lineations are parallel to those in the upper plate of the Chocolate Mountains fault but oblique to ones at relatively deep levels in the schist. Both the Orocopia Schist and upper plate contain several generations of shear zones that show a transition from crystalloblastic through mylonitic to cataclastic textures. These structures formed during retrograde metamorphism and are considered to record the exhumation of the Orocopia Schist during early Tertiary time as a result of subduction return flow. The Gatuna fault, which places low-grade, supracrustal metasediments of the Winterhaven Formation above the gneisses of the upper plate, also seems to have been active at this time. Final unroofing of the Orocopia Schist occurred during early to middle Miocene regional extension and may have involved a second phase of movement on the Gatuna fault. Formation of the Chocolate Mountains fault during exhumation indicates that its top-to-the-NE sense of movement provides no constraint on the polarity of the Orocopia Schist subduction zone. This weakens the case for a previous model involving SW dipping subduction, while providing support for the view that the Orocopia Schist is a correlative of the Franciscan Complex.

  3. Effective strength of incoming sediments and its implications for plate boundary propagation: Nankai and Costa Rica as type examples of accreting vs. erosive convergent margins

    NASA Astrophysics Data System (ADS)

    Kopf, Achim

    2013-11-01

    The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (μres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to μres = 0.43; μpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (μres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity strengthening at the conditions tested.

  4. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback

    NASA Astrophysics Data System (ADS)

    Martin, A. K.

    2007-12-01

    A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline. By analogy with the above model, a revised five-stage Early Jurassic to Early Cretaceous Gondwana dispersal model is proposed in which three plates always separate about a single triple rift or triple junction in the Weddell Sea area. Seven features are considered diagnostic of double-saloon-door rifting and seafloor spreading: earliest movement involves clockwise and counterclockwise rotations of the Falkland Islands Block and the Ellsworth Whitmore Terrane respectively; terranes comprise areas of a pre-existing retro-arc fold thrust belt (the Permo-Triassic Gondwanide Orogeny) attached to an accretionary wedge/magmatic arc; the Falklands Islands Block is initially attached to Southern Patagonia/West Antarctic Peninsula, while the Ellsworth Whitmore Terrane is combined with the Thurston Island Block; paleogeographies demonstrate rifting and extension in a backarc environment relative to a Pacific margin subduction zone/accretionary wedge where simultaneous crustal shortening occurs; a ridge jump towards the subduction zone from east of the Falkland Islands to the Rocas Verdes Basin evinces subduction rollback; this ridge jump combined with backarc extension isolated an area of thicker continental crust — The Falkland Islands Block; well-documented EW oriented seafloor spreading anomalies in the Weddell Sea are perpendicular to the subduction zone and propagate in the opposite direction to rollback; the dextral strike-slip Gastre and sub-parallel faults form one boundary of the Gondwana subduction rollback, whereas the other boundary may be formed by inferred sinistral strike-slip motion between a combined Thurston Island/Ellsworth Whitmore Terrane and Marie Byrd Land/East Antarctica.

  5. Interplay of plate convergence and arc migration in the central Mediterranean (Sicily and Calabria)

    NASA Astrophysics Data System (ADS)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2016-04-01

    Key components in the current geodynamic setting of the central Mediterranean are continuous, slow Africa-Eurasia plate convergence (~5 mm/yr) and arc migration. This combination encompasses roll-back, tearing and detachment of slabs, and leads to back-arc opening and orogeny. Since ~30 Ma the Apennnines-Calabrian and Gibraltar subduction zones have shaped the western-central Mediterranean region. Lithospheric tearing near slab edges and the accompanying surface expressions (STEP faults) are key in explaining surface dynamics as observed in geologic, geophysical and geodetic data. In the central Mediterranean, both the narrow Calabrian subduction zone and the Sicily-Tyrrhenian offshore thrust front show convergence, with a transfer (shear) zone connecting the distinct SW edge of the former with the less distinct, eastern limit of the latter (similar, albeit on a smaller scale, to the situation in New Zealand with oppositely verging subduction zones and the Alpine fault as the transfer shear zone). The ~NNW-SSE oriented transfer zone (Aeolian-Sisifo-Tindari(-Ionian) fault system) shows transtensive-to-strike slip motion. Recent seismicity, geological data and GPS vectors in the central Mediterranean indicate that the region can be subdivided into several distinct domains, both on- and offshore, delineated by deformation zones and faults. However, there is discussion about the (relative) importance of some of these faults on the lithospheric scale. We focus on finding the best-fitting assembly of faults for the transfer zone connecting subduction beneath Calabria and convergence north of Sicily in the Sicily-Tyrrhenian offshore thrust front. This includes determining whether the Alfeo-Etna fault, Malta Escarpment and/or Ionian fault, which have all been suggested to represent the STEP fault of the Calabrian subduction zone, are key in describing the observed deformation patterns. We first focus on the present-day. We use geodynamic models to reproduce observed GPS velocities in the Sicily-Calabria region. In these models, we combine far-field velocity boundary conditions, GPE-related body forces, and slab pull/trench suction at the subduction contacts. The location and nature of model faults are based on geological and seismicity observations, and as these faults do not fully enclose blocks our models require both fault slip and distributed strain. We vary fault friction in the models. Extrapolating the (short term) model results to geological time scales, we are able to make a first-order assessment of the regional strain and block rotations resulting from the interplay of arc migration and plate convergence during the evolution of this complex region.

  6. Subducting seamounts control interplate coupling and seismic rupture in the 2014 Iquique earthquake area

    PubMed Central

    Geersen, Jacob; Ranero, César R.; Barckhausen, Udo; Reichert, Christian

    2015-01-01

    To date, the parameters that determine the rupture area of great subduction zone earthquakes remain contentious. On 1 April 2014, the Mw 8.1 Iquique earthquake ruptured a portion of the well-recognized northern Chile seismic gap but left large highly coupled areas un-ruptured. Marine seismic reflection and swath bathymetric data indicate that structural variations in the subducting Nazca Plate control regional-scale plate-coupling variations, and the limited extent of the 2014 earthquake. Several under-thrusting seamounts correlate to the southward and up-dip arrest of seismic rupture during the 2014 Iquique earthquake, thus supporting a causal link. By fracturing of the overriding plate, the subducting seamounts are likely further responsible for reduced plate-coupling in the shallow subduction zone and in a lowly coupled region around 20.5°S. Our data support that structural variations in the lower plate influence coupling and seismic rupture offshore Northern Chile, whereas the structure of the upper plate plays a minor role. PMID:26419949

  7. Subduction bottom-to-top: The northeast Caribbean

    NASA Astrophysics Data System (ADS)

    Ten Brink, U. S.

    2017-12-01

    The Northeast Caribbean provides a prime example for the surficial expression of deep subduction processes and their combined effect on natural hazard. The subducting North American slab, recognized in tomography to depths of hundreds of kilometers, has been moving primarily westward at 2 cm/yr relative to the overlying Caribbean plate throughout most of the Cenozoic. A proposed tear in the slab northeast of Puerto Rico, separating a steeply-dipping slab to the west from less-steep slab to the east, is likely responsible for deep (<125 km) and frequent earthquake swarms. The tear is evidenced by the exceptional depth and low gravity of the trench, Puerto Rico's post-Miocene uplift and trenchward tilting and by the island's trenchward component of modern motion. This modern motion implies low seismic coupling on a mainly strike-slip component of the subduction zone. At Hispaniola, by contrast, large 20th century thrust earthquakes (e.g., in 1946) demonstrate seismic subduction, the trench there is shallow, and strain partitioning is expressed as strike-slip earthquakes onshore (e.g., Haiti in 2010). Slab geometry of the transition between these two subducting segments is unclear, as are the surficial effects of the westward "plowing" of the North American slab through the Caribbean mantle. East and south of the inferred tear, subduction accompanied by volcanism is taking place off the northern Lesser Antilles. Tectonic variability of subduction in the northeast Caribbean is likely responsible for faulting within the overlying plate that have generated large earthquakes and tsunamis in 1867 in the Virgin Islands, and in 1918 off the west coast of Puerto Rico. This variability, however, may limit to a few hundred kilometers, the maximum rupture length along the subduction zone. Extreme-wave deposits at Anegada, British Virgin Islands, may represent a large thrust earthquake east of the tear or a smaller normal earthquake on the trench outer wall. The deep trench likely shields Puerto Rico from tsunamis of remote origin, as shown during the 1755 Lisbon tsunami.

  8. Stress Transfer Processes during Great Plate Boundary Thrusting Events: A Study from the Andaman and Nicobar Segments

    NASA Astrophysics Data System (ADS)

    Andrade, V.; Rajendran, K.

    2010-12-01

    The response of subduction zones to large earthquakes varies along their strike, both during the interseismic and post-seismic periods. The December 26, 2004 earthquake nucleated at 3° N latitude and its rupture propagated northward, along the Andaman-Sumatra subduction zone, terminating at 15°N. Rupture speed was estimated at about 2.0 km per second in the northern part under the Andaman region and 2.5 - 2.7 km per second under southern Nicobar and North Sumatra. We have examined the pre and post-2004 seismicity to understand the stress transfer processes within the subducting plate, in the Andaman (10° - 15° N ) and Nicobar (5° - 10° N) segments. The seismicity pattern in these segments shows distinctive characteristics associated with the outer rise, accretionary prism and the spreading ridge, all of which are relatively better developed in the Andaman segment. The Ninety East ridge and the Sumatra Fault System are significant tectonic features in the Nicobar segment. The pre-2004 seismicity in both these segments conform to the steady-state conditions wherein large earthquakes are fewer and compressive stresses dominate along the plate interface. Among the pre-2004 great earthquakes are the 1881 Nicobar and 1941 Andaman events. The former is considered to be a shallow thrust event that generated a small tsunami. Studies in other subduction zones suggest that large outer-rise tensional events follow great plate boundary breaking earthquakes due to the the up-dip transfer of stresses within the subducting plate. The seismicity of the Andaman segment (1977-2004) concurs with the steady-state stress conditions where earthquakes occur dominantly by thrust faulting. The post-2004 seismicity shows up-dip migration along the plate interface, with dominance of shallow normal faulting, including a few outer rise events and some deeper (> 100 km) strike-slip faulting events within the subducting plate. The September 13, 2002, Mw 6.5 thrust faulting earthquake at Diglipur (depth: 21 km) and the August 10, 2009, Mw 7.5 normal faulting earthquake near Coco Island (depth: 22 km), within the northern terminus of the 2004 rupture are cited as examples of the alternating pre and post earthquake stress conditions. The major pre and post 2004 clusters were associated with the Andaman Spreading Ridge (ASR). In the Nicobar segment, the most recent earthquake on June 12, 2010, Mw 7.5 (focal depth: 35 km) occurred very close to the plate boundary, through left lateral strike-slip faulting. A segment that does not feature any active volcanoes unlike its northern and southern counterparts, this part of the plate boundary has generated several right lateral strike-slip earthquakes, mostly on the Sumatra Fault System. The left-lateral strike-slip faulting associated with the June 12 event on a nearly N-S oriented fault plane consistent with the trend of the Ninety East ridge and the occasional left-lateral earthquakes prior to the 2004 mega-thrust event suggest the involvement of the Ninety East ridge in the subduction process.

  9. Strain measurements and the potential for a great subduction earthquake off the coast of washington.

    PubMed

    Savage, J C; Lisowski, M

    1991-04-05

    Geodetic measurements of deformation in northwestern Washington indicate that strain is accumulating at a rate close to that predicted by a model of the Cascadia subduction zone in which the plate interface underlying the continental slope and outer continental shelf is currently locked but the remainder of the interface slips continuously. Presumably this locked segment will eventually rupture in a great thrust earthquake with a down-dip extent greater than 100 kilometers.

  10. Triggered aseismic slip adjacent to the 6 February 2013 Mw 8.0 Santa Cruz Islands megathrust earthquake

    USGS Publications Warehouse

    Hayes, Gavin P.; Furlong, Kevin P.; Benz, Harley M.; Herman, Matthew W.

    2014-01-01

    Aseismic or slow slip events have been observed in many subduction zones, but whether they affect the occurrence of earthquakes or result from stress changes caused by nearby events is unclear. In an area lacking direct geodetic observations, inferences can be made from seismological studies of co-seismic slip, associated stress changes and the spatiotemporal nature of aftershocks. These observations indicate that the February 2013 Mw 8.0 Santa Cruz Islands earthquake may have triggered slow or aseismic slip on an adjacent section of the subduction thrust over the following hours to days. This aseismic event was equivalent to Mw 7.6, significantly larger than any earthquakes in the aftershock sequence. The aseismic slip was situated within the seismogenic portion of the subduction interface, and must have occurred to the south of the main seismic slip and most aftershocks in order to promote right-lateral faulting in the upper plate, the dominant deformation style of the aftershock sequence. This plate boundary segment can support either stable sliding (aseismic) or stick-slip (seismic) deformation in response to different driving conditions. The complete lack of aftershocks on the thrust interface implies this pair of megathrust slip episodes (seismic and aseismic) released a substantial portion of the stored strain on the northernmost section of the Vanuatu subduction zone.

  11. Plate convergence and deformation, North Luzon Ridge, Philippines

    NASA Astrophysics Data System (ADS)

    Lewis, Stephen D.; Hayes, Dennis E.

    1989-10-01

    Marine geophysical and earthquake seismology data indicate that the North Luzon Ridge, a volcano-capped bathymetrie ridge system that extends between Luzon and Taiwan, is presently undergoing deformation in response to the relative motion between the Asian and Philippine Sea plates. Plate motion models predict convergence along the western side of the Philippine Sea plate, from Japan in the north to Indonesia in the south, and most of this plate margin is defined by active subduction zones. However, the western boundary of the Philippine Sea plate adjacent to the North Luzon Ridge shows no evidence of an active WNW-dipping subduction zone; this is in marked contrast to the presence of both the Philippine Trench/East Luzon Trough subduction zones to the south and the Ryukyu Trench subduction zone to the north. Crustal shortening, in response to ongoing plate convergence in the North Luzon Ridge region, apparently takes place through a complex pattern of strike-slip and thrust faulting, rather than by the typical subduction of oceanic lithosphere along a discreet zone. The curvilinear bathymetrie trends within the North Luzon Ridge represent the traces of active faults. The distribution of these faults, mapped by both multichannel and single-channel seismic reflection methods and earthquake seismicity patterns and focal mechanism solutions, suggest that right-lateral, oblique-slip faulting occurs along NE-trending faults, and left-lateral, oblique-slip faulting takes place on N- and NNW-trending faults. The relative plate convergence accommodated by the deformation of the North Luzon Ridge will probably be taken up in the future by the northward-propagating East Luzon Trough subduction zone.

  12. Seismicity associated with the Sumatra-Andaman Islands earthquake of 26 December 2004

    USGS Publications Warehouse

    Dewey, J.W.; Choy, G.; Presgrave, B.; Sipkin, S.; Tarr, A.C.; Benz, H.; Earle, P.; Wald, D.

    2007-01-01

    The U.S. Geological Survey/National Earthquake Information Center (USGS/ NEIC) had computed origins for 5000 earthquakes in the Sumatra-Andaman Islands region in the first 36 weeks after the Sumatra-Andaman Islands mainshock of 26 December 2004. The cataloging of earthquakes of mb (USGS) 5.1 and larger is essentially complete for the time period except for the first half-day following the 26 December mainshock, a period of about two hours following the Nias earthquake of 28 March 2005, and occasionally during the Andaman Sea swarm of 26-30 January 2005. Moderate and larger (mb ???5.5) aftershocks are absent from most of the deep interplate thrust faults of the segments of the Sumatra-Andaman Islands subduction zone on which the 26 December mainshock occurred, which probably reflects nearly complete release of elastic strain on the seismogenic interplate-thrust during the mainshock. An exceptional thrust-fault source offshore of Banda Aceh may represent a segment of the interplate thrust that was bypassed during the mainshock. The 26 December mainshock triggered a high level of aftershock activity near the axis of the Sunda trench and the leading edge of the overthrust Burma plate. Much near-trench activity is intraplate activity within the subducting plate, but some shallow-focus, near-trench, reverse-fault earthquakes may represent an unusual seismogenic release of interplate compressional stress near the tip of the overriding plate. The interplate-thrust Nias earthquake of 28 March 2005, in contrast to the 26 December aftershock sequence, was followed by many interplate-thrust aftershocks along the length of its inferred rupture zone.

  13. The Lithospheric Structure of the Solonker Suture Zone and Adjacent Areas: Crustal Structure Revealed by a High-Resolution Magnetotelluric Study

    NASA Astrophysics Data System (ADS)

    Ye, Gaofeng; Jin, Sheng; Wei, Wenbo; Jing, Jian'en

    2017-04-01

    The closure of the Paleo-Asian Ocean along the Solonker Suture Zone (SSZ) during the Late Permian and Triassic represented the final stage in the formation of the Central Asian Orogenic Belt between the Siberian Craton and the North China Craton. In order to better understand the structure and formation of this ancient subduction zone, a high-resolution magnetotelluric (MT) profile was collected with both broadband and long-period MT data. The high resolution mapping of the lithosphere achieved in this study is due to the closely spaced MT stations (2-3 km). With the 2-D resistivity model, a south-dipping conductor was detected and extends through the entire crust. The geometry of this feature provides evidence that a southward directed subduction zone formed the Solonker suture. The enhanced conductivity was interpreted to subducted sulfide-bearing graphitic sediments. The resistive body beneath the northern margin of the North China Craton indicates a thickened lithosphere caused by the southward subduction at this region, and the resistive body beneath the Solonker Suture Zone indicates the subducted oceanic lithosphere. North-dipping low resistivity features were also detected in the crust of both the North China Craton and Central Asian Orogenic Belt, and were interpreted as post-collisional thrust faults. Strong anisotropy was found beneath the suture zone, and can be explained if the high strain rate has rotated the fold axes into the dip direction.

  14. Structure and tectonics of the Main Himalayan Thrust and associated faults from recent earthquake and seismic imaging studies using the NAMASTE array

    NASA Astrophysics Data System (ADS)

    Karplus, M. S.; Pant, M.; Velasco, A. A.; Nabelek, J.; Kuna, V. M.; Sapkota, S. N.; Ghosh, A.; Mendoza, M.; Adhikari, L. B.; Klemperer, S. L.

    2017-12-01

    The India-Eurasia collision zone presents a significant earthquake hazard, as demonstrated by the recent, devastating April 25, 2015 M=7.8 Gorkha earthquake and the following May 12, 2015 M=7.3 earthquake. Important questions remain, including distinguishing possible geometries of the Main Himalayan Thrust (MHT), the role of other regional faults, the crustal composition and role of fluids in faulting, and the details of the rupture process, including structural causes and locations of rupture segmentation both along-strike and down-dip. These recent earthquakes and their aftershocks provide a unique opportunity to learn more about this collision zone. In June 2015, funded by NSF, we deployed the Nepal Array Measuring Aftershock Seismicity Trailing Earthquake (NAMASTE) array of 46 seismic stations distributed across eastern and central Nepal, spanning the region with most of the aftershocks. This array remained in place for 11 months from June 2015 to May 2016. We combine new results from this aftershock network in Nepal with previous geophysical and geological studies across the Himalaya to derive a new understanding of the tectonics of the Himalaya and southern Tibet in Nepal and surrounding countries. We focus on structure and composition of the Main Himalayan Thrust and compare this continent-continent subduction megathrust with megathrusts in other subduction zones.

  15. Earthquakes, gravity, and the origin of the Bali Basin: An example of a Nascent Continental Fold-and-Thrust Belt

    NASA Astrophysics Data System (ADS)

    McCaffrey, Robert; Nabelek, John

    1987-01-01

    We infer from the bathymetry and gravity field and from the source mechanisms and depths of the eight largest earthquakes in the Bali region that the Bali Basin is a downwarp in the crust of the Sunda Shelf produced and maintained by thrusting along the Flores back arc thrust zone. Earthquake source mechanisms and focal depths are inferred from the inversion of long-period P and SH waves for all events and short-period P waves for two of the events. Centroidal depths that give the best fit to the seismograms range from 10 to 18 km, but uncertainties in depth allow a range from 7 to 24 km. The P wave nodal planes that dip south at 13° to 35° (±7°) strike roughly parallel to the volcanic arc and are consistent with thrusting of crust of the Bali Basin beneath it. The positions of the earthquakes with respect to crustal features inferred from seismic and gravity data suggest that the earthquakes occur in the basement along the western end of the Flores thrust zone. The slip direction for the back arc thrust zone inferred from the orientation of the earthquake slip vectors indicates that the thrusting in the Bali Basin is probably part of the overall plate convergence, as it roughly coincides with the convergence direction between the Sunda arc and the Indian Ocean plate. Summation of seismic moments of earthquakes between 1960 and 1985 suggests a minimum rate of convergence across the thrust zone of 4 ± 2 mm/a. The presence of back arc thrusting suggests that some coupling between the Indian Ocean plate and the Sunda arc occurs but mechanisms such as continental collision or a shallow subduction of the Indian Ocean plate probably can be ruled out. The present tectonic setting and structure of the Bali Basin is comparable to the early forelands of the Andes or western North America in that a fold-and-thrust belt is forming on the continental side of an arc-trench system at which oceanic lithosphere is being subducted. The Bali Basin is flanked by the Tertiary Java Basin to the west and the oceanic Flores Basin to the east and thus provides an actualistic setting for the development of a fold-and-thrust belt in which structure and timing of deformation can change significantly along strike on the scale a few hundred kilometers.

  16. Tectonics of the IndoBurma Oblique Subduction Zone

    NASA Astrophysics Data System (ADS)

    Steckler, M. S.; Seeber, L.; Akhter, S. H.; Betka, P. M.; Cai, Y.; Grall, C.; Mondal, D. R.; Gahalaut, V. K.; Gaherty, J. B.; Maung Maung, P.; Ni, J.; Persaud, P.; Sandvol, E. A.; Tun, S. T.

    2016-12-01

    The Ganges-Brahmaputra Delta (GBD) is obliquely colliding with the IndoBurma subduction zone. Most of the 42 mm/y of arc-parallel motion is absorbed in a set of dextral to dextral-convergent faults, the Sagaing, Kabaw and Churachandpur-Mao Faults. The 13-17 mm/y of convergence with the delta has built a 250-km wide active accretionary prism. The upper part of the 19-km sediment thickness consists of a shallowing-up stack of prograding strata that has shifted the shelf edge 3-400 km since the Himalayan orogeny at 50 Ma. The upper 3-5 km sandy shelf to fluvial strata are deformed into a broad fold and thrust belt above an overpressured décollement. It forms a flat shallow roof thrust in the frontal accretionary prism. The structure of the deeper part of the accretionary prism, which must transfer the incoming sediments to the upper plate, is unknown. GPS indicates the downdip end of the megathrust locked zone is 25 km at 92.5°E. The deformation front, marked by nascent detachment folds above the shallow décollement reaches the megacity of Dhaka in the middle of the GBD. The seismogenic potential of this portion of the prism is unknown. Arc volcanism in Myanmar, 500 km east of the deformation front, is sparse. Limited geochemical data on the arc volcanics are consistent with hot slab conditions. One possibility is that the deep GBD slab and basement are metamorphosed and dewatered early in the subduction process whereby most of the fluids are transferred to the growing prism by buoyancy driven migration or accretion of fluid-rich strata. Since it is entirely subaerial this little-studied region crossing Bangladesh, India and Myanmar provides an opportunity for a detailed multidisciplinary geophysical and geological investigation. It has the potential to highlight the role of fluids in subduction zones, the tectonics of extreme accretion and their seismic hazards, and the interplay between driving and resistance forces of a subduction zone during a soft collision.

  17. Structure of crust and upper mantle beneath NW Himalayas, Pamir and Hindukush by multi-scale double-difference seismic tomography

    NASA Astrophysics Data System (ADS)

    Bhatti, Zahid Imran; Zhao, Junmeng; Khan, Nangyal Ghani; Shah, Syed Tallataf Hussain

    2018-08-01

    The India-Asia collision and subsequent subduction initiated the evolution of major tectonic features in the Western Syntaxis. The complex tectonic structure and shallow to deep seismicity have attracted geoscientists over the past two decades. The present research is based on a 3D tomographic inversion of P-wave arrival time data to constrain the crustal and upper mantle structure beneath the NW Himalayas and Pamir-Hindukush region using the Double-difference tomography. We utilized a very large multi-scale dataset comprising 19,080 earthquakes recorded at 397 local and regional seismic stations from 1950 to 2017. The northward dipping seismic zone coinciding with the low velocity anomaly suggests the subduction of the Indian lower crust beneath the Hindukush. The extent of the northward advancing Indian slab increases from east to west in this region. We observed no signs of northward subduction of the Indian plate under the Hindukush beyond 71°E longitude. The Indian plate overturns due south after interacting with the Asian plate beneath the southern Pamir, which correlates with the counter-clockwise rotation of the Indian plate. The Asian plate is also imaged as a southward subducting seismic zone beneath the southern Pamir. In the NW Himalayas, the northward subducting Indian plate appears as a gently dipping low velocity anomaly beneath the Karakoram Block. The stresses caused by the collision and subduction along the Shyok Suture and Indus Suture are translated to the south. The crustal scale seismicity and high velocity anomalies indicate an intense deformation in the crust, which is manifested by syntaxial bends and thrust faults to the south of the Main Mantle Thrust.

  18. Controls on accretion of flysch and melange belts at convergent margins: evidence from the Chugach Bay thrust and Iceworm melange, Chugach accretionary wedge, Alaska

    USGS Publications Warehouse

    Kusky, Timothy M.; Bradley, Dwight C.; Haeussler, Peter J.; Karl, Susan M.

    1997-01-01

    Controls on accretion of flysch and melange terranes at convergent margins are poorly understood. Southern Alaska's Chugach terrane forms the outboard accretionary margin of the Wrangellia composite terrane, and consists of two major lithotectonic units, including Triassic-Cretaceous melange of the McHugh Complex and Late Cretaceous flysch of the Valdez Group. The contact between the McHugh Complex and the Valdez Group on the Kenai Peninsula is a tectonic boundary between chaotically deformed melange of argillite, chert, greenstone, and graywacke of the McHugh Complex and a less chaotically deformed melange of argillite and graywacke of the Valdez Group. We assign the latter to a new, informal unit of formational rank, the Iceworm melange, and interpret it as a contractional fault zone (Chugach Bay thrust) along which the Valdez Group was emplaced beneath the McHugh Complex. The McHugh Complex had already been deformed and metamorphosed to prehnite-pumpellyite facies prior to formation of the Iceworm melange. The Chugach Bay thrust formed between 75 and 55 Ma, as shown by Campanian-Maastrichtian depositional ages of the Valdez Group, and fault-related fabrics in the Iceworm melange that are cut by Paleocene dikes. Motion along the Chugach Bay thrust thus followed Middle to Late Cretaceous collision (circa 90-100 Ma) of the Wrangellia composite terrane with North America. Collision related uplift and erosion of mountains in British Columbia formed a submarine fan on the Farallon plate, and we suggest that attempted subduction of this fan dramatically changed the subduction/accretion style within the Chugach accretionary wedge. We propose a model in which subduction of thinly sedimented plates concentrates shear strains in a narrow zone, generating melanges like the McHugh in accretionary complexes. Subduction of thickly sedimented plates allows wider distribution of shear strains to accommodate plate convergence, generating a more coherent accretionary style including the fold-thrust structures that dominate the outcrop pattern in the Valdez belt. Rapid underplating and frontal accretion of the Valdez Group caused a critical taper adjustment of the accretionary wedge, including exhumation of the metamorphosed McHugh Complex, and its emplacement over the Valdez Group. The Iceworm melange formed in a zone of focused fluid flow at the boundary between the McHugh Complex and Valdez Group during this critical taper adjustment of the wedge to these changing boundary conditions.

  19. Controls on accretion of flysch and mélange belts at convergent margins: Evidence from the Chugach Bay thrust and Iceworm mélange, Chugach accretionary wedge, Alaska

    NASA Astrophysics Data System (ADS)

    Kusky, Timothy M.; Bradley, Dwight C.; Haeussler, Peter J.; Karl, Sue

    1997-12-01

    Controls on accretion of flysch and mélange terranes at convergent margins are poorly understood. Southern Alaska's Chugach terrane forms the outboard accretionary margin of the Wrangellia composite terrane, and consists of two major lithotectonic units, including Triassic-Cretaceous mélange of the McHugh Complex and Late Cretaceous flysch of the Valdez Group. The contact between the McHugh Complex and the Valdez Group on the Kenai Peninsula is a tectonic boundary between chaotically deformed melange of argillite, chert, greenstone, and graywacke of the McHugh Complex and a less chaotically deformed mélange of argillite and graywacke of the Valdez Group. We assign the latter to a new, informal unit of formational rank, the Iceworm mélange, and interpret it as a contractional fault zone (Chugach Bay thrust) along which the Valdez Group was emplaced beneath the McHugh Complex. The McHugh Complex had already been deformed and metamorphosed to prehnite-pumpellyite facies prior to formation of the Iceworm mélange. The Chugach Bay thrust formed between 75 and 55 Ma, as shown by Campanian-Maastrichtian depositional ages of the Valdez Group, and fault-related fabrics in the Iceworm mélange that are cut by Paleocene dikes. Motion along the Chugach Bay thrust thus followed Middle to Late Cretaceous collision (circa 90-100 Ma) of the Wrangellia composite terrane with North America. Collision related uplift and erosion of mountains in British Columbia formed a submarine fan on the Farallon plate, and we suggest that attempted subduction of this fan dramatically changed the subduction/accretion style within the Chugach accretionary wedge. We propose a model in which subduction of thinly sedimented plates concentrates shear strains in a narrow zone, generating mélanges like the McHugh in accretionary complexes. Subduction of thickly sedimented plates allows wider distribution of shear strains to accommodate plate convergence, generating a more coherent accretionary style including the fold-thrust structures that dominate the outcrop pattern in the Valdez belt. Rapid underplating and frontal accretion of the Valdez Group caused a critical taper adjustment of the accretionary wedge, including exhumation of the metamorphosed McHugh Complex, and its emplacement over the Valdez Group. The Iceworm mélange formed in a zone of focused fluid flow at the boundary between the McHugh Complex and Valdez Group during this critical taper adjustment of the wedge to these changing boundary conditions.

  20. Talc friction in the temperature range 25°–400 °C: relevance for fault-zone weakening

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, David A.

    2008-01-01

    Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.

  1. Cascadia Subduction Zone

    USGS Publications Warehouse

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  2. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Kirsch, Josephine; Oncken, Onno; Glodny, Johannes; Monié, Patrick; Rybacki, Erik

    2015-06-01

    The transition zone at the downdip end of seismic coupling along subduction interfaces is often the site of megathrust earthquake nucleation and concentrated postseismic afterslip, as well as the focus site of episodic tremor and slip features. Exhumed remnants of the former Alpine subduction zone found in the Swiss Alps allow analyzing fluid and deformation processes near the transition zone region (30-40 km paleodepth). The Dent Blanche Thrust (DBT) is a lower blueschist-facies shear zone interpreted as a fossilized subduction interface where granitic mylonites overlie a metamorphosed accretionary wedge. We report field observations from the DBT region where multiple, several tens of meters thick foliated cataclastic networks are interlayered within the basal DBT mylonites. Petrological results and microstructural observations indicate that the various cataclasis events took place at near-peak metamorphic conditions (400-500°C, 1.1-1.3 GPa) during subduction of the Tethyan seafloor in Eocene times (42-48 Ma). Some of these networks exhibit mutual crosscutting relationships between mylonites, foliated cataclasites, and vein systems indicating mutual overprinting between brittle deformation and ductile creep. Whole-rock chemical compositions, in situ 40Ar-39Ar age data of recrystallized phengite, and Sr isotopic signatures reveal that DBT rocks also underwent multiple hydrofracturing and metasomatic events via the infiltration of fluids mainly derived from the oceanic metasediments underneath the DBT. From the rock fabrics, we infer strain rate fluctuations of several orders of magnitude beyond subduction strain rates (˜10-12 s-1) accompanied by fluctuation of supralithostatic and quasi-lithostatic fluid pressures (1 ≥ λ > 0.95). DBT brittle-plastic deformation switches highlight the diversity of deformation processes and fluid-rock interactions in the transition zone region of the subduction interface.

  3. Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet

    NASA Astrophysics Data System (ADS)

    Laskowski, Andrew K.; Kapp, Paul; Ding, Lin; Campbell, Clay; Liu, XiaoHui

    2017-01-01

    The Lopu Range, located 600 km west of Lhasa, exposes a continental high-pressure metamorphic complex beneath India-Asia (Yarlung) suture zone assemblages. Geologic mapping, 14 detrital U-Pb zircon (n = 1895 ages), 11 igneous U-Pb zircon, and nine zircon (U-Th)/He samples reveal the structure, age, provenance, and time-temperature histories of Lopu Range rocks. A hornblende-plagioclase-epidote paragneiss block in ophiolitic mélange, deposited during Middle Jurassic time, records Late Jurassic or Early Cretaceous subduction initiation followed by Early Cretaceous fore-arc extension. A depositional contact between fore-arc strata (maximum depositional age 97 ± 1 Ma) and ophiolitic mélange indicates that the ophiolites were in a suprasubduction zone position prior to Late Cretaceous time. Five Gangdese arc granitoids that intrude subduction-accretion mélange yield U-Pb ages between 49 and 37 Ma, recording Eocene southward trench migration after collision initiation. The south dipping Great Counter Thrust system cuts older suture zone structures, placing fore-arc strata on the Kailas Formation, and sedimentary-matrix mélange on fore-arc strata during early Miocene time. The north-south, range-bounding Lopukangri and Rujiao faults comprise a horst that cuts the Great Counter Thrust system, recording the early Miocene ( 16 Ma) transition from north-south contraction to orogen-parallel (E-W) extension. Five early Miocene (17-15 Ma) U-Pb ages from leucogranite dikes and plutons record crustal melting during extension onset. Seven zircon (U-Th)/He ages from the horst block record 12-6 Ma tectonic exhumation. Jurassic—Eocene Yarlung suture zone tectonics, characterized by alternating episodes of contraction and extension, can be explained by cycles of slab rollback, breakoff, and shallow underthrusting—suggesting that subduction dynamics controlled deformation.

  4. Paleothermal structure of the Nankai inner accretionary wedge estimated from vitrinite reflectance of cuttings

    NASA Astrophysics Data System (ADS)

    Fukuchi, Rina; Yamaguchi, Asuka; Yamamoto, Yuzuru; Ashi, Juichiro

    2017-08-01

    The paleothermal structure and tectonic evolution of an accretionary prism is basic information for understanding subduction zone seismogenesis. To evaluate the entire paleotemperature profile of the Integrated Ocean Drilling Program (IODP) Site C0002 located in the off-Kumano region of the Nankai Trough and penetrate the inner accretionary wedge down to 3058.5 m below the seafloor (mbsf), we performed a vitrinite reflectance analysis for cuttings and core samples during IODP expeditions 338 and 348: Nankai Trough seismogenic zone experiment. Although vitrinite reflectance values (Ro) tend to increase with depth, two reversals of these values suggested the existence of thrust fault zones with sufficient displacements to offset the paleothermal structure. The estimated maximum paleotemperatures are 42-70°C at 1200-1300 mbsf, 44-100°C at 1600-2400 mbsf, and 56-115°C at 2600-3000 mbsf, respectively. These temperatures roughly coincide with estimated modern temperatures; however, at a smaller scale, the reconstructed partial paleogeothermal gradient (˜60-150°C/km) recorded at the hanging- and footwall of the presumed thrust fault zone is higher than the modern geothermal gradient (˜30-40°C/km). This high paleogeothermal gradient was possibly obtained prior to subduction, reflecting the large heat flow of the young Philippine Sea Plate.

  5. Disparate Tectonic Settings of Devastating Earthquakes in Mexico, September 2017

    NASA Astrophysics Data System (ADS)

    Li, J.; Chen, W. P.; Ning, J.

    2017-12-01

    Large earthquakes associated with thrust faulting along the plate interface typically pose the highest seismic risk along subduction zones. However, both damaging earthquakes in Mexico of September 2017 are notable exceptions. The Tehuantepec event on the 8th (Mw 8.1) occurred just landward of the trench but is associated with normal faulting, akin to the large (Ms 8) historical event of 1931 that occurred about 200 km to the northwest along this subduction zone. The Puebla earthquake (on the 19th, Mw 7.1) occurred almost 300 km away from the trench where seismic imaging had indicated that the flat-lying slab steepens abruptly and plunges aseismically into the deep mantle. Here we show that both types of tectonic settings are in fact common along a large portion of the Mexican subduction zone, thus identifying source zones of potentially damaging earthquakes away from the plate interface. Additionally, modeling of broadband waveforms made clear that another significant event (Mw 6.1) on the 23rd, is associated with shallow normal faulting in the upper crust, not directly related to the two damaging earthquakes.

  6. Structural anatomy of a dismembered ophiolite suite from Gondwana: The Manamedu complex, Cauvery suture zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Yellappa, T.; Nagesh, P.; Mohanty, D. P.; Venkatasivappa, V.; Santosh, M.; Tsunogae, T.

    2011-08-01

    Detailed geological and structural mapping of the Manamedu ophiolite complex (MOC), from the south-eastern part of the Cauvery suture zone (CSZ) within the Gondwana collisional suture in southern India reveals the anatomy of a dismembered ophiolite succession comprising pyroxenite actinolite-hornblendite, hornblendite, gabbro-norite, gabbro, anorthosite, amphibolite, plagiogranite, mafic dykes, and associated pelagic sediments such as chert-magnetite bands and carbonate horizons. The magmatic foliation trajectory map shows inward dipping foliations and a variety of fold structures. Structural cross-sections of the MOC reveal gentle inward dips with repetition and omission of different lithologies often marked by curvilinear hinge lines. The succession displays imbricate thrust sheets and slices of dismembered ophiolite suites distributed along several localities within the CSZ. The MOC can be interpreted as a deformed large duplex structure associated with south-verging back thrust system, consistent with crustal-scale 'flower structure'. The nature and distribution of ophiolitic rocks in the CSZ suggest supra-subduction zone setting associated with the lithospheric subduction of the Neoproterozoic Mozambique Ocean, followed by collision and obduction during the final stage of amalgamation of the Gondwana supercontinent in the end Precambrian.

  7. The Gibraltar subduction: A decade of new geophysical data

    NASA Astrophysics Data System (ADS)

    Gutscher, M.-A.; Dominguez, S.; Westbrook, G. K.; Le Roy, P.; Rosas, F.; Duarte, J. C.; Terrinha, P.; Miranda, J. M.; Graindorge, D.; Gailler, A.; Sallares, V.; Bartolome, R.

    2012-10-01

    The Gibraltar arc, spans a complex portion of the Africa-Eurasia plate boundary marked by slow oblique convergence and intermediate and deep focus seismicity. The seemingly contradictory observations of a young extensional marine basin surrounded by an arcuate fold-and-thrust belt, have led to competing geodynamic models (delamination and subduction). Geophysical data acquired in the past decade provide a test for these models and support a narrow east-dipping, subduction zone. Seismic refraction studies indicate oceanic crust below the western Gulf of Cadiz. Tomography of the upper mantle reveals a steep, east-dipping high P-wave velocity body, beneath Gibraltar. The anisotropic mantle fabric from SKS splitting shows arc-parallel "fast directions", consistent with toroidal flow around a narrow, westward retreating subducting slab. The accompanying WSW advance of the Rif-Betic mountain belt has constructed a thick pile of deformed sediments, an accretionary wedge, characterized by west-vergent thrust anticlines. Bathymetric swath-mapping images an asymmetric embayment at the deformation front where a 2 km high basement ridge has collided. Subduction has slowed significantly since 5 Ma, but deformation of recent sediments and abundant mud volcanoes suggest ongoing activity in the accretionary wedge. Three possible origins for this deformation are discussed; gravitational spreading, overall NW-SE convergence between Africa and Iberia and finally a WSW tectonic push from slow, but ongoing roll-back subduction. In the absence of arc volcanism and shallow dipping thrust type earthquakes, evidence in favor of present-day subduction can only be indirect and remains the object of debate. Continued activity of the subduction offers a possible explanation for great (M > 8.5) earthquakes known to affect the area, like the famous 1755 Great Lisbon earthquake. Recent GPS studies show SW motion of stations in N Morocco at velocities of 3-6 mm/yr indicating the presence of an independent block, a "Rif-Betic-Alboran" microplate, situated between Iberia and Africa.

  8. Morphology and Role of the Investigator Fracture Zone on the Sumatra Subduction Zone Process using High-resolution Bathymetry and Seismic Data

    NASA Astrophysics Data System (ADS)

    Villanueva-Robles, F.; Singh, S. C.; Bradley, K. E.; Hananto, N.; Leclerc, F.; Qin, Y.; Wei, S.; Carton, H. D.; Tapponnier, P.; Sieh, K.; Permana, H.; Avianto, P.

    2016-12-01

    The Sumatran subduction zone is one of the most seismically active areas on Earth. Within the last decade, it has produced three great earthquakes plus one earthquake that produced a much larger tsunami than predicted from the magnitude alone. However, the physical factors that limit the lateral extent of these ruptures as well as ancient earthquakes evidenced by paleogeodesy remain poorly understood. It has been suggested that subducted bathymetric features, such as seamounts and fracture zones, may be define many segment boundaries. Offshore of Central Sumatra, the Investigator Fracture Zone (IFZ) impinges on the trench and has been subducted to great depth beneath the overriding accretionary wedge. Where it is still exposed as a bathymetric feature, this fracture zone is 2000 km long and more than 100 km wide, and is composed of four individual ridges that exhibit up to 3.7 km of original relief. In order to study the role of the IFZ on subduction processes, we simultaneously acquired multibeam bathymetry and eight 35-km-long high-resolution seismic reflection profiles across the subduction front during the 2015 MegaTera experiment. We find that subduction of the IFZ ridges significantly deforms the morphology of the overriding accretionary wedge. The steep eastern slope of subducting ridges allowed the development of a long lived frontal thrust that reaches the surface at the trench and is associated with a very large frontal anticline and a flat portion of the accretionary wedge. Extensional deformation of the forearc and transverse basin formation occurs along the trailing edge of the ridges. We suggest that the subducted IFZ defines a segment boundary between the southern limit of coseismic slip of the Mw = 8.7, 2005 Simeulue-Nias earthquake and the northern limit of coseismic slip limit of a major 1797 earthquake recorded by coral paleogeodesy. The presence of four distinct ridges and an intervening 35-km-wide area of normal oceanic crust within the 105-km-wide IFZ should cause extremely heterogeneous coupling that is reflected by frequent earthquakes along the subducted portion of IFZ, and may enhance frictional coupling along the shallowest portions of the megathrust.

  9. Structural record of Lower Miocene westward motion of the Alboran Domain in the Western Betics, Spain

    NASA Astrophysics Data System (ADS)

    Frasca, Gianluca; Gueydan, Frédéric; Brun, Jean-Pierre

    2015-08-01

    In the framework of the Africa-Europe convergence, the Mediterranean system presents a complex interaction between subduction rollback and upper-plate deformation during the Tertiary. The western end of the system shows a narrow arcuate geometry across the Gibraltar arc, the Betic-Rif belt, in which the relationship between slab dynamics and surface tectonics is not well understood. The present study focuses on the Western Betics, which is characterized by two major thrusts: 1) the Internal/External Zone Boundary limits the metamorphic domain (Alboran Domain) from the fold-and-thrust belts in the External Zone; 2) the Ronda Peridotites Thrust allows the juxtaposition of a strongly attenuated lithosphere section with large bodies of sub-continental mantle rocks on top of upper crustal rocks. New structural data show that two major E-W strike-slip corridors played a major role in the deformation pattern of the Alboran Domain, in which E-W dextral strike-slip faults, N60° thrusts and N140° normal faults developed simultaneously during dextral strike-slip simple shear. Olistostromic sediments of Lower Miocene age were deposited and deformed in this tectonic context and hence provide an age estimate for the inferred continuous westward translation of the Alboran Domain that is accommodated by an E-W lateral (strike-slip) ramp and a N60° frontal thrust. The crustal emplacement of large bodies of sub-continental mantle may occur at the onset of this westward thrusting in the Western Alboran domain. At lithosphere-scale, we interpret the observed deformation pattern as the subduction upper-plate expression of a lateral slab tear and its westward propagation since the Lower Miocene.

  10. Probing the transition between seismically coupled and decoupled segments along an ancient subduction interface

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Kirsch, Josephine; Oncken, Onno; Glodny, Johannes; Monié, Patrick; Rybacki, Erik

    2015-04-01

    Although of paramount importance for understanding the nature of mechanical coupling in subduction zones, the portions downdip of the locked segments of subduction interfaces remain poorly understood. These deep transition zones often are sites of megathrust earthquake nucleation and concentrated postseismic afterslip, as well as the focus sites of episodic tremor and slip features, recently discovered at several plate boundaries. The extensive, exhumed remnants of the former Alpine subduction zone found in the Swiss Alps allow analyzing fluid and deformation processes at the original depths of 30-40 km, typical for the depth range of such transition zones. We identify the shear zone at the base of the Dent Blanche complex (Dent Blanche Thrust, DBT) as a lower blueschist-facies, fossilized subduction interface where granitic mylonites overlie a metamorphosed ophiolite. We report field observations from the DBT region where a complex, discontinuous network of meter- to tens of meters-thick foliated cataclasites is interlayered with the basal DBT mylonites. Petrological results indicate that cataclasis took place at near peak metamorphic conditions (450-500°C, c. 1.2 GPa) during subduction of the Tethyan seafloor in Eocene times (42-48 Ma). Despite some tectonic reactivation during exhumation, these networks exhibit mutual cross-cutting relationships between mylonites, foliated cataclasites and vein systems indicating multiple switching between brittle deformation and ductile creep. Whole-rock chemical compositions, in situ 40Ar-39Ar age data of newly formed phengite, and strontium isotopic signatures reveal that these rocks also underwent multiple hydrofracturing events via infiltration of fluids mainly derived from the ophiolitic metasediments underneath the DBT. From the rock fabrics we infer strain rate fluctuations of several orders of magnitude beyond subduction strain rates (c. 10-12s-1) accompanied by fluctuation of near-lithostatic fluid pressures (1>λ>0.95). We interpret the triggering of brittle deformation within DBT mylonites to reflect downwards propagation of megathrust events into the transition zone. Alternatively, these foliated cataclasites could also record the deformation associated with slow transients and other episodic slip events, reported by geophysical studies for several subduction zones worldwide for this transition zone.

  11. Stress interaction between subduction earthquakes and forearc strike-slip faults: Modeling and application to the northern Caribbean plate boundary

    USGS Publications Warehouse

    ten Brink, Uri S.; Lin, J.

    2004-01-01

    Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.

  12. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    NASA Astrophysics Data System (ADS)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a series of transpressional faults that splay northwards across the Snares Fault, and terminate at the top of the Puysegur trench slope. Between ca. 48°S and 46°30'S, the relative plate motion appears to be distributed over the Puysegur subduction zone and the strike-slip faults located on the edge of the upper plate. Conversely, north of ca. 46°S, a lack of active strike-slip faulting along the MFS and across most of Puysegur Bank indicates that the subduction in the northern part of Puysegur Trench accounts for most of the oblique convergence. Hence, active transpression in the Snares fault zone indicates that the relative PAC-AUS plate motion is transferred from strike-slip faulting along the Puysegur Fault to subduction at Puysegur Trench. The progressive transition from thrusts at Puysegur Trench and strike-slip faulting at the Puysegur Fault to oblique subduction at Puysegur Trench suggests that the subduction interface progressively developed from a western shallow splay of the Puysegur Fault. It implies that the transfer fault links the subduction interface at depth. A tectonic sliver is identified between Puysegur Trench and the Puysegur Fault. Its northwards motion relative to the Pacific Plate implies that is might collide with Puysegur Bank.

  13. The 1945 Balochistan earthquake and probabilistic tsunami hazard assessment for the Makran subduction zone

    NASA Astrophysics Data System (ADS)

    Höchner, Andreas; Babeyko, Andrey; Zamora, Natalia

    2014-05-01

    Iran and Pakistan are countries quite frequently affected by destructive earthquakes. For instance, the magnitude 6.6 Bam earthquake in 2003 in Iran with about 30'000 casualties, or the magnitude 7.6 Kashmir earthquake 2005 in Pakistan with about 80'000 casualties. Both events took place inland, but in terms of magnitude, even significantly larger events can be expected to happen offshore, at the Makran subduction zone. This small subduction zone is seismically rather quiescent, but a tsunami caused by a thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Additionally, some recent publications raise the question of the possiblity of rare but huge magnitude 9 events at the Makran subduction zone. We first model the historic Balochistan event and its effect in terms of coastal wave heights, and then generate various synthetic earthquake and tsunami catalogs including the possibility of large events in order to asses the tsunami hazard at the affected coastal regions. Finally, we show how an effective tsunami early warning could be achieved by the use of an array of high-precision real-time GNSS (Global Navigation Satellite System) receivers along the coast.

  14. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, Andreas; Babeyko, Andrey Y.; Zamora, Natalia

    2016-06-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  15. Probabilistic tsunami hazard assessment for the Makran region with focus on maximum magnitude assumption

    NASA Astrophysics Data System (ADS)

    Hoechner, A.; Babeyko, A. Y.; Zamora, N.

    2015-09-01

    Despite having been rather seismically quiescent for the last decades, the Makran subduction zone is capable of hosting destructive earthquakes and tsunami. In particular, the well-known thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss rare but significantly larger events at the Makran subduction zone as possible scenarios. We analyze the instrumental and historical seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 300 000 years with varying magnitude-frequency relations. For every event in the catalogs we compute estimated tsunami heights and present the resulting tsunami hazard along the coasts of Pakistan, Iran and Oman in the form of probabilistic tsunami hazard curves. We show how the hazard results depend on variation of the Gutenberg-Richter parameters and especially maximum magnitude assumption.

  16. Deformation during terrane accretion in the Saint Elias orogen, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.

    2004-01-01

    The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from the topographic backbone of the Saint Elias Mountains onto the coastal plain. The Malaspina fault-Pamplona structural zone separates the eastern and central parts of the orogen and is marked by reverse faulting and folding. Onshore, most of this boundary is buried beneath the western or "Agassiz" lobe of the Malaspina piedmont glacier. The boundary between the central fold-and-thrust belt and western zone of superimposed folding lies beneath the middle and lower course of the Bering piedmont glacier. ?? 2004 Geological Society of America.

  17. Complex thrusting at the toe of the Nankai accretionary prism, NanTroSEIZE Kumano transect

    NASA Astrophysics Data System (ADS)

    Moore, G. F.; Park, J.; Kodaira, S.; Kaneda, Y.

    2009-12-01

    Seismic reflection data collected over the past 10 years by the Institute for Research on Earth Evolution (IFREE) of Japan Agency for Marine Earth Science and Technology (JAMSTEC) image a zone of complex thrusting at the toe of the Nankai accretionary prism south of Kii Peninsula, Honshu, Japan. The frontal part of the Nankai prism west of Shionomisaki Canyon (SC) at ~136° E, including the Muroto and Ashizuri Transects off Shikoku, is generally formed of imbricate thrusts with spacing of ~ 1-3 km that dip ~25-35° landward and sole into a prominent décollement. Out-of-sequence thrusts (OOSTs) are usually restricted to the landward margin of this imbricate thrust zone. East of SC, in the Kumano Transect area, the imbricate thrust zone is bounded on its seaward edge by a frontal thrust block that is ~5-6 km wide and consists of several OOSTs. The frontal thrust dips ~5-10° under this ~2-4 km thick block, emplacing this thrust sheet over the trench floor. The number and character of thrusts within the frontal thrust block vary laterally along strike. The 2006 Kumano 3D seismic data set images details of one segment of this complex frontal thrust block. Out-of-sequence faulting has led to underplating of several smaller thrust slices and movement along oblique ramps has led to a complex pattern of faulting that cannot be recognized in even closely-spaced 2D seismic lines. The frontal thrust block is further modified by subduction of seamounts and ridges that have caused large slumps of material from the block.

  18. Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)

    USGS Publications Warehouse

    Granja, Bruna J.L.; Muñoz-Martín, A.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Llanes, Estrada P.; Martín-Dávila, J.; Cordoba-Barba, D.; Catalan, Morollon M.

    2010-01-01

    The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate's interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N-S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8?? to 30?? reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin. ?? 2010 Springer Science+Business Media B.V.

  19. Sequence stratigraphy, structural style, and age of deformation of the Malaita accretionary prism (Solomon arc-Ontong Java Plateau convergent zone)

    NASA Astrophysics Data System (ADS)

    Phinney, Eric J.; Mann, Paul; Coffin, Millard F.; Shipley, Thomas H.

    2004-10-01

    Possibilities for the fate of oceanic plateaus at subduction zones range from complete subduction of the plateau beneath the arc to complete plateau-arc accretion and resulting collisional orogenesis. Deep penetration, multi-channel seismic reflection (MCS) data from the northern flank of the Solomon Islands reveal the sequence stratigraphy, structural style, and age of deformation of an accretionary prism formed during late Neogene (5-0 Ma) convergence between the ˜33-km-thick crust of the Ontong Java oceanic plateau and the ˜15-km-thick Solomon island arc. Correlation of MCS data with the satellite-derived, free-air gravity field defines the tectonic boundaries and internal structure of the 800-km-long, 140-km-wide accretionary prism. We name this prism the "Malaita accretionary prism" or "MAP" after Malaita, the largest and best-studied island exposure of the accretionary prism in the Solomon Islands. MCS data, gravity data, and stratigraphic correlations to islands and ODP sites on the Ontong Java Plateau (OJP) reveal that the offshore MAP is composed of folded and thrust faulted sedimentary rocks and upper crystalline crust offscraped from the Solomon the subducting Ontong Java Plateau (Pacific plate) and transferred to the Solomon arc. With the exception of an upper, sequence of Quaternary? island-derived terrigenous sediments, the deformed stratigraphy of the MAP is identical to that of the incoming Ontong Java Plateau in the North Solomon trench. We divide the MAP into four distinct, folded and thrust fault-bounded structural domains interpreted to have formed by diachronous, southeast-to-northwest, and highly oblique entry of the Ontong Java Plateau into a former trench now marked by the Kia-Kaipito-Korigole (KKK) left-lateral strike-slip fault zone along the suture between the Solomon arc and the MAP. The structural style within each of the four structural domains consists of a parallel series of three to four fault propagation folds formed by the seaward propagation of thrust faults roughly parallel to sub-horizontal layering in the upper crystalline part of the OJP. Thrust fault offsets, spacing between thrusts, and the amplitude of related fault propagation folds progressively decrease to the west in the youngest zone of active MAP accretion (Choiseul structural domain). Surficial faulting and folding in the most recently deformed, northwestern domain show active accretion of greater than 1 km of sedimentary rock and 6 km, or about 20%, of the upper crystalline part of the OJP. The eastern MAP (Malaita and Ulawa domains) underwent an earlier, similar style of partial plateau accretion. A pre-late Pliocene age of accretion (˜3.4 Ma) is constrained by an onshore and offshore major angular unconformity separating Pliocene reefal limestone and conglomerate from folded and faulted pelagic limestone of Cretaceous to Miocene age. The lower 80% of the Ontong Java Plateau crust beneath the MAP thrust decollement appears unfaulted and unfolded and is continuous with a southwestward-dipping subducted slab of presumably denser plateau material beneath most of the MAP, and is traceable to depths >200 km in the mantle beneath the Solomon Islands.

  20. Chance findings about early holocene tidal marshes of Grays Harbor, Washington, in relation to rapidly rising seas and great subduction earthquakes

    USGS Publications Warehouse

    Phipps, James B.; Hemphill-Haley, Eileen; Atwater, Brian F.

    2015-06-18

    The puzzles posed by these findings include: (1) How did the marshes manage to endure centuries of relative sea-level rise that likely approached 1 cm/yr on average? (2) Did the marshes also endure subsidence that accompanied great thrust earthquakes on the Cascadia Subduction Zone? (3) Was their eventual drowning triggered by a Cascadia earthquake of unusually large size, or can the drowning be explained by sea-level rise that included a jump from drainage of glacial Lake Agassiz?

  1. Rapid Geodetic Shortening Across the Eastern Cordillera of NW Argentina Observed by the Puna-Andes GPS Array

    NASA Astrophysics Data System (ADS)

    McFarland, Phillip K.; Bennett, Richard A.; Alvarado, Patricia; DeCelles, Peter G.

    2017-10-01

    We present crustal velocities for 29 continuously recording GPS stations from the southern central Andes across the Puna, Eastern Cordillera, and Santa Barbara system for the period between the 27 February 2010 Maule and 1 April 2014 Iquique earthquakes in a South American frame. The velocity field exhibits a systematic decrease in magnitude from 35 mm/yr near the trench to <1 mm/yr within the craton. We forward model loading on the Nazca-South America (NZ-SA) subduction interface using back slip on elastic dislocations to approximate a fully locked interface from 10 to 50 km depth. We generate an ensemble of models by iterating over the percentage of NZ-SA convergence accommodated at the subduction interface. Velocity residuals calculated for each model demonstrate that locking on the NZ-SA interface is insufficient to reproduce the observed velocities. We model deformation associated with a back-arc décollement using an edge dislocation, estimating model parameters from the velocity residuals for each forward model of the subduction interface ensemble using a Bayesian approach. We realize our best fit to the thrust-perpendicular velocity field with 70 ± 5% of NZ-SA convergence accommodated at the subduction interface and a slip rate of 9.1 ± 0.9 mm/yr on the fold-thrust belt décollement. We also estimate a locking depth of 14 ± 9 km, which places the downdip extent of the locked zone 135 ± 20 km from the thrust front. The thrust-parallel component of velocity is fit by a constant shear strain rate of -19 × 10-9 yr-1, equivalent to clockwise rigid block rotation of the back arc at a rate of 1.1°/Myr.

  2. Integrated Geophysical Characteristics of the 2015 Illapel, Chile, Earthquake

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Yeck, W. L.; Nealy, J. L.; Hayes, G. P.; Barnhart, W. D.; Benz, H.; Furlong, K. P.

    2015-12-01

    On September 16th, 2015, an Mw 8.3 earthquake (USGS moment magnitude) ruptured offshore of central Chile, 50 km west of the city of Illapel and 200 km north of Santiago. The earthquake occurred just north of where the Juan Fernandez Ridge enters the subduction zone. In this study, we integrate multiple seismic and geodetic datasets, including multiple-event earthquake relocations; moment tensors of the Illapel mainshock, aftershocks, and prior regional seismicity; finite fault models (FFMs) of the mainshock rupture; subduction zone geometry; Coulomb stress transfer calculations; and co-seismic GPS offsets and InSAR images. These datasets allow us to (a) assess the context of the Illapel earthquake sequence with respect to historical seismicity in central Chile; (b) constrain the relationship between subduction geometry and the kinematic characteristics of the earthquake sequence; and (c) understand the distribution of aftershocks with respect to the rupture zone. Double source W-phase moment tensor analysis indicates the Illapel mainshock rupture began as a smaller Mw ~7.2 thrusting event before growing into a great-sized Mw 8.3 earthquake. Relocated aftershock seismicity is concentrated around the main region of slip, and few aftershocks occur on the megathrust shallower than ~15 km, despite the FFM indicating slip near the trench. This distribution is consistent with the aftershock behavior following the 2010 Maule and 2014 Iquique earthquakes: aftershocks primarily surround the rupture zones and are largely absent from regions of greatest slip. However, in contrast to the recent 2014 Iquique and 2010 Maule events, which ruptured in regions of the Chilean subduction zone that had not had large events in over a century, this earthquake occurred in a section of the subduction zone that hosted a large earthquake as recently as 1943, as well as earlier significant events in 1880 and 1822. At this section of the subduction zone, in addition to the impinging Juan Fernandez Ridge, the slab geometry changes from steeply dipping south of the Illapel earthquake to a nearly horizontal dip adjacent to the event. Combining these various observations provides insight into the links between regional tectonics and the timing and distribution of megathrust earthquakes at this segment of the central Chilean subduction zone.

  3. Structural evidence for northeastward movement on the Chocolate Mountains Thrust, southeasternmost California

    USGS Publications Warehouse

    Dillon, J.T.; Haxel, G.B.; Tosdal, R.M.

    1990-01-01

    The Late Cretaceous Chocolate Mountains Thrust of southeastern California and southwestern Arizona places a block of Proterozoic and Mesozoic continental crust over the late Mesozoic continental margin oceanic sedimentary and volcanic rocks of the Orocopia Schist. The Chocolate Mountains Thrust is interpreted as a thrust (burial, subduction) fault rather than a low-angle normal fault. An important parameter required to understand the tectonic significance of the Chocolate Mountains and related thrusts is their sense of movement. The only sense of movement consistent with collective asymmetry of the thrust zone folds is top to the northeast. Asymmetric microstructures studied at several localities also indicate top to the northeast movement. Paleomagnetic data suggest that the original sense of thrusting, prior to Neogene vertical axis tectonic rotation related to the San Andreas fault system, was northward. Movement of the upper plate of the chocolate Mountains thrust evidently was continentward. Continentward thrusting suggests a tectonic scenario in which an insular or peninsular microcontinental fragment collided with mainland southern California. -from Authors

  4. Investigating Along-Strike Variations of Source Parameters for Relocated Thrust Earthquakes Along the Sumatra-Java Subduction Zone

    NASA Astrophysics Data System (ADS)

    El Hariri, M.; Bilek, S. L.; Deshon, H. R.; Engdahl, E. R.

    2009-12-01

    Some earthquakes generate anomalously large tsunami waves relative to their surface wave magnitudes (Ms). This class of events, known as tsunami earthquakes, is characterized by having a long rupture duration and low radiated energy at long periods. These earthquakes are relatively rare. There have been only 9 documented cases, including 2 in the Java subduction zone (1994 Mw=7.8 and the 2006 Mw=7.7). Several models have been proposed to explain the unexpectedly large tsunami, such as displacement along high-angle splay faults, landslide-induced tsunami due to coseismic shaking, or large seismic slip within low rigidity sediments or weaker material along the shallowest part of the subduction zone. Slow slip has also been suggested along portions of the 2004 Mw=9.2 Sumatra-Andaman earthquake zone. In this study we compute the source parameters of 90 relocated shallow thrust events (Mw 5.1-7.8) along the Sumatra-Java subduction zone including the two Java tsunami earthquakes. Events are relocated using a modification to the Engdahl, van der Hilst and Buland (EHB) earthquake relocation method that incorporates an automated frequency-dependent phase detector. This allows for the use of increased numbers of phase arrival times, especially depth phases, and improves hypocentral locations. Source time functions, rupture duration and depth estimates are determined using multi-station deconvolution of broadband teleseismic P and SH waves. We seek to correlate any along-strike variation in rupture characteristics with tectonic features and rupture characteristics of the previous slow earthquakes along this margin to gain a better understanding of the conditions resulting in slow ruptures. Preliminary results from the analysis of these events show that in addition to depth-dependent variations there are also along-strike variations in rupture duration. We find that along the Java segment, the longer duration event locates in a highly coupled region corresponding to the location of a proposed subducting seamount. This correlation is less clear along the southern Sumatran segment. One longer duration event is located within the high slip area of the Mw=8.4 2007 rupture, while another is located in the weakly coupled region of the 1935 Mw=7.7 rupture area.

  5. Areas of slip of recent earthquakes in the Mexican subduction zone

    NASA Astrophysics Data System (ADS)

    Hjorleifsdottir, V.; Sánchez-Reyes, H. S.; Singh, S.; Ji, C.; Iglesias, A.; Perez-Campos, X.

    2012-12-01

    The Mexican subduction zone is unusual: the width of the seismogenic zone is relatively narrow and a large portion of the co-seismic slip generally occurs below the coast, ~ 45 to 80 km from the trench. The earthquake recurrence interval is relatively short and almost the entire length of the zone has experienced a large (Mw≥7.4) earthquake in the last 100 years (Singh et al., 1981). In this study we present detailed analysis of the areas of significant slip during several recent (last 20 years) large earthquakes in the Mexican subduction zone. The most recent earthquake of 20 March 2012 (Mw7.4) occurred near the Guerrero/Oaxaca border. The slip was concentrated on the plate interface below land and the epicentral PGAs ranged between 0.2 and 0.7g. The updip portion of the plate interface had previously broken during the 25 Feb 1996 earthquake (Mw7.1), which was a slow earthquake and produced anomalously low PGAs (Iglesias et al., 2003). This indicates that in this region the area close to the trench is at least partially locked, with some earthquakes breaking the down-dip portion of the interface and others rupturing the up-dip portion. The Jalisco/Colima segment of the subduction zone seems to behave in a similar fashion. The 9 October 1995 (Mw 8.0) earthquake generated small accelerations relative to its size. The energy to moment ratio, E0/M0, is 4.2e-6 (Pérez-Campos, Singh and Beroza, 2003), a value similar to the Feb, 1996 earthquake. This value is low compared to other thrust events in the region. The earthquake also had the largest (Ms-Mw) disparity along the Mexican subduction zone, 7.4 vs 8.0. The event produced relatively large tsunami. On the contrary, the 3 June 1932 earthquake (Ms8.2, Mw8.0), that is believed to have broken the same segment of the subduction zone, appears to be "normal." Based on the available evidence, it may be concluded that the 1932 event broke a deeper patch of the plate interface relative to the 1995 event. The mode of rupture in the subduction zone between the two areas mentioned above is not known. This part of the subduction zone includes the rupture area of the 1985 Michoacán earthquake (Mw8.0) and the "Guerrero Gap" which is a section of the subduction zone that has not had a large earthquake in the last 100 years. The downdip and updip patches on the plate interface, which, generally, rupture independently may slip during one great earthquake. This possibility must be accounted for in the estimation of maximum-magnitude earthquake along the subduction zone.

  6. The brittle-ductile transition in porous sedimentary rocks: geological implications for accretionary wedge aseismicity

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxiang; Davis, Dan M.; Wong, Teng-Fong

    1993-07-01

    Thrusting earthquakes in subduction zones generally occur along only part of the plate boundary, with motion along the shallowest part of the plate boundary occurring ascismically. The maximum size of subduction boundary thrust earthquakes depends strongly upon the down-dip width of the seismogenic zone. The single most uncertain factor in determining that width is the location of the up-dip limit of the zone (the seismic front), which depends upon the mechanical state of the sedimentary rocks in the plate boundary zone. In order to come to a better understanding of the seismic potential of sediments in a subduction zone, we carried out a series of triaxial experiments on Berea and Kayenta sandstones. Based on our experimental data, a brittle-ductile transition map was constructed showing that both porosity and effective pressure are important factors controlling the transition from brittle to macroscopically ductile behavior in porous rocks. In the brittle field, a sample fails by shear localization on one slip plane accompanied by strain softening and dilatancy, whereas in the ductile field, a sample deforms homogeneously with a constant yield stress or slight hardening. By comparing such a map with the estimated porosity profile of an accretionary wedge, the likely nature and rough location of the boundary between brittle and ductile behavior can be inferred. If the sediments along a plate boundary are too young and undercompacted to be capable of brittle shear localization, then their deformation is likely to be aseismic. In this way, it may be possible for even a very broad fore-arcs to produce no great earthquakes. However, great earthquakes are to be expected at margins that have large zones of plate contact along which many sediments are compacted and well lithified. Such rocks are expected to be capable of shear localization and brittle failure with the potential for stick-slip behavior.

  7. Active Tectonics of Himalayan Faults/Thrusts System in Northern India on the basis of recent & Paleo earthquake Studies

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Biswal, S.; Parija, M. P.

    2016-12-01

    The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.

  8. Submarine gas seepage in a mixed contractional and shear deformation regime: Cases from the Hikurangi oblique-subduction margin

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, Andreia; Pecher, Ingo; Crutchley, Gareth; Barnes, Philip M.; Bünz, Stefan; Golding, Thomas; Klaeschen, Dirk; Papenberg, Cord; Bialas, Joerg

    2014-02-01

    Gas seepage from marine sediments has implications for understanding feedbacks between the global carbon reservoir, seabed ecology, and climate change. Although the relationship between hydrates, gas chimneys, and seafloor seepage is well established, the nature of fluid sources and plumbing mechanisms controlling fluid escape into the hydrate zone and up to the seafloor remain one of the least understood components of fluid migration systems. In this study, we present the analysis of new three-dimensional high-resolution seismic data acquired to investigate fluid migration systems sustaining active seafloor seepage at Omakere Ridge, on the Hikurangi subduction margin, New Zealand. The analysis reveals at high resolution, complex overprinting fault structures (i.e., protothrusts, normal faults from flexural extension, and shallow (<1 km) arrays of oblique shear structures) implicated in fluid migration within the gas hydrate stability zone in an area of 2 × 7 km. In addition to fluid migration systems sustaining seafloor seepage on both sides of a central thrust fault, the data show seismic evidence for subseafloor gas-rich fluid accumulation associated with proto-thrusts and extensional faults. In these latter systems fluid pressure dissipation through time has been favored, hindering the development of gas chimneys. We discuss the elements of the distinct fluid migration systems and the influence that a complex partitioning of stress may have on the evolution of fluid flow systems in active subduction margins.

  9. Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow

    NASA Astrophysics Data System (ADS)

    Plaza-Faverola, A.; Henrys, S.; Pecher, I.; Wallace, L.; Klaeschen, D.

    2016-12-01

    Prestack depth migration data across the Hikurangi margin, East Coast of the North Island, New Zealand, are used to derive subducting slab geometry, upper crustal structure, and seismic velocities resolved to ˜14 km depth. We investigate the potential relationship between the crustal architecture, fluid migration, and short-term geodetically determined slow slip events. The subduction interface is a shallow dipping thrust at <7 km depth near the trench and steps down to 14 km depth along an ˜18 km long ramp, beneath Porangahau Ridge. This apparent step in the décollement is associated with splay fault branching and coincides with a zone of maximum slip (90 mm) inferred on the subduction interface during slow slip events in June and July 2011. A low-velocity zone beneath the plate interface, updip of the plate interface ramp, is interpreted as fluid-rich overpressured sediments capped with a low permeability condensed layer of chalk and interbedded mudstones. Fluid-rich sediments have been imbricated by splay faults in a region that coincides with the step down in the décollement from the top of subducting sediments to the oceanic crust and contribute to spatial variation in frictional properties of the plate interface that may promote slow slip behavior in the region. Further, transient fluid migration along splay faults at Porangahau Ridge may signify stress changes during slow slip.

  10. Tectonic significance of Kibaran structures in Central and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Rumvegeri, B. T.

    Tectonical movements of the Kibaran belt (1400-950 Ma) can be subdivided into two major deformation events, corresponding to tight, upright or recumbent folds, thrust faults, nappes and stretching lineation with a general plunging southwards. At the regional scale, the stretching lineation, associated with thrust faults and nappes is interpreted as an indication of a northwards moving direction. The shear zone with mafic-ultramafic rocks across Burundi, MW-Tanzania, SW-Uganda and NE-Zaïre is the suture zone of the Kibaran belt. Kibaran metamorphism is plurifacial and has four epizodes. The second, syn-D2, is the most important and constitutes the climax; it reached the granulite facies. The succession of tectonic, metamorphic and magmatic features suggests geotectonic evolution by subduction-collision.

  11. Late Holocene tectonics and paleoseismicity, southern Cascadia subduction zone

    USGS Publications Warehouse

    Clarke, S.H.; Carver, G.A.

    1992-01-01

    Holocene deformation indicative of large subduction-zone earthquakes has occurred on two large thrust fault systems in the Humboldt Bay region of northern California. Displaced stratigraphic markers record three offsets of 5 to 7 meters each on the Little Salmon fault during the past 1700 years. Smaller and less frequent Holocene displacements have occurred in the Mad River fault zone. Elsewhere, as many as five episodes of sudden subsidence of marsh peats and fossil forests and uplift of marine terraces are recorded. Carbon-14 dates suggest that the faulting, subsidence, and uplift events were synchronous. Relations between magnitude and various fault-offset parameters indicate that earthquakes accompanying displacements on the Little Salmon fault had magnitudes of at least 7.6 to 7.8. More likely this faulting accompanied rupture of the boundary between the Gorda and North American plates, and magnitudes were about 8.4 or greater.

  12. Late holocene tectonics and paleoseismicity, southern cascadia subduction zone.

    PubMed

    Clarke, S H; Carver, G A

    1992-01-10

    Holocene deformation indicative of large subduction-zone earthquakes has occurred on two large thrust fault systems in the Humboldt Bay region of northern California. Displaced stratigraphic markers record three offsets of 5 to 7 meters each on the Little Salmon fault during the past 1700 years. Smaller and less frequent Holocene displacements have occurred in the Mad River fault zone. Elsewhere, as many as five episodes of sudden subsidence of marsh peats and fossil forests and uplift of marine terraces are recorded. Carbon-14 dates suggest that the faulting, subsidence, and uplift events were synchronous. Relations between magnitude and various fault-offset parameters indicate that earthquakes accompanying displacements on the Little Salmon fault had magnitudes of at least 7.6 to 7.8. More likely this faulting accompanied rupture of the boundary between the Gorda and North American plates, and magnitudes were about 8.4 or greater.

  13. Structure of the Sumatra wedge affected by the 26th December 2004 :Effects of the lower plate volcanic ridges.

    NASA Astrophysics Data System (ADS)

    Rangin, C.; Sibuet, J. C.; Lin, J. Y.; Le Pichon, X.

    2009-04-01

    Detailed swath-bathymetry, coupled with echo-sounder data were collected offshore the northern tip of Sumatra over the rupture area of the 26th December 2004 Mw=9.2 earthquake during the Sumatra aftershock cruise. 20 ocean bottom seismometers were also deployed in the northern Sumatra area., and more than 1000 events were identified during the 12 days recording period. We mapped recently active steeply dipping thrust fault zone within the western termination of the Sunda accreted wedge. Main N10°W trending out of sequence thrust fault zones with a discrete westward vergency and some component of dextral strike-slip motion were continuously mapped within the wedge, on the basis of bathymetry and low frequency sounder profiles. The interplate boundary does not appear to extend into the frontal part of the wedge but most probably merges in its central part along these major faults, the Lower and Upper Splay Faults. After relocation, the seismicity shows different pattern in each side of this Upper Splay Fault. East of this boundary, beneath the Aceh basin, the earthquake depths ranged from 30 to 60 km allow us to illustrate the subducted plate. In the western part, the aftershock distribution is strongly influenced by the N-S orientated oceanic fracture zones. Two clusters of earthquakes between 10 and 50 km in depth trending along N-S direction are observed in the lower wedge that we interpret to be reactive fracture zones. The lower wedge is interpreted as the northern prolongation below the wedge of the lower plate NS oceanic fracture zone ridges affected by NS trending left lateral strike-slip faults. This wedge outer ridge is in the process of being transferred to the upper plate. On the other hand the central ridge is interpreted as possible stacked volcanic ridge slivers already incorporated into the upper plate along the subduction buttress (the inner ridge of the wedge). We propose that the tectonic interaction of the volcanic Indian Ocean fracture ridges of the subducted plate with the leading edge of the upper Sunda plate subduction zone is an active tectonic transfer process of oceanic material to the upper plate. The proposed emergence of the interplate boundary into the middle part of the wedge along the Lower Splay Fault, could have favoured the formation of the giant Sumatra tsunami at moderate water depth. This docking and temporary stacking of these volcanic ridges before their subduction at depth, is favoured by the strong oblique convergence that prevails up to the Bengal basin into the north.

  14. Imaging megathrust zone and Yakutat/Pacific plate interface in Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Abers, G. A.; Li, J.; Christensen, D. H.; Calkins, J. A.

    2012-12-01

    We image the subducted slab underneath a 450 km long transect of the Alaska subduction zone. Dense stations in southern Alaska are set up to investigate (1) the geometry and velocity structure of the downgoing plate and their relation to slab seismicity, and (2) the interplate coupled zone where the great 1964 (magnitude 9.3) had greatest rupture. The joint teleseismic migration of two array datasets (MOOS, Multidisciplinary Observations of Onshore Subduction, and BEAAR, Broadband Experiment Across the Alaska Range) based on teleseismic receiver functions (RFs) using the MOOS data reveal a shallow-dipping prominent low-velocity layer at ~25-30 km depth in southern Alaska. Modeling of these RF amplitudes shows a thin (3-6.5 km) low-velocity layer (shear wave velocity less than 3 km/s), which is ~20-30% slower than normal oceanic crustal velocities, between the subducted slab and the overriding North America plate. The observed low-velocity megathrust layer (with Vp/Vs ratio exceeding 2.0) may be due to a thick sediment input from the trench in combination of elevated pore fluid pressure in the channel. The subducted crust below the low-velocity channel has gabbroic velocities with a thickness of 11-15 km. Both velocities and thickness of the low-velocity channel abruptly increase as the slab bends in central Alaska, which agrees with previously published RF results. Our image also includes an unusually thick low-velocity crust subducting with a ~20 degree dip down to 130 km depth at approximately 200 km inland beneath central Alaska. The unusual nature of this subducted segment has been suggested to be due to the subduction of the Yakutat terrane. Subduction of this buoyant crust could explain the shallow dip of the thrust zone beneath southern Alaska. We also show a clear image of the Yakutat and Pacific plate subduction beneath the Kenai Peninsula, and the along-strike boundary between them at megathrust depths. Our imaged western edge of the Yakutat terrane, at ~30-42 km depth in the central Kenai along the megathrust, aligns with the western end of the geodetically locked patch with high slip deficit, and coincides with the boundary of aftershock events from the 1964 earthquake. It seems plausible that this sharp change in the nature of the downgoing plate controls the slip distribution of great earthquakes on this plate interface.

  15. Source of high tsunamis along the southernmost Ryukyu trench inferred from tsunami stratigraphy

    NASA Astrophysics Data System (ADS)

    Ando, Masataka; Kitamura, Akihisa; Tu, Yoko; Ohashi, Yoko; Imai, Takafumi; Nakamura, Mamoru; Ikuta, Ryoya; Miyairi, Yosuke; Yokoyama, Yusuke; Shishikura, Masanobu

    2018-01-01

    Four paleotsunamis deposits are exposed in a trench on the coastal lowland north of the southern Ryukyu subduction zone trench. Radiocarbon ages on coral and bivalve shells show that the four deposits record tsunamis date from the last 2000 yrs., including a historical tsunami with a maximum run-up of 30 m in 1771, for an average recurrence interval of approximately 600 yrs. Ground fissures in a soil beneath the 1771 tsunami deposit may have been generated by stronger shaking than recorded by historical documents. The repeated occurrence of the paleotsunami deposits supports a tectonic source model on the plate boundary rather than a nontectonic source model, such as submarine landslides. Assuming a thrust model at the subduction zone, the seismic coupling ratio may be as low as 20%.

  16. The 2006-2007 Kuril Islands great earthquake sequence

    USGS Publications Warehouse

    Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.

    2009-01-01

    The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for the 2007 rupture zone. A large intraplate compressional event occurred on 15 January 2009 (Mw = 7.4) near 45 km depth, below the rupture zone of the 2007 event and in the vicinity of the 16 March 1963 compressional event. The fault geometry, rupture process and slip distributions of the two great events are estimated using very broadband teleseismic body and surface wave observations. The occurrence of the thrust event in the shallowest portion of the interplate fault in a region with a paucity of large thrust events at greater depths suggests that the event removed most of the slip deficit on this portion of the interplate fault. This great earthquake doublet demonstrates the heightened seismic hazard posed by induced intraplate faulting following large interplate thrust events. Future seismic failure of the remainder of the seismic gap appears viable, with the northeastern region that has also experienced compressional activity seaward of the megathrust warranting particular attention. Copyright 2009 by the American Geophysical Union.

  17. Structural characteristics around the frontal thrust along the Nankai Trough revealed by bathymetric and seismic reflection survey

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Nakanishi, A.; Moore, G. F.; Kodaira, S.; Nakamura, Y.; Miura, S.; Kaneda, Y.

    2016-12-01

    Great earthquakes with tsunamis with recurrence intervals of 100-200 years have occurred along the Nankai Trough near central Japan where the Shikoku Basin is subducting with thick sediments on the Philippine Sea plate. To predict the exact height of the tsunami on the coast region generated by these large ruptures, it is important to estimate the vertical deformation that occurs on the seaward end of the rupture area. Recent drilling results have also yielded evidence not only of splay faults that generate tsunamigenic rupture, but also new evidence of tsunamigenic rupture along the frontal thrust at the trench axis in the Nankai Trough. In order to understand the deformation around the frontal thrust at the trench axis, we conducted a dense high-resolution seismic reflection survey with 10-20 km spacing over 1500 km of line length during 2013 and 2014. Clear seismic reflection images of frontal thrusts in the accretionary prism and subducting Shikoku Basin, image deformation along the trench axis between off Muroto Cape and off Ashizuri Cape. The cumulative displacement along the frontal thrust and second thrust are measured from picked distinct reflectors in depth-converted profiles. The average value of cumulative displacement of the frontal thrust is more than 100 m within 2 km depth beneath the seafloor. The location of highest displacement of 300 m displacement agree with the seaward end of slip distribution of the 1946 Nankai event calculated by numerical simulations. We also evaluate the seaward structure for understanding the future rupture distribution. The protothrust zone (PTZ) consisting of many incipient thrusts is identifiable in the portion of trough-fill sediments seaward of the frontal thrust. In order to emphasize the characteristics of frontal thrust and PTZ, we construct the detailed relief image for focusing on the lineated slope of the PTZ at the trough axis. Although our surveys covered a part of Nankai seismogenic zone, it is important to evaluate the initiation and evolution of frontal thrust at the toe of Nankai trough axis. This study is part of "Research project for compound disaster mitigation on the great earthquakes and tsunamis around the Nankai Trough region" funded by the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  18. Lithologic Controls on Structure Highlight the Role of Fluids in Failure of a Franciscan Complex Accretionary Prism Thrust Fault

    NASA Astrophysics Data System (ADS)

    Bartram, H.; Tobin, H. J.; Goodwin, L. B.

    2015-12-01

    Plate-bounding subduction zone thrust systems are the source of major earthquakes and tsunamis, but their mechanics and internal structure remain poorly understood and relatively little-studied compared to faults in continental crust. Exposures in exhumed accretionary wedges present an opportunity to study seismogenic subduction thrusts in detail. In the Marin Headlands, a series of thrusts imbricates mechanically distinct lithologic units of the Mesozoic Franciscan Complex including pillow basalt, radiolarian chert, black mudstone, and turbidites. We examine variations in distribution and character of structure and vein occurrence in two exposures of the Rodeo Cove thrust, a fossil plate boundary exposed in the Marin Headlands. We observe a lithologic control on the degree and nature of fault localization. At Black Sand Beach, deformation is localized in broad fault cores of sheared black mudstone. Altered basalts, thrust over greywacke, mudstone, and chert, retain their coherence and pillow structures. Veins are only locally present. In contrast, mudstone is virtually absent from the exposure 2 km away at Rodeo Beach. At this location, deformation is concentrated in the altered basalts, which display evidence of extensive vein-rock interaction. Altered basalts exhibit a pervasive foliation, which is locally disrupted by both foliation-parallel and cross-cutting carbonate-filled veins and carbonate cemented breccia. Veins are voluminous (~50%) at this location. All the structures are cut by anastomosing brittle shear zones of foliated cataclasite or gouge. Analyses of vein chemistry will allow us to compare the sources of fluids that precipitated the common vein sets at Rodeo Beach to the locally developed veins at Black Sand Beach. These observations lead us to hypothesize that in the absence of a mechanically weak lithology, elevated pore fluid pressure is required for shear failure. If so, the vein-rich altered basalt at Rodeo Beach may record failure of an igneous basement asperity.

  19. Seismotectonics of New Guinea: a Model for Arc Reversal Following Arc-Continent Collision

    NASA Astrophysics Data System (ADS)

    Cooper, Patricia; Taylor, Brian

    1987-02-01

    The structure and evolution of the northern New Guinea collision zone is deduced from International Seismological Center (ISC) seismicity (1964-1985), new and previously published focal mechanisms and a reexamination of pertinent geological data. A tectonic model for the New Guinea margin is derived which illustrates the sequential stages in the collision and suturing of the Bewani-Toricelli-Adelbert-Finisterre-Huon-New Britain arc to central New Guinea followed by subduction polarity reversal in the west. East of 149°E, the Solomon plate is being subducted both to the north and south; bringing the New Britain and Trobriand forearcs toward collision. West of 149°E the forearcs have collided, and together they override a fold in the doubly subducted Solomon plate lithosphere, which has an axis that is parallel to the strike of the Ramu-Markham suture and that plunges westward at an angle of 5° beneath the coast ranges of northern New Guinea. Active volcanism off the north coast of New Guinea is related to subduction of the Solomon plate beneath the Bismarck plate. Active volcanism of the Papuan peninsula and Quaternary volcanism of the New Guinea highlands are related to slow subduction of the Solomon plate beneath the Indo-Australian plate along the Trobriand Trough and the trough's former extension to the west, respectively. From 144°-148°E, seismicity and focal mechanisms reveal that convergence between the sutured Bismarck and Indo-Australian plates is accommodated by thrusting within the Finisterre and Adelbert ranges and compression of the New Guinea orogenic belt, together with basement-involved foreland folding and thrusting to the south. The Finisterre block overthrusts the New Guinea orogenic belt, whereas the Adelbert block is sutured to New Guinea and overthrusts the oceanic lithosphere of the Bismarck Sea. Along the New Guinea Trench, west of 144°E, seismicity defines a southward dipping Wadati-Benioif zone, and focal mechanisms indicate oblique subduction. Only this oldest, westernmost portion of the collision has progressed past suturing to a full reversal in subduction polarity.

  20. The rigid Andean sliver hypothesis challenged : impact on interseismic coupling on the Chilean subduction zone

    NASA Astrophysics Data System (ADS)

    Metois, M.

    2017-12-01

    Convergence partitioning between subduction zones and crustal active structures has been widely evidenced. For instance, the convergence between the Indian and Sunda plates is accommodated both by the Sumatra subduction zone and the Great Sumatran strike-slip fault, that defines a narrow sliver. In Cascadia, small-scale rotating rigid blocks bounded by active faults have been proposed (e.g. McCaffrey et al. 2007). Recent advances in geodetic measurements along the South-American margin especially in Ecuador, Peru and Chile and the need for precise determination of the coupling amount on the megathrust interface in particular for seismic hazard assessment, led several authors to propose the existence of large-scale Andean slivers rotating clockwise and counter-clockwise South and North of the Arica bend, respectively (e.g. Chlieh et al. 2011, Nocquet et al. 2014, Métois et al. 2013). In Chile, one single large Andean sliver bounded to the west by the subduction thrust and to the east by the subandean fold-an-thrust belt active front is used to mimic the velocities observed in the middle to far field that are misfitted by elastic coupling models on the megathrust interface alone (Métois et al. 2016). This rigid sliver is supposed to rotate clockwise around a Euler pole located in the South Atlantic ocean, consistently with long-term observed rotations detected by paleomagnetism (e.g. Arriagada et al. 2008). However, recent GPS data acquired in the Taltal area ( 26°S, Klein et al. submitted) show higher than expected middle-field eastward velocities and question the first-order assumption of a rigid Andean sliver. Mis-modeling the fore-arc deformation has a direct impact on the inverted coupling amount and distribution, and could therefore bias significantly the megathrust rupture scenarios. Correctly estimating the current-day deformation of the Andes is therefore required to properly assess for coupling on the plate interface and is challenging since crustal active structures are often hidden by the intense seismic activity of the subduction zone. Here we discuss the validity of the rigid Andean sliver hypothesis based on GPS velocities, present alternative models for both coupling and sliver kinematics along the Chilean margin, and discuss the relationship between upper plate long and short-term deformation.

  1. Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model

    USGS Publications Warehouse

    Ramachandran, K.; Dosso, S.E.; Spence, G.D.; Hyndman, R.D.; Brocher, T.M.

    2005-01-01

    This paper presents a three-dimensional compressional wave velocity model of the forearc crust and upper mantle and the subducting Juan de Fuca plate beneath southwestern British Columbia and the adjoining straits of Georgia and Juan de Fuca. The velocity model was constructed through joint tomographic inversion of 50,000 first-arrival times from earthquakes and active seismic sources. Wrangellia rocks of the accreted Paleozoic and Mesozoic island arc assemblage underlying southern Vancouver Island in the Cascadia forearc are imaged at some locations with higher than average lower crustal velocities of 6.5-7.2 km/s, similar to observations at other island arc terranes. The mafic Eocene Crescent terrane, thrust landward beneath southern Vancouver Island, exhibits crustal velocities in the range of 6.0-6.7 km/s and is inferred to extend to a depth of more than 20 km. The Cenozoic Olympic Subduction Complex, an accretionary prism thrust beneath the Crescent terrane in the Olympic Peninsula, is imaged as a low-velocity wedge to depths of at least 20 km. Three zones with velocities of 7.0-7.5 km/s, inferred to be mafic and/or ultramafic units, lie above the subducting Juan de Fuca plate at depths of 25-35 km. The forearc upper mantle wedge beneath southeastern Vancouver Island and the Strait of Georgia exhibits low velocities of 7.2-7.5 km/s, inferred to correspond to ???20% serpentinization of mantle peridotites, and consistent with similar observations in other warm subduction zones. Estimated dip of the Juan de Fuca plate beneath southern Vancouver Island is ???11??, 16??, and 27?? at depths of 30, 40, and 50 km, respectively. Copyright 2005 by the American Geophysical Union.

  2. Seismicity near a Highly-Coupled Patch in the Central Ecuador Subduction Zone

    NASA Astrophysics Data System (ADS)

    Regnier, M. M.; Segovia, M.; Font, Y.; Charvis, P.; Galve, A.; Jarrin, P.; Hello, Y.; Ruiz, M. C.; Pazmino, A.

    2017-12-01

    The temporary onshore-offshore seismic network deployed during the 2-years period of the OSISEC project provides an unprecedented, detailed and well-focused image of the seismicity for magnitudes as low as 2.0 in the Central Ecuadorian subduction zone. Facing the southern border of the Carnegie Ridge, a shallow and discrete highly-coupled patch is correlated to the subduction of a large oceanic relief. No large earthquake is known in this area that is experiencing recurrent seismic swarms and slow slip events. The shallow and locked subduction interface shows no evidence of background seismicity that instead occurred down dip of the coupled patch where it is possibly controlled by structural features of the overriding plate. We show a clear spatial correlation between the background microseismicity, the down dip extension of the locked patch at 20 km depth and the geology of the upper plate. The dip angle of the interplate contact zone, defined by a smooth interpolation through the hypocenters of thrust events, is consistent with a progressive increase from 6° to 25° from the trench to 20 km depth. Offshore, a seismic swarm, concomitant with a slow slip event rupturing the locked area, highlights the reactivation of secondary active faults that developed within the thickened crust of the subducting Carnegie Ridge, at the leading edge of a large oceanic seamount. No seismicity was detected near the plate interface suggesting that stress still accumulates at small and isolated asperities

  3. Double-Sided Wedge Model For Retreating Subduction Zones: Applications to the Apenninic and Hellenic Subduction Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Brandon, M. T.; Willett, S.; Rahl, J. M.; Cowan, D. S.

    2009-12-01

    We propose a new model for the evolution of accreting wedges at retreating subduction zones. Advance and retreat refer to the polarity of the velocity of the overriding plate with respect to subduction zone. Advance indicates a velocity toward the subduction zone (e.g., Andes) and retreat, away from the subduction zone (e.g. Apennines, Crete). The tectonic mode of a subduction zone, whether advancing or retreating, is a result of both the rollback of the subducting plate and the absolute motion of the overriding plate. The Hellenic and Apenninic wedges are both associated with retreating subduction zones. The Hellenic wedge has been active for about 100 Ma, whereas the Apenninic wedge has been active for about 30 Ma. Comparison of maximum metamorphic pressures for exhumed rocks in these wedges (25 and 30 km, respectively) with the maximum thickness of the wedges at present (30 and 35 km, respectively) indicates that each wedge has maintained a relatively steady size during its evolution. This conclusion is based on the constraint that both frictional and viscous wedges are subject to the constraint of a steady wedge taper, so that thickness and width are strongly correlated. Both wedges show clear evidence of steady accretion during their full evolution, with accretionary fluxes of about 60 and 200 km2 Ma-1. These wedges also both show steady drift of material from the front to the rear of the wedge, with horizontal shortening dominating in the front of the wedge, and horizontal extension within the back of the wedge. We propose that these wedges represent two back-to-back wedges, with a convergent wedge on the leading side (proside), and a divergent wedge on the trailing side (retroside). In this sense, the wedges are bound by two plates. The subducting plate is familiar. It creates a thrust-sense traction beneath the proside of the wedge. The second plate is an “educting” plate, which is creates a normal-sense traction beneath the retroside of the wedge. The educting plate underlies the Tyrrenhian Sea west of the Apennines and the Cretean Sea north of Crete. The stretched crust that overlies this plate represents highly thinned wedge material that has been removed or decreted from the wedge. This decretion process accounts for the mean motion within the wedge, from pro to retro side, and the pervasive thinning within the retroside. It also explains how these wedges are able to maintain a steady wedge size with time. An important prediction of this model is that different deformational styles, involving thickening and thinning, can occur within the same tectonics setting. This is in contrast the widely cited idea that tectonic thinning is a late- or post-orogenic process.

  4. Structural controls on the hydrogeology of the Costa Rica subduction thrust NW of the Osa Peninisula (Invited)

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J.; Ranero, C. R.

    2013-12-01

    Three-dimensional seismic reflection data from the Costa Rica margin NW of the Osa peninsula have enabled us to map the subduction megathrust from the trench to ~12 km subseafloor beneath the shelf. The subduction thrust has a large, abrupt downdip transition in seismic reflection amplitude from very high to low amplitude 6 km subseafloor beneath the upper slope. This transition broadly corresponds with an increase in concentration of microseismic earthquakes potentially due to a significant increase in plate coupling (Bangs et al., 2012, AGU Fall Meeting, T13A-2587), thus linking seismic reflection amplitude to fluid content and mechanical coupling along the fault. A detailed look at the overriding plate reflectivity shows numerous high-amplitude, continuous seismic reflections through the upper plate, many of which are clearly reversed-polarity from the seafloor reflection and are thus likely active fluid conduits through the overriding margin wedge, the slope cover sediment, and the seafloor. Broadly, the structural grain of the margin wedge trends E-W and dips landward across the lower slope and onto the shelf, presumably due to stress imparted by subducting ridges. However, directly above the abrupt high-to-low plate-boundary reflection amplitude transition, structures within the overlying margin wedge reverse dip, steepen, and change strike to an ESE direction. Within this zone we interpret a set of parallel reflections with small offsets and reverse-polarity as high-angle reverse faults that act as fluid conduits leading directly into shallow fluid migration systems described by Bangs et al., 2012 (AGU Fall Meeting, T13A-2587) and Kluesner et al. [this meeting]. The coincidence between the plate-boundary reflection amplitude patterns and the change in structure implies that the fluid migration pathways that drain the plate interface are locally disrupted by overriding plate structure in two possible ways: 1) by focusing up dip fluid migration along the plate interface into a thinner but richer fluid zone along the subduction thrust, or 2) by creating a more direct, nearly vertical route along high-angle reverse faults through the overlying margin wedge to the seafloor (possibly shortened by a factor of two) and draining deeper portions of the plate-boundary more efficiently.

  5. Near-simultaneous great earthquakes at Tongan megathrust and outer rise in September 2009.

    PubMed

    Beavan, J; Wang, X; Holden, C; Wilson, K; Power, W; Prasetya, G; Bevis, M; Kautoke, R

    2010-08-19

    The Earth's largest earthquakes and tsunamis are usually caused by thrust-faulting earthquakes on the shallow part of the subduction interface between two tectonic plates, where stored elastic energy due to convergence between the plates is rapidly released. The tsunami that devastated the Samoan and northern Tongan islands on 29 September 2009 was preceded by a globally recorded magnitude-8 normal-faulting earthquake in the outer-rise region, where the Pacific plate bends before entering the subduction zone. Preliminary interpretation suggested that this earthquake was the source of the tsunami. Here we show that the outer-rise earthquake was accompanied by a nearly simultaneous rupture of the shallow subduction interface, equivalent to a magnitude-8 earthquake, that also contributed significantly to the tsunami. The subduction interface event was probably a slow earthquake with a rise time of several minutes that triggered the outer-rise event several minutes later. However, we cannot rule out the possibility that the normal fault ruptured first and dynamically triggered the subduction interface event. Our evidence comes from displacements of Global Positioning System stations and modelling of tsunami waves recorded by ocean-bottom pressure sensors, with support from seismic data and tsunami field observations. Evidence of the subduction earthquake in global seismic data is largely hidden because of the earthquake's slow rise time or because its ground motion is disguised by that of the normal-faulting event. Earthquake doublets where subduction interface events trigger large outer-rise earthquakes have been recorded previously, but this is the first well-documented example where the two events occur so closely in time and the triggering event might be a slow earthquake. As well as providing information on strain release mechanisms at subduction zones, earthquakes such as this provide a possible mechanism for the occasional large tsunamis generated at the Tonga subduction zone, where slip between the plates is predominantly aseismic.

  6. Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones

    USGS Publications Warehouse

    Choy, G.L.; Kirby, S.H.

    2004-01-01

    The behavior of apparent stress for normal-fault earthquakes at subduction zones is derived by examining the apparent stress (?? a = ??Es/Mo, where E s is radiated energy and Mo is seismic moment) of all globally distributed shallow (depth, ?? 1 MPa) are also generally intraslab, but occur where the lithosphere has just begun subduction beneath the overriding plate. They usually occur in cold slabs near trenches where the direction of plate motion across the trench is oblique to the trench axis, or where there are local contortions or geometrical complexities of the plate boundary. Lower ??a (< 1 MPa) is associated with events occurring at the outer rise (OR) complex (between the OR and the trench axis), as well as with intracrustal events occurring just landward of the trench. The average apparent stress of intraslab-normal-fault earthquakes is considerably higher than the average apparent stress of interplate-thrust-fault earthquakes. In turn, the average ?? a of strike-slip earthquakes in intraoceanic environments is considerably higher than that of intraslab-normal-fault earthquakes. The variation of average ??a with focal mechanism and tectonic regime suggests that the level of ?? a is related to fault maturity. Lower stress drops are needed to rupture mature faults such as those found at plate interfaces that have been smoothed by large cumulative displacements (from hundreds to thousands of kilometres). In contrast, immature faults, such as those on which intraslab-normal-fault earthquakes generally occur, are found in cold and intact lithosphere in which total fault displacement has been much less (from hundreds of metres to a few kilometres). Also, faults on which high ??a oceanic strike-slip earthquakes occur are predominantly intraplate or at evolving ends of transforms. At subduction zones, earthquakes occurring on immature faults are likely to be more hazardous as they tend to generate higher amounts of radiated energy per unit of moment than earthquakes occurring on mature faults. We have identified earthquake pairs in which an interplate-thrust and an intraslab-normal earthquake occurred remarkably close in space and time. The intraslab-normal member of each pair radiated anomalously high amounts of energy compared to its thrust-fault counterpart. These intraslab earthquakes probably ruptured intact slab mantle and are dramatic examples in which Mc (an energy magnitude) is shown to be a far better estimate of the potential for earthquake damage than Mw. This discovery may help explain why loss of life as a result of intraslab earthquakes was greater in the 20th century in Latin America than the fatalities associated with interplate-thrust events that represented much higher total moment release. ?? 2004 RAS.

  7. Localized fluid discharge in subduction zones: Insights from tension veins around an ancient megasplay fault (Nobeoka Thrust, SW Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Hardebeck, J.; Miyakawa, A.; Yamaguchi, A.; Kimura, G.

    2017-12-01

    Fluid-rock interactions along seismogenic faults are of great importance to understand fault mechanics. The fluid loss by the formation of mode I cracks (tension cracks) increases the fault strength and creates drainage asperities along the plate interface (Sibson, 2013, Tectonophysics). The Nobeoka Thrust, in southwestern Japan, is an on-land example of an ancient megasplay fault and provides an excellent record of deformation and fluid flow at seismogenic depths of a subduction zone (Kondo et al., 2005, Tectonics). We focus on (1) Pore fluid pressure loss, (2) Amount of fault strength recovery, and (3) Fluid circulation by the formation of mode I cracks in the post-seismic period around the fault zone of the Nobeoka Thrust. Many quartz veins that filled mode I crack at the coastal outcrops suggest a normal faulting stress regime after faulting of the Nobeoka Thrust (Otsubo et al., 2016, Island Arc). We estimated the decrease of the pore fluid pressure by the formation of the mode I cracks around the Nobeoka Thrust in the post-seismic period. When the pore fluid pressure exceeds σ3, veins filling mode I cracks are constructed (Jolly and Sanderson, 1997, Jour. Struct. Geol.). We call the pore fluid pressure that exceeds σ3 "pore fluid over pressure". The differential stress in the post-seismic period and the driving pore fluid pressure ratio P* (P* = (Pf - σ3) / (σ1 - σ3), Pf: pore fluid pressure) are parameters to estimate the pore fluid over pressure. In the case of the Nobeoka Thrust (P* = 0.4, Otsubo et al., 2016, Island Arc), the pore fluid over pressure is up to 20 MPa (assuming tensile strength = 10 MPa). 20 MPa is equivalent to <10% of the total pore fluid pressure around the Nobeoka Thrust (depth = 10 km, density = 2.7 kg/m3). When the pore fluid pressure decreases by 4%, the normalized pore pressure ratio λ* (λ* = (Pf - Ph) / (Pl - Ph), Pl: lithostatic pressure; Ph: hydrostatic pressure) changes from 0.95 to 0.86. In the case of the Nobeoka Thrust, the fault strength can increase by up to 10 MPa (assuming frictional coefficient = 0.6). 10 MPa is almost equivalent to the stress drop values in large trench type earthquakes. Hence, we suggest that the fluid loss caused by the formation of mode I cracks in the post-seismic period may play an important role by increasing frictional strength along the megasplay fault.

  8. Structure and Tectonics of the Andaman Subduction Zone from Modeling of Seismological and Gravity Data

    NASA Astrophysics Data System (ADS)

    Nemalikanti, P. R.; Rao, N.; Hazarika, P.; Tiwari, V. M.; Mangalampally, R.; Singh, A.

    2012-12-01

    The 10 August 2009 Andaman earthquake of Mw 7.5 occurred to the north of the Andaman and Nicobar Islands at 14o N and 93o E which interestingly, coincides with the northern periphery of the rupture of the Sumatra-Andaman giant mega-thrust earthquake of Mw 9.1 that occurred on 26 December 2004. The event was followed by aftershocks with a peculiar vertical distribution at the same location which was earlier devoid of any significant seismicity. Waveform modeling of five of these events recorded by ISLANDS - the broadband seismic network deployed along the Andaman and Nicobar Islands, indicates that the main shock and two of its aftershocks have a normal fault mechanism with shallow focal depths within 18 km while two others have a strike-slip mechanism occurring deeper, down to 26 km. The computed Bouger gravity anomalies in this region indicate the steepest gradient of 1.5 mgal/km exactly centered over this zone of vertical seismic distribution that characterizes a region of lithospheric split or tear which is devoid of a subducting slab. This is in contrast to a clear subduction trend visible in the southern Andaman and Sunda arcs further south, as evidenced by tomographic images. Joint inversion of waveforms of these five events simultaneously, provides the best fitting P wave velocity structure of this region, given by a Moho at a depth of 30 km and a high crustal Vp/Vs ratio of 1.81. We infer an oceanic double crustal column corresponding to a thickness of about 21 km of Burmese crust including a 5 km thick sedimentary column, underlain by a thinner Indian crust which apparently has a thickness of about 9 km, a model that is also confirmed independently by gravity modeling. We interpret the mechanism of shallow normal fault earthquakes as an intra-plate relaxation phenomenon following the buckling of the overriding Burmese plate in the accretionary wedge of the fore-arc basin, in response to the 2004 mega-thrust subduction event. The deeper strike slip events correspond to an intra-plate phenomenon within the subducting Indian lithospheric plate representing left-lateral faulting across the Andaman arc, due to uneven convergence along the subduction front. Such strike-slip movements are seen all over the Indian Ocean diffuse deformation zone and represent strain accommodation in the Indian crust in response to a grosser mechanism of wrench fault tectonics of the Indo-Australian subduction beneath the Burma-Sunda plate.

  9. Characteristics of the Central Costa Rican Seismogenic Zone Determined from Microseismicity

    NASA Astrophysics Data System (ADS)

    DeShon, H. R.; Schwartz, S. Y.; Bilek, S. L.; Dorman, L. M.; Protti, M.; Gonzalez, V.

    2001-12-01

    Large or great subduction zone thrust earthquakes commonly nucleate within the seismogenic zone, a region of unstable slip on or near the converging plate interface. A better understanding of the mechanical, thermal and hydrothermal processes controlling seismic behavior in these regions requires accurate earthquake locations. Using arrival time data from an onland and offshore local seismic array and advanced 3D absolute and relative earthquake location techniques, we locate interplate seismic activity northwest of the Osa Peninsula, Costa Rica. We present high resolution locations of ~600 aftershocks of the 8/20/1999 Mw=6.9 underthrusting earthquake recorded by our local network between September and December 1999. We have developed a 3D velocity model based on published refraction lines and located events within a subducting slab geometry using QUAKE3D, a finite-differences based grid-searching algorithm (Nelson & Vidale, 1990). These absolute locations are input into HYPODD, a location program that uses P and S wave arrival time differences from nearby events and solves for the best relative locations (Waldhauser & Ellsworth, 2000). The pattern of relative earthquake locations is tied to an absolute reference using the absolute positions of the best-located earthquakes in the entire population. By using these programs in parallel, we minimize location errors, retain the aftershock pattern and provide the best absolute locations within a complex subduction geometry. We use the resulting seismicity pattern to determine characteristics of the seismogenic zone including geometry and up- and down-dip limits. These are compared with thermal models of the Middle America subduction zone, structures of the upper and lower plates, and characteristics of the Nankai seismogenic zone.

  10. Preliminary earthquake locations in the Kenai Peninsula recorded by the MOOS Array and their relationship to structure in the 1964 great earthquake zone

    NASA Astrophysics Data System (ADS)

    Li, J.; Abers, G. A.; Christensen, D. H.; Kim, Y.; Calkins, J. A.

    2011-12-01

    Earthquakes in subduction zones are mostly generated at the interface between the subducting and overlying plates. In 2006-2009, the MOOS (Multidisciplinary Observations Of Subduction) seismic array was deployed around the Kenai Peninsula, Alaska, consisting of 34 broadband seismometers recording for 1-3 years. This region spans the eastern end of the Aleutian megathrust that ruptured in the 1964 Mw 9.2 great earthquake, the second largest recorded earthquake, and ongoing seismicity is abundant. Here, we report an initial analysis of seismicity recorded by MOOS, in the context of preliminary imaging. There were 16,462 events detected in one year from initial STA/LTA signal detections and subsequent event associations from the MOOS Array. We manually reviewed them to eliminate distant earthquakes and noise, leaving 11,879 local earthquakes. To refine this catalog, an adaptive auto-regressive onset estimation algorithm was applied, doubling the original dataset and producing 20,659 P picks and 22,999 S picks for one month (September 2007). Inspection shows that this approach lead to almost negligible false alarms and many more events than hand picking. Within the well-sampled part of the array, roughly 200 km by 300 km, we locate 250% more earthquakes for one month than the permanent network catalog, or 10 earthquakes per day on this patch of the megathrust. Although the preliminary locations of earthquakes still show some scatter, we can see a concentration of events in a ~20-km-wide belt, part of which can be interpreted as seismogenic thrust zone. In conjunction with the seismicity study, we are imaging the plate interface with receiver functions. The main seismicity zone corresponds to the top of a low-velocity layer imaged in receiver functions, nominally attributed to the top of the downgoing plate. As we refine velocity models and apply relative relocation algorithms, we expect to improve the precision of the locations substantially. When combined with image of velocity structure from scattered wave migration, we can test whether the thrust zone is above the Yakutat terrane or between the Yakutat terrane and the subducting Pacific plate. Our refined relocations will also improve our understanding of other active faults (e.g., splay faults) and their relationship to the plate boundary.

  11. Links Between Earthquake Characteristics and Subducting Plate Heterogeneity in the 2016 Pedernales Ecuador Earthquake Rupture Zone

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2016-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  12. Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-south Colombia oceanic margin

    NASA Astrophysics Data System (ADS)

    Collot, J.-Y.; Agudelo, W.; Ribodetti, A.; Marcaillou, B.

    2008-12-01

    Splay faults within accretionary complexes are commonly associated with the updip limit of the seismogenic zone. Prestack depth migration of a multichannel seismic line across the north Ecuador-south Colombia oceanic margin images a crustal splay fault that correlates with the seaward limit of the rupture zone of the 1958 (Mw 7.7) tsunamogenic subduction earthquake. The splay fault separates 5-6.6 km/s velocity, inner wedge basement rocks, which belong to the accreted Gorgona oceanic terrane, from 4 to 5 km/s velocity outer wedge rocks. The outer wedge is dominated by basal tectonic erosion. Despite a 3-km-thick trench fill, subduction of 2-km-high seamount prevented tectonic accretion and promotes basal tectonic erosion. The low-velocity and poorly reflective subduction channel that underlies the outer wedge is associated with the aseismic, décollement thrust. Subduction channel fluids are expected to migrate upward along splay faults and alter outer wedge rocks. Conversely, duplexes are interpreted to form from and above subducting sediment, at ˜14- to 15-km depths between the overlapping seismogenic part of the splay fault and the underlying aseismic décollement. Coeval basal erosion of the outer wedge and underplating beneath the apex of inner wedge control the margin mass budget, which comes out negative. Intraoceanic basement fossil listric normal faults and a rift zone inverted in a flower structure reflect the evolution of the Gorgona terrane from Cretaceous extension to likely Eocene oblique compression. The splay faults could have resulted from tectonic inversion of listric normal faults, thus showing how inherited structures may promote fluid flow across margin basement and control seismogenesis.

  13. Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone

    NASA Astrophysics Data System (ADS)

    Laurencin, M.; Graindorge, D.; Klingelhoefer, F.; Marcaillou, B.; Evain, M.

    2018-06-01

    In subduction zones, the 3D geometry of the plate interface is one of the key parameters that controls margin tectonic deformation, interplate coupling and seismogenic behavior. The North American plate subducts beneath the convex Northern Lesser Antilles margin. This convergent plate boundary, with a northward increasing convergence obliquity, turns into a sinistral strike-slip limit at the northwestern end of the system. This geodynamic context suggests a complex slab geometry, which has never been imaged before. Moreover, the seismic activity and particularly the number of events with thrust focal mechanism compatible with subduction earthquakes, increases northward from the Barbuda-Anguilla segment to the Anguilla-Virgin Islands segment. One of the major questions in this area is thus to analyze the influence of the increasing convergence obliquity and the slab geometry onto tectonic deformation and seismogenic behavior of the subduction zone. Based on wide-angle and multichannel reflection seismic data acquired during the Antithesis cruises (2013-2016), we decipher the deep structure of this subduction zone. Velocity models derived from wide-angle data acquired across the Anegada Passage are consistent with the presence of a crust of oceanic affinity thickened by hotspot magmatism and probably affected by the Upper Cretaceous-Eocene arc magmatism forming the 'Great Arc of the Caribbean'. The slab is shallower beneath the Anguilla-Virgin Islands margin segment than beneath the Anguilla-Barbuda segment which is likely to be directly related to the convex geometry of the upper plate. This shallower slab is located under the forearc where earthquakes and partitioning deformations increase locally. Thus, the shallowing slab might result in local greater interplate coupling and basal friction favoring seismic activity and tectonic partitioning beneath the Virgin Islands platform.

  14. Dynamic Simulations for the Seismic Behavior on the Shallow Part of the Fault Plane in the Subduction Zone during Mega-Thrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Dorjapalam, S.; Dan, K.; Ogawa, S.; Watanabe, T.; Uratani, H.; Iwase, S.

    2012-12-01

    The 2011 Tohoku-Oki earthquake (M9.0) produced some distinct features such as huge slips on the order of several ten meters around the shallow part of the fault and different areas with radiating seismic waves for different periods (e.g., Lay et al., 2012). These features, also reported during the past mega-thrust earthquakes in the subduction zone such as the 2004 Sumatra earthquake (M9.2) and the 2010 Chile earthquake (M8.8), get attentions as the distinct features if the rupture of the mega-thrust earthquakes reaches to the shallow part of the fault plane. Although various kinds of observations for the seismic behavior (rupture process and ground motion characteristics etc.) on the shallow part of the fault plane during the mega-trust earthquakes have been reported, the number of analytical or numerical studies based on dynamic simulation is still limited. Wendt et al. (2009), for example, revealed that the different distribution of initial stress produces huge differences in terms of the seismic behavior and vertical displacements on the surface. In this study, we carried out the dynamic simulations in order to get a better understanding about the seismic behavior on the shallow part of the fault plane during mega-thrust earthquakes. We used the spectral element method (Ampuero, 2009) that is able to incorporate the complex fault geometry into simulation as well as to save computational resources. The simulation utilizes the slip-weakening law (Ida, 1972). In order to get a better understanding about the seismic behavior on the shallow part of the fault plane, some parameters controlling seismic behavior for dynamic faulting such as critical slip distance (Dc), initial stress conditions and friction coefficients were changed and we also put the asperity on the fault plane. These understandings are useful for the ground motion prediction for future mega-thrust earthquakes such as the earthquakes along the Nankai Trough.

  15. Evidence for ˜80-75 Ma subduction jump during Anatolide-Tauride-Armenian block accretion and ˜48 Ma Arabia-Eurasia collision in Lesser Caucasus-East Anatolia

    NASA Astrophysics Data System (ADS)

    Rolland, Yann; Perincek, Dogan; Kaymakci, Nuretdin; Sosson, Marc; Barrier, Eric; Avagyan, Ara

    2012-05-01

    Orogens formed by a combination of subduction and accretion are featured by a short-lived collisional history. They preserve crustal geometries acquired prior to the collisional event. These geometries comprise obducted oceanic crust sequences that may propagate somewhat far away from the suture zone, preserved accretionary prism and subduction channel at the interplate boundary. The cessation of deformation is ascribed to rapid jump of the subduction zone at the passive margin rim of the opposite side of the accreted block. Geological investigation and 40Ar/39Ar dating on the main tectonic boundaries of the Anatolide-Tauride-Armenian (ATA) block in Eastern Turkey, Armenia and Georgia provide temporal constraints of subduction and accretion on both sides of this small continental block, and final collisional history of Eurasian and Arabian plates. On the northern side, 40Ar/39Ar ages give insights for the subduction and collage from the Middle to Upper Cretaceous (95-80 Ma). To the south, younger magmatic and metamorphic ages exhibit subduction of Neotethys and accretion of the Bitlis-Pütürge block during the Upper Cretaceous (74-71 Ma). These data are interpreted as a subduction jump from the northern to the southern boundary of the ATA continental block at 80-75 Ma. Similar back-arc type geochemistry of obducted ophiolites in the two subduction-accretion domains point to a similar intra-oceanic evolution prior to accretion, featured by slab steepening and roll-back as for the current Mediterranean domain. Final closure of Neotethys and initiation of collision with Arabian Plate occurred in the Middle-Upper Eocene as featured by the development of a Himalayan-type thrust sheet exhuming amphibolite facies rocks in its hanging-wall at c. 48 Ma.

  16. Shallow seismicity patterns in the northwestern section of the Mexico Subduction Zone

    NASA Astrophysics Data System (ADS)

    Abbott, Elizabeth R.; Brudzinski, Michael R.

    2015-11-01

    This study characterizes subduction related seismicity with local deployments along the northwestern section of the Mexico Subduction Zone where 4 portions of the plate interface have ruptured in 1973, 1985, 1995, and 2003. It has been proposed that the subducted boundary between the Cocos and Rivera plates occurs beneath this region, as indicated by inland volcanic activity, a gap in tectonic tremor, and the Manzanillo Trough and Colima Graben, which are depressions thought to be associated with the splitting of the two plates after subduction. Data from 50 broadband stations that comprised the MARS seismic array, deployed from January 2006 to June 2007, were processed with the software program Antelope and its generalized source location algorithm, genloc, to detect and locate earthquakes within the network. Slab surface depth contours from the resulting catalog indicate a change in subduction trajectory between the Rivera and Cocos plates. The earthquake locations are spatially anti-correlated with tectonic tremor, supporting the idea that they represent different types of fault slip. Hypocentral patterns also reveal areas of more intense seismic activity (clusters) that appear to be associated with the 2003 and 1973 megathrust rupture regions. Seismicity concentrated inland of the 2003 rupture is consistent with slip on a shallowly dipping trajectory for the Rivera plate interface as opposed to crustal faulting in the overriding North American plate. A prominent cluster of seismicity within the suspected 1973 rupture zone appears to be a commonly active portion of the megathrust as it has been active during three previous deployments. We support these interpretations by determining focal mechanisms and detailed relocations of the largest events within the 1973 and inland 2003 clusters, which indicate primarily thrust mechanisms near the plate interface.

  17. Discussion on ``Dextral transpression in Late Cretaceous continental collision, Sanandaj Sirjan Zone, western Iran'' [Journal of Structural Geology, 22(8) (2000) 1125 1139

    NASA Astrophysics Data System (ADS)

    Numan, Nazar M. S.

    2001-12-01

    The NW-SE trending Alpine Zagros Thrust Belt passes from southwest Iran into northeastern Iraq. Mohajjel and Fergusson contend in their work in Iran on the Sanandaj-Sirjan Zone (with a consistent Zagros trend) that collision of the Afro-Arabian continent and the Iranian microcontinent took place in the Late Cretaceous. It seems that tectonostratigraphic evidence from the neighbouring Iraqi territories, namely the Zagros Thrust Belt in the northern part, the Foreland Belt and the Quasiplatform of the north and the Platform in the western and southern deserts (Fig. 1), chronicles the subductional history in this part of the world to a fair degree of accuracy. It rather provides for an Eocene age of the continental collision between Arabia and the Iranian microcontinent.

  18. Impact of great subduction earthquakes on the long-term forearc morphology, insight from mechanical modelling

    NASA Astrophysics Data System (ADS)

    Cubas, Nadaya

    2017-04-01

    The surge of great subduction earthquakes during the last fifteen years provided numerous observations requiring revisiting our understanding of large seismic events mechanics. For instance, we now have clear evidence that a significant part of the upper plate deformation is permanently acquired. The link between great earthquakes and long-term deformation offers a new perspective for the relief construction understanding. In addition, a better understanding of these relations could provide us with new constraints on earthquake mechanics. It is also of fundamental importance for seismic risk assessment. In this presentation, I will compile recent results obtained from mechanical modelling linking megathrust ruptures with upper-plate permanent deformation and discuss their impact. We will first show that, in good accordance with lab experiments, aseismic zones are characterized by frictions larger or equal to 0.1 whereas seismic asperities have dynamic frictions lower than 0.05. This difference will control the long-term upper-plate morphology. The larger values along aseismic zones allow the wedge to reach the critical state, and will lead to active thrust systems forming a relief. On the contrary, low dynamic friction along seismic asperities will place the taper in the sub-critical domain impeding any internal deformation. This will lead to the formation of forearc basins inducing negative gravity anomalies. Since aseismic zones have higher friction and larger taper, fully creeping segments will tend to develop peninsulas. On the contrary, fully locked segments with low dynamic friction and very low taper will favor subsiding coasts. The taper variation due to megathrust friction is also expressed through a correlation between coast-to-trench distance and forearc coupling (e.g., Mexican and South-American subduction zones). We will then discuss how variations of frictional properties along the megathrust can induce splay fault activation. For instance, we can reactivate normal faults at the down-dip limit of the seismogenic zone or at an increasing slip transition (e.g., Chile and Japan). Finally, we will show that the fault vergence is controlled by the frictional properties. Sudden and successive decreases of the megathrust effective friction during frontal propagation of earthquakes will lead to the formation of landward-vergent frontal thrusts in the accretionary prism. Therefore, a particular attention needs to be paid to accretionary prisms with normal faults implying large up-dip ruptures (e.g., Alaska and Japan) or with frontal landward-vergent thrust faults, markers of past seafloor coseismic ruptures leading to very large tsunamis (e.g., Cascadia and Sumatra). If the forearc long-term deformation seems in good accordance with our understanding of earthquake mechanics, recent studies have pointed to a major discrepancy between short- and long-term deformation at the coast (i.e., the Central Andes subduction zone). An analogue discrepancy has been pointed out for the Himalaya after the 2015 Mw 7.8 Gorkha earthquake. Melnick (2016) proposed that the coastal long-term deformation could be related to deep and less frequent earthquakes instead of standard subduction events. It is now of fundamental importance to understand the link between the coastal long-term record and the short-term deformation for seismic risk assessment and relief building processes understanding. It will probably constitute the next challenge for mechanical modelling.

  19. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition

    USGS Publications Warehouse

    Hyndman, Roy D.; McCrory, Patricia A.; Wech, Aaron; Kao, Han; Ague, Jay

    2015-01-01

    In this study we first summarize the constraints that on the Cascadia subduction thrust, there is a 70 km gap downdip between the megathrust seismogenic zone and the Episodic Tremor and Slip (ETS) that lies further landward; there is not a continuous transition from unstable to conditionally stable sliding. Seismic rupture occurs mainly offshore for this hot subduction zone. ETS lies onshore. We then suggest what does control the downdip position of ETS. We conclude that fluids from dehydration of the downgoing plate, focused to rise above the fore-arc mantle corner, are responsible for ETS. There is a remarkable correspondence between the position of ETS and this corner along the whole margin. Hydrated mineral assemblages in the subducting oceanic crust and uppermost mantle are dehydrated with downdip increasing temperature, and seismic tomography data indicate that these fluids have strongly serpentinized the overlying fore-arc mantle. Laboratory data show that such fore-arc mantle serpentinite has low permeability and likely blocks vertical expulsion and restricts flow updip within the underlying permeable oceanic crust and subduction shear zone. At the fore-arc mantle corner these fluids are released upward into the more permeable overlying fore-arc crust. An indication of this fluid flux comes from low Poisson's Ratios (and Vp/Vs) found above the corner that may be explained by a concentration of quartz which has exceptionally low Poisson's Ratio. The rising fluids should be silica saturated and precipitate quartz with decreasing temperature and pressure as they rise above the corner.

  20. Revisiting the physical characterisitics of the subduction interplate seismogenic zones

    NASA Astrophysics Data System (ADS)

    Heuret, Arnauld; Lallemand, Serge; Funiciello, Francesca; Piromallo, Claudia

    2010-05-01

    Based on the Centennial earthquake catalog, the revised 1964-2007 EHB hypocenters catalog and the 1976-2007 CMT Harvard catalog, we have extracted the hypocenters, nodal planes and seismic moments of worldwide subduction earthquakes for the 1900-2007 period. For the 1976-2007 period, we combine the focal solutions provided by Harvard and the revised hypocenters from Engdahl et al. (1998). Older events are extracted from the Centennial catalogue (Engdahl and Villasenor, 2002) and they are used to estimate the cumulated seismic moment only. The selection criteria for the subduction earthquakes are similar to those used by Mc Caffrey (1994), i.e., we test if the focal mechanisms are consistent with 1/ shallow thrust events (depth > 70 km, positive slips, and at least one nodal plane gets dip < 45°), and, 2/ the plate interface local geometry and orientation (one nodal plane is oriented toward the volcanic arc, the azimuth of this nodal plane ranges between ± 45° with respect to the trench one, its dip ranges between ± 20° with respect to the slab one and the epicentre is located seaward of the volcanic arc). Our study concerns segments of subduction zones that fit with estimated paleoruptures associated with major events (M > 8). We assume that the seismogenic zone coincides with the distribution of 5.5 < M < 7 subduction earthquakes. We provide a map of the interplate seismogenic zones for 80% of the trench systems including dip, length, downdip and updip limits, we revisit the statistical study done by Pacheco et al. (1993) and test some empirical laws obtained for example by Ruff and Kanamori (1980) in light of a more complete, detailed, accurate and uniform description of the subduction interplate seismogenic zone. Since subduction earthquakes result from stress accumulation along the interplate and stress depends on plates kinematics, subduction zone geometry, thermal state and seismic coupling, we aim to isolate some correlations between parameters. The statistical analysis reveals that: 1- vs, the subduction velocity is the first order controlling parameter of seismogenic zone variability, both in term of geometry and seismic behaviour; 2- steep dip, large vertical extent and narrow horizontal extent of the seismogenic zone are associated to fast subductions, and cold slabs, the opposite holding for slow subductions and warm slabs; the seismogenic zone usually ends in the fore-arc mantle rather than at the upper plate Moho depth; 3- seismic rate () variability is coherent with the geometry of the seismogenic zone:  increases with the dip and with the vertical extent of the seismogenic zone, and it fits with vs and with the subducting plate thermal state; 4- mega-events occurrence determines the level of seismic energy released along the subduction interface, whatever  is; 5- to some extent, the potential size of earthquakes fits with vs and with the seismogenic zone geometry, but second order controlling parameters are more difficult to detect; 6- the plate coupling, measured through Upper Plate Strain, is one possible second order parameter: mega-events are preferentially associated to neutral subductions, i.e. moderate compressive stresses along the plate interface; high plate coupling (compressive UPS) is thought to inhibit mega-events genesis by enhancing the locking of the plate interface and preventing the rupture to extend laterally. This research was supported as part of the Eurohorcs/ESF — European Young Investigators Awards Scheme (resp. F.F.), by funds from the National Research Council of Italy and other National Funding Agencies participating in the 3rd Memorandum of Understanding, as well as from the EC Sixth Framework Programme.

  1. Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones

    NASA Astrophysics Data System (ADS)

    Lemoine, A.; Madariaga, R.; Campos, J.

    2002-09-01

    We studied intermediate depth earthquakes in the Chile, Peru and Mexican subduction zones, paying special attention to slab-push (down-dip compression) and slab-pull (down-dip extension) mechanisms. Although, slab-push events are relatively rare in comparison with slab-pull earthquakes, quite a few have occurred recently. In Peru, a couple slab-push events occurred in 1991 and one slab-pull together with several slab-push events occurred in 1970 near Chimbote. In Mexico, several slab-push and slab-pull events occurred near Zihuatanejo below the fault zone of the 1985 Michoacan event. In central Chile, a large M=7.1 slab-push event occurred in October 1997 that followed a series of four shallow Mw>6 thrust earthquakes on the plate interface. We used teleseismic body waveform inversion of a number of Mw>5.9 slab-push and slab-pull earthquakes in order to obtain accurate mechanisms, depths and source time functions. We used a master event method in order to get relative locations. We discussed the occurrence of the relatively rare slab-push events in the three subduction zones. Were they due to the geometry of the subduction that produces flexure inside the downgoing slab, or were they produced by stress transfer during the earthquake cycle? Stress transfer can not explain the occurence of several compressional and extensional intraplate intermediate depth earthquakes in central Chile, central Mexico and central Peru. It seemed that the heterogeneity of the stress field produced by complex slab geometry has an important influence on intraplate intermediate depth earthquakes.

  2. Kinematics and Dynamics of the Makran Subduction Zone

    NASA Astrophysics Data System (ADS)

    Penney, C.; Tavakoli, F.; Sobouti, F.; Copley, A.; Priestley, K. F.; Jackson, J. A.

    2016-12-01

    The Makran subduction zone, along the southern coasts of Iran and Pakistan, hosts the world's largest exposed accretionary prism. In contrast to the circum-Pacific subduction zones, the Makran has not been extensively studied, with seismic data collected in the offshore region presenting only a time-integrated picture of the deformation. We investigate spatio-temporal variations in the deformation of the accretionary prism and the insights these offer into subduction zone driving forces and megathrust rheology. We combine seismology, geodesy and field observations to study the 2013 Mw 6.1 Minab earthquake, which occurred at the western end of the accretionary prism. We find that the earthquake was a left-lateral rupture on an ENE-WSW plane, approximately perpendicular to the previously mapped faults in the region. The causative fault of the Minab earthquake is one of a series of left-lateral faults in the region which accommodate a velocity field equivalent to right-lateral shear on N-S planes by rotating clockwise about vertical axes. Another recent strike-slip event within the Makran accretionary wedge was the 2013 Mw 7.7 Balochistan earthquake, which occurred on a fault optimally oriented to accommodate the regional compression by thrusting. The dominance of strike-slip faulting within the onshore prism, on faults perpendicular to the regional compression, suggests that the prism may have reached the maximum elevation which the megathrust can support, with the compressional forces which dominated in the early stages of the collision now balanced by gravitational forces. This observation allows us to estimate the mean shear stress on the megathrust interface and its effective coefficient of friction.

  3. Subduction- and exhumation-related structures in the Cycladic Blueschists: Insights from south Evia Island (Aegean region, Greece)

    NASA Astrophysics Data System (ADS)

    Xypolias, P.; Iliopoulos, I.; Chatzaras, V.; Kokkalas, S.

    2012-04-01

    Detailed geological mapping, structural investigation and amphibole chemistry analyses in southern Evia (Aegean Sea, Greece) allow us to place new constraints on the internal structural architecture and tectonic evolution of the Cycladic Blueschists. We show that the early deformation history was related to ESE directed thrusting resulting in the stacking of the Styra and Ochi nappes, which constitute the Cycladic Blueschist unit in Evia. These early thrust movements initiated just before and proceeded at peak conditions of the Eocene high-pressure metamorphism. Subsequent constrictional deformation gave rise to E-W trending upright folding accomplished at the early exhumation stage. The main ductile-stage exhumation occurred during a single deformation phase associated with the decompression of blueschist rocks from the stability field of crossite to that of actinolite. This phase was characterized by localization of ductile deformation into a series of major, tens of meters thick, ENE directed shear zones, which cut up-section in their transport direction and restack the early thrust and fold sequence, locally bringing the structurally lower Styra nappe over the higher Ochi nappe. It is suggested that these zones operated as thrusts rather than normal sense shear zones as has been previously argued and were possibly formed during the Oligocene ENE-ward extrusion of the blueschists. Brittle-ductile NE dipping normal faulting of post-early Miocene age was probably responsible for the final exhumation of rocks.

  4. Transition from Subduction to Strike-Slip in the Southeast Caribbean: Effects on Lithospheric Structures and Overlying Basin Evolution

    NASA Astrophysics Data System (ADS)

    Alvarez, T.; Mann, P.; Wood, L. J.; Vargas, C. A.; Latchman, J. L.

    2013-12-01

    Topography, basin structures and geomorphology of the southeast Caribbean-northeast South American margin are controlled by a 200-km-long transition from westward-directed subduction of South American lithosphere beneath the Caribbean plate, to east-west strike-slip motion of the Caribbean and South American plates. Our study of structures and basins present in the transitional area integrates a tomographic study of the lithospheric structures associated with lateral variations in the subduction of the South American lithosphere and orientation of the slab beneath the Caribbean plate as well as the evolution of overlying sedimentary basins imaged with deep-penetration seismic data kindly provided by the oil industry and Trinidad & Tobago government agencies. We use an earthquake dataset containing more than 700 events recorded by the eastern Caribbean regional seismograph network to build travel-time and attenuation tomography models used to image the mantle to depths of 100 km beneath transition zone. Approximately 10,000 km of 2D seismic reflection lines which are recorded to depths > 12 seconds TWT are used to interpret basin scale structures including tectono-stratigraphic sequences and structures which deform and displace sedimentary sequences. We use the observed satellite gravity to generate a gravity model for key sections traversing the tectonic transitional zone and to determine depth to basement in basins with sedimentary fill > 12 km. Within the study area, the dip of subducted South American oceanic lithosphere imaged on tomographic images is variable from ~44 to ~24 degrees. There is a distinct low gravity, low velocity, high attenuation, northwest - southeast trending lineation located east of Trinidad which defines the location of a Mesozoic oceanic fracture zone which accommodated the opening of the Central Atlantic during the Jurassic to Middle Cretaceous. This feature is also coincident with the present-day continent-ocean boundary and acts as a lithospheric weakness during subduction. We propose that this fracture zone is a key transition point between the subduction of South American/Atlantic oceanic lithosphere; which descends into the mantle, to the northeast, and the under-thrusting of transitional to continental South American lithosphere which resists subduction to the southwest. Maps of South American basement and its overlying Cretaceous passive margin illustrates a northwesterly basement dip with a distinct change in angle of the northwest dip across the paleo-fracture zone consistent with our tomographic model. We propose that flexure of the subducting South American plate at this location exerts a critical control on the formation and evolution of the basins and the lateral distribution of Cretaceous through Pleistocene stratigraphic fill. East of the fracture zone, the overlying strata is deformed by active subduction and accretionary prism processes with a wider zone of shortening with lower overall topography, while to the west of the fracture zone there is active oblique collision with a narrower zone of shortening and greater uplift.

  5. Seafloor Structural Geomorphic Evolution in Response to Seamount Subduction, Poverty Bay Indentation, New Zealand

    NASA Astrophysics Data System (ADS)

    Bodger, K. L.; Pettinga, J. R.; Barnes, P. M.

    2006-12-01

    More than 4000 km2 of high quality bathymetric and backscatter imaging of the Poverty Bay Indentation across the northern part of the Hikurangi subduction zone provide new insights into the relationship between seafloor morphology and active structures. The swath bathymetry extends from the edge of the continental shelf to the abyssal plain, at depths of between 100 to 3500 metres. The origin of the slope re-entrant is inferred to be related to multiple seamount impacts, and these collisions have initiated numerous large-scale gravitational collapse structures, multiple debris flow and avalanche deposits, which range in down-slope length from a few hundred metres to more than 40 km. The Poverty Bay Indentation has been simultaneously eroded by canyon systems that exhibit many of the features of incised river systems onshore. The swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as a limited number of core samples. Seismic reflection profiles and seafloor morphology are used to provide three morpho-structural sections. The comparison of these sections highlights the different effects of seamount subduction on the evolution of the margin and the re-entrant. The northern two sections are located to the north side of the re-entrant and reveal the role of seamount impact on the interrelationship between the structural evolution with respect to seafloor morphology. Here the development of an over-steepened margin with fault reactivation, inversion and over- printing leads to very complex structural styles of deformation and geometry in both seismic reflection profiles and seafloor morphology. There is evidence of an older, inactive thrust front buried beneath the upper and mid- slope basins. Beneath the mid-slope a subducted seamount is revealed by the presence of relief on the subduction interface and associated structural complexity in the over-riding wedge. The Poverty Bay canyon represents a structural transition zone coinciding with the re-entrant. The accretionary slope south of the re- entrant conforms more closely to the classic accretionary slope style of deformation. Backthrusts in this section propagate from a much shallower level than in the northern sections. Inversion is commonly observed in the mid slope and continental shelf basins, particularly to the south. Initial interpretations indicate that: i) seamount impact significantly influences the structural evolution, and submarine geomorphology of the inboard slope of the Hikurangi subduction zone, including the generation of large-scale gravitational collapse features; ii) the large gully systems located at the upper shelf slope boundary represent the most likely source areas for the multiple mega debris flows recognised from seafloor morphology and in seismic sections; iii) there exists a complex interaction between the evolving thrust-driven submarine ridges, ponded slope basins and the structural geometry and evolution of the near-surface fault zones (imbrication); iv) the submarine canyons may initiate complex patterns of fault zone segmentation and displacement transfer within the accretionary slope; and v) seamount subduction and subsequent instability of the margin may directly result in tsunami generation.

  6. Tectonics of the ophiolite belt from Naga Hills and Andaman Islands, India

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.; Ray, K. K.; Sengupta, S.

    1990-06-01

    The ophiolitic rocks of Naga Hills-Andaman belt occur as rootless slices, gently dipping over the Paleogene flyschoid sediments, the presence of blue-schists in ophiolite melange indicates an involvement of the subduction process. Subduction was initiated prior to mid-Eocene as proved by the contemporaneous lower age limit of ophiolite-derived cover sediment as against the accreted ophiolites and olistostromal trench sediment. During the late Oligocene terminal collision between the Indian and Sino-Burmese blocks, basement slivers from the Sino-Burmese block, accreted ophiolites and trench sediments from the subduction zone were thrust westward as nappe and emplaced over the down-going Indian plate. The geometry of the ophiolites and the presence of a narrow negative gravity anomaly flanking their map extent, run counter to the conventional view that the Naga-Andaman belt marks the location of the suture. The root-zone of the ophiolite nappe representing the suture is marked by a partially-exposed eastern ophiolite belt of the same age and gravity-high zone, passing through central Burma-Sumatra-Java. The ophiolites of the Andaman and Naga Hills are also conventionally linked with the subduction activity, west of Andaman islands. This activity began only in late Miocene, much later than onland emplacement of the ophiolites; it further developed west of the suture in its southern part. Post-collisional northward movement of the Indian plate subparallel to the suture, also developed leaky dextral transcurrent faults close to the suture and caused Neogene-Quatemary volcanism in central Burma and elsewhere.

  7. West margin of North America - A synthesis of recent seismic transects

    USGS Publications Warehouse

    Fuis, G.S.

    1998-01-01

    A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward (seen in rocks east of the San Andreas fault) and cessation of Farallon-plate subduction (seen in rocks west of the San Andreas fault). In northern California, lower-crustal rocks east of the San Andreas fault have oceanic-crustal velocity and thickness and contain patches of high reflectivity. They may represent basaltic rocks magmatically underplated in the wake of the migration of the Mendocino triple junction, or they may represent stalled, subducted fragments of the Farallon/Gorda plate. The latter alternative does not fit the accepted 'slabless window' model for the migration of the triple junction. This lower-crustal layer and the Moho are offset at the San Andreas and Maacama faults. In central California, a similar lower-crustal layer is observed west of the San Andreas fault. West of the continental slope, it is Pacitic oceanic crust, but beneath the continent it may represent either Pacific oceanic crust, stalled, subducted fragments (microplates) of the Farallon plate, or basaltic rocks magmatically underplated during subduction of the Pacific/Farallon ridge or during breakup of the subducted Farallon plate. The transect in southern California is only partly representative of regional structure, as the structure here is 3-dimensional. In the upper crust, a Mesozoic prism has been thrust beneath crystalline basement rocks of the San Gabriel Mountains and Mojave Desert. In the mid-crust, a bright reflective zone is interpreted as a possible 'master' decollement that can be traced from the fold-and-thrust belt of the Los Angeles basin northward to at least the San Andreas fault. A Moho depression beneath the San Gabriel Mountains is consistent with downwelling of lithospheric mantle beneath the Transverse Ranges that appears to be driving the compression across the Transverse Ranges and Los Angeles basin. ?? 1998 Elsevier Science B.V. All rights reserved.

  8. Reconstructing Plate Boundaries in the Jurassic Neo-Tethys From the East and West Vardar Ophiolites (Greece and Serbia)

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe J. J.

    2018-03-01

    Jurassic subduction initiation in the Neo-Tethys Ocean eventually led to the collision of the Adria-Africa and Eurasia continents and the formation of an 6,000 km long Alpine orogen spanning from Iberia to Iran. Reconstructing the location and geometry of the plate boundaries of the now disappeared Neo-Tethys during the initial moments of its closure is instrumental to perform more realistic plate reconstructions of this region, of ancient ocean basins in general, and on the process of subduction initiation. Neo-Tethyan relics are preserved in an ophiolite belt distributed above the Dinaric-Hellenic fold-thrust belt. Here we provide the first quantitative constraints on the geometry of the spreading ridges and trenches active in the Jurassic Neo-Tethys using a paleomagnetically based net tectonic rotation analysis of sheeted dykes and dykes from the West and East Vardar Ophiolites of Serbia (Maljen and Ibar) and Greece (Othris, Pindos, Vourinos, and Guevgueli). Based on our results and existing geological evidence, we show that initial Middle Jurassic ( 175 Ma) closure of the western Neo-Tethys was accommodated at a N-S trending, west dipping subduction zone initiated near and parallel to the spreading ridge. The West Vardar Ophiolites formed in the forearc parallel to this new trench. Simultaneously, the East Vardar Ophiolites formed above a second N-S to NW-SE trending subduction zone located close to the European passive margin. We tentatively propose that this second subduction zone had been active since at least the Middle Triassic, simultaneously accommodating the closure of the Paleo-Tethys and the back-arc opening of Neo-Tethys.

  9. Pleistocene vertical motions of the Costa Rican outer forearc from subducting topography and a migrating fracture zone triple junction

    USGS Publications Warehouse

    Edwards, Joel H.; Kluesner, Jared W.; Silver, Eli A.; Bangs, Nathan L.

    2018-01-01

    Understanding the links between subducting slabs and upper-plate deformation is a longstanding goal in the field of tectonics. New 3D seismic sequence stratigraphy, mapped within the Costa Rica Seismogenesis Project (CRISP) seismic-reflection volume offshore southern Costa Rica, spatiotemporally constrains several Pleistocene outer forearc processes and provides clearer connections to subducting plate dynamics. Three significant shelf and/or slope erosional events at ca. 2.5–2.3 Ma, 1.95–1.78 Ma, and 1.78–1.19 Ma, each with notable differences in spatial extent, volume removed, and subsequent margin response, caused abrupt shifts in sedimentation patterns and rates. These shifts, coupled with observed deformation, suggest three primary mechanisms for Pleistocene shelf and slope vertical motions: (1) regional subaerial erosion and rapid subsidence linked to the southeastward Panama Fracture Zone triple-junction migration, with associated abrupt bathymetric variations and plate kinematic changes; (2) transient, kilometer-scale uplift and subsidence due to inferred subducting plate topography; and (3) progressive outer wedge shortening accommodated by landward- and seaward-dipping thrust faults and fold development due to the impinging Cocos Ridge. Furthermore, we find that the present-day wedge geometry (to within ∼3 km along strike) has been maintained through the Pleistocene, in contrast to modeled landward margin retreat. We also observe that deformation, i.e., extension and shortening, is decoupled from net margin subsidence. Our findings do not require basal erosion, and they suggest that the vertical motions of the Costa Rican outer forearc are not the result of a particular continuous process, but rather are a summation of plate to plate changes (e.g., passage of a fracture zone triple junction) and episodic events (e.g., subducting plate topography).

  10. Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay

    2012-04-01

    We studied source mechanism parameters and slip distributions of earthquakes with Mw ≥ 5.0 occurred during 2000-2008 along the Hellenic subduction zone by using teleseismic P- and SH-waveform inversion methods. In addition, the major and well-known earthquake-induced Eastern Mediterranean tsunamis (e.g., 365, 1222, 1303, 1481, 1494, 1822 and 1948) were numerically simulated and several hypothetical tsunami scenarios were proposed to demonstrate the characteristics of tsunami waves, propagations and effects of coastal topography. The analogy of current plate boundaries, earthquake source mechanisms, various earthquake moment tensor catalogues and several empirical self-similarity equations, valid for global or local scales, were used to assume conceivable source parameters which constitute the initial and boundary conditions in simulations. Teleseismic inversion results showed that earthquakes along the Hellenic subduction zone can be classified into three major categories: [1] focal mechanisms of the earthquakes exhibiting E-W extension within the overriding Aegean plate; [2] earthquakes related to the African-Aegean convergence; and [3] focal mechanisms of earthquakes lying within the subducting African plate. Normal faulting mechanisms with left-lateral strike slip components were observed at the eastern part of the Hellenic subduction zone, and we suggest that they were probably concerned with the overriding Aegean plate. However, earthquakes involved in the convergence between the Aegean and the Eastern Mediterranean lithospheres indicated thrust faulting mechanisms with strike slip components, and they had shallow focal depths (h < 45 km). Deeper earthquakes mainly occurred in the subducting African plate, and they presented dominantly strike slip faulting mechanisms. Slip distributions on fault planes showed both complex and simple rupture propagations with respect to the variation of source mechanism and faulting geometry. We calculated low stress drop values (Δσ < 30 bars) for all earthquakes implying typically interplate seismic activity in the region. Further, results of numerical simulations verified that damaging historical tsunamis along the Hellenic subduction zone are able to threaten especially the coastal plains of Crete and Rhodes islands, SW Turkey, Cyprus, Levantine, and Nile Delta-Egypt regions. Thus, we tentatively recommend that special care should be considered in the evaluation of the tsunami risk assessment of the Eastern Mediterranean region for future studies.

  11. The influence of tectonic inheritance on crustal extension style following failed subduction of continental crust: applications to metamorphic core complexes in Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Biemiller, J.; Ellis, S. M.; Little, T.; Mizera, M.; Wallace, L. M.; Lavier, L.

    2017-12-01

    The structural, mechanical and geometric evolution of rifted continental crust depends on the lithospheric conditions in the region prior to the onset of extension. In areas where tectonic activity preceded rift initiation, structural and physical properties of the previous tectonic regime may be inherited by the rift and influence its development. Many continental rifts form and exhume metamorphic core complexes (MCCs), coherent exposures of deep crustal rocks which typically surface as arched or domed structures. MCCs are exhumed in regions where the faulted upper crust is displaced laterally from upwelling ductile material along a weak detachment fault. Some MCCs form during extensional inversion of a subduction thrust following failed subduction of continental crust, but the degree to which lithospheric conditions inherited from the preceding subduction phase control the extensional style in these systems remains unclear. For example, the Dayman Dome in Southeastern Papua New Guinea exposes prehnite-pumpellyite to greenschist facies rocks in a smooth 3 km-high dome exhumed with at least 24 km of slip along one main detachment normal fault, the Mai'iu Fault, which dips 21° at the surface. The extension driving this exhumation is associated with the cessation of northward subduction of Australian continental crust beneath the oceanic lithosphere of the Woodlark Plate. We use geodynamic models to explore the effect of pre-existing crustal structures inherited from the preceding subduction phase on the style of rifting. We show that different geometries and strengths of inherited subduction shear zones predict three distinct modes of subsequent rift development: 1) symmetric rifting by newly formed high-angle normal faults; 2) asymmetric rifting along a weak low-angle detachment fault extending from the surface to the brittle-ductile transition; and 3) extension along a rolling-hinge structure which exhumes deep crustal rocks in coherent rounded exposures. We propose the latter mode as an exhumation model for Dayman Dome and compare the model predictions to regional geophysical and geological evidence. Our models find that tectonically inherited subduction structures may strongly control subsequent extension style when the subduction thrust is weak and well-oriented for reactivation.

  12. Strain Variation in Accretionary Prisms Across Space and Time: Insights from the Makran Subduction Zone

    NASA Astrophysics Data System (ADS)

    Penney, C.; Tavakoli, F.; Saadat, A.; Nankali, H. R.; Sedighi, M.; Khorrami, F.; Sobouti, F.; Rafi, Z.; Copley, A.; Jackson, J. A.; Priestley, K. F.

    2017-12-01

    The Makran is one of the world's least-studied subduction zones. In particular, little is known about the accumulation and accommodation of strain in the onshore part of the subduction zone, which parallels the coasts of southern Iran and Pakistan. The deformation of the Makran accretionary prism results from both its subduction zone setting and N-S right-lateral shear between central Iran and Afghanistan. North of the Makran, this shear is accommodated by a series of right-lateral faults which offset the rocks of the Sistan Suture Zone, an abandoned accretionary prism. However, these right-lateral faults are not observed south of 27°N, and no major N-S faults cut the E-W trending structures of the Makran. How this right-lateral motion is accommodated at the southern end of the Sistan Suture Zone is a long-standing tectonic question. By combining results from geomorphology, GPS, seismology and modelling we conclude that right-lateral motion is transferred across the depression north of the accretionary prism to the region of right-lateral shear at the western end of the accretionary prism. This requires the Jaz Murian depression to be bounded by normal faults, consistent with the basin geomorphology. However, GPS data show compression across the margins of the basin, and no shallow normal-faulting earthquakes have been observed in the region. We therefore suggest that the behaviour of these faults may be time-dependent and controlled by the megathrust seismic cycle, as has been suggested elsewhere (e.g. Chile). Recent strike-slip earthquakes, including the 2013 Balochistan earthquake, have clustered at the prism's lateral edges, showing the importance of spatial, as well as temporal, variations in strain. These earthquakes have reactivated thrust faults in the Makran accretionary prism, showing that the style of strain within accretionary prisms can vary on multiple timescales and allowing us to calculate the coefficient of friction on the underlying megathrust.

  13. Geometry and kinematics of accretionary wedge faults inherited from the structure and rheology of the incoming sedimentary section; insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; Orme, Haydn; Lenette, Kathryn; Jackson, Christopher; Fitch, Peter; Phillips, Thomas; Moore, Gregory

    2017-04-01

    Intra-wedge thrust faults represent important conduits for fluid flow in accretionary prisms, modulating pore fluid pressure, effective stress and, ultimately, the seismic hazard potential of convergent plate boundaries. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust networks in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images. To address this we here present observations from two subduction zones, the Nankai and Lesser Antilles margins, where 3D seismic and borehole data allow us to constrain the geometry and kinematics of intra-wedge fault networks and to thus shed light on the mechanisms responsible for their structural style variability. At the Muroto transect, Nankai margin we find that the style of protothrust zone deformation varies markedly along-strike over distances of only a few km. Using structural restoration and quantitative fault analysis, we reveal that in the northern part of the study area deformation occurred by buckle folding followed by faulting. Further south, intra-wedge faults nucleate above the décollement and propagate radially with no folding, resulting in variable connectivity between faults and the décollement. The seismic facies character of sediments immediately above the décollement varies along strike, with borehole data revealing that, in the north, where buckle folding dominates un-cemented Lower Shikoku Basin sediments overlie the décollement. In contrast, further south, Opal CT-cemented, and thus rigid Upper Shikoku Basin sediments overlie the décollement. We suggest these along-strike variations in diagenesis and thus rheology control the observed structural style variability. Near Barbados, at the Lesser Antilles margin, rough subducting plate relief is blanketed by up to 700 m of sediment. 3D seismic data reveal that basement relief is defined by linear normal fault blocks and volcanic ridges, and sub-circular seamounts. The youngest, most basinward thrusts in the wedge strike NW-SE; however, 17 km landward, towards the wedge core, they strike NE-SW. The orientation of the more landward faults correlates with the trend of linear basement relief, whereas thrust fault orientations close to the deformation front are perpendicular to the convergence direction. We notice that oceanic crust that has been subducted is characterised by NE-SW striking, now-inverted normal faults, with some faults extending up through the entire sedimentary section. We suggest that the NE-SW orientation of thrust faults has been inherited from linear basement ridges. In contrast, basement currently subducting beneath the deformation front is dominated by seamounts and is devoid of more linear features. Here, there are no pre-existing normal faults available for reactivation and thrust faults develop perpendicular to the convergence direction. We show that the incoming plate properties have a profound effect on the geometry of accretionary wedges; it would be difficult to elucidate this without 3D seismic data. Our insights provide new hypotheses that can be tested with numerical and laboratory models.

  14. Collision-induced rotation in an arc-continent collision: Constrained by continuous GPS observations in Mindoro, Philippines

    NASA Astrophysics Data System (ADS)

    Rau, R.; Hung, H.; Yang, C.; Tsai, M.; Ching, K.; Bacolcol, T.; Solidum, R.; Chang, W.

    2012-12-01

    The Mindoro Island, situated at the southern end of the Manila trench, is a modern arc-continent collision. Seismic activity in Mindoro concentrates mainly in the northern segment of the island as part of the Manila subduction processes; in contrast, seismicity in the middle and the southern parts of the island is rather diffuse. Although the Mindoro Island has been experiencing intense seismic activities and is a type example of arc-continent collision, the modern mode of deformation of the Mindoro collision remains unclear. We have installed eight dual-frequency continuous GPS stations in the island since May 2010. The questions we want to address by using continuous GPS observations are (1) if there are still compressions within the Mindoro collision? Have they ceased as seen by the diffuse seismicity, or are the thrust faults locked? (2) What is the mode of deformation in the Mindoro collision and what are the roles of thrust and strike-slip faults playing in the collision? (3) How does the Mindoro collision compare with the other collision, such as the Taiwan orogen? Do they share similar characteristics for the subduction-collision transition zone? For the results of the first two years GPS measurements, if we take the Sablayan site near the southern end of the Manila trench as the reference station, a large counterclockwise rotation from south to north, with horizontal velocities of 1.9-31.1 mm/yr from 165 to 277 degrees, are found in the island. The deformation of the Mindoro is similar to the pattern of the transition zone from collision to subduction in northeastern Taiwan. This result suggests that collision-induced rotation is occurring in the Mindoro Island and the Mindoro arc-continent collision is still active.

  15. The South Sandwich "Forgotten" Subduction Zone and Tsunami Hazard in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Hartnady, C. J. H.; Synolakis, C. E.

    2009-04-01

    While no large interplate thrust earthquakes are know at the "forgotten" South Sandwich subduction zone, historical catalogues include a number of events with reported magnitudes 7 or more. A detailed seismological study of the largest event (27 June 1929; M (G&R) = 8.3) is presented. The earthquake relocates 80 km North of the Northwestern corner of the arc and its mechanism, inverted using the PDFM method, features normal faulting on a steeply dipping fault plane (phi, delta, lambda = 71, 70, 272 deg. respectively). The seismic moment of 1.7*10**28 dyn*cm supports Gutenberg and Richter's estimate, and is 28 times the largest shallow CMT in the region. This event is interpreted as representing a lateral tear in the South Atlantic plate, comparable to similar earthquakes in Samoa and Loyalty, deemed "STEP faults" by Gover and Wortel [2005]. Hydrodynamic simulations were performed using the MOST method [Titov and Synolakis, 1997]. Computed deep-water tsunami amplitudes of 30cm and 20cm were found off the coast of Brazil and along the Gulf of Guinea (Ivory Coast, Ghana) respectively. The 1929 moment was assigned to the geometries of other know earthquakes in the region, namely outer-rise normal faulting events at the center of the arc and its southern extremity, and an interplate thrust fault at the Southern corner, where the youngest lithosphere is subducted. Tsunami hydrodynamic simulation of these scenarios revealed strong focusing of tsunami wave energy by the SAR, the SWIOR and the Agulhas Rise, in Ghana, Southern Mozambique and certain parts of the coast of South Africa. This study documents the potential tsunami hazard to South Atlantic shorelines from earthquakes in this region, principally normal faulting events.

  16. South Sandwich: The Forgotten Subduction Zone and Tsunami Hazard in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Okal, E. A.; Hartnady, C. J.

    2008-12-01

    While no large interplate thrust earthquakes are known at the South Sandwich subduction zone, historical catalogues include a number of earthquakes with reported magnitudes of 7 or more. We present a detailed seismological study of the largest one (27 June 1929; M (G&R) = 8.3). The earthquake relocates 80 km North of the Northwestern corner of the arc. Its mechanism, inverted using the PDFM method, features normal faulting on a steeply dipping fault plane (phi, delta, lambda = 71, 70, 272 deg.). The seismic moment, 1.7 10**28 dyn*cm, supports Gutenberg and Richter's estimate, and is 28 times the largest shallow CMT in the region. The 1929 event is interpreted as representing a lateral tear in the South Atlantic plate, comparable to similar earthquakes in Samoa and Loyalty, deemed "STEP faults" by Gover and Wortel [2005]. Hydrodynamic simulations using the MOST method [Titov and Synolakis, 1997] suggest deep-water tsunami amplitudes reaching 30 cm off the coast of Brazil, where it should have had observable run-up, and 20 cm along the Gulf of Guinea (Ivory Coast, Ghana). We also simulate a number of potential sources obtained by assigning the 1929 moment to the geometries of other known earthquakes in the region, namely outer-rise normal faulting events at the center of the arc and its southern extremity, and an interplate thrust fault at the Southern corner, where the youngest lithosphere is subducted. A common feature of these models is the strong focusing of tsunami waves by the SAR, the SWIOR, and the Agulhas Rise, resulting in amplitudes always enhanced in Ghana, Southern Mozambique and certain parts of the coast of South Africa. This study documents the potential tsunami hazard to South Atlantic shorelines from earthquakes in this region, principally normal faulting events.

  17. Slip Behavior of the Queen Charlotte Plate Boundary Before and After the 2012, MW 7.8 Haida Gwaii Earthquake: Evidence From Repeating Earthquakes

    NASA Astrophysics Data System (ADS)

    Hayward, Tim W.; Bostock, Michael G.

    2017-11-01

    The Queen Charlotte plate boundary, near Haida Gwaii, B.C., includes the dextral, strike-slip, Queen Charlotte Fault (QCF) and the subduction interface between the downgoing Pacific and overriding North American plates. In this study, we present a comprehensive repeating earthquake catalog that represents an effective slip meter for both structures. The catalog comprises 712 individual earthquakes (0.3≤MW≤3.5) arranged into 224 repeating earthquake families on the basis of waveform similarity and source separation estimates from coda wave interferometry. We employ and extend existing relationships for repeating earthquake magnitudes and slips to provide cumulative slip histories for the QCF and subduction interface in six adjacent zones within the study area between 52.3°N and 53.8°N. We find evidence for creep on both faults; however, creep rates are significantly less than plate motion rates, which suggests partial locking of both faults. The QCF exhibits the highest degrees of locking south of 52.8°N, which indicates that the seismic hazard for a major strike-slip earthquake is highest in the southern part of the study area. The 28 October 2012, MW 7.8 Haida Gwaii thrust earthquake occurred in our study area and altered the slip dynamics of the plate boundary. The QCF is observed to undergo accelerated, right-lateral slip for 1-2 months following the earthquake. The subduction interface exhibits afterslip thrust motion that persists for the duration of the study period (i.e., 3 years and 2 months after the Haida Gwaii earthquake). Afterslip is greatest (5.7-8.4 cm/yr) on the periphery of the main rupture zone of the Haida Gwaii event.

  18. Testing Earthquake Links in Mexico From 1978 to the 2017 M = 8.1 Chiapas and M = 7.1 Puebla Shocks

    NASA Astrophysics Data System (ADS)

    Segou, Margarita; Parsons, Tom

    2018-01-01

    The M = 8.1 Chiapas and the M = 7.1 Puebla earthquakes occurred in the bending part of the subducting Cocos plate 11 days and 600 km apart, a range that puts them well outside the typical aftershock zone. We find this to be a relatively common occurrence in Mexico, with 14% of M > 7.0 earthquakes since 1900 striking more than 300 km apart and within a 2 week interval, not different from a randomized catalog. We calculate the triggering potential caused by crustal stress redistribution from large subduction earthquakes over the last 40 years. There is no evidence that static stress transfer or dynamic triggering from the 8 September Chiapas earthquake promoted the 19 September earthquake. Both recent earthquakes were promoted by past thrust events instead, including delayed afterslip from the 2012 M = 7.5 Oaxaca earthquake. A repeated pattern of shallow thrust events promoting deep intraslab earthquakes is observed over the past 40 years.

  19. Testing earthquake links in Mexico from 1978 up to the 2017 M=8.1 Chiapas and M=7.1 Puebla shocks

    USGS Publications Warehouse

    Segou, Margarita; Parsons, Thomas E.

    2018-01-01

    The M = 8.1 Chiapas and the M = 7.1 Puebla earthquakes occurred in the bending part of the subducting Cocos plate 11 days and ~600 km apart, a range that puts them well outside the typical aftershock zone. We find this to be a relatively common occurrence in Mexico, with 14% of M > 7.0 earthquakes since 1900 striking more than 300 km apart and within a 2 week interval, not different from a randomized catalog. We calculate the triggering potential caused by crustal stress redistribution from large subduction earthquakes over the last 40 years. There is no evidence that static stress transfer or dynamic triggering from the 8 September Chiapas earthquake promoted the 19 September earthquake. Both recent earthquakes were promoted by past thrust events instead, including delayed afterslip from the 2012 M = 7.5 Oaxaca earthquake. A repeated pattern of shallow thrust events promoting deep intraslab earthquakes is observed over the past 40 years.

  20. Seismic signals from the slab surface within and downdip of the thrust zone: blind men and the elephant?

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Janiszewski, H. A.; Keranen, K. M.; Li, J.; Saffer, D. M.; Shillington, D. J.; Schindler, K.

    2016-12-01

    The subduction plate interface as been variably described as a narrow discontinuity, a decoupling layer, a viscous channel, or an intensely deformed mixing zone. The 1994 Subduction Conference depicted this ambiguity with the parable of the blind men and the elephant, as participants struggled to rationalize dissimilar observations with an integrated view of subduction. We illustrate here how different seismological tools reveal contradictory natures to the slab surface at 30-80 km depth, highlighting new examples from Alaska and Cascadia. At the km scale and 0.05-0.5 Hz, the teleseismic scattered wavefield that generates receiver functions shows strong consistent patterns. It indicates a uniformly layered plate interface structure with a low-velocity channel along the thrust zone where earthquakes and slow slip events occur. These channels appear homogeneous and 1-4 km thick over wide areas, with hints of strong anisotropy. By contrast, reflection seismology shows complex discontinuous reflectivity packages at the tens of m scale and 5-20 Hz that imply much greater heterogeneity, in both in normal-incidence and wide-angle reflections. To span the intervening frequency band we analyze P-S conversions from in-slab earthquakes recorded nearby, in southern Alaska. These 1-10 Hz signals arrive between P and S and have comparable amplitude, indicating sharp or complex boundaries near the slab surface at 30-50 km depth. However the signals are not uniformly observed and indicate significant heterogeneity in the causative structure. The conversion points lie within those sampled by receiver functions so the differences are not due to geographic variations, and can be analyzed jointly. Taken together, these observations suggest that the same boundary is continuous and relatively homogenous, or highly heterogeneous and laminated, depending on its sampling. They can be reconciled if the structure at km-scale is relatively simple, while it is complex and highly heterogeneous at shorter wavelengths. A complex but sharply bounded low-velocity shear zone best explains these observations, indicating that most deformation is highly localized rather than forming broadly-distributed ductile flow features even well into the aseismic region.

  1. Interseismic deformation at the leading edge of obliquely converging Burmese plate in densely populated Bangladesh.

    NASA Astrophysics Data System (ADS)

    Akhter, S. H.; Steckler, M. S.; Seeber, L.; Mondal, D. R.; Goodbred, S. L., Jr.

    2016-12-01

    Densely populated Bangladesh sits at the juncture of 3-tectonic plates, India to the west and southwest, Eurasia to the north and non-rigid Burma platelet to the east. Moreover, the plate boundary between India and Burma passes through Bangladesh - the eastern part belongs to Burma plate while the western part belongs to Indian plate. Eastern Bangladesh, northeastern India and western Myanmar is characterized by the up to 250 km wide and 1400 km long Indo-Burma fold and thrust belt resulting from the oblique convergence of India-Burma plates. The northern extension of the Sumatra-Andaman subduction zone evolved from typical oceanic subduction in the Paleogene to the present subaerial subduction of the Ganges-Brahmaputra Delta. Subduction of the thick sedimentary pile has created the broad accretionary prism that prograding westward in Bangladesh. The deformation front runs near the low elevation Meghna estuary to the south and Sylhet marshes to the north. It is further demarcated by the westernmost buried anticlines of the fold and thrust belt, the Shahbazpur, Muladi, Kamta structures west of the Meghna River and Chatak structure in Sylhet. This position is reinforced by variations in the depth of the Holocene/Pleistocene boundary from shallow drilling. Recent GPS analysis demonstrates that the Indo-Burman subduction in deltaic Bangladesh is still active with convergence of 13 to 17 mm/y and that the décollement beneath the fold-thrust belt is locked (Steckler et. al., 2016). A megathrust earthquake occurred along Chittagong-Arakan coast in 1762 and a great earthquake in Upper Assam in 1548 brought remarkable changes in topography of these regions. A seismic gap exists between these two regions, i.e., in the Chittagong-Sylhet segment. The amount of elastic energy that has been stored in this seismic gap for at least 400 years is likely to slip >6m of the megathrust with a potential earthquake of Mw 8.2+ although it is unknown if the megathrust is seismogenic up to the deformation front.

  2. The Role of Proto-Thrusts in Frontal Accretion and Accommodation of Plate Convergence, Hikurangi Subduction Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Barnes, P.; Ghisetti, F.; Ellis, S. M.; Morgan, J.

    2016-12-01

    Proto-thrusts are an enigmatic structural feature at the toe of many subduction accretionary wedges. They are commonly recognised in seismic reflection sections as relatively small-displacement (tens of metres) faults seaward of the primary deformation front. Although widely assumed to reflect incipient accretionary deformation and to mark the location of future thrusts, proto-thrusts have received relatively little attention. Few studies have attempted to characterise their displacement properties, evolution, and kinematic role in frontal accretion processes associated with propagation of the interface décollement. In this study, we make use of excellent quality geophysical and bathymetric imaging of the spectacular 25 km-wide Hikurangi margin proto-thrust zone (PTZ), the structure of which varies significantly along strike. From a detailed structural analysis, we provide the first substantial quantitative dataset on proto-thrust geometry, displacement profiles, fault scaling relationships, and fault population characteristics. These analyses provide new insights into the role of inferred stratigraphic inhomogeneity in proto-thrust development, and the role of proto-thrust arrays in frontal accretion. Our observations, combined with our own recently published reconstructions of the wedge, and ongoing numerical simulations, indicate a migrating wave of proto-thrust activity in association with forward-advancement of the décollement. Calculation of tectonic shortening accommodated by the active PTZ east of the present deformation front, from measurements of seismically-imaged fault displacements and estimates of sub-seismic faulting derived from power law relationships, reveal their surprisingly significant role in accommodating regional plate convergence. South of the colliding Bennett Knoll Seamount, the predominantly seaward-vergent PTZ has accommodated 3.3 km of tectonic shortening, of which 70% is at sub-seismic scale. In comparison, north of Bennett Knoll Seamount, the predominantly landward-vergent PTZ has accommodated 4 km of shortening, of which 87% is at sub-seismic scale. These data combined with estimates of stratigraphic ages and deformation duration, indicate that proto-thrusts potentially accommodate up 30-50% of the total convergence rate.

  3. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework

    NASA Astrophysics Data System (ADS)

    Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad

    2017-11-01

    Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.

  4. How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.

    2017-12-01

    The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.

  5. The 2017/09/08 Mw 8.2 Tehuantepec, Mexico Earthquake: A Large but Compact Dip-Slip Faulting Event Severing the Slab

    NASA Astrophysics Data System (ADS)

    Hjorleifsdottir, V.; Iglesias, A.; Suarez, G.; Santoyo, M. A.; Villafuerte, C. D.; Ji, C.; Franco-Sánchez, S. I.; Singh, S. K.; Cruz-Atienza, V. M.; Ando, R.

    2017-12-01

    The Mw 8.2 September 8 earthquake occurred in the middle of the "Tehuantepec Gap", a segment of the Mexican subduction zone that has no historical mentions of a large earthquake. It was, however, not the expected subduction megathrust earthquake, but rather an intraplate, normal faulting event, in the subducting oceanic Cocos plate. The earthquake rupture initiated at a depth of 50 km and propagated NW on a near-vertical plane, breaking towards the surface. Most of the slip was concentrated in the distance range 30-100 km from the hypocenter and at depth between 15 and 50 km, with maximum slip of 15m. The earthquake seems to have broken the entire lithosphere, estimated to be 35 km thick. The strike of the fault is about 20 degrees oblique to the trench but aligned with the existing fabric on the incoming oceanic plate, suggesting a structural control by preexisting intraslab fractures and activation by the extensional stress due to the slab bending and pulling. Aftershocks occurred along the fault plane during the first day after the event, with activation of other parallel structures within the subducting plate, towards the east, as well as in upper plate, in the following days. Coulomb stress modeling suggests that the stress on the plate interface above the rupture was significantly increased where shallow thrust aftershoks took place, and reduced updip of the earthquake. There are several other examples of large intraslab normal faulting earthquakes, near the downdip edge (1931 Mw 7.8 and 1999 Mw 7.5, Oaxaca) or directly below (1997 Mw 7.1, Michoacan) the coupled plate interface, along the Mexican subduction zone. The possibility of events of similar magnitude to the 2017 earthquake occurring close to the coastline, all along this part of the subduction zone, cannot be ruled out.

  6. Local thickening of the Cascadia forearc crust and the origin of seismic reflectors in the uppermost mantle

    USGS Publications Warehouse

    Calvert, A.J.; Ramachandran, K.; Kao, H.; Fisher, M.A.

    2006-01-01

    Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a − 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.

  7. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  8. Late Cretaceous-Cenozoic subduction-collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey

    NASA Astrophysics Data System (ADS)

    Akıncı, Ahmet Can; Robertson, Alastair H. F.; Ünlügenç, Ulvi Can

    2016-01-01

    Evidence of the subduction-collision history of the S Neotethys is well exposed in the frontal part of the SE Anatolian thrust belt and the adjacent Arabian continental margin. The foreland succession in the study area begins with Eocene shelf carbonates, ranging from shallow marine to deeper marine, without sedimentary input from the Tauride continent to the north. After a regional hiatus (Oligocene), sedimentation resumed during the Early Miocene with terrigenous gravity-flow deposition in the north (Lice Formation) and shallow-marine carbonates further south. Clastic detritus was derived from the Tauride continent and oceanic accretionary material. The base of the overriding Tauride allochthon comprises ophiolite-derived debris flows, ophiolite-related mélange and dismembered ophiolitic rocks. Above this, the regional-scale Bulgurkaya sedimentary mélange (an olistostrome) includes blocks and dismembered thrust sheets of metamorphic rocks, limestone and sandstone, which include Late Cretaceous and Eocene foraminifera. The matrix is mainly strongly deformed Eocene-Oligocene mudrocks, hemipelagic marl and sandstone turbidites. The thrust stack is topped by a regionally extensive thrust sheet (Malatya metamorphic unit), which includes greenschist facies marble, calcschist, schist and phyllite, representing Tauride continental crust. Beginning during the Late Mesozoic, the S Neotethys subducted northwards beneath a backstop represented by the Tauride microcontinent (Malatya metamorphic unit). Ophiolites formed within the S Neotethys and accreted to the Tauride active margin. Large-scale sedimentary mélange developed along the Tauride active margin during Eocene-Oligocene. On the Arabian margin, a sedimentary hiatus and tilting (Oligocene) is interpreted to record initial continental collision. The Early Miocene terrigenous gravity flows represent a collision-related flexural foreland basin. Southward overthrusting of the Tauride allochthon took place during Early-Middle Miocene. Associated regional uplift triggered large-scale alluvial deposition. The foreland folded and faulted in response to suture zone tightening (Late Miocene). Left-lateral strike slip characterised the Plio-Pleistocene.

  9. Geologic processes of accretion in the Cascadia subduction zone west of Washington State

    USGS Publications Warehouse

    Fisher, M.A.; Flueh, E.R.; Scholl, D. W.; Parsons, T.; Wells, R.E.; Tréhu, A.; ten Brink, Uri S.; Weaver, C.S.

    1999-01-01

    The continental margin west of Oregon and Washington undergoes a northward transition in morphology, from a relatively narrow, steep slope west of Oregon to a broad, midslope terrace off Washington. Multichannel seismic (MCS) reflection data collected over the accretionary complex show that the morphologic transition is accompanied by significant change in accretionary style: West of Oregon the direction of thrust vergence in the wedge toe flip-flops between landward and seaward, whereas off Washington, thrust faults in the toe verge consistently landward, except near the mouth of the Columbia River where detachment folding of accreted sediment is evident. Furthermore, rocks under the broad midslope terrace west of Washington appear to be intruded by diapirs. The combination of detachment folding, diapirs, and landward-vergent thrust faults all suggest that nearly as far landward as the shelf break, coupling along the interplate decollement is, or has been, low, as suggested by other lines of evidence.

  10. Probability Assessment of Mega-thrust Earthquakes in Global Subduction Zones -from the View of Slip Deficit-

    NASA Astrophysics Data System (ADS)

    Ikuta, R.; Mitsui, Y.; Ando, M.

    2014-12-01

    We studied inter-plate slip history for about 100 years using earthquake catalogs. On assumption that each earthquake has stick-slip patch centered in its centroid, we regard cumulative seismic slips around the centroid as representing the inter-plate dislocation. We evaluated the slips on the stick-slip patches of over-M5-class earthquakes prior to three recent mega-thrust earthquakes, the 2004 Sumatra (Mw9.2), the 2010 Chile (Mw8.8), and the 2011 Tohoku (Mw9.0) around them. Comparing the cumulative seismic slips with the plate convergence, the slips before the mega-thrust events are significantly short in large area corresponding to the size of the mega-thrust events. We also researched cumulative seismic slips after other three mega-thrust earthquakes occurred in this 100 years, the 1952 Kamchatka (Mw9.0), the 1960 Chile (Mw9.5), the 1964 Alaska (Mw9.2). The cumulative slips have been significantly short in and around the focal area after their occurrence. The result should reflect persistency of the strong or/and large inter-plate coupled area capable of mega-thrust earthquakes. We applied the same procedure to global subduction zones to find that 21 regions including the focal area of above mega-thrust earthquakes show slip deficit over large area corresponding to the size of M9-class earthquakes. Considering that at least six M9-class earthquakes occurred in this 100 years and each recurrence interval should be 500-1000 years, it would not be surprised that from five to ten times of the already known regions (30 to 60 regions) are capable of M9 class earthquakes. The 21 regions as expected M9 class focal areas in our study is less than 5 to 10 times of the known 6, some of these regions may be divided into a few M9 class focal area because they extend to much larger area than typical M9 class focal area.

  11. Bivergent thrust wedges surrounding oceanic island arcs: Insight from observations and sandbox models of the northeastern caribbean plate

    USGS Publications Warehouse

    ten Brink, Uri S.; Marshak, S.; Granja, Bruna J.L.

    2009-01-01

    At several localities around the world, thrust belts have developed on both sides of oceanic island arcs (e.g., Java-Timor, Panama, Vanuatu, and the northeastern Caribbean). In these localities, the overall vergence of the backarc thrust belt is opposite to that of the forearc thrust belt. For example, in the northeastern Caribbean, a north-verging accretionary prism lies to the north of the Eastern Greater Antilles arc (Hispaniola and Puerto Rico), whereas a south-verging thrust belt called the Muertos thrust belt lies to the south. Researchers have attributed such bivergent geometry to several processes, including: reversal of subduction polarity; subduction-driven mantle flow; stress transmission across the arc; gravitational spreading of the arc; and magmatic inflation within the arc. New observations of deformational features in the Muertos thrust belt and of fault geometries produced in sandbox kinematic models, along with examination of published studies of island arcs, lead to the conclusion that the bivergence of thrusting in island arcs can develop without reversal of subduction polarity, without subarc mantle flow, and without magmatic inflation. We suggest that the Eastern Greater Antilles arc and comparable arcs are simply crustalscale bivergent (or "doubly vergent") thrust wedges formed during unidirectional subduction. Sandbox kinematic modeling suggests, in addition, that a broad retrowedge containing an imbricate fan of thrusts develops only where the arc behaves relatively rigidly. In such cases, the arc acts as a backstop that transmits compressive stress into the backarc region. Further, modeling shows that when arcs behave as rigid blocks, the strike-slip component of oblique convergence is accommodated entirely within the prowedge and the arc-the retrowedge hosts only dip-slip faulting ("frontal thrusting"). The existence of large retrowedges and the distribution of faulting in an island arc may, therefore, be evidence that the arc is relatively rigid. The rigidity of an island arc may arise from its mafi c composition and has implications for seismic-hazard analysis. ?? 2009 Geological Society of America.

  12. Subduction and exhumation of a continental margin in the Scandinavian Caledonides: Insights from ultrahigh pressure metamorphism, late orogenic basins and 3D numerical modelling

    NASA Astrophysics Data System (ADS)

    Cuthbert, Simon

    2017-04-01

    The Scandinavian Caledonides (SC) represents a plate collision zone of Himalayan style and scale. Three fundamental characteristics of this orogen are: (1) early foreland-directed, tectonic transport and stacking of nappes; (2) late, wholesale reversal of tectonic transport; (3) ultrahigh pressure metamorphism of felsic crust derived from the underthrusting plate at several levels in the orogenic wedge and below the main thrust surface, indicating subduction of continental crust into the mantle. The significance of this for crustal evolution is the profound remodeling of continental crust, direct geochemical interaction of such crust and the mantle and the opening of accommodation space trapping large volumes of clastic detritus within the orogen. The orogenic wedge of the SC was derived from the upper crust of the Baltica continental margin (a hyper-extended passive margin), plus terranes derived from an assemblage of outboard arcs and intra-oceanic basins and, at the highest structural level, elements of the Laurentian margin. Nappe emplacement was driven by Scandian ( 430Ma) collision of Baltica with Laurentia, but emerging Middle Ordovician ages for diamond-facies metamorphism for the most outboard (or rifted) elements of Baltica suggest prior collision with an arc or microcontinent. Nappes derived from Baltica continental crust were subducted, in some cases to depths sufficient to form diamond. These then detached from the upper part of the down-going plate along major thrust faults, at which time they ceased to descend and possibly rose along the subduction channel. Subduction of the remaining continental margin continued below these nappes, possibly driven by slab-pull of the previously subducted Iapetus oceanic lithosphere and metamorphic densification of subducted felsic continental margin. 3D numerical modelling based upon a Caledonide-like plate scenario shows that if a continental corner or promontory enters the subduction zone, the continental margin descends to greater depths than for a simple orthogonal collision and its modelled thermal evolution is consistent with UHP metamorphic assemblages recorded in the southern part of the SC. Furthermore, a tear initiates at the promontary tip along the ocean-continent junction and propagates rapidly along the orogen. The buoyant upthrust of the subducted margin can then lead to reversal of the motion vector of the entire subducting continent, which withdraws the subducted lithospheric margin out of the subduction channel ("eduction"). Because of the diachroneity of slab failure, the continent also rotates, which causes the eduction vector to change azimuth over time. These model behaviours are consistent with the late orogenic structural evolution of the southern SC. However, during the final exhumation stage the crust may not have acted entirely coherently, as some eduction models propose: There is evidence that some inboard Baltica crust experienced late, shallow subduction before detaching as giant "flakes" that carried the orogenic wedge piggyback, forelandwards. Eduction and flake-tectonics could have operated coevally; the model system does not preclude this. Finally, the traction of a large educting (or extruding) mass of continental margin against the overlying orogenic wedge may have stretched and ruptured the wedge, resulting in opening of the late-orogenic Old Red Sandstone molasse basins.

  13. Seismicity of the Earth 1900-2012 Java and vicinity

    USGS Publications Warehouse

    Jones, Eric S.; Hayes, Gavin P.; Bernardino, Melissa; Dannemann, Fransiska K.; Furlong, Kevin P.; Benz, Harley M.; Villaseñor, Antonio

    2014-01-01

    The Sunda convergent margin extends for 5,600 km from the Bay of Bengal and the Andaman Sea, both located northwest of the map area, towards the island of Sumba in the southeast, and then continues eastward as the Banda arc system. This tectonically active margin is a result of the India and Australia plates converging with and subducting beneath the Sunda plate at a rate of approximately 50 to 70 mm/yr. The main physiographic feature associated with this convergent margin is the Sunda-Java Trench, which stretches for 3,000 km parallel to the Java and Sumatra land masses and terminates at 120° E. The convergence of the Indo-Australia and Sunda plates produces two active volcanic arcs: Sunda, which extends from 105 to 122° E and Banda, which extends from 122 to 128° E. The Sunda arc results solely from relatively simple oceanic plate subduction, while the Banda arc represents the transition from oceanic subduction to continental collision, where a complex, broad deforming zone is found. Based on modern activity, the Banda arc can be divided into three distinct zones: an inactive section, the Wetar Zone, bound by two active segments, the Flores Zone in the west and the Damar Zone in the east. The lack of volcanism in the Wetar Zone is attributed to the collision of Australia with the Sunda plate. The absence of gap in volcanic activity is underlain by a gap in intermediate depth seismicity, which is in contrast to nearly continuous, deep seismicity below all three sections of the arc. The Flores Zone is characterized by down-dip compression in the subducted slab at intermediate depths and late Quaternary uplift of the forearc. These unusual features, along with GPS data interpretations indicate that the Flores Zone marks the transition between subduction of oceanic crust in the west and the collision of continental crust in the east. The Java section of the Sunda arc is considered relatively aseismic historically when compared to the highly seismically active Sumatra section, despite both areas being located along the same active subduction margin. Shallow (0–20 km) events have occurred historically in the overlying Sunda plate, causing damage to local and regional communities. A recent example was the May 26, 2006 M6.3 left-lateral strike-slip event that occurred at a depth of 10 km in central Java, and caused over 5,700 fatalities. Intermediate depth (70–300 km) earthquakes frequently occur beneath Java as a result of intraplate faulting within the Australia slab. Deep (300–650 km) earthquakes occur beneath the Java Sea and the back-arc region to the north of Java. Similar to other intermediate depth events, these earthquakes are also associated with intraslab faulting. However, this subduction zone exhibits a gap in seismicity from 250 to 400 km, interpreted as the transition between extensional and compressional slab stresses. Historical examples of large intraplate events include: the 1903 M8.1 event, 1921 M7.5 event, 1977 M8.3 event, and August 2007 M7.5 event. Large thrust earthquakes close to the Java trench are typically interplate faulting events along the slab interface between the Australia and Sunda plates. These earthquakes also generally have high tsunamigenic potential due to their shallow hypocentral depths. In some cases, these events have demonstrated slow moment-release and have been defined as ‘tsunami’ earthquakes, where rupture is large in the weak crustal layers very close to the seafloor. These events are categorized by tsunamis that are significantly larger than predicted by the earthquake’s magnitude. The most notable tsunami earthquakes in the Java region occurred on June 2, 1994 (M7.8) and July 17, 2006 (M7.7). The 1994 event produced a tsunami with wave runup heights of 13 m, killing over 200 people. The 2006 event produced a tsunami of up to 15 m, and killed 730 people. Although both of these tsunami earthquakes were characterized by rupture along thrust faults, they were followed by an abundance of normal faulting aftershocks. These aftershocks are interpreted to result from extension within the subducting Australia plate, whereas the mainshocks represented interplate faulting between the Australia and Sunda plates.

  14. Rheological Properties and Heterogeneities Along the Down-Dip Extent of a Subduction Megathrust: Insights from the Condrey Mountain Schist, Northern California

    NASA Astrophysics Data System (ADS)

    Tewksbury-Christle, C. M.; Behr, W. M.; Helper, M. A.

    2017-12-01

    Episodic tremor and slow slip (ETS) is commonly observed in warm subduction zones down-dip of a locked megathrust. Proposed mechanisms for ETS involve some form of rheological heterogeneity along the subduction interface. Observations from exhumed subduction-related rocks allow us to investigate the constitutive laws that govern the interface, as well as the types and distributions of rheological heterogeneities that develop and/or persist in the tremor source region. The Late Jurassic to Early Cretaceous Condrey Mountain Schist (CMS), Klamath Mountains, northern California, provides insight into interface rheology along the down-dip extent (350-450°C, 5-8 kbar) of a subduction megathrust. The CMS consists of greenschist and blueschist facies metasediments (including graphitic mica schists), metabasalts, and metaserpentinites, all pervasively deformed under prograde metamorphic conditions with minimal retrogressive overprint. A transect of peak metamorphic temperatures determined using graphite crystallinity shows a constant, but small, inverted thermal gradient with increasing structural depth, suggesting equilibration of temperature discontinuities during underplating. Despite the lack of thermal contrasts, rheological heterogeneities are preserved in the form of km-scale cryptic thrusts that separate lithological packages deforming by different mechanisms. Graphitic mica schists exhibit pervasive cleavage-microlithon fabrics indicative of deformation by quartz dissolution-precipitation creep. Blueschist-facies oceanic crustal sequences juxtaposed against the graphitic mica schists show coeval deformation, but are deformed primarily by dislocation creep in amphibole. These observations suggest that the subduction megathrust likely transitions down-dip into a viscous (rather than frictional) interface shear zone, but that original lithological heterogeneities persist in the form of non-Newtonian vs. Newtonian viscous patches.

  15. Tracing Geophysical Indicators of Fluid-Induced Serpentinization in the Pampean Flat Slab Subduction Region of Chile

    NASA Astrophysics Data System (ADS)

    Bourke, J. R.; Nikulin, A.; Park, J. J.

    2016-12-01

    An activity gap in the Andean volcanic arc in the Pampean section of the subduction zone in Chile ( 28°-33°S) marks a section of flat-slab subduction. Past studies connected this change in geometry to the collision and subduction of the Juan Fernandez Ridge and the resulting migration of both the thrust front and magmatism eastward to the Sierras Pampeanas. The fate of fluids released from the subducting Nazca slab remains uncertain and the degree of their interaction with the basal layer of the continental lithosphere is poorly understood. We present initial results of a receiver-function investigation and forward-modeling effort at station GO03 operated by the Chilean National Seismic Network. Receiver function analysis of 75 well-recorded teleseismic earthquake events recorded at GO03 allow us to constrain the position of the subducting Nazca slab and to address the physical properties of the interplate contact zone. Critically, our analysis indicates presence of a highly-anisotropic zone of low velocities directly above the subucting Nazca slab. We point out a remarkable similarity in geophysical characteristics between the observed seismic anomaly at GO03 and a volume of proposed serpentinization in an area of sub-horizontal subduction above the Juan de Fuca slab in Cascadia. This interpretation is further supported by forward-modeling receiver functions at GO03 relying on a velocity model that incorporates a serpentinized interplate region. The newly-identified low-velocity highly-anisotropic layer may extend beyond the GO03 area and act as a mineral reservoir that captures and, possibly, transports fluids derived from the dehydrating Nazca Plate as it subducts below South America. It is likely that there is a relationship between this feature and the lack of volcanic activity in the Pampean flat slab region. Figure Caption: A) Backazimuth sweep of receiver functions recorded at station GO03 with predicted phase arrivals plotted for 55 km, 65 km, 75 km and 85 km. B) Depth-migrated receiver functions for station GO03 relying on AK-135 velocity model and local seismicity (Mw>4.5) plotted within 15km of a 100km profile centered on GO03 along the dominant direction of subduction (74°).

  16. Tsunami hazard map in eastern Bali

    NASA Astrophysics Data System (ADS)

    Afif, Haunan; Cipta, Athanasius

    2015-04-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  17. Tsunami hazard map in eastern Bali

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id; Cipta, Athanasius; Australian National University, Canberra

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and backmore » thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.« less

  18. Thick-skinned tectonics within the intracontinental easternmost Atlas foreland-and-thrust belt (Tunisia): Meso-Cenozoic kinematics and implications for regional geodynamics

    NASA Astrophysics Data System (ADS)

    Belkhiria, W.; Boussiga, H.; Inoubli, M. H.

    2017-05-01

    The transition zone between western and central Mediterranean domains presents a key area to investigate kinematic interactions within the adjacent orogen systems such as the easternmost Atlas foreland-and-thrust belt. Gravity and seismic data revealed a highly structured basement, characterizing a series of structural highs and lows delimited by high-angle N-S, E-W, and NW-SE extensional faults. This basement architecture is inherited from successive extensional events related to the openings of the Triassic-Early Cretaceous Tethys oceans (i.e., Alpine Tethys, Ligurian Tethys, and Mesogea). Throughout this period, this mosaic of continental blocks significantly controlled the thickness and facies distributions. Early stages of diapirism took place along these basement faults and allowed maximum subsidence in minibasins revealed by the development of growth strata. In response to the Late Cretaceous-Eocene shortenings, these extensional faults have been reactivated as trasnpressional shear zones, giving rise to narrow pop-up structures. In addition, gravity modeling indicates crustal thinning and deep-rooted faults affecting the crust south of the Zaghouan Thrust and along E-W transfer zones. From the late Miocene, a drastic change in the stress regime is attributed to the effect of the adjacent Sicily channel on the study area. This promotes crustal thinning, basin subsidence, and channeling up of mantle-derived helium along lithospheric-scale weak zones. Our results give rise to new insights into the reactivation of inherited weakness zones of southern Tethys margin in response to the complex interaction between African and Eurasian plates accommodated by subduction, rollback, collision, and slab segmentation.

  19. Seismotectonics of the Trans-Himalaya, Eastern Ladakh, India

    NASA Astrophysics Data System (ADS)

    Paul, A.

    2016-12-01

    The eastern Ladakh-Karakoram zone is the northwest part of the trans-Himalayan belt which bears signature of the India-Asia collision process in the form of suture zones and exhumed blocks that underwent deep subduction and intra-continental crustal scale fault zones.The seismotectonic scenario of northwest part of India-Asia collision zone has been studied by analyzing the local earthquake data (M 1.4-4.3) recorded by a broadband seismological network consisting of 14 stations. Focal Mechanism Solution (FPS) of 13 selected earthquakes were computed through waveform inversion of three-component broadband records. Depth distribution of the earthquakes and FPS of local earthquakes obtained through waveform inversion reveal the kinematics of the major fault zones present in Eastern Ladakh. The most pronounced cluster of seismicity is observed in the Karakoram Fault (KF) zone up to a depth of 65 km. The FPS reveals transpressive environment with the strike of inferred fault plane roughly parallel to the KF. It is inferred that the KF at least penetrates up to the lower crust and is a manifestation of active under thrusting of Indian lower crust beneath Tibet. Two clusters of micro seismicity is observed at a depth range of 5-20 km at north western and southeastern fringe of the Tso Morari gneiss dome which can be correlated to the activities along the Zildat fault and Karzok fault respectively. The FPSs estimated for representative earthquakes show thrust fault solutions for the Karzok fault and normal fault solution for the Zildat fault. It is inferred that the Zildat fault is acting as detachment, facilitating the exhumation of the Tso Morari dome. On the other hand, the Tso Morari dome is thrusting over the Karzok ophiolite on its southern margin along the Karzokfault, due to gravity collapse.

  20. Potential field signatures along the Zagros collision zone in Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-01-01

    The Zagros orogenic belt, known as an active fold-thrust belt, was formed in southwestern Iran due to the convergence of the Arabian and Eurasian plates. In this study, potential field data are inverted in 3D to image the variations of magnetic susceptibility and density contrast along the collision zone, resulting in better tectonic understanding of the studied region. Geophysical data measured by airborne magnetic and ground-based gravity systems are used to construct an integrated model that facilitates the interpretations of various tectonic zones across a 450-km line. This line intersects the main structural units from the SW portion of the Zagros belt. The constructed model reveals a contrast that indicates the transition between the two continental plates coinciding with the western boundaries of the Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT) fault. The subduction of the Arabian continental crust below the Iranian one is evident because of its lower susceptibility property and alternating sequence of high and low density regions. Higher susceptibility, magnetic remanence and density are the mainstays of the Urumieh-Dokhtar Magmatic Assemblage (UDMA) zone at the NE of the studied route, whereas lower values of these properties correspond to (1) the thin massive Tertiary-Neogene and Quaternary sediments of the central domain (CD) zone, and (2) the thick sedimentary and salt intrusion cover over the Zagros Fold-and-Thrust belt (ZFTB). Higher density of regions in the Arabian crust below the ZFTB implies that fault activities have caused significant vertical displacement of the basement. Finally, a simplified geological model is presented based upon the inversions of the geophysical data, in which the main geological units are divided along the studied route.

  1. The Western Guerrero, Mexico, seismogenic zone from the microseismicity associated to the 1979 Petatlan and 1985 Zihuatanejo earthquakes

    NASA Astrophysics Data System (ADS)

    Valdés-González, C.; Novelo-Casanova, D. A.

    1998-03-01

    The Western Guerrero, Mexico, seismogenic zone was completely ruptured by the 1979 ( Ms 7.6) Petatlan and 1985 ( Ms 7.5) Zihuatanejo earthquakes. Hypocenters of the Petatlan aftershocks define an approximately 10-km-thick Wadati— Benioff zone of high seismic activity and a thinner seaward region that is primarily an extension of the deeper part of the 10-km-thick zone. The aftershocks of the Zihuatanejo earthquake occurred in the seaward portion of the same epicentral region but the hypocenters were shallower. The spatial distribution of the closely timed microseismicity following the two earthquakes outlines a seismogenic zone which begins at about 40 km from the trench axis of the Western Guerrero subduction region and extends approximately 90 km. These results indicate that the maximum possible size of thrust earthquakes in the Guerrero seismic gap is of Mw ˜8.4.

  2. Arc-arc collision ongoing in the southernmost part of the Kuril trench region revealed from integrated analyses of the 1998-2000 Hokkaido Transect seismic data

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Tsumura, N.; Ito, T.; Sato, H.; Kurashimo, E.; Hirata, N.; Arita, K.; Noda, K.; Fujiwara, A.; Abe, S.; Kikuchi, S.; Suzuki, K.

    2014-12-01

    The oblique subduction of the Pacific plate beneath the southernmost part of the Kuril trench is generating a unique tectonic environment in the Hokkaido Island, Japan. In this area, the Kuril forearc sliver started to collide against Northeast (NE) Japan arc from the east at the time of middle Miocene to form the Hidaka collision zone (HCZ). This collision has been acting as a responsible factor for the westward obduction of the crustal rocks of the Kuril arc (the Hidaka metamorphic belt (HMB)) along the Hidaka main thrust (HMT) and the development of the thick foreland fold-and-thrust belt. A multi-disciplinary project of the 1998-2000 Hokkaido Transect, crossing the northern part of the HCZ in EW direction, collected high-quality seismic data on a 227-km seismic refraction/wide-angle reflection profile and three seismic reflection lines. Reprocessing/reinterpretation for this data set revealed detailed collision structure ongoing in the northern part of the HCZ. The westward obduction of the Kuril arc crust was clearly imaged along the HMT. This obduction starts at a depth of 27-30 km, much deeper than in the southern HCZ (23-25 km). In the west of the HMT, we recognize the gently eastward dipping structure, representing the fragments of Cretaceous subduction/arc complexes or deformation interfaces branched from the HMT. The most important finding from our reprocessing is a series of reflection events at a 30-45 km depth below the obducted Kuril arc crust, which probably correspond to the lower crust/Moho within the NE Japan arc descending down to the east under the collision zone. The wide-angle reflection data indicate that the subducted NE Japan arc meets the Kuril arc 30-40 km east of the HMT at a depth of 30 km. This structural geometry well explained a weak but coherent seismic phase observed at far offsets (120-180 km) on the wide-angle reflection line. The obtained structure shows the complicated collision style where the upper 30-km Kuril arc crust is thrust up with significant deformation. At the moment, we cannot find out the strong evidence of crustal delamination. This is in a marked contrast with the case of the southern part of the HCZ, where the upper 23-km crust is obducted at about 20 km distance from the HMT, while the remaining lower crust is descending down to the subducted Pacific plate.

  3. Inverse models of plate coupling and mantle rheology: Towards a direct link between large-scale mantle flow and mega thrust earthquakes

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Ratnaswamy, V.; Stadler, G.; Rudi, J.; Liu, X.; Ghattas, O.

    2017-12-01

    We are developing high-resolution inverse models for plate motions and mantle flow to recover the degree of mechanical coupling between plates and the non-linear and plastic parameters governing viscous flow within the lithosphere and mantle. We have developed adjoint versions of the Stokes equations with fully non-linear viscosity with a cost function that measures the fit with plate motions and with regional constrains on effective upper mantle viscosity (from post-glacial rebound and post seismic relaxation). In our earlier work, we demonstrate that when the temperature field is known, the strength of plate boundaries, the yield stress and strain rate exponent in the upper mantle are recoverable. As the plate boundary coupling drops below a threshold, the uncertainty of the inferred parameters increases due to insensitivity of plate motion to plate coupling. Comparing the trade-offs between inferred rheological parameters found from a Gaussian approximation of the parameter distribution and from MCMC sampling, we found that the Gaussian approximation—which is significantly cheaper to compute—is often a good approximation. We have extended our earlier method such that we can recover normal and shear stresses within the zones determining the interface between subducting and over-riding plates determined through seismic constraints (using the Slab1.0 model). We find that those subduction zones with low seismic coupling correspond with low inferred values of mechanical coupling. By fitting plate motion data in the optimization scheme, we find that Tonga and the Marianas have the lowest values of mechanical coupling while Chile and Sumatra the highest, among the subduction zones we have studies. Moreover, because of the nature of the high-resolution adjoint models, the subduction zones with the lowest coupling have back-arc extension. Globally we find that the non-linear stress-strain exponent, n, is about 3.0 +/- 0.25 (in the upper mantle and lithosphere) and a pressure-independent yield stress is 150 +/- 25 MPa. The stress in the shear zones is just tens of MPa, and in preliminary models, we find that both the shear and the normal stresses are elevated in the coupled compared to the uncoupled subduction zones.

  4. Mechanical and hydraulic properties of Nankai accretionary prism sediments: Effect of stress path

    NASA Astrophysics Data System (ADS)

    Kitajima, Hiroko; Chester, Frederick M.; Biscontin, Giovanna

    2012-10-01

    We have conducted triaxial deformation experiments along different loading paths on prism sediments from the Nankai Trough. Different load paths of isotropic loading, uniaxial strain loading, triaxial compression (at constant confining pressure, Pc), undrained Pc reduction, drained Pc reduction, and triaxial unloading at constant Pc, were used to understand the evolution of mechanical and hydraulic properties under complicated stress states and loading histories in accretionary subduction zones. Five deformation experiments were conducted on three sediment core samples for the Nankai prism, specifically from older accreted sediments at the forearc basin, underthrust slope sediments beneath the megasplay fault, and overthrust Upper Shikoku Basin sediments along the frontal thrust. Yield envelopes for each sample were constructed based on the stress paths of Pc-reduction using the modified Cam-clay model, and in situ stress states of the prism were constrained using the results from the other load paths and accounting for horizontal stress. Results suggest that the sediments in the vicinity of the megasplay fault and frontal thrust are highly overconsolidated, and thus likely to deform brittle rather than ductile. The porosity of sediments decreases as the yield envelope expands, while the reduction in permeability mainly depends on the effective mean stress before yield, and the differential stress after yield. An improved understanding of sediment yield strength and hydromechanical properties along different load paths is necessary to treat accurately the coupling of deformation and fluid flow in accretionary subduction zones.

  5. Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Argus, Donald F.; Heflin, Michael B.

    1995-01-01

    We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.

  6. Relationship between two Solomon Islands Earthquakes in 2007 (M8.1), 2010 (M7.1), and Seismic Gap along the Subduction Zone, Revealed by ALOS/PALSAR

    NASA Astrophysics Data System (ADS)

    Miyagi, Y.; Ozawa, T.

    2010-12-01

    The Solomon Islands are located in the southwest of the Pacific Ocean. The Australian, Woodlark, and Solomon Sea plates subduct toward the northeast beneath the Pacific plate. Interaction among these four plates cause complicated tectonics around the Solomon Islands, and have caused interplate earthquakes in the subduction zone (e.g. Lay and Kanamori, 1980; Xu and Schwarts, 1993). On April 1, 2007 (UTC), an M8.1 interplate earthquake occurred in the subduction zone between the Pacific Plate and the Australian Plate. This earthquake was accompanied by a large tsunami and caused considerable damage in the area. The Japan Aerospace Exploration Agency (JAXA) carried out emergency observations using the Phased Array type L-band Synthetic Aperture Rader (PALSAR) installed on Advanced Land Observing Satellite (ALOS), and detected more than 2m of maximum displacement using differential interferometric SAR (DInSAR) technique. Miyagi et al. (2009) estimated a slip distribution of the seismic fault mainly from the PALSAR/DInSAR data and suggested that most of a seismic gap was filled by the 2007 events, but a small seismic gap connecting to an Mw7.0-sized earthquake still remained. On January 3, 2010, an M7.1 earthquake occurred in the vicinity of the remnant seismic gap. ALOS/PALSAR observed epicentral area both before and after the event, and detected crustal deformation associated with the earthquake. We inferred fault model using the PALSAR/DInSAR data and concluded that the 2010 event was the supposed thrust earthquake filling the remnant seismic gap. A distribution of coulomb failure stress change in the epicentral area after the 2007 event suggested the possibility that the 2010 event was triggered by the 2007 earthquake.

  7. Probabilistic tsunami hazard assessment for Makran considering recently suggested larger maximum magnitudes and sensitivity analysis for GNSS-based early warning

    NASA Astrophysics Data System (ADS)

    Zamora, N.; Hoechner, A.; Babeyko, A. Y.

    2014-12-01

    Iran and Pakistan are countries frequently affected by destructive earthquakes, as for instance, the magnitude 6.6 Bam earthquake in 2003 in Iran with about 30 000 casualties, or the magnitude 7.6 Kashmir earthquake 2005 in Pakistan with about 80'000 casualties. Both events took place inland, but in terms of magnitude, even significantly larger events can be expected to happen offshore, at the Makran subduction zone. This small subduction zone is seismically rather quiescent, nevertheless a tsunami caused by a thrust event in 1945 (Balochistan earthquake) led to about 4000 casualties. Nowadays, the coastal regions are more densely populated and vulnerable to similar events. Furthermore, some recent publications discuss the possiblity of rather rare huge magnitude 9 events at the Makran subduction zone. We analyze the seismicity at the subduction plate interface and generate various synthetic earthquake catalogs spanning 100000 years. All the events are projected onto the plate interface using scaling relations and a tsunami model is run for every scenario. The tsunami hazard along the coast is computed and presented in the form of annual probability of exceedance, probabilistic tsunami height for different time periods and other measures. We show how the hazard reacts to variation of the Gutenberg-Richter parameters and maximum magnitudes.We model the historic Balochistan event and its effect in terms of coastal wave heights. Finally, we show how an effective tsunami early warning could be achieved by using an array of high-precision real-time GNSS (Global Navigation Satellite System) receivers along the coast by applying it to the 1945 event and by performing a sensitivity analysis.

  8. Earthquake activity along the Himalayan orogenic belt

    NASA Astrophysics Data System (ADS)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  9. Fluid-rock interaction recorded in fault rocks of the Nobeoka Thrust, fossilized megasplay fault in an ancient accretionary complex

    NASA Astrophysics Data System (ADS)

    Hasegawa, R.; Yamaguchi, A.; Fukuchi, R.; Kitamura, Y.; Kimura, G.; Hamada, Y.; Ashi, J.; Ishikawa, T.

    2017-12-01

    The relationship between faulting and fluid behavior has been in debate. In this study, we clarify the fluid-rock interaction in the Nobeoka Thrust by major/trace element composition analysis using the boring core of the Nobeoka Thrust, an exhumed analogue of an ancient megasplay fault in Shimanto accretionary complex, southwest Japan. The hanging wall and the footwall of the Nobeoka Thrust show difference in lithology and metamorphic grade, and their maximum burial temperature is estimated from vitrinite reflectance analysis to be 320 330°C and 250 270°C, respectively (Kondo et al., 2005). The fault zone was formed in a fluid-rich condition, as evidenced by warm fluid migration suggested by fluid inclusion analysis (Kondo et al., 2005), implosion brecciation accompanied by carbonate precipitation followed by formation of pseudotachylyte (Okamoto et al., 2006), ankerite veins coseismically formed under reducing conditions (Yamaguchi et al., 2011), and quartz veins recording stress rotation in seismic cycles (Otsubo et al., 2016). In this study, first we analyzed the major/trace element composition across the principal slip zone (PSZ) of the Nobeoka Thrust by using fragments of borehole cores penetrated through the Nobeoka Thrust. Many elements fluctuated just above the PSZ, whereas K increase and Na, Si decrease suggesting illitization of plagioclase, as well as positive anomalies in Li and Cs were found within the PSZ. For more detail understanding, we observed polished slabs and thin sections of the PSZ. Although grain size reduction of deformed clast and weak development of foliation were observed entirely in the PSZ by macroscopic observation, remarkable development of composite planar fabric nor evidence of friction melting were absent. In this presentation, we show the result of major/trace element composition corresponding to the internal structure of PSZ, and discuss fluid-rock interaction and its impact to megasplay fault activity in subduction zones.

  10. Structure and tectonic evolution of the NE segment of the Polish-Ukrainian Carpathians during the Late Cenozoic: subsurface cross-sections and palinspastic models

    NASA Astrophysics Data System (ADS)

    Kuśmierek, Jan; Baran, Urszula

    2016-08-01

    The discrepant arrangement of the Carpathian nappes and syntectonic deposits of the Carpathian Foredeep reveals the oroclinal migration of the subduction direction of the platform margin during the Late Cenozoic. Formation of the nappes was induced by their detachment from disintegrated segments of the European Platform; the segments were shortened as a result of their vertical rotation in zones of compressional sutures. It finds expression in local occurrence of the backward vergence of folding against the generally forward vergence toward the Carpathian Foredeep. The precompressional configuration of sedimentation areas of particular nappes was reconstructed with application of the palinspastic method, on the basis of the hitherto undervalued model which emphasizes the influence of the subduction and differentiated morphology of the platform basement on the tectonic evolution of the fold and thrust belt. Superposition of the palaeogeographic representations and the present geometry of the orogen allows understanding of the impact of the magnitudes of tectonic displacements on the differentiation of the geological structure in the NE segment of the Carpathians. The differentiation has inspired different views of Polish and Ukrainian geologists on structural classification and evolution of the frontal thrusts.

  11. Spatial heterogeneity of stress and driving fluid pressure ratio inferred from mineral vein orientation along seismogenic megasplay fault (Nobeoka Thrust, Japan)

    NASA Astrophysics Data System (ADS)

    Otsubo, M.; Miyakawa, A.; Kawasaki, R.; Sato, K.; Yamaguchi, A.; Kimura, G.

    2015-12-01

    Fault zones including the damage zone and the fault core have a controlling influence on the crust's mechanical and fluid flow properties (e.g., Faulkner et al., 2010). In the Nankai subduction zone, southwest Japan, the velocity structures indicate the contrast of the pore fluid pressure between hanging wall and footwall of the megasplay fault (Tsuji et al., 2014). Nobeoka Thrust, which is an on-land example of an ancient megasplay fault, provides an excellent record of deformation and fluid flow at seismogenic depths (Kondo et al., 2005; Yamaguchi et al., 2011). Yamaguchi et al. (2011) showed that the microchemical features of syn-tectonic mineral veins along fault zones of the Nobeoka Thrust. The inversion approaches by using the mineral vein orientations can provide stress regimes and fluid driving pressure ratio (Jolly and Sanderson, 1997) at the time of fracture opening (e.g., Yamaji et al., 2010). In this study, we show (1) stress regimes in co- and post seismic period of the Nobeoka Thrust and (2) spatial heterogeneity of the fluid driving pressure ratio by using the mineral veins (extension veins) around the fault zone in the Nobeoka Thrust. We applied the inversion approach proposed by Sato et al. (2013) to estimate stress regimes by using the mineral vein orientations. The estimated stresses are the normal faulting stress regimes of which sigma 3 axes are almost horizontal and trend NNW-SSE in both the hanging wall and the footwall. The stress regimes are the negative stress for the reverse faulting stress regime that Kawasaki et al. (2014) estimated from the minor faults in the core samples of the Nobeoka Thrust Drilling Project (Hamahashi et al., 2013). And, the orientation of the sigma 3 axes of the estimated stress regime is parallel to the slip direction of the Nobeoka Thrust (Top to SSE; Kondo et al., 2005). These facts indicate the normal faulting stress regime at the time of fracture opening is the secondary stress generated by the slip of the Nobeoka Thrust. We estimated the fluid driving pressure ratio P* at the time of fracture opening by using the Mohr circle analysis that has been carried out using the vein orientation data. The estimated P* are 0.05 and 0.15-0.40 in the hanging wall and footwall, respectively. These results indicate that there are spatial differences of pore fluid pressure in the interseismic period.

  12. Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska

    USGS Publications Warehouse

    Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew

    2013-01-01

    High-resolution sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.

  13. Megathrust splay faults at the focus of the Prince William Sound asperity, Alaska

    NASA Astrophysics Data System (ADS)

    Liberty, Lee M.; Finn, Shaun P.; Haeussler, Peter J.; Pratt, Thomas L.; Peterson, Andrew

    2013-10-01

    sparker and crustal-scale air gun seismic reflection data, coupled with repeat bathymetric surveys, document a region of repeated coseismic uplift on the portion of the Alaska subduction zone that ruptured in 1964. This area defines the western limit of Prince William Sound. Differencing of vintage and modern bathymetric surveys shows that the region of greatest uplift related to the 1964 Great Alaska earthquake was focused along a series of subparallel faults beneath Prince William Sound and the adjacent Gulf of Alaska shelf. Bathymetric differencing indicates that 12 m of coseismic uplift occurred along two faults that reached the seafloor as submarine terraces on the Cape Cleare bank southwest of Montague Island. Sparker seismic reflection data provide cumulative Holocene slip estimates as high as 9 mm/yr along a series of splay thrust faults within both the inner wedge and transition zone of the accretionary prism. Crustal seismic data show that these megathrust splay faults root separately into the subduction zone décollement. Splay fault divergence from this megathrust correlates with changes in midcrustal seismic velocity and magnetic susceptibility values, best explained by duplexing of the subducted Yakutat terrane rocks above Pacific plate rocks along the trailing edge of the Yakutat terrane. Although each splay fault is capable of independent motion, we conclude that the identified splay faults rupture in a similar pattern during successive megathrust earthquakes and that the region of greatest seismic coupling has remained consistent throughout the Holocene.

  14. An integrated approach to the seismic activity and structure of the central Lesser Antilles subduction megathrust seismogenic zone

    NASA Astrophysics Data System (ADS)

    Hirn, Alfred; Laigle, Mireille; Charvis, Philippe; Flueh, Ernst; Gallart, Josep; Kissling, Edi; Lebrun, Jean-Frederic; Nicolich, Rinaldo; Sachpazi, Maria

    2010-05-01

    In order to increase the understanding of plate boundaries that show currently low seismic activity, as was the Sumatra-Andaman subduction before the major earthquake in 2004, a cluster of surveys and cruises has been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project on the Lesser Antilles subduction zone of the Carribean-America plate boundary. A segment of the corresponding transform boundary just tragically ruptured in the 2010 January 12, Haïti earthquake. This cluster is composed by the German cruise TRAIL with the vessel F/S M. A. MERIAN, the French cruise SISMANTILLES II with the IFREMER vessel N/O ATALANTE), and French cruise OBSANTILLES with the IRD vessel N/O ANTEA. During these cruises and surveys, 80 OBS, Ocean Bottom Seismometers, 64 of which with 3-components seismometers and hydrophones, and 20 OBH with hydrophones have been brought together from several pools (Geoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven), with up to 30 land stations (CSIC Barcelona, IPG Paris, INSU-RLBM and -Lithoscope, ETH Zurich). The deployment of all these instruments has been supported principally in addition by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT. The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the main target has been localized along 3 transects to the Arc, thanks to a preliminary survey in 2001, the French SISMANTILLES cruise. We will present the first results obtained during these experiments dedicated specifically to image at depth the seismic structure and activity of this region. To image faults at depth and the detailed upper-crustal structure, 3700 km of multi-beam bathymetry and multi-channel reflection seismic profiles have been collected along a grid comprising 7 strike-lines of up to 300 km long and spaced by 15 km and 12 transects of up to 150 km long and spaced by 25 km (SISMANTILLES II). All these airgun shots dedicated to deep penetration have been recorded by the 80 OBSs and 20 OBHs deployed by the F/S Merian and N/O Atalante on the nodes of this grid of profiles. It will permit to get Vp constraints on the deep forearc region and mantle wedge by wide-angle refraction studies, as well as constraints on the updip and downdip limits of the seismogenic part of the mega-thrust fault plane. Two of these transects have been extended across the whole arc during the TRAIL survey, with up to 50 OBSs deployed along both 240 km long profiles. All these OBSs remained several months after the shot experiments to gather data for accurate location of local earthquakes and possibly Vp and Vp/Vs tomography. They have been recovered and partly redeployed by N/O Antea during the OBSANTILLES survey. A significant number of those instruments had broadband seismometers, a notable originality in the case of the OBSs to probe the conditions for detecting low-frequency transient signals which have been found recently in the case of the Cascadia and Central Japan subductions and associated to their seismogenic character.

  15. Accretion in the wake of terrane collision: The Neogene accretionary wedge off Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Fruehn, J.; von Huene, Roland E.; Fisher, M.A.

    1999-01-01

    Subduction accretion and repeated terrane collision shaped the Alaskan convergent margin. The Yakutat Terrane is currently colliding with the continental margin below the central Gulf of Alaska. During the Neogene the terrane's western part was subducted after which a sediment wedge accreted along the northeast Aleutian Trench. This wedge incorporates sediment eroded from the continental margin and marine sediments carried into the subduction zone on the Pacific plate. Prestack depth migration was performed on six seismic reflection lines to resolve the structure within this accretionary wedge and its backstop. The lateral extent of the structures is constrained by high-resolution swath bathymetry and seismic lines collected along strike. Accretionary structure consists of variably sized thrust slices that were deformed against a backstop during frontal accretion and underplating. Toward the northeast the lower slope steepens, the wedge narrows, and the accreted volume decreases notwith-standing a doubling of sediments thickness in the trench. In the northeasternmost transect, near the area where the terrane's trailing edge subducts, no frontal accretion is observed and the slope is eroded. The structures imaged along the seismic lines discussed here most likely result from progressive evolution from erosion to accretion, as the trailing edge of the Yakutat Terrane is subducting.

  16. Source Mechanisms of Destructive Tsunamigenic Earthquakes occurred along the Major Subduction Zones

    NASA Astrophysics Data System (ADS)

    Yolsal-Çevikbilen, Seda; Taymaz, Tuncay; Ulutaş, Ergin

    2016-04-01

    Subduction zones, where an oceanic plate is subducted down into the mantle by tectonic forces, are potential tsunami locations. Many big, destructive and tsunamigenic earthquakes (Mw > 7.5) and high amplitude tsunami waves are observed along the major subduction zones particularly near Indonesia, Japan, Kuril and Aleutan Islands, Gulf of Alaska, Southern America. Not all earthquakes are tsunamigenic; in order to generate a tsunami, the earthquake must occur under or near the ocean, be large, and create significant vertical movements of the seafloor. It is also known that tsunamigenic earthquakes release their energy over a couple of minutes, have long source time functions and slow-smooth ruptures. In this study, we performed point-source inversions by using teleseismic long-period P- and SH- and broad-band P-waveforms recorded by the Federation of Digital Seismograph Networks (FDSN) and the Global Digital Seismograph Network (GDSN) stations. We obtained source mechanism parameters and finite-fault slip distributions of recent destructive ten earthquakes (Mw ≥ 7.5) by comparing the shapes and amplitudes of long period P- and SH-waveforms, recorded in the distance range of 30° - 90°, with synthetic waveforms. We further obtained finite-fault rupture histories of those earthquakes to determine the faulting area (fault length and width), maximum displacement, rupture duration and stress drop. We applied a new back-projection method that uses teleseismic P-waveforms to integrate the direct P-phase with reflected phases from structural discontinuities near the source, and customized it to estimate the spatio-temporal distribution of the seismic energy release of earthquakes. Inversion results exhibit that recent tsunamigenic earthquakes show dominantly thrust faulting mechanisms with small amount of strike-slip components. Their focal depths are also relatively shallow (h < 40 km). As an example, the September 16, 2015 Illapel (Chile) earthquake (Mw: 8.3; h: 26 km) reflects the major characteristics of the Peru-Chile subduction zone between the Nazca and South America Plates. The size, location, depth and focal mechanism of this earthquake are consistent with its occurrence on the megathrust interface in this region. This study is supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No: CAYDAG - 114Y066).

  17. Carbon Mobility at Subduction Interfaces via Deformation-Enhanced Fluid Infiltration: Evidence from the Swiss/Italian Alps

    NASA Astrophysics Data System (ADS)

    Jaeckel, K. P.; Bebout, G. E.; Angiboust, S.

    2016-12-01

    The interplay between fluid flow and deformation along subduction interfaces, and the extent to which deformation-enhanced fluid infiltration can drive decarbonation and carbonate dissolution, remain poorly understood. Recent work on HP/UHP decarbonation in W. Alps suites has indicated that, in intact volumes of metasediment, metabasalt, and ophicarbonate away from major shear zones and with few veins, carbonate is largely retained to 80-90 km depths (Cook-Kollars et al., 2014; Collins et al., 2015; Chem. Geol.). Yet uncertain is whether forearc fluid infiltration focused in intensely sheared and fractured zones could result in greater mobilization of C from subducting sections, in quantities sufficient to impact subduction zone C cycling. Lower-plate rocks at Arosa and Dent Blanche interface exposures (Bachmann et al., 2009, JGR; Angiboust et al., 2015, G3) are primarily calc-schist intercalated with meta-ultramafic and metamafic schist and contain carbonate-bearing veins of varying abundance and texture. At some localities, these sections contain blocks of carbonate, metabasalt, and upper-plate gneiss. Strongly deformed veins concordant with the foliation parallel to the thrust interface commonly contain carbonate and quartz. In highly sheared regions in the Arosa Zone, δ18O(VSMOW) values of some host-rocks and veins are shifted from +20 ± 2‰, values observed regionally for the Schistes Lustres, to values of +11 to +13‰. These shifts can be explained by interaction with externally-derived H2O-rich fluids with δ18O of +9 to +11‰. Smaller datasets for Dent Blanche localities hint at similar δ18O shifts. Most of these rocks contain little evidence of C release by decarbonation reactions. Evidence exists for local-scale dissolution of carbonate, during pressure solution, and carbonate-bearing veins reflect C mobility in fluids. Ongoing work assesses whether volumes of carbonate removed in some regions balance with those precipitated nearby in veins and pressure shadows.

  18. History of India-Asia Suturing in Tibet: Constraints and Questions

    NASA Astrophysics Data System (ADS)

    Kapp, P. A.; Ding, L.

    2011-12-01

    The India-Asia collision zone is widely pointed to as the type Cenozoic example of continental suturing and collision, yet there remains considerable controversy about its geological and geodynamical evolution. This in part may reflect the richness and complexity of the geological records exposed across the collision zone and how much remains to be extracted from them. Separating the formerly Andean-style continental margin of southern Asia (Gangdese arc and forearc of the Lhasa terrane) in the north, from Indian-affinity strata deformed in the Tethyan Himalayan thrust belt to the south, is the Indus-Yarlung suture zone (IYSZ). In Tibet, ophiolitic rocks along the IYSZ crystallized and were obducted in a suprasubduction zone setting during Early Cretaceous time. The ophiolitic rocks are of the appropriate age to have formed the basement upon which Gangdese forearc strata accumulated. Alternatively, they may represent remnants of an intra-oceanic subduction system that persisted in the Tethys, far from Asia, until Greater India collided with it during the latest Cretaceous to Paleocene. There has been no documentation, however, of ophiolitic or arc fragments younger than Early Cretaceous within the IYSZ. Distinguishing between these two end-member scenarios is important for interpreting detrital records of orogenesis and seismic tomographic images of the mantle. A preponderance of evidence suggests that collision between the Tethyan Himalaya and Asia initiated by 52 Ma. Initial collision led abruptly to profound and far-field changes in paleogeography and tectonism such that by 45 Ma, major shortening and potassic volcanism was ongoing in northern Tibet, plateau-like conditions were established in central Tibet, Tethyan Himalayan crust was undergoing anatexis, and Eo-Himalayan prograde metamorphism was underway. Additional constraints on the shortening history of the Tethyan Himalayan thrust belt will be key to assessing when and how much Greater Indian lithosphere was subducted northward beneath Asia during the Paleogene. Large-scale northward underthrusting of Greater Indian lithosphere (>600 km between 45 and 30 Ma), its subsequent rapid rollback to the south of the IYSZ (30 - 20 Ma), and renewed northward underthrusting (15 Ma to Recent), is inferred from north-south temporal sweeps in Cenozoic magmatism in Tibet. This history of Greater Indian lithosphere subduction may help explain major transitions in the kinematic evolution of the Himalayan-Tibetan orogen and can account for more than half of the total convergence between India and Asia since 50 Ma.

  19. Neogene subduction beneath Java, Indonesia: Slab tearing and changes in magmatism

    NASA Astrophysics Data System (ADS)

    Cottam, Michael; Hall, Robert; Cross, Lanu; Clements, Benjamin; Spakman, Wim

    2010-05-01

    Java is a Neogene calc-alkaline volcanic island arc formed by the northwards subduction of the Indo-Australian Plate beneath Sundaland, the continental core of SE Asia. The island has a complex history of volcanism and displays unusual subduction characteristics. These characteristics are consistent with the subduction of a hole in the down going slab that was formed by the arrival of a buoyant oceanic plateau at the trench. Subduction beneath Java began in the Eocene. However, the position and character of the calc-alkaline arc has changed over time. An older Paleogene arc ceased activity in the Early Miocene. Volcanic activity resumed in the Late Miocene producing a younger arc to the north of the older arc, and continues to the present day. An episode of Late Miocene thrusting at about 7 Ma is observed throughout Java and appears to be linked to northward movement of the arc. Arc rocks display typical calc-alkaline characteristics and reflect melting of the mantle wedge and subducted sediments associated with high fluid fluxes. Between West Java and Bali the present arc-trench gap is unusually wide at about 300 km. Seismicity identifies subducted Indian Ocean lithosphere that dips north at about 20° between the trench and the arc and then dips more steeply at about 60-70° from 100 to 600 km depth. In East Java there is gap in seismicity between about 250 and 500 km. Seismic tomography shows that this gap is not an aseismic section of the subduction zone but a hole in the slab. East Java is also unusual in the presence of K-rich volcanoes, now inactive, to the north of the calc-alkaline volcanoes of the active arc. In contrast to the calc-alkaline volcanism of the main arc, these K-rich melts imply lower fluid fluxes and a different mantle source. We suggest that all these observations can be explained by the tearing of the subducting slab when a buoyant oceanic plateau arrived at the trench south of East Java at about 8 Ma. With the slab unable to subduct, continued convergence caused contractional deformation and thrusting in Java. The slab then broke in front of the plateau. The trench stepped back to the south by about 150 km and subduction resumed behind the plateau, causing a hole to develop in the subducting slab. As the hole passed beneath the arc, and fluid flux declined, normal calc-alkaline volcanism ceased. With the mantle wedge melt component ‘switched off' K-rich melts, produced from a deeper mantle component that remained undiluted, dominated arc volcanism. As the hole got deeper K-rich volcanism ceased. Normal, calc-alkaline, arc activity resumed when the untorn slab following the hole was subducted.

  20. Metamorphic P-T conditions across the Chugach Metamorphic Complex (Alaska)—A record of focussed exhumation during transpression

    NASA Astrophysics Data System (ADS)

    Bruand, Emilie; Gasser, Deta; Stüwe, Kurt

    2014-03-01

    The Chugach Metamorphic Complex (CMC) is a large high-grade metamorphic complex that developed in the Eocene within the Chugach accretionary complex along the margin of Alaska where subduction is still ongoing. The CMC has a conspicuous asymmetric structure with a migmatitic zone flanked in the north and west by amphibolite facies schists and in the south by a metabasite belt. To the north and south, major, crustal-scale fault zones juxtapose the Chugach terrane against much lower-grade and less-deformed sequences belonging to different terranes. Curiously these crustal-scale structures are known to have largely strike slip motion posing the question as to the nature of the exhumation of the high-grade complex between them. However, P-T conditions which would allow an estimation of the amount of exhumation were lacking for large parts of the complex. This paper presents petrographic descriptions, biotite-garnet thermometry, RSCM thermometry, average P-T calculations and pseudosection modelling from three major across-strike transects covering the complex from west to south-east. Our results reveal that, both temperature and pressure vary substantially across the complex. More specifically, peak metamorphic conditions evolve from 4-7 kbar and ~ 550-650 °C in the northern schist zone to 5-11 kbar and ~ 650-750 °C in the migmatite zone in the south of the complex. The higher pressure estimates in the south of the complex indicate that focussed exhumation must have occurred in this area and was probably initiated by the subduction of a high topographic relief (intra-oceanic arc or ridge subduction) and the accretion of the metabasite belt in the south. Exhumation of the CMC occurred in an overall transpressive strain regime, with strike-slip deformation concentrated along the northern Border Range fault zone and thrusting and exhumation focussed within the southern migmatite zone and splay faults of the Contact fault zone. The T/P ratios in the southern migmatite zone indicate that the thermal perturbation of the migmatites is less than previously inferred. These new results, associated with the structural data and the accretion of a metabasite belt in the south of the complex, seem incompatible with the existing ridge-subduction models.

  1. Accretionary orogens through Earth history

    USGS Publications Warehouse

    Cawood, Peter A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F.

    2009-01-01

    Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero. ?? The Geological Society of London 2009.

  2. Moment tensor inversion of the 2016 southeast offshore Mie earthquake in the Tonankai region using a three-dimensional velocity structure model: effects of the accretionary prism and subducting oceanic plate

    NASA Astrophysics Data System (ADS)

    Takemura, Shunsuke; Kimura, Takeshi; Saito, Tatsuhiko; Kubo, Hisahiko; Shiomi, Katsuhiko

    2018-03-01

    The southeast offshore Mie earthquake occurred on April 1, 2016 near the rupture area of the 1944 Tonankai earthquake, where seismicity around the interface of the Philippine Sea plate had been very low until this earthquake. Since this earthquake occurred outside of seismic arrays, the focal mechanism and depth were not precisely constrained using a one-dimensional velocity model, as in a conventional approach. We conducted a moment tensor inversion of this earthquake by using a three-dimensional velocity structure model. Before the analysis of observed data, we investigated the effects of offshore heterogeneous structures such as the seawater, accretionary prism, and subducting oceanic plate by using synthetic seismograms in a full three-dimensional model and simpler models. The accretionary prism and subducting oceanic plate play important roles in the moment tensor inversion for offshore earthquakes in the subduction zone. Particularly, the accretionary prism, which controls the excitation and propagation of long-period surface waves around the offshore region, provides better estimations of the centroid depths and focal mechanisms of earthquakes around the Nankai subduction zone. The result of moment tensor inversion for the 2016 southeast offshore Mie earthquake revealed low-angle thrust faulting with a moment magnitude of 5.6. According to geophysical surveys in the Nankai Trough, our results suggest that the rupture of this earthquake occurred on the interface of the Philippine Sea plate, rather than on a mega-splay fault. Detailed comparisons of first-motion polarizations provided additional constraints of the rupture that occurred on the interface of the Philippine Sea plate.

  3. Introduction to the structures and processes of subduction zones

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction processes and products from post-subduction processes and products. Nevertheless, available results indicate that our definition and understanding of subduction zone processes and products can be advanced by the convergence of observations and interpretations from geochemical, geological, geophysical and geodynamic studies of both oceanic and continental subduction zones. Therefore, insights into subduction zones can be provided by intergration of different approaches from different targets in the near future.

  4. Introduction to the structures and processes of subduction zones

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Zhao, Zi-Fu

    2017-09-01

    Subduction zones have been the focus of many studies since the advent of plate tectonics in 1960s. Workings within subduction zones beneath volcanic arcs have been of particular interest because they prime the source of arc magmas. The results from magmatic products have been used to decipher the structures and processes of subduction zones. In doing so, many progresses have been made on modern oceanic subduction zones, but less progresses on ancient oceanic subduction zones. On the other hand, continental subduction zones have been studied since findings of coesite in metamorphic rocks of supracrustal origin in 1980s. It turns out that high-pressure to ultrahigh-pressure metamorphic rocks in collisional orogens provide a direct target to investigate the tectonism of subduction zones, whereas oceanic and continental arc volcanic rocks in accretionary orogens provide an indirect target to investigate the geochemistry of subduction zones. Nevertheless, metamorphic dehydration and partial melting at high-pressure to ultrahigh-pressure conditions are tectonically applicable to subduction zone processes at forearc to subarc depths, and crustal metasomatism is the physicochemical mechanism for geochemical transfer from the slab to the mantle in subduction channels. Taken together, these provide us with an excellent opportunity to find how the metamorphic, metasomatic and magmatic products are a function of the structures and processes in both oceanic and continental subduction zones. Because of the change in the thermal structures of subduction zones, different styles of metamorphism, metasomatism and magmatism are produced at convergent plate margins. In addition, juvenile and ancient crustal rocks have often suffered reworking in episodes independent of either accretionary or collisional orogeny, leading to continental rifting metamorphism and thus rifting orogeny for mountain building in intracontinental settings. This brings complexity to distinguish the syn-subduction processes and products from post-subduction processes and products. Nevertheless, available results indicate that our definition and understanding of subduction zone processes and products can be advanced by the convergence of observations and interpretations from geochemical, geological, geophysical and geodynamic studies of both oceanic and continental subduction zones. Therefore, insights into subduction zones can be provided by integration of different approaches from different targets in the near future.

  5. Thermal Models of the Costa Rica - Nicaragua Subduction Zone: the Effect of a Three-Dimensional Oceanic Plate Structure and Hydrothermal Circulation in the Temperature Distribution and Mantle Wedge Dynamics

    NASA Astrophysics Data System (ADS)

    Rosas, J. C.; Currie, C. A.; He, J.

    2014-12-01

    Over the last years several 2D thermo-mechanical models of the Costa Rica - Nicaragua Subduction Zone (CNSZ) have studied the thermal distribution of sections of the fault. Such investigations allow us to understand temperature-related aspects of subduction zones, like volcanism and megathrust earthquake locations. However, certain features of the CNSZ limit the range of applicability of 2D models. In the CNSZ, geochemical trends and seismic anisotropy studies reveal a 3D mantle wedge flow that departs from the 2D corner flow. The origin of this flow are dip variations (20o to 25o between Nicaragua and Costa Rica) and the presence of a slab window in Panama that allows material to flow into the mantle wedge. Also, the Central America trench has abrupt variations in surface heat flux that contrasts with steady changes in plate age and convergence rate. These variations have been attributed to hydrothermal circulation (HC), which effectively removes heat from the oceanic crust.In this project we analyze the thermal structure of the CNSZ. The objective is to study dehydration and metamorphic reactions, as well as the length of the megathrust seismogenic zone. We created 3D finite-element models that employ a dislocation creep rheology for the mantle wedge. Two aspects make our models different from previous studies: an up-to-date 3D slab geometry, and an implementation of HC by introducing a conductive proxy in the subducting aquifer, allowing us to model convective heat transport without the complex, high-Rayleigh number calculations. A 3D oceanic boundary condition that resembles the along-strike changes in surface heat flux is also employed. Results show a maximum mantle wedge flow rate of 4.69 cm/yr in the along-strike direction, representing more than 50% of the slab convergence rate. With respect to 2D models, analysis shows this flow changes temperatures by ~100 C in the mantle wedge near areas of strong slab curvature. Along the subducting interface, there is also a change of 10-40 C, which can have a significant impact on dehydration and metamorphic reactions. Also, 2D models have proven that HC controls temperatures along the subduction thrust, which controls the length of the seismogenic zone. In general, the combined effect of 3D mantle wedge flow and HC is expected to have a significant impact on the thermal structure.

  6. Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases

    NASA Astrophysics Data System (ADS)

    Butler, Jared P.; Beaumont, Christopher

    2017-04-01

    The plate tectonic setting in which proto-ophiolite 'oceanic' lithosphere is created remains controversial with a number of environments suggested. Recent opinions tend to coalesce around supra-subduction zone (SSZ) forearc extension, with a popular conceptual model in which the proto-ophiolite forms during foundering of oceanic lithosphere at the time of spontaneous or induced onset of subduction. This mechanism is favored in intra-oceanic settings where the subducting lithosphere is old and the upper plate is young and thin. We investigate an alternative mechanism; namely, decoupling of the subducting oceanic lithosphere in the forearc of an active continental margin, followed by subduction zone (trench) retreat and creation of a forearc oceanic rift basin, containing proto-ophiolite lithosphere, between the continental margin and the retreating subduction zone. A template of 2D numerical model experiments examines the trade-off between strength of viscous coupling in the lithospheric subduction channel and net slab pull of the subducting lithosphere. Three tectonic styles are observed: 1) C, continuous subduction without forearc decoupling; 2) R, forearc decoupling followed by rapid subduction zone retreat; 3) B, breakoff of subducting lithosphere followed by re-initiation of subduction and in some cases, forearc decoupling (B-R). In one case (BA-B-R; where BA denotes backarc) subduction zone retreat follows backarc rifting. Subduction zone decoupling is analyzed using frictional-plastic yield theory and the Stefan solution for the separation of plates containing a viscous fluid. The numerical model results are used to explain the formation of Xigaze group ophiolites, southern Tibet, which formed in the Lhasa terrane forearc, likely following earlier subduction and not necessarily during subduction initiation. Either there was normal coupled subduction before subduction zone decoupling, or precursor slab breakoff, subduction re-initiation and then decoupling. Rapid deep upper-mantle circulation in the models during subduction zone retreat can exhume and emplace material in the forearc proto-ophiolite from as deep as the mantle transition zone, thereby explaining diamonds and other 10-15 GPa UHP phases in Tibetan ophiolites.

  7. Frictional properties of relic fore arc metasediments from Kodiak Island, AK: Implications for slip in the upper accretionary prism

    NASA Astrophysics Data System (ADS)

    Miller, P.; Rabinowitz, H. S.; Saffer, D. M.; Savage, H. M.

    2017-12-01

    The slip behavior of subduction megathrusts is controlled by the mechanical and frictional properties of the material entrained along the plate interface. The shallow reaches of subduction thrusts (i.e. <20 km) commonly exhibit a stability transition from an updip aseismic zone, where earthquakes typically do not nucleate, to a deeper seismogenic zone. Recent observations indicate that the transitional region hosts a spectrum of slow earthquake phenomena, including Slow Slip Events (SSE's), tremor, and very low frequency earthquakes (VLFE). However, there remain few detailed experimental studies of relevant fault materials under in situ conditions to probe the connections between rock frictional properties and fault slip behavior. To quantitatively understand the evolution of frictional properties along the upper part of the megathrust, we conducted a suite of shearing experiments at pressures and temperatures similar to in situ conditions, using exhumed subduction zone fault rocks composed of metamorphosed clay-rich sediments from Kodiak Island, Alaska. The metasediments we tested have experienced maximum burial depths ranging from 4-6 to 10-15 km, and peak temperatures ranging from 100-125 to 280 oC, making them ideal analogs for investigating the evolution of friction across the stability transition and into the seismogenic zone. These samples were powdered and sheared in a triaxial deformation apparatus at conditions ranging from 25 MPa and 20 oC, to 195 MPa and 200 oC. Preliminary results at room temperature show steady state friction values of 0.56 and rate strengthening behavior (a-b 0.002) with Dc of 19 mm. Ongoing work is characterizing the frictional properties across the stability transition in greater detail.

  8. Large-scale deformation related to the collision of the Aleutian Arc with Kamchatka

    USGS Publications Warehouse

    Gesit, Eric L.; Scholl, David W.

    1994-01-01

    The far western Aleutian Island Arc is actively colliding with Kamchatka. Westward motion of the Aleutian Arc is brought about by the tangential relative motion of the Pacific plate transferred to major, right-lateral shear zones north and south of the arc. Early geologic mapping of Cape Kamchatka (a promontory of Kamchatka along strike with the Aleutian Arc) revealed many similarities to the geology of the Aleutian Islands. Later studies support the notion that Cape Kamchatka is the farthest west Aleutian “island” and that it has been accreted to Kamchatka by the process of arc-continent collision. Deformation associated with the collision onshore Kamchatka includes gravimetrically determined crustal thickening and formation of a narrow thrust belt of intensely deformed rocks directly west of Cape Kamchatka. The trend of the thrust faults is concave toward the collision zone, indicating a radial distribution of maximum horizontal compressive stress. Offshore, major crustal faults trend either oblique to the Kamchatka margin or parallel to major Aleutian shear zones. These offshore faults are complex, accommodating both strike-slip and thrust displacements as documented by focal mechanisms and seismic reflection data. Earthquake activity is much higher in the offshore region within a zone bounded to the north by the northernmost Aleutian shear zone and to the west by an apparent aseismic front. Analysis of focal mechanisms in the region indicate that the present-day arc-continent “contact zone” is located directly east of Cape Kamchatka. In modeling the dynamics of the collision zone using thin viscous sheet theory, the rheological parameters are only partially constrained to values of n (the effective power law exponent) ≥ 3 and Ar(the Argand number) ≤ 30. These values are consistent with a forearc thermal profile of Kamchatka, previously determined from heat flow modeling. The thin viscous sheet modeling also indicates that onshore thrust faulting is a consequence, not only of compressive stresses resulting from the west directed collision, but also of sediment-induced coupling of the subducting Pacific plate.

  9. Large-scale fault interactions at the termination of a subduction margin

    NASA Astrophysics Data System (ADS)

    Mouslopoulou, V.; Nicol, A., , Prof; Moreno, M.; Oncken, O.; Begg, J.; Kufner, S. K.

    2017-12-01

    Active subduction margins terminate against, and transfer their slip onto, plate-boundary transform faults. The manner in which plate motion is accommodated and partitioned across such kinematic transitions from thrust to strike-slip faulting over earthquake timescales, is poorly documented. The 2016 November 14th, Mw 7.8 Kaikoura Earthquake provides a rare snapshot of how seismic-slip may be accommodated at the tip of an active subduction margin. Analysis of uplift data collected using a range of techniques (field measurements, GPS, LiDAR) and published mapping coupled with 3D dislocation modelling indicates that earthquake-slip ruptured multiple faults with various orientations and slip mechanisms. Modelled and measured uplift patterns indicate that slip on the plate-interface was minor. Instead, a large offshore thrust fault, modelled to splay-off the plate-interface and to extend to the seafloor up to 15 km east of the South Island, appears to have released subduction-related strain and to have facilitated slip on numerous, strike-slip and oblique-slip faults on its hanging-wall. The Kaikoura earthquake suggests that these large splay-thrust faults provide a key mechanism in the transfer of plate motion at the termination of a subduction margin and represent an important seismic hazard.

  10. STRUCTURAL GEOMETRY OF AN EXHUMED UHP TERRANE IN THE EASTERN SULU OROGEN, CHINA: IMPLICATIONS FOR CONTINENTAL COLLISIONAL PROCESSES

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kusky, T.

    2009-12-01

    High-precision 1:1,000 mapping of Yangkou Bay, eastern Sulu orogen, defines the structural geometry and history of the world’s most significant UHP (Ultrahigh Pressure) rock exposures. Four stages of folds are recognized in the UHP rocks and associated quartzo-feldspathic gneiss. Eclogite facies rootless F1 and isoclinal F2 folds are preserved locally in coesite-eclogite. Mylonitic to ultramylonitic cosesit-eclogite shear zones separate 5-10-meter-thick nappes of ultramafic-mafic UHP rocks from banded quartzo-feldspathic gneiss. These shear zones are folded, and progressively overprinted by amphibolite and greenschist facies shear zones that become wider with lower grade. The deformation sequences is explained by deep subduction of offscraped thrust slices of oceanic or lower continental crust, caught between the colliding North and South China cratons in the Mesozoic. After these slices were structurally isolated along the plate interface, they were rolled like ball-bearings, in the subduction channel during their exhumation, forming several generations of folds, sequentially lower-grade foliations and lineations, and intruded by several generations of in situ and exotically derived melts. The shear zones formed during different generations of deformation are wider with lower grades, suggesting that deep-crustal/upper mantle deformation operates efficiently (perhaps with more active crystallographic slip systems) than deformation at mid to upper crustal levels.

  11. Deformation driven by subduction and microplate collision: Geodynamics of Cook Inlet basin, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Haeussler, Peter J.

    2006-01-01

    Late Neogene and younger deformation in Cook Inlet basin is caused by dextral transpression in the plate margin of south-central Alaska. Collision and subduction of the Yakutat microplate at the northeastern end of the Aleutian subduction zone is driving the accretionary complex of the Chugach and Kenai Mountains toward the Alaska Range on the opposite side of the basin. This deformation creates belts of fault-cored anticlines that are prolific traps of hydrocarbons and are also potential sources for damaging earthquakes. The faults dip steeply, extend into the Mesozoic basement beneath the Tertiary basin fill, and form conjugate flower structures at some localities. Comparing the geometry of the natural faults and folds with analog models created in a sandbox deformation apparatus suggests that some of the faults accommodate significant dextral as well as reverse-slip motion. We develop a tectonic model in which dextral shearing and horizontal shortening of the basin is driven by microplate collision with an additional component of thrust-type strain caused by plate subduction. This model predicts temporally fluctuating stress fields that are coupled to the recurrence intervals of large-magnitude subduction zone earthquakes. The maximum principal compressive stress is oriented east-southeast to east-northeast with nearly vertical least compressive stress when the basin's lithosphere is mostly decoupled from the underlying subduction megathrust. This stress tensor is compatible with principal stresses inferred from focal mechanisms of earthquakes that occur within the crust beneath Cook Inlet basin. Locking of the megathrust between great magnitude earthquakes may cause the maximum principal compressive stress to rotate toward the northwest. Moderate dipping faults that strike north to northeast may be optimally oriented for rupture in the ambient stress field, but steeply dipping faults within the cores of some anticlines are unfavorably oriented with respect to both modeled and observed stress fields, suggesting that elevated fluid pressure may be required to trigger fault rupture. ?? 2006 Geological Society of America.

  12. Modeling the Geometry of Plate Boundary and Seismic Structure in the Southern Ryukyu Trench Subduction Zone, Japan, Using Amphibious Seismic Observations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Takahashi, T.; Ishihara, Y.; Kaiho, Y.; Arai, R.; Obana, K.; Nakanishi, A.; Miura, S.; Kodaira, S.; Kaneda, Y.

    2018-02-01

    Here we present the new model, the geometry of the subducted Philippine Sea Plate interface beneath the southern Ryukyu Trench subduction zone, estimated from seismic tomography and focal mechanism estimation by using passive and active data from a temporary amphibious seismic network and permanent land stations. Using relocated low-angle thrust-type earthquakes, repeating earthquakes, and structural information, we constrained the geometry of plate boundary from the trench axis to a 60 km depth with uncertainties of less than 5 km. The estimated plate geometry model exhibited large variation, including a pronounced convex structure that may be evidence of a subducted seamount in the eastern portion of study area, whereas the western part appeared smooth. We also found that the active earthquake region near the plate boundary, defined by the distance from our plate geometry model, was clearly separated from the area dominated by short-term slow-slip events (SSEs). The oceanic crust just beneath the SSE-dominant region, the western part of the study area, showed high Vp/Vs ratios (>1.8), whereas the eastern side showed moderate or low Vp/Vs (<1.75). We interpreted this as an indication that high fluid pressures near the surface of the slab are contributing to the SSE activities. Within the toe of the mantle wedge, P and S wave velocities (<7.5 and <4.2 km/s, respectively) lower than those observed through normal mantle peridotite might suggest that some portions of the mantle may be at least 40% serpentinized.

  13. Vertical tectonics at an active continental margin

    NASA Astrophysics Data System (ADS)

    Houlié, N.; Stern, T. A.

    2017-01-01

    Direct observations of vertical movements of the earth's surface are now possible with space-based GPS networks, and have applications to resources, hazards and tectonics. Here we present data on vertical movements of the Earth's surface in New Zealand, computed from the processing of GPS data collected between 2000 and 2015 by 189 permanent GPS stations. We map the geographical variation in vertical rates and show how these variations are explicable within a tectonic framework of subduction, volcanic activity and slow slip earthquakes. Subsidence of >3 mm/yr is observed along southeastern North Island and is interpreted to be due to the locked segment of the Hikurangi subduction zone. Uplift of 1-3 mm/yr further north along the margin of the eastern North Island is interpreted as being due to the plate interface being unlocked and underplating of sediment on the subduction thrust. The Volcanic Plateau of the central North Island is being uplifted at about 1 mm/yr, which can be explained by basaltic melts being injected in the active mantle-wedge at a rate of ∼6 mm/yr. Within the Central Volcanic Region there is a 250 km2 area that subsided between 2005 and 2012 at a rate of up to 14 mm/yr. Time series from the stations located within and near the zone of subsidence show a strong link between subsidence, adjacent uplift and local earthquake swarms.

  14. Origin of ophiolite complexes related to intra-oceanic subduction initiation: implications of IODP Expedition 352 (Izu-Bonin fore arc)

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Avery, Aaron; Carvallo, Claire; Christeson, Gail; Ferré, Eric; Kurz, Walter; Kutterolf, Steffen; Morgan, Sally; Pearce, Julian; Reagan, Mark; Sager, William; Shervais, John; Whattam, Scott; International Ocean Discovery Program Expedition 352 (Izu-Bonin-Mariana Fore Arc), the Scientific Party of

    2015-04-01

    Ophiolites, representing oceanic crust exposed on land (by whatever means), are central to the interpretation of many orogenic belts (e.g. E Mediterranean). Based mostly on geochemical evidence, ophiolites are widely interpreted, in many but by no means all cases, as having formed within intra-oceanic settings above subduction zones (e.g. Troodos ophiolite, Cyprus). Following land geological, dredging and submersible studies, fore arcs of the SW Pacific region became recognised as likely settings of supra-subduction zone ophiolite genesis. This hypothesis was tested by recent drilling of the Izu-Bonin fore arc. Four sites were drilled, two on the outer fore arc and two on the upper trench slope. Site survey seismic data, combined with borehole data, indicate that three of the sites are located in fault-controlled sediment ponds that formed in response to dominantly down-to the-west extensional faulting (with hints of preceding top-to-the-east compressional thrusting). The sediments overlying the igneous basement, of maximum Late Eocene to Recent age, document ash and aeolian input, together with mass wasting of the fault-bounded sediment ponds. At the two more trenchward sites (U1440 and U1441), mostly tholeiitic basalts were drilled, including massive and pillowed lavas and hyaloclastite. Geochemically, these extrusives are of near mid-oceanic ridge basalt composition (fore arc basalts). Subtle chemical deviation from normal MORB can be explained by weakly fluid-influenced melting during decompression melting in the earliest stages of supra-subduction zone spreading (not as 'trapped' older MORB). The remaining two sites, c. 6 km to the west (U1439 and U1442), penetrated dominantly high-magnesian andesites, known as boninites, largely as fragmental material. Their formation implies the extraction of highly depleted magmas from previously depleted, refractory upper mantle in a supra-subduction zone setting. Following supra-subduction zone spreading, the active modern arc formed c. 200 km westwards of the trench. The new drilling evidence proves that both fore arc-type basalt and boninite formed in a fore arc setting soon after subduction initiation (c.52 Ma). Comparisons with ophiolites reveal many similarities, especially the presence of fore arc-type basalts and low calcium boninites. The relative positions of the fore arc basalts, boninites and arc basalts in the Izu Bonin and Mariana forearc (based on previous studies) can be compared with the positions of comparable units in a range of ophiolite complexes in orogenic belts including the Troodos, Oman, Greek (e.g. Vourinos), Albanian (Mirdita), Coast Range (California) and Bay of Islands (Newfoundland) ophiolites. The comparisons support the interpretation that all of the ophiolites formed during intra-oceanic subduction initiation. There are also some specific differences between the individual ophiolites suggesting that ophiolites should be interpreted individually in their regional tectonic settings.

  15. Analog modelling of obduction processes

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2012-04-01

    Obduction corresponds to one of plate tectonics oddities, whereby dense, oceanic rocks (ophiolites) are presumably 'thrust' on top of light, continental ones, as for the short-lived, almost synchronous Peri-Arabic obduction (which took place along thousands of km from Turkey to Oman in c. 5-10 Ma). Analog modelling experiments were performed to study the mechanisms of obduction initiation and test various triggering hypotheses (i.e., plate acceleration, slab hitting the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises (1) an upper mantle, modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and (2) high-viscosity silicone plates (Rhodrosil Gomme with PDMS iron fillers to reproduce densities of continental or oceanic plates), located at the centre of the tank above the syrup to simulate the subducting and the overriding plates - and avoid friction on the sides of the tank. Convergence is simulated by pushing on a piston at one end of the model with velocities comparable to those of plate tectonics (i.e., in the range 1-10 cm/yr). The reference set-up includes, from one end to the other (~60 cm): (i) the piston, (ii) a continental margin containing a transition zone to the adjacent oceanic plate, (iii) a weakness zone with variable resistance and dip (W), (iv) an oceanic plate - with or without a spreading ridge, (v) a subduction zone (S) dipping away from the piston and (vi) an upper, active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as is known to have been the case in Oman). Several configurations were tested and over thirty different parametric tests were performed. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Displacements, together with along-strike and across-strike internal deformation in all plates were systematically measured, allowing for a very precise and reproducible tracking of deformation. Experiments demonstrate that obduction chiefly depends on how the overall shortening (or convergence) is partitionned between the weakness zone (W) and the preexisting subduction zone (S). Conditions favorable to obduction are shown to correspond to a specific range of coupling across (S) and resistance across (W). Our results thereby (1) constrain the range of physical conditions required for obduction to develop/nucleate and (2) underline the key role of acceleration for triggering obduction (rather than ridge subduction or slab resistance to penetration at the 660 km discontinuity). They also demonstrate that the emplacement of dense, oceanic material on continental lithosphere is not a mysterious process but results from some large scale, normal subduction process that do not require exotic boundary conditions. Agard P., Jolivet L., Vrielynck B., Burov E. & Monié P., 2007. Plate acceleration : the obduction trigger? Earth and Planetary Science Letters, 258, 428-441.

  16. Quantifying potential tsunami hazard in the Puysegur subduction zone, south of New Zealand

    USGS Publications Warehouse

    Hayes, G.P.; Furlong, K.P.

    2010-01-01

    Studies of subduction zone seismogenesis and tsunami potential, particularly of large subduction zones, have recently seen a resurgence after the great 2004 earthquake and tsunami offshore of Sumatra, yet these global studies have generally neglected the tsunami potential of small subduction zones such as the Puysegur subduction zone, south of New Zealand. Here, we study one such relatively small subduction zone by analysing the historical seismicity over the entire plate boundary region south of New Zealand, using these data to determine the seismic moment deficit of the subduction zone over the past ~100 yr. Our calculations indicate unreleased moment equivalent to a magnitude Mw 8.3 earthquake, suggesting this subduction zone has the potential to host a great, tsunamigenic event. We model this tsunami hazard and find that a tsunami caused by a great earthquake on the Puysegur subduction zone would pose threats to the coasts of southern and western South Island, New Zealand, Tasmania and southeastern Australia, nearly 2000 km distant. No claim to original US government works Geophysical Journal International ?? 2010 RAS.

  17. Tabletop Tectonics: Diverse Mountain Ranges Using Flour and Graphite

    NASA Astrophysics Data System (ADS)

    Davis, D. M.

    2006-12-01

    It has been recognized for some time that the frontal deformation zones where plates converge (foreland fold- and-thrust belts on continents and accretionary wedges at subduction zones) involve shortening over a decoupling layer, or decollement. A simple but successful way of explaining many aspects of their behavior is called the critical Coulomb wedge model, which regards these contractional wedges as analogous to the wedge-shaped mass of soil accreted in front of a bulldozer, or the wedge of snow that piles up in front of a snow plow. The shape and deformation history of the accreted wedge of soil or snow will depend upon the frictional strength of the material being plowed up and the surface over which it is being plowed. The same is true of `bulldozer' wedges consisting of many km thick piles of sediment at convergent plate margins. Using flour (or powdered milk), sandpaper, graphite, transparency sheets, and athletic field marker chalk, manipulated with sieves, brushes, pastry bags and blocks and sheets of wood, it is possible to demonstrate a wide variety of processes and tectonic styles observed at convergent plate boundaries. Model fold-and-thrust belts that behave like natural examples with a decollement that is strong (e.g., in rock without high pore fluid pressure) or weak (e.g., in a salt horizon or with elevated pore fluid pressure) can be generated simply by placing wither sandpaper or graphite beneath the flour that is pushed across the tabletop using a block of wood (the strong basement and hiterland rocks behind the fold-thrust belt). Depending upon the strength of the decollement, the cross-sectional taper of the deforming wedge will be thin or broad, the internal deformation mild or intense, and the structures either close to symmetric or strongly forward-vergent, just as at the analogous natural fold-thrust belts. Including a horizontal sheet of wood or Plexiglas in front of the pushing block allows generation of an accretionary wedge, outer-are high, and forearc basin, just as over a subduction zone. Any dark material emplaced (a pastry bag works well) atop the experiment before deformation in the form of football-field `hash marks' every 10 cm allows for easy calculation of strain distribution at any time during or after the experiment. Finally, the entire orogen can be excavated using a plastic photocopier transparency sheet. If the original set-up included occasional thin layers of red and blue field marker chalk within sedimentary column (the rest of which consists of white flour or powdered milk), excavation reveals (quite colorfully) many internal details of the fold-thrust belts that have been generated.

  18. Seismic hazard analysis for Jayapura city, Papua

    NASA Astrophysics Data System (ADS)

    Robiana, R.; Cipta, A.

    2015-04-01

    Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock type and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 - 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds.

  19. Subduction Thermal Regime, Slab Dehydration, and Seismicity Distribution Beneath Hikurangi Based on 3-D Simulations

    NASA Astrophysics Data System (ADS)

    Suenaga, Nobuaki; Ji, Yingfeng; Yoshioka, Shoichi; Feng, Deshan

    2018-04-01

    The downdip limit of seismogenic interfaces inferred from the subduction thermal regime by thermal models has been suggested to relate to the faulting instability caused by the brittle failure regime in various plate convergent systems. However, the featured three-dimensional thermal state, especially along the horizontal (trench-parallel) direction of a subducted oceanic plate, remains poorly constrained. To robustly investigate and further map the horizontal (trench-parallel) distribution of the subduction regime and subsequently induced slab dewatering in a descending plate beneath a convergent margin, we construct a regional thermal model that incorporates an up-to-date three-dimensional slab geometry and the MORVEL plate velocity to simulate the plate subduction history in Hikurangi. Our calculations suggest an identified thrust zone featuring remarkable slab dehydration near the Taupo volcanic arc in the North Island distributed in the Kapiti, Manawatu, and Raukumara region. The calculated average subduction-associated slab dehydration of 0.09 to 0.12 wt%/km is greater than the dehydration in other portions of the descending slab and possibly contributes to an along-arc variation in the interplate pore fluid pressure. A large-scale slab dehydration (>0.05 wt%/km) and a high thermal gradient (>4 °C/km) are also identified in the Kapiti, Manawatu, and Raukumara region and are associated with frequent deep slow slip events. An intraslab dehydration that exceeds 0.2 wt%/km beneath Manawatu near the source region of tectonic tremors suggests an unknown relationship in the genesis of slow earthquakes.

  20. Formation of forearc basins by collision between seamounts and accretionary wedges: an example from the New Hebrides subduction zone

    USGS Publications Warehouse

    Collot, J.-Y.; Fisher, M.A.

    1989-01-01

    Seabeam data reveal two deep subcircular reentrants in the lower arc slope of the New Hebrides island arc that may illustrate two stages in the development of a novel type of forearc basin. The Malekula reentrant lies just south of the partly subducted Bougainville seamount. This proximity, as well as the similarity in morphology between the reentrant and an indentation in the lower arc slope off Japan, suggests that the Malekula reentrant formed by the collision of a seamount with the arc. An arcuate fold-thrust belt has formed across the mouth of the reentrant, forming the toe of a new accretionary wedge. The Efate reentrant may show the next stage in basin development. This reentrant lies landward of a lower-slope ridge that may have begun to form as an arcuate fold-thrust belt across the mouth of a reentrant. This belt may have grown by continued accretion at the toe of the wedge, by underplating beneath the reentrant, and by trapping of sediment shed from the island arc. These processes could result in a roughly circular forearc basin. Basins that may have formed by seamount collision lie within the accretionary wedge adjacent to the Aleutian trenches. -Authors

  1. Earthquake hazards on the cascadia subduction zone.

    PubMed

    Heaton, T H; Hartzell, S H

    1987-04-10

    Large subduction earthquakes on the Cascadia subduction zone pose a potential seismic hazard. Very young oceanic lithosphere (10 million years old) is being subducted beneath North America at a rate of approximately 4 centimeters per year. The Cascadia subduction zone shares many characteristics with subduction zones in southern Chile, southwestern Japan, and Colombia, where comparably young oceanic lithosphere is also subducting. Very large subduction earthquakes, ranging in energy magnitude (M(w)) between 8 and 9.5, have occurred along these other subduction zones. If the Cascadia subduction zone is also storing elastic energy, a sequence of several great earthquakes (M(w) 8) or a giant earthquake (M(w) 9) would be necessary to fill this 1200-kilometer gap. The nature of strong ground motions recorded during subduction earthquakes of M(w) less than 8.2 is discussed. Strong ground motions from even larger earthquakes (M(w) up to 9.5) are estimated by simple simulations. If large subduction earthquakes occur in the Pacific Northwest, relatively strong shaking can be expected over a large region. Such earthquakes may also be accompanied by large local tsunamis.

  2. Structural interpretation and physical property estimates based on COAST 2012 seismic reflection profiles offshore central Washington, Cascadia subduction zone

    NASA Astrophysics Data System (ADS)

    Webb, S. I.; Tobin, H. J.; Everson, E. D.; Fortin, W.; Holbrook, W. S.; Kent, G.; Keranen, K. M.

    2014-12-01

    The Cascadia subduction zone has a history of large magnitude earthquakes, but a near-total lack of plate interface seismicity, making the updip limit of the seismogenic zone difficult to locate. In addition, the central Cascadia accretionary prism is characterized by an extremely low wedge taper angle, landward vergent initial thrusting, and a flat midslope terrace between the inner and outer wedges, unlike most other accretionary prisms (e.g. the Nankai Trough, Japan). The Cascadia Open Access Seismic Transect (COAST) lines were shot by R/V Marcus Langseth in July of 2012 off central Washington to image this subduction zone. Two trench-parallel and nine trench-perpendicular lines were collected. In this study, we present detailed seismic interpretation of both time- and depth-migrated stacked profiles, focused on elucidating the deposition and deformation of both pre- and syn-tectonic sediment in the trench and slope. Distribution and timing of sediments and their deformation is used to unravel the evolution of the wedge through time. Initially, interpretation of the time-sections is carried out to support the building of tomographic velocity models to aid in the pre-stack depth migration (PSDM) of selected lines. In turn, we use PSDM velocity models to estimate porosity and pore pressure conditions at the base of the wedge and across the basal plate interface décollement where possible, using established velocity-porosity transforms. Interpretation in this way incorporates both accurate structural relationships and robust porosity models to document wedge development and present-day stress state, in particular regions of potential overpressure. Results shed light on the origin and evolution of the mid-slope terrace and the low taper angle for the forearc wedge. This work may shed light ultimately on the position of the potential updip limit of the seismogenic zone beneath the wedge.

  3. Explaining postseismic and aseismic transient deformation in subduction zones with rate and state friction modeling constrained by lab and geodetic observations

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Dedontney, N. L.; Rice, J. R.

    2007-12-01

    Rate and state friction, as applied to modeling subduction earthquake sequences, routinely predicts postseismic slip. It also predicts spontaneous aseismic slip transients, at least when pore pressure p is highly elevated near and downdip from the stability transition [Liu and Rice, 2007]. Here we address how to make such postseismic and transient predictions more fully compatible with geophysical observations. For example, lab observations can determine the a, b parameters and state evolution slip L of rate and state friction as functions of lithology and temperature and, with aid of a structural and thermal model of the subduction zone, as functions of downdip distance. Geodetic observations constrain interseismic, postseismic and aseismic transient deformations, which are controlled in the modeling by the distributions of a \\barσ and b \\barσ (parameters which also partly control the seismic rupture phase), where \\barσ = σ - p. Elevated p, controlled by tectonic compression and dehydration, may be constrained by petrologic and seismic observations. The amount of deformation and downdip extent of the slipping zone associated with the spontaneous quasi- periodic transients, as thus far modeled [Liu and Rice, 2007], is generally smaller than that observed during episodes of slow slip events in northern Cascadia and SW Japan subduction zones. However, the modeling was based on lab data for granite gouge under hydrothermal conditions because data is most complete for that case. We here report modeling based on lab data on dry granite gouge [Stesky, 1975; Lockner et al., 1986], involving no or lessened chemical interaction with water and hence being a possibly closer analog to dehydrated oceanic crust, and limited data on gabbro gouge [He et al., 2007], an expected lithology. Both data sets show a much less rapid increase of a-b with temperature above the stability transition (~ 350 °C) than does wet granite gouge; a-b increases to ~ 0.08 for wet granite at 600 °C, but to only ~ 0.01 in the dry granite and gabbro cases. We find that the lessened high-T a - b does, for the same \\barσ, modestly extend the transient slip episodes further downdip, although a majority of slip is still contributed near and in the updip rate-weakening region. However, postseismic slip, for the same \\barσ, propagates much further downdip into the rate-strengthening region. To better constrain the downdip distribution of (a - b) \\barσ, and possibly a \\barσ and L, we focus on the geodetically constrained [Hutton et al., 2001] space-time distribution of postseismic slip for the 1995 Mw = 8.0 Colima-Jalisco earthquake. This is a similarly shallow dipping subduction zone with a thermal profile [Currie et al., 2001] comparable to those that have thus far been shown to exhibit aseismic transients and non-volcanic tremor [Peacock et al., 2002]. We extrapolate the modeled 2-D postseismic slip, following a thrust earthquake with a coseismic slip similar to the 1995 event, to a spatial-temporal 3-D distribution. Surface deformation due to such slips on the thrust fault in an elastic half space is calculated and compared to that observed at western Mexico GPS stations, to constrain the above depth-variable model parameters.

  4. Direct Observations of In Situ Stress State in a 3 Kilometer Deep Borehole in the Upper Plate, Nankai Trough Subduction Zone: IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Tobin, H. J.; Saffer, D. M.; Castillo, D. A.; Hirose, T.

    2016-12-01

    During IODP Expedition 348, borehole C0002F/N/P was advanced to a depth of 3058 m below the seafloor (mbsf) into the inner forearc accretionary wedge of the Nankai subduction zone (SW Japan), now the deepest scientific drilling ever into the ocean floor. The goals were to investigate the physical properties, structure, and state of stress deep within the hanging wall of a seismogenic subduction plate boundary. Mud pressure and gas monitoring, injection tests, leak-off tests (LOT), logging-while-drilling (LWD) measurements, and observations of mud losses and hole conditions provide both direct and indirect information about in situ pore pressure and stress state. The LOTs show that the minimum principal stress is consistently less than the vertical stress defined by the overburden, ruling out a thrust faulting stress state throughout the drilled section, and define a nearly linear gradient in Shmin from the seafloor to the base of the hole. Observations of mud loss and the lack of observed gas shows indicate that formation pore fluid pressure is not significantly (< 10 MPa) greater than hydrostatic. The maximum horizontal stress, estimated from borehole breakout width and pressure spikes during pack-off events, is close in magnitude to the vertical stress. Therefore the accretionary prism lies in either a normal or strike-slip faulting regime, or is transitional between the two, from 1 to 3 km depth. At 3002 mbsf we estimate that the effective stresses are: Sv' = 33 MPa; SHmax' = 25-36 MPa; and Shmin' = 18.5-21 MPa. Differential stresses are therefore low, on the order of 10-12 MPa, in the hanging wall of the subduction thrust. We conclude that (1) the inner wedge is not critically stressed in horizontal compression; (2) basal traction along the megathrust must be low in order to permit concurrent locking of the fault and low differential stresses deep within the upper plate; and (3) although low differential stresses may persist down to the plate boundary at 5000 mbsf, the maximum horizontal stress SHmax must transition to become greater than the vertical stress, either spatially below the base of the borehole, or temporally leading up to megathrust fault rupture, in order to drive slip on the megathrust.

  5. Geospeedometry in the inverted metamorphic gradient of the Nestos Thrust Zone in central Rhodope (Northern Greece)

    NASA Astrophysics Data System (ADS)

    Cioldi, Stefania; Moulas, Evangelos; Burg, Jean-Pierre

    2015-04-01

    Thrust tectonics and inverted metamorphic gradients are major consequences of large and likely fast movements of crustal segments in compressional environments. The purpose of this study is to investigate the tectonic setting and the timescale of inverted metamorphic zonations related to crustal-scale thrusting. The aim is to contribute understanding the link between mechanical and thermal evolution of major thrust zones and to clarify the nature and the origin of orogenic heat. The Rhodope metamorphic complex (Northern Greece) is interpreted as a part of the Alpine-Himalaya orogenic belt and represents a collisional system with an association of both large-scale thrusting and pervasive exhumation tectonics. The Nestos Shear Zone overprints the suture boundary with a NNE-dipping pile of schists displaying inverted isograds. The inverted metamorphic zones start from chlorite-muscovite grade at the bottom and reach kyanite-sillimanite grades with migmatites in the upper structural levels. In order to reconstruct the thermo-tectonic evolution of inverted metamorphic zonation, reliable geochronological data are essential. 40Ar/39Ar geochronology with step-heating technique on white mica from micaschists provided a temporal resolution with the potential to characterize shearing. 40Ar/39Ar dating across the Nestos Shear Zone yields Late Eocene-Early Oligocene (40-30 Ma) cooling (~400-350° C) ages, which correspond to local thermo-deformation episodes linked to late and post-orogenic intrusions. U-Pb Sensitive High Resolution Ion Microprobe (SHRIMP) zircon geochronology on leucosomes from migmatitic orthogneisses were considered to estimate the age of peak metamorphic conditions, contemporaneous with anatexis. U-Pb ages of zircon rims specify regional partial melting during the Early Cretaceous (160-120 Ma). This is in disagreement with previous assertions, which argued that the formation of leucosomes in this region is Late Eocene (42-35 Ma) and implied multiple subductions and multiple metamorphic cycles during orogeny. Garnet geospeedometry considers the kinetic response of minerals and allowed estimating the absolute time-dependent thermal evolution by diffusive element profiles in garnet. Inverse-fitting numerical model considering Fractionation and Diffusion in GarnEt (FRIDGE) calculates garnet composition profiles by introducing P-T-t paths and bulk-rock composition of a specific sample. Preliminary results of Fe-Mg - Ca - Mn garnet fractionation-diffusion modelling indicate very short timescale (between 2 and 5 Ma) for peak metamorphic conditions in the Rhodope collisional system.

  6. Crustal architecture and tectonic evolution of the Cauvery Suture Zone, southern India

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Yellappa, T.; Santosh, M.

    2016-11-01

    The Cauvery suture zone (CSZ) in southern India has witnessed multiple deformations associated with multiple subduction-collision history, with incorporation of the related accretionary belts sequentially into the southern continental margin of the Archaean Dharwar craton since Neoarchean to Neoproterozoic. The accreted tectonic elements include suprasubduction complexes of arc magmatic sequences, high-grade supracrustals, thrust duplexes, ophiolites, and younger intrusions that are dispersed along the suture. The intra-oceanic Neoarchean-Neoproterozoic arc assemblages are well exposed in the form of tectonic mélanges dominantly towards the eastern sector of the CSZ and are typically subjected to complex and multiple deformation events. Multi-scale analysis of structural elements with detailed geological mapping of the sub-regions and their structural cross sections, geochemical and geochronological data and integrated geophysical observations suggest that the CSZ is an important zone that preserves the imprints of multiple cycles of Precambrian plate tectonic regimes.

  7. Insights upon upper crustal arhitecture of a subduction zone and its surroundings - Vrancea Zone and Focsani Basin - substantiated by geophysical studies

    NASA Astrophysics Data System (ADS)

    Bocin, A.; Stephenson, R.; Mocanu, V.

    2007-12-01

    The DACIA PLAN (Danube and Carpathian Integrated Action on Processes in the Lithosphere and Neotectonics) deep seismic reflection survey was performed in August-September 2001, with the proposed objective of obtaining new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basin developed within and adjacent to the Vrancea zone, including the rapidly subsiding Focsani Basin. The DACIA-PLAN profile is about 140 km long, having a roughly NW-SE direction, from near the southeast Transylvanian Basin, across the mountainous southeastern Carpathians and their foreland to near the Danube River. A high resolution 2.5D velocity model of the upper crust along the seismic profile has been determined from a tomographic inversion and a 2D ray tracing forward modelling of the DACIA PLAN first arrival data. Peculiar shallow high velocities indicate that pre-Tertiary basement in the Vrancea Zone (characterised by velocities greater than 5.6 km/s) is involved in Carpathian thrusting while rapid alternance, vertically or horizontally, of velocity together with narrowingly contemporary crustal events suggests uplifting. Further to the east, at the foreland basin-thrust belt transition zone (well defined within velocity values), the velocity model suggests a nose of the Miocene Subcarpathians nappe being underlain by Focsani Basin units. A Miocene and younger Focsani Basin sedimentary succession of ~10 km thickness is ascertained by a gradual increase of velocities and strongly defined velocity boundaries.

  8. Unraveling the polymetamorphic history of garnet-bearing metabasites: Insights from the North Motagua Mélange (Guatemala Suture Zone)

    NASA Astrophysics Data System (ADS)

    Bonnet, G.; Flores, K. E.; Martin, C.; Harlow, G. E.

    2014-12-01

    The Guatemala Suture Zone is the fault-bound region in central Guatemala that contains the present North American-Caribbean plate boundary. This major composite geotectonic unit contains a variety of ophiolites, serpentinite mélanges, and metavolcano-sedimentary sequences along with high-grade schists, gneisses, low-grade metasediments and metagranites thrusted north and south of the active Motagua fault system (MFS). The North Motagua Mélange (NMM) outcrops north of the MFS and testifies the emplacement of exhumed subduction assemblages along a collisional tectonic setting. The NMM is composed of a serpentinite-matrix mélange that contains blocks of metabasites (subgreenschist facies metabasalt, grt-blueschist, eclogite, grt-amphibolite), vein-related rocks (jadeitite, omphacitite, albitite, mica-rock), and metatrondhjemites. Our new detailed petrographic and thermobarometric study on the garnet-bearing metabasites reveals a complex polymetamorphic history with multiple tectonic events. Eclogites show a classical clockwise PT path composed of (a) prograde blueschist/eclogite facies within garnet cores, (b) eclogite facies metamorphic peak at ~1.7 GPa and 620°C, (c) post-peak blueschist facies, (d) amphibolite facies overprint, and (e) late stage greenschist facies. Two types of garnet amphibolite blocks can be found, the first consist of (a) a relict eclogite facies peak at ~1.3 GPa and 550°C only preserved within anhedral garnet cores, and (b) surrounded by a post-peak amphibolite facies. In contrast, the second type displays a prograde amphibolite facies at 0.6-1.1 GPa and 400-650°C. The eclogites metamorphic peak suggests formation in a normal subduction zone at ~60 km depth, a subsequent exhumation to the middle section of the subduction channel (~35 km), and a later metamorphic reworking at lower P and higher T before its final exhumation. The first type of garnet amphibolite shows a similar trajectory as the eclogites but at warmer conditions. In contrast, the second type of garnet amphibolite recorded a single prograde evolution along a hotter thermal gradient. These different PT paths suggest multiple metamorphic events that may be related to subduction initiation, partial exhumation and storage of HP-LT rocks, subduction of buoyant crust, final exhumation and obduction.

  9. Lesser Antilles Subduction Zone Investigation by a Cluster of Large Seismic Experiments in the Forearc Region

    NASA Astrophysics Data System (ADS)

    Last, T.

    2007-12-01

    Thales LAST stands for Lesser Antilles Subduction zone Team which gathers the scientific teams of a cluster of surveys and cruises that have been carried out in 2007 and coordinated under the European Union THALES WAS RIGHT project (Coord. A. Hirn). This cluster is composed by the German cruise TRAIL with the vessel F/S Merian (PI E. Flueh and H. Kopp, IFM-GEOMAR), the French cruise SISMANTILLES 2 with the IFREMER vessel N/O Atalante (PI M. Laigle, IPG Paris and JF. Lebrun, Univ. Antilles Guyane), and French cruise OBSANTILLES with the IRD vessel N/O Antea (PI P. Charvis, Geoazur, Nice, France). During these cruises and surveys, 84 Ocean Bottom 3-components Seismometers (OBS) and 20 Hydrophones (OBHs) have been brought together from several pools (Geoazur, INSU, IPGP, IFM-GEOMAR, AWI,), with up to 30 land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) in addition to the permanent onshore arrays of IPGP and SRU. The deployment of all these instruments has been supported principally by ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI), by the EU SALVADOR Programme of IFM-GEOMAR, as well as by the EU project THALES WAS RIGHT on the Antilles and Hellenic active subductions to which contribute IPGP, Geoazur, IFM-GEOMAR (Germany), ETH Zurich (Switzerland), CSIC Barcelona (Spain), Univ. Trieste (Italy) and NOA Athens (Greece). The main goal of this large seismic investigation effort is the understanding of the behaviour of the seismogenic zone and location of potential source regions of mega-thrust earthquakes. Specific goals are the mapping of the subduction interplate in the range where it may be seismogenic along the Lesser Antilles Arc from Antigua to southern Martinique Islands, as a contribution to identification and localisation in advance of main rupture zones of possible future major earthquakes, and to the search for transient signals of the activity. The forearc region, commonly considered as a proxy to the seismogenic portion of the subduction mega-thrust fault plane, and which is here the main target has been localized along 3 transects to the Arc thanks to a preliminary survey in 2001, the French SISMANTILLES cuise. We will present the first results obtained during these experiments dedicated specifically to image at depth the seismic structure and activity of this region. To image faults at depth and the detailed upper-crustal structure, 3700 km of multi-beam bathymetry and multi-channel reflection seismic profiles have been collected along a grid comprising 7 strike-lines of up to 300 km long and spaced by 15 km and 12 transects of up to 150 km long and spaced by 25 km (SISMANTILLES 2). All these airgun shots dedicated to deep penetration have been recorded by the 84 OBSs and 20 OBHs deployed by the F/S Merian and N/O Atalante on the nodes of this grid of profiles. It will permit to get Vp constraints on the deep forearc region and mantle wedge by wide-angle refraction studies, as well as constraints on the updip and downdip limits of the seismogenic part of the mega-thrust fault plane. Two of these transects have been extended across the whole arc during the TRAIL survey, with up to 50 OBSs deployed along both 240 km long profiles. All these OBSs remained several months beyond the shot experiments for local earthquakes Vp and Vp/Vs tomography. They have been recovered and partly redeployed by N/O Antea during the OBSANTILLES survey. A significant number of those instruments had broadband seismometers, a notable originality in the case of the OBSs to detect low-frequency transient signals.

  10. Anatomy of an ancient subduction interface at 40 km depth: Insights from P-T-t-d data, and geodynamic implications (Dent Blanche, Western Alps)

    NASA Astrophysics Data System (ADS)

    Angiboust, Samuel; Glodny, Johannes; Oncken, Onno; Chopin, Christian

    2014-05-01

    An exhumed metamorphic suture zone over 40 km long is exposed in the Dent Blanche Region of the Western Alps belt, along the Swiss-Italian border. In this region, the metasediment-bearing ophiolitic remnants of the Liguro-Piemontese ocean (Tsaté complex) are overthrusted by a continental, km-sized complex (Dent Blanche Tectonic System: DBTS) of Austro-Alpine affinity. The DBTS represents a strongly deformed composite terrane with independent tectonic slices of continental and oceanic origin. In order to better understand the nature and the geodynamic meaning of the shear zone at the base of the DBTS (Dent Blanche Thrust, DBT) we re-evaluated the pressure-temperature-time-deformation (P-T-t-d) history of these two units using modern thermobarometric tools, Rb/Sr deformation ages and field relationships. Our results show that the Tsaté complex is formed by a stack of km-thick calcschists-bearing tectonic slices, having experienced variable maximum burial temperatures of between 360°C and 490°C at depths of ca. 25-40 km, between 41 Ma and 37 Ma. The Arolla gneissic mylonites constituting the base of the DBTS experienced a continuous record of protracted high-pressure (12-14 kbar), top-to-NW D1 deformation at 450-500°C between 43 and 55 Ma. Some of these primary, peak metamorphic fabrics have been sheared (top-to-SE D2) and backfolded during exhumation and collisional overprint (20 km depth, 35-40 Ma) leading to the regional greenschist facies retrogression particularly prominent within Tsaté metasediments. The final juxtaposition of the DBTS with the Tsaté complex occurred between 350 and 500°C during this later, exhumation-related D2 event. Although some exhumation-related deformation partially reworked D1 primary features, we emphasize that the DBT can be viewed as a remnant of the Alpine early Eocene blueschist-facies subduction interface region. The DBT therefore constitutes the deeper equivalent of some shallower portions of the Alpine subduction interface exposed 200 km eastwards in eastern Switzerland (e.g. Bachmann et al., 2009). Our results shed light on deep (25-45 km) subduction zone structures and dynamics and are therefore of major interest for geophysical studies imaging the plate interface region in active subduction zones.

  11. Cenozoic structural evolution, thermal history, and erosion of the Ukrainian Carpathians fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar

    2018-01-01

    The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.

  12. Kinematics and Ophiolite obduction in the Gerania and Helicon Mountains, central Greece

    NASA Astrophysics Data System (ADS)

    Kaplanis, A.; Koukouvelas, I.; Xypolias, P.; Kokkalas, S.

    2013-06-01

    New structural, petrofabric and palaeostress data from the Beotia area (central Greece) were used to investigate the tectonic evolution of the suture zone between the External (Parnassus microplate) and Internal Hellenides (Pelagonian microplate). Petrofabric studies of ultramafic rocks were done using conventional U-stage analysis and the electron backscatter diffraction (EBSD) technique. Detailed structural analysis enabled us to distinguish three main deformation phases that took place from the Triassic to the Eocene. Triassic-Jurassic deformation is related to continental rifting and the progressive formation of an ocean basin. Ophiolites formed above a westward-dipping supra-subduction zone (SSZ) in the Early-Late Jurassic. Trench-margin collision resulted in the southeastward emplacement of the ophiolite nappe over the Pelagonian margin. There is also evidence for a north-westward thrusting of ophiolitic rocks over the Gerania and Helicon units during Berriasian time. This latter tectonic process is closely related to the deposition of "Beotian flysch" into a foreland basin. An extensional phase of deformation accompanied by shallow-water carbonate sedimentation is documented in the Upper Cretaceous. Later, during Paleocene the area was subjected to a compressional deformation phase characterised by SW-directed thrusting and folding, as well as NE-verging backthrusts and backfolds. Our proposed geotectonic model suggests the consumption of the ocean between the Parnassus and Pelagonian microplates. This model includes Late Jurassic eastward ophiolite obduction followed by Early Cretaceous west directed ophiolite thrusting.

  13. Estimates of effective elastic thickness at subduction zones

    NASA Astrophysics Data System (ADS)

    Yang, An; Fu, Yongtao

    2018-06-01

    The effective elastic thickness (Te) is an important parameter that characterizes the long-term strength of the lithosphere. Estimates of Te at subduction zones have important tectonic and geodynamic implications, providing constraints for the strength of the oceanic lithosphere at a short-term scale. We estimated Te values in several subduction zones worldwide by using models including both surface and subsurface loads from the analysis of free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). Tests with synthetic gravity and bathymetry data show that this method is a reliable way to recover Te of oceanic lithosphere. Our results show that there is a noticeable reduction in the effective elastic thickness of the subducting plate from the outer rise to the trench axis for most studied subduction zones, suggesting plate weakening at the trench-outer rise of the subduction zones. These subduction zones have Te range of 6-60 km, corresponding to a wide range of isotherms from 200 to 800 °C. Different trenches show distinct patterns. The Caribbean, Kuril-Japan, Mariana and Tonga subduction zones show predominantly high Te. By contrast, the Middle America and Java subduction zones have a much lower Te. The Peru-Chile, Aleutian and Philippine subduction zones show considerable scatter. The large variation of the isotherm for different trenches does not show clear relationship with plate weakening at the outer rise.

  14. U-Pb dating and emplacement history of granitoid plutons in the northern Sanandaj-Sirjan Zone, Iran

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Shahryar; Corfu, Fernando; Masoudi, Fariborz; Mehrabi, Behzad; Mohajjel, Mohammad

    2011-05-01

    The Sanandaj-Sirjan Zone (SSZ), which runs parallel to the Zagros fold and thrust belt of Iran, underwent a multistage evolution starting with Neotethys initiation, its subsequent subduction below the Iranian continental crust, and eventual closure during convergence of Arabia towards central Iran. Plutonic complexes are well developed in the northern part of the SSZ and we have dated a number of them by ID-TIMS U-Pb on zircon. The new data record the following events: a Mid Jurassic period that formed the Boroujerd Plutonic Complex (169 Ma), the Astaneh Pluton (168 Ma) and the Alvand Pluton (165 Ma); Late Jurassic emplacement of the Gorveh Pluton (157-149 Ma); Mid Cretaceous (109 Ma) formation of a I-type phase in the Hasan Salary Pluton near Saqqez, followed by Early Paleocene (60 Ma) intrusion of A-type granite in the same pluton; and the youngest intrusive event recorded so far in the SSZ with the intrusion of granite in the Gosheh-Tavandasht Complex near Boroujerd at 34.9 Ma. These different events reflect specific stages of subduction-related magmatism prior to the eventual Miocene collision between the two continental blocks.

  15. Recent Mega-Thrust Tsunamigenic Earthquakes and PTHA

    NASA Astrophysics Data System (ADS)

    Lorito, S.

    2013-05-01

    The occurrence of several mega-thrust tsunamigenic earthquakes in the last decade, including but not limited to the 2004 Sumatra-Andaman, the 2010 Maule, and 2011 Tohoku earthquakes, has been a dramatic reminder of the limitations in our capability of assessing earthquake and tsunami hazard and risk. However, the increasingly high-quality geophysical observational networks allowed the retrieval of most accurate than ever models of the rupture process of mega-thrust earthquakes, thus paving the way for future improved hazard assessments. Probabilistic Tsunami Hazard Analysis (PTHA) methodology, in particular, is less mature than its seismic counterpart, PSHA. Worldwide recent research efforts of the tsunami science community allowed to start filling this gap, and to define some best practices that are being progressively employed in PTHA for different regions and coasts at threat. In the first part of my talk, I will briefly review some rupture models of recent mega-thrust earthquakes, and highlight some of their surprising features that likely result in bigger error bars associated to PTHA results. More specifically, recent events of unexpected size at a given location, and with unexpected rupture process features, posed first-order open questions which prevent the definition of an heterogeneous rupture probability along a subduction zone, despite of several recent promising results on the subduction zone seismic cycle. In the second part of the talk, I will dig a bit more into a specific ongoing effort for improving PTHA methods, in particular as regards epistemic and aleatory uncertainties determination, and the computational PTHA feasibility when considering the full assumed source variability. Only logic trees are usually explicated in PTHA studies, accounting for different possible assumptions on the source zone properties and behavior. The selection of the earthquakes to be actually modelled is then in general made on a qualitative basis or remains implicit, despite different methods like event trees have been used for different applications. I will define a quite general PTHA framework, based on the mixed use of logic and event trees. I will first discuss a particular class of epistemic uncertainties, i.e. those related to the parametric fault characterization in terms of geometry, kinematics, and assessment of activity rates. A systematic classification in six justification levels of epistemic uncertainty related with the existence and behaviour of fault sources will be presented. Then, a particular branch of the logic tree is chosen in order to discuss just the aleatory variability of earthquake parameters, represented with an event tree. Even so, PTHA based on numerical scenarios is a too demanding computational task, particularly when probabilistic inundation maps are needed. For trying to reduce the computational burden without under-representing the source variability, the event tree is first constructed by taking care of densely (over-)sampling the earthquake parameter space, and then the earthquakes are filtered basing on their associated tsunami impact offshore, before calculating inundation maps. I'll describe this approach by means of a case study in the Mediterranean Sea, namely the PTHA for some locations of Eastern Sicily coasts and Southern Crete coast due to potential subduction earthquakes occurring on the Hellenic Arc.

  16. Upper plate contraction north of the migrating Mendocino triple junction northern California: Implications for partitioning of strain

    USGS Publications Warehouse

    McCrory, P.A.

    2000-01-01

    Geologic measurement of permanent contraction across the Cascadia subduction margin constrains one component of the tectonic deformation along the convergent plate boundary, the component critical for the seismic hazard assessment of crustal faults. A comprehensive survey of active faults in onshore subduction margin rocks at the southern end of the Cascadia subduction zone indicates that these thrust faults accommodate ??10 mm/yr of convergence oriented 020??-045??. Seismotectonic models of subduction zones typically assign this upper plate strain to the estimate of aseismic slip on the megathrust. Geodetic models include this permanent crustal strain within estimates of elastic strain accumulation on the megathrust. Both types of models underestimate the seismic hazard associated with crustal faults. Subtracting the observed contraction from the plate convergence rate (40-50 mm/yr; directed 040??-055??) leaves 30-40 mm/yr of convergence to be partitioned between slip on the megathrust, contraction within the southern Juan de Fuca plate, and crustal contraction outside the subduction complex rocks. This simple estimate of slip partitioning neglects the discrepancy between the plate convergence and contraction directions in the vicinity of the Mendocino triple junction. The San Andreas and Cascadia limbs of the Mendocino triple junction are not collinear. The eastern edge of the broad San Andreas boundary is ??85 km east of the Cascadia subduction boundary, and across this zone the Pacific plate converges directly with the North America plate. The skewed orientation of crustal structures just north of the leading edge of the Pacific plate suggests that they are deforming in a hybrid stress field resulting from both Juan de Fuca-North America motion and Pacific-North America motion. The composite convergence direction (50 mm/yr: directed 023??) is consistent with the compressive stress axis (020??) inferred from focal mechanisms of crustal earthquakes in the Humboldt region. Deformation in such a hybrid stress field implies that the crustal faults are being loaded from two major tectonic sources. The slip on crustal faults north of the Mendocino triple junction may consume 4-5 mm/yr of Pacific-Humboldt convergence. The remaining 17-18 mm/yr of convergence may be consumed as distributed shortening expressed in the high rates of uplift in the Cape Mendocino region or as northward translation of the continental margin, north of the triple junction.

  17. Ambient Tremor, But No Triggered Tremor at the Northern Costa Rica Subduction Zone

    NASA Astrophysics Data System (ADS)

    Swiecki, Z.; Schwartz, S. Y.

    2010-12-01

    Non-volcanic tremor (NVT) has been found to be triggered during the passage of surface waves from various teleseismic events in locations around the world including Cascadia, Southwest Japan, Taiwan, and California. In this study we examine the northern Costa Rica subduction zone for evidence of triggered tremor. The Nicoya Peninsula segment of the northern Costa Rica margin experiences both slow-slip and tremor and is thus a prime candidate for triggered tremor observations. Eleven teleseismic events with magnitudes (Mw) greater than 8 occurring between 2006 and 2010 were examined using data from both broadband and short period sensors deployed on the Nicoya Peninsula, Costa Rica. Waveforms from several large regional events were also considered. The largest teleseismic and regional events (27 February 2010 Chile, Mw 8.8 and 28 May 2009 Honduras, Mw 7.3) induced peak ground velocities (PGV) at the NIcoya stations of ~2 and 6 mm/s, respectively; larger than PGVs in other locations that have triggered tremor. Many of the earthquakes examined occurred during small episodes of background ambient tremor. In spite of this, no triggered tremor was observed during the passage of seismic waves from any event. This is significant because other studies have demonstrated that NVT is not triggered everywhere by all events above some threshold magnitude, indicating that unique conditions are required for its occurrence. The lack of triggered tremor at the Costa Rica margin can help to better quantify the requisite conditions and triggering mechanisms. An inherent difference between the Costa Rica margin and the other subduction zones where triggered tremor exists is its erosional rather than accretionary nature. Its relatively low sediment supply likely results in a drier, lower pore fluid pressure, stronger and less compliant thrust interface that is less receptive to triggering tremor from external stresses generated by teleseismic or strong local earthquakes. Another important factor is Costa Rica’s relatively cool subduction zone structure where temperatures required for the fluid generating basalt/ecloginte reaction are not reached until far below tremor producing depths.

  18. Mineralogy and fluid content of sediments entering the Costa Rica subduction zone - Results from Site U1414, IODP Expedition 344

    NASA Astrophysics Data System (ADS)

    Charpentier, D.; Buatier, M.; Kutterolf, S.; Straub, S. M.; Nascimento, D.; Millan, C.

    2013-12-01

    Subduction zones are characterized by the largest thrust earthquakes, as quantified by both rupture area and seismic moment release. Offshore Costa Rica, the oceanic Cocos Plate subducts under the Caribbean plate forming the southern end of the Middle America trench. A high convergence rate and almost complete subduction of incoming sediments make the Costa Rica convergent margin an extremely dynamic environment. The Costa Rica Seismogenesis Project (CRISP) is designed to understand the processes that control nucleation and seismic rupture of large earthquakes at erosional subduction zones. Site U1414 of IODP Exp.344 was drilled to investigate the material from the incoming Cocos Plate. A key parameter of incoming plate is fluid content and release because it impacts deformation within the subduction complex. The deposition, compaction and diagenesis of sedimentary rocks control the distribution of fluids, fluid pressures and fluid flow patterns within subduction zones. We therefore decided to characterize sediment composition and quantify the different types of water at Site U1414. Mineralogical investigations were performed using optical and electronic microscope observations, X Ray Diffraction (on bulk and clay fractions), Cation Exchange Capacity measurements, carbon analyses (to determine carbonate contents), and sequenced extractions in NaOH (to quantify the biogenic opal content). Fluid characteristics were approached by thermal gravimetric analyses. The entire sedimentary sequence was recovered at Site U1414 and can be divided into three major sedimentary units. The first one is a hemipelagic silty clay to clay with a gradual increase of calcareous nannofossils. The dominant mineral is smectite associated in the clay fractions with kaolinite and zeolites. Small amounts of biogenic opal have been analyzed. Other minerals like quartz, feldspar and calcite are also present. The second unit is composed of nannofossil-rich calcareous ooze. The proportion of biosilica is variable and can attain 15 wt.%. Smectite and zeolites are present in smaller amount. The third unit is a lithified sandstone. Biosilica and smectite are absent, but zeolites are still present in this unit. Fluid content that can be released varies from about 15 wt.% to 40 wt.%. In shallow levels a significant proportion is pore water fluid, whereas in deeper levels water stored within minerals comprises a greater proportion of the total fluid budget. The presence of smectite yields to fluid release by dehydration and dehydroxylation at temperatures less than approximately 100°C and 500°C respectively. Transformation of biogenic opal to diagenetic silice goes to completion at temperatures of 50-100°C. It seems to be an importance source of fluid in the second unit, whereas in unit three it is zeolite water.

  19. Seismicity of the Earth 1900–2010 Middle East and vicinity

    USGS Publications Warehouse

    Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.

    2013-01-01

    No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.

  20. Geodetic Imaging of Glacio-Seismotectonic Processes in Southern Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J.; Bruhn, R.; Forster, R.; Hofton, M.

    2008-12-01

    Across southern Alaska the northwest directed motion of the Pacific plate is accompanied by migration and collision of the Yakutat terrane. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin. Over the last couple of decades the rate of ongoing deformation associated with subduction and a locked main thrust zone has been estimated by geodetic measurements. In the last five years more extensive geodetic measurements, structural and tectonic field studies, thermochronolgy, and high-resolution lidar have been acquired and analyzed as part of the STEEP project [Pavlis et al., 2006]. The nature and magnitude of accretion and translation on upper crustal faults and folds remains uncertain, however, due to complex variations in the style of tectonic deformation, pervasive and changing glaciation, and the logistical challenges of conducting field studies in formidable topography. In this study, we analyze new high-resolution lidar data to extract locations, geometry, and heights of seismogenic faults and zones of active folding across the Malaspina-Seward-Bagley region of the southern Alaska plate boundary that is hypothesized to accommodate upper crustal shortening and right-lateral slip. Airborne Topographic Mapper (ATM) lidar swath data acquired by Krabill et al. in the summer of 2005 and ICESat data (1993-present) cross a number of proposed faults and folds partially masked by glaciation, including the Malaspina thrust, Esker Creek, Chugach-St.Elias thrust, and Contact. Focal mechanisms from this region indicate mostly shallow (0-30 km) thrust and oblique strike-slip faulting. Similarly, rupture in the 1979 St. Elias earthquake (M=7.4) started as a shallow, north-dipping thrust that later changed to more steeply NE dipping with a large right-lateral strike-slip component. Additionally, we are using the morphology and dynamics of glaciers derived from L-Band SAR ice velocities and SAR images to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. The new lidar, InSAR, and STEEP results provide constraints that enable us to critically re-evaluate alternate models of the nature of tectonics and structures hidden beneath the ice originally proposed by Ford et al [2003] . Ford, A.L., R.R. Forster, and R.L. Bruhn, 2003, Ice surface velocity patterns on Seward Glacier, Alaska/Yukon, and their implications for regional tectonics in the Saint Elias Mountains, Annals of Glaciology, 36, 21-28.

  1. Geologic constraints on the setting and dynamics of subduction initiation

    NASA Astrophysics Data System (ADS)

    Encarnacion, John; Keenan, Timothy

    2017-04-01

    Understanding where and how subduction zones have and can initiate is important because, besides being a critical step in the plate tectonic system, it can provide insight into the complex interactions of crust and mantle rheology, forces acting on the plates, strain, metamorphic reactions, and erosional and depositional processes at the surface. Insight into the possibilities of where and how subduction zones start has been provided by numerical and analog modeling. All sites for subduction initiation are potential weak zones in the lithosphere and include the continent-ocean boundary, oceanic arc-oceanic crust boundary, oceanic transform faults and fracture zones, oceanic detachment faults, and active or recently extinct oceanic ridges/spreading centers. Within the constraints of modeling, it has also been shown that the forces involved in the initiation of subduction can be largely horizontal (induced by a collision, say, or through 'ridge push') or vertical (driven by density contrasts). The latter scenario is often referred to as "spontaneous" subduction initiation, whereas the former situation may be called "forced"or "induced" subduction initiation. It is prudent, however, not to assume that "what can happen, did happen." So, the challenge for geologists is to infer from the rock record, through structural mapping, thermochronology, thermobarometry, geochemistry, paleomagnetics, and sedimentological studies, how any given subduction zone began. Even with a complete data set, it is not always possible to fully constrain the specific geologic setting or dynamics involved in the initiation of a given subduction zone. One can, however, often rule out certain scenarios, increasing the probability of others. Part of the geologic record of subduction initiation preserved at some subduction zones are so-called "metamorphic soles," which include high-temperature (T) and high-pressure (P) metamorphosed oceanic crust that was underthrust to asthenospheric mantle depths, metamorphosed, and then preserved in the hanging wall of the eventual subduction zone. These metamorphic soles may preserve important information bearing on the timing of subduction initiation, the evolving P and T conditions during subduction initiation, and, importantly, the protolith age of the initially subducted crust. The latter parameter—the age of the initially subducted oceanic crust at the time of subduction initiation—is an important constraint that has been lacking in many previous geologic studies of subduction initiation. Recent work on metamorphic soles has provided new information on subduction initiation, including the possibility of rapidly converting oceanic divergent boundaries into subduction zones.

  2. Fore-arc basin deformation in the Andaman-Nicobar segment of the Sumatra-Andaman subduction zone: Insight from high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Moeremans, Raphaële E.; Singh, Satish C.

    2015-08-01

    The Andaman-Nicobar region is the northernmost segment of the Sumatra-Andaman subduction zone and marks the western boundary of the Andaman Sea, which is a complex active back-arc extensional basin. We present the interpretation of a new set of deep seismic reflection data acquired across the Andaman-Nicobar fore-arc basin, from 8°N to 11°N, in order to better understand its structure and evolution, focusing on (1) how obliquity of convergence affects deformation in the fore arc, (2) the nature and role of the Diligent Fault (DF), and (3) the Eastern Margin Fault (EMF). Despite the obliquity of convergence, back thrusting and compression seem to dominate the Andaman-Nicobar fore-arc basin deformation. The DF is primarily a back thrust and corresponds to the Mentawai and West Andaman Fault systems farther in the south, along Sumatra. The DF is expressed in the fore-arc basin as a series of mostly landward verging folds and faults, deforming the early to late Miocene sediments. The DF seems to root from the boundary between the accretionary complex and the continental backstop, where it meets the EMF. The EMF marks the western boundary of the fore-arc basin; it is associated with subsidence and is expressed as a deep piggyback basin, containing recent Pliocene to Pleistocene sediments. The eastern edge of the fore-arc basin is the Invisible Bank (IB), which is thought to be tilted and uplifted continental crust. Subsidence along the EMF and uplift and tilting of the IB seem to be related to different opening phases in the Andaman Sea.

  3. The effect of compliant prisms on subduction zone earthquakes and tsunamis

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel C.; Dunham, Eric M.; Jeppson, Tamara N.; Tobin, Harold J.

    2017-01-01

    Earthquakes generate tsunamis by coseismically deforming the seafloor, and that deformation is largely controlled by the shallow rupture process. Therefore, in order to better understand how earthquakes generate tsunamis, one must consider the material structure and frictional properties of the shallowest part of the subduction zone, where ruptures often encounter compliant sedimentary prisms. Compliant prisms have been associated with enhanced shallow slip, seafloor deformation, and tsunami heights, particularly in the context of tsunami earthquakes. To rigorously quantify the role compliant prisms play in generating tsunamis, we perform a series of numerical simulations that directly couple dynamic rupture on a dipping thrust fault to the elastodynamic response of the Earth and the acoustic response of the ocean. Gravity is included in our simulations in the context of a linearized Eulerian description of the ocean, which allows us to model tsunami generation and propagation, including dispersion and related nonhydrostatic effects. Our simulations span a three-dimensional parameter space of prism size, prism compliance, and sub-prism friction - specifically, the rate-and-state parameter b - a that determines velocity-weakening or velocity-strengthening behavior. We find that compliant prisms generally slow rupture velocity and, for larger prisms, generate tsunamis more efficiently than subduction zones without prisms. In most but not all cases, larger, more compliant prisms cause greater amounts of shallow slip and larger tsunamis. Furthermore, shallow friction is also quite important in determining overall slip; increasing sub-prism b - a enhances slip everywhere along the fault. Counterintuitively, we find that in simulations with large prisms and velocity-strengthening friction at the base of the prism, increasing prism compliance reduces rather than enhances shallow slip and tsunami wave height.

  4. Mega-thrust and Intra-slab Earthquakes Beneath Tokyo Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Sato, H.; Koketsu, K.; Hagiwara, H.; Wu, F.; Okaya, D.; Iwasaki, T.; Kasahara, K.

    2006-12-01

    In central Japan the Philippine Sea plate (PSP) subducts beneath the Tokyo Metropolitan area, the Kanto region, where it causes mega-thrust earthquakes, such as the 1703 Genroku earthquake (M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. The vertical proximity of this down going lithospheric plate is of concern because the greater Tokyo urban region has a population of 42 million and is the center of approximately 40% of the nation's economic activities. A M7+ earthquake in this region at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The M7+ earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In 2002, a consortium of universities and government agencies in Japan started the Special Project for Earthquake Disaster Mitigation in Urban Areas, a project to improve information needed for seismic hazards analyses of the largest urban centers. Assessment in Kanto of the seismic hazard produced by the Philippine Sea Plate (PSP) mega-thrust earthquakes requires identification of all significant faults and possible earthquake scenarios and rupture behavior, regional characterizations of PSP geometry and the overlying Honshu arc physical properties (e.g., seismic wave velocities, densities, attenuation), and local near-surface seism ic site effects. Our study addresses (1) improved regional characterization of the PSP geometry based on new deep seismic reflection profiles (Sato etal.,2005), reprocessed off-shore profiles (Kimura et al.,2005), and a dense seismic array in the Boso peninsular (Hagiwara et al., 2006) and (2) identification of asperities of the mega-thrust at the top of the PSP. We qualitatively examine the relationship between seismic reflections and asperities inferred by reflection physical properties. We also discuss the relation between deformation of PSP and intra-slab M7+ earthquakes: the PSP is subducting beneath the Hoshu arc and also colliding with the Pacific plate. The subduction and collision both contribute active seismicity in the Kanto region. We present a high resolution tomographic image to show a low velocity zone which suggests a possible internal failure of the slab; a source region of the M7+ intra-slab earthquake. Our study contributes a new assessment of the seismic hazard in the Tokyo metropolitan area. tokyo.ac.jp/daidai/index-J.html

  5. The behavior of a convergent plate boundary - Crustal deformation in the South Kanto district, Japan

    NASA Technical Reports Server (NTRS)

    Scholz, C. H.; Kato, T.

    1978-01-01

    The northwesternmost part of the Sagami trough, a part of the Philippine Sea-Eurasian plate boundary, was ruptured during the great South Kanto earthquake in 1923. Very extensive and frequent geodetic measurements of crustal deformation have been made in the South Kanto district since the 1890's, and these constitute the most complete data set on crustal movements in the world. These data were reanalyzed and interpreted and according to our interpretation indicate the following sequence of events. The coseismic movements were due to oblique thrust and right lateral slip of about 8 m on a fault outcropping at the base of the Sagami trough. This was followed by postseismic deformation resulting from reversed afterslip of 20-60 cm that occurred at an exponentially decaying rate in time. The interseismic deformation is produced by steady subduction at a rate of about 1.8 cm/yr. During subduction the top 10-15 km of the plate boundary is apparently locked, while deeper parts slip aseismically at an irregular rate. No significant precursory deformation was observed. The recurrence time for 1923 type earthquakes is 200-300 years. The Boso and Miura peninsulas are broken into a series of fault-bound blocks that move semi-independently of the surrounding region. The subduction zone itself, where it is exposed on land, is shown to be a wide zone encompassing several faults that are active at different times.

  6. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe J. J.; de Gelder, Giovanni I. N. O.; van der Goes, Freek C.; Morris, Antony

    2017-05-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Suprasubduction zone ophiolites (i.e., emerged fragments of ancient oceanic lithosphere formed at suprasubduction spreading centers) were generated during this subduction event and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Several models have been proposed to explain the formation of these ophiolites and the evolution of the associated intra-Neo-Tethyan subduction zone. Here we present new paleospreading directions from six Upper Cretaceous ophiolites of Turkey, Cyprus, and Syria, calculated by using new and published paleomagnetic data from sheeted dyke complexes. Our results show that NNE-SSW subduction zones were formed within the Neo-Tethys during the Late Cretaceous, which we propose were part of a major step-shaped subduction system composed of NNE-SSW and WNW-ESE segments. We infer that this subduction system developed within old (Triassic?) lithosphere, along fracture zones and perpendicular weakness zones, since the Neo-Tethyan spreading ridge formed during Gondwana fragmentation would have already been subducted at the Pontides subduction zone by the Late Cretaceous. Our new results provide an alternative kinematic model of Cretaceous Neo-Tethyan subduction initiation and call for future research on the mechanisms of subduction inception within old (and cold) lithosphere and the formation of metamorphic soles below suprasubduction zone ophiolites in the absence of nearby spreading ridges.

  7. The initial superposition of oceanic and continental units in the southern Western Alps: constraints on geometrical restoration and kinematics of the continental subduction wedge

    NASA Astrophysics Data System (ADS)

    Dumont, Thierry; Schwartz, Stéphane; Matthews, Steve; Malusa, Marco; Jouvent, Marine

    2017-04-01

    The tectonic contact separating continental and oceanic units is preserved at outcrop in many locations within the Western Alps. The contact has experienced prolonged and progressive deformation during Oligocene collision and subsequent 'extrusive' contraction which is approximately westerly-directed (Dumont et al., 2012). Despite variable metamorphic grade, this tectonic contact displays a relative consistency of tectonostratigraphic and structural characteristics. Removal of the Oligocene and younger deformation is a critical requirement to allow assessment of the kinematic evolution during the Eocene continental subduction phase. The best preserved relationships are observed near the base of the Helminthoid Flysch nappes, in the footwall of the Penninic thrust, or in the external part of the Briançonnais zone. Here, the oceanic units are composed of detached Cretaceous sediments, but they are underlain locally by an olistostrome containing basaltic clasts. Further to the east, the internal boundary of the Briançonnais zone s.l. (including the 'Prepiedmont units'), is frequently marked by breccia or megabreccia, but is strongly affected by blueschist-facies metamorphism and by approximately easterly directed backfolding and backthrusting. At one locality, there is compelling evidence that the oceanic and continental units were already tectonically stacked and metamorphosed (together) 32Ma ago. Some megabreccias of mixed continental/oceanic provenance can be interpreted as a metamorphic equivalent of the external olistostrome, products of the initial pulses of tectonic stacking. The overlying units are composed dominantly of metasediments, containing distributed ophiolitic megaboudins (Tricart & Schwartz, 2006). Further east again, the tectonic contact separates the Dora-Maira continental basement from the Mt. Viso units which are predominantly composed of oceanic lithosphere. Both the Dora-Maira and Mt. Viso units are eclogitic, but the HP peak is apparently older in the oceanic rocks (Malusà et al. 2015). Finally, further SE, the Voltri massif shows a huge volume of serpentinized mantle which locally overlies continental basement (strongly metamorphosed), and is interpreted as an exhumed remnant of the subduction channel (Federico et al., 2007). In all these localities the transport directions during initial pulses of stacking were consistently oriented generally towards the NW to N, taking into account the subsequent Oligocene and younger collision-related deformation (complex folds, thrusts, backfolds and backthrusts, and block-rotations). It is thus possible to attempt reconstructing an early stage continental subduction wedge involving these different elements from the subduction channel to the most frontal part of the accretionary complex. However, this early Alpine orogen which was active throughout the Eocene is interpreted to have propagated generally towards the NW to N, prior to subsequent pulses of more westerly directed deformation from the Oligocene onwards within the southern part of the Western Alps arc. It is therefore essential to continually improve high-resolution 3D geophysical imaging to facilitate a better understanding of the complex western termination of the Alpine orogen. References: Dumont T., Schwartz S., Guillot S., Simon-Labric S., Tricart P. & Jourdan S. (2012), Structural and sedimentary record of the Oligocene revolution in the Western Alpine arc. Jour. Geodynamics, doi:10.1016/j.jog.2011.11.006 Federico L., Crispini L., Scambelluri M. & Capponi G. (2007), Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35, p. 499-502 Malusà M.G., Faccenna C., Baldwin S.L., Fitzgerald P.G., Rossetti F., Balestrieri M.L., Danišík M., Ellero A., Ottria G. & Piromallo C. (2015), Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem. Geophys. Geosyst. ,16, p. 1786-1824 Tricart P. & Schwartz S. (2006), A north-south section across the Queyras Schistes Lustrés (Piedmont zone, western Alps): Syn-collision refolding of a subduction wedge. Eclogae Geol. Helv., 99, 3, p. 429-442

  8. A slab expression in the Gibraltar arc?

    NASA Astrophysics Data System (ADS)

    Nijholt, Nicolai; Govers, Rob; Wortel, Rinus

    2017-04-01

    The present-day geodynamic setting of the Gibraltar arc region results from several Myrs of subduction rollback in the overall (oblique) convergence of Africa and Iberia. As for most rollback settings in a convergence zone, the interaction of these two components is complex and distinctly non-stationary. Gibraltar slab rollback is considered to have stalled, or at least diminished largely in magnitude, since the late Miocene/early Pliocene, suggesting that the effect of the slab on present-day surface motions is negligible. However, GPS measurements indicate that the Gibraltar arc region has an anomalous motion with respect to both Iberia and Africa, i.e., the Gibraltar arc region does not move as part of the rigid Iberian, or the rigid African plate. A key question is whether this surface motion is an expression of the Gibraltar slab. Seismic activity in the Gibraltar region is diffuse and considerable in magnitude, making it a region of high seismic risk. Unlike the North African margin to the east, where thrust earthquakes dominate the focal mechanism tables, a complex pattern is observed with thrust, normal and strike-slip earthquakes in a region stretching between the northern Moroccan Atlas across the Gibraltar arc and Alboran Sea (with the Trans-Alboran Shear Zone) to the Betics of southern Spain. Even though no large mega-thrust earthquakes have been observed in recent history, slab rollback may not have completely ceased. However, since no activity has been observed in the accretionary wedge, probably since the Pliocene, it is likely that the subduction interface is locked. In this study, we perform a series of numerical models in which we combine the relative plate convergence, variable magnitude of friction on fault segments, regional variations in gravitational potential energy and slab pull of the Gibraltar slab. We seek to reproduce the GPS velocities and slip sense on regional faults and thereby determine whether the Gibraltar slab has an effect on surface motion. Slab shape and slab continuity to the surface, allowing slab pull to be transfered to the surface lithosphere, are key factors controlling the force balance in the region. We explore slab geometries with or without continuity at the Betics (with a slab window between the known subduction interface and a possible Betics connection) and/or continental material attached to the slab (which lowers the slab pull magnitude). Through our methodology, we are able to study which slab shape of those proposed in the literature best fits the surface data.

  9. Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter

    USGS Publications Warehouse

    Kusky, Timothy M.

    1997-01-01

    The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ1 or σ2 nearly vertical) at shallower crustal levels.We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40Ar/39Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.

  10. Impact of cascadia subduction zone earthquake on the seismic evaluation criteria of bridges : technical report : SPR 770.

    DOT National Transportation Integrated Search

    2016-12-01

    A large magnitude long duration subduction earthquake is impending in the Pacific Northwest, which lies near the : Cascadia Subduction Zone (CSZ). Great subduction zone earthquakes are the largest earthquakes in the world and are the sole source : zo...

  11. Dynamic weakening of smectite-rich faults at intermediate to high velocities

    NASA Astrophysics Data System (ADS)

    Oohashi, K.; Hirose, T.; Takahashi, M.

    2013-12-01

    Smectite, one of the hydrous clay mineral, is ubiquitous in incoming sediments to subduction zones and is thought to weaken and stabilize subduction thrust faults. However, frictional properties of smectite alone cannot explain the nucleation and propagation of earthquake slip at the shallow plate boundary thrust which potentially causes the devastating tsunamis. Here, we investigate for the first time the effect of smectite fraction in smectite-quartz mixtures on friction at 30 μm/s to 1.3 m/s, to shed a light on the frictional response for the intermediate to high slip rates where the conventional friction experiments have not been explored. In the low slip rate of 30 μm/s, the steady-state coefficient of friction decreases non-linearly increasing smectite fraction: it drops rapidly at moderate fraction of 30-50 vol%. On the other hand, at the faster slip rates of ≥ 150 μm/s the friction lowers from 10-20 vol% fraction since drastic slip weakening appears for the mixtures of ~20 vol % smectite. Hence the fault suddenly loses the strength by adding only 20 % of smectite. The weakening seems to be associated with an excess pore pressure invoked by shear compaction and thermal pressurization during the experiments. This property weakens the fault strength and accelerates the fault slip, even if clay content is small (c.a. 15-35 %), leading to the large stress drop. In contrast, the faults rich in smectite (≥ 50 %) may cause small stress drop during the faulting owing to low friction coefficient of smectite at any slip rates. The results highlight that smectite content significantly affects frictional properties of faults and may generates the diversity in the subduction zone earthquakes. ACKNOLEDGEMENTS We thank Kyuichi Kanagawa, Masaya Suzuki, Osamu Tadai, and Hiroko Kitajima for constructive discussions and technical help. This work was supported by a JSPS Grant-in-Aid for JSPS fellows (25-04960) to KO, a JSPS Grant-in-Aid for Young Scientists (B) (20740264) to TH, and MEXT KANAME grant #21107004.

  12. Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.

    2002-12-01

    During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.

  13. Actively dewatering fluid-rich zones along the Costa Rica plate boundary fault

    NASA Astrophysics Data System (ADS)

    Bangs, N. L.; McIntosh, K. D.; Silver, E. A.; Kluesner, J. W.; Ranero, C. R.; von Huene, R.

    2012-12-01

    New 3D seismic reflection data reveal distinct evidence for active dewatering above a 12 km wide segment of the plate boundary fault within the Costa Rica subduction zone NW of the Osa Peninsula. In the spring of 2011 we acquired a 11 x 55 km 3D seismic reflection data set on the R/V Langseth using four 6,000 m streamers and two 3,300 in3 airgun arrays to examine the structure of the Costa Rica margin from the trench into the seismogenic zone. We can trace the plate-boundary interface from the trench across our entire survey to where the plate-boundary thrust lies > 10 km beneath the margin shelf. Approximately 20 km landward of the trench beneath the mid slope and at the updip edge of the seismogenic zone, a 12 km wide zone of the plate-boundary interface has a distinctly higher-amplitude seismic reflection than deeper or shallower segments of the fault. Directly above and potentially directly connected with this zone are high-amplitude, reversed-polarity fault-plane reflections that extend through the margin wedge and into overlying slope sediment cover. Within the slope cover, high-amplitude reversed-polarity reflections are common within the network of closely-spaced nearly vertical normal faults and several broadly spaced, more gently dipping thrust faults. These faults appear to be directing fluids vertically toward the seafloor, where numerous seafloor fluid flow indicators, such as pockmarks, mounds and ridges, and slope failure features, are distinct in multibeam and backscatter images. There are distinctly fewer seafloor and subsurface fluid flow indicators both updip and downdip of this zone. We believe these fluids come from a 12 km wide fluid-rich segment of the plate-boundary interface that is likely overpressured and has relatively low shear stress.

  14. Searching for conditions of observation of subduction seismogenic zone transients on Ocean Bottom Seismometers deployed at the Lesser Antilles submerged fore-arc

    NASA Astrophysics Data System (ADS)

    Bécel, Anne; Laigle, Mireille; Diaz, Jordi; Hirn, Alfred; Flueh, Ernst; Charvis, Philippe

    2010-05-01

    In the frame of the European Union « THALES WAS RIGHT » and French ANR CATTELL SUBSISMANTI funding, an unprecedented array of 80 OBS, Ocean Bottom Seismometers of Géoazur Nice, INSU/IPGP Paris, IfM-GEOMAR Kiel, AWI Bremerhaven could gathered. They have been deployed for continuous recording over four months on the fore-arc domain of the Lesser Antilles subduction zone offshore Martinique, Dominica, Guadeloupe and Antigua Islands, by scientific cruises of N/O ATALANTE, F/S M. A. MERIAN and N/O ANTEA. One of the aims of this OBS array was the feasibility study of detecting at sea-bottom the seismological part of recently discovered phenomena such as NVT non-volcanic tremors and LP, for Long-Period events. The ability of detecting such transient signals is of importance, since they are possibly related to potential mega-thrust earthquakes and their preparation zone. At the Lesser Antilles subduction zone, the fore-arc domain overlying the seismogenic part of the interplate is located offshore, covered by as much as 4000 m of water. In this case, transient signals can be accessible only from OBS observations. Hence, there is a major difference, in the sense of the instrumental and logistical effort, with the subductions under NW US-Canada and under Central Japan where these signals have been discovered. There, the subduction zones have an emerged fore-arc that has allowed the chance discovery of those phenomena by regular instrument maintained routinely on land. Over 20 of the instruments were BB-OBS, with broadband seismic sensors, possibly the largest such gathering at the time of the experiment among the OBS types. Among those broadband OBS designed or used by different Institutions, there were at least three different seismometer brands and acoustical sensors, as well as different mechanical mounting and technical solutions for coupling them to ground. This did not facilitate data recovery and processing, but on the other hand, as planned by interweaving the different instruments deployments, it provided diverse views, as through different glasses. This ultimately proved valuable to help extract the harder facts from their diverse appearances when seen through different instruments and in different types of sites. After analyzing the data for spurious and instrument-related peculiarities, and possible interpretation pitfalls, it remains that the noise level shows an overwhelming influence of the marine domain due to both its own sources, hydrosphere motions, and to meteorological-climatological actions. As well, the response of the laterally variable fore-arc basin on top of which measurements have to be made is much adverse to quality recording, with respect to seismological observatories on land which can be buried deep into basement rocks. The study of this noise itself may allow us to initiate a discussion of the interactions of the oceanic and atmospheric processes with the Solid Earth. Transients at depth in the subduction zone have been tentatively discussed in terms of its seismogenic evolution. If such transient events would indeed have a component over a very broad spectral range from NVT to LP and ULP events as it has been suggested very recently in Japan (Ide et al., 2008), the conditions and the best observation windows in which they can be best searched for are now documented for ocean bottom recording in the case of the Lesser Antilles subduction zone.

  15. Nurture Versus Nature: Accounting for the Differences Between the Taiwan and Timor active arc-continent collisions

    NASA Astrophysics Data System (ADS)

    Harris, R. A.

    2011-12-01

    The active Banda arc/continent collision of the Timor region provides many important contrasts to what is observed in Taiwan, which is mostly a function of differences in the nature of the subducting plate. One of the most important differences is the thermal state of the respective continental margins: 30 Ma China passive margin versus 160 Ma NW Australian continental margin. The subduction of the cold and strong NW Australian passive margin beneath the Banda trench provides many new constraints for resolving longstanding issues about the formative stages of collision and accretion of continental crust. Some of these issues include evidence for slab rollback and subduction erosion, deep continental subduction, emplacement or demise of forearc basement, relative amounts of uplift from crustal vs. lithospheric processes, influence of inherited structure, partitioning of strain away from the thrust front, extent of mélange development, metamorphic conditions and exhumation mechanisms, continental contamination and accretion of volcanic arcs, does the slab tear, and does subduction polarity reverse? Most of these issues link to the profound control of lower plate crustal heterogeneity, thermal state and inherited structure. The thermomechanical characteristics of subducting an old continental margin allow for extensive underthrusting of lower plate cover units beneath the forearc and emplacement and uplift of extensive nappes of forearc basement. It also promotes subduction of continental crust to deep enough levels to experience high pressure metamorphism (not found in Taiwan) and extensive contamination of the volcanic arc. Seismic tomography confirms subduction of continental lithosphere beneath the Banda Arc to at least 400 km with no evidence for slab tear. Slab rollback during this process results in massive subduction erosion and extension of the upper plate. Other differences in the nature of the subducting plates in Taiwan in Timor are differences in the lateral continuity of the continental margins. The northern Australian continental margin is highly irregular with many rift basins subducting parallel to their axes. This feature gives rise to irregularities in the uplift pattern of the collision and its continental margin parallel structural grain. Another major difference between Taiwan and Timor is the mechanical stratigraphy entering the trench. The Australian continental margin bears a carbonate rich pre and post rift sequence that is separated by a 1000 m thick, over pressured mudstone unit that acts as major detachment and promotes extensive mud diapirism. The post breakup Australian Passive Margin Sequence is incorporated into the orogenic wedge by frontal accretion and forms a classic imbricate thrust stack near the front of the Banda forearc. The pre breakup Gondwana Sequence below the detachment continues at least to depth of 30 km in the subduction channel beneath the Banda forearc upper plate and stacks up into a duplex zone that forms structural culminations throughout Timor. The upper plate of both collisions is similar in nature but is deformed in different ways due to the strong influence of the lower plate. However, both have extensive subduction erosion and demise of the forearc and systematic accretion of the arc.

  16. Magnitude of crustal shortening and structural framework of the easternmost Himalayan orogen, northern Indo-Burma Ranges of northeastern India

    NASA Astrophysics Data System (ADS)

    Haproff, P. J.; Yin, A.

    2016-12-01

    Along-strike variation in crustal shortening throughout the Himalayan orogen has been attributed to (1) diachronous, eastward-increasing convergence, or (2) localized controls including pre-collisional stratigraphic configuration and climate. In this study, we present new geologic maps and balanced cross-sections across the easternmost segment of the Himalayan orogen, the N-S-trending N. Indo-Burma Ranges of northeastern India. First order structures are NE-dipping, km-wide ductile thrust shear zones with mylonitic fabrics indicating top-to-the SW motion. Major structures include the Mayodia klippe and Hunli window, generated during folding of the SW-directed Tidding thrust and duplexing of Lesser Himalayan rocks (LHS) at depth. Reconstruction of two balanced cross-sections yields minimum shortening estimates of 70% (48 km) and 71% (133 km), respectively. The widths of the orogen for each transect are 21 km and 54 km, respectively. Our percent strain values are comparable to that of western Arunachal Himalaya, reflecting eastward-increasing strain due to counterclockwise rotation of India during convergence or along-strike variation in India's subduction angle. However, shortening magnitudes much less than that of the Sikkim (641 km), Bhutan (414-615 km), and western Arunachal Himalaya (515-775 km) could signal eastward increasing shortening of a unique Himalayan stratigraphic framework, evidenced by few GHC rocks, absence of Tethyan strata, and an extensive subduction mélange and forearc complex.

  17. Late Cretaceous-Early Palaeogene tectonic development of SE Asia

    NASA Astrophysics Data System (ADS)

    Morley, C. K.

    2012-10-01

    The Late Cretaceous-Early Palaeogene history of the continental core of SE Asia (Sundaland) marks the time prior to collision of India with Asia when SE Asia, from the Tethys in the west to the Palaeo-Pacific in the east, lay in the upper plate of subduction zones. In Myanmar and Sumatra, subduction was interrupted in the Aptian-Albian by a phase of arc accretion (Woyla and Mawgyi arcs) and in Java, eastern Borneo and Western Sulawesi by collision of continental fragments rifted from northern Australia. Subsequent resumption of subduction in the Myanmar-Thailand sector explains: 1) early creation of oceanic crust in the Andaman Sea in a supra-subduction zone setting ~ 95 Ma, 2) the belt of granite plutons of Late Cretaceous-Early Palaeogene age (starting ~ 88 Ma) in western Thailand and central Myanmar, and 3) amphibolite grade metamorphism between 70 and 80 Ma seen in gneissic outcrops in western and central Thailand, and 4) accretionary prism development in the Western Belt of Myanmar, until glancing collision with the NE corner of Greater India promoted ophiolite obduction, deformation and exhumation of marine sediments in the early Palaeogene. The Ranong strike-slip fault and other less well documented faults, were episodically active during the Late Cretaceous-Palaeogene time. N to NW directed subduction of the Palaeo-Pacific ocean below Southern China, Vietnam and Borneo created a major magmatic arc, associated with rift basins, metamorphic core complexes and strike-slip deformation which continued into the Late Cretaceous. The origin and timing of termination of subduction has recently been explained by collision of a large Luconia continental fragment either during the Late Cretaceous or Palaeogene. Evidence for such a collision is absent from the South China Sea well and seismic reflection record and here collision is discounted. Instead relocation of the subducting margin further west, possibly in response of back-arc extension (which created the Proto-South China Sea) is preferred. Lying between the two subduction related arcs, the Khorat Basin is of predominantly Late Jurassic-Early Cretaceous age but stratigraphic and apatite fission track data also indicates deposition of 1-2 km of Late Cretaceous sediments. The synformal basin geometry probably arose due to the dynamic topography created by converging Tethyan and Palaeo-Pacific subduction zones. The Aptian-Albian slowing of basin subsidence and onset of evaporite deposition coincides with collision of the Mawgyi and Woyla island arcs. Extensive Palaeogene deformation and exhumation (3 + km in places) affected all margins of the Khorat Plateau. Deformation includes folds of the Phu Phan uplift, and strike-slip faults, thrusts and folds on the southern and eastern margins. South of the Khorat Plateau outcrop, and seismic reflection data from the Ton Le Sap Basin (Cambodia), and the Gulf of Thailand, indicate syn-depositional fault-controlled subsidence was important during Cretaceous deposition. The hot, thickened crust developed during the Late Cretaceous-Palaeogene events follows the weak (Indosinian), crustal-scale Inthanon and Sukhothai zones, which persistently guided the location of later structures including Cenozoic extensional, and post-rift basins, and influenced the widespread occurrence of low-angle normal faults, metamorphic core complexes, and eastern Gulf of Thailand super-deep post-rift basins.

  18. Pressure-Temperature Studies and Structural Setting of Amphibolite-Grade Rocks Within the Easternmost Indus-Ysangpo Suture Zone and Forearc Complex (Tidding Formation), N. Indo-Burma Ranges of N.E. India

    NASA Astrophysics Data System (ADS)

    Braza, M.; Haproff, P. J.

    2016-12-01

    The easternmost extension of the Indus-Ysangpo suture (IYS) and Xigaze forearc complex, the Tidding Formation of northeastern India, remains the least-studied sequence representing closure of the Neotethys ocean and syn-tectonic sedimentation. In this study, we present P-T determinations coupled with detrital zircon U-Pb geochronology and detailed geologic mapping to uncover the depositional and metamorphic history of Tidding suture and forearc rocks during Himalayan orogenesis. Four mica schists were sampled from successive NW-SE-striking thrust sheets within the Dibang Valley of Arunachal Pradesh (N.E. India), southwest of the easternmost L. Cretaceous Gangdese batholith. Use of the garnet-muscovite-biotite-plagioclase (GMBP) thermobarometer and Ti-in-biotite thermometer on schist sample PH-1-8-13-26 yield peak conditions of 627 ± 28°C and 10.4 ± 1.1 kbar. Similarly, use of the garnet-biotite Fe-Mg exchange thermometer and garnet-aluminosilicate-silica-plagioclase (GASP) barometer yield 644 ± 50°C and 12 ± 1 kbar for schist sample PH-11-14-15-24 within the same thrust sheet. Both samples contain recrystallized quartz along grain boundaries and garnets contain no significant compositional zoning. At structurally lower levels, garnet chlorite schist (PH-1-8-13-8) sampled from the Mayodia klippe records peak temperatures below 650°C. Garnets display growth zoning, with increasing Mn and decreasing Fe and Mg from rim to core. Application of the Ti-in-biotite thermometer to a mafic schist (PH-1-3-13-1B) within the Mayodia klippe near a southwestward-directed thrust yields a peak temperature of 679 ± 24°C. Our study reveals metamorphism of IYS rocks occurred at deep crustal levels (>30 km) during northward Neotethys subduction. Suture rocks were subsequently exhumed by orogen-scale N-dipping thrusts during growth of the easternmost Himalayan orogen.

  19. Tensile overpressure compartments on low-angle thrust faults

    NASA Astrophysics Data System (ADS)

    Sibson, Richard H.

    2017-08-01

    Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ 1 > σ 2 > σ 3) when the pore-fluid pressure, P f, exceeds the least compressive stress by the rock's tensile strength. Such veins form perpendicular to σ 3, their incremental precipitation from hydrothermal fluid often reflected in `crack-seal' textures, demonstrating that the tensile overpressure state, σ 3' = ( σ 3 - P f) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and metamorphic assemblages defining tensile overpressure compartments where at some time P f > σ 3. In compressional regimes ( σ v = σ 3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing horizons with tensile strengths 10 < T o < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The overpressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ 1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), affecting the failure mode, dilatant fault-fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault-fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along subduction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak ( τ < 40 MPa), consistent with weakening by near-lithostatically overpressured fluids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault-fracture meshes at low σ 3' around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fluid loss curtailing mesh activity.[Figure not available: see fulltext.

  20. Late Palaeozoic-Cenozoic assembly of the Tethyan orogen in the light of evidence from Greece and Albania

    NASA Astrophysics Data System (ADS)

    Robertson, A. H. F.

    2012-04-01

    The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic mid-ocean ridge-type igneous rocks, known locally in Albania and Greece, points to rifting of a Red Sea-type oceanic basin rather than a back-arc basin related to contemporaneous subduction. After initial, inferred slow spreading at an Upper Triassic, rifted ocean ridge and spreading during the Early Jurassic, the ocean basin underwent regional convergence. Subduction was initiated at, or near, a spreading axis perhaps adjacent to an oceanic fracture zone. The Jurassic supra-subduction zone-type ophiolites of both Greece and Albania largely relate to melting of rising asthenosphere in the presence of volatiles (water) that originated from subducting oceanic lithosphere. High-magnesian boninite-type magmas that are present in both the Albanian and Greece ophiolites and some underlying melanges reflect remelting of previously depleted oceanic upper mantle. Localised MOR-type ophiolites of Late Middle Jurassic age, mainly exposed in NE Albania, were created at a rifted spreading axis. The amphibolite-facies metamorphic sole of the ophiolites was mainly derived from oceanic crust (including within-plate type seamounts), whereas the underlying lower-grade, greenschist facies sole was mainly sourced from the rifted continental margin. The melange, dismembered thrust sheets and polymict debris flows ("olistostromes") beneath the ophiolites formed by accretion and gravity reworking of continental margin units. The in situ radiolarian chert cover of the ophiolites in northern Albania is overlain by polymict debris flows ("olistostromes"). Pelagic carbonate deposition followed during Tithonian-Berriasian time and then restoration of a regional carbonate platform during the Cretaceous. Exhumation of deeply buried parts of the over-ridden continental margin probably took place during the Early Cretaceous. Structural evidence, mainly from northern Greece (Vourinos, Pindos and Othris areas), indicates that the ophiolites, the metamorphic sole, the accretionary melange, and the underlying continental margin units were all deformed by top-to-the-northeast thrusting during Late Middle-Early Late Jurassic time. However, such kinematic evidence is not obviously replicated in Albania, where there are reports of ~southwest-directed (or variable) emplacement. Remaining Pindos-Mirdita oceanic crust subducted ~southwestwards during Late Cretaceous-Eocene time, while oceanic crust continued to form in the south-Aegean region at least locally during Late Cretaceous time. During Early Cenozoic time the Pindos-Mirdita ocean closed progressively southwards, triggering mainly southward progradation of turbidites derived from the over-riding Korabi-Pelagonian microcontinent. Smaller volumes of sediment were also derived from the Apulia (Adria) continent. The Mesohellenic Trough of Greece and its counterpart in Albania evolved from an Eocene fore-arc-type basin above subducting oceanic lithosphere to a thrust-top basin as continental crust continued to underthrust during the Oligocene after final closure of the Pindos-Mirdita ocean. Miocene and Plio-Quaternary successor flexural foredeeps developed in response to continuing regional plate convergence. The preferred tectonic alternatives are assembled into a new overall tectonic model, which in turn needs to be tested and developed in the light of future studies. Reference: Robertson, A.H.F. Tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region during Late Palaeozoic-Cenozoic time. International Geological Review, in press.

  1. Possible reactivation of the Vincent-Chocolate Mountains thrust in the Gavilan Hills area, southeasternmost California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyarzabal, F.R.; Jacobson, C.E.; Haxel, G.B.

    The Late Cretaceous-early Tertiary Orocopia Schist (OS) of southeasternmost California consists of metamorphosed continental margin sedimentary and basaltic rocks, overlain by an upper plate of continental crust along the Vincent-Chocolate Mountains fault (VCMF). Previous analysis of late folds and shear band in OS and upper plate in the Gavilan Hills and adjacent ares indicated that the direction of transport of the upper plate was northeastward. This has been considered evidence of a SW dipping subduction zone, along which an outboard continental fragment was sutured to North America. Another view is that the VCMF was formed by underplating of the OSmore » in an Andean continental margin, and that the NE-vergent late structures formed during uplift of the OS. The authors' continuing work in the Gavilan Hills confirm the NE sense of vergence but suggests a more complex structural history. The schist is characterized by refolded folds, shear bands, and two penetrative lineations. An older lineation that ranges from N10[degree]E to N30[degree]E is widespread in the area, but is more evident at low structural levels. A second lineation ranges from N40[degree]E to N70[degree]E and is strongly developed in rocks near the VCMF. The complex folding pattern, presence of mylonitic schist, relative thinness of upper-plate mylonite, and possible retrogressive character of the shear bands suggest that the VCMF in the Gavilan Hills area may have been reactivated after original thrusting. The VCMF in the Gavilan Hills is intermediate in character between the probable subduction thrust in the San Gabriel Mountains and the reactivated faults in the Orocopia Mountains and areas surrounding the Gavilan Hills.« less

  2. Trading Time with Space - Development of subduction zone parameter database for a maximum magnitude correlation assessment

    NASA Astrophysics Data System (ADS)

    Schaefer, Andreas; Wenzel, Friedemann

    2017-04-01

    Subduction zones are generally the sources of the earthquakes with the highest magnitudes. Not only in Japan or Chile, but also in Pakistan, the Solomon Islands or for the Lesser Antilles, subduction zones pose a significant hazard for the people. To understand the behavior of subduction zones, especially to identify their capabilities to produce maximum magnitude earthquakes, various physical models have been developed leading to a large number of various datasets, e.g. from geodesy, geomagnetics, structural geology, etc. There have been various studies to utilize this data for the compilation of a subduction zone parameters database, but mostly concentrating on only the major zones. Here, we compile the largest dataset of subduction zone parameters both in parameter diversity but also in the number of considered subduction zones. In total, more than 70 individual sources have been assessed and the aforementioned parametric data have been combined with seismological data and many more sources have been compiled leading to more than 60 individual parameters. Not all parameters have been resolved for each zone, since the data completeness depends on the data availability and quality for each source. In addition, the 3D down-dip geometry of a majority of the subduction zones has been resolved using historical earthquake hypocenter data and centroid moment tensors where available and additionally compared and verified with results from previous studies. With such a database, a statistical study has been undertaken to identify not only correlations between those parameters to estimate a parametric driven way to identify potentials for maximum possible magnitudes, but also to identify similarities between the sources themselves. This identification of similarities leads to a classification system for subduction zones. Here, it could be expected if two sources share enough common characteristics, other characteristics of interest may be similar as well. This concept technically trades time with space, considering subduction zones where we have likely not observed the maximum possible event yet. However, by identifying sources of the same class, the not-yet observed temporal behavior can be replaced by spatial similarity among different subduction zones. This database aims to enhance the research and understanding of subduction zones and to quantify their potential in producing mega earthquakes considering potential strong motion impact on nearby cities and their tsunami potential.

  3. Structural evidence for slip partitioning and inclined dextral transpression along the SE Sanandaj-Sirjan zone, Iran

    NASA Astrophysics Data System (ADS)

    Shafiei Bafti, Shahram; Mohajjel, Mohammad

    2015-04-01

    The structural evolution of the Sanandaj-Sirjan zone is the result of the convergence of the Iranian microcontinent and the Afro-Arabian continent. The study area at Khabr in the SE Sanandaj-Sirjan zone, in the hinterland of the Zagros orogen, consists of Paleozoic, Mesozoic and Cenozoic rocks. In this area, deformation phases were distinguished in different rock units based on structural and stratigraphical evidence, and the deformational events are divided into two stages: (1) a Late Triassic event and (2) a Late Cretaceous to Miocene event. The Late Triassic deformation event caused regional metamorphism in the Paleozoic units. These units are overlain by unmetamorphosed Jurassic clastic sequences. Fabrics and structural evidence confirm that the F1 folding recumbent and refolded folds were synchronous with the metamorphism of the Paleozoic units and terminated in the Early Jurassic. The time table of the orogenic phases shows that this deformation event is related to the Cimmerian orogenic phase. From a geodynamic point of view, the early Cimmerian deformation in the southeastern Iranian margin suggests that the SE Sanandaj-Sirjan zone was an active margin at that time. The early Cimmerian discordance recorded the onset of a contractional component related to the oblique subduction of Neo-Tethys beneath the central Iranian microcontinent. Structures related to the Late Cretaceous to Miocene deformation phase are observed in Jurassic to Oligocene units, which contain moderately inclined and plunging folds. Comparing these folds with domains of deformation generated in models of transpression shows that the folding was caused by a combination of contractional and dip-slip components of movement, eventually resulting in the formation of a thrust system. The Khabr thrust systems consist of five sheets of oblique thrusts, duplex structures and shear zones. The shear zones generally strike E-W and dip moderately N (30°-40°). The occurrence of asymmetric folds with hinges that are either parallel to strike or plunge down dip demonstrates an oblique-slip component in these thrust shear zones. The stretching lineation in the mylonites within the shear zones is defined by the long axes of ellipsoidal grains of quartz, calcite, plagioclase and garnet. In general, stretching lineations trend from N40°W to N80°W with an intermediate (35°) plunge. The geometry of foliation and lineation within these shear zones shows the effect of dip- and oblique-slip shearing. Deformation continued with strike-slip faulting becoming important during the last stages of deformation from the Miocene to the present day. The results of this study demonstrate that the evolution of the SE Sanandaj-Sirjan zone, from Late Triassic to Miocene, is compatible with an inclined dextral transpression along this zone.

  4. Arc-arc Collision Structure in the Southernmost Part of the Kuril Trench Region -Results from Integrated Analyses of the 1998-2000 Hokkaido Transect Seismic Data-

    NASA Astrophysics Data System (ADS)

    Iwasaki, Takaya; Tsumura, Noriko; Ito, Tanio; Sato, Hiroshi; Kurashimo, Eiji; Hirata, Naoshi; Arita, Kazunori; Noda, Katsuya; Fujiwara, Akira; Abe, Susumu; Kikkuchi, Shunsuke; Suzuki, Kazuko

    2015-04-01

    The Hokkaido Island, located in the southernmost part of the Kuril trench region, has been under a unique tectonic environment of arc-arc collision. Due to the oblique subduction of the Pacific (PAC) plate, the Kuril forearc sliver started to collide against Northeast (NE) Japan arc from the east at the time of middle Miocene to form complicated structures in the Hidaka collision zone (HCZ), as characterized by the westward obduction of the crustal rocks of the Kuril arc (the Hidaka metamorphic belt (HMB)) along the Hidaka main thrust (HMT) and a thick foreland fold-and-thrust belt. In and around the HCZ, a series of seismic reflection/refraction experiments were undertaken from 1994 to 2000, which provided important structural features including crustal delamination in the southern HCZ and a thick fold-and-thrust belt with velocity reversals (low velocity layers) in the northern HCZ. Reprocessing/reinterpretation for these data sets, which started in 2012, is aimed to construct a more detailed collision model through new processing and interpretation techniques. A multi-disciplinary project of the 1998-2000 Hokkaido Transect, crossing the northern part of the HCZ in EW direction, collected high-quality seismic data on a 227-km seismic refraction/wide-angle reflection profile and three seismic reflection lines. Our reanalyses revealed interesting collision structure ongoing in the northern part of the HCZ. The westward obduction of the Kuril arc crust was clearly imaged along the HMT. This obduction occurs at a depth of 27-30 km, much deeper than in the southern HCZ (23-25 km). The CRS/MDRS processing to the reflection data firstly succeeded in imaging clear reflection events at a 30-45 km depth below the obducted Kuril arc crust. These events show an eastward dip, probably corresponding to the lower crust/Moho within the NE Japan arc descending down to the east under the collision zone. Gently eastward dipping structures above these events (in a depth range of 5-10 km) are interpreted to be fragments of Cretaceous subduction/arc complexes or deformation interfaces branched from the HMT. The refraction/wide-angle reflection analysis revealed a series of eastward dipping interfaces at depths of 15-30 km east of the HMT, some of which show a very large Vp contrast exceeding 0.5-1.0 km/s. The subducted NE Japan arc meets the Kuril arc 20-40 km east of the HMT at a depth of 20-30 km. The above mentioned high Vp contrasts may result from the mixture of the upper crustal (low Vp) materials of the NE Japan arc and lower crustal (high Vp) materials of the Kuril arc. Seismic reflection image in the southern HCZ reprocessed by almost the same techniques confirms a clear crustal delamination, where the upper 23-km crust is thrust up along the HMT while the lower part of the crust descends down to the subducted PAC plate. At the moment, the results in the northern HCZ do not provide positive evidence on shallow crustal delamination as found in the case of the southern HCZ, suggesting regional difference in collision style along the HMT.

  5. Seismic hazard analysis for Jayapura city, Papua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robiana, R., E-mail: robiana-geo104@yahoo.com; Cipta, A.

    Jayapura city had destructive earthquake which occurred on June 25, 1976 with the maximum intensity VII MMI scale. Probabilistic methods are used to determine the earthquake hazard by considering all possible earthquakes that can occur in this region. Earthquake source models using three types of source models are subduction model; comes from the New Guinea Trench subduction zone (North Papuan Thrust), fault models; derived from fault Yapen, TareraAiduna, Wamena, Memberamo, Waipago, Jayapura, and Jayawijaya, and 7 background models to accommodate unknown earthquakes. Amplification factor using geomorphological approaches are corrected by the measurement data. This data is related to rock typemore » and depth of soft soil. Site class in Jayapura city can be grouped into classes B, C, D and E, with the amplification between 0.5 – 6. Hazard maps are presented with a 10% probability of earthquake occurrence within a period of 500 years for the dominant periods of 0.0, 0.2, and 1.0 seconds.« less

  6. Possible detachment zone in Precambrian rocks of Kanjamalai Hills, Cauvery Suture Zone, Southern India: Implications to accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Mohanty, D. P.; Chetty, T. R. K.

    2014-07-01

    Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction-accretion-collision tectonic history of the Neoproterozoic Gondwana suture.

  7. Exhumation history of the NW Indian Himalaya revealed by fission track and 40Ar/39Ar ages

    USGS Publications Warehouse

    Schlup, M.; Steck, A.; Carter, A.; Cosca, M.; Epard, J.-L.; Hunziker, J.

    2011-01-01

    New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) - Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55. Ma and metamorphosed by ca. 48-40. Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10. km) by 40-30. Ma in the Tso Morari dome (northern section of the transect) and by 30-20. Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene. High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26. Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19. Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10. km) between 20 and 6. Ma, while its southern front reached this depth at 10-5. Ma. ?? 2010 Elsevier Ltd.

  8. The Naga Hills and Andaman ophiolite belt, their setting, nature and collisional emplacement history

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.; Ray, K. K.; Sengupta, Subhasis

    The Indo-Burmese Range and the Andaman-Nicobar Island Arc, form a continuous arcuate trend along which several ophiolite occurrences have been reported. In Naga Hills (NHO) and Andaman (ANO), these ophiolites are represented by dismembered mafic and ultramafic rocks with closely associated oceanic pelagic sediments. They occur as folded thrust slices occupying the highest tectonic levels and are brought to lie over distal shelf sediments of Eocene to Oligocene age. Ophiolites are unconformably overlain by ophiolite-derived clastics of Middle to Late Eocene age. The ophiolites preserved along this belt are remnants of a continuous, narrow, one or several intra-continental ocean basin(s) of broadly comparable age, created during the Late Mesozoic rifting of the Greater India Gondwana continent. Rifting and creation of oceanic crust date between Cretaceous and Early Eocene. In the initial stages, the ocean floor had been deeper than Carbonate Compensation Depth (CCD). Subsequently it had become uneven, when oceanic crust was being added through several seamounts or seamount chains and on top of which calcareous pelagic sediments were deposited. Both tholeiitic and alkaline volcanic rocks are present in these ophiolites. In NHO, the two groups of lavas have generated from different sources in different tectonic settings. The alkalic and some tholeiitic lavas in NHO are similar to off-axis seamount basalts. Tholeiitic lavas from ANO and some NHO resemble MORB or backarc basin basalts and on the basis of certain chemical characters these are suggested to have generated in marginal basin setting. Significant volume of acid differentiates are associated in ANO which also support the marginal basin character of the basalts. The suite of rocks in ANO indicates fractionation in a shallow level magma chamber. Closure of the small ocean basin(s) and emplacement of ophiolites took place in two stages. In the initial stage, the seamount chain brought to the subduction zone collided with the Burmese block prior to Middle Eocene. Part of the ophiolites represent clipped seamounts which got accreted to the leading edge of the eastern continental block. With continued closure, this eastern block with accreted ophiolite slices was brought in juxtaposition with distal shelf sediments of the western block marking the terminal continent-continent collision. The thrust front of ophiolitic rocks apparently advanced further westward in Andaman to the south compared to the northern sector, and thus an imbricated zone and melange involving the Eocene floor sediments (Lipa Fm) has been created, whereas in the Naga Hills the floor sediments (Disang Fm) remained virtually passive. The time of terminal continental collision is represented as the regional Late Oligocene unconformity. The entire thrust stack got deformed and folded into upright geometry after being blocked. The present subduction of oceanic crust beneath the Andaman island arc appears to be a westward jump of subduction zone due to sustained post-collisional NE drive of the Indian plate.

  9. Seismotectonics of the trans-Himalaya, Eastern Ladakh, India: constraints from Moment Tensor Solutions of local earthquake data

    NASA Astrophysics Data System (ADS)

    Paul, A.

    2017-12-01

    The eastern Ladakh-Karakoram zone, the northwest part of the Trans-Himalayan belt, bears signature of this collisional process in the form of suture zones, exhumed blocks that underwent deeper subduction and also intra-continental fault zones. The seismotectonic scenario of northwest part of India-Asia collision zone is studied by analyzing the local earthquake data (M 1.4-4.3) recorded by a broadband seismological network consisting of 14 stations. Focal Mechanism Solution (FMS) of 13 selected earthquakes were computed through waveform inversion of three-component broadband records. Depth distribution of the earthquakes and FMS of local earthquakes obtained through waveform inversion reveal the kinematics of the major fault zones present in Eastern Ladakh. The most pronounced cluster of seismicity is observed in the Karakoram Fault (KF) zone up to a depth of 65 km (Fig.1). The FMS reveals transpressive environment with the strike of inferred fault plane roughly parallel to the KF. It is inferred that the KF at least penetrates up to the lower crust and is a manifestation of active under thrusting of Indian lower crust beneath Tibet. Two clusters of micro seismicity is observed at a depth range of 5-20 km at north western and southeastern fringe of the Tso Morari gneiss dome which can be correlated to the activities along the Zildat fault and Karzok fault respectively. The FMSs estimated for representative earthquakes show thrust fault solutions for the Karzok fault and normal fault solution for the Zildat fault. It is inferred that the Zildat fault is acting as detachment, facilitating the exhumation of the Tso Morari dome. On the other hand, the Tso Morari dome is underthrusting the Karzok ophiolite on its southern margin along the Karzok fault, due to gravity collapse.

  10. 3D geodynamic models for the development of opposing continental subduction zones: The Hindu Kush-Pamir example

    NASA Astrophysics Data System (ADS)

    Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An

    2017-12-01

    The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved Western Alpine arc and the two opposing subducted slabs beneath the Alps and the Dinarides.

  11. Constraints on the Amount of deeply subducted Water from numerical Models in comparison with natural Samples

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, M.; Halama, R.

    2014-12-01

    The subduction of hydrated slab mantle to beyond-arc depths is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. During subduction of hydrated oceanic lithosphere, dehydration reactions in the downgoing plate lead to a partitioning of water between upper and lower plate. Water retained in the slab is recycled into the mantle where it controls its rheology and thus plate tectonic velocities. Hence, quantification of the water partitioning in subduction zones is crucial for the understanding of mass transfer between the Earth's surface and the mantle. Combined thermomechanical and thermodynamic models yield quantitative constraints on the water cycle in subduction zones, but unless model results can be linked to natural observations, the reliability of such models remains speculative. We present combined thermomechanical, thermodynamic and geochemical models of active and paleo-subduction zones, whose results can be tested with independent geochemical features in natural rocks. In active subduction zones, evidence for the validity of our model comes from the agreement between modeled and observed across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. In the Kamchatkan subduction zone, for example, the model successfully predicts complex geochemical patterns and the spatial distribution of arc volcanoes. In paleo-subduction zones (e.g. Western Gneiss Region and Western Alps), constraints on the water budget and dehydration behavior of the subducting slab come from trace element zoning patterns in ultra-high pressure (UHP) garnets. Distinct enrichments of Cr, Ni and REE in the UHP zones of the garnets can be reconciled by our models that predict intense rehydration and trace element re-enrichment of the eclogites at UHP conditions by fluids released from the underlying slab mantle. Models of present-day subduction zones indicate the presence of 2.5-6 wt.% of water within the uppermost 15 km of the subducted slab mantle. Depending on hydration depth, between 25 and 90% of this water is recycled into the deeper mantle. The Lower Devonian example from the Western Gneiss Region indicates that subduction of water into the Earth's deeper mantle is an active process at least since the middle Paleozoic.

  12. Probabilistic Appraisal of Earthquake Hazard Parameters Deduced from a Bayesian Approach in the Northwest Frontier of the Himalayas

    NASA Astrophysics Data System (ADS)

    Yadav, R. B. S.; Tsapanos, T. M.; Bayrak, Yusuf; Koravos, G. Ch.

    2013-03-01

    A straightforward Bayesian statistic is applied in five broad seismogenic source zones of the northwest frontier of the Himalayas to estimate the earthquake hazard parameters (maximum regional magnitude M max, β value of G-R relationship and seismic activity rate or intensity λ). For this purpose, a reliable earthquake catalogue which is homogeneous for M W ≥ 5.0 and complete during the period 1900 to 2010 is compiled. The Hindukush-Pamir Himalaya zone has been further divided into two seismic zones of shallow ( h ≤ 70 km) and intermediate depth ( h > 70 km) according to the variation of seismicity with depth in the subduction zone. The estimated earthquake hazard parameters by Bayesian approach are more stable and reliable with low standard deviations than other approaches, but the technique is more time consuming. In this study, quantiles of functions of distributions of true and apparent magnitudes for future time intervals of 5, 10, 20, 50 and 100 years are calculated with confidence limits for probability levels of 50, 70 and 90 % in all seismogenic source zones. The zones of estimated M max greater than 8.0 are related to the Sulaiman-Kirthar ranges, Hindukush-Pamir Himalaya and Himalayan Frontal Thrusts belt; suggesting more seismically hazardous regions in the examined area. The lowest value of M max (6.44) has been calculated in Northern-Pakistan and Hazara syntaxis zone which have estimated lowest activity rate 0.0023 events/day as compared to other zones. The Himalayan Frontal Thrusts belt exhibits higher earthquake magnitude (8.01) in next 100-years with 90 % probability level as compared to other zones, which reveals that this zone is more vulnerable to occurrence of a great earthquake. The obtained results in this study are directly useful for the probabilistic seismic hazard assessment in the examined region of Himalaya.

  13. Seismotectonics of the Eastern Himalayan System and Indo-Burman Convergence Zone Using Seismic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Mitra, S.; Suresh, G.

    2014-12-01

    The Eastern Himalayan System (east of 88°E) is distinct from the rest of the India-Eurasia continental collision, due to a wider zone of distributed deformation, oblique convergence across two orthogonal plate boundaries and near absence of foreland basin sedimentary strata. To understand the seismotectonics of this region we study the spatial distribution and source mechanism of earthquakes originating within Eastern Himalaya, northeast India and Indo-Burman Convergence Zone (IBCZ). We compute focal mechanism of 32 moderate-to-large earthquakes (mb >=5.4) by modeling teleseismic P- and SH-waveforms, from GDSN stations, using least-squares inversion algorithm; and 7 small-to-moderate earthquakes (3.5<= mb <5.4) by modeling local P- and S-waveforms, from the NorthEast India Telemetered Network, using non-linear grid search algorithm. We also include source mechanisms from previous studies, either computed by waveform inversion or by first motion polarity from analog data. Depth distribution of modeled earthquakes reveal that the seismogenic layer beneath northeast India is ~45km thick. From source mechanisms we observe that moderate earthquakes in northeast India are spatially clustered in five zones with distinct mechanisms: (a) thrust earthquakes within the Eastern Himalayan wedge, on north dipping low angle faults; (b) thrust earthquakes along the northern edge of Shillong Plateau, on high angle south dipping fault; (c) dextral strike-slip earthquakes along Kopili fault zone, between Shillong Plateau and Mikir Hills, extending southeast beneath Naga Fold belts; (d) dextral strike-slip earthquakes within Bengal Basin, immediately south of Shillong Plateau; and (e) deep focus (>50 km) thrust earthquakes within IBCZ. Combining with GPS geodetic observations, it is evident that the N20E convergence between India and Tibet is accommodated as elastic strain both within eastern Himalaya and regions surrounding the Shillong Plateau. We hypothesize that the strike-slip earthquakes south of the Plateau occur on re-activated continental rifts paralleling the Eocene hinge zone. Distribution of earthquake hypocenters across the IBCZ reveal active subduction of the Indian plate beneath Burma micro-plate.

  14. Finite-fault slip model of the 2016 Mw 7.5 Chiloé earthquake, southern Chile, estimated from Sentinel-1 data

    NASA Astrophysics Data System (ADS)

    Xu, Wenbin

    2017-05-01

    Subduction earthquakes have been widely studied in the Chilean subduction zone, but earthquakes occurring in its southern part have attracted less research interest primarily due to its lower rate of seismic activity. Here I use Sentinel-1 interferometric synthetic aperture radar (InSAR) data and range offset measurements to generate coseismic crustal deformation maps of the 2016 Mw 7.5 Chiloé earthquake in southern Chile. I find a concentrated crustal deformation with ground displacement of approximately 50 cm in the southern part of the Chiloé island. The best fitting fault model shows a pure thrust-fault motion on a shallow dipping plane orienting 4° NNE. The InSAR-determined moment is 2.4 × 1020 Nm with a shear modulus of 30 GPa, equivalent to Mw 7.56, which is slightly lower than the seismic moment. The model shows that the slip did not reach the trench, and it reruptured part of the fault that ruptured in the 1960 Mw 9.5 earthquake. The 2016 event has only released a small portion of the accumulated strain energy on the 1960 rupture zone, suggesting that the seismic hazard of future great earthquakes in southern Chile is high.

  15. The Penokean orogeny in the Lake Superior region

    USGS Publications Warehouse

    Schulz, K.J.; Cannon, W.F.

    2007-01-01

    The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine-Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine-Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations). A thick succession of arc-derived turbidites constitutes most of the foreland basin-fill along with lesser volcanic rocks. In the southern fold and thrust belt tectonic thickening resulted in high-grade metamorphism of the sediments by 1830 Ma. At this same time, a suite of post-tectonic plutons intruded the deformed sedimentary sequence and accreted arc terranes marking the end of the Penokean orogeny. The Penokean orogen was strongly overprinted by younger tectonic and thermal events, some of which were previously ascribed to the Penokean. Principal among these was a period of vertical faulting in the Archean basement and overlying Paleoproterozoic strata. This deformation is now known to have post-dated the terminal Penokean plutons by at least several tens of millions of years. Evidence of the Penokean orogen is now largely confined to the Lake Superior region. Comparisons with more recent orogens formed by similar plate tectonic processes implies that significant parts of a once more extensive Penokean orogen have been removed or overprinted by younger tectonic events. ?? 2007 Elsevier B.V. All rights reserved.

  16. Glacially-derived overpressure in the northeastern Alaskan subduction zone: combined tomographic and morphometric analysis of shallow sediments on the Yakutat shelf and slope, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Clary, W. A.; Worthington, L. L.; Scuderi, L. A.; Daigle, H.; Swartz, J. M.

    2017-12-01

    The Pamplona zone fold and thrust belt is the offshore expression of convergence and shallow subduction of the Yakutat microplate beneath North America in the northeastern Alaska subduction zone. The combination of convergent tectonics and glaciomarine sedimentary processes create patterns of deformation and deposition resulting in a shallow sedimentary sequence with varying compaction, fluid pressure, and fault activity. We propose that velocity variations observed in our tomographic analysis represent long-lived fluid overpressure due to loading by ice sheets and sediments. Regions with bathymetric and stratigraphic evidence of recent ice sheets and associated sedimentation should be collocated with evidence of overpressure (seismic low velocity zones) in the shallow sediments. Here, we compare a velocity model with shelf seismic stratigraphic facies and modern seafloor morphology. To document glacially derived morphology we use high resolution bathymetry to identify channel and gully networks on the western Yakutat shelf-slope then analyze cross-channel shape indices across the study area. We use channel shape index measurements as a proxy of recent ice-proximal sedimentation based on previously published results that proposed a close correlation. Profiles taken at many locations were fitted with a power function and assigned a shape - U-shape channels likely formed proximal to recent ice advances. Detailed velocity models were created by a combination of streamer tomography and pre-stack depth migration velocities with seismic data including: a 2008 R/V Langseth dataset from the St. Elias Erosion and Tectonics Project (STEEP); and a 2004 high-resolution R/V Ewing dataset. Velocity-porosity-permeability relationships developed using IODP Expedition 341 drilling data inform interpretation and physical properties analyses of the shallow sediments. Initial results from a 35 km profile extending SE seaward of the Bering glacier and subparallel to the Bering trough suggest a spatial relationship between the extent of U-shaped profiles and low-velocity shallow sediments. Towards the SE end of the model we observe a large overlap of U-shaped indices, and a shallow low-velocity zone in the mapped extent of the last glacial maximum suggestive of overpressure due to loading by ice sheet activity.

  17. The Panama North Andes Plate Bounday Zone from Interpreted Radar Images, Geologic Mapping and Geophysical Anomalies

    NASA Astrophysics Data System (ADS)

    Hernandez, O.; Alexander, G. C.; Garzon, F.

    2013-05-01

    Satellite geodetics shows the existence of the rigid Panama microplate converging on west to east with The North Andean block. Seismic studies indicate that this plate boundary zone has compressive east-west stresses. Interpretation from magnetic and gravity data suggest that the thickness of the sedimentary sequence of The Atrato basin, reaches 10.5 km and that the Mande magmatic arc is a tectonic pillar, bounded by faults. The interpretation of seismic lines shows the basement of the Urabá Basin is affected by normal faults that limit blocks sunk and raised, a sedimentary sequence that is wedged against the Mande magmatic arc and becomes thicker towards the east. It also shows a thrust fault that connects Neogene sediments of Sinu fold belt with the Urabá Basin. The collision of the Panama arc with the Western Cordillera leads to the existence of a low-angle subduction zone inclined to the east involving the partition of the oceanic plate, drawing up of a trench and subducting plate bending. Before the Panama arc collision with the Western Cordillera, granitic intrusion had occurred that gave rise to the Mande magmatic arc, causing bending and rise of the oceanic crust. This effort generated tensional bending at the top of the crust that led to the formation of raised and sunken blocks bounded by normal faults, within which lies the tectonic pillar which forms the Mande magmatic arc. Upon the occurrence of the collision, it was launched the end of the connection between the Pacific Ocean and Caribbean Sea and the formation of the Uraba forearc basins and the Atrato basin. Panama - North Andes Plate boundary Zone 2d Modeling of the Panama - North Andes Plate Bounday Zone

  18. Evidence for retrograde lithospheric subduction on Venus

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Schubert, Gerald

    1992-01-01

    Though there is no plate tectonics per se on Venus, recent Magellan radar images and topographic profiles of the planet suggest the occurrence of the plate tectonic processes of lithospheric subduction and back-arc spreading. The perimeters of several large coronae (e.g., Latona, Artemis, and Eithinoha) resemble Earth subduction zones in both their planform and topographic profile. The planform of arcuate structures in Eastern Aphrodite were compared with subduction zones of the East Indies. The venusian structures have radii of curvature that are similar to those of terrestrial subduction zones. Moreover, the topography of the venusian ridge/trench structures is highly asymmetric with a ridge on the concave side and a trough on the convex side; Earth subduction zones generally display the same asymmetry.

  19. Rapid Ice Mass Loss: Does It Have an Influence on Earthquake Occurrence in Southern Alaska?

    NASA Technical Reports Server (NTRS)

    Sauber, Jeanne M.

    2008-01-01

    The glaciers of southern Alaska are extensive, and many of them have undergone gigatons of ice wastage on time scales on the order of the seismic cycle. Since the ice loss occurs directly above a shallow main thrust zone associated with subduction of the Pacific-Yakutat plate beneath continental Alaska, the region between the Malaspina and Bering Glaciers is an excellent test site for evaluating the importance of recent ice wastage on earthquake faulting potential. We demonstrate the influence of cumulative glacial mass loss following the 1899 Yakataga earthquake (M=8.1) by using a two dimensional finite element model with a simple representation of ice fluctuations to calculate the incremental stresses and change in the fault stability margin (FSM) along the main thrust zone (MTZ) and on the surface. Along the MTZ, our results indicate a decrease in FSM between 1899 and the 1979 St. Elias earthquake (M=7.4) of 0.2 - 1.2 MPa over an 80 km region between the coast and the 1979 aftershock zone; at the surface, the estimated FSM was larger but more localized to the lower reaches of glacial ablation zones. The ice-induced stresses were large enough, in theory, to promote the occurrence of shallow thrust earthquakes. To empirically test the influence of short-term ice fluctuations on fault stability, we compared the seismic rate from a reference background time period (1988-1992) against other time periods (1993-2006) with variable ice or tectonic change characteristics. We found that the frequency of small tectonic events in the Icy Bay region increased in 2002-2006 relative to the background seismic rate. We hypothesize that this was due to a significant increase in the rate of ice wastage in 2002-2006 instead of the M=7.9, 2002 Denali earthquake, located more than 100km away.

  20. The Cascadia Subduction Zone: two contrasting models of lithospheric structure

    USGS Publications Warehouse

    Romanyuk, T.V.; Blakely, R.; Mooney, W.D.

    1998-01-01

    The Pacific margin of North America is one of the most complicated regions in the world in terms of its structure and present day geodynamic regime. The aim of this work is to develop a better understanding of lithospheric structure of the Pacific Northwest, in particular the Cascadia subduction zone of Southwest Canada and Northwest USA. The goal is to compare and contrast the lithospheric density structure along two profiles across the subduction zone and to interpet the differences in terms of active processes. The subduction of the Juan de Fuca plate beneath North America changes markedly along the length of the subduction zone, notably in the angle of subduction, distribution of earthquakes and volcanism, goelogic and seismic structure of the upper plate, and regional horizontal stress. To investigate these characteristics, we conducted detailed density modeling of the crust and mantle along two transects across the Cascadia subduction zone. One crosses Vancouver Island and the Canadian margin, the other crosses the margin of central Oregon.

  1. Seismic structure and activity of the north-central Lesser Antilles subduction zone from an integrated approach: Similarities with the Tohoku forearc

    NASA Astrophysics Data System (ADS)

    Laigle, M.; Hirn, A.; Sapin, M.; Bécel, A.; Charvis, P.; Flueh, E.; Diaz, J.; Lebrun, J.-F.; Gesret, A.; Raffaele, R.; Galvé, A.; Evain, M.; Ruiz, M.; Kopp, H.; Bayrakci, G.; Weinzierl, W.; Hello, Y.; Lépine, J.-C.; Viodé, J.-P.; Sachpazi, M.; Gallart, J.; Kissling, E.; Nicolich, R.

    2013-09-01

    The 300-km-long north-central segment of the Lesser Antilles subduction zone, including Martinique and Guadeloupe islands has been the target of a specific approach to the seismic structure and activity by a cluster of active and passive offshore-onshore seismic experiments. The top of the subducting plate can be followed under the wide accretionary wedge by multichannel reflection seismics. This reveals the hidden updip limit of the contact of the upper plate crustal backstop onto the slab. Two OBS refraction seismic profiles from the volcanic arc throughout the forearc domain constrain a 26-km-large crustal thickness all along. In the common assumption that the upper plate Moho contact on the slab is a proxy of its downdip limit these new observations imply a three times larger width of the potential interplate seismogenic zone under the marine domain of the Caribbean plate with respect to a regular intra-oceanic subduction zone. Towards larger depth under the mantle corner, the top of the slab imaged from the conversions of teleseismic body-waves and the locations of earthquakes appears with kinks which increase the dip to 10-20° under the forearc domain, and then to 60° from 70 km depth. At 145 km depth under the volcanic arc just north of Martinique, the 2007 M 7.4 earthquake, largest for half a century in the region, allows to document a deep slab deformation consistent with segmentation into slab panels. In relation with this occurrence, an increased seismic activity over the whole depth range provides a new focussed image thanks to the OBS and land deployments. A double-planed dipping slab seismicity is thus now resolved, as originally discovered in Tohoku (NE Japan) and since in other subduction zones. Two other types of seismic activity uniquely observed in Tohoku, are now resolved here: "supraslab" earthquakes with normal-faulting focal mechanisms reliably located in the mantle corner and "deep flat-thrust" earthquakes at 45 km depth on the interplate fault under the Caribbean plate forearc mantle. None such types of seismicity should occur under the paradigm of a regular peridotitic mantle of the upper plate which is expected to be serpentinized by the fluids provided from the dehydrating slab beneath. This process is commonly considered as limiting the downward extent of the interplate coupling. Interpretations are not readily available either for the large crustal thickness of this shallow water marine upper plate, except when remarking its likeness to oceanic plateaus formed above hotspots. The Caribbean Oceanic Plateau of the upper plate has been formed earlier by the material advection from a mantle plume. It could then be underlain by a correspondingly modified, heterogeneous mantle, which may include pyroxenitic material among peridotites. Such heterogeneity in the mantle corner of the present subduction zone may account for the notable peculiarities in seismic structure and activity and impose regions of stick-slip behavior on the interplate among stable-gliding areas.

  2. Low-Stress Upper Plate Near Subduction Zones and Implications for Temporal Changes in Loading Forces

    NASA Astrophysics Data System (ADS)

    Wang, K.; Hu, Y.; Yoshida, K.

    2016-12-01

    Subduction megathrusts are weak, often with effective friction coefficients as low as 0.03. Consequently, differential stress (S1 - S3) in the nearby upper plate is low. Compression due to plate coupling and tension due to gravity are in a subtle balance that can be tipped by small perturbations. For example, the 2011 M=9 Tohoku-oki earthquake, which has a rupture-zone-average stress drop of only a few MPa, switched offshore margin-normal stress from compression to tension and affected seismicity pattern and stress directions of various parts of the land area. The low differential stress is also reflected in spatial variations of stresses, such as with changes in topography. In the Andes, crustal earthquake focal mechanisms change from thrust-faulting in low-elevation areas to normal-faulting in high-elevation areas. Given the lack of evidence for a pervasively weak crust, the low differential stress may indicate that in general the crust near subduction zones is not critically stressed. If so, crustal earthquakes do not represent pervasive failure but only local failure due to stress, material, and fluid pressure heterogeneity. If distributed permanent deformation that creates topography is not the norm, it either happens in brief episodes or took place in the past. The outer wedge may enter a compressively or extensionally critical state due to coseismic strengthening or weakening, respectively, of the shallow megathrust in largest interplate earthquakes. Temporal changes in loading forces must occur also at much larger temporal and spatial scales in response to changes in the nature of the subducting plate and other tectonic conditions. We propose that submarine wedges and high topography in the upper plate attain their geometry in geologically brief episodes of high differential stress. They normally stay in a low-stress stable state, but their geometry often reflects high-stress episodes of critical states in the past. In other words, rocks have a sustained memory for the most traumatic moments. Except for the weaker outer wedge, the upper plate does not switch from one critical state to another in megathrust earthquake cycles, such as from compressional failure to gravitational collapse.

  3. Strength of plate coupling in the southern Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Doo, Wen-Bin; Lo, Chung-Liang; Wu, Wen-Nan; Lin, Jing-Yi; Hsu, Shu-Kun; Huang, Yin-Sheng; Wang, Hsueh-Fen

    2018-01-01

    Understanding the strength of a plate coupling is critical for assessing potential seismic and tsunamic hazards in subduction zones. The interaction between an overriding plate and the associated subducting plate can be used to evaluate the strength of plate coupling by examining the mantle lithospheric buoyancy. Here, we calculate the mantle lithosphere buoyancy across the northern portion of the southern Ryukyu subduction zone based on gravity modeling with the constraints from a newly derived P-wave seismic velocity model. The result indicates that the strength of the plate coupling in the study area is relatively strong, which is consistent with previous observations in the southernmost Ryukyu subduction zone. Because few large earthquakes (Mw > 7) have occurred in the southern Ryukyu subduction zone, a large amount of energy is locked and accumulated by plate coupling, that could be released in the near future.

  4. A possible source mechanism of the 1946 Unimak Alaska far-field tsunami, uplift of the mid-slope terrace above a splay fault zone

    USGS Publications Warehouse

    von Huene, Roland E.; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter

    2016-01-01

    In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of “tsunami” earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.

  5. A Possible Source Mechanism of the 1946 Unimak Alaska Far-Field Tsunami: Uplift of the Mid-Slope Terrace Above a Splay Fault Zone

    NASA Astrophysics Data System (ADS)

    von Huene, Roland; Miller, John J.; Klaeschen, Dirk; Dartnell, Peter

    2016-12-01

    In 1946, megathrust seismicity along the Unimak segment of the Alaska subduction zone generated the largest ever recorded Alaska/Aleutian tsunami. The tsunami severely damaged Pacific islands and coastal areas from Alaska to Antarctica. It is the charter member of "tsunami" earthquakes that produce outsized far-field tsunamis for the recorded magnitude. Its source mechanisms were unconstrained by observations because geophysical data for the Unimak segment were sparse and of low resolution. Reprocessing of legacy geophysical data reveals a deep water, high-angle reverse or splay thrust fault zone that leads megathrust slip upward to the mid-slope terrace seafloor rather than along the plate boundary toward the trench axis. Splay fault uplift elevates the outer mid-slope terrace and its inner area subsides. Multibeam bathymetry along the splay fault zone shows recent but undated seafloor disruption. The structural configuration of the nearby Semidi segment is similar to that of the Unimak segment, portending generation of a future large tsunami directed toward the US West coast.

  6. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data

    NASA Astrophysics Data System (ADS)

    Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.

    2018-01-01

    This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above. To the west, oceanic subduction of the Bay of Biscay under the North Iberian margin is supported by an upper plate thrust wedge, gravity and magnetic anomalies, and 3D inclined sub-crustal reflections. However, discrepancies remain for the location of continent-ocean transitions in the Bay of Biscay and for the extent of oceanic subduction. The plate-kinematic evolution during the Mesozoic, which involves issues as the timing and total amount of opening, as well as the role of strike-slip drift, is also under debate, discrepancies arising from first-order interpretations of the adjacent oceanic magnetic anomaly record.

  7. A Real-time, Borehole, Geophysical Observatory Above The Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Becker, K.; O'Brien, J. K.; von der Heydt, K.; Heesemann, M.; Davis, E. E.

    2017-12-01

    In July 2016, a team from WHOI and RSMAS installed a suite of seismic, geodetic and geothermal sensors in IODP borehole U1364A on the Cascadia Accretionary Prism offshore Vancouver Island. The borehole observatory was connected to the Clayoquot Slope node of the Ocean Networks Canada NEPTUNE Observatory in June 2017. The 3 km long extension cable provides power, timing, and internet connectivity. The borehole sits 4 km above the subduction zone thrust interface, and when drilled in 2010 was instrumented with an ACORK (Advanced Circulation Obviation Retrofit Kit) that allows monitoring and sampling of fluids from multiple zones within the 330 m drilled formation. The borehole ground-motion sensors consist of a broadband seismometer and two geodetic-quality (nano-radian resolution) two-axis tilt sensors clamped to the borehole casing wall at a depth of 277 m below the seafloor. The tilt sensors were selected to detect non-seismic, strain-related transients. A 24-thermistor cable extends from the seafloor to just above the seismometer and tilt-sensor package. The seismic and geodetic data have been flowing from the observatory (network code NV, station code CQS64, location codes B1, B2, and B3) since June and are available from the IRIS DMC. Initial inspection of the seismic and geodetic data shows that all sensors are operating well. We will report on station performance and detection thresholds using an anticipated 5 month duration data set.

  8. Stress geomechanical model application: Stress tensor evaluation in recent Nankai subduction zone, SW Japan

    NASA Astrophysics Data System (ADS)

    Wu, H. Y.; Chan, C. H.

    2016-12-01

    Nowadays, IODP keeps investigating the scientific drilling in Nakai of southwest Japan from 2006. During this decade, we collected the massive logging data and core samples in this area for determining the stress evolution in this interseimic period after 1944 Tonakai earthquake. One of key assumption in Nankai seismogenic zone is the stress accumulation on the plate boundary should be the thrust-fault stress regime (SHmax>Shmin> Sv). In this research, the slip-deficit model is used to determine the wide scale stress field. The drilled IODP well sites are designed to be the fine control points. Based on the multiple ICDP expeditions near the Nankai trough (C0002A, F, and P) in different depths, the three dimensional stress estimation can be confirmed with the lateral boreholes loggings. Even the recently drilling did not reach the subduction zone, our model provides the considerable results by the reliable boundary conditions. This model simulated the stress orientation and magnitude generated by the slip-deficit model, area seismicity, and borehole loggings. Our results indicated that the stress state keeps in normal-faulting stress regime in our research area, even near the Nankai trough. Although the stress magnitude is increasing with the depth, one of horizontal principal stresses (Shmin) is hardly greater than the vertical stress (over-burden weight) in the reachable depth (>10km). This result implies the pore-pressure anomaly would happen during the slip and the stress state would be varied in different stages when event occurred

  9. Noble gases recycled into the mantle through cold subduction zones

    NASA Astrophysics Data System (ADS)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  10. Tectonic controls on earthquake size distribution and seismicity rate: slab buoyancy and slab bending

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2014-12-01

    There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and tectonic properties may be useful for seismic risk assessment.

  11. Measurement of horizontal motions in Alaska using very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ma, C.; Sauber, J. M.; Clark, T. A.; Ryan, J. W.; Bell, L. J.; Gordon, D.; Himwich, W. E.

    1990-01-01

    Results are presented on an analysis of VLBI measurements performed between 1984 and 1990 by means of a network of 53 sites in Alaska, the Yukon Territory, and the conterminous United States to determine the extent of horizontal motions in Alaska. Results are presented in two ways, one showing the evolution of individual baselines and the other yielding site velocities; both approaches use VLBI data from other permanent stations in order to define a global reference frame. It was found that VLBI sites within the Alaska-Aleutian subduction boundary zone (Yakataga, Kodiak, and Sand Point) had higher instantaneous velocities relative to eastern North America than the interior sites of Alaska. The results of Yakataga data modeling suggests that the observed motion is the result of elastic straining of the overriding plate due to a locked main thrust zone with a component of oblique slip.

  12. Spatial Gravity Analysis of the Cascadia Subduction Zone using Satellite Data

    NASA Astrophysics Data System (ADS)

    Hanatan, A.; Hartantyo, E.; Niasari, S. W.

    2018-04-01

    Cascadia Subduction Zone is a subduction zone elongated about 1000 km length. The remnants of Farallon plate subduct the North American plate and form this subduction area. One of Farallon plate remnants, i.e. Juan de Fuca plate, subducts dominantly the North American plate. We focused on the observation of three states, i.e. Oregon, Idaho, and Wyoming. This research aims to determine the direction, the shape, and the initial coordinates of subduction in our study area. We obtained free air corrected gravity data from TOPEX. Then we visualized data to get contour map and found that Cascadia Subduction Zone has direction from west to east that can be proofed by increasing of gravity anomaly. The gravity anomaly ranges from -140 mGals until 320 mGals. We applied upward continuation and got the result that the subduction is elongated from north to south. Initial coordinate detail of subduction shown by SVD result. The subduction starts from coordinate 46.811° Northern Hemisphere and Longitude of 123.436° into 41.260° Northern Hemisphere and longitude of -123.204°. This coordinate appropriate with the result of magnetotelluric research that shows a high resistivity. We can conclude that from gravity satellite data, we can visualize the contour map then take several steps to get details information of subduction.

  13. Effect of Sediments on Rupture Dynamics of Shallow Subduction Zone Earthquakes and Tsunami Generation

    NASA Astrophysics Data System (ADS)

    Ma, S.

    2011-12-01

    Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.

  14. Kinematics of Late Cretaceous subduction initiation in the Neo-Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria

    NASA Astrophysics Data System (ADS)

    Maffione, Marco; van Hinsbergen, Douwe; de Gelder, Giovanni; van der Goes, Freek; Morris, Antony

    2017-04-01

    Formation of new subduction zones represents one of the cornerstones of plate tectonics, yet both the kinematics and geodynamics governing this process remain enigmatic. A major subduction initiation event occurred in the Late Cretaceous, within the Neo-Tethys Ocean between Gondwana and Eurasia. Supra-subduction zone (SSZ) ophiolites (i.e., emerged fragments of ancient oceanic lithosphere accreted at supra-subduction spreading centers) were generated during this subduction event, and are today distributed in the eastern Mediterranean region along three E-W trending ophiolitic belts. Current models associate these ophiolite belts to simultaneous initiation of multiple, E-W trending subduction zones at 95 Ma. Here we report paleospreading direction data obtained from paleomagnetic analysis of sheeted dyke sections from seven Neo-Tethyan ophiolites of Turkey, Cyprus, and Syria, demonstrating that these ophiolites formed at NNE-SSW striking ridges parallel to the newly formed subduction zones. This subduction system was step-shaped and composed of NNE-SSW and ESE-WNW segments. The eastern subduction segment invaded the SW Mediterranean, leading to a radial obduction pattern similar to the Banda arc. Emplacement age constraints indicate that this subduction system formed close to the Triassic passive and paleo-transform margins of the Anatolide-Tauride continental block. Because the original Triassic-Jurassic Neo-Tethyan spreading ridge must have already subducted below the Pontides before the Late Cretaceous, we infer that the Late Cretaceous Neo-Tethyan subduction system started within ancient lithosphere, along NNE-SSW oriented fracture zones and faults parallel to the E-W trending passive margins. This challenges current concepts suggesting that subduction initiation occurs along active intra-oceanic plate boundaries.

  15. One microplate - three orogens: Alps, Dinarides, Apennines and the role of the Adriatic plate

    NASA Astrophysics Data System (ADS)

    Ustaszewski, Kamil; Le Breton, Eline; Balling, Philipp; Handy, Mark R.; Molli, Giancarlo; Tomljenović, Bruno

    2017-04-01

    The motion of the Adriatic microplate with respect to the Eurasian and African plates is responsible for the Mesozoic to present tectonic evolution of the Alps, Carpathians, the Dinarides and Hellenides as well as the Apennines. The classical approach for reconstructing plate motions is to assume that tectonic plates are rigid, then apply Euler's theorem to describe their rotation on an ideally spherical Earth by stepwise restorations of magnetic anomalies and fracture zones in oceanic basins. However, this approach is inadequate for reconstructing the motion of Mediterranean microplates like Adria, which, at present, is surrounded by convergent margins and whose oceanic portions have by now been entirely subducted. Most constraints on the motion of the Adriatic microplate come either from palaeomagnetics or from shortening estimates in the Alps, i.e., its northern margin. This approach renders plate tectonic reconstructions prone to numerous errors, yielding inadmissible misfits in the Ionian Sea between southern Italy and northern Greece. At the same time, Adria's western and eastern margins in the Apennines and in the Dinarides have hitherto not been appropriately considered for improving constraints on the motion of Adria. This presentation presents new results of ongoing collaborative research that aims at improving the relative motion path for the Adriatic microplate for the Cenozoic by additionally quantifying and restoring the amount of shortening and extension in a set of geophysical-geological transects from the Tyrrhenian Sea, the Apennines and the Dinarides. Already now, our approach yields an improved motion path for the Adriatic microplate for the last 20 Ma, which minimizes misfits in previous reconstructions. The currently largest challenge in our reconstructions is to reconcile amount and age of shortening in the Dinarides fold-and-thrust belt. For one thing, we see good agreement between the cross-sectional length of subducted material (c. 135 km, estimated from p-wave tomographic models) and shortening in the external carbonate platform of the Dinarides thrust belt (c. 127 km, from balanced cross sections). However, most of the thrust belt shortening is of Palaeogene age, which is difficult to bring into agreement with the fact that most of the subduction observed in tomographic models is most likely of Neogene age. This suggests that a substantial amount of Neogene crustal shortening must have been accommodated in the internal parts of the Dinarides fold-and-thrust belt rather than along its front. More field studies are therefore badly needed to obtain a better understanding of the timing of individual faults and their role during the Neogene evolution of the NE margin of the Adriatic plate.

  16. H2O and CO2 devolatilization in subduction zones: implications for the global water and carbon cycles (Invited)

    NASA Astrophysics Data System (ADS)

    van Keken, P. E.; Hacker, B. R.; Syracuse, E. M.; Abers, G. A.

    2010-12-01

    Subduction of sediments and altered oceanic crust functions as a major carbon sink. Upon subduction the carbon may be released by progressive metamorphic reactions, which can be strongly enhanced by free fluids. Quantification of the CO2 release from subducting slabs is important to determine the provenance of CO2 that is released by the volcanic arc and to constrain the flux of carbon to the deeper mantle. In recent work we used a global set of high resolution thermal models of subduction zones to predict the flux of H2O from the subducting slab (van Keken, Hacker, Syracuse, Abers, Subduction factory 4: Depth-dependent flux of H2O from subducting slabs worldwide, J. Geophys. Res., under review) which provides a new estimate of the dehydration efficiency of the global subducting system. It was found that mineralogically bound water can pass efficiently through old and fast subduction zones (such as in the western Pacific) but that warm subduction zones (such as Cascadia) see nearly complete dehydration of the subducting slab. The top of the slab is sufficiently hot in all subduction zones that the upper crust dehydrates significantly. The degree and depth of dehydration is highly diverse and strongly depends on (p,T) and bulk rock composition. On average about one third of subducted H2O reaches 240 km depth, carried principally and roughly equally in the gabbro and peridotite sections. The present-day global flux of H2O to the deep mantle translates to an addition of about one ocean mass over the age of the Earth. We extend the slab devolatilization work to carbon by providing an update to Gorman et al. (Geochem. Geophys. Geosyst, 2006), who quantified the effects of free fluids on CO2 release. The thermal conditions were based on three end-member subduction zones with linear interpolation to provide a global CO2 flux. We use the new high resolution and global set of models to provide higher resolution predictions for the provenance and pathways of CO2 release to the mantle wedge and a more robust prediction of the global CO2 flux in subduction.

  17. Paleoseismicity and neotectonics of the Aleutian Subduction Zone—An overview

    NASA Astrophysics Data System (ADS)

    Carver, Gary; Plafker, George

    The Aleutian subduction zone is one of the most seismically active plate boundaries and the source of several of the world's largest historic earthquakes. The structural architecture of the subduction zone varies considerably along its length. At the eastern end is a tectonically complex collision zone where the allochthonous Yakutat terrane is moving northwest into mainland Alaska. West of the collision zone a shallow-dipping subducted plate beneath a wide forearc, nearly orthogonal convergence, and a continental-type subduction regime characterizes the eastern part of the subduction zone. In the central part of the subduction zone, convergence becomes increasingly right oblique and the forearc is divided into a series of large clockwise-rotated fault-bounded blocks. Highly oblique convergence and island arc tectonics characterize the western part of the subduction zone. At the extreme western end of the arc, the relative plate motion is nearly pure strike-slip. A series of great subduction earthquakes ruptured most of the 4000-km length of the subduction zone during a period of several decades in the mid 1900s. The majority of these earthquakes broke multiple segments as defined by the large-scale structure of the overriding plate margin and patterns of historic seismicity. Several of these earthquakes generated Pacific-wide tsunamis and significant damage in the southwestern and south-central regions of Alaska. Characterization of previous subduction earthquakes is important in assessing future seismic and tsunami hazards. However, at present such information is available only for the eastern part of the subduction zone. The 1964 Alaska earthquake (M 9.2) ruptured about ˜950 km of the plate boundary that encompassed the Kodiak and Prince William Sound (PWS) segments. Within this region, nine paleosubduction earthquakes in the past ˜5000 years are recognized on the basis of geologic evidence of sudden land level change and, at some sites, coeval tsunami deposits. Carbon 14-based chronologies indicate recurrence intervals between median calibrated ages for these paleoearthquakes range from 333 to 875 years. The most recent occurred about 489 years ago and broke only the Kodiak segment. During the previous three cycles, both the Kodiak and PWS segments were involved in either multiple-segment ruptures or closely timed pairs of single segment ruptures. Evidence for the earlier paleosubduction earthquakes has been found only at sites in the PWS segment. Thus, future work on the paleoseismicity of other segments would by particular valuable in defining the seismic behavior of the subduction zone.

  18. Isolated intermediate-depth seismicity north of the Izu peninsula, Japan: implications for subduction of the Philippine Sea Plate

    NASA Astrophysics Data System (ADS)

    Nakajima, Junichi

    2018-01-01

    The subduction of the Philippine Sea (PHS) Plate toward the north of Izu peninsula, Japan, is of great interest because intraslab seismicity is absent where the buoyant Izu volcanic arc has been subducting over the past 15 Myr. This study analyzes 42 earthquakes in an isolated seismic cluster that occurred 100 km north of Izu peninsula at depths of 40-90 km and discusses seismogenesis in the context of plate subduction. We picked P- and S-wave arrival times of earthquakes to produce a complete hypocenter catalogue, carried out double-difference event relocations, and then determined focal mechanism solutions of 7 earthquakes from P-wave polarity data. Based on the focal mechanism solution, the largest earthquake (M3.1) is interpreted as a thrust earthquake along the upper surface of the PHS Plate. Locations of other earthquakes relative to the largest event suggest that most earthquakes occur within the subducting PHS Plate. Our results suggest that the PHS Plate north of Izu peninsula has temperatures low enough to facilitate thrust and intraslab earthquakes at depths of 60-90 km. Earthquakes are likely to occur where pore pressures are locally high, which weakens pre-existing faults. The presence of the intermediate-depth seismic cluster indicates the continuous subduction of the PHS Plate toward the north of Izu peninsula without any disruption.[Figure not available: see fulltext.

  19. Subduction in the Southern Caribbean

    NASA Astrophysics Data System (ADS)

    Levander, A.; Schmitz, M.; Bezada, M.; Masy, J.; Niu, F.; Pindell, J.

    2012-04-01

    The southern Caribbean is bounded at either end by subduction zones: In the east at the Lesser Antilles subduction zone the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west under the Southern Caribbean Deformed Belt accretionary prism, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system. A variety of seismic probes identify where the two plates tear as they begin to subduct (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Masy et al, 2009). The El Pilar system forms at the southeastern corner of the Antilles subduction zone by the Atlantic tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. In northwestern South America the Caribbean plate tears, its southernmost element subducting at shallow angles under northernmost Colombia and then rapidly descending to transition zone depths under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab produces the Merida Andes, the Perija, and the Santa Marta ranges. The southern edge of the nonsubducting Caribbean plate underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the underthrust Caribbean plate supports the coastal mountains, and controls continuing deformation.

  20. Slab flattening and exhumation of the Eastern Cordillera of Colombia

    NASA Astrophysics Data System (ADS)

    Siravo, G.; Faccenna, C.; Fellin, M. G.; Herman, F.; Becker, T. W.; Molin, P.

    2017-12-01

    Mountain belt topography is shaped by processes acting at different time scales and depths, from the surface down to the crust and mantle. In particular, subduction dynamics is expected to strongly affect upper plate topography. Here, we present the case of the Eastern Cordillera (EC) in Colombia as a case history for dynamic mantle forcing from a subduction zone on the upper plate topography. The EC is an active double-vergent fold and thrust belt formed during the Cenozoic by the inversion of a Mesozoic rift, and topography there has grown up to 5000 m (Cocuy Sierra). The EC is located far ( 500 km) from the trench where the Nazca slab subducts below the South American plate. Tomography and seismicity show the presence of a flat slab subduction north of 5° N (Chiarabba et al., 2016). Slab flattening may have occurred transitionally from 10 to 5 Ma shutting down the arc volcanism (Wagner et al., 2017). We reconstruct the exhumation of the EC based on previously published and new thermochronologic data collected in the area of the Cocuy Sierra. Results of this analysis show notably fast exhumation rates since Late Miocene. We also analyze the likely contributions to topography and show that neither the present-day crustal thickness nor the cumulative shortening in the Cenozoic as extracted form balanced cross section can isostatically explain the present day topography. We conclude that fast EC exhumation and uplift are driven by mantle dynamics and likely occurred during the recent episode of slab flattening.

  1. Parameterization of 18th January 2011 earthquake in Dalbadin Region, Southwest Pakistan

    NASA Astrophysics Data System (ADS)

    Shafiq-Ur-Rehman; Azeem, Tahir; Abd el-aal, Abd el-aziz Khairy; Nasir, Asma

    2013-12-01

    An earthquake of magnitude 7.3 Mw occurred on 18th January 2011 in Southwestern Pakistan, Baluchistan province (Dalbadin Region). The area has complex tectonics due to interaction of Indian, Eurasian and Arabian plates. Both thrust and strike slip earthquakes are dominant in this region with minor, localized normal faulting events. This earthquake under consideration (Dalbadin Earthquake) posed constraints in depth and focal parameters due to lack of data for evaluation of parameters from Pakistan, Iran or Afghanistan region. Normal faulting mechanism has been proposed by many researchers for this earthquake. In the present study the earthquake was relocated using the technique of travel time residuals. Relocated coordinates and depth were utilized to calculate the focal mechanism solution with outcome of a dominant strike slip mechanism, which is contrary to normal faulting. Relocated coordinates and resulting mechanism are more reliable than many reporting agencies as evaluation in this study is augmented by data from local seismic monitoring network of Pakistan. The tectonics in the area is governed by active subduction along the Makran Subduction Zone. This particular earthquake has strike slip mechanism due to breaking of subducting oceanic plate. This earthquake is located where oceanic lithosphere is subducting along with relative movements between Lut and Helmand blocks. Magnitude of this event i.e. Mw = 7.3, re evaluated depth and a previous study of mechanism of earthquake in same region (Shafiq et al., 2011) also supports the strike slip movement.

  2. Implications for metal and volatile cycles from the pH of subduction zone fluids

    NASA Astrophysics Data System (ADS)

    Galvez, Matthieu E.; Connolly, James A. D.; Manning, Craig E.

    2016-11-01

    The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.

  3. Detection of earthquake swarms at subduction zones globally: Insights into tectonic controls on swarm activity

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2017-07-01

    Earthquake swarms are characterized by an increase in seismicity rate that lacks a distinguished main shock and does not obey Omori's law. At subduction zones, they are thought to be related to slow-slip events (SSEs) on the plate interface. Earthquake swarms in subduction zones can therefore be used as potential indicators of slow-slip events. However, the global distribution of earthquake swarms at subduction zones remains unclear. Here we present a method for detecting such earthquake sequences using the space-time epidemic-type aftershock-sequence model. We applied this method to seismicity (M ≥ 4.5) recorded in the Advanced National Seismic System catalog at subduction zones during the period of 1995-2009. We detected 453 swarms, which is about 6.7 times the number observed in a previous catalog. Foreshocks of some large earthquakes are also detected as earthquake swarms. In some subduction zones, such as at Ibaraki-Oki, Japan, swarm-like foreshocks and ordinary swarms repeatedly occur at the same location. Given that both foreshocks and swarms are related to SSEs on the plate interface, these regions may have experienced recurring SSEs. We then compare the swarm activity and tectonic properties of subduction zones, finding that swarm activity is positively correlated with curvature of the incoming plate before subduction. This result implies that swarm activity is controlled either by hydration of the incoming plate or by heterogeneity on the plate interface due to fracturing related to slab bending.

  4. Assessment of Optimum Value for Dip Angle and Locking Rate Parameters in Makran Subduction Zone

    NASA Astrophysics Data System (ADS)

    Safari, A.; Abolghasem, A. M.; Abedini, N.; Mousavi, Z.

    2017-09-01

    Makran subduction zone is one of the convergent areas that have been studied by spatial geodesy. Makran zone is located in the South Eastern of Iran and South of Pakistan forming the part of Eurasian-Arabian plate's border where oceanic crust in the Arabian plate (or in Oman Sea) subducts under the Eurasian plate ( Farhoudi and Karig, 1977). Due to lack of historical and modern tools in the area, a sampling of sparse measurements of the permanent GPS stations and temporary stations (campaign) has been conducted in the past decade. Makran subduction zone from different perspectives has unusual behaviour: For example, the Eastern and Western parts of the region have very different seismicity and also dip angle of subducted plate is in about 2 to 8 degrees that this value due to the dip angle in other subduction zone is very low. In this study, we want to find the best possible value for parameters that differs Makran subduction zone from other subduction zones. Rigid block modelling method was used to determine these parameters. From the velocity vectors calculated from GPS observations in this area, block model is formed. These observations are obtained from GPS stations that a number of them are located in South Eastern Iran and South Western Pakistan and a station located in North Eastern Oman. According to previous studies in which the locking depth of Makran subduction zone is 38km (Frohling, 2016), in the preparation of this model, parameter value of at least 38 km is considered. With this function, the amount of 2 degree value is the best value for dip angle but for the locking rate there is not any specified amount. Because the proposed model is not sensitive to this parameter. So we can not expect big earthquakes in West of Makran or a low seismicity activity in there but the proposed model definitely shows the Makran subduction layer is locked.

  5. Cenozoic Structural and Stratigraphic Evolution of the Ulukışla and Sivas Basins (Central and Eastern Turkey)

    NASA Astrophysics Data System (ADS)

    Gürer, Derya; Darin, Michael H.; van Hinsbergen, Douwe J. J.; Umhoefer, Paul J.

    2017-04-01

    Because subduction is a destructive process, the surface record of subduction-dominated systems is naturally incomplete. Sedimentary basins may hold the most complete record of processes related to subduction, accretion, collision, and ocean closure, and thus provide key information for understanding the kinematic evolution of orogens. In central and eastern Anatolia, the Late Cretaceous-Paleogene stratigraphic record of the Ulukışla and Sivas basins supports the hypothesis that these once formed a contiguous basin. Importantly, their age and geographic positions relative to their very similar basement units and ahead of the Arabian indenter provide a critical record of pre-, syn- and post-collisional processes in the Anatolian Orogen. The Ulukışla-Sivas basin was dissected and translated along the major left-lateral Ecemiş fault zone. Since then, the basins on either side of the fault evolved independently, with considerably more plate convergence accommodated to the east in the Sivas region (eastern Anatolia) than in the Ulukışla region (central Anatolia). This led to the deformation of marine sediments and underlying ophiolites and structural growth of the Sivas Fold-and-Thrust Belt (SSFTB) since latest Eocene time, which played a major role in marine basin isolation and disconnection, along with a regionally important transition to continental conditions with evaporite deposition starting in the early Oligocene. We use geologic mapping, fault kinematic analysis, paleomagnetism, apatite fission track (AFT) thermochronology, and 40Ar/39Ar geochronology to characterize the architecture, deformation style, and structural evolution of the region. In the Ulukışla basin, dominantly E-W trending normal faults became folded or inverted due to N-S contraction since the Lutetian (middle Eocene). This was accompanied by significant counter-clockwise rotations, and post-Lutetian burial of the Niǧde Massif along the transpressional Ecemiş fault zone. Since Miocene time, the Ecemiş fault zone has been active as an extensional structure responsible for the re-exhumation of the Niǧde Massif in its footwall. To the east and in front of the Arabian indenter, the Sivas Basin evolved during Paleogene collision of the Tauride micro-continent (Africa) with the Pontides (Eurasia), but prior to Arabia collision. The thin-skinned SSFTB is a >300 km-long by 30 km-wide E-W-elongate, convex-north arcuate belt of compressional structures in Late Cretaceous to Miocene strata. It is characterized by NE- to E-trending upright folds with slight northward asymmetry, south-dipping thrust faults, and overturned folds in Paleogene strata indicating predominantly northward vergence. Several thrusts are south-vergent, typically displacing younger (Miocene) units. Structural relationships and AFT data reveal a sequence of initial crustal shortening and rapid exhumation in the late Eocene and Oligocene, an early-middle Miocene phase of relative tectonic quiescence and regional unconformity development, and a final episode of contraction during the late Miocene. Pliocene and younger units are only locally deformed by either halokinesis or transpression along diffuse and low-strain faults. Paleomagnetic data from the SSFTB reveal significant counter-clockwise rotations since Eocene time. Miocene strata north of the SSFTB consistently show moderate clockwise rotations. Our results indicate that collision-related growth of the orogen ended by the latest Miocene, coeval with or shortly after initiation of the North Anatolian fault zone.

  6. Miocene crustal extension following thrust tectonic in the Lower Sebtides units (internal Rif, Ceuta Peninsula, Spain): Implication for the geodynamic evolution of the Alboran domain

    NASA Astrophysics Data System (ADS)

    Homonnay, Emmanuelle; Corsini, Michel; Lardeaux, Jean-Marc; Romagny, Adrien; Münch, Philippe; Bosch, Delphine; Cenki-Tok, Bénédicte; Ouazzani-Touhami, Mohamed

    2018-01-01

    In Western Mediterranean, the Rif belt in Morocco is part of the Gibraltar Arc built during the Tertiary in the framework of Eurasia-Africa convergence. The structural and metamorphic evolution of the internal units of this belt as well as their timing, crucial to constrain the geodynamic evolution of the Alboran Sea, is still largely debated. Our study on the Ceuta Peninsula (Northern Rif) provides new structural, petrological and geochronological data (U-Th-Pb, Ar-Ar), which allow to precise the tectono-metamorphic evolution of the Lower Sebtides metamorphic units with: (1) a syn-metamorphic thrusting event developed under granulite facies conditions (7-10 kbar and 780-820 °C). A major thrust zone, the Ceuta Shear Zone, drove the emplacement of metapelites and peridotitic lenses from the Ceuta Upper Unit over the orthogneisses of the Monte Hacho Lower Unit. This compressional event ended during the Upper Oligocene. (2) an extensional event developed at the boundary between amphibolite and greenschist facies conditions (400-550 °C and 1-3 kbar). During this event, the Ceuta Shear Zone has been reactivated as a normal fault. Normal ductile shear zones contributed to the final exhumation of the metamorphic units during the Early Miocene. We propose that the compressional event is related to the formation of an orogenic wedge located in the upper plate, in a backward position, of the subduction zone driving the geodynamic evolution of the Alboran domain. In this context, the episode of lithospheric thinning could be related to the opening of the Alboran basin in a back-arc position. Furthermore, unlike the previous models proposed for the Rif belt, the tectonic coupling between mantle peridotites and crustal metamorphic rocks occurred in Ceuta Peninsula at a depth of 20-30 km under high temperature conditions, before the extensional event, and thus cannot be related to the back-arc extension. 1, BSE image of monazite. 2, CL image of monazite showing a thin rim zonation. 3, BSE image of zircon. 4, CL image of zircon showing zonation.

  7. Initial results from the Nankai Trough shallow splay and frontal thrust (IODP Expedition 316): Implications for fluid flow

    NASA Astrophysics Data System (ADS)

    Screaton, E.; Kimura, G.; Curewitz, D.; Scientists, E.

    2008-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 316 examined the frontal thrust and the shallow portion of the megasplay fault offshore of the Kii peninsula, and was the third drilling expedition of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). NanTroSEIZE will integrate seafloor observations, drilling, and observatories to investigate the processes controlling slip along subduction zone plate boundary fault systems. Site C0004 examined a shallow portion of the splay fault system where it overrides slope basin sediments. Site C0008, located in the slope basin 1 km seaward of Site C0004, provided a reference site for the footwall sediments. Results of drilling indicate that the footwall sediments have dewatered significantly, suggesting permeable routes for fluid escape. These high-permeability pathways might be provided by coarse-grained layers within the slope sediments. In situ dewatering and multiple fluid escape paths will tend to obscure any geochemical signature of flow from depth. Sites C0006 and C0007 examined the frontal thrust system. Although poorly recovered, coarse-grained trench sediments were sampled within the footwall. These permeable sediments would be expected to allow rapid escape of any fluid pressures due to loading. At both sites, low porosities are observed at shallow depths, suggesting removal of overlying material. This observation is consistent with interpretations that the prism is unstable and currently in a period of collapse. Anomalously low temperatures were measured within boreholes at these sites. One possible explanation for the low temperatures is circulation of seawater along normal faults in the unstable prism.

  8. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program

    USGS Publications Warehouse

    Behrmann, J.H.; Lewis, S.D.; Cande, S.C.

    1994-01-01

    An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding. ?? 1994 Springer-Verlag.

  9. Deformation and stress change associated with plate interaction at subduction zones: a kinematic modelling

    NASA Astrophysics Data System (ADS)

    Zhao, Shaorong; Takemoto, Shuzo

    2000-08-01

    The interseismic deformation associated with plate coupling at a subduction zone is commonly simulated by the steady-slip model in which a reverse dip-slip is imposed on the down-dip extension of the locked plate interface, or by the backslip model in which a normal slip is imposed on the locked plate interface. It is found that these two models, although totally different in principle, produce similar patterns for the vertical deformation at a subduction zone. This suggests that it is almost impossible to distinguish between these two models by analysing only the interseismic vertical deformation observed at a subduction zone. The steady-slip model cannot correctly predict the horizontal deformation associated with plate coupling at a subduction zone, a fact that is proved by both the numerical modelling in this study and the GPS (Global Positioning System) observations near the Nankai trough, southwest Japan. It is therefore inadequate to simulate the effect of the plate coupling at a subduction zone by the steady-slip model. It is also revealed that the unphysical assumption inherent in the backslip model of imposing a normal slip on the locked plate interface makes it impossible to predict correctly the horizontal motion of the subducted plate and the stress change within the overthrust zone associated with the plate coupling during interseismic stages. If the analysis made in this work is proved to be correct, some of the previous studies on interpreting the interseismic deformation observed at several subduction zones based on these two models might need substantial revision. On the basis of the investigations on plate interaction at subduction zones made using the finite element method and the kinematic/mechanical conditions of the plate coupling implied by the present plate tectonics, a synthesized model is proposed to simulate the kinematic effect of the plate interaction during interseismic stages. A numerical analysis shows that the proposed model, designed to simulate the motion of a subducted slab, can correctly produce the deformation and the main pattern of stress concentration associated with plate coupling at a subduction zone. The validity of the synthesized model is examined and partially verified by analysing the horizontal deformation observed by GPS near the Nankai trough, southwest Japan.

  10. Remotely triggered nonvolcanic tremor in Sumbawa, Indonesia

    NASA Astrophysics Data System (ADS)

    Fuchs, Florian; Lupi, Matteo; Miller, Stephen

    2015-04-01

    Nonvolcanic (or tectonic) tremor is a seismic phenomenom which can provide important information about dynamics of plate boundaries but the underlying mechanisms are not well understood. Tectonic tremor is often associated with slow-slip (termed episodic tremor and slip) and understanding the mechanisms driving tremor presents an important challenge because it is likely a dominant aspect of the evolutionary processes leading to tsunamigenic, megathrust subduction zone earthquakes. Tectonic tremor is observed worldwide, mainly along major subduction zones and plate boundaries such as in Alaska/Aleutians, Cascadia, the San Andreas Fault, Japan or Taiwan. We present, for the first time, evidence for triggered tremor beneath the island of Sumbawa, Indonesia. The island of Sumbawa, Indonesia, is part of the Lesser Sunda Group about 250 km north of the Australian/Eurasian plate collision at the Java Trench with a convergence rate of approximately 70 mm/yr. We show surface wave triggered tremor beneath Sumbawa in response to three teleseismic earthquakes: the Mw9.0 2011 Tohoku earthquake and two oceanic strike-slip earthquakes (Mw 8.6 and Mw8.2) offshore of Sumatra in 2012. Tremor amplitudes scale with ground motion and peak at 180 nm/s ground velocity on the horizontal components. A comparison of ground motion of the three triggering events and a similar (nontriggering) Mw7.6 2012 Philippines event constrains an apparent triggering threshold of approximately 1 mm/s ground velocity or 8 kPa dynamic stress. Surface wave periods of 45-65 s appear optimal for triggering tremor at Sumbawa which predominantly correlates with Rayleigh waves, even though the 2012 oceanic events have stronger Love wave amplitudes and triggering potential. Rayleigh wave triggering, low-triggering amplitudes, and the tectonic setting all favor a model of tremor generated by localized fluid transport. We could not locate the tremor because of minimal station coverage, but data indicate several potential source volumes including the Flores Thrust, the Java subduction zone, or Tambora volcano.

  11. The Seismic Sequence of the 2016 Mw 7.8 Pedernales, Ecuador Sarthquake

    NASA Astrophysics Data System (ADS)

    Leon, S.; Fuenzalida, A.; Bie, L.; Garth, T.; Gonzalez, P. J.; Holt, J.; Rietbrock, A.; Edwards, B.; Regnier, M. M.; Pernoud, M.; Mercerat, E. D.; Perrault, M.; Font, Y.; Alvarado, A. P.; Charvis, P.; Beck, S. L.; Meltzer, A.

    2016-12-01

    On the 16th April 2016, a Mw 7.8 mega-thrust earthquake occurred in Northern Ecuador, close to the city of Pedernales. The event ruptured an area of 120 x 60 km and was preceded by a Mw 5.0 foreshock, located only 15 km south of the epicentre, and registered 10 minutes before the main event.A few weeks after the main event a large array of instruments was deployed by a collaborative project between the Geophysical Institute of Ecuador (IGEPN), IRIS (USA), Géoazur (France) and the University of Liverpool (UK). This dense seismic network, with more than 70 stations, includes broadband, short period and strong motion instruments and is currently recording the aftershock activity of the earthquake. It is hoped that this data set will give further insights into the structure of the subduction zone mega thrust beneath Ecuador.Using data recorded both on the permanent and the recently deployed network we located and calculated the moment tensor solutions for the foreshock event, and the large aftershocks (M > 5). We analyse the spatial distribution of the seismicity and its relation with the co-seismic slip, estimated by inverting radar satellite interferometry data, and with previous models of inter-seismic coupling (e.g. Chlieh et al., 2014). It is possible to identify two lineations in the aftershock activity located to the north and south of the rupture. Moreover, the geodetic slip model shows that the boundaries of the maximum coseismic slip coincides with the observed lineaments in the aftershocks and with the rupture area of a previous Mw 7.8 event in 1942. This suggests that the features to the north and south may impose a barrier to rupture propagation, creating different segments in the subduction zone beneath Ecuador. In addition, we model the Coulomb stress change caused by the foreshock and mainshock in order to investigate whether this could explain the aftershock distribution and potential earthquake interactions. Previous activity has presented a northward-propagating series of ruptures greater than Mw 7 spaced approximately 20 years apart. An open question is therefore whether the present event is the start of a further series of large magnitude events in northern Ecuador, and/or whether slow slip events/creep south of the rupture have partly accommodated the strain due to subduction.

  12. Temporary Seismic Installation in Eastern Bangladesh: Microseismicity and Structure of an On-Land Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Foster, A. E.; Almeida, R. V.; Akhter, S. H.; Hubbard, J.; Bhattacharya, R.; Shing, U. M.; Hosain, A.; Bulbul, M. A.

    2016-12-01

    Eastern Bangladesh is underlain by a fold and thrust belt accumulating 13-17 mm/yr of plate convergence on a locked, shallowly dipping décollement (Steckler et al., 2016). We have installed a network of short-period and broadband instruments in this region to better assess microseismicity and investigate the structure of the fold belt. Stations will remain in place for 1-2 years and will complement the temporary stations installed by the University of Dhaka and the Lamont-Doherty Earth Observatory. Thirteen Lennartz 1-Hz instruments and three Trillium Compact 120-s instruments were installed in the Sylhet area in June 2016. Station spacing is between 15-30 km. Installations ranged from shallow vaults to above-ground locations on solid foundations, as required by local conditions. One focus of this deployment is to locate microseismicity. Neither large numbers nor magnitudes of earthquakes are expected in this area, but improved locations may help define active areas of the convergence as well as illuminate the interactions between the Dauki fault (responsible for uplift of the Shillong Plateau), the Sylhet anticline, and the rest of the Indo-Burman Ranges. Nine additional short-period instruments and three additional broadband instruments will be installed in the Chittagong area in September 2016. The southern-most stations are located over the Andaman subduction zone, thought to be associated with a large subduction earthquake in 1762 (Steckler et al., 1998). Thus, the full deployment will span the transition from an on-land accretionary prism to an area considered a classic subduction zone. Combined, the northern and southern parts of the network should provide good locations for events within the Tripura area (India) as well. We present initial estimates of station quality and the potential for an earthquake catalogue. We plan to obtain earthquake locations and focal mechanisms, when possible, as the data is collected. We will apply ambient noise tomography methods to investigate the structure of the fold belt. These applications and others may contribute to unanswered questions in the area, such as the location of the frontal-most deformation associated with the fold and thrust belt and the geometry of the basal décollement at depth, and allow better characterization of the risk to nearby populations.

  13. 3D Numerical modelling of topography development associated with curved subduction zones

    NASA Astrophysics Data System (ADS)

    Munch, Jessica; Ueda, Kosuke; Burg, Jean-Pierre; May, Dave; Gerya, Taras

    2017-04-01

    Curved subduction zones, also called oroclines, are geological features found in various places on Earth. They occur in diverse geodynamic settings: 1) single slab subduction in oceanic domain (e.g. Sandwich trench in the Southern Atlantic); 2) single slab subduction in continental domain, (e.g. Gibraltar-Alboran orocline in the Western Mediterranean) 3); multi-slab subduction (e.g. Caribbean orocline in the South-East of the Gulf of Mexico). These systems present various curvatures, lengths (few hundreds to thousands of km) and ages (less than 35 Ma for Gibraltar Alboran orocline, up to 100 Ma for the Caribbean). Recent studies suggested that the formation of curved subduction systems depends on slab properties (age, length, etc) and may be linked with processes such as retreating subduction and delamination. Plume induced subduction initiation has been proposed for the Caribbean. All of these processes involve deep mechanisms such as mantle and slab dynamics. However, subduction zones always generate topography (trenches, uplifts, etc), which is likely to be influenced by surface processes. Hence, surface processes may also influence the evolution of subduction zones. We focus on different kinds of subduction systems initiated by plume-lithosphere interactions (single slab subduction/multi-slab subduction) and scrutinize their surface expression. We use numerical modeling to examine large-scale subduction initiation and three-dimensional slab retreat. We perform two kinds of simulations: 1) large scale subduction initiation with the 3D-thermomechanical code I3ELVIS (Gerya and Yuen, 2007) in an oceanic domain and 2) large scale subduction initiation in oceanic domain using I3ELVIS coupled with a robust new surface processes model (SPM). One to several retreating slabs form in the absence of surface processes, when the conditions for subduction initiation are reached (c.f. Gerya et al., 2015), and ridges occur in the middle of the extensional domain opened by slab retreat. Topography associated with slab retreat is curved. Coupling I3ELVIS with SPM yields more accurate topography of the curved subduction zone. This allows balancing the relative importance of surface and deep processes in the evolution of curved subduction zones and the development of their related topography. References: Gerya, T. V., & Yuen, D. A. (2007). Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Physics of the Earth and Planetary Interiors, 163(1), 83-105. Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., & Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), 221-225.

  14. Geodetic insights on the post-seismic transients from the Andaman Nicobar region: 2005-2013

    NASA Astrophysics Data System (ADS)

    Earnest, A.; Vijayan, M.; Jade, S.; Krishnan, R.; Sringeri, S. T.

    2013-12-01

    The 2004 Mw 9.2 Sumatra-Andaman mega-thrust rupture broke the whole 1300 km long fore-arc sliver boundary of the Indo- Burmese collision. Earlier events of 1679 (M~7.5), 1941 (M 7.7), 1881 (M~7.9) and 2002 (Mw 7.3) generated spatially restricted ruptures along this margin. GPS based geodetic measurements of post-seismic deformation following the 2004 M9.2 Sumatra-Andaman earthquake gives insights on the spatio-temporal evolution of transient tectonic deformation happening at the Suda-Andaman margin. This work encompasses the near-field geodetic data collected from the Andaman-Nicobar Islands and far-field CGPS site data available from SUGAR, UNAVCO and IGS from 2005-2013. Precise geodetic data analysis shows that the GPS benchmarks in the Andaman-Nicobar region moved immediately after 2004 event towards the sea-ward trench in the SW direction, following very much the co-seismic offset directions. This can be possibly because of the continued predominant after-slip occurrence around the 2004 rupture zone due to the velocity-strengthening behavior at the downdip segments of the rupture zone. Lately a progressive reversal of motion direction away from the oceanic trench (and the co-seismic offset direction) of the coastal and inland GPS sites of Andaman-Nicobar Islands are observed. The site displacement transients shows a rotation of the displacement vector moving from south-west to north. Spatio-temporal analysis of the earthquakes show dense shallow seismicity in the back-arc region, normal and thrust faulting activity towards the trench. The hypo-central distribution highlights the shallow subduction at the northern segment, which becomes steeper and deeper to the south. The stress distribution, inferred from the P and T-axes of earthquake faulting mechanisms, represents the compressional fore-arc and extensional back-arc stress regimes. Our analysis results will be discussed in detail by integrating the kinematics and seismo-tectonic evolution of this subducting margin for the post-seismic period from 2005 - 2013.

  15. From Subduction to a Compressional transform system: Diffuse Deformation Processes at the Southeastern Boundary of the Caribbean Plate

    NASA Astrophysics Data System (ADS)

    Deville, E.; Padron, C.; Huyghe, P.; Callec, Y.; Lallemant, S.; Lebrun, J.; Mascle, A.; Mascle, G.; Noble, M.

    2006-12-01

    Geophysical data acquired in the southeastern Caribbean marine area (CARAMBA survey of the French O/V Atalante) provide new information about the deformation processes occurring in this subduction-to-strike-slip transitions zone. The 65 000 km2 of multibeam data and 5600 km of seismic reflection and 3.5 kHz profiles which have been collected evidence that the connection between the Barbados accretionary prism and the south Caribbean transform system is partitioned between a wide variety of recently active tectonic superficial features (complex folding, diffuse faulting, and mud volcanism), which accommodate the relative displacement between the Caribbean and the South America plates. The active deformation within the sedimentary pile is mostly aseismic (creeping) and this deformation is relatively diffuse over a large diffuse plate boundary. There is no direct fault connection between the front of the Barbados prism and the strike-slip system of northern Venezuela. The toe thrust system at the southern edge of the Barbados prism, exhibits clear en-echelon geometry. The geometry of the syntectonic deposits evidence the diachronism of the deformation processes. Notably, it is well evidenced that early folds have been sealed by the recent turbidite deposits, whereas, some of the fold and thrust structures were active recently. Within this active compressional region, extension growth faults develop on the platform and on the slope of the Orinoco delta along a WNW-ESE trending en-echelon fault system that we called the Orinoco Delta Fault Zone (ODFZ). This fault system is clearly oblique with respect to the present-day Orinoco delta slope. These faults are not simply related to a passive gravitary collapse of the sediments accumulated on the Orinoco platform. Though there a decoupling between the shallow deformation processes in the sediments and the deep deformation characterized by earthquake activity, the ODFZ is inferred to be partly controlled by deep structures associated the shearing of the lithosphere at depth (probably at the Continent-Ocean Boundary).

  16. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up

    PubMed Central

    Kelemen, Peter B.; Manning, Craig E.

    2015-01-01

    Carbon fluxes in subduction zones can be better constrained by including new estimates of carbon concentration in subducting mantle peridotites, consideration of carbonate solubility in aqueous fluid along subduction geotherms, and diapirism of carbon-bearing metasediments. Whereas previous studies concluded that about half the subducting carbon is returned to the convecting mantle, we find that relatively little carbon may be recycled. If so, input from subduction zones into the overlying plate is larger than output from arc volcanoes plus diffuse venting, and substantial quantities of carbon are stored in the mantle lithosphere and crust. Also, if the subduction zone carbon cycle is nearly closed on time scales of 5–10 Ma, then the carbon content of the mantle lithosphere + crust + ocean + atmosphere must be increasing. Such an increase is consistent with inferences from noble gas data. Carbon in diamonds, which may have been recycled into the convecting mantle, is a small fraction of the global carbon inventory. PMID:26048906

  17. Role of H2O in Generating Subduction Zone Earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, A.

    2017-03-01

    A dense nationwide seismic network and high seismic activity in Japan have provided a large volume of high-quality data, enabling high-resolution imaging of the seismic structures defining the Japanese subduction zones. Here, the role of H2O in generating earthquakes in subduction zones is discussed based mainly on recent seismic studies in Japan using these high-quality data. Locations of intermediate-depth intraslab earthquakes and seismic velocity and attenuation structures within the subducted slab provide evidence that strongly supports intermediate-depth intraslab earthquakes, although the details leading to the earthquake rupture are still poorly understood. Coseismic rotations of the principal stress axes observed after great megathrust earthquakes demonstrate that the plate interface is very weak, which is probably caused by overpressured fluids. Detailed tomographic imaging of the seismic velocity structure in and around plate boundary zones suggests that interplate coupling is affected by local fluid overpressure. Seismic tomography studies also show the presence of inclined sheet-like seismic low-velocity, high-attenuation zones in the mantle wedge. These may correspond to the upwelling flow portion of subduction-induced secondary convection in the mantle wedge. The upwelling flows reach the arc Moho directly beneath the volcanic areas, suggesting a direct relationship. H2O originally liberated from the subducted slab is transported by this upwelling flow to the arc crust. The H2O that reaches the crust is overpressured above hydrostatic values, weakening the surrounding crustal rocks and decreasing the shear strength of faults, thereby inducing shallow inland earthquakes. These observations suggest that H2O expelled from the subducting slab plays an important role in generating subduction zone earthquakes both within the subduction zone itself and within the magmatic arc occupying its hanging wall.

  18. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology.

    PubMed

    Keenan, Timothy E; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P Benjamin

    2016-11-22

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence.

  19. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology

    PubMed Central

    Keenan, Timothy E.; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P. Benjamin

    2016-01-01

    Where and how subduction zones initiate is a fundamental tectonic problem, yet there are few well-constrained geologic tests that address the tectonic settings and dynamics of the process. Numerical modeling has shown that oceanic spreading centers are some of the weakest parts of the plate tectonic system [Gurnis M, Hall C, Lavier L (2004) Geochem Geophys Geosys 5:Q07001], but previous studies have not favored them for subduction initiation because of the positive buoyancy of young lithosphere. Instead, other weak zones, such as fracture zones, have been invoked. Because these models differ in terms of the ages of crust that are juxtaposed at the site of subduction initiation, they can be tested by dating the protoliths of metamorphosed oceanic crust that is formed by underthrusting at the beginning of subduction and comparing that age with the age of the overlying lithosphere and the timing of subduction initiation itself. In the western Philippines, we find that oceanic crust was less than ∼1 My old when it was underthrust and metamorphosed at the onset of subduction in Palawan, Philippines, implying forced subduction initiation at a spreading center. This result shows that young and positively buoyant, but weak, lithosphere was the preferred site for subduction nucleation despite the proximity of other potential weak zones with older, denser lithosphere and that plate motion rapidly changed from divergence to convergence. PMID:27821756

  20. Linkages between orogenic plateau build-up, fold-thrust shortening, and foreland basin evolution in the Zagros (NW Iran)

    NASA Astrophysics Data System (ADS)

    Barber, D. E.; Stockli, D. F.

    2017-12-01

    The Iranian Plateau (IP) is a thickened, low-relief morphotectonic province of diffuse deformation that formed due to Arabia-Eurasia collision and may serve as a younger analogue for the Tibetan Plateau. Despite detailed geophysical characterization of the IP, its deformation history and relationship to the Zagros fold-thrust belt and its foreland basin evolution remains unresolved. Low-temperature thermochronometry and provenance data from a transect across the internal and external Zagros track growth of the IP and delineate multiphase interaction between upper- and lower-plate processes during closure of the Neotethys and Arabia-Eurasia suturing. Inversion of zircon (U-Th)/He and fission-track data from plutonic and metamorphic basement rocks in the Sanandaj-Sirjan Zone (SSZ) of the IP reveals an initial stage of low-rate exhumation from 36-25 Ma, simultaneous with the onset of tectonic subsidence and marine incursion in the Zagros foreland basin. Overlapping apatite fission-track and (U-Th)/He ages indicate sharp acceleration in SSZ exhumation rates between 20-15 Ma, coincident with rejuvenation of foreland basin subsidence and an influx of Eurasian-derived sediments into the Zagros foreland deposited above an Oligocene unconformity. The mid-Miocene marks a transition in focused exhumation from the SSZ to Arabian lower-plate. Apatite (U-Th)/He ages suggest in-sequence fold-thrust propagation from the High Zagros to simply folded belt from 10 Ma to recent, which is reflected in the foreland by a shift in provenance to dominantly recycled Arabian-derived detritus and clastic facies progradation. Integrated thermochronometric and provenance data document a two-phase outward expansion of the Iranian Plateau and Zagros fold-thrust belt, tightly coupled to distinct phases of basin evolution and provenance shifts in the Zagros foreland. We associate multiple deformation and basin episodes with protracted collisional processes, from subduction of attenuated Arabian transitional crust beneath Eurasia causing low-rate upper-plate exhumation in the late Eocene, to accelerated Miocene unroofing and basin flexure linked to increased plate coupling and eventual to suturing as buoyant Arabian continental lithosphere entered the subduction interface.

  1. Subduction and Plate Edge Tectonics in the Southern Caribbean

    NASA Astrophysics Data System (ADS)

    Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.

    2012-12-01

    The southern Caribbean plate boundary consists of a subduction zone at at either end connected by a strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary of the Maracaibo block. A variety of seismic probes identify where the two plates tear as they begin to subduct (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al., 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia and the northern, nonsubducting part underthrusts the continental edge. The subducting segment rapidly descends to transition zone depths under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab produces the Merida Andes, the Perija, and the Santa Marta ranges. The nonsubducting part of the Caribbean plate underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009), where the plate edge supports the coastal mountains, and controls continuing deformation.

  2. Tectonic evolution and crustal-scale structure of Kyrgyz Central Asian Orogenic Belt: new insights from the Darius programme

    NASA Astrophysics Data System (ADS)

    Rolland, Yann; Loury, Chloé; Guillot, Stéphane; Mikolaichuk, Alexander

    2014-05-01

    Mechanisms and history of the Late Palaeozoic accretion followed by formation of trunscurrent strike-slip faults were studied in the southern segment of the Central Asian Orogenic Belt (CAOB) within Kyrgyz South Tianshan. 1. South Tianshan Suture: ending accretion process after docking of Tarim craton This study gives insights into the crustal-scale structure and Upper Paleozoic history of this mountain belt, currently intensely reactivated by the India-Asia collision. Structural, petrological and geochronological studies were carried out within South Tianshan suture east of the Talas-Ferghana Fault (TFF). New data highlight a south-dipping structure featured by a HP metamorphic core complex comprised of c. 320 Ma continental and oceanic eclogites exhumed by top-to-North motion. A large massif (10 x 50 km) of continental HP rocks in the Atbashi Range is comprised of hectometric boudins of eclogites embedded in metapelites and gneissesMetamorphic units exhibit blueschist to eclogite facies conditions, with oceanic (MORB) rocks in the blueschist facies representing the accretionary oceanic prism being thrusted by oceanic rocks and a continental unit in the eclogite facies (510 ± 50°C and 24 ± 2 kbar). Evidence for eclogite facies both in metasediments and mafic lithologies and geological structure are in agreement with a previously thinned continental margin. Subduction of this thinned COT (Continent-Ocean Transition) probably occurred by slab pull in a south-dipping subduction zone, while another north-dipping subduction was active below Middle Tianshan. Final stacking of Middle and South Tianshan occurred at 320-310 Ma. These opposite subduction zones are still reflected in the main structures of Tianshan. Reactivation of the South-dipping structures since 30-25 Ma is ascribed to explain the current Tianshan intra-continental subduction from seismology. 2. Talas-Ferghana Fault (TFF) activity & Basin formation After this accretionary episode, the South Tianshan suture was cross-cut by the TFF, which was active in several stages from 320 Ma to present. The main events of basin formation are ascribed to the activity of the dextral TFF (Rolland et al. 2013, JAES). Ar-Ar dating undertaken on syn-kinematic minerals that feature the phases of motion of the TFF show a first stage of activation occurred at 312 ± 4 Ma, followed by a main stage of dextral motion in the Late Permian at 256 - 250 Ma, while late stages of reactivation of TFF is featured by emplacement of 195 ± 3 Ma pegmatitic dykes, formation of transtensional basins during Jurassic, dextral offsets of river valleys and ongoing seismicity. 3. Reactivation of South Tian Shan Suture Most prominent topography in Central Asia corresponds to the former South Tianshan suture which has been reactivated since about 30 Ma, the former Carboniferous thrusts are reactivated in a pop-up structure with top-north and top-south faults bounding the high mountains of Khan Tengri and Pobeda peaks (7440 m a.s.l.).

  3. Multivariate statistical analysis to investigate the subduction zone parameters favoring the occurrence of giant megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Sandri, L.; Funiciello, F.; Corbi, F.; Piromallo, C.; Heuret, A.

    2018-03-01

    The observed maximum magnitude of subduction megathrust earthquakes is highly variable worldwide. One key question is which conditions, if any, favor the occurrence of giant earthquakes (Mw ≥ 8.5). Here we carry out a multivariate statistical study in order to investigate the factors affecting the maximum magnitude of subduction megathrust earthquakes. We find that the trench-parallel extent of subduction zones and the thickness of trench sediments provide the largest discriminating capability between subduction zones that have experienced giant earthquakes and those having significantly lower maximum magnitude. Monte Carlo simulations show that the observed spatial distribution of giant earthquakes cannot be explained by pure chance to a statistically significant level. We suggest that the combination of a long subduction zone with thick trench sediments likely promotes a great lateral rupture propagation, characteristic of almost all giant earthquakes.

  4. Oceanic crust in the mid-mantle beneath Central-West Pacific subduction zones: Evidence from S-to-P converted waveforms

    NASA Astrophysics Data System (ADS)

    He, X.

    2015-12-01

    The fate of subducted slabs is enigmatic, yet intriguing. We analyze seismic arrivals at ~20-50 s after the direct P wave in an array in northeast China (NECESSArray) recordings of four deep earthquakes occurring beneath the west-central Pacific subduction zones (from the eastern Indonesia to Tonga region). We employ the array analyzing techniques of 4th root vespagram and beam-form analysis to constrain the slowness and back azimuth of later arrivals. Our analyses reveal that these arrivals have a slightly lower slowness value than the direct P wave and the back azimuth deviates slightly from the great-circle direction. Along with calculation of one-dimensional synthetic seismograms, we conclude that the later arrival is corresponding to an energy of S-to-P converted at a scatterer below the sources. Total five scatterers are detected at depths varying from ~700 to 1110 km in the study region. The past subducted oceanic crust most likely accounts for the seismic scatterers trapped in the mid-mantle beneath the west-central subduction zones. Our observation in turn reflects that oceanic crust at least partly separated from subducted oceanic lithosphere and may be trapped substantially in the mid-mantle surrounding subduction zones, in particular in the western Pacific subduction zones.

  5. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    NASA Astrophysics Data System (ADS)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  6. The Age and Geodynamic Evolution of the Metamorphic sole rocks from Izmir-Ankara-Erzıncan suture zone (Northern-Turkey)

    NASA Astrophysics Data System (ADS)

    Melih Çörtük, Rahmi; Faruk Çelik, Ömer; Özkan, Mutlu; Sherlock, Sarah C.; Marzoli, Andrea; Altıntaş, İsmail Emir; Topuz, Gültekin

    2016-04-01

    The İzmir-Ankara-Erzincan suture zone in northern Turkey is one of the major tectonic zones separating the Pontides to the North from the Anatolide-Tauride block and Kı rşehir Massif to the South. The accretionary complex of the İzmir-Ankara-Erzincan suture zone, near Artova, is composed mainly of peridotites with varying degree serpentinization, metamorphic rocks, basalt, sandstones, pelagic and neritic limestones. The metamorphic rocks are represented by amphibolite, garnet micaschit, calc-schist and marble. The metamorphic rocks were interpreted as the metamorphic sole rocks. Because; (i) They are tectonically located beneath the serpentinized peridotites. (ii) Foliation planes of both the amphibolites and mantle tectonites are parallel to each other. (iii) The metamorphic rocks are crosscut by non-metamorphic dolerite dikes which exhibite Nb and Ta depletion relative to Th enrichment on the N-MORB normalized multi-element spider diagram. The dolerite dikes display flat REE patterns (LaN/YbN=0.85-1.24). These geochemical signatures of the dolerite dikes are indicative of subduction component during their occurrences. Geochemical observations of the amphibolites suggest E-MORB- and OIB-like signatures (LaN/SmN= 1.39-3.14) and their protoliths are represented by basalt and alkali basaltic rocks. Amphiboles from the amphibolites are represented by calcic amphiboles (magnesio-hornblende, tchermakite and tremolite) and they yielded 40Ar-39Ar ages between 157.8 ± 3.6 Ma and 139 ± 11 Ma. These cooling ages were interpreted to be the intra-oceanic subduction/thrusting time of the İzmir-Ankara-Erzincan oceanic domain. This study was funded by TÜBİTAK (Project no: 112Y123).

  7. Ultrafast eclogite formation via melting-induced overpressure

    NASA Astrophysics Data System (ADS)

    Chu, Xu; Ague, Jay J.; Podladchikov, Yury Y.; Tian, Meng

    2017-12-01

    The conventional wisdom holds that metamorphic reactions take place at pressures near-lithostatic so that the thermodynamic pressure, reflected by the mineral assemblage, is directly correlated with depth. On the other hand, recent field-based observations and geodynamic simulations suggest that heterogeneous stress and significant pressure deviations above lithostatic (overpressure) can occur in Earth's crust. Here we show that eclogite, normally interpreted to form at great depths in subduction zones and Earth's mantle, may form at much shallower depths via local overpressure generated in crustal shear zones. The eclogites studied crop out as lenses hosted by felsic paragneiss in a sheared thrust slice and represent a local pressure and temperature anomaly in the Taconic orogenic belt, southern New England. Sharply-defined chemical zones in garnet, which record ∼5 kbar pressure rise and fall accompanied by a temperature increase of 150-200 °C, demonstrate extremely short timescales of diffusion. This requires anomalously fast compression (∼500 yrs) and decompression. We use coupled phase equilibria and garnet diffusion forward modeling to fit the observed garnet profiles and test the likely P- T- t paths using a Monte Carlo-type approach, accounting for off-center sectioning of garnet. The simulation shows that a ∼5 kbar pressure increase after the temperature peak is necessary to reproduce the garnet zoning. Remarkably, this post-peak-T compression (from 9 kbar to 14 kbar) lasted only ∼500 yrs. If the compression was due to burial along a lithostatic pressure gradient, the descent speed would exceed 30 m yr-1, defying any observed or modeled subduction rates. Local overpressure in response to partial melting in a confined volume (Vrijmoed et al., 2009) caused by transient shear heating can explain the ultra-fast compression without necessitating burial to great depth.

  8. Structure of backarc inner rifts as a weakest zone of arc-backarc system: a case study of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tasuya; Kato, Naoko; Abe, Susumu; Saito, Hideo; Shiraishi, Kazuya; Abe, Shiori; Iwasaki, Takaya; Inaba, Mitsuru; No, Tetsuo; Sato, Takeshi; Kodaira, Shuichi; Takeda, Tetsuya; Matsubara, Makoto; Kodaira, Chihiro

    2015-04-01

    A backarc inner rift is formed after a major opening of backarc basin near a volcanic front away from the spreading center of a major backarc basin. An obvious example is the inner rift along the Izu-Bonin arc. Similar inner rift zones have been developed along the Sea of Japan coast of Honshu island, Japan. NE and SW Japan arcs experienced strong shortening after the Miocene backarc rifting. The amount of shortening shows its maximum along the backarc inner rifts, forming a fold-and-thrust of thick post-rift sediments over all the structure of backarc. The rift structure has been investigated by onshore-offshore deep seismic reflection/wide-angle reflection surveys. We got continuous onshore-offshore image using ocean bottom cable and collected offshore seismic reflection data using two ships to obtain large offset data in the difficult area for towing a long streamer cable. The velocity structure beneath the rift basin was deduced by refraction tomography in the upper curst and earthquake tomography in the deeper part. It demonstrates larger P-wave velocity in upper mantle and lower crust, suggesting a large amount of mafic intrusion and thinning of upper continental crust. The deeper seismicity in the lower crust beneath the rift basin accords well to the mafic intrusive rocks. Syn-rift volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, characterized by thin-skin style of deformation. The syn-rift mafic intrusion in the crust forms convex shape and the boundary between pre-rift crust and mafic intrusive shows outward dipping surface. Due to the post rift compression, the boundary of rock units reactivated as reverse faults, commonly forming a large-scale wedge thrust and produced subsidence of rift basin under compressional stress regime. Large amount of convergence of overriding plate is accommodated along the inner rift, suggesting that it is a weakest zone in whole arc-backarc system. The convergence between young (15 Ma) Shikoku basin and SW Japan arc produced intense shortening along the inner failed rift along the Sea of Japan coast. After the onset of subduction along the Nankai trough, the fold-and-thrust belt was covered by Pliocene marine sediment. Before the 2011 off-Tohoku earthquake (M9), several damaging earthquakes occurred along the backarc fold-and-thrust belt. These represents that a weak backarc inner rift is very sensitive for the stress produce by the subduction interface.

  9. Evolution of a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Van Hoolst, Tim; Dehant, Veronique

    2014-05-01

    The purpose of this study is to understand how Earth's surface might have evolved with time and to examine in a more general way the initiation and continuance of subduction zones and the possible formation of continents on an Earth-like planet. Plate tectonics and continents seem to influence the likelihood of a planet to harbour life, and both are strongly influenced by the planetary interior (e.g. mantle temperature and rheology) and surface conditions (e.g. stabilizing effect of continents, atmospheric temperature), but may also depend on the biosphere. Employing the Fortran convection code CHIC (developed at the Royal Observatory of Belgium), we simulate a subduction zone with a pre-defined weak zone (between oceanic and continental crust) and a fixed plate velocity for the subducting oceanic plate (Quinquis et al. in preparation). In our study we first investigate the main factors that influence the subduction process. We simulate the subduction of an oceanic plate beneath a continental plate (Noack et al., 2013). The crust is separated into an upper crust and a lower crust. We apply mixed Newtonian/non-Newtonian rheology and vary the parameters that are most likely to influence the subduction of the ocanic plate, as for example density of the crust/mantle, surface temperature, plate velocity and subduction angle. The second part of our study concentrates on the long-term evolution of a subduction zone. Even though we model only the upper mantle (until a depth of 670km), the subducted crust is allowed to flow into the lower mantle, where it is no longer subject to our investigation. This way we can model the subduction zone over long time spans, for which we assume a continuous inflow of the oceanic plate into the investigated domain. We include variations in mantle temperatures (via secular cooling and decay of radioactive heat sources) and dehydration of silicates (leading to stiffening of the material). We investigate how the mantle environment influences the subduction of the oceanic crust in terms of subduction velocity and subduction angle over time. We develop scaling laws combining the subduction velocity and angle depending on the mantle environment (and thus time). These laws can then be applied to continental growth simulations with 1D parameterized models (Höning et al., in press) or 2D/3D subduction zone simulations at specific geological times (using the correct subduction zone setting). References: Quinquis, M. et al. (in preparation). A comparison of thermo-mechanical subduction models. In preparation for G3. Noack, L., Van Hoolst, T., Dehant, V., and Breuer, D. (2013). Relevance of continents for habitability and self-consistent formation of continents on early Earth. XIII International Workshop on Modelling of Mantle and Lithosphere Dynamics, Hønefoss, Norway, 31. Aug. - 5. Sept. 2013. Höning, D., Hansen-Goos, H., Airo, A., and Spohn, T. (in press). Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science.

  10. Inferring rupture characteristics using new databases for 3D slab geometry and earthquake rupture models

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Plescia, S. M.; Moore, G.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center has recently published a database of finite fault models for globally distributed M7.5+ earthquakes since 1990. Concurrently, we have also compiled a database of three-dimensional slab geometry models for all global subduction zones, to update and replace Slab1.0. Here, we use these two new and valuable resources to infer characteristics of earthquake rupture and propagation in subduction zones, where the vast majority of large-to-great-sized earthquakes occur. For example, we can test questions that are fairly prevalent in seismological literature. Do large ruptures preferentially occur where subduction zones are flat (e.g., Bletery et al., 2016)? Can `flatness' be mapped to understand and quantify earthquake potential? Do the ends of ruptures correlate with significant changes in slab geometry, and/or bathymetric features entering the subduction zone? Do local subduction zone geometry changes spatially correlate with areas of low slip in rupture models (e.g., Moreno et al., 2012)? Is there a correlation between average seismogenic zone dip, and/or seismogenic zone width, and earthquake size? (e.g., Hayes et al., 2012; Heuret et al., 2011). These issues are fundamental to the understanding of earthquake rupture dynamics and subduction zone seismogenesis, and yet many are poorly understood or are still debated in scientific literature. We attempt to address these questions and similar issues in this presentation, and show how these models can be used to improve our understanding of earthquake hazard in subduction zones.

  11. Late Cretaceous through Cenozoic strike-slip tectonics of southwestern Alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; McClelland, W.

    2002-01-01

    New geologic mapping and geochronology show that margin-parallel strike-slip faults on the western limb of the southern Alaska orocline have experienced multiple episodes of dextral motion since ~100 Ma. These faults are on the upper plate of a subduction zone ~350-450 km inboard of the paleotrench. In southwestern Alaska, dextral displacement is 134 km on the Denali fault, at least 88-94 km on the Iditarod-Nixon Fork fault, and perhaps tens of kilometers on the Dishna River fault. The strike-slip regime coincided with Late Cretaceous sedimentation and then folding in the Kuskokwim basin, and with episodes of magmatism and mineralization at ~70, ~60, and ~30 Ma. No single driving mechanism can explain all of the ~95 million-year history of strike-slip faulting. Since ~40 Ma, the observed dextral sense of strike slip has run contrary to the sense of subduction obliquity. This may be explained by northward motion of the Pacific plate driving continental margin slivers into and/or around the oroclinal bend. From 44 to 66 Ma, oroclinal rotation, perhaps involving large-scale flexural slip, may have been accompanied by westward escape of crustal blocks along strike-slip faults. However, reconstructions of this period involve unproven assumptions about the identity of the subducting plate, the position of subducting ridges, and the exact timing of oroclinal bending, thus obscuring the driving mechanisms of strike slip. Prior to 66 Ma, oblique subduction is the most plausible driving mechanism for dextral strike slip. Cumulative displacement on all faults of the western limb of the orocline is at least 400 km, about half that on the eastern limb; this discrepancy might be explained by a combination of thrusting and unrecognized strike-slip faulting.

  12. Formation of plate boundaries: The role of mantle volatilization

    NASA Astrophysics Data System (ADS)

    Seno, Tetsuzo; Kirby, Stephen H.

    2014-02-01

    In the early Earth, convection occurred with the accumulation of thick crust over a weak boundary layer downwelling into the mantle (Davies, G.F., 1992. On the emergence of plate tectonics. Geology 20, 963-966.). This would have transitioned to stagnant-lid convection as the mantle cooled (Solomatov, V.S., Moresi, L.-N., 1997. Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907-1910.) or back to a magma ocean as the mantle heated (Sleep, N., 2000. Evolution of the mode of convection within terrestrial planets. J. Geophys. Res. 105(E7): 17563-17578). Because plate tectonics began operating on the Earth, subduction must have been initiated, thus avoiding these shifts. Based on an analogy with the continental crust subducted beneath Hindu Kush and Burma, we propose that the lithosphere was hydrated and/or carbonated by H2O-CO2 vapors released from magmas generated in upwelling plumes and subsequently volatilized during underthrusting, resulting in lubrication of the thrust above, and subduction of the lithosphere along with the overlying thick crust. Once subduction had been initiated, serpentinized forearc mantle may have formed in a wedge-shaped body above a dehydrating slab. In relict arcs, suture zones, or rifted margins, any agent that warms and dehydrates the wedge would weaken the region surrounding it, and form various types of plate boundaries depending on the operating tectonic stress. Thus, once subduction is initiated, formation of plate boundaries might be facilitated by a major fundamental process: weakening due to the release of pressurized water from the warming serpentinized forearc mantle.

  13. Mineral parageneses, regional architecture, and tectonic evolution of Franciscan metagraywackes, Cape Mendocino-Garberville-Covelo 30' x 60' quadrangles, northwest California

    USGS Publications Warehouse

    Ernst, W.G.; McLaughlin, Robert J.

    2012-01-01

    The Franciscan Complex is a classic subduction-zone assemblage. In northwest California, it comprises a stack of west vergent thrust sheets: westernmost Eastern Belt outliers; Central Belt mélange; Coastal Belt Yager terrane; Coastal Belt Coastal terrane; Coastal Belt King Range/False Cape terranes. We collected samples and determined P-T conditions of recrystallization for 88 medium-fine-grained metasandstones to assess their subduction-exhumation histories and assembly of the host allochthons. Feebly recrystallized Yager, Coastal, and King Range strata retain clear detrital features. Scattered neoblastic prehnite occurs in several Coastal terrane metasandstones; traces of possible pumpellyite are present in three Yager metaclastic rocks. Pumpellyite ± lawsonite ± aragonite-bearing Central Belt metasandstones are moderately deformed and reconstituted. Intensely contorted, thoroughly recrystallized Eastern Belt affinity quartzose metagraywackes contain lawsonite + jadeitic pyroxene ± aragonite ± glaucophane. We microprobed neoblastic phases in 23 rocks, documenting mineral parageneses that constrain the tectonic accretion and metamorphic P-T evolution of these sheets. Quasi-stable mineral assemblages typify Eastern Belt metasandstones, but mm-sized domains in the Central and Coastal belt rocks failed to achieve chemical equilibrium. Eastern Belt slabs rose from subduction depths approaching 25–30 km, whereas structurally lower Central Belt mélanges returned from ∼15–18 km. Coastal Belt assemblages suggest burial depths less than 5–8 km. Eastern and Central belt allochthons sequentially decoupled from the downgoing oceanic lithosphere and ascended into the accretionary margin; K-feldspar-rich Coastal Belt rocks were stranded along the continental edge without undergoing appreciable subduction, probably during Paleogene unroofing of the older, deeply subducted units of the Franciscan Complex in east-vergent crustal wedges.

  14. Oblique stepwise rise and growth of the Tibet plateau.

    PubMed

    Tapponnier, P; Zhiqin, X; Roger, F; Meyer, B; Arnaud, N; Wittlinger, G; Jingsui, Y

    2001-11-23

    Two end member models of how the high elevations in Tibet formed are (i) continuous thickening and widespread viscous flow of the crust and mantle of the entire plateau and (ii) time-dependent, localized shear between coherent lithospheric blocks. Recent studies of Cenozoic deformation, magmatism, and seismic structure lend support to the latter. Since India collided with Asia approximately 55 million years ago, the rise of the high Tibetan plateau likely occurred in three main steps, by successive growth and uplift of 300- to 500-kilometer-wide crustal thrust-wedges. The crust thickened, while the mantle, decoupled beneath gently dipping shear zones, did not. Sediment infilling, bathtub-like, of dammed intermontane basins formed flat high plains at each step. The existence of magmatic belts younging northward implies that slabs of Asian mantle subducted one after another under ranges north of the Himalayas. Subduction was oblique and accompanied by extrusion along the left lateral strike-slip faults that slice Tibet's east side. These mechanisms, akin to plate tectonics hidden by thickening crust, with slip-partitioning, account for the dominant growth of the Tibet Plateau toward the east and northeast.

  15. A comparison of seismicity in world's subduction zones: Implication by the difference of b-values

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2013-12-01

    Since the pioneering study of Uyeda and Kanamori (1979), it has been thought that world's subduction zones can be classified into two types: Chile and Mariana types. Ruff and Kanamori (1980) suggested that the maximum earthquake size within each subduction zone correlates with convergence rate and age of subducting lithosphere. Subduction zones with younger lithosphere and larger convergence rates are associated with great earthquakes (Chile), while subduction zones with older lithosphere and smaller convergence rates have low seismicity (Mariana). However, these correlations are obscured after the 2004 Sumatra earthquake and the 2009 Tohoku earthquake. Furthermore, McCaffrey (2008) pointed out that the history of observation is much shorter than the recurrence times of very large earthquakes, suggesting a possibility that any subduction zone may produce earthquakes larger than magnitude 9. In the present study, we compare world's subduction zones in terms of b-values in the Gutenberg-Richer relation. We divided world's subduction zones into 146 regions, each of which is bordered by a trench section of about 500 km and extends for 200 km from the trench section in the direction of relative plate motion. In each region, earthquakes equal to or larger than M4.5 occurring during 1988-2009 were extracted from ISC catalog. We find a positive correlation between b-values and ages of subducting lithosphere, which is one of the two important variables discussed in Ruff and Kanamori (1980). Subduction zones with younger lithosphere are associated with high b-values and vice versa, while we cannot find a correlation between b-values and convergence rates. We used the ages determined by Müller et al. (2008) and convergence rate calculated using PB2002 (Bird, 2003) for convergence rate. We also found a negative correlation between b-values and the estimates of seismic coupling, which is defined as the ratio of the observed seismic moment release rate to the rate calculated from plate tectonic velocities (Scholz and Campos, 2012). Lithosphere age also has a weak negative correlation with the degree of seismic coupling. Based on differences in b-values for the types of faulting, Schorlemmer et al. (2005) suggested that b-value depends inversely on differential stress. This idea, taken together with correlations in the present study, suggests a model where the buoyancy of subducting slabs which depends on the lithosphere age determines stress state and the b-value in each sunbduction zone. The stress state also controls the seismic coupling. This model is basically consistent with the idea of Ruff and Kanamori (1980). Subduction zones with younger and lighter lithosphere are in a compressive stress state and associate with high coupling and small b-values (Chile), while those with older and heavier lithosphere are in a tensional stress state and correlate with low coupling and large b-values (Mariana). Subduction zones such as Nicaragua and El Salvador where b-values are much higher than the expectation from the above correlations may be explained by considering the fact that local tectonics affects the seismic coupling (LaFemina et al., 2009; Scholz and Campos, 2012).

  16. Seismicity and the nature of plate movement along the Himalayan arc, Northeast India and Arakan-Yoma: a review

    NASA Astrophysics Data System (ADS)

    Verma, R. K.; Kumar, G. V. R. Krishna

    1987-03-01

    The Himalaya together with Arakan-Yoma form a well defined seismic belt to the north and east of the Indian Peninsula. The Seismicity along this belt is attributed mostly to collision between the Indian and the Eurasian plates. However, the exact nature of activity along the major thrusts and faults is not well understood. The seismicity along the entire Himalaya and Northern Burma has been studied in detail. It has been found that besides the Main Boundary Fault and the Main Central Thrust several transverse features are also very active. Some of these behave like steeply dipping fracture zones. Along the Arakan-Yoma most of the seismicity appears to be due to subduction of the Indian lithosphere to the east. Analysis of focal mechanism solutions for the Himalaya shows that although thrust movements are predominant, normal and strike-slip faulting is taking place along some of the transverse features. In addition to thrusting, strike-slip faulting is also taking place along the Arakan-Yoma. Orientation of P-axes for all thrust solutions show a sharp change from predominantly east-west along the Burmese arc to N-S and NE-SW along the Himalaya. The direction further changes to NW-SE along the Baluchistan arc. It appears that the Indian lithosphere is under compression from practically all sides. The present day seismicity of Northeast India and Northern Burma can be explained in terms of a plate tectonics model after Nandy (1976). No simple model appears to be applicable for the entire Himalaya.

  17. New insight on the Great Sumatra Fault, offshore NW Sumatra, from recent marine data

    NASA Astrophysics Data System (ADS)

    Ghosal, D.; Singh, S. C.; Chauhan, A.; Hananto, N. D.

    2009-12-01

    The Sumatra subduction system is a classic example of an oblique subduction where the slip is portioned into pure thrust along the Sumatra-Andaman megathrust and strike-slip along the Great Sumatra Fault (GSF). Only in the last five years there have been three great pure thrust earthquakes along the Sumatran subduction zone. However, the 1900 km long GSF has been rather silent and is likely to produce a large earthquake in the near future, and hence it is important study the GSF in order to mitigate seismic risks. Over the last 20 years, GSF has been studied on land, but we have no information about its offshore extension NW of Sumatra. The problem is further complicated by its vicinity with the volcanic arc, which switches back and forth centering the GSF. Here we present analyses of recently acquired high-resolution bathymetry and shallow and deep reflection seismic data. We find that GSF bifurcates into two branches north of Banda Aceh, both producing 15-20 km wide deep adjacent basins. Southern basin is 1-2 km deep and has a flower structure with a push-up ridge, suggesting the presence of an active strike-slip fault. The presence of strike-slip earthquakes beneath this basin further suggests that GSF passes through this basin. The northern basin is up to 4 km deep, bounded by normal faults. The absence of recent sediments on the basin floor suggests that the basin is very young. The presence of a chain of volcanoes in the centre of the basin suggests that the volcanic arc passes through this basin. The fact that the basin is 4 km deep in the presence of volcanoes, which tend to fill in a basin and hence make them shallower, suggests that this might be the site of an onset of back-arc spreading centre. We shall examine all the new observations in the light of plate motion, local deformation and possible seismic risk.

  18. Ivrea mantle wedge and arc of the Western Alps (II): Kinematic evolution of the Alps-Apennines orogenic system

    NASA Astrophysics Data System (ADS)

    Schmid, Stefan; Kissling, Eduard; van Hinsbergen, Douwe J. J.; Molli, Giancarlo

    2017-04-01

    Integration of geological and geophysical data on the deep structure of the Alps (Kissling et al. 2017) reveals that the deep-seated Ivrea mantle played a crucial role during the formation of the arc of the Western Alps. Exhumation of the mantle beneath the Ivrea Zone to shallow crustal depths during Mesozoic rifting led to the formation of a strong Ivrea mantle wedge; its strength exceeds that of surrounding mostly quartz-bearing units, and consequently allows for indentation and wedging of a quasi-rigid Ivrea mantle wedge into the Western Alps during Alpine orogeny. A first early stage (pre-35 Ma) of the West-Alpine orogenic evolution is characterized by top-NNW thrusting in sinistral transpression causing at least some 260km displacement of internal Western Alps and E-W-striking Alps farther east, together with the Adria micro-plate, towards N to NNW with respect to stable Europe. It is during the second stage (35-25 Ma) that the Ivrea mantle wedge played a crucial role by accentuating the arc. This stage is associated with top-WNW thrusting in the external zones of the central portion of the arc and lateral indentation and wedging of the Ivrea mantle slice beneath the already existing nappe pile towards WNW by some 100-150km. The final stage of arc formation (25-0 Ma) is associated with orogeny in the Apennines leading to oroclinal bending in the southernmost Western Alps that by now became parts of the Apenninic orogen, in connection with the 50° counterclockwise rotation of the Corsica-Sardinia block and the Ligurian Alps. The lithological composition of some tectonic units originating from the Alpine Tethys (Piemont-Liguria Ocean) found in the Alps and the northern Apennines has much in common. The non-metamorphic parts of the Piemont-Liguria derived units form the upper plate of the Western Alps that is devoid of Austroalpine elements, while the lower plate includes highly metamorphic units derived from the same Piemont-Liguria Ocean. This points to a lateral transition from continent-continent collision in the Central and Eastern Alps to intra-oceanic subduction in the Western Alps during Alpine orogeny, leaving large parts of the Piemont-Liguria Ocean that belong to the Adria microplate open until about 25 Ma. It is these parts that from now on formed the highest tectonic units in the Apennines, namely the Ligurides. However, internal units of the Northern Apennines previously suffered Alpine-type shortening associated with an E-dipping Alpine subduction zone. They became " backthrusted" to the NE during Apenninic orogeny commencing in the Late Oligocene. Apenninic orogeny is associated with a change in subduction polarity from Alpine E-directed subduction, previously affecting the Internal Ligurides and other parts of the Northern Apennines, towards NW-directed subduction and roll back of the Adria slab beneath Northern Apennines, pulled by the negative buoyancy of those parts of the old oceanic lithosphere of the Piemont-Liguria Ocean that remained unaffected by Alpine orogeny. Reference: Edi Kissling, Stefan M. Schmid, Tobias Diehl (2017). Ivrea mantle wedge and arc of the Western Alps (1): Geophysical evidence for the deep structure. Abstract Volume EGU 2017.

  19. Episodic Tremor and Slip (ETS) as a chaotic multiphysics spring

    NASA Astrophysics Data System (ADS)

    Veveakis, E.; Alevizos, S.; Poulet, T.

    2017-03-01

    Episodic Tremor and Slip (ETS) events display a rich behaviour of slow and accelerated slip with simple oscillatory to complicated chaotic time series. It is commonly believed that the fast events appearing as non volcanic tremors are signatures of deep fluid injection. The fluid source is suggested to be related to the breakdown of hydrous phyllosilicates, mainly the serpentinite group minerals such as antigorite or lizardite that are widespread in the top of the slab in subduction environments. Similar ETS sequences are recorded in different lithologies in exhumed crustal carbonate-rich thrusts where the fluid source is suggested to be the more vigorous carbonate decomposition reaction. If indeed both types of events can be understood and modelled by the same generic fluid release reaction AB(solid) ⇌A(solid) +B(fluid) , the data from ETS sequences in subduction zones reveal a geophysically tractable temporal evolution with no access to the fault zone. This work reviews recent advances in modelling ETS events considering the multiphysics instabilities triggered by the fluid release reaction and develops a thermal-hydraulic-mechanical-chemical oscillator (THMC spring) model for such mineral reactions (like dehydration and decomposition) in Megathrusts. We describe advanced computational methods for THMC instabilities and discuss spectral element and finite element solutions. We apply the presented numerical methods to field examples of this important mechanism and reproduce the temporal signature of the Cascadia and Hikurangi trench with a serpentinite oscillator.

  20. Incorporating Cutting Edge Scientific Results from the Margins-Geoprisms Program into the Undergraduate Curriculum: The Subduction Factory

    NASA Astrophysics Data System (ADS)

    Penniston-Dorland, S.; Stern, R. J.; Edwards, B. R.; Kincaid, C. R.

    2014-12-01

    The NSF-MARGINS Program funded a decade of research on continental margin processes. The NSF-GeoPRISMS Mini-lesson Project, funded by NSF-TUES, is designed to integrate fundamental results from the MARGINS program into open-source college-level curriculum. Three Subduction Factory (SubFac) mini-lessons were developed as part of this project. These include hands-on examinations of data sets representing 3 key components of the subduction zone system: 1) Heat transfer in the subducted slab; 2) Metamorphic processes happening at the plate interface; and 3) Typical magmatic products of arc systems above subduction zones. Module 1: "Slab Temperatures Control Melting in Subduction Zones, What Controls Slab Temperature?" allows students to work in groups using beads rolling down slopes as an analog for the mathematics of heat flow. Using this hands-on, exploration-based approach, students develop an intuition for the mathematics of heatflow and learn about heat conduction and advection in the subduction zone environment. Module 2: "Subduction zone metamorphism" introduces students to the metamorphic rocks that form as the subducted slab descends and the mineral reactions that characterize subduction-related metamorphism. This module includes a suite of metamorphic rocks available for instructors to use in a lab, and exercises in which students compare pressure-temperature estimates obtained from metamorphic rocks to predictions from thermal models. Module 3: "Central American Arc Volcanoes, Petrology and Geochemistry" introduces students to basic concepts in igneous petrology using the Central American volcanic arc, a MARGINS Subduction Factory focus site, as an example. The module relates data from two different volcanoes - basaltic Cerro Negro (Nicaragua) and andesitic Ilopango (El Salvador) including hand sample observations and major element geochemistry - to explore processes of mantle and crustal melting and differentiation in arc volcanism.

  1. Three-dimensional structure and seismicity beneath the Central Vanuatu subduction zone

    NASA Astrophysics Data System (ADS)

    Foix, O.; Crawford, W. C.; Koulakov, I.; Regnier, M. M.; Pelletier, B.; Garaebiti, E.

    2017-12-01

    The 1 400 km long Vanuatu subduction zone marks the subduction of the oceanic Australia plate beneath the North-Fijian microplate. Seismic and volcanic activity is high, and several morphologic features enter into subduction, affecting seismicity and probably plate coupling. The Northern d'Entrecasteaux Ridge, West-Torres plateau, and Bougainville seamount currently enter into subduction below the forearc islands of Santo and Malekula. This subduction/collision coincides with a strongly decreased local convergence velocity rate at the trench (35 mm/yr compared to 120-160 mm/yr to the north and south) and significant uplift on the overriding plate. Two large forearc islands located 20-30 km from the subduction front Santo and Malekula to the trench allow excellent coverage of the megathrust seismogenic zone for a seismological study. We use data from the 10 months, 30-station amphibious ARC-VANUATU seismology network to construct a 3D velocity model and locate 11 617 earthquakes. The 3D model reveals low P and S velocities in the uppermost tens of kilometers in front of the Northern d'Entrecasteaux Ridge and the Bougainville Guyot. These anomalies may be due to heavy faulting of related subducted features, possibly including important water infiltration. We also identify a possible seamount entered into subduction beneath a smaller uplifted island between the two main islands. The spatial distribution of earthquakes is highly variable, as is the depth limit of the seismogenic zone, suggests a complex interaction of faults and stress zones related to high and highly variable stress that may be associated with the subducted features.

  2. Spatio-temporal Variations in Slow Earthquakes along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ide, S.; Maury, J.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2017-12-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here, we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress suggesting the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  3. Spatiotemporal Variations in Slow Earthquakes Along the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Maury, J.; Ide, S.; Cruz-Atienza, V. M.; Kostoglodov, V.

    2018-02-01

    Slow earthquakes in Mexico have been investigated independently in different areas. Here we review differences in tremor behavior and slow slip events along the entire subduction zone to improve our understanding of its segmentation. Some similarities are observed between the Guerrero and Oaxaca areas. By combining our improved tremor detection capabilities with previous results, we suggest that there is no gap in tremor between Guerrero and Oaxaca. However, some differences between Michoacan and Guerrero are seen (e.g., SSE magnitude, tremor zone width, and tremor rate), suggesting that these two areas behave differently. Tremor initiation shows clear tidal sensitivity along the entire subduction zone. Tremor in Guerrero is sensitive to small tidal normal stress as well as shear stress, suggesting that the subduction plane may include local variations in dip. Estimation of the energy rate shows similar values along the subduction zone interface. The scaled tremor energy estimates are similar to those calculated in Nankai and Cascadia, suggesting a common mechanism. Along-strike differences in slow deformation may be related to variations in the subduction interface that yield different geometrical and temperature profiles.

  4. The Great Tumaco, Colombia earthquake of 12 December 1979

    USGS Publications Warehouse

    Herd, D.G.; Youd, T.L.; Meyer, H.; Arango, C.J.L.; Person, W.J.; Mendoza, C.

    1981-01-01

    Southwestern Colombia and northern Ecuador were shaken by a shallow-focus earthquake on 12 December 1979. The magnitude 8 shock, located near Tumaco, Colombia, was the largest in northwestern South America since 1942 and had been forecast to fill a seismic gap. Thrust faulting occurred on a 280- by 130-kilometer rectangular patch of a subduction zone that dips east beneath the Pacific coast of Colombia. A 200-kilometer stretch of the coast tectonically subsided as much as 1.6 meters; uplift occurred offshore on the continental slope. A tsunami swept inland immediately after the earthquake. Ground shaking (intensity VI to IX) caused many buildings to collapse and generated liquefaction in sand fills and in Holocene beach, lagoonal, and fluvial deposits.

  5. Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE

    NASA Astrophysics Data System (ADS)

    Shama, Ayman A.

    2011-03-01

    A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.

  6. The late Archean Schreiber Hemlo and White River Dayohessarah greenstone belts, Superior Province: collages of oceanic plateaus, oceanic arcs, and subduction accretion complexes

    NASA Astrophysics Data System (ADS)

    Polat, A.; Kerrich, R.; Wyman, D. A.

    1998-04-01

    The late Archean (ca. 2.80-2.68 Ga) Schreiber-Hemlo and White River-Dayohessarah greenstone belts of the Superior Province, Canada, are supracrustal lithotectonic assemblages of ultramafic to tholeiitic basalt ocean plateau sequences, and tholeiitic to calc-alkaline volcanic arc sequences, and siliciclastic turbidites, collectively intruded by arc granitoids. The belts have undergone three major phases of deformation; two probably prior to, and one during the assembly of the southern Superior Province. Imbricated lithotectonic assemblages are often disrupted by syn-accretion strike-slip faults, suggesting that strike-slip faulting was an important aspect of greenstone belt evolution. Field relations, structural characteristics, and high-precision ICP-MS trace-element data obtained for representative lithologies of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts suggest that they represent collages of oceanic plateaus, juvenile oceanic island arcs, in subduction-accretion complexes. Stratigraphic relationships, structural, and geochemical data from these Archean greenstone belts are consistent with a geodynamic evolution commencing with the initiation of a subduction zone at the margins of an oceanic plateau, similar to the modern Caribbean oceanic plateau and surrounding subduction-accretion complexes. All supracrustal assemblages include both ocean plateau and island-arc geochemical characteristics. The structural and geochemical characteristics of vertically and laterally dismembered supracrustal units of the Schreiber-Hemlo and White River-Dayohessarah greenstone belts cannot be explained either by a simple tectonic juxtaposition of lithotectonic assemblages with stratified volcanic and sedimentary units, or cyclic mafic to felsic bimodal volcanism models. A combination of out-of-sequence thrusting, and orogen-parallel strike-slip faulting of accreted ocean plateaus, oceanic arcs, and trench turbidites can account for the geological and geochemical characteristics of these greenstone belts. Following accretion, all supracrustal assemblages were multiply intruded by syn- to post-tectonic high-Al, and high-La/Yb n slab-derived trondhjemite-tonalite-granodiorite (TTG) plutons. The amalgamation processes of these lithotectonic assemblages are comparable to those of Phanerozoic subduction-accretion complexes, such as the Circum-Pacific, the western North American Cordilleran, and the Altaid orogenic belts, suggesting that subduction-accretion processes significantly contributed to the growth of the continental crust in the late Archean. The absence of blueschist and eclogite facies metamorphic rocks in Archean subduction-accretion complexes may be attributed to elevated thermal gradients and shallow-angle subduction. The melting of a hotter Archean mantle at ridges and in plumes would generate relatively small, hot, and hence shallowly subducting oceanic plates, promoting high-temperature metamorphism, migmatization, and slab melting. Larger, colder, Phanerozoic plates typically subduct at a steeper angle, generating high-pressure low-temperature conditions for blueschists and eclogites in the subduction zones, and low-La/Yb n granitoids from slab dehydration, and wedge melting. Metasedimentary subprovinces in the Superior Province, such as the Quetico and English River Subprovinces, have formerly been interpreted as accretionary complexes, outboard of the greenstone belt magmatic arcs. Here the greenstone-granitoid subprovinces are interpreted as collages of subduction-accretion complexes, island arcs and oceanic plateaus amalgamated at convergent plate margins, and the neighbouring metasedimentary subprovinces as foreland basins.

  7. Structure and metamorphism of the Franciscan Complex, Mt. Hamilton area, Northern California

    USGS Publications Warehouse

    Blake, M.C.; Wentworth, C.M.

    1999-01-01

    Truncation of metamorphic isograds and fold axes within coherent terranes of Franciscan metagraywacke by intervening zones of melange indicate that the melange is tectonic and formed after the subduction-related metamorphism and folding. These relations are expressed in two terranes of blueschist-facies rocks of the Franciscan Complex in the Mt. Hamilton area, northern California-the Jurassic Yolla Bolly terrane and the structurally underlying Cretaceous Burnt Hills terrane. Local preservation in both terranes of basal radiolarian chert and oceanic basalt beneath continent-derived metagraywacke and argillite demonstrates thrust repetition within the coherent terranes, although these relations are scarce near Mt. Hamilton. The metagraywackes range from albite-pumpellyite blueschists to those containing well-crystallized jadeitic pyroxene, and a jadeite-in isograd can be defined in parts of the area. Primary bedding defines locally coherent structural orientations and folds within the metagraywacke units. These units are crosscut by thin zones of tectonic melange containing blocks of high-grade blueschist, serpentinite, and other exotic rocks, and a broader, but otherwise identical melange zone marks the discordant boundary between the two terranes.

  8. A Wrench fault system and nappe emplacement in Southern Kenya and Northern Tanzania.- A key area for Pan-African continental collision in East Africa?

    NASA Astrophysics Data System (ADS)

    Bauernhofer, A.; Wallbrecher, E.; Hauzenberger, C.; Fritz, H.; Loizenbauer, J.; Hoinkes, G.; Muhongo, S.; Mathu, E.

    2003-04-01

    In the Voi Area of Southern Kenya, the granulite facies rocks of the Taita Hills and the Tsavo East National Park (Galana River) can be divided into three structural domains: The Galana-East unit consists of an intercalation of flat lying metapelites and marbles of continental margin origin. These metasediments can be traced further east to the Umba Steppe (Between Mombasa and Tanga). Galana-West consists of a N-S oriented wrench fault zone with vertical foliation planes and horizontal stretching lineation. Numerous shear sense indicators always show sinistral shear sense. Amphibolites of MORB affinity are involved in this wrench fault zone. To the west, this zone is bordered by calc-alkaline metatonalites of the Sagala Hills. The westernmost unit consists of the Taita Hills. They form an imbricated pile of southwestward thrusted nappe sheets containing metapelites, marbles, and ultramafics. The Taita Hills may be explained as part of an accretionary wedge. Southwestward nappe thrusting is also the prominent structure in the Pare and Usambara Mountains of Northern Tanzania. The following model may may explain these observations: The Southern Kenya -- Northern Tanzania section of the Mozambique Belt is the result of continental collision tectonics. Remnants of an island arc and of an accretionary wedge that occur at least in the Voi area may be part of a former subduction zone. An oceanic domain between an eastern passive continental margin and a western terrane, now represented by the Tanzanian granulite belt has been closed incorporating island arc and accretionary wedge material. Oblique convergence of two continental blocks is suggested from wrench tectonics. The age of convergent tectonics is 530 -- 580 Ma, dated by Sm-Nd garnet-whole rock analysis. This is interpreted as the age of peak metamorphism.

  9. Strain accumulation and rotation in western Oregon and southwestern Washington

    USGS Publications Warehouse

    Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Murray, M.H.

    2002-01-01

    Velocities of 75 geodetic monuments in western Oregon and southwestern Washington extending from the coast to more than 300 km inland have been determined from GPS surveys over the interval 1992-2000. The average standard deviation in each of the horizontal velocity components is ??? 1 mm yr-1. The observed velocity field is approximated by a combination of rigid rotation (Euler vector relative to interior North America: 43. 40??N ?? 0.14??, 119.33??W ?? 0.28??, and 0.822 ?? 0.057?? Myr-1 clockwise; quoted uncertainties are standard deviations), uniform regional strain rate (??EE = -7.4 ?? 1.8, ??EN = -3.4 ?? 1.0, and ??NN = -5.0 ?? 0.8 nstrain yr-1, extension reckoned positive), and a dislocation model representing subduction of the Juan de Fuca plate beneath North America. Subduction south of 44.5??N was represented by a 40-km-wide locked thrust and subduction north of 44.5??N by a 75-km-wide locked thrust.

  10. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early Triassic time, and marine sediment deposited on the subsiding continental shelf overlapped the previously deformed Permian rocks. Renewed contractional deformation, probably in the Middle Triassic, is interpreted to be associated with emplacement of the Golconda allochthon onto the margin of the continent. This event, which is identified with certainty in the Sierra Nevada, also may have significantly affected rocks in the White and Inyo Mountains to the east. Subduction and arc magmatism that created most of the Sierra Nevada batholith began in the Late Triassic and lasted through the remainder of the Mesozoic. During this time, the East Sierran thrust system (ESTS) developed as a narrow zone of intense, predominantly E-vergent contractional deformation along the eastern margin of the growing batholith. Activity on the ESTS took place over an extended part of Mesozoic time, both before and after intrusion of voluminous Middle Jurassic plutons, and is interpreted to have been mechanically linked to emplacement of the batholith. Deformation on the ESTS and magmatism in the Sierra Nevada both ended prior to the close of the Cretaceous.

  11. Influence of the Amlia fracture zone on the evolution of the Aleutian Terrace forearc basin, central Aleutian subduction zone

    USGS Publications Warehouse

    Ryan, Holly F.; Draut, Amy E.; Keranen, Katie M.; Scholl, David W.

    2012-01-01

    During Pliocene to Quaternary time, the central Aleutian forearc basin evolved in response to a combination of tectonic and climatic factors. Initially, along-trench transport of sediment and accretion of a frontal prism created the accommodation space to allow forearc basin deposition. Transport of sufficient sediment to overtop the bathymetrically high Amlia fracture zone and reach the central Aleutian arc began with glaciation of continental Alaska in the Pliocene. As the obliquely subducting Amlia fracture zone swept along the central Aleutian arc, it further affected the structural evolution of the forearc basins. The subduction of the Amlia fracture zone resulted in basin inversion and loss of accommodation space east of the migrating fracture zone. Conversely, west of Amlia fracture zone, accommodation space increased arcward of a large outer-arc high that formed, in part, by a thickening of arc basement. This difference in deformation is interpreted to be the result of a variation in interplate coupling across the Amlia fracture zone that was facilitated by increasing subduction obliquity, a change in orientation of the subducting Amlia fracture zone, and late Quaternary intensification of glaciation. The change in coupling is manifested by a possible tear in the subducting slab along the Amlia fracture zone. Differences in coupling across the Amlia fracture zone have important implications for the location of maximum slip during future great earthquakes. In addition, shaking during a great earthquake could trigger large mass failures of the summit platform, as evidenced by the presence of thick mass transport deposits of primarily Quaternary age that are found in the forearc basin west of the Amlia fracture zone.

  12. Silica precipitation potentially controls earthquake recurrence in seismogenic zones.

    PubMed

    Saishu, Hanae; Okamoto, Atsushi; Otsubo, Makoto

    2017-10-17

    Silica precipitation is assumed to play a significant role in post-earthquake recovery of the mechanical and hydrological properties of seismogenic zones. However, the relationship between the widespread quartz veins around seismogenic zones and earthquake recurrence is poorly understood. Here we propose a novel model of quartz vein formation associated with fluid advection from host rocks and silica precipitation in a crack, in order to quantify the timescale of crack sealing. When applied to sets of extensional quartz veins around the Nobeoka Thrust of SW Japan, an ancient seismogenic splay fault, our model indicates that a fluid pressure drop of 10-25 MPa facilitates the formation of typical extensional quartz veins over a period of 6.6 × 10 0 -5.6 × 10 1 years, and that 89%-100% of porosity is recovered within ~3 × 10 2 years. The former and latter sealing timescales correspond to the extensional stress period (~3 × 10 1 years) and the recurrence interval of megaearthquakes in the Nankai Trough (~3 × 10 2 years), respectively. We therefore suggest that silica precipitation in the accretionary wedge controls the recurrence interval of large earthquakes in subduction zones.

  13. Diverse continental subduction scenarios along the Arabia-Eurasia collision zone

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Petrunin, A.; El Khrepy, S.; Al-Arifi, N. S.

    2017-12-01

    The Arabia-Eurasia continental collision zone is one of the largest and most active on the Earth. It has been discussed already long ago that the convergence of these plates implies subduction of the lithosphere. However, scenarios of this process are still debatable. Even direction of the present-day continental subduction is not clear. Previously, principal conclusions about structure of the upper mantle in this region were chiefly based on seismic tomography results. However, seismic velocities not always provide a complete image of the deep interiors since they are chiefly affected by temperature variations and less - by composition. Here we construct a 3D model of the mantle down to 700 km, which is based on a joint inversion of seismic tomography, residual (crust free) gravity field and residual topography (Kaban et al., 2016). Several cross-sections across the collision zone demonstrate principal variations of the continental subduction scenarios from northwest to southeast. In the southeastern part we observe subduction of the Eurasian plate under the West Great Caucasus, Pontic mountains and further under the northwestern part of the Arabian plate. However, the situation is changed when we move to the East Great Caucasus and Zagros, where clear double-sided subduction is observed. The Arabian plate is subducting under the Zagros, while the Eurasian plate - under the Caucasus merging in the transition zone. This situation persists further to the southeast, where we observe the subduction of the South Caspian block under Alborz accompanied by the counteracting penetration of the Arabian plate from the south. More to the southeast, the subduction of the Arabian plate is stagnated, while the subduction of the Eurasian plate can be traced down to the bottom of the transition zone under the northeastern flank of the Arabian plate. In the southern rim of the collision zone under Makran, we don't find any evidence for the present day subduction; remnants of the formerly subducted slabs are located below 200 km. Kaban, M. K., S. El Khrepy, N. Al-Arifi, M. Tesauro, and W. Stolk (2016), Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes, J. Geophys. Res. Solid Earth, 121.

  14. The Two Subduction Zones of the Southern Caribbean: Lithosphere Tearing and Continental Margin Recycling in the East, Flat Slab Subduction and Laramide-Style Uplifts in the West

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Niu, F.; Schmitz, M.

    2015-12-01

    The southern Caribbean plate boundary is a complex strike-slip fault system bounded by oppositely vergent subduction zones, the Antilles subduction zone in the east, and a currently locked Caribbean-South American subduction zone in the west (Bilham and Mencin, 2013). Finite-frequency teleseismic P-wave tomography images both the Atlanic (ATL) and the Caribbean (CAR) plates subducting steeply in opposite directions to transition zone depths under northern South America. Ps receiver functions show a depressed 660 discontinuity and thickened transition zone associated with each subducting plate. In the east the oceanic (ATL) part of the South American (SA) plate subducts westward beneath the CAR, initiating the El Pilar-San Sebastian strike slip system, a subduction-transform edge propagator (STEP) fault (Govers and Wortel, 2005). The point at which the ATL tears away from SA as it descends into the mantle is evidenced by the Paria cluster seismicity at depths of 60-110 km (Russo et al, 1993). Body wave tomography and lithosphere-asthenosphere boundary (LAB) thickness determined from Sp and Ps receiver functions and Rayleigh waves suggest that the descending ATL also viscously removes the bottom third to half of the SA continental margin lithospheric mantle as it descends. This has left thinned continental lithosphere under northern SA in the wake of the eastward migrating Antilles subduction zone. The thinned lithosphere occupies ~70% of the length of the El Pilar-San Sebastian fault system, from ~64oW to ~69oW, and extends inland several hundred kilometers. In northwestern SA the CAR subducts east-southeast at low angle under northern Colombia and western Venezuela. The subducting CAR is at least 200 km wide, extending from northernmost Colombia as far south as the Bucaramanga nest seismicity. The CAR descends steeply under Lake Maracaibo and the Merida Andes. This flat slab is associated with three Neogene basement cored, Laramide-style uplifts: the Santa Marta block, the Perija Range, and the Merida Andes (Kellogg and Bonini, 1982). The steep descent of the CAR under Maracaibo implies that the CAR plate is torn somewhere between the Merida Andes and the Caribbean Sea, where it forms the ocean floor. An upcoming broadband seismic experiment will examine the CAR flat slab and the suspected slab tear in detail.

  15. Analog models of convergence and divergence: perspectives of the tectonics of the Middle East

    NASA Astrophysics Data System (ADS)

    Mart, Yossi

    2010-05-01

    Three series of analog models of convergence and divergence of tectonic plates illuminate the possible tectonic processes that shaped the lithology of the Middle East since the early Miocene. The Mid-East geographic province extends from the Ionian Sea to the Arabian Sea, and comprises the Hellenic subduction zone, the Aegean back-arc basin, the motion of Anatolia southwestwards, the oblique collision of Arabia and Iran along the Zagros suture, and the continental break-up of the Gulf of Aden and the Red Sea. The tectonic evolution of all these diverse domains started in the Miocene nearly contemporaneously, and modeling suggests that the convergence and divergence, though derived from unrelated processes, their tectonics is intertwined. Centrifuge models of the initiation of subduction show the correlation between early subduction and the opening of its back-arc basin (Mart et al., 2005). The models emphasize the significance of extensive seawards roll-back of the deformation front when friction between the thrust slabs is reduced, and consequently, the pull within the overthrust slab that leads to its structural extension. That extension produced the Aegean domain with its volcanism and the exposure of its core complex, as well as the westwards displacement of Anatolia along the North and East Anatolian Faults. Sand-box models of oblique subduction, namely the gradual shift from subduction to collision along the convergence front, showed orthogonal patterns of extension in distal parts of the underthrust slab (Bellahsen et al., 2002). It is suggested that the extensional domains deflected the propagation of Carlsberg Ridge to swing 1200 and penetrate the Gulf of Aden in the early Miocene. The structural differences between the Gulf of Aden and the Red Sea can be accounted for by the results of sand-box experiments in oblique rifting (Mart and Dauteuil, 2000). The models suggest that oblique rifting, where the deviation from the normal extension was ca. 50, would propagate continuously like wedge. However, where the deviation exceeds 150, the rifting takes place in two stages. At first a series of structural basins develops along an axial zone with no continuous boundary fault. Then the basins expand in their axial direction and, in time, interconect to form a rift with boundary faults that determine the down-thrown rift from its elevated margins. When these structures were welded into a mountain chain, it would be very complicated to determine the low friction from the high friction subduction, the temporal transition from subduction to collision, and the penetration of a spreading ridge into a tectonic convergence zone. The Middle East offers a unique view into the structural development of the continental lithosphere as it takes place. References: Bellahsen, N., Faccenna, C., Funiciello, F., Daniel J. M., Jolivet, L., 2003. Why did Arabia separate from Africa? Insights from 3-D laboratory experiments. Earth Planet. Sci. Lett., 216, 365-381. Mart, Y. and Dauteuil, O., 2000. Analogue experiments of propagation of oblique rifts. Tectonophysics, 316: 121-132. Mart, Y., Aharonov, E., Mulugeta, G., Ryan, W.B.F., Tentler, T., Goren, L., 2005. Analog modeling of the initiation of subduction. Geophys. J. Int., 160, 1081-1091.

  16. An Andean-type retro-arc foreland system beneath northwest South China revealed by SINOPROBE profiling

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Dong, Shuwen; Cawood, Peter A.; Zhao, Guochun; Johnston, Stephen T.; Zhang, Yueqiao; Xin, Yujia

    2018-05-01

    In the Mesozoic, South China was situated along the convergent margin between the Asian and Pacific plates, providing an excellent laboratory to understand the interactions between deformation, sedimentation and magmatism in a retroarc environment. The crustal architecture of northwest South China is displayed along the ∼600-km-long SINOPROBE deep seismic reflection profiles and reveals from east to west: (1) highly folded and truncated reflectors in the upper crust of the Yangtze Fold Zone, which correspond to thin- and thick-skinned thrust systems, and document large-scale intraplate structural imbrication and shortening; (2) a crustal-scale flat-ramp-flat structure, termed the Main Yangtze decollement, which forms a weak, viscous layer to accommodate strain decoupling and material transport in the thin- and thick-skinned systems; and (3) nearly flat-lying reflectors in the Sichuan Basin, which support interpretation of the basin as a weakly deformed depocentre. The Yangtze Fold Zone and the Sichuan Basin represent a retro-arc foreland basin system that is >800 km away from the continental-margin magmatic arc. We suggest that tectonic processes across the arc and retro-arc systems, including arc magma flare-up, basin sedimentation, retroarc thrust propagation, lithosphere underthrusting, root foundering, and extension-related magmatism were interrelated and governed mass transfer. Age data and geological relations link the tectonic processes to evolving geodynamics of the subducting Paleo-Pacific plate.

  17. Interseismic deformation and moment deficit along the Manila subduction zone and the Philippine Fault system

    NASA Astrophysics Data System (ADS)

    Hsu, Y. J.; Yu, S. B.; Loveless, J. P.; Bacolcol, T.; Woessner, J.; Solidum, R., Jr.

    2015-12-01

    The Sunda plate converges obliquely with the Philippine Sea plate with a rate of ~100 mm/yr and results in the sinistral slip along the 1300 km-long Philippine fault. Using GPS data from 1998 to 2013 as well as a block modeling approach, we decompose the crustal motion into multiple rotating blocks and elastic deformation associated with fault slip at block boundaries. Our preferred model composed of 8 blocks, produces a mean residual velocity of 3.4 mm/yr at 93 GPS stations. Estimated long-term slip rates along the Manila subduction zone show a gradual southward decrease from 66 mm/yr at the northwest tip of Luzon to 60 mm/yr at the southern portion of the Manila Trench. We infer a low coupling fraction of 11% offshore northwest Luzon and a coupling fraction of 27% near the subduction of Scarborough Seamount. The accumulated strain along the Manila subduction zone at latitudes 15.5°~18.5°N could be balanced by earthquakes with composite magnitudes of Mw 8.7 and Mw 8.9 based on a recurrence interval of 500 years and 1000 years, respectively. Estimates of sinistral slip rates on the major splay faults of the Philippine fault system in central Luzon increase from east to west: sinistral slip rates are 2 mm/yr on the Dalton fault, 8 mm/yr on the Abra River fault, and 12 mm/yr on the Tubao fault. On the southern segment of the Philippine fault (Digdig fault), we infer left-lateral slip of ~20 mm/yr. The Vigan-Aggao fault in northwest Luzon exhibits significant reverse slip of up to 31 mm/yr, although deformation may be distributed across multiple offshore thrust faults. On the Northern Cordillera fault, we calculate left-lateral slip of ~7 mm/yr. Results of block modeling suggest that the majority of active faults in Luzon are fully locked to a depth of 15-20 km. Inferred moment magnitudes of inland large earthquakes in Luzon fall in the range of Mw 7.0-7.5 based on a recurrence interval of 100 years. Using the long-term plate convergence rate between the Sunda plate and Philippine Sea plate as well as seismic moment release rate, we calculate the moment budget for the entire Luzon plate boundary zone that could be balanced by earthquakes with a composite magnitude of ~Mw 9 based on recurrence intervals of 500-1000 years.

  18. Neogene Sediment Transport, Deposition, and Exhumation from the Southern Alaska Syntaxis to the Eastern Aleutian Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ridgway, K. D.; Witmer, J. W.; Enkelmann, E.; Plafker, G.; Brennan, P. R.

    2011-12-01

    Over 5 km of Neogene sedimentary strata are well exposed in the Chugach-St. Elias Ranges within the southern Alaska syntaxis. This syntaxis forms where the Pacific-North America plate boundary changes from the northwest-trending Queen Charlotte-Fairweather transform system to the southwest-trending Alaska-Aleutian subduction zone. Active collision and subduction of the buoyant Yakutat microplate in the syntaxis results in a wide collisional zone defined by active mountain belts, extensive glaciation, and thick packages of synorogenic strata. New stratigraphic and U-Th/He thermochronologic data from Neogene synorogenic strata, named the Yakataga and Redwood Formations, provide insights on collisional tectonics, glacial erosion, and sediment transport, deposition, burial, and exhumation from the onshore Chugach and St. Elias Ranges to the exposed accretionary prism of the Aleutian trench. Stratigraphic analyses show that along the southeastern part of the syntaxis, Neogene strata are characterized by deposition in braid delta, shallow marine, and glaciomarine slope apron depositional systems that resulted in construction of a broad continental shelf. In the central part of the syntaxis, marine shelf and upper slope environments deposited thick-bedded sandstone and mudstone in a thrust belt/foreland basin system. Along the southwestern part of the syntaxis, Neogene strata were deposited in a regional submarine fan system that filled the easternmost part of the Aleutian trench. Geologic mapping of the contact between the Yakataga Formation and underlying strata along the syntaxis document an angular unconformity with maximum stratigraphic separation (> 5 km) in the central part of the syntaxis. Along strike, this unconformity becomes conformable along both the southwestern and southeastern parts of the syntaxis. The regional angular unconformity and facies transitions both point to the importance of the central part of the syntaxis in the generation and distribution of synorogenic sediment. Apatite and zircon U-Th/He thermochronologic data from granitoid and gneissic clasts in conglomerate suggest that Neogene sediments were buried no deeper than ~2 km in the central and southeastern parts of the syntaxis, and that burial temperatures did not exceed ~40-45°C. In contrast, Neogene sediment deposited by submarine fans in the Aleutian trench along the southwestern part of the syntaxis were buried at depths of 5 to 7.5 km and reached temperatures between ~120-160°C. These strata were subsequently exhumed as the trench fill was incorporated into the growing accretionary prism. Collectively, our data show that the first-order sediment pathway along a glaciated syntaxis is dynamically linked to tectonic uplift, focused glacial erosion, deposition of thick packages of glacial marine sediment, and rapid exhumation along thrust belts and accretionary prisms.

  19. What role did the Hikurangi subduction zone play in the M7.8 Kaikoura earthquake?

    NASA Astrophysics Data System (ADS)

    Wallace, L. M.; Hamling, I. J.; Kaneko, Y.; Fry, B.; Clark, K.; Bannister, S. C.; Ellis, S. M.; Francois-Holden, C.; Hreinsdottir, S.; Mueller, C.

    2017-12-01

    The 2016 M7.8 Kaikoura earthquake ruptured at least a dozen faults in the northern South Island of New Zealand, within the transition from the Hikurangi subduction zone (in the North Island) to the transpressive Alpine Fault (in the central South Island). The role that the southern end of the Hikurangi subduction zone played (or did not play) in the Kaikoura earthquake remains one of the most controversial aspects of this spectacularly complex earthquake. Investigations using near-field seismological and geodetic data suggest a dominantly crustal faulting source for the event, while studies relying on teleseismic data propose that a large portion of the moment release is due to rupture of the Hikurangi subduction interface beneath the northern South Island. InSAR and GPS data also show that a large amount of afterslip (up to 0.5 m) occurred on the subduction interface beneath the crustal faults that ruptured in the M7.8 earthquake, during the months following the earthquake. Modeling of GPS velocities for the 20 year period prior to the earthquake indicate that interseismic coupling was occurring on the Hikurangi subduction interface beneath the northern South Island, in a similar location to the suggested coseismic and postseismic slip on the subduction interface. We will integrate geodetic, seismological, tsunami, and geological observations in an attempt to balance the seemingly conflicting views from local and teleseismic data regarding the role that the southern Hikurangi subduction zone played in the earthquake. We will also discuss the broader implications of the observed coseismic and postseismic deformation for understanding the kinematics of the southern termination of the Hikurangi subduction zone, and its role in the transition from subduction to strike-slip in the central New Zealand region.

  20. Widespread afterslip and triggered slow slip events following the M7.8 Kaikoura earthquake, New Zealand

    NASA Astrophysics Data System (ADS)

    Wallace, L. M.; Hreinsdottir, S.; Hamling, I. J.; D'Anastasio, E.; Bartlow, N. M.

    2017-12-01

    Just after midnight on 14 Nov 2016 (NZ Local time), the M7.8 Kaikoura earthquake ruptured a complex sequence of strike-slip and reverse faults over an approximately 150 km length in the northeastern South Island of New Zealand (Hamling et al., 2017, Science). In the months following the earthquake, time-dependent inversions of InSAR observations and continuous and semi-continuous GPS measurements reveal up to 0.5 m of afterslip on the subduction interface beneath the northern South Island underlying the region of large coseismic slip on crustal faults in the M7.8 earthquake. The geodetic data also require significant afterslip on a subset of the crustal faults that ruptured in the earthquake, including the Needles, Jordan Thrust, and Kekerengu faults. Our best-fitting models also suggest significant afterslip on an offshore reverse fault, in a similar position to one inferred by Clark et al. (2017, EPSL) from coseismic coastal uplift data. The M7.8 earthquake also triggered widespread slow slip occurring over much of the Hikurangi subduction zone beneath the North Island. Immediately following the earthquake, continuous GPS sites operated by GeoNet (www.geonet.org.nz) along the North Island's east coast (above the Hikurangi subduction zone) detected several to 30 mm of eastward motion over the two-week period immediately following the M7.8 event. These sites are located 350-650 km from the M7.8 earthquake. Such large eastward motion along the North Island's east coast following the earthquake is consistent with the initiation of a large slow slip event along the shallow, offshore portion of the Hikurangi subduction zone. In addition to shallow slow slip (<15 km depth) triggered offshore the east coast, we also observe deeper slow slip (>30 km depth) triggered in the Kapiti region at the southern Hikurangi margin. The Kapiti SSE was still ongoing as of August 2017, although we expect it to finish before the end of 2017. Given the large distance of the shallow east coast SSE from the M7.8 earthquake, we suggest that the shallow SSE was more likely to be triggered by dynamic stress changes, while the deeper SSEs closer to the Mw 7.8 were more likely triggered by static stress changes.

  1. Subduction initiation and Obduction: insights from analog models

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2013-12-01

    Subduction initiation and obduction are two poorly constrained geodynamic processes which are interrelated in a number of natural settings. Subduction initiation can be viewed as the result of a regional-scale change in plate convergence partitioning between the set of existing subduction (and collision or obduction) zones worldwide. Intraoceanic subduction initiation may also ultimately lead to obduction of dense oceanic "ophiolites" atop light continental plates. A classic example is the short-lived Peri-Arabic obduction, which took place along thousands of km almost synchronously (within ~5-10 myr), from Turkey to Oman, while the subduction zone beneath Eurasia became temporarily jammed. We herein present analog models designed to study both processes and more specifically (1) subduction initiation through the partitioning of deformation between two convergent zones (a preexisting and a potential one) and, as a consequence, (2) the possible development of obduction, which has so far never been modeled. These models explore the mechanisms of subduction initiation and obduction and test various triggering hypotheses (i.e., plate acceleration, slab crossing the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises an upper mantle modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and high-viscosity silicone plates. Convergence is simulated by pushing on a piston at one end of the model with plate tectonics like velocities (1-10 cm/yr) onto (i) a continental margin, (ii) a weakness zone with variable resistance and dip (W), (iii) an oceanic plate - with or without a spreading ridge, (iv) a subduction zone (S) dipping away from the piston and (v) an upper active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as for the Oman case). Several configurations were tested over thirty-five parametric experiments. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Measurements of displacements and internal deformation allow for a very precise and reproducible tracking of deformation. Experiments consistently demonstrate that subduction initiation chiefly depends on how the overall shortening (or convergence) is partitionned between the weakness zone (W) and the preexisting subduction zone (S). Part of the deformation is transfered to W as soon as the increased coupling across S results in 5-10% of the convergence being transfered to the upper plate. Whether obduction develops further depends on the effective strength of W. Results (1) constrain the range of physical conditions required for subduction initiation and obduction to develop/nucleate and (2) underline the key role of acceleration for triggering obduction, rather than ridge subduction or slab resistance to penetration at the 660 km discontinuity. [Agard P., Jolivet L., Vrielynck B., Burov E. & Monié P., 2007. Plate acceleration : the obduction trigger? Earth and Planetary Science Letters, 258, 428-441.

  2. Scale independence of décollement thrusting

    USGS Publications Warehouse

    McBride, John H.; Pugin, Andre J.M.; Hatcher, Robert D.

    2007-01-01

    Orogen-scale décollements (detachment surfaces) are an enduring subject of investigation by geoscientists. Uncertainties remain as to how crustal convergence processes maintain the stresses necessary for development of low-angle fault surfaces above which huge slabs of rock are transported horizontally for tens to hundreds of kilometers. Seismic reflection profiles from the southern Appalachian crystalline core and several foreland fold-and-thrust belts provide useful comparisons with high-resolution shallow-penetration seismic reflection profiles acquired over the frontal zone of the Michigan lobe of the Wisconsinan ice sheet northwest of Chicago, Illinois. These profiles provide images of subhorizontal and overlapping dipping reflections that reveal a ramp-and-flat thrust system developed in poorly consolidated glacial till. The system is rooted in a master décollement at the top of bedrock. These 2–3 km long images contain analogs of images observed in seismic reflection profiles from orogenic belts, except that the scale of observation in the profiles in glacial materials is two orders of magnitude less. Whereas the décollement beneath the ice lobe thrust belt lies ∼70 m below thrusted anticlines having wavelengths of tens of meters driven by an advancing ice sheet, seismic images from overthrust terranes are related to lithospheric convergence that produces décollements traceable for thousands of kilometers at depths ranging from a few to over 10 km. Dual vergence or reversals in vergence (retrocharriage) that developed over abrupt changes in depth to the décollement can be observed at all scales. The strikingly similar images, despite the contrast in scale and driving mechanism, suggest a scale- and driving mechanism–independent behavior for décollement thrust systems. All these systems initially had the mechanical properties needed to produce very similar geometries with a compressional driving mechanism directed subparallel to Earth's surface. Subduction-related accretionary complexes also produce thrust systems with similar geometries in semi- to unconsolidated materials.

  3. Deformation cycles of subduction earthquakes in a viscoelastic Earth.

    PubMed

    Wang, Kelin; Hu, Yan; He, Jiangheng

    2012-04-18

    Subduction zones produce the largest earthquakes. Over the past two decades, space geodesy has revolutionized our view of crustal deformation between consecutive earthquakes. The short time span of modern measurements necessitates comparative studies of subduction zones that are at different stages of the deformation cycle. Piecing together geodetic 'snapshots' from different subduction zones leads to a unifying picture in which the deformation is controlled by both the short-term (years) and long-term (decades and centuries) viscous behaviour of the mantle. Traditional views based on elastic models, such as coseismic deformation being a mirror image of interseismic deformation, are being thoroughly revised.

  4. Limits on great earthquake size at subduction zones

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2012-12-01

    Subduction zones are where the world's greatest earthquakes occur due to the large fault area available to slip. Yet some subduction zones are thought to be immune from these massive events, where quake size is limited by some physical processes or properties. Accordingly, the size of the 2011 Tohoku-oki Mw 9.0 earthquake caught some in the earthquake research community by surprise. The expectations of these massive quakes have been driven in the past by reliance on our short, incomplete history of earthquakes and causal relationships derived from it. The logic applied is that if a great earthquake has not happened in the past, that we know of, one cannot happen in the future. Using the ~100-year global earthquake seismological history, and in some cases extended with geologic observations, relationships between maximum earthquake sizes and other properties of subduction zones are suggested, leading to the notion that some subduction zones, like the Japan Trench, would never produce a magnitude ~9 event. Empirical correlations of earthquake behavior with other subduction parameters can give false positive results when the data are incomplete or incorrect, of small numbers and numerous attributes are examined. Given multi-century return times of the greatest earthquakes, ignorance of those return times and our relatively limited temporal observation span (in most places), I suggest that we cannot yet rule out great earthquakes at any subduction zones. Alternatively, using the length of a subduction zone that is available for slip as the predominant factor in determining maximum earthquake size, we cannot rule out that any subduction zone of a few hundred kilometers or more in length may be capable of producing a magnitude 9 or larger earthquake. Based on this method, the expected maximum size for the Japan Trench was 9.0 (McCaffrey, Geology, p. 263, 2008). The same approach indicates that a M > 9 off Java, with twice the population density as Honshu and much lower building standards, is possible. The Java Trench, and others that are considered of the low-coupling type (i.e., Hikurangi, Marianas, Tonga, Kermadec), require increased awareness of the possibility for a great earthquake and tsunami.

  5. Thermal structure and geodynamics of subduction zones

    NASA Astrophysics Data System (ADS)

    Wada, Ikuko

    The thermal structure of subduction zones depends on the age-controlled thermal state of the subducting slab and mantle wedge flow. Observations indicate that the shallow part of the forearc mantle wedge is stagnant and the slab-mantle interface is weakened. In this dissertation, the role of the interface strength in controlling mantle wedge flow, thermal structure, and a wide range of subduction zone processes is investigated through two-dimensional finite-element modelling and a global synthesis of geological and geophysical observations. The model reveals that the strong temperature-dependence of the mantle strength always results in full slab-mantle decoupling along the weakened part of the interface and hence complete stagnation of the overlying mantle. The interface immediately downdip of the zone of decoupling is fully coupled, and the overlying mantle is driven to flow at a rate compatible with the subduction rate. The sharpness of the transition from decoupling to coupling depends on the rheology assumed and increases with the nonlinearity of the flow system. This bimodal behaviour of the wedge flow gives rise to a strong thermal contrast between the cold stagnant and hot flowing parts of the mantle wedge. The maximum depth of decoupling (MDD) thus dictates the thermal regime of the forearc. Observed surface heat flow patterns and petrologically and geochemically estimated mantle wedge temperatures beneath the volcanic arc require an MDD of 70--80 km in most, if not all, subduction zones regardless of their thermal regime of the slab. The common MDD of 70--80 km explains the observed systematic variations of the petrologic, seismological, and volcanic processes with the thermal state of the slab and thus explains the rich diversity of subduction zones in a unified fashion. Models for warm-slab subduction zones such as Cascadia and Nankai predict shallow dehydration of the slab beneath the cold stagnant part of the mantle wedge, which provides ample fluid for mantle wedge serpentinization in the forearc but little fluid for melt generation beneath the arc. In contrast, models for colder-slab subduction zones such as NE Japan and Kamchatka predict deeper dehydration, which provides greater fluid supply for melt generation beneath the arc and allows deeper occurrence of intraslab earthquakes but less fluid for forearc mantle wedge serpentinization. The common MDD also explains the intriguing uniform configuration of subduction zones, that is, the volcanic arc always tends to be situated where the slab is at about 100 km depth. The sudden onset of mantle wedge flow downdip of the common MDD overshadows the thermal effect of the slab, and the resultant thermal field and slab dehydration control the location of the volcanic arc. The recognition of the fundamental importance of the MDD has important implications to the study of geodynamics and earthquake hazard in subduction zones.

  6. Toward Broadband Source Modeling for the Himalayan Collision Zone

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.

    2017-12-01

    The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.

  7. Subduction obliquity as a prime indicator for geotherm in subduction zone

    NASA Astrophysics Data System (ADS)

    Plunder, Alexis; Thieulot, Cédric; van Hinsbergen, Douwe

    2016-04-01

    The geotherm of a subduction zone is thought to vary as a function of subduction rate and the age of the subducting lithosphere. Along a single subduction zone the rate of subduction can strongly vary due to changes in the angle between the trench and the plate convergence vector, namely the subduction obliquity. This phenomenon is observed all around the Pacific (i.e., Marianna, South America, Aleutian…). However due to observed differences in subducting lithosphere age or lateral convergence rate in nature, the quantification of temperature variation due to obliquity is not obvious. In order to investigate this effect, 3D generic numerical models were carried out using the finite element code ELEFANT. We designed a simplified setup to avoid interaction with other parameters. An ocean/ocean subduction setting was chosen and the domain is represented by a 800 × 300 × 200 km Cartesian box. The trench geometry is prescribed by means of a simple arc-tangent function. Velocity of the subducting lithosphere is prescribed using the analytical solution for corner flow and only the energy conservation equation is solved in the domain. Results are analysed after steady state is reached. First results show that the effect of the trench curvature on the geotherm with respect to the convergence direction is not negligible. A small obliquity yields isotherms which are very slightly deflected upwards where the obliquity is maximum. With an angle of ˜30°, the isotherms are deflected upwards of about 10 kilometres. Strong obliquity (i.e., angles from 60° to almost 90°) reveal extreme effects of the position of the isotherms. Further model will include other parameter as the dip of the slab and convergence rate to highlight their relative influence on the geotherm of subduction zone.

  8. Subduction and Plate Edge Tectonics in the Southern Caribbean

    NASA Astrophysics Data System (ADS)

    Levander, A.; Schmitz, M.; Niu, F.; Bezada, M. J.; Miller, M. S.; Masy, J.; Ave Lallemant, H. G.; Pindell, J. L.; Bolivar Working Group

    2013-05-01

    The southern Caribbean plate boundary consists of a subduction zone at at either end of a complex strike-slip fault system: In the east at the Lesser Antilles subduction zone, the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west in the Colombia basin, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean plates subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system that has been cut off at the Bocono fault, the southeastern boundary fault of the Maracaibo block. A variety of seismic probes identify subduction features at either end of the system (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Growdon et al., 2009; Huang et al., 2010; Masy et al, 2011). The El Pilar system forms at the southeastern corner of the Antilles subduction zone with the Atlantic plate tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. Tearing the Atlantic plate from the rest of South America appears to cause further lithospheric instability continentward. In northwestern South America the Caribbean plate very likely also tears, as its southernmost element subducts at shallow angles under northernmost Colombia but then rapidly descends to the transition zone under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab controls the tectonics of the Neogene Merida Andes, Perija, and Santa Marta ranges. The nonsubducting part of the Caribbean plate also underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the edge of the underthrust Caribbean plate supports the elevations of the coastal mountains and controls continuing deformation.

  9. Linking giant earthquakes with the subduction of oceanic fracture zones

    NASA Astrophysics Data System (ADS)

    Landgrebe, T. C.; Müller, R. D.; EathByte Group

    2011-12-01

    Giant subduction earthquakes are known to occur in areas not previously identified as prone to high seismic risk. This highlights the need to better identify subduction zone segments potentially dominated by relatively long (up to 1000 years and more) recurrence times of giant earthquakes. Global digital data sets represent a promising source of information for a multi-dimensional earthquake hazard analysis. We combine the NGDC global Significant Earthquakes database with a global strain rate map, gridded ages of the ocean floor, and a recently produced digital data set for oceanic fracture zones, major aseismic ridges and volcanic chains to investigate the association of earthquakes as a function of magnitude with age of the downgoing slab and convergence rates. We use a so-called Top-N recommendation method, a technology originally developed to search, sort, classify, and filter very large and often statistically skewed data sets on the internet, to analyse the association of subduction earthquakes sorted by magnitude with key parameters. The Top-N analysis is used to progressively assess how strongly particular "tectonic niche" locations (e.g. locations along subduction zones intersected with aseismic ridges or volcanic chains) are associated with sets of earthquakes in sorted order in a given magnitude range. As the total number N of sorted earthquakes is increased, by progressively including smaller-magnitude events, the so-called recall is computed, defined as the number of Top-N earthquakes associated with particular target areas divided by N. The resultant statistical measure represents an intuitive description of the effectiveness of a given set of parameters to account for the location of significant earthquakes on record. We use this method to show that the occurrence of great (magnitude ≥ 8) earthquakes on overriding plate segments is strongly biased towards intersections of oceanic fracture zones with subduction zones. These intersection regions are linked with 8 of the largest 10, 18 of the largest 25, about half of the largest 100 subduction earthquakes, as well as with the 2011 Tohoku-Oki earthquake. Subduction zone intersections with volcanic chains are not found to be associated with a significantly elevated risk for great earthquakes globally. This difference likely arises from subducting fracture zone ridges leading to stronger seismic coupling than subducting volcanic chains.

  10. Heterogeneity in Subducting Slab Influences Fluid Properties, Plate Coupling and Volcanism: Hikurangi Subduction Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.; Reyners, M.; Bannister, S. C.

    2017-12-01

    Seismicity distribution and 3-D models of P- and S-attenuation (1/Q) in the Hikurangi subduction zone, in the North Island of New Zealand, show large variation along-arc in the fluid properties of the subducting slab. Volcanism is also non-uniform, with extremely productive rhyolitic volcanism localized to the central Taupo Volcanic zone, and subduction without volcanism in the southern North Island. Plate coupling varies with heterogeneous slip deficit in the northern section, low slip deficit in the central section, and high slip deficit (strong coupling) in the south. Heterogeneous initial hydration and varied dehydration history both are inferred to play roles. The Hikurangi Plateau (large igneous province) has been subducted beneath New Zealand twice - firstly at ca. 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates along the Hikurangi subduction zone. It has an uneven downdip edge which has produced spatially and temporally localized stalls in subduction rate. The mantle wedge under the rhyolitic section has a very low Q feature centred at 50-125 km depth, which directly overlies a 150-km long zone of dense seismicity. This seismicity occurs below a sharp transition in the downdip extent of the Hikurangi Plateau, where difficulty subducting the buoyant plateau would have created a zone of increased faulting and hydration that spent a longer time in the outer-rise yielding zone, compared with areas to the north and south. At shallow depths this section has unusually high fracture permeability from the two episodes of bending, but it did not experience dehydration during Gondwana subduction. This central section at plate interface depths less than 50-km has low Q in the slab crust, showing that it is extremely fluid rich, and it exhibits weak plate coupling with both deep and shallow slow-slip events. In contrast in the southern section, where there is a large deficit in slip rate, the plate interface is only moderately fluid-rich, because the underlying plateau had already had an episode of Gondwana dehydration. Here the dehydrated plateau has subducted deeper, to 140-km depth, there is no volcanism, and the mantle wedge lacks low Q.

  11. Oxygen isotopes in garnet and accessory minerals to constrain fluids in subducted crust

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Gauthiez-Putallaz, Laure; Regis, Daniele; Rosa Scicchitano, Maria; Vho, Alice; Williams, Morgan

    2017-04-01

    Fluids are considered a fundamental agent for chemical exchanges between different rock types in the subduction system. Constraints on the sources and pathways of subduction fluids thus provide crucial information to reconstruct subduction processes. Garnet and U-Pb accessory minerals constitute some of the most robust and ubiquitous minerals in subducted crust and can preserve multiple growth zones that track the metamorphic evolution of the sample they are hosted in. Microbeam investigation of the chemical (major and trace elements) and isotopic composition (oxygen and U-Pb) of garnet and accessory minerals is used to track significant fluid-rock interaction at different stages of the subduction system. This approach requires consideration of the diffusivity of oxygen isotopes particularly in garnet, which has been investigated experimentally. The nature of the protolith and ocean floor alteration is preserved in relict accessory phases within eclogites that have been fully modified at HP conditions (e.g. Monviso and Dora Maira units in the Western Alps). Minerals in the lawsonite-blueschists of the Tavsanli zone in Turkey record pervasive fluid exchange between mafic and sedimentary blocks at the early stage of subduction. High pressure shear zones and lithological boundaries show evidence of intense fluid metasomatism at depth along discontinuities in Monviso and Corsica. In the UHP oceanic crust of the Zermatt-Saas Zone, garnet oxygen isotopes and tourmaline boron isotopes indicate multistage fluid infiltration during prograde metamorphism. Localized exchanges of aqueous fluids are also observed in the subducted continental crust of the Sesia-Lanzo Zone. In most cases analyses of distinct mineral zones enable identification of multiple pulses of fluids during the rock evolution.

  12. Large scale obduction of preserved oceanic crust: linking the Lesser Caucasus and NE Anatolian ophiolites and implications for the formation of the Lesser Caucasus-Pontides Arc

    NASA Astrophysics Data System (ADS)

    Hassig, Marc; Rolland, Yann; Sosson, Marc; Galoyan, Ghazar; Sahakyan, Lilit; Topuz, Gultelin; Farouk Çelik, Omer; Avagyan, Ara; Muller, Carla

    2014-05-01

    During the Mesozoic, the Southern margin of the Eurasian continent was involved in the closure of the Paleotethys and opening Neotethys Ocean. Later, from the Jurassic to the Eocene, subductions, obductions, micro-plate accretions, and finally continent-continent collision occurred between Eurasia and Arabia, and resulted in the closure of Neotethys. In the Lesser Caucasus and NE Anatolia three main domains are distinguished from South to North: (1) the South Armenian Block (SAB) and the Tauride-Anatolide Platform (TAP), Gondwanian-derived continental terranes; (2) scattered outcrops of ophiolite bodies, coming up against the Sevan-Akera and Ankara-Erzincan suture zones; and (3) the Eurasian plate, represented by the Eastern Pontides margin and the Somkheto-Karabagh Arc. The slivers of ophiolites are preserved non-metamorphic relics of the now disappeared Northern Neotethys oceanic domain overthrusting onto the continental South Armenian Block (SAB) as well as on the Tauride-Anatolide plateform from the north to the south. It is important to point out that the major part of this oceanic lithosphere disappeared by subduction under the Eurasian Margin to the north. In the Lesser Caucasus, works using geochemical whole-rock analyses, 40Ar/39Ar dating of basalts and gabbro amphiboles and paleontological dating have shown that the obducted oceanic domain originates from a back-arc setting formed throughout Middle Jurassic times. The comprehension of the geodynamic evolution of the Lesser Caucasus supports the presence of two north dipping subduction zones: (1) a subduction under the Eurasian margin and to the south by (2) an intra-oceanic subduction allowing the continental domain to subduct under the oceanic lithosphere, thus leading to ophiolite emplacement. To the West, the NE Anatolian ophiolites have been intensely studied with the aim to characterize the type of oceanic crust which they originated from. Geochemical analyses have shown similar rock types as in Armenia, Mid Ocean Ridge Basalt (MORB) to volcanic arc rocks and Intra-Plate Basalts (IPB). Lithostratigraphic comparisons have shown that the relations between the three units, well identified in the Lesser Caucasus, are similar to those found in NE Anatolia, including the emplacement of stratigraphically conform and discordant deposits. New field data has also shed light on an outcrop of low-grade metamorphic rocks of volcanic origin overthrusted by the ophiolites towards the south on the northern side of the Erzincan basin, along the North Anatolian Fault (NAF). We extend our model for the Lesser Caucasus to NE Anatolia and infer that the missing of the volcanic arc formed above the intra-plate subduction may be explained by its dragging under the obducting ophiolite with scaling by faulting and tectonic erosion. In this large scale model the blueschists of Stepanavan, the garnet amphibolites of Amasia and the metamorphic arc complex of Erzincan correspond to this missing volcanic arc. We propose that the ophiolites of these two zones originate from the same oceanic domain and were emplaced during the same obduction event. This reconstructed ophiolitic nappe represents a preserved non-metamorphic oceanic domain over-thrusting up to 200km of continental domain along more than 500km. Distal outcrops of this exceptional object were preserved from latter collision which was concentrated along the suture zones.

  13. Cascadia Initiative Reveals Accumulation of Buoyant Material Beneath the Subducting Juan de Fuca Plate

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.; Richards, M. A.

    2015-12-01

    The Cascadia Initiative is a four-year (2011-2015) amphibious seismic deployment that covers the Juan de Fuca plate and the Cascadia Subduction Zone. It is comprised of 70 broadband ocean-bottom seismometers that occupy 120 sites in total, as well as 27 land-based stations. This array offers a unique opportunity to study the 3D structure of a subduction zone in unprecedented detail. We present the results of an inversion using teleseismic body waves recorded by the Cascadia Initiative, EarthScope, and other regional and temporary networks in the Pacific Northwest. A low-velocity feature is visible beneath the subducting slab at shallow depths. Previous studies report ponding of low-viscosity, buoyant material at the top of the asthenosphere, unable to rise through the impermeable lithospheric lid. We show that as the lithospheric lid descends into the mantle, this material is not advected with it; rather, due to its own weakness and buoyancy, it accumulates at the subduction zone. Such material could be partly responsible for the rapid uplift and volcanism in the Coast Range of California, in the wake of the northward migration of the Mendocino Triple Junction. This newly observed feature may play an important role in the structure of subduction zones, but understanding the extent of that role on a global scale will require amphibious seismic deployments in other subduction zones.

  14. Links between fluid circulation, temperature, and metamorphism in subducting slabs

    USGS Publications Warehouse

    Spinelli, G.A.; Wang, K.

    2009-01-01

    The location and timing of metamorphic reactions in subducting lithosph??re are influenced by thermal effects of fluid circulation in the ocean crust aquifer. Fluid circulation in subducting crust extracts heat from the Nankai subduction zone, causing the crust to pass through cooler metamorphic faci??s than if no fluid circulation occurs. This fluid circulation shifts the basalt-to-eclogite transition and the associated slab dehydration 14 km deeper (35 km farther landward) than would be predicted with no fluid flow. For most subduction zones, hydrothermal cooling of the subducting slab will delay eclogitization relative to estimates made without considering fluid circulation. Copyright 2009 by the American Geophysical Union.

  15. Fault-related fluid flow, Beech Mountain thrust sheet, Blue Ridge Province, Tennessee-North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waggoner, W.K.; Mora, C.I.

    1992-01-01

    The latest proterozoic Beech Granite is contained within the Beech Mountain thrust sheet (BMTS), part of a middle-late Paleozoic thrust complex located between Mountain City and Grandfather Mountain windows in the western Blue Ridge of TN-NC. At the base of the BMTS, Beech Granite is juxtaposed against lower Paleozoic carbonate and elastics of the Rome Fm. along the Stone Mountain thrust on the southeaster margin of the Mountain City window. At the top of the BMTS, Beech Granite occurs adjacent to Precambrian mafic rocks of the Pumpkin Patch thrust sheet (PPTS). The Beech Granite is foliated throughout the BMTS withmore » mylonitization and localized cataclasis occurring within thrust zones along the upper and lower margins of the BMTS. Although the degree of mylonitization and cataclasis increases towards the thrusts, blocks of relatively undeformed granite also occur within these fault zones. Mylonites and thrusts are recognized as conduits for fluid movement, but the origin of the fluids and magnitude and effects of fluid migration are not well constrained. This study was undertaken to characterize fluid-rock interaction within the Beech Granite and BMTS. Extensive mobility of some elements/compounds within the thrust zones, and the isotopic and mineralogical differences between the thrust zones and interior of the BMTS indicate that fluid flow was focused within the thrust zones. The wide range of elevated temperatures (400--710 C) indicated by qz-fsp fractionations suggest isotopic disequilibrium. Using a more likely temperature range of 300--400 C for Alleghanian deformation, calculated fluid compositions indicate interactions with a mixture of meteoric-hydrothermal and metamorphic water with delta O-18 = 2.6--7.5[per thousand] for the upper thrust zone and 1.3 to 6.2[per thousand] for the lower thrust zone. These ranges are similar to isotopic data reported for other Blue Ridge thrusts and may represent later periods of meteoric water influx.« less

  16. Shear-wave Velocity Structure and Inter-Seismic Strain Accumulation in the Up-Dip Region of the Cascadia Subduction Zone: Similarities to Tohoku?

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; McGuire, J. J.; Wei, M.

    2013-12-01

    The up-dip region of subduction zone thrusts is difficult to study using land-based seismic and geodetic networks, yet documenting its ability to store and release elastic strain is critical for understanding the mechanics of great subduction earthquakes and tsunami generation. The 2011 Tohoku earthquake produced extremely large slip in the shallowest portion of the subduction zone beneath a region of the fore-arc that is comprised of extremely low-velocity, unconsolidated sediments [Tsuru et al. JGR 2012]. The influence of the sediment material properties on the co-seismic slip distribution and tsunami generation can be considerable through both the effects on the dynamic wavefield during the rupture [Kozdon and Dunham, BSSA 2012] and potentially the build up of strain during the inter-seismic period. As part of the 2010-2011 SeaJade experiment [Scherwath et al, EOS 2011], we deployed 10 ocean bottom seismographs (OBS) on the continental slope offshore of Vancouver Island in the region of the NEPTUNE Canada observatory. One goal of the experiment is to measure the shear modulus of the sediments lying above the subducting plate using the seafloor compliance technique. Using seafloor acceleration measured by broadband seismometer and seafloor pressure measured by Differential Pressure Gauge (DPG), we estimate the compliance spectrum in the infra-gravity wave band (~0.002-0.04 Hz) at 9 sites following the methodology of Crawford et al. [JGR, 1991]. We calibrated DPG sensitivities using laboratory measurements and by comparing teleseismic Rayleigh arrivals recorded on the seismometer and DPG channels [Webb, pers. comm]. We correct the vertical-component seismometer data for tilt using the procedure of Crawford and Webb [BSSA, 2000], Corrections for the gravitational attraction of the surface gravity waves [Crawford et al., JGR, 1998] are important at frequencies of 0.003-0.006 Hz only. Typically, the coherences are high (>0.7) in the 0.006 to 0.03 Hz range. We invert the measured compliances in this frequency band using a genetic algorithm that solves for the S-wave velocity, P-wave velocity, and density in a layered structure. By including constraints on the Vp distribution from active-source studies, these parameters appear well constrained down to about 4 km depth from our dataset. There is a clear difference in observed compliance values between stations close to the deformation front (~10 km) and those further up the continental slope (~30-40 km) indicating a region of unconsolidated, high-porosity sediment similar to the off-Tohoku region. The low S-wave velocities and high Vp/Vs ratios in the up-dip region correspond to unconsolidated high-porosity sediments. We calculated the effect of this material property contrast on the inter-seismic strain accumulation in the up-dip region of the subduction zone using a finite element model and find that the sediments can increase the amount of inter-seismic strain accumulated in the up-dip region by >100% relative to a homogenous elastic model.

  17. Investigating the origins of rhythmic major-element zoning in HP/LT garnets from worldwide subduction mélanges

    NASA Astrophysics Data System (ADS)

    Viete, D. R.; Hacker, B. R.; Seward, G.; Allen, M. B.

    2016-12-01

    Rhythmic major-element zoning has been documented in garnets from high pressure/low temperature (HP/LT) lenses within a number of worldwide subduction mélanges (e.g. California, Chinese Tianshan, Cuba, Greek Cyclades, Guatemala, Japan, Venezuela). The origin of these features has implications for the nature of subduction-zone processes. Conditions of rhythmic zoning acquirement in HP/LT garnets of California and Venezuela were investigated by use of Raman and FTIR microspectroscopy, and thermodynamic modelling of phase equilibria. Quartz-in-garnet Raman barometry reveals varying P—on the order of 100­-300 MPa, over radial distances of 10s of µm—in association with the high-Mn (and low-Mg) bands that define the fine-scale rhythmic zoning. Results from FTIR microspectroscopy demonstrate association between the high-Mn bands and locally depressed (structural) OH and elevated (molecular) H2O concentrations. The microspectroscopy results suggest changes in P and fluid activity attended development of the cryptic rhythmic zoning. Perple_X modelling of phase equilibria shows that, for specific rock chemistry and subduction P-T conditions, garnet modal abundance is extremely sensitive to changes in P (e.g. 10-20 vol.% growth/dissolution for ΔP = 200 MPa). Rhythmic major-element zoning may reflect P- and/or fluid-driven cycles of garnet stability-instability and/or varying reaction progress/kinetics during subduction. Steep compositional gradients that define the rhythmic major-element zoning limit time scales at subduction T, requiring that such individual stability-instability and/or accelerated reaction cycles were extremely brief. Seismic cycles or porosity waves represent ephemeral phenomena capable of accounting for development of rhythmic major-element zoning in HP/LT garnet, during subduction, as a result of fluctuations in both P and fluids. Metamorphic rocks may well carry detailed records of the catastrophism that punctuates longer-term tectonometamorphic processes.

  18. Review of subduction and its association with geothermal system in Sumatera-Java

    NASA Astrophysics Data System (ADS)

    Ladiba, A. F.; Putriyana, L.; Sibarani, B. br.; Soekarno, H.

    2017-12-01

    Java and Sumatera have the largest geothermal resources in Indonesia, in which mostly are spatially associated with volcanoes of subduction zones. However, those volcanoes are not distributed in a regular pattern due to the difference of subduction position. Subduction position in java is relatively more perpendicular to the trench than in Sumatera. In addition, Java has a concentration of large productive geothermal field with vapour dominated system in the western part of Java, which may be caused by the various subduction dip along the island. In order to understand the relationship between the subduction process and geothermal system in the subduction zone volcanoes, we examined several kinematic parameters of subduction that potentially relevant to the formation of geothermal system in overriding plate such as slab dip, subduction rate, and direction of subduction. Data and information regarding tectonic setting of Sumatera and Java and productive geothermal field in Sumatera and Java have been collected and evaluated. In conclusion, there are three condition that caused the geothermal fluid to be more likely being in vapour phase, which are: the subduction is in an orthogonal position, the slab dip is high, and rate of subduction is high. Although there are plenty researches of subduction zone volcanoes, only a few of them present information about its formation and implication to the geothermal system. The result of this study may be used as reference in exploration of geothermal field in mutual geologic environment.

  19. Downdip and along-strike variations in the properties of the Alaska megathrust from active-source seismic imaging

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Li, J.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.

    2014-12-01

    Downdip and along-strike changes in slip behavior at subduction zones are often attributed to changes in the properties of the megathrust. Here we review information on the subduction megathrust offshore of the Alaska Peninsula from MCS reflection and wide-angle seismic data acquired in 2011 during the Alaska Langseth Experiment to Understand the megaThrust (ALEUT) program, and compare them with constraints from other data and experiments. This region encompasses the full spectrum of coupling: 1) the weakly coupled Shumagin Gap; 2) the Semidi segment, which last ruptured in the 1938 M8.2 event, appears to be locked at present, and 3) the western Kodiak asperity, which marked the western extent of the 1964 M9.2 rupture and also appears to be locked. Our data reveal substantial along-strike variations in incoming sediment thickness and plate structure and along-strike and downdip variations in megathrust reflection characteristics. Over 1 km of sediment is observed on the incoming oceanic plate in the Semidi segment prior to subduction, and a relatively thick and continuous layer interpreted as subducted sediment can be imaged at the plate boundary here up to ~50 km from the trench . In the Shumagin Gap, where the incoming sediment section is half as thick and more pervasively faulted at the outer rise, a subducting sediment layer is also observed but it is thinner, less continuous and is not observed to continue as far from the trench. ,Although the Semidi segment is capable of producing great earthquakes, the comparatively thick sediment here may contribute to the relative paucity of seismicity compared with adjacent segments. At greater depths, simple and bright reflections are generally observed at depths of ~12-25 km, ~40-100 km from the trench, within the center of the estimated locked zone. The character changes where the megathrust appears to intersect the forearc mantle wedge to a wide (~2 km thick), bright band of reflections and may arise from a change in deformation style, distribution of fluids, and/or plate boundary properties. Although the overall patterns in reflection characteristics are consistent between profiles across different segments, this transition in reflection characteristics occurs at larger distances from the trench within the Semidi segment than in the Shumagin Gap.

  20. Tectono-sedimentary features in the Yap subduction zone, Western Pacific: constraints from latest integrated geophysical survey

    NASA Astrophysics Data System (ADS)

    Dong, D.; Zhang, G.; Bai, Y.; Fan, J.; Zhang, Z.

    2017-12-01

    The Yap subduction zone, western Pacific, is a typical structure related to the ridge subduction, but comparative shortage of the geophysical data makes the structural details unknown in this area. In this study, we present the latest and high-quality multi-beam swath bathymetry and multi-channel seismic data acquired synchronously in the year 2015 across the Yap subduction zone. Multichannel seismic and multi-beam data are mainly applied to investigate the topography of major tectonic units and stratigraphic structure in the Yap subduction zone and discuss the tectonic characteristics controlled by ridge subduction. It suggests that, Parece Vela Basin, as the regional sedimentary center, developed sedimentary layers nearly 800 meters thick. On the contrast, the horizontal sedimentary layers were not obviously identified in the Yap trench, where subduction erosion occurred. Caroline ridge changed the tectonic characteristics of subduction zone, and influenced magmatism of the Yap arc because of the special topography. The seismic profile clearly reveals landslide deposits at the upper slope break of the forearc, north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. Detailed topography and geological structure of horst and graben in the north of Yap are depicted, and topographic high of Caroline ridge is supposed to bring greater bending and tension and the subsequent horst and graben belt. Multichannel seismic evidence has been provided for interpreting the expansion of Sorol Trough and its inferred age. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: proto-Yap Arc rupture in the Oligocene, collision of the Caroline Ridge and the Yap Trench in the Late Oligocene or Middle Miocene, and onset of the Sorol Trough rifting in the Late Miocene. Acknowledge: This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030102), the National Natural Science Foundation of China (No. 41476042, 41506055 )

  1. A detailed map of the 660-kilometer discontinuity beneath the izu-bonin subduction zone.

    PubMed

    Wicks, C W; Richards, M A

    1993-09-10

    Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.

  2. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction

    NASA Astrophysics Data System (ADS)

    Dong, Dongdong; Zhang, Zhengyi; Bai, Yongliang; Fan, Jianke; Zhang, Guangxu

    2018-01-01

    The Yap subduction zone in the western Pacific presents some unique features compared to normal intra-oceanic subduction zones such as the subduction of an oceanic plateau. However, due to the relative paucity of geophysical data, the detailed structure remains unknown in this area. In this study, we present the latest high-quality swath bathymetry and multi-channel seismic data acquired synchronously in 2015 across the Yap subduction zone. The topographic and sedimentary features are intensively investigated and a modified evolutionary model of the Yap subduction zone is proposed. The two-stage evolution of the Parece Vela Basin (PVB) produced fabrics that are N-S trending and NW-SE trending. Our seismic data clearly reveal landslide deposits at the upper slope break of the forearc, to the north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. The swath bathymetry and seismic profile reveal detailed horst and graben structures, including a crescent-shaped fault zone near the contact between the Yap Trench and the Caroline Ridge. A simple geometric model is proposed to explain the structure formation, indicating that the higher topography of the Caroline Ridge resulted in enhanced bending-related extension. A seismic angular unconformity (named R1) is identified in the Sorol Trough, marking the onset of rifting in the trough. Based on the sequence thickness and deposition rate by Deep Sea Drilling Project (DSDP), it is deduced that the Sorol Trough formed at 10 Ma or even earlier. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: the proto-Yap Arc rupture in the Oligocene, the collision of the Caroline Ridge and the Yap Trench in the late Oligocene or middle Miocene, and the onset of the Sorol Trough rifting in the late Miocene.

  3. Subduction, Extension, and a Mantle Plume in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Hawley, W. B.; Allen, R. M.; Richards, M. A.

    2016-12-01

    Subduction zones are some of the most important systems that control the dynamics and evolution of the earth. The Cascadia Subduction Zone offers a unique natural laboratory for understanding the subduction process, and how subduction interacts with other large-scale geodynamical phenomena. The small size of the Juan de Fuca (JdF) plate and the proximity of the system to the Yellowstone Hotspot and the extensional Basin and Range province allow for detailed study of the effects these important systems have on each other. We present both a P-wave and an S-wave tomographic model of the Pacific Northwestern United States using regional seismic arrays, including the amphibious Cascadia Initiative. These models share important features, such as the Yellowstone plume, the subducting JdF slab, a gap in the subducting slab, and a low-velocity feature beneath the shallowest portions of the slab. But subtle differences in these features between the models—the size of the gap in the subducting JdF slab and the shape of the Yellowstone plume shaft above the transition zone, for example—provide physical insight into the interpretation of these models. The physics that we infer from our seismic tomography and other studies of the region will refine our understanding of subduction zones worldwide, and will help to identify targets for future amphibious seismic array studies. The discovery of a pronounced low-velocity feature beneath the JdF slab as it subducts beneath the coastal Pacific Northwest is, thus far, the most surprising result from our imaging work, and implies a heretofore unanticipated regime of dynamical interaction between the sublithospheric oceanic asthenosphere and the subduction process. Such discoveries are made possible, and rendered interpretable, by ever-increasing resolution that the Cascadia Initiative affords seismic tomography models.

  4. Tectonic Evolution of the Careón Ophiolite (Northwest Spain): A Remnant of Oceanic Lithosphere in the Variscan Belt.

    PubMed

    Díaz García F; Arenas; Martínez Catalán JR; González del Tánago J; Dunning

    1999-09-01

    Analysis of the Careón Unit in the Ordenes Complex (northwest Iberian Massif) has supplied relevant data concerning the existence of a Paleozoic oceanic lithosphere, probably related to the Rheic realm, and the early subduction-related events that were obscured along much of the Variscan belt by subsequent collision tectonics. The ophiolite consists of serpentinized harzburgite and dunite in the lower section and a crustal section made up of coarse-grained and pegmatitic gabbros. An Early Devonian zircon age (395+/-2 Ma, U-Pb) was obtained in a leucocratic gabbro. The whole section was intruded by numerous diabasic gabbro dikes. Convergence processes took place shortly afterward, giving rise to a mantle-rooted synthetic thrust system, with some coeval igneous activity. Garnet amphibolite, developed in metamorphic soles, was found discontinuously attached to the thrust fault. The soles graded downward to epidote-amphibolite facies metabasite and were partially retrogressed to greenschist facies conditions. Thermobarometric estimations carried out at a metamorphic sole (T approximately 650 degrees C; P approximately 11.5 kbar) suggested that imbrications developed in a subduction setting, and regional geology places this subduction in the context of an early Variscan accretionary wedge. Subduction and imbrication of oceanic lithosphere was followed by underthrusting of the Gondwana continental margin.

  5. Structure of the Cascadia Subduction Zone Imaged Using Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Schaeffer, A. J.; Audet, P.

    2017-12-01

    Studies of the complete structure of the Cascadia subduction zone from the ridge to the arc have historically been limited by the lack of offshore ocean bottom seismograph (OBS) infrastructure. On land, numerous dense seismic deployments have illuminated detailed structures and dynamics associated with the interaction between the subducting oceanic plate and the overriding continental plate, including cycling of fluids, serpentinization of the overlying forearc mantle wedge, and the location of the upper surface of the Juan de Fuca plate as it subducts beneath the Pacific Northwest. In the last half-decade, the Cascadia Initiative (CI), along with Neptune (ONC) and several other OBS initiatives, have instrumented both the continental shelf and abyssal plains off shore of the Cascadia subduction zone, facilitating the construction of a complete picture of the subduction zone from ridge to trench and volcanic arc. In this study, we present a preliminary azimuthally anisotropic surface-wave phase-velocity based model of the complete system, capturing both the young, unaltered Juan de Fuca plate from the ridge, to its alteration as it enters the subduction zone, in addition to the overlying continent. This model is constructed from a combination of ambient noise cross-correlations and teleseismic two station interferometry, and combines together concurrently running offshore OBS and onshore stations. We furthermore perform a number of representative 1D depth inversions for shear velocity to categorize the pristine oceanic, subducted oceanic, and continental crust and lithospheric structure. In the future the dispersion dataset will be jointly inverted with receiver functions to constrain a 3D shear-velocity model of the complete region.

  6. Defining Incipient Subduction by Detecting Serpentenised Mantle in the Regional Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pires, Rui; Clark, Stuart; Reis, Rui

    2017-04-01

    Keywords: Subduction initiation, Incipient Subduction, Active Margins, Southeast Asia, Mantle wedge The mechanisms of subduction initiation are poorly understood. One idea is to look for incipient subduction zones in the present day and see what features are common in these zones. However, incipient subduction zones are very difficult to detect and debate surrounds particular cases as to whether they qualify as incipient or not. In the analysis conducted in this work, we use the signal of the presence of a mantle wedge in the magnetic anomaly field as an indicator of incipient subduction. Each subduction zone exhibits variations in the particular responses of the system, such as slab-dip angle, maximum earthquake depths and volcanism to various parameters. So far, attempts to reduce the system to a dominate controlling parameter have failed, probably as a result of the limited number of cases and the large variety of controlling parameters. Parameters such as down-going and overriding plate morphology and velocity, mantle flow, the presence of plumes or not, sediment transport into the trench are a few of the parameters that have been studied in the literature. However, one of the characteristics associated with a subduction zones is the presence of a mantelic wedge as a result of the partial melt of the subducting plate and the development of a mantle wedge between the subducting plate and the overriding plate. The wedge is characterised by the presence of water (coming from sediments in the down-going plate) as well as lower temperatures (because the wedge is between two relatively cold lithospheres). As a results a serpentinized mantle wedge is formed that contains hydrous minerals, of which magnetite is an example, that alter the composition and properties of this region. According to Blakely et.al. (2005), this region exhibits both higher magnetic susceptibility and lower densities than the surrounding medium. We analysed five active margin boundaries located worldwide to investigate the link between magnetic and gravity anomalies and seismic activity and slab structure. In the Southeast Asia region, transects were taken in the Andaman, Sumatra, Marianas and Philippines, while the Central American region is represented by the Ecuadorian subduction zone. The Magnetic data was obtained from the World Digital Magnetic Anomaly Map (WDMAM), the gravimetric data from the International Gravimetric Bureau while data on seismic activity and slab structure was obtained from the USGS earthquake hazards program. We present an initial investigation on the correlation of magnetic and gravimetric anomalies on the one-hand and seismic activity and slab structure on the other to search for patterns that can help detect mantelic wedges and incipient subduction and further our understanding of subduction initiation processes. References Blakely, R.J., Brocher, T.M., Wells, R.E., 2005. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology 33, 445-448.

  7. Teleseismic P and S wave attenuation constraints on temperature and melt of the upper mantle in the Alaska Subduction Zone.

    NASA Astrophysics Data System (ADS)

    Soto Castaneda, R. A.; Abers, G. A.; Eilon, Z.; Christensen, D. H.

    2017-12-01

    Recent broadband deployments in Alaska provide an excellent opportunity to advance our understanding of the Alaska-Aleutians subduction system, with implications for subduction processes worldwide. Seismic attenuation, measured from teleseismic body waves, provides a strong constraint on thermal structure as well as an indirect indication of ground shaking expected from large intermediate-depth earthquakes. We measure P and S wave attenuation from pairwise amplitude and phase spectral ratios for teleseisms recorded at 204 Transportable Array, Alaska Regional, and Alaska Volcano Observatory, SALMON (Southern Alaska Lithosphere & Mantle Observation Network) and WVLF (Wrangell Volcanics & subducting Lithosphere Fate) stations in central Alaska. The spectral ratios are inverted in a least squares sense for differential t* (path-averaged attenuation operator) and travel time anomalies at every station. Our preliminary results indicate a zone of low attenuation across the forearc and strong attenuation beneath arc and backarc in the Cook Inlet-Kenai region where the Aleutian-Yakutat slab subducts, similar to other subduction zones. This attenuation differential is observed in both the volcanic Cook Inlet segment and amagmatic Denali segments of the Aleutian subduction zone. By comparison, preliminary results for the Wrangell-St. Elias region past the eastern edge of the Aleutian slab show strong attenuation beneath the Wrangell Volcanic Field, as well as much further south than in the Cook Inlet-Kenai region. This pattern of attenuation seems to indicate a short slab fragment in the east of the subduction zone, though the picture is complex. Results also suggest the slab may focus or transmit energy with minimal attenuation, adding to the complexity. To image the critical transition between the Alaska-Aleutian slab and the region to its east, we plan to incorporate new broadband data from the WVLF array, an ongoing deployment of 37 PASSCAL instruments installed in 2016. These stations have 10-20 km spacing, spanning the edge of the subducting slab, and so will provide a zone of increased resolution in the region where slab behavior is poorly understood. We will discuss these data in the context of enigmatic Wrangell volcanism and its relationship to the eastern end of the Alaska-Aleutian Wadati-Benioff zone.

  8. Shear heating and metamorphism in subduction zones, 1. Thermal models

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Castro, A. E.; Spear, F. S.

    2017-12-01

    Popular thermal-mechanical models of modern subduction systems are 100-500 °C colder at c. 50 km depth than pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks. This discrepancy has been ascribed by some to profound bias in the rock record, i.e. metamorphic rocks reflect only anomalously warm subduction, not normal subduction. Accurately inferring subduction zone thermal structure, whether from models or rocks, is crucial for predicting depths of seismicity, fluid release, and sub-arc melting conditions. Here, we show that adding realistic shear stresses to thermal models implies P-T conditions quantitatively consistent with those recorded by exhumed metamorphic rocks, suggesting that metamorphic rock P-T conditions are not anomalously warm. Heat flow measurements from subduction zone fore-arcs typically indicate effective coefficients of friction (µ) ranging from 0.025 to 0.1. We included these coefficients of friction in analytical models of subduction zone interface temperatures. Using global averages of subducting plate age (50 Ma), subduction velocity (6 cm/yr), and subducting plate geometry (central Chile), temperatures at 50 km depth (1.5 GPa) increase by c. 200 °C for µ=0.025 to 700 °C for µ=0.1. However, at high temperatures, thermal softening will reduce frictional heating, and temperatures will not increase as much with depth. Including initial weakening of materials ranging from wet quartz (c. 300 °C) to diabase (c. 600 °C) in the analytical models produces concave-upward P-T distributions on P-T diagrams, with temperatures c. 100 to 500 °C higher than models with no shear heating. The absolute P-T conditions and concave-upward shape of the shear-heating + thermal softening models almost perfectly matches the distribution of P-T conditions derived from a compilation of exhumed metamorphic rocks. Numerical models of modern subduction zones that include shear heating also overlap metamorphic data. Thus, excepting the very hottest examples, exhumed metamorphic rocks represent the products of normal, not anomalous, subduction. Consequently numerous geochemical, petrologic, and geophysical interpretations that have been founded on models that lack shear heating must be re-evaluated.

  9. An inverted continental Moho and serpentinization of the forearc mantle.

    PubMed

    Bostock, M G; Hyndman, R D; Rondenay, S; Peacock, S M

    2002-05-30

    Volatiles that are transported by subducting lithospheric plates to depths greater than 100 km are thought to induce partial melting in the overlying mantle wedge, resulting in arc magmatism and the addition of significant quantities of material to the overlying lithosphere. Asthenospheric flow and upwelling within the wedge produce increased lithospheric temperatures in this back-arc region, but the forearc mantle (in the corner of the wedge) is thought to be significantly cooler. Here we explore the structure of the mantle wedge in the southern Cascadia subduction zone using scattered teleseismic waves recorded on a dense portable array of broadband seismometers. We find very low shear-wave velocities in the cold forearc mantle indicated by the exceptional occurrence of an 'inverted' continental Moho, which reverts to normal polarity seaward of the Cascade arc. This observation provides compelling evidence for a highly hydrated and serpentinized forearc region, consistent with thermal and petrological models of the forearc mantle wedge. This serpentinized material is thought to have low strength and may therefore control the down-dip rupture limit of great thrust earthquakes, as well as the nature of large-scale flow in the mantle wedge.

  10. A reevaluation of the age of the Vincent-Chocolate Mountains thrust system, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, C.E.; Barth, A.P.

    1993-04-01

    The Vincent-Chocolate Mountains (VCM) thrust superposes Mesozoic arc plutons and associated Precambrian country rock above subduction-related Pelona-Orocopia schist. The thrust is disrupted in many areas by postmetamorphic deformation, but appears to be intact in the San Gabriel Mountains. Two Rb-Sr mineral-isochron ages from Pelona Schist and mylonite in the San Gabriel Mountains led Ehlig (1981) to conclude that the original thrusting event occurred at c. 60 Ma. However, biotite K-Ar ages determined by Miller and Morton (1980) for upper plate in the same area caused Dillon (1986) to reach a different conclusion. The biotite ages range mainly from 74--60 Mamore » and increase structurally upward from the VCM thrust. Dillon (1986) inferred that the age gradient was due to uplift and cooling of the upper plate during underthrusting of Pelona Schist. This would indicate that the VCM thrust was at least 74 Ma in age. An alternative to the interpretation of Dillon (1986) is that the biotite age gradient largely predates the VCM thrust. Upward heat flow, leading to older ages at higher structural levels, could have resulted from either static cooling of Cretaceous plutons or uplift and erosion induced by crustal thickening during possible west-directed intra-arc thrusting at c. 88--78 Ma (May and Walker, 1989). Subsequent underthrusting of Pelona Schist would establish a cold lower boundary to the crust and cause the closure of isotopic systems in the base of the upper plate. A 60 Ma time of thrusting is also suggested by two amphibole [sup 40]Ar/[sup 39]Ar ages from the Pelona Schist of the San Gabriel Mountains. Peak metamorphic temperature in this area was below 480 C and amphibole ages should thus indicate time of crystallization rather than subsequent cooling. Four phengite [sup 40]Ar/[sup 39]Ar ages of 55--61 Ma from Pelona Schist and mylonite indicate rapid cooling from peak metamorphic temperatures, consistent with subduction refrigeration.« less

  11. Seismic Wave Velocity in the Subducted Oceanic Crust from Autocorrelation of Tectonic Tremor Signals

    NASA Astrophysics Data System (ADS)

    Ducellier, A.; Creager, K.

    2017-12-01

    Hydration and dehydration of minerals in subduction zones play a key role in the geodynamic processes that generate seismicity and that allow tectonic plates to subduct. Detecting the presence of water in the subducted plate is thus crucial to better understand the seismogenesis and the consequent seismic hazard. A landward dipping, low velocity layer has been detected in most subduction zones. In Cascadia, this low velocity zone is characterized by a low S-wave velocity and a very high Poisson's ratio, which has been interpreted as high pore-fluid pressure in the upper half part of the subducted oceanic crust. Most previous studies were based on seismic reflection imaging, receiver function analysis, or body wave tomography, with seismic sources located far from the low velocity zone. In contrast, the sources of the tectonic tremors generated during Episodic Tremor and Slip (ETS) events are located on the plate boundary. As the sources of the tremors are much closer to the low velocity zone, seismic waves recorded during ETS events should illuminate the area with greater precision. Most methods to detect and locate tectonic tremors and low-frequency earthquakes are based on the cross correlation of seismic signals; either signals at the same station for different events, or the same event at different stations. We use the autocorrelation of the seismic signal recorded by eight arrays of stations, located in the Olympic Peninsula, Washington. Each tremor, assumed to be on the plate boundary, generates a direct wave and reflected and converted waves from both the strong shear-wave velocity contrast in the mid-oceanic crust, and from the Moho of the subducted oceanic crust. The time lag between the arrivals of these different waves at a seismic station corresponds to a peak of amplitude on the autocorrelation signals. Using the time lags observed for different locations of the tremor source, we intend to invert for the seismic wave velocity of the subducted oceanic crust under the arrays. Identifying zones with lower S-wave velocity and a high Poisson's ratio will then help detecting the presence of water in the subducted oceanic crust. Our ultimate goal is contributing to a better understanding of the mechanism of ETS and subduction zone processes.

  12. An Offshore Geophysical Network in the Pacific Northwest for Earthquake and Tsunami Early Warning and Hazard Research

    NASA Astrophysics Data System (ADS)

    Wilcock, W. S. D.; Schmidt, D. A.; Vidale, J. E.; Harrington, M.; Bodin, P.; Cram, G.; Delaney, J. R.; Gonzalez, F. I.; Kelley, D. S.; LeVeque, R. J.; Manalang, D.; McGuire, C.; Roland, E. C.; Tilley, J.; Vogl, C. J.; Stoermer, M.

    2016-12-01

    The Cascadia subduction zone hosts catastrophic earthquakes every few hundred years. On land, there are extensive geophysical networks available to monitor the subduction zone, but since the locked portion of the plate boundary lies mostly offshore, these networks are ideally complemented by seafloor observations. Such considerations helped motivate the development of scientific cabled observatories that cross the subduction zone at two sites off Vancouver Island and one off central Oregon, but these have a limited spatial footprint along the strike of the subduction zone. The Pacific Northwest Seismic Network is leading a collaborative effort to implement an earthquake early warning system in the Washington and Oregon using data streams from land networks as well as the few existing offshore instruments. For subduction zone earthquakes that initiate offshore, this system will provide a warning. However, the availability of real time offshore instrumentation along the entire subduction zone would improve its reliability and accuracy, add up to 15 s to the warning time, and ensure an early warning for coastal communities near the epicenter. Furthermore, real-time networks of seafloor pressure sensors above the subduction zone would enable monitoring and contribute to accurate predictions of the incoming tsunami. There is also strong scientific motivation for offshore monitoring. We lack a complete knowledge of the plate convergence rate and direction. Measurements of steady deformation and observations of transient processes such as fluid pulsing, microseismic cycles, tremor and slow-slip are necessary for assessing the dimensions of the locked zone and its along-strike segmentation. Long-term monitoring will also provide baseline observations that can be used to detect and evaluate changes in the subduction environment. There are significant engineering challenges to be solved to ensure the system is sufficiently reliable and maintainable. It must provide continuous monitoring over its operational life in the harsh ocean environment and at least parts of the system must continue to operate following a megathrust event. These requirements for robustness must be balanced with the desire for a flexible design that can accommodate new scientific instrumentation over the life of the project.

  13. The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models

    NASA Astrophysics Data System (ADS)

    Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.

    2017-12-01

    Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W., Katz, R. F., Tian, M and Rudge, J. F. (2017). Thermal impact of magmatism in subduction zones. arxiv.org/abs/1701.02550 [2] Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). EPSL, doi:10.1016/j.epsl.2014.05.052 [3] England, P. C., Katz, Richard F. (2010). Nature, doi:10.1038/nature09417

  14. A Seafloor Benchmark for 3-dimensional Geodesy

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone. Using a ROV to place and remove sensors on the benchmarks will significantly reduce the number of sensors required by the community to monitor offshore strain in subduction zones.

  15. Active Tectonics of the Far North Pacific Observed with GPS

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Freymueller, J. T.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Mazzotti, S.

    2017-12-01

    The idea that the tectonics of the northeastern Pacific is defined by relatively discrete deformation along the boundary between the Pacific and North American plates has given way to a more complex picture of broad plate boundary zones and distributed deformation. This is due in large part to the Plate Boundary Observatory and several focused GPS studies, which have greatly increased the density of high-quality GPS data throughout the region. We will present an updated GPS velocity field in a consistent reference frame as well as a new, integrated block model that sheds light on regional tectonics and provides improved estimates of motion along faults and their potential seismic hazard. Crustal motions in southern Alaska are strongly influenced by the collision and flat-slab subduction of the Yakutat block along the central Gulf of Alaska margin. In the area nearest to the collisional front, small blocks showing evidence of internal deformation are required. East of the front, block motions show clockwise rotation into the Canadian Cordillera while west of the front there are counterclockwise rotations that extend along the Alaska forearc, suggesting crustal extrusion. Farther from the convergent margin, the crust appears to move as rigid blocks, with uniform motion over large areas. In western Alaska, block motions show a southwesterly rotation into the Bering Sea. Arctic Alaska displays southeasterly motions that gradually transition into easterly motion in Canada. Much of the southeastern Alaska panhandle and coastal British Columbia exhibit northwesterly motions. Although the relative plate motions are mainly accommodated along major faults systems, including the Fairweather-Queen Charlotte transform system, the St. Elias fold-and-thrust belt, the Denali-Totschunda system, and the Alaska-Aleutian subduction zone, a number of other faults accommodate lesser but still significant amounts of motion in the model. These faults include the eastern Denali/Duke River system, the Castle Mountain fault, the western Denali fault, the Kaltag fault, and the Kobuk fault. Based on the expanded GPS data set, locked or partially locked sections of the Alaska subduction zone may extend as far north and east as the eastern Alaska Range.

  16. Activity of Small Repeating Earthquakes along Izu-Bonin and Ryukyu Trenches

    NASA Astrophysics Data System (ADS)

    Hibino, K.; Matsuzawa, T.; Uchida, N.; Nakamura, W.; Matsushima, T.

    2014-12-01

    There are several subduction systems near the Japanese islands. The 2011 Mw9.0 Tohoku-oki megathrust earthquake occurred at the NE Japan (Tohoku) subduction zone. We have revealed a complementary relation between the slip areas for huge earthquakes and small repeating earthquakes (REs) in Tohoku. Investigations of REs in these subduction zones and the comparison with Tohoku area are important for revealing generation mechanism of megathrust earthquakes. Our target areas are Izu-Bonin and Ryukyu subduction zones, which appear to generate no large interplate earthquake. To investigate coupling of plate boundary in these regions, we estimated spatial distribution of slip rate by using REs. We use seismograms from the High Sensitivity Seismograph Network (Hi-net), Full Range Seismograph Network of Japan (F-net), and permanent seismic stations of Japan Meteorological Agency (JMA), Tohoku University, University of Tokyo, and Kagoshima University from 8 May 2003 (Izu-Bonin) and 14 July 2005 (Ryukyu) to 31 December 2012 to detect REs along the two trenches, by using similarity of seismograms. We mainly follow the procedure adopted in Uchida and Matsuzawa (2013) that studied REs in Tohoku area to compare our results with the REs in Tohoku. We find that the RE distribution along the Ryukyu trench shows two bands parallel to the trench axis. This feature is similar to the pattern in Tohoku where relatively large earthquakes occur between the bands. Along the Izu-Bonin trench, on the other hand, we find much fewer REs than in Tohoku or Ryukyu subduction zones and only one along-trench RE band, which corresponds to the area where the subducting Pacific plate contacts with the crust of the Philippine Sea plate. We also estimate average slip rate and coupling coefficient by using an empirical relationship between seismic moment and slip for REs (Nadeau and Johnson, 1998) and relative plate motion model. As a result, we find interplate slip rate in the deeper band is higher than shallower one along the Ryukyu trench suggesting larger locking along the shallower band. This feature is also similar to the pattern in the NE Japan. Our results indicate that the Ryukyu subduction zone is very similar to the NE Japan subduction zone, while the Izu-Bonin subduction zone appears to be different from the other two zones according to the RE analyses.

  17. Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling

    NASA Astrophysics Data System (ADS)

    Métois, Marianne; Socquet, Anne; Vigny, Christophe; Carrizo, Daniel; Sophie, Peyrat

    2013-04-01

    The North Chile area did not rupture since the 1877 Mw 8.6 earthquake that produced a huge tsunami. Considering that upper plate deformation measured there by modern geodetic tools is due to some degree of locking on the subduction interface and the long elapsed time since 1877, many consider this area is a mature seismic gap where seismic hazard is high. We present a new GPS velocity field that describes in some detail the interseismic deformation between 18°S and 24°S. We invert for coupling distribution on the subduction interface using elastic modeling. Our measurements require that, at these latitudes, 10 to 12 mm/yr (i.e ~15% of the whole convergence rate) are taken up by the clockwise rigid rotation of an Andean block bounded to the East by the subandean fold-and-thrust belt. This reduces the accumulation rate on the subduction interface to ~56 mm/yr in this area. We describe coupling variations on the subduction interface both along-strike and along-dip. We find that this gap is segmented in at least two highly locked segments and two narrow low coupled intersegment zones (Iquique and Mejillones areas). This coupling segmentation is consistent with our knowledge of the historical ruptures and of the instrumental seismicity of the region. Intersegments correlate with high background seismic rate and local tectonic complexities on the upper or downgoing plates. The rupture of either the Paranal or the Loa segment alone could easily produce a Mw 8.0-8.3 rupture, and we propose that the Loa segment (from 22.5°S to 20.8°S) may be the one that ruptured in 1877.

  18. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    NASA Astrophysics Data System (ADS)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    The Trinidad dome, Escambray complex, Cuba, forms part of an accretionary wedge built during intra-oceanic subduction in the Caribbean from the Late Cretaceous to Cenozoic. The structure reflects syn-subduction exhumation during thickening of the wedge, followed by extension. Field mapping, metamorphic and structural analysis constrain the tectonic evolution into five stages. Three ductile deformation events (D1, D2 and D3) are related to metamorphism in a compressional setting and formation of several nappes. D1 subduction fabrics are only preserved as relict S1 foliation and rootless isoclinal folds strongly overprinted by the main S2 foliation. The S2 foliation is parallel to sheared serpentinised lenses that define tectonic contacts, suggesting thrust stacks and underthrusting at mantle depths. Thrusting caused an inverted metamorphic structure with higher-grade on top of lower-grade nappes. Exhumation started during D2 when the units were incorporated into the growing accretionary wedge along NNE-directed thrust faults and was accompanied by substantial decompression and cooling. Folding and thrusting continued during D3 and marks the transition from ductile to brittle-ductile conditions at shallower crustal levels. The D4-5 events are related to extension and contributed to the final exhumation (likely as a core complex). D4 is associated with a regional spaced S4 cleavage, late open folds, and numerous extension veins, whereas D5 is recorded by normal and strike-slip faults affecting all nappes. The P-t path shows rapid exhumation during D2 and slower rates during D3 when the units were progressively incorporated into the accretionary prism. The domal shape formed in response to tectonic denudation assisted by normal faulting and erosion at the surface during the final stages of structural development. These results support tectonic models of SW subduction of the Proto-Caribbean crust under the Caribbean plate during the latest Cretaceous and provide insights into the tectonic evolution of accretionary wedges in an intra-arc setting.

  19. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    NASA Astrophysics Data System (ADS)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF volatiles, mantle-derived magmas at continental subduction zone can act as important triggers for liberation of carbon stored in crustal carbonate rocks, which has the potential to be a complement to volatile recycling mechanism at subduction zones. Variations in He-Nd-Sr isotopes of magmas and volatiles from different types of plate boundaries suggest higher amounts of recycled materials for mantle wedge enrichment of continental subduction zone relative to that of oceanic subduction zone.

  20. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    NASA Astrophysics Data System (ADS)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  1. Recent Intermediate Depth Earthquakes in El Salvador, Central Mexico, Cascadia and South-West Japan

    NASA Astrophysics Data System (ADS)

    Lemoine, A.; Gardi, A.; Gutscher, M.; Madariaga, R.

    2001-12-01

    We studied occurence and source parameters of several recent intermediate depth earthquakes. We concentrated on the Mw=7.7 salvadorian earthquake which took place on January 13, 2001. It was a good example of the high seismic risk associated to such kind of events which occur closer to the coast than the interplate thrust events. The Salvadorian earthquake was an intermediate depth downdip extensional event which occured inside the downgoing Cocos plate, next to the downdip flexure where the dip increases sharply before the slab sinks more steeply. This location corresponds closely to the position of the Mw=5.7 1996 and Mw=7.3 1982 downdip extensional events. Several recent intermediate depth earthquakes occured in subduction zones exhibiting a ``flat slab'' geometry with three distinct flexural bends where flexural stress may be enhanced. The Mw=6.7 Geiyo event showed a downdip extensional mechanism with N-S striking nodal planes. This trend was highly oblique to the trench (Nankai Trough), yet consistent with westward steepening at the SW lateral termination of the SW Japan flat slab. The Mw=6.8 Olympia earthquake in the Cascadia subduction zone occured at the downdip termination of the Juan de Fuca slab, where plate dip increases from about 5o to over 30o. The N-S orientation of the focal planes, parallel to the trench indicated downdip extension. The location at the downdip flexure corresponds closely to the estimated positions of the 1949 M7.1 Olympia and 1965 M6.5 Seattle-Tacoma events. Between 1994 and 1999, in Central Mexico, an unusually high intermediate depth seismicity occured where several authors proposed a flat geometry for the Cocos plate. Seven events of magnitude between Mw=5.9 and Mw=7.1 occured. Three of them were downdip compressional and four where down-dip extensional. We can explain these earthquakes by flexural stresses at down-dip and lateral terminations of the supposed flat segment. Even if intermediate depth earthquakes occurence could be favored by stress transfer between intermediate depth and interplate zone during the earthquake cycle, flexural stresses associated with bendings which are not only present at ``flat slab'' geometry but also at ``normal'' dipping subduction zone, seem to govern the location of intermediate depth seismicity and to explain their focal mechanisms in El Salvador, SW Japon, Cascadia and Central Mexico.

  2. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S-P times in a manner similar to double-difference tomography. Obtaining a reliable Vp/Vs model of the subduction zone is more helpful for understanding its mechanical and petrologic properties. Our applications of the original version of double-difference tomography to several subduction zones beneath northern Honshu, Japan, the Wellington region, New Zealand, and Alaska, United States, have shown evident velocity variations within and around the subducting slab, which likely is evidence of dehydration reactions of various hydrous minerals that are hypothesized to be responsible for intermediate depth earthquakes. We will show the new velocity models for these subduction zones by applying our advanced tomographic methods.

  3. Why did Arabia separate from Africa? Insights from 3-D laboratory experiments

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Faccenna, C.; Funiciello, F.; Daniel, J. M.; Jolivet, L.

    2003-11-01

    We have performed 3-D scaled lithospheric experiments to investigate the role of the gravitational force exerted by a subducting slab on the deformation of the subducting plate itself. Experiments have been constructed using a dense silicone putty plate, to simulate a thin viscous lithosphere, floating in the middle of a large box filled with glucose syrup, simulating the upper mantle. We examine three different plate configurations: (i) subduction of a uniform oceanic plate, (ii) subduction of an oceanic-continental plate system and, (iii) subduction of a more complex oceanic-continental system simulating the asymmetric Africa-Eurasia system. Each model has been performed with and without the presence of a circular weak zone inside the subducting plate to test the near-surface weakening effect of a plume activity. Our results show that a subducting plate can deform in its interior only if the force distribution varies laterally along the subduction zone, i.e. by the asymmetrical entrance of continental material along the trench. In particular, extensional deformation of the plate occurs when a portion of the subduction zone is locked by the collisional process. The results of this study can be used to analyze the formation of the Arabian plate. We found that intraplate stresses, similar to those that generated the Africa-Arabia break-up, can be related to the Neogene evolution of the northern convergent margin of the African plate, where a lateral change from collision (Mediterranean and Bitlis) to active subduction (Makran) has been described. Second, intraplate stress and strain localization are favored by the presence of a weakness zone, such as the one generated by the Afar plume, producing a pattern of extensional deformation belts resembling the Red Sea-Gulf of Aden rift system.

  4. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block

    PubMed Central

    Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab. PMID:28182640

  5. GPS Monitoring of Subduction Zone Deformation in Costa Rica

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The subduction of the Cocos plate beneath Costa Rica is among the highest convergence rates in the world. The high subduction rate and nearness of the Nicoya Peninsula, Costa Rica to the Middle America Trench (MAT) provide a unique opportunity to map variations in interseismic strain of the crust above the seismogenic zone in response to variations in seismic coupling.

  6. Pore Pressure Evolution in Shallow Subduction Earthquake Sequences and Effects on Aseismic Slip Transients -- Numerical Modeling With Rate and State Friction

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rice, J. R.

    2005-12-01

    In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re-equilibrate with that of its surroundings). This is consistent with our previous simulations, which show that the aseismic transients migrate along the strike at a higher speed under a lower, constant in time, effective normal stress. As a combination of the two factors, we show the pore pressure evolution with drops (due to dilatancy during slip) and then rises (due to shear heating) on the fault over multiple time scales. We next plan to formulate, and merge with the slip-rupture analysis, fuller fluid release models based on phase equilibria and models of transport in which the average fault-parallel permeability is a decreasing function of the effective normal stress. The thrust fault zone, at seismogenic depths and slightly downdip, is represented in a conceptually similar manner to the well-studied major continental faults, assuming the fault core materials have a lower permeability than the neighboring damaged zone. Heat diffusion in the fault core and damaged zone will also be considered in the modeling. The simulation results may help to improve our understanding of the processes of the aseismic transients observed within a transform plate boundary along the SAF near Cholame, California [Nadeau and Dolenc, 2005].

  7. Molybdenum isotope systematics in subduction zones

    NASA Astrophysics Data System (ADS)

    König, Stephan; Wille, Martin; Voegelin, Andrea; Schoenberg, Ronny

    2016-08-01

    This study presents Mo isotope data for arc lavas from different subduction zones that range between δ 98 / 95 Mo = - 0.72 and + 0.07 ‰. Heaviest isotope values are observed for the most slab fluid dominated samples. Isotopically lighter signatures are related to increasing relevance of terrigenous sediment subduction and sediment melt components. Our observation complements previous conclusions that an isotopically heavy Mo fluid flux likely mirrors selective incorporation of isotopically light Mo in secondary minerals within the subducting slab. Analogue to this interpretation, low δ 98 / 95 Mo flux that coincides with terrigenous sediment subduction and sediment melting cannot be simply related to a recycled input signature. Instead, breakdown of the controlling secondary minerals during sediment melting may release the light component and lead to decreasing δ 98 / 95 Mo influx into subarc mantle sources. The natural range between slab dehydration and hydrous sediment melting may thus cause a large spread of δ 98 / 95 Mo in global subduction zone magmas.

  8. Seismic velocity structure of the sediment seaward of Cascadia Subduction Zone deformation front

    NASA Astrophysics Data System (ADS)

    Han, S.; Gibson, J. C.; Carbotte, S. M.; Canales, J. P.; Nedimovic, M. R.; Carton, H. D.

    2015-12-01

    We present seismic velocity structure of the sediment section seaward of the Cascadia Subduction Zone deformation front (DF), derived from multichannel seismic data acquired during the 2012 Juan de Fuca Ridge to Trench experiment. Detailed velocity analyses are conducted on every 100th prestack-time-migrated common reflection point gather (625 m spacing) within 45 km seaward of the DF along two ridge-to-trench transects offshore Oregon at 44.6˚N and Washington at 47.4˚N respectively, and on every 200th common mid-point gather (1250 m spacing) along a ~400 km-long trench-parallel transect ~15 km from the DF. We observe a landward increase of sediment velocity starting from ~15-20 km from the DF on both Oregon and Washington transects, which may result from increased horizontal compressive tectonic stress within the accretionary wedge and thermally induced dehydration processes in the sediment column. Although the velocity of near-basement sediments at 30 km from the DF is similar (~3.1 km/s) on both transects, the velocity increases are larger on the Washington transect, to ~4.0 km/s beneath the DF (sediment thickness ~3.2 km), than on the Oregon transect, to ~3.6 km/s beneath the DF (sediment thickness ~3.5 km). The long-wavelength sediment velocity structure on the trench-parallel transect confirms this regional difference in deep sediment velocity and also highlights variations related to a group of WNW-trending strike-slip faults along the margin. Offshore Washington, where higher sediment velocity seaward of the DF is observed, the accretionary wedge is wide with a decollement located close to the basement and landward-verging thrust faults. By contrast, offshore Oregon, the lower sediment velocity seaward of the DF is associated with a narrow accretionary wedge, a shallow decollement ~1 km above the basement, and seaward-verging thrust faults. The regional differences in deep sediment velocity may be related to the along-strike variation in sediment composition, esp. clay mineral content, which may modulate the pore fluid pressure in the sediment through dehydration reactions, and affect the mechanical properties of the accretionary wedge further landward.

  9. Coda Q and its Frequency Dependence in the Eastern Himalayan and Indo-Burman Plate Boundary Systems

    NASA Astrophysics Data System (ADS)

    Mitra, S.; Kumar, A.

    2015-12-01

    We use broadband waveform data for 305 local earthquakes from the Eastern Himalayan and Indo-Burman plate boundary systems, to model the seismic attenuation in NE India. We measure the decay in amplitude of coda waves at discreet frequencies (between 1 and 12Hz) to evaluate the quality factor (Qc) as a function of frequency. We combine these measurements to evaluate the frequency dependence of Qc of the form Qc(f)=Qof η, where Qo is the quality factor at 1Hz and η is the frequency dependence. Computed Qo values range from 80-360 and η ranges from 0.85-1.45. To study the lateral variation in Qo and η, we regionalise the Qc by combining all source-receiver measurements using a back-projection algorithm. For a single back scatter model, the coda waves sample an elliptical area with the epicenter and receiver at the two foci. We parameterize the region using square grids. The algorithm calculates the overlap in area and distributes Qc in the sampled grids using the average Qc as the boundary value. This is done in an iterative manner, by minimising the misfit between the observed and computed Qc within each grid. This process is repeated for all frequencies and η is computed for each grid by combining Qc for all frequencies. Our results reveal strong variation in Qo and η across NE India. The highest Qo are in the Bengal Basin (210-280) and the Indo-Burman subduction zone (300-360). The Shillong Plateau and Mikir Hills have intermediate Qo (~160) and the lowest Qo (~80) is observed in the Naga fold thrust belt. This variation in Qo demarcates the boundary between the continental crust beneath the Shillong Plateau and Mikir Hills and the transitional to oceanic crust beneath the Bengal Basin and Indo-Burman subduction zone. Thick pile of sedimentary strata in the Naga fold thrust belt results in the low Qo. Frequency dependence (η) of Qc across NE India is observed to be very high, with regions of high Qo being associated with relatively higher η.

  10. A new perspective on the generation of the 2016 M6.7 Kaohsiung earthquake, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Zhi

    2017-04-01

    In order to investigate the likely generation mechanism of the 2016 M6.7 Kaohsiung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and σgodels. In this way, multi-geophysical parameter imaging revealed that the 2016 Kaohsiung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-σ body that has high ɛ and somewhat high ζ anomalies above the hypocenter under the Coastal Plain represents fluids contained in the young fold-and-thrust belt associated with the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson's ratio, crack density and saturate fracturegnomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the Coastal Plain and Western Foothills as far as the southeastern lower crust under the Central Range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson's ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake. PIC

  11. A new perspective on the generation of the 2016 M6.4 Meilung earthquake, southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, Z.

    2017-12-01

    In order to investigate the likely generation mechanism of the 2016 M6.4 Meilung earthquake, a large number of high-quality travel times from P- and S-wave source-receiver pairs are used jointly in this study to invert three-dimensional (3-D) seismic velocity (Vp, Vs) and Poisson's ratio structures at high resolution. We also calculated crack density, saturate fracture, and bulk-sound velocity from our inverted Vp, Vs, and s models. In this way, multi-geophysical parameter imaging revealed that the 2016 Meilung earthquake occurred along a distinctive edge portion exhibiting high-to-low variations in these parameters in both horizontal and vertical directions across the hypocenter. We consider that a slow velocity and high-Poisson ratio body that has high-crack density and somewhat high-saturate fracture anomalies above the hypocenter under the coastal plain represents fluids contained in the young fold-and-thrust belt relative to the passive Asian continental margin in southwestern Taiwan. Intriguing, a continuous low Vp and Vs zone with high Poisson ratio, crack density and saturate fracture anomalies across the Laonung and Chishan faults is also clearly imaged in the northwestern upper crust beneath the coastal plain and western foothills as far as the southeastern lower crust under the central range. We therefore propose that this southeastern extending weakened zone was mainly the result of a fluid intrusion either from the young fold-and-thrust belt associated with the passive Asian continental margin in the shallow crust or the subducted Eurasian continental (EC) plate in the lower crust and uppermost mantle. We suggest that fluid intrusion into the upper Oligocene to Pleistocene shallow marine and clastic shelf units of the Eurasian continental crust and/or the relatively thin uppermost part of the transitional Pleistocene-Holocene foreland due to the subduction of the EC plate along the deformation front played a key role in earthquake generation in southwestern Taiwan. Such fluid penetration would reduce Vp, and Vs while increasing Poisson ratio and saturate fracture across the source area, leading to mechanical strength failure of the rock matrix in the relative weakened and brittle seismogenic layer and triggering the 2016 earthquake.

  12. How material contrast around subduction faults may control coseismic slip and rupture dynamics: tsunami applications for the case study of Tohoku

    NASA Astrophysics Data System (ADS)

    Scala, Antonio; Murphy, Shane; Romano, Fabrizio; Lorito, Stefano; Festa, Gaetano; Volpe, Manuela; Piatanesi, Alessio

    2017-04-01

    Recent megathrust tsunamigenic events, e.g. Maule 2010 (M8.8) and Tohoku 2011 (M9.0), generated huge tsunami waves as a consequence of high slip in the shallow part of the respective subduction zone. Other events, (e.g. the recent Mentawai 2010, M7.8, or the historical Meiji 1896, M8.2), referred to as tsunami earthquakes, produced unexpectedly large tsunami waves, probably due to large slip at shallow depth over longer rupture durations compared to deeper thrust events. Subduction zone earthquakes originate and propagate along bimaterial interfaces separating materials having different elastic properties, e.g. continental and oceanic crust, a stiffer deep mantle wedge, shallow compliant accretionary prism etc. Bimaterial interfaces have been showed, through observations (seismological and laboratory) and theoretical studies, to affect the rupture: introducing a preferred rupture direction as well as asymmetric rupture velocities and shear stress redistributions. Such features are predominantly due to the break of symmetry between the two sides of the interface in turn ascribable to the complex coupling between the frictional interfacial sliding and the slip-induced normal stress perturbations. In order to examine the influence of material contrast on a fault plane on the seismic source and tsunami waves, we modelled a Tohoku-like subduction zone to perform a large number of 2D along-dip rupture dynamics simulations in the framework of linear slip weakening both for homogeneous and bimaterial fault. In this latter model, the rupture acts as the interface between the subducting oceanic crust and the overriding layers (accretionary prism, continental crust and mantle wedge), varying the position of the shear stress asperity acting as nucleation patch. Initial results reveal that ruptures in homogeneous media produce earthquakes with large slip at depth compared to the case where bi-material interface is included. However the opposite occurs for events nucleating at intermediate depths: the compliant accretionary prism favours slip up to the free surface leading to larger events compared to the homogeneous case. These preliminary findings will be further investigated considering different material contrasts between the slab and the overriding accretionary prism to mimic the slowness of the sedimentary wedge. This will contribute to assess the influence of these contrasts in more realistic environment on the seismic source features and, in turn, on the conditional probability of exceedance for maximum tsunami wave height for a M9 event. Several source parameters, such as coseismic slip, rupture duration, rupture velocity and stress conditions, derived from the numerical simulations will be compared to those inferred from real events using existing finite fault catalogues (e.g. USGS, SRCMOD, etc.).

  13. A geophysical potential field study to image the Makran subduction zone in SE of Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Bahroudi, Abbas

    2016-10-01

    The Makran subduction wedge as one of the largest subduction complexes has been forming due to the Arabian oceanic lithosphere subducting beneath the Lut and the Afghan rigid block microplates. To better visualize the subducting oceanic crust in this region, a geophysical model of magnetic susceptibility from an airborne magnetic survey (line spacing about 7.5 km) over the Makran zone located at southeast of Iran is created to image various structural units in Iran plate. The constructed geophysical model from the 3D inverse modeling of the airborne magnetic data indicates a thin subducting slab to the north of the Makran structural zone. It is demonstrated that the thickness of sedimentary units varies approximately at an interval of 7.5-11 km from north to south of this zone in the Iranian plate, meanwhile the curie depth is also estimated approximately < 26 km. It is also shown the Jazmurian depression zone adjacent to the north of the Makran indicates high intensity magnetic anomalies due to being underlain by an ophiolite oceanic basement, while such intensity reduces over the Makran. The directional derivatives of the magnetic field data have subtle changes in the Makran, but strongly increase in the Jazmurian by enhancing and separating different structural boundaries in this region. In addition, the density variations of the subsurface geological layers were determined by 3D inversion of the ground-based gravity data over the whole study area, where the constructed density model was in good agreement with the magnetic one. According to the outputs of the magnetic susceptibility and the density contrast, the Arabian plate subducts to the north under the Eurasia with a very low dip angle in the Makran structural zone.

  14. Experimental study of boron geochemistry: implications for fluid processes in subduction zones

    NASA Astrophysics Data System (ADS)

    You, C. F.; Spivack, A. J.; Gieskes, J. M.; Rosenbauer, R.; Bischoff, J. L.

    1995-06-01

    A comprehensive experimental study, utilizing an autoclave hydrothermal apparatus with a 10B isotopic tracer, has been conducted to monitor the geochemical behavior of sediment B during early subduction zone processes. The partition coefficient of exchangeable B ( K D) was determined over a temperature range of 25-350°C, at 800 bars and a water/rock ratio of 3-1.5 w/w. These K D are shown to be a complex function of temperature, pH, and possibly mineralogy. At low temperatures, K D is significantly high at ˜4 in contrast to the value of essentially zero at temperatures higher than ˜100°C. A K D of zero represents no B adsorption, implying efficient mobilization of exchangeable B at shallow depths during sediment subduction. Our experimental results demonstrate high mobilization of bulk B in sediments (both exchangeable and lattice bound) at elevated temperatures (200-350°C), in good agreement with previous observations of B in metasediments indicating progressive depletion during metamorphism. In addition, this study emphasizes the importance of a possible water/rock ratio dependence of B mobilization. In other words, the degree of sedimentary B mobilization in subduction zones strongly depends on the local thermal structure and porosity distribution. In low geothermal gradient areas, large amounts of porewater are expelled before significant B mobilization has occurred, so that some sedimentary B will survive and get into the deeper parts of the subduction zone. Our results imply that efficient mobilization of B from the subducted slab must occur and that arc magmatism recycles most of the remaining subducted B back to surface reservoirs. A reconsideration of the B budget in subduction zones provides critical information with respect to B sources and sinks in the ocean.

  15. High-resolution numerical modeling of tectonic underplating in circum-Pacific subduction zones: toward a better understanding of deformation in the episodic tremor and slip region?

    NASA Astrophysics Data System (ADS)

    Menant, A.; Angiboust, S.; Gerya, T.; Lacassin, R.; Simoes, M.; Grandin, R.

    2017-12-01

    Study of now-exhumed ancient subduction systems have evidenced km-scale tectonic units of marine sediments and oceanic crust that have been tectonically underplated (i.e. basally accreted) from the downgoing plate to the overriding plate at more than 30-km depth. Such huge mass transfers must have a major impact, both in term of long-term topographic variations and seismic/aseismic deformation in subduction zones. However, the quantification of such responses to the underplating process remains poorly constrained. Using high-resolution visco-elasto-plastic thermo-mechanical models, we present with unprecedented details the dynamics of formation and destruction of underplated complexes in subductions zones. Initial conditions in our experiments are defined in order to fit different subduction systems of the circum-Pacific region where underplating process is strongly suspected (e.g. the Cascadia, SW-Japan, New Zealand, and Chilean subduction zones). It appears that whatever the subduction system considered, underplating of sediments and oceanic crust always occur episodically forming a coherent nappe stacking at depths comprised between 10 and 50 km. At higher depth, a tectonic mélange with a serpentinized mantle wedge matrix developed along the plates interface. The size of these underplated complexes changes according to the subduction system considered. For instance, a 15-km thick nappe stacking is obtained for the N-Chilean subduction zone after a series of underplating events. Such an episodic event lasts 4-5 Myrs and can be responsible of a 2-km high uplift in the forearc region. Subsequent basal erosion of these underplated complexes results in their only partial preservation at crustal and mantle depth, suggesting that, after exhumation, only a tiny section of the overall underplated material can be observed nowadays in ancient subduction systems. Finally, tectonic underplating in our numerical models is systematically associated with (1) an increasing thickness of the high-strained subduction channel and (2) an accumulation of fluid-rich materials that serve as an environment for episodic tremor and slip events assisted by tectonic shearing and fluid release and percolation.

  16. Is localised dehydration and vein generation the tremor-generating mechanism in subduction zones?

    NASA Astrophysics Data System (ADS)

    Fagereng, Ake; Meneghini, Francesca; Diener, Johann; Harris, Chris

    2017-04-01

    The phenomena of tectonic, non-volcanic, tremor was first discovered at the down-dip end of the seismogenic zone in Japan early this millennium. Now this low amplitude, low frequency, noise-like seismic signal has been observed at and/or below the deep limit of interseismic coupling along most well-instrumented subduction thrust interfaces. Data and models from these examples suggest a link between tremor and areas of elevated fluid pressure, or at least fluid presence. Tremor locations appear to also correlate with margin-specific locations of metamorphic fluid release, determined by composition and thermal structure. We therefore hypothesise that: (i) tremor on the deep subduction thrust interface is related to localised fluid release; and (ii) accretionary complex rocks exhumed from appropriate pressure - temperature conditions should include a record of this process, and allow a test for the hypothesis. Hydrothermal veins are a record of mineral precipitation at non-equilibrium conditions, commonly caused by fracture, fluid influx, and precipitation of dissolved minerals from this fluid. Quartz veins are ubiquitous in several accretionary complexes, including the Chrystalls Beach Complex, New Zealand, and the Kuiseb Schist of the Namibian Damara Belt. In both locations, representing temperatures of deformation of < 300 and < 600 °C respectively, there are networks of foliation-parallel and oblique veins, which developed incrementally and record a combination of shear and dilation. Required to have formed at differential stresses less than four times the tensile strength, and at fluid pressures exceeding the least compressive stress, these veins are consistent with tremorgenic conditions of low effective stress and mixed-mode deformation kinematically in agreement with shear on the plate interface. We have analysed the oxygen isotope composition of syntectonic quartz veins in both Chrystalls Beach Complex and Kuiseb Schist accretionary complexes, to unravel the geochemical characteristics of the fluid source potentially required to produce tremor. In the Chrystalls Beach Complex, quartz δ18O values range from 14.1 ‰ to 17.0 ‰ (n = 18), whereas in the Kuiseb schist, values range from 9.4 ‰ to 17.9 ‰ (n = 30). In the latter, values less than 14.0‰ are associated with long-lived shear zones. Excluding the lower values in the Kuiseb schist, the δ18O values are consistent with metamorphic fluids in near equilibrium with the host rocks. We thus infer that the veins that developed on the prograde path formed at a small range of temperatures from a local fluid source. This interpretation is consistent with the veins forming in response to a spatially localised metamorphic fluid release. If vein swarms are formed by the mechanism geophysically recorded as tremor, this implies that tremor is, at least in some locations, triggered by metamorphic fluid release and associated hydrofracture and low effective stress shear activation of low permeability shear zone rocks. If this is correct, then a corollary may be that the near-periodic nature of tremor events is related to a regular nature in the build-up and release of fluid pressure.

  17. Varying Structure and Physical Properties of the Lithosphere Subducting Beneath Indonesia, Consequences on the Subduction

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Dyment, J.

    2013-12-01

    We make inferences on the structure, age and physical properties of the subducting northern Wharton Basin lithosphere by (1) modeling the structure and age of the lithosphere subducted under the Sumatra trench through three-plate reconstructions involving Australia, Antarctica, and India, and (2) superimposing the resulting fracture zones and magnetic isochrons to the geometry of the subducting plate as imaged by seismic tomography. The model of Pesicek et al. (2010) was digitized and smoothed in order to get a realistic topography of the subducting plate. The fracture zone and magnetic isochron geometry was draped on this topography assuming a N18°E direction of subduction. This model provides an effective means to study the effect of varying physical properties of the subducting lithosphere on the subduction along the Sumatra trench. 1) The age of the oceanic lithosphere determines its thickness and buoyancy, then its ability to comply with or resist subduction. We define the "subductability" of the lithosphere as the extra weight applied on the asthenosphere by the part of the bulk lithospheric density exceeding the asthenospheric density. A negative subductability means that the bulk lithospheric density is lower than the asthenospheric density, i.e. the plate will resist subduction, which is the case for lithosphere less than ~23 Ma. The area off Sumatra corresponds to oceanic lithosphere formed between 80 and 38 Ma, with a lower subductability than other areas along the Sunda Trench. 2) The spreading rate at which the oceanic lithosphere was formed has implications of the structure and composition of the oceanic crust, and therefore on its rheology. In a subduction zone, the contact between the subducting and overriding plates is often considered to be the top of the oceanic crust and the overlying sediments. The roughness of this interface and the rheology of its constitutive material are essential parameters constraining the slip of the down going plate in the seismogenic zone, and therefore the characteristics of the resulting earthquakes. Indeed the rough topography of a slow crust may offer more asperities, and therefore a more irregular slip, than the smooth topography of a fast crust. Conversely, the weak rheology of serpentines present in a slow crust would favor a regular slip, unlike the brittle magmatic rocks of the fast crust and the underlying dry olivine mantle. 3) Local features, including fracture zones and seamounts, may affect the seismic segmentation of the subduction zone. Many seamounts have been mapped in the Wharton Basin between 10°S and 15°S., their age decreasing from 136 Ma to the East to 47 Ma to the West, with anomalously younger ages in Christmas Island. Similar seamounts belonging to the same province may have existed further north and subducted in the Sunda Trench from southern Sumatra to Java and eastward. Conversely, the Roo Rise, a larger plateau located south of Eastern Java, may have more difficulty to enter the subduction, as suggested by the geometry of the Sunda Trench in this area, diverting from the regular arc by a maximum of 60 km. References Pesicek, J.D., C.H. Thurber, S. Widiyantoro, H. Zhang, H.R. DeShon, and E.R. Engdahl (2010), Sharpening the tomographic image of the subducting slab below Sumatra, the Andaman Islands and Burma, Geophys. J. Int., 182, 433-453.

  18. Numerical Modelling of Subduction Zones: a New Beginning

    NASA Astrophysics Data System (ADS)

    Ficini, Eleonora; Dal Zilio, Luca; Doglioni, Carlo; Gerya, Taras V.

    2016-04-01

    Subduction zones are one of the most studied although still controversial geodynamic process. Is it a passive or an active mechanism in the frame of plate tectonics? How subduction initiates? What controls the differences among the slabs and related orogens and accretionary wedges? The geometry and kinematics at plate boundaries point to a "westerly" polarized flow of plates, which implies a relative opposed flow of the underlying Earth's mantle, being the decoupling located at about 100-200 km depth in the low-velocity zone or LVZ (Doglioni and Panza, 2015 and references therein). This flow is the simplest explanation for determining the asymmetric pattern of subduction zones; in fact "westerly" directed slabs are steeper and deeper with respect to the "easterly or northeasterly" directed ones, that are less steep and shallower, and two end members of orogens associated to the downgoing slabs can be distinguished in terms of topography, type of rocks, magmatism, backarc spreading or not, foredeep subsidence rate, etc.. The classic asymmetry comparing the western Pacific slabs and orogens (low topography and backarc spreading in the upper plate) and the eastern Pacific subduction zones (high topography and deep rocks involved in the upper plate) cannot be ascribed to the age of the subducting lithosphere. In fact, the same asymmetry can be recognized all over the world regardless the type and age of the subducting lithosphere, being rather controlled by the geographic polarity of the subduction. All plate boundaries move "west". Present numerical modelling set of subduction zones is based on the idea that a subducting slab is primarily controlled by its negative buoyancy. However, there are several counterarguments against this assumption, which is not able to explain the global asymmetric aforementioned signatures. Moreover, petrological reconstructions of the lithospheric and underlying mantle composition, point for a much smaller negative buoyancy than predicted, if any (e.g., Doglioni et al., 2007; Afonso et al., 2008). Therefore we attempt to generate a different model setup in which are included both a decoupling at the lithosphere base and the "westward" drift of the lithosphere that implies a relative "eastward" mantle flow. The method used for this task is an implementation of I2VIS code, a 2D thermomechanical code incorporating both a characteristics based marker-in-cell method and conservative finite-difference (FD) schemes (Gerya and Yuen, 2003). The implementation involves both the integration of the LVZ and the application of an incoming and outgoing mantle flow through the lateral boundaries of the rectangular box (that represent the basic setup of the models). This new insight in numerical modelling of subduction zones could help to have a more accurate comprehension on what is actually influencing subduction zones dynamics in order to successively explain what are the causes of this fundamental process and what are its implications on plate tectonics dynamics.

  19. Geophysical signature of hydration-dehydration processes in active subduction zones

    NASA Astrophysics Data System (ADS)

    Reynard, Bruno

    2013-04-01

    Seismological and magneto-telluric tomographies are potential tools for imaging fluid circulation when combined with petrophysical models. Recent measurements of the physical properties of serpentine allow refining hydration of the mantle and fluid circulation in the mantle wedge from geophysical data. In the slab lithospheric mantle, serpentinization caused by bending at the trench is limited to a few kilometers below the oceanic crust (<5 km). Double Wadati-Benioff zones, 20-30 km below the crust, are explained by deformation of dry peridotites, not by serpentine dehydration. It reduces the required amount of water stored in solid phases in the slab (Reynard et al., 2010). In the cold (<700°C) fore-arc mantle wedge above the subducting slab, serpentinization is caused by the release of large amounts of hydrous fluids in the cold mantle above the dehydrating subducted plate. Low seismic velocities in the wedge give a time-integrated estimate of hydration and serpentinization. Serpentinization reaches 50-100% in hot subduction, while it is below 10% in cold subduction (Bezacier et al., 2010; Reynard, 2012). Electromagnetic profiles of the mantle wedge reveal high electrical-conductivity bodies. In hot areas of the mantle wedge (> 700°C), water released by dehydration of the slab induces melting of the mantle under volcanic arcs, explaining the observed high conductivities. In the cold melt-free wedge (< 700°C), high conductivities in electromagnetic profiles provide "instantaneous" images of fluid circulation because the measured electrical conductivity of serpentine is below 0.1 mS/m (Reynard et al., 2011). A small fraction (ca. 1% in volume) of connective high-salinity fluids accounts for the highest observed conductivities. Low-salinity fluids (≤ 0.1 m) released by slab dehydration evolve towards high-salinity (≥ 1 m) fluids during progressive serpentinization in the wedge. These fluids can mix with arc magmas at depths and account for high-chlorine melt inclusions in arc lavas. High electrical conductivities up to 1 S/m in the hydrated wedge of the hot subductions (Ryukyu, Kyushu, Cascadia) reflect high fluid concentration, while low to moderate (<0.01 S/m) conductivities in the cold subductions (N-E Japan, Bolivia) reflect low fluid flow. This is consistent with the seismic observations of extensive shallow serpentinization in hot subduction zones, while serpentinization is sluggish in cold subduction zones. Bezacier, L., et al. 2010. Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. Earth and Planetary Science Letters, 289, 198-208. Reynard, B., 2012. Serpentine in active subduction zones. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.10.012. Reynard, B., Mibe, K. & Van de Moortele, B., 2011. Electrical conductivity of the serpentinised mantle and fluid flow in subduction zones. Earth and Planetary Science Letters, 307, 387-394. Reynard, B., Nakajima, J. & Kawakatsu, H., 2010. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones. Geophysical Research Letters, 37, L24309.

  20. Frictional behavior of carbonate-rich sediments in subduction zones

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B. M.; Collettini, C.

    2016-12-01

    Deformation in rocks and sediments is controlled by multiple mechanisms, each governed by its own pressure- (P), temperature- (T), and slip velocity- (v) dependent kinetics. Frictional behavior depends on which of these mechanisms are dominant, and, thus, varies with P, T, and v. Carbonates are a useful material with which to interrogate the PTv controls on friction due to the fact that a wide range of mechanisms can be easily accessed in the lab at geologically relevant conditions. In addition, carbonate-rich layers make up a significant component of subducting sediments around the world and may impact the frictional behavior of shallow subduction zones. In order to investigate the effect of carbonate subduction and the evolution of friction at subduction zone conditions, we conducted deformation experiments on input sediments for two subduction zones, the Hikurangi trench, New Zealand (ODP Site 1124) and the Peru trench (DSDP Site 321), which have carbonate/clay contents of 40/60 wt% and 80/20 wt%, respectively. Samples were saturated with distilled water mixed with 35g/l sea salt and deformed at room temperature. Experiments were conducted at σeff = 1-100 MPa and T = 20-100 °C with sliding velocities of 1-300 μm/s and hold times of 1-1000 s. We test the changes in velocity dependence and healing over these PT conditions to elucidate the frictional behavior of carbonates in subduction zone settings. The mechanical results are complemented by microstructural analysis. In lower stress experiments, there is no obvious shear localization; however, by 25 MPa, pervasive boundary-parallel shears become dominant, particularly in the Peru samples. Optical observations of these shear zones under cross-polarized light show evidence of plastic deformation (CPO development) while SEM-EDS observations indicate phase segregation in the boundary shears. Degree of microstructural localization appears to correspond with the trends observed in velocity-dependence. Our preliminary results indicate that carbonate/clay compositions could have a significant impact on the frictional behavior of subducting sediments.

  1. A Computer-Based Subduction-Zone-Earthquake Exercise for Introductory-Geology Classes.

    ERIC Educational Resources Information Center

    Shea, James Herbert

    1991-01-01

    Describes the author's computer-based program for a subduction-zone-earthquake exercise. Instructions for conducting the activity and obtaining the program from the author are provided. Written in IBM QuickBasic. (PR)

  2. High-velocity basal sediment package atop oceanic crust, offshore Cascadia: Impacts on plate boundary processes and fluid migration

    NASA Astrophysics Data System (ADS)

    Peterson, D. E.; Keranen, K. M.

    2017-12-01

    Differences in fluid pressure and mechanical properties at megathrust boundaries in subduction zones have been proposed to create varying seismogenic behavior. In Cascadia, where large ruptures are possible but little seismicity occurs presently, new seismic transects across the deformation front (COAST cruise; Holbrook et al., 2012) image an unusually high-wavespeed sedimentary unit directly overlying oceanic crust. Wavespeed increases before sediments reach the deformation front, and the well-laminated unit, consistently of 1 km thickness, can be traced for 50 km beneath the accretionary prism before imaging quality declines. Wavespeed is modeled via iterative prestack time migration (PSTM) imaging and increases from 3.5 km/sec on the seaward end of the profile to >5.0 km/s near the deformation front. Landward of the deformation front, wavespeed is low along seaward-dipping thrust faults in the Quaternary accretionary prism, indicative of rapid dewatering along faults. The observed wavespeed of 5.5 km/sec just above subducting crust is consistent with porosity <5% (Erickson and Jarrard, 1998), possibly reflecting enhanced consolidation, cementation, and diagenesis as the sediments encounter the deformation front. Beneath the sediment, the compressional wavespeed of uppermost oceanic crust is 3-4 km/sec, likely reduced by alteration and/or fluids, lowest within a propagator wake. The propagator wake intersects the plate boundary at an oblique angle and changes the degree of hydration of the oceanic plate as it subducts within our area. Fluid flow out of oceanic crust is likely impeded by the low-porosity basal sediment package except along the focused thrust faults. Decollements are present at the top of oceanic basement, at the top of the high-wavespeed basal unit, and within sedimentary strata at higher levels; the decollement at the top of oceanic crust is active at the toe of the deformation front. The basal sedimentary unit appears to be mechanically strong, similar to observations from offshore Sumatra, where strongly consolidated sediments at the deformation front are interpreted to facilitate megathrust rupture to the trench (Hupers et al., 2017). A uniformly strong plate interface at Cascadia may inhibit microseismicity while building stress that is released in great earthquakes.

  3. Fore-arc Deformation in the Paola Basin Segment (Offshore Western Calabria) of the Tyrrhenian-Ionian Subduction System

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Corradino, M.; Nicolich, R.; Barreca, G.; Bertotti, G.; Ferranti, L.; Monaco, C.

    2017-12-01

    The 3D stratigraphic architecture and Late Neogene to Recent tectonic evolution of the Paola Basin (offshore western Calabria), a segment in the fore-arc of the Tyrrhenian-Ionian subduction system, is reconstructed by using a grid of high-penetration reflection seismics. Oligocene to Messinian deposits are interpreted all along the profile. They tend to fossilize preexisting topography and reach the largest thicknesses between (fault controlled) basement highs. Plio-Quaternary deposits are found over the entire area and display variations in thickness and tectonic style. They are thicken up to 4.5 km in the depocenter of the basin, and decrease both in the east and west termination of the lines. The Paola Basin can be partitioned into two sectors with different tectonic deformation, separated by a NNW-SSE elongated area that coincides with the basin depocenter. Tectonic features associated with strike-slip restraining and releasing bends are widely spread over the western sector of the basin. Overall, they form an approximately NS-trending and geomorphically prominent ridge separating the Paola Basin from the Marsili abyssal plain. A high-angle, NNE-trending, normal fault system develops on the south-west tip of the basin, where the faults offset the Messinian horizon of ca. 500 m. Data suggest that limited vertical slip occurs along reverse faults detected at the border and inside the sedimentary infilling of the Paola Basin, reaching thickness of more than 3.8s two way travel time. The reflection sequence pattern can be interpreted as a result of the infilling of the thrust-top basin related to a prograding system, located between a growth ramp-anticline to the west and a culmination of basement-thrust sheets to the East. We propose that the Paola Basin developed near the northern edge of the Ionian slab where tearing of the lithosphere is expected. Also, the strike-slip fault system is a kinematic consequence of obliquely convergent subduction settings, where interplate strain is partitioned into arc-parallel strike-slip zones within the fore-arc, arc or back-arc region.

  4. Processes in continental collision zones: Preface

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Zhang, Lifei; McClelland, William C.; Cuthbert, Simon

    2012-04-01

    Formation and exhumation of high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in continental subduction zones are the two fundamental geodynamic aspects of collisional orogensis. This volume is based on the Session 08c titled "Geochemical processes in continental collision zones" at Goldschmidt 2010 in Knoxville, USA. It focuses on micro- to macro-scale processes that are temporally and spatially linked to different depths of crustal subduction/exhumation and associated mineralogical changes. They are a key to understanding a wide spectrum of phenomena, involving HP/UHP metamorphism and syn-/post-collisional magmatism. Papers in this volume report progresses in petrological, geochronological and geochemical studies of UHP metamorphic rocks and their derivatives in China, with tectonic settings varying from arc-continent collision to continent-continent collision. Microbeam in-situ analyses of metamorphic and magmatic minerals are successfully utilized to solve various problems in the study of continental deep subduction and UHP metamorphism. In addition to their geochronological applications to dating of HP to UHP metamorphic events during continental collision, microbeam techniques have also served as an efficient means to recognize different generations of mineral growth during continental subduction-zone metamorphism. Furthermore, metamorphic dehydration and partial melting of UHP metamorphic rocks during subduction and exhumation are highlighted with respect to their effects on fluid action and element mobilization. These have provided new insights into chemical geodynamics in continental subduction zones.

  5. Late Mesozoic deformations of the Verkhoyansk-Kolyma orogenic belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery

    2016-04-01

    The Verkhoyansk-Kolyma orogenic belt marks the boundary between the Kolyma-Omolon superterrane (microcontinent) and the submerged eastern margin of the North Asian craton. The orogenic system is remark able for its large number of economically viable gold deposits (Natalka, Pavlik, Rodionovskoe, Drazhnoe, Bazovskoe, Badran, Malo-Tarynskoe, etc.). The Verkhoyansk - Kolyma orogenic belt is subdivided into Kular-Nera and the Polousny-Debin terranes. The Kular-Nera terrane is mainly composed of the Upper Permian, Triassic, and Lower Jurassic black shales that are metamorphosed at lower greenschist facies conditions. The Charky-Indigirka and the Chai-Yureya faults separate the Kular-Nera from the Polousny-Debin terrane that is predominantly composed of the Jurassic flyschoi dturbidites. The deformation structure of the region evolved in association with several late Mesozoic tectonic events that took place in the north-eastern part ofthe Paleo-Pacific. In Late Jurassic-Early Cretaceous several generations of fold and thrust systems were formed due to frontal accretion of the Kolyma-Omolon superterrane to the eastern margin of the North Asian craton.Thrusting and folding was accompanied by granitic magmatism, metamorphic reworking of the Late Paleozoic and the Early Mesozoic sedimentary rocks, and formation of Au-Sn-W mineralization. Three stages of deformation related to frontal accretion can be distinguished. First stage D1 has developed in the north-eastern part of the Verkhoyansk - Kolyma orogenic belt. Early tight and isoclinal folds F1 and assosiated thrusts are characteristic of D1. Major thrusts, linear concentric folds F2 and cleavage were formed during D2. The main ore-controlling structures are thrust faults forming imbricate fan systems. Frontal and oblique ramps and systems of bedding and cross thrusts forming duplexes are common. It is notable that mineralized tectonized zones commonly develop along thrusts at the contacts of rocks of contrasting competence. The superimposed structures are recognized from the early cleavage deformations. Folds F3 are often chevron type, open or tight. D1, D2 and D3 deformations are coaxial. In the Late-Neocomian-Aptian the Kolyma-Omolon superterrane started moving to the west. As a result, the thrust faults were reactivated with sinistral strike-slip motions along fault planes. At that time, granitoids of the North and Transverse belts were emplaced in the northwestern part of the Kolyma-Omolon superterrane. The strike slip faults were associated with cross open folds. The postacrettionary stage is associated with the development of the Albian-Late Cretaceous Okhotsk-Chukotka subduction zone. During this stage strike-slip faults and associated deformation structures were superimposed upon accretion-related tectonic structures of the Verkhoyansk - Kolyma orogenic belt.

  6. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.

    1989-01-01

    The abundance, P-T stability, solubility, and element-partitioning behavior of minerals such as rutile, garnet, sphene, apatite, zircon, zoisite, and allanite are critical variables in models for mass transfer from the slab to the mantle wedge in deep regions of subduction zones. The influence of these minerals on the composition of subduction-related magmas has been inferred (and disputed) from inverse modelling of the geochemistry of island-arc basalt, or by experiment. Although direct samples of the dehydration + partial-melting region of a mature subduction zone have not been reported from subduction complexes, garnet amphibolites from melanges of circumpacific and Caribbean blueschist terranes reflect high T (>600??C) conditions in shallower regions. Such rocks record geochemical processes that affected deep-seated, high-T portions of paleo-subduction zones. In the Catalina Schist, a subduction-zone metamorphic terrane of southern California, metasomatized and migmatitic garnet amphibolites occur as blocks in a matrix of meta-ultramafic rocks. This mafic and ultramafic complex may represent either slab-derived material accreted to the mantle wedge of a nascent subduction zone or a portion of a shear zone closely related to the slab-mantle wedge contact, or both. The trace-element geochemistry of the complex and the distribution of trace elements among the minerals of garnet amphibolites were studied by INAA, XRF, electron microprobe, and SEM. In order of increasing alteration from a probable metabasalt protolith, three common types of garnet amphibolite blocks in the Catalina Schist are: (1) non-migmatitic, clinopyroxene-bearing blocks, which are compositionally similar to MORB that has lost an albite component; (2) garnet-amphibolite blocks, which have rinds that reflect local interaction between metabasite, metaperidotite, and fluid; and (3) migmatites that are extremely enriched in Th, HFSE, LREE, and other trace elements. These trace-element enrichments are mineralogically controlled by rutile, garnet, sphene, apatite, zircon, zoisite, and allanite. Alkali and alkaline earth elements are much less enriched in the solid assemblage, and thus appear to be decoupled from the other elements in the inferred metasomatic process(es). The compositions of migmatitic garnet amphibolite blocks seem to complement that of "average" island-arc tholeiite. Trace-element metasomatism reflects fluid-solid, rather than melt-solid, interaction. The metasomatic effects indicate that H2O-rich fluid, perhaps with a significant component of Na-Al silicate and alkalis, carried Th, U, Sr, REE, and HFSE. Fractionations of LREE in migmatites resemble those of migmatitic metasedimentary rocks underlying the mafic and ultramafic complex. "Exotic" LREE deposited in allanite in migmatites could have been derived from fluids in equilibrium with subducted sediment. If the paleo-subduction zone represented by the mafic and ultramafic complex of the Catalina Schist had continued its thermal and fluid evolution, a selvage of similarly enriched rocks might have been generated along the slab-mantle wedge contact between ~30 and 85 km depth. Rocks affected by "subduction-zone metasomatism," although rarely recognized at the surface, could be volumetrically significant products of the initiation of subduction and may prove to be geochemical probes of convergent margins that approach the significance of xenoliths in the study of other magmatic environments. ?? 1989.

  7. Improved High Resolution Models of Subduction Dynamics: Use of transversely isotropic viscosity with a free-surface

    NASA Astrophysics Data System (ADS)

    Liu, X.; Gurnis, M.; Stadler, G.; Rudi, J.; Ratnaswamy, V.; Ghattas, O.

    2017-12-01

    Dynamic topography, or uncompensated topography, is controlled by internal dynamics, and provide constraints on the buoyancy structure and rheological parameters in the mantle. Compared with other surface manifestations such as the geoid, dynamic topography is very sensitive to shallower and more regional mantle structure. For example, the significant dynamic topography above the subduction zone potentially provides a rich mine for inferring the rheological and mechanical properties such as plate coupling, flow, and lateral viscosity variations, all critical in plate tectonics. However, employing subduction zone topography in the inversion study requires that we have a better understanding of the topography from forward models, especially the influence of the viscosity formulation, numerical resolution, and other factors. One common approach to formulating a fault between the subducted slab and the overriding plates in viscous flow models assumes a thin weak zone. However, due to the large lateral variation in viscosity, topography from free-slip numerical models typically has artificially large magnitude as well as high-frequency undulations over subduction zone, which adds to the difficulty in making comparisons between model results and observations. In this study, we formulate a weak zone with the transversely isotropic viscosity (TI) where the tangential viscosity is much smaller than the viscosity in the normal direction. Similar with isotropic weak zone models, TI models effectively decouple subducted slabs from the overriding plates. However, we find that the topography in TI models is largely reduced compared with that in weak zone models assuming an isotropic viscosity. Moreover, the artificial `tooth paste' squeezing effect observed in isotropic weak zone models vanishes in TI models, although the difference becomes less significant when the dip angle is small. We also implement a free-surface condition in our numerical models, which has a smoothing effect on the topography. With the improved model configuration, we can use the adjoint inversion method in a high-resolution model and employ topography in addition to other observables such as the plate motion to infer critical mechanical and rheological parameters in the subduction zone.

  8. Stratigraphy of the late Proterozoic Murdama Group, Saudi Arabia

    USGS Publications Warehouse

    Greene, Robert C.

    1993-01-01

    The Murdama group probably was deposited in a back-arc basin on a continental platform bounded on the west by an active volcanic arc above an east-dipping subduction zone. The position of the subduction zone, which was active during most of the deposition in the Afif belt, is marked by a belt of gabbro and ultramafic rocks herein named the jabal Burqah belt. The subduction zone later stepped out to the southwest to the Nabitah belt, and Murdama strata were deposited in the Jabal Hadhah, Mistahjed, and smaller basins.

  9. The Hellenic Subduction Zone: A tomographic image and its geodynamic implications

    NASA Astrophysics Data System (ADS)

    Spakman, W.; Wortel, M. J. R.; Vlaar, N. J.

    1988-01-01

    New tomographic images of the Hellenic subduction zone demonstrate slab penetration in the Aegean Upper Mantle to depths of at least 600 km. Beneath Greece the lower part of the slab appears to be detached at a depth of about 200 km whereas it still seems to be unruptured beneath the southern Aegean. Schematically we derive minimum time estimates for the duration of the Hellenic subduction zone that range from 26 to 40 Ma. This is considerably longer than earlier estimates which vary between 5 and about 13 Ma.

  10. Formation and stability of a double subduction system: a numerical study

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Stegman, D. R.

    2017-12-01

    Examples of double subduction systems can be found in both modern (Izu-Bonin-Marianas and Ryukyu arcs, e.g. Hall [1997]) and ancient (Kohistan arc in Western Himalayas, e.g. Burg et al. [2006]) tectonic record. A double subduction system has been proposed to explain the high convergence rate observed for the India-Eurasia convergence [Aitchison et al., 2000, Jagoutz et al., 2015; Holt et al., 2017]. Rates of convergence across coupled double subduction systems can be significantly faster than across single subduction systems because of slab pull by two slabs. However, despite significant geological and geophysical observations, questions regarding double subduction remain largely unexplored. For example, it is unclear how a double subduction system forms and remains stable over millions of years. Previous numerical studies of double subduction either introduced weak zones to initiate subduction [Mishin et al., 2008] or both the subduction systems were already initiated [Jagoutz et al., 2015, Holt et al., 2017], thus assuming a priori information regarding the initial position of the two subduction zones. Moreover, the driving forces initiating a stable double subduction system remain unclear. In the context of India-Eurasia, Cande and Stegman [2011] found evidence the Reunion mantle plume head provided an ephemeral driving force on both the Indian and African plates for as long as 25 Million years, and had significant influence on plate boundaries in the region. In this study, we perform 2D and 3D numerical simulations using the code LaMEM [Kaus et al., 2016] to investigate i) subduction initiation of a secondary system in an already initiated single subduction system, and ii) the dynamics and stability of the newly formed double subduction system. We start from a single subduction setup, where subduction is already initiated (mature) and we stress the system by controlling the convergence rate of the system (i.e. imposing influx/outflux boundary conditions). Under certain conditions, a second subduction may develop and transform into a stable double subduction system. Results suggest that the fate of the incipient secondary subduction depends on internal factors (i.e. buoyancy and rheology), but also on the dynamics of the primary subduction zone and the boundary conditions (i.e. convergence rate).

  11. Evolution of passive continental margins and initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, S. A. P. L.; Wortel, M. J. R.; Vlaar, N. J.

    1982-05-01

    Although the initiation of subduction is a key element in plate tectonic schemes for evolution of lithospheric plates, the underlying mechanisms are not well understood. Plate rupture is an important aspect of the process of creating a new subduction zone, as stresses of the order of kilobars are required to fracture oceanic lithosphere1. Therefore initiation of subduction could take place preferentially at pre-existing weakness zones or in regions where the lithosphere is prestressed. As such, transform faults2,3 and passive margins4,5 where the lithosphere is downflexed under the influence of sediment loading have been suggested. From a model study of passive margin evolution we found that ageing of passive margins alone does not make them more suitable sites for initiation of subduction. However, extensive sediment loading on young lithosphere might be an effective mechanism for closure of small ocean basins.

  12. Tomography and Dynamics of Western-Pacific Subduction Zones

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2012-01-01

    We review the significant recent results of multiscale seismic tomography of the Western-Pacific subduction zones and discuss their implications for seismotectonics, magmatism, and subduction dynamics, with an emphasis on the Japan Islands. Many important new findings are obtained due to technical advances in tomography, such as the handling of complex-shaped velocity discontinuities, the use of various later phases, the joint inversion of local and teleseismic data, tomographic imaging outside a seismic network, and P-wave anisotropy tomography. Prominent low-velocity (low-V) and high-attenuation (low-Q) zones are revealed in the crust and uppermost mantle beneath active arc and back-arc volcanoes and they extend to the deeper portion of the mantle wedge, indicating that the low-V/low-Q zones form the sources of arc magmatism and volcanism, and the arc magmatic system is related to deep processes such as convective circulation in the mantle wedge and dehydration reactions in the subducting slab. Seismic anisotropy seems to exist in all portions of the Northeast Japan subduction zone, including the upper and lower crust, the mantle wedge and the subducting Pacific slab. Multilayer anisotropies with different orientations may have caused the apparently weak shear-wave splitting observed so far, whereas recent results show a greater effect of crustal anisotropy than previously thought. Deep subduction of the Philippine Sea slab and deep dehydration of the Pacific slab are revealed beneath Southwest Japan. Significant structural heterogeneities are imaged in the source areas of large earthquakes in the crust, subducting slab and interplate megathrust zone, which may reflect fluids and/or magma originating from slab dehydration that affected the rupture nucleation of large earthquakes. These results suggest that large earthquakes do not strike anywhere, but in only anomalous areas that may be detected with geophysical methods. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The Pacific slab becomes stagnant in the mantle transition zone under East Asia, and a big mantle wedge (BMW) has formed above the stagnant slab. Convective circulations and fluid and magmatic processes in the BMW may have caused intraplate volcanism (e.g., Changbai and Wudalianchi), reactivation of the North China craton, large earthquakes, and other active tectonics in East Asia. Deep subduction and dehydration of continental plates (such as the Eurasian plate, Indian plate and Burma microplate) are also found, which have caused intraplate magmatism (e.g., Tengchong) and geothermal anomalies above the subducted continental plates. Under Kamchatka, the subducting Pacific slab shortens toward the north and terminates near the Aleutian-Kamchatka junction. The slab loss was induced by friction with the surrounding asthenosphere, as the Pacific plate rotated clockwise 30 Ma ago, and then it was enlarged by the slab-edge pinch-off by the asthenospheric flow. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle. Suggestions are also made for future directions of the seismological research of subduction zones.

  13. Carbonation by fluid-rock interactions at high-pressure conditions: Implications for carbon cycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine

    2016-07-01

    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon, regulating its fluxes between shallow and deep reservoirs. Recent estimates predict that almost all subducted carbon is transferred into the crust and lithospheric mantle during subduction metamorphism via decarbonation and dissolution reactions at high-pressure conditions. Here we report the occurrence of eclogite-facies marbles associated with metasomatic systems in Alpine Corsica (France). The occurrence of these marbles along major fluid-conduits as well as textural, geochemical and isotopic data indicating fluid-mineral reactions are compelling evidence for the precipitation of these carbonate-rich assemblages from carbonic fluids during metamorphism. The discovery of metasomatic marbles brings new insights into the fate of carbonic fluids formed in subducting slabs. We infer that rock carbonation can occur at high-pressure conditions by either vein-injection or chemical replacement mechanisms. This indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but can interact with slab and mantle-forming rocks. Rock-carbonation by fluid-rock interactions may have an important impact on the residence time of carbon and oxygen in subduction zones and lithospheric mantle reservoirs as well as carbonate isotopic signatures in subduction zones. Furthermore, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  14. Imaging b-value depth variations within the Cocos and Rivera plates at the Mexican subduction zone

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, Quetzalcoatl; Zuñiga, F. Ramón

    2018-06-01

    By a systematic mapping of the b-value along profiles perpendicular to the Mexican Wadati-Benioff zone, we obtained important characteristics pertaining the stress state and faulting style related to the subduction process. To this purpose, we used data from the earthquake catalog reported by the Servicio Sismologico Nacional (1988-2016). We investigate depth variations of the b-value for the Cocos and Rivera under North American plates interface, by a detailed analysis of 15 cross-sections. The obtained b-value profiles vary from 0.50 to 2.50, which nevertheless appear related to the faulting style and stress state. By comparing the locations and focal mechanism of the largest events with the b-values of the surrounding regions, our analysis corroborates the dependence of the b-value on the faulting style. Thrust events occur in regions of low and high b-value at depths <50 km. Normal-faulting events occur mainly in high b-value regions at all shallow (Z < 30 km) and intermediate depths (Z > 30 km), in agreement with global studies. These results support the hypothesis that differential stress processes may be behind the occurrence of the different faulting style. On the contrary, by analyzing the mean b-values for both types of faulting mechanism at each of the cross-sections, we found a significantly lower mean b-value related to normal faulting for those regions where the 8 (Mw 8.2) and 19 (Mw 7.1) September 2017 earthquakes occur. These results lead us to conclude that those regions experienced an increased stress state prone to the occurrence of normal-intraplate events. We also compare the b-value distribution with Vp and Q tomography studies obtaining a good correlation between them. We found evidence to relate b-value variations with subduction processes such as stress state due to tectonic and flexural conditions, and to a lesser extent to material heterogeneity and fluid dehydration.

  15. Small-scale Forearc Structure from Residual Bathymetry and Vertical Gravity Gradients at the Cocos-North America Subduction Zone offshore Mexico

    NASA Astrophysics Data System (ADS)

    Garcia, E. S. M.; Ito, Y.

    2017-12-01

    The subduction of topographic relief on the incoming plate at subduction zones causes deformation of the plate interface as well as the overriding plate. Whether the resulting geometric irregularities play any role in inhibiting or inducing seismic rupture is a topic of relevance for megathrust earthquake source studies. A method to discern the small-scale structure at subduction zone forearcs was recently developed by Bassett and Watts (2015). Their technique constructs an ensemble average of the trench-perpendicular topography, and the removal of this regional tectonic signal reveals the short-wavelength residual bathymetric anomalies. Using examples from selected areas at the Tonga, Mariana, and Japan subduction zones, they were able to link residual bathymetric anomalies to the subduction of seamount chains, given the similarities in wavelength and amplitude to the morphology of seamounts that have yet to subduct. We focus here on an analysis of forearc structures found in the Mexico segment of the Middle America subduction zone, and their potential mechanical interaction with areas on the plate interface that have been previously identified as source regions for earthquake ruptures and aseismic events. We identified several prominent residual bathymetric anomalies off the Guerrero and Oaxaca coastlines, mainly in the shallow portion of the plate interface and between 15 and 50 kilometers away from the trench axis. The residual amplitude of these bathymetric anomalies is typically in the hundreds of meters. Some of the residual bathymetric anomalies offshore Oaxaca are found landward of seamount chains on the incoming Cocos Plate, suggesting that these anomalies are associated with the prior subduction of seamounts at the margin. We also separated the residual and regional components of satellite-based vertical gravity gradient data using a directional median filter to isolate the possible gravity signals from the seamount edifices.

  16. Pore pressure development and progressive dewatering in underthrust sediments at the Costa Rican subduction margin: Comparison with northern Barbados and Nankai

    NASA Astrophysics Data System (ADS)

    Saffer, Demian M.

    2003-05-01

    At subduction zones, pore pressure affects fault strength, deformation style, structural development, and potentially the updip limit of seismogenic faulting behavior through its control on effective stress and consolidation state. Despite its importance for a wide range of subduction zone processes, few detailed measurements or estimates of pore pressure at subduction zones exist. In this paper, I combine logging-while-drilling (LWD) data, downhole physical properties data, and laboratory consolidation tests from the Costa Rican, Nankai, and Barbados subduction zones, to document the development and downsection variability of effective stress and pore pressure within underthrust sediments as they are progressively loaded by subduction. At Costa Rica, my results suggest that the lower portion of the underthrust section remains nearly undrained, whereas the upper portion is partially drained. An inferred minimum in effective stress developed within the section ˜1.5 km landward of the trench is consistent with core and seismic observations of faulting, and illustrates the important effects of heterogeneous drainage on structural development. Inferred pore pressures at the Nankai and northern Barbados subduction zones indicate nearly undrained conditions throughout the studied intervals, and are consistent with existing direct measurements and consolidation test results. Slower dewatering at Nankai and Barbados than at Costa Rica can be attributed to higher permeability and larger compressibility of near-surface sediments underthrust at Costa Rica. Results for the three margins indicate that the pore pressure ratio (λ) in poorly drained underthrust sediments should increase systematically with distance landward of the trench, and may vary with depth.

  17. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    PubMed

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  18. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    PubMed Central

    Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495

  19. Frictional behavior of carbonate-rich incoming sediment in the Hikurangi subduction zone

    NASA Astrophysics Data System (ADS)

    Rabinowitz, H. S.; Savage, H. M.; Carpenter, B.; Ikari, M.; Collettini, C.

    2017-12-01

    In recent years, the traditional view of the seismogenic zone has been challenged by observations of a range of seismic behaviors both above and below the depths previously considered capable of nucleating earthquakes. The Hikurangi trench is one of the few subduction zones where this transitional seismic behavior has been observed at the shallowest portions of the subduction zone, providing an opportunity to investigate the mechanical controls on seismic behavior through measurements of directly sampled sediment. To this end, an IODP cruise (March-May, 2018; Exp. 375) will recover sample from the faults that participate in this shallow seismic behavior. In order to obtain preliminary frictional characterization of the sedimentary inputs to the Hikurangi Trench, we conducted deformation experiments on samples from an ocean drill core through the incoming sediments (ODP Site 1124). The sedimentary package subducting at Hikurangi contains carbonate-rich lithologies, which have been shown to be more frictionally unstable (velocity-weakening, high healing rates) than the clays that comprise the majority of the sedimentary inputs to global subduction zones. Such frictional properties could promote seismic behavior in the shallower reaches of the subduction zone. We focus on a section of ODP Site 1124 which has a carbonate content of 40 wt% to investigate the effect of this lithology. Samples were saturated with distilled water mixed with 35 g/l sea salt. Velocity-stepping and slide-hold-slide tests were performed in multiple biaxial and triaxial deformation apparatus to investigate a range of pressures, temperatures and velocities relevant to the shallow subduction zone (σeff = 1-150 MPa, sliding velocities of 1.7 nm/s-300 μm/s, hold times of 1-1000 s, and T = 20-100 ºC). We observe transitions from velocity-strengthening to velocity-weakening behavior over these conditions which could contribute to shallow seismic behavior in the Hikurangi trench.

  20. Self-Sustained Mode-3 Tear Controls Dynamics of Narrow Retreating Subduction Zones

    NASA Astrophysics Data System (ADS)

    Munch, J.; Gerya, T.; Ueda, K.

    2017-12-01

    The Caribbean oroclinal basin exhibits several narrow retreating slabs in an oceanic domain. The slabs show a curved shape associated to a bent topography (trench). We propose that the curvature of the topography depends on slab retreat mechanisms following mode-3 tearing at the edges of the slab (out of the plane fracture propagation). While first-order characteristics have been principally reproduced in self-sustained subduction initiation models (Gerya et al., 2015, Nature, 527, 221-225), the relevant observations have not been quantified and the exact mechanism is not understood. In this work, we study the long-term 3D evolution of narrowing oceanic subduction zones during retreat, and investigate the link between mode-3 tear and orocline formation. Numerical experiments are carried out with a thermo-mechanical 3D finite-difference code. To allow the observation of developing topography, the precise location of the internal surface and its evolution by material diffusion is tracked. Retreating subduction is facilitated via a strong age contrast between a young lithosphere window enclosed by shear zones and the surrounding lithosphere. By varying the length and thickness of the shear zones and location of the age transition, the influence of these parameters on the tearing process and the development of topography is assessed. Experiments trigger subduction initiation and slab retreat via fracture zone collapse and spontaneous paired mode-3 tear propagation within the oceanic plate interior. Narrow retreating subducting slabs form as a natural result of the spontaneous paired tearing process. A curved trench forms along with slab retreat. Topography evolution and tearing trajectory appear to be dependent on the initial shear zones and young window dimensions. We also note a strong narrowing of the slab during the retreat (several tens of kilometers over 800 km of retreat). Overall, results indicate that narrowing of retreating slabs is a self-consistent consequence of tear propagation dynamics. This plate tearing mechanism may control dynamics of other narrow retreating subduction zones worldwide.

  1. Thermal state of the Explorer segment of the Cascadia subduction zone: Implications for seismic and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Gao, Dawei; Wang, Kelin; Davis, Earl E.; Jiang, Yan; Insua, Tania L.; He, Jiangheng

    2017-04-01

    The Explorer segment of northernmost Cascadia is an end-member "warm" subduction zone with very young incoming plate and slow-convergence rate. Understanding the megathrust earthquake potential of this type of subduction zone is of both geodynamic and societal importance. Available geodetic observations indicate that the subduction megathrust of the Explorer segment is currently locked to some degree, but the downdip extent of the fault area that is potentially seismogenic is not known. Here we construct finite-element models to estimate the thermally allowed megathrust seismogenic zone, using available knowledge of regional plate kinematics, structural data, and heat flow observations as constraints. Despite ambiguities in plate interface geometry constrained by hypocenter locations of low-frequency earthquakes beneath Vancouver Island, the thermal models suggest a potential rupture zone of ˜60 km downdip width located fully offshore. Using dislocation modeling, we further illustrate that a rupture zone of this size, even with a conservative assumption of ˜100 km strike length, can cause significant tsunami-genic deformation. Future seismic and tsunami hazard assessment in northern Cascadia must take the Explorer segment into account.

  2. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Wang, Kelin

    2017-03-01

    Episodic tremor and accompanying slow slip, together called ETS, is most often observed in subduction zones of young and warm subducting slabs. ETS should help us to understand the mechanics of subduction megathrusts, but its mechanism is still unclear. It is commonly assumed that ETS represents a transition from seismic to aseismic behaviour of the megathrust with increasing depth, but this assumption is in contradiction with an observed spatial separation between the seismogenic zone and the ETS zone. Here we propose a unifying model for the necessary geological condition of ETS that explains the relationship between the two zones. By developing numerical thermal models, we examine the governing role of thermo-petrologically controlled fault zone rheology (frictional versus viscous shear). High temperatures in the warm-slab environment cause the megathrust seismogenic zone to terminate before reaching the depth of the intersection of the continental Mohorovičić discontinuity (Moho) and the subduction interface, called the mantle wedge corner. High pore-fluid pressures around the mantle wedge corner give rise to an isolated friction zone responsible for ETS. Separating the two zones is a segment of semi-frictional or viscous behaviour. The new model reconciles a wide range of seemingly disparate observations and defines a conceptual framework for the study of slip behaviour and the seismogenesis of major faults.

  3. Geodynamic models of the deep structure of the natural disaster regions of the Earth

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. G.; Sergeyeva, N. A.; Zabarinskaya, L. P.

    2012-04-01

    Investigation of the deep structure and creation of geodynamic models of natural disaster regions are important for understanding of the nature of such phenomena as earthquakes, eruptions of volcanoes, tsunami and others. Carrying out of such researches is necessary for definition of areas of potential risk, forecasting and the prevention of negative consequences of acts of nature. Research region is active continental margins of the Sea of Okhotsk, and especially the area of Neftegorsk earthquake which has occurred on May, 28th 1995 in the North Sakhalin and caused many victims and destructions. The geodynamic model of the lithosphere in the region of Neftegorsk earthquake has been constructed along the profile crossing the North Sakhalin Basin, Deryugin Basin and ophiolite complex between them. The Deryugin Basin was formed at the site of an ancient deep trench after the subduction of the Okhotsk Sea Plate under Sakhalin. The basin is located above a hot plume in the mantle at a depth of 25 km. The ophiolite belt of ultramafic magmatic rocks is an ancient (K2-Pg) paleosubduction zone separating the Deryugin basin from the North Sakhalin Basin. The thickness of the ancient seismic focal zone is 80 km. It is probably that the structures of the North Sakhalin have been formed in the following way. In the Late Cretaceous the oceanic Okhotsk Sea Plate subducted under Sakhalin, the eastern part of which was an andesite island arc. Approximately in Miocene the subduction of the plate apparently ceased. In that time the Tatar Rift Strait was formed. Ophiolite rocks of the subduction zones as a result of compression have been squeezed out on a surface. The ophiolite complex combined by the ultrabasic rocks, fixes position of ancient subduction zone. It is probable that the manifestation of the Neftegorsk earthquake was a result of activization of this ancient subduction zone. On a surface the subduction zone manifests itself as deep faults running along Sakhalin. The center of the Neftegorsk earthquake was directly formed by burst of activity of this ancient subduction zone. From a position of the ancient subduction zone under Sakhalin, which is a cause of strong earthquakes here, it follows that the region is one of seismic dangerous in Russia. Constructed on the basis of complex interpretation of the geologic-geophysical data the geodynamic models of natural disaster regions give the chance: to study a deep structure under seismic dangerous zones; to investigate a role of deep processes in the upper mantle in formation of structures of earth crust; to relate the geological features, tectonomagmatic, hydrothermal activity with the processes in the upper mantle; to plot maps in detail with zones of increasing risks to prevent active building or other economic activities in such dangerous regions.

  4. Subduction-zone magnetic anomalies and implications for hydrated forearc mantle

    USGS Publications Warehouse

    Blakely, R.J.; Brocher, T.M.; Wells, R.E.

    2005-01-01

    Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide. ?? 2005 Geological Society of America.

  5. Building a Subduction Zone Observatory

    USGS Publications Warehouse

    Gomberg, Joan S.; Bodin, Paul; Bourgeois, Jody; Cashman, Susan; Cowan, Darrel; Creager, Kenneth C.; Crowell, Brendan; Duvall, Alison; Frankel, Arthur; González, Frank I.; Houston, Heidi; Johnson, Paul; Kelsey, Harvey; Miller, Una; Roland, Emily C.; Schmidt, David; Staisch, Lydia; Vidale, John; Wilcock, William; Wirth, Erin

    2016-01-01

    Subduction zones contain many of Earth’s most remarkable geologic structures, from the deepest oceanic trenches to glacier-covered mountains and steaming volcanoes. These environments formed through spectacular events: Nature’s largest earthquakes, tsunamis, and volcanic eruptions are born here.

  6. Thermal impact of magmatism in subduction zones

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Katz, Richard F.; Tian, Meng; Rudge, John F.

    2018-01-01

    Magmatism in subduction zones builds continental crust and causes most of Earth's subaerial volcanism. The production rate and composition of magmas are controlled by the thermal structure of subduction zones. A range of geochemical and heat flow evidence has recently converged to indicate that subduction zones are hotter at lithospheric depths beneath the arc than predicted by canonical thermomechanical models, which neglect magmatism. We show that this discrepancy can be resolved by consideration of the heat transported by magma. In our one- and two-dimensional numerical models and scaling analysis, magmatic transport of sensible and latent heat locally alters the thermal structure of canonical models by ∼300 K, increasing predicted surface heat flow and mid-lithospheric temperatures to observed values. We find the advection of sensible heat to be larger than the deposition of latent heat. Based on these results we conclude that thermal transport by magma migration affects the chemistry and the location of arc volcanoes.

  7. Metamorphic records of multiple seismic cycles during subduction

    PubMed Central

    Hacker, Bradley R.; Seward, Gareth G. E.; Kelley, Chris S.

    2018-01-01

    Large earthquakes occur in rocks undergoing high-pressure/low-temperature metamorphism during subduction. Rhythmic major-element zoning in garnet is a common product of such metamorphism, and one that must record a fundamental subduction process. We argue that rhythmic major-element zoning in subduction zone garnets from the Franciscan Complex, California, developed in response to growth-dissolution cycles driven by pressure pulses. Using electron probe microanalysis and novel techniques in Raman and synchrotron Fourier transform infrared microspectroscopy, we demonstrate that at least four such pressure pulses, of magnitude 100–350 MPa, occurred over less than 300,000 years. These pressure magnitude and time scale constraints are most consistent with the garnet zoning having resulted from periodic overpressure development-dissipation cycles, related to pore-fluid pressure fluctuations linked to earthquake cycles. This study demonstrates that some metamorphic reactions can track individual earthquake cycles and thereby opens new avenues to the study of seismicity. PMID:29568800

  8. Slip in Great Megathrust Earthquakes and its Relation to Crustal Structure as Revealed by Satellite Free-air Gravity

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Blakely, R. J.; Scholl, D.

    2007-12-01

    In 2003, Song and Simons and Wells et al. showed that approximately 70% of the moment released during past large, shallow subduction zone thrust earthquakes occurred beneath trench-parallel, free-air gravity lows outlining the deep-sea slope terrace and its basins. The authors suggested that the basin-centered, fore-arc gravity lows might be good predictors of high seismic slip in future earthquakes. Since 2001, ten megathrust earthquakes have occurred with magnitudes greater than Mw 7.7, including the giant, Mw 9.17 Sumatra earthquake of 2004. These earthquakes provide a robust test of the idea that seismic slip is focused beneath basin-centered gravity lows, and also the related ideas that the landward maximum gravity gradient marks the effective down-dip limit of large coseismic slip, and that intrabasin, transverse gravity highs are areas of lower slip. A compilation of seismic and geodetic slip inversions for the post-2001 earthquakes and new analyses of slip for the great Antofagasta, Jalisco, and Peru events in 1995 and 1996 indicate that more than 80% of the high-slip areas occur beneath deep-sea terrace gravity lows (DSTL), and that half of the earthquake asperities lie beneath fore-arc basins or local gravity lows. The maximum gravity gradient along the landward margin of the deep-sea terrace may mark the point where thicker overlying crust and higher temperatures on the megathrust limit the down dip extent of stick-slip behavior. Onland analogues are the mountain front of the Himalaya, which approximately marks the down-dip limit of large coseismic slip along the Main Frontal Thrust, and the front of the Taiwan Central Ranges, which coincides with the limit of slip during the 1999 Chi-Chi earthquake (Mw 7.6). In the up dip direction, coseismic slip may be partitioned onto splay faults in the wedge, as occurred in the 1964 Alaska earthquake. The observed pattern of greater slip at depth beneath fore arc basins is consistent with partitioning of slip up dip, especially if outer wedge materials deform more slowly, as suggested for parts of the 2004 Sumatra rupture. Along strike variations in fore-arc gravity also correlate with changing seismic behavior. At Cape Erimo on Hokkaido, three Mw 8+ earthquakes (1952, 1968, 2003) have occurred on either side of the gravity high that overlies the Cape, with little coseismic slip beneath the high. To the northeast, the deep-sea terrace gradually narrows, as does the rupture width of the great earthquakes, until off the central Kurile Islands, the terrace disappears and the arc gravity high occupies the fore-arc. The gravity high had been an historic seismic gap that was filled by the 2006 Kurile Island earthquake (Mw 8.3). Although the earthquake nucleated under the high, the slip occurred beneath the adjacent gravity low to the northeast. This might suggest the gravity highs are not likely sources of large seismic moment, at least in M8 earthquakes. In contrast, the main asperity associated with the 2005 Sumatra (Mw 8.7) earthquake was beneath the large gravity high of Nias Island. An alternative view is that the gravity highs are stronger asperities that only rupture in giant earthquakes. Globally, the coincidence of basin- centered coseismic slip with geologic evidence of sustained subsidence of the fore-arc suggests that subduction erosion is occurring in the seismogenic zone. Recent work off Chile, Colombia, Peru, and elsewhere shows that subduction erosion is an important process in many subduction zones.

  9. Investigation of complex slow slip behavior along the Hikurangi subduction zone with earthquake simulator RSQSim

    NASA Astrophysics Data System (ADS)

    Colella, H.; Ellis, S. M.; Williams, C. A.

    2015-12-01

    The Hikurangi subduction zone (New Zealand) is one of many subudction zones that exhibit slow slip behavior. Geodetic observations along the Hikurangi subduction zone are unusual in that not only does the subduction zone exhibit periodic slow slip events at "typical" subduction-zone depths of 25-50 km along the southern part of the margin, but also much shallower depths of 8-15 km along the northern part of the margin. Furthermore, there is evidence for interplay between slow slip events at these different depth ranges (between the deep and shallow events) along the central part of the margin, and some of the slow slip behavior is observed along regions of the interface that were previously considered locked, which raises questions about the slip behavior of this region. This study employs the earthquake simulator, RSQSim, to explore variations in the effective normal stress (i.e., stress after the addition of pore fluid pressures) and the frictional instability necessary to generate the complex slow slip events observed along the Hikurangi margin. Preliminary results suggest that to generate slow slip events with similar recurrence intervals to those observed the effective normal stress (MPa) is 3x higher in the south than the north, 6-9MPa versus 2-3MPa, respectively. Results also suggest that, at a minimum, that some overlap along the central margin must exist between the slow slip sections in the north and south to reproduce the types of slip events observed along the Hikurangi subduction zone. To further validate the results from the simulations, Okada solutions for surface displacements will be compared to geodetic solution to more accurately constrain the areas in which slip behavior varies and the cause(s) for the variation(s).

  10. Initiation of Subduction Zones: A Consequence of Lateral Compositional Buoyancy Contrast Within the Lithosphere

    NASA Astrophysics Data System (ADS)

    Niu, Y.; O'Hara, M. J.; Pearce, J. A.

    2001-12-01

    Subduction of oceanic lithosphere into deep mantle is one of the key aspects of plate tectonics. Pull by the subducting-slab due to its negative buoyancy is widely accepted as the major driving force for plate motion and plate tectonics. Hence, there would be no plate tectonics if there were no subduction zones. Yet how a subduction zone initiates remains poorly known. Here we show that lateral compositional (vs. thermal) buoyancy contrast within the lithosphere creates the favored and necessary condition for the initiation of a subduction zone by (1) comparing the compositional and density differences between normal oceanic lithosphere (NOL) represented by abyssal peridotites (AP) and subarc lithosphere (SAL) represented by forearc peridotites (FP), and (2) simple physical analysis. As the gravitational attraction is the principal driving force of the subducting slab, it would be optimal if one part of the lithosphere experiences a greater gravitational attraction than its adjacent neighbor prior to or during the initiation of a subduction. This requires the pre-existence of a density contrast within the lithosphere. If the lithosphere is thermally uniform as is often the case, then the density contrast must result from a compositional contrast. This hypothesis can be tested by examining the lithospheric materials on both sides of a subduction zone. Subduction of a dense NOL beneath a buoyant continental lithosphere is straightforward, but intra-oceanic subduction such as in the western Pacific requires a scrutiny. Our data show that FP of Mariana and Tonga - two of the most important intra-oceanic subduction zones on Earth - are compositionally more depleted than AP: Cr#-sp (mean+/- 1σ ) = 0.584+/-0.084(FP) vs. 0.307+/-0.134(AP); Mg#-ol = 0.915+/-0.006(FP) vs. 0.898+/-0.082(AP); Mg#-opx = 0.917+/-0.006(FP) vs. 0.908+/-0.006(AP); Mg#-cpx = 0.929+/-0.021(FP) vs. 0.917+/-0.011(AP). As a result, SAL is > 0.7% less dense than NOL. This density contrast due to compositional difference is equivalent to Δ T = ~230° C, which is similar to or greater than the postulated thermal buoyancy contrast between a hot mantle plume and its surroundings. While the depleted nature of FP has been interpreted to result from subducting-slab dehydration induced high extents of mantle wedge melting, evidence indicates that the depletion of these FP predates the inception of the subduction, thus these FP are not residues of present-day arc magmatism. Hence, the compositional buoyancy contrast already existed within the lithosphere before the inception of the subduction in the western Pacific. Much of the Mariana SAL may be fragments of old continental lithosphere, whereas the Tonga/Fiji plateau and Kamchatka lithosphere may be remnants of buoyant, hence unsubductable oceanic plateaus (mantle plume head materials) for the Louisville and Hawaiian hotspots respectively. Passive continental margins, where the largest compositional buoyancy contrast exists within the lithosphere, are the loci of future subduction zones. Geometrical analysis shows that the compositional buoyancy contrast within the lithosphere under compression (e.g., ridge push) induces transtensional planes. The weakest plane in the vicinity of the compositional buoyancy contrast develops into a reverse fault. The dense NOL (the foot-wall) tends to sink into the hot and less dense asthenosphere. Calculations show that this tendency to sink reduces both the normal stress to, and shear resistance along, the fault plane, thus easing the sinking and favoring the initiation of a subduction zone. This concept also explains other observations and makes testable predictions on important geodynamic problems.

  11. Andean subduction orogeny: feedbacks between tectonics, relief evolution and global climate

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Armijo, Rolando; Coudurier-Curveur, Aurélie; Carrizo, Daniel

    2016-04-01

    The Andean subduction margin, largest tectonic relief on the Earth (13 km vertically from the trench to the Altiplano) has a stepped morphology, which results of the evolution over the past 50 Myr of two parallel flat-ramp thrust systems, at the - previously unidentified - West Andean Thrust (WAT), and at the subduction interface. The evolution of those thrusts appears concomitant with increasing aridity in the Atacama Desert, which keeps a large-scale record of interplaying tectonics and Cenozoic climate change. The coastal morphology is dominated by the Atacama Bench, a giant uplifted terrace at 1-2km asl. Geomorphic and climatic data, numerical experiments of drainage formation are consistent with the development of a flat Atacama morphology close to sea level, interrupted at ≤10 Ma by tectonic uplift prevailing to the present. This suggests recent trench-ward relief growth by incorporation of the coastal Atacama Bench to the Andes reliefs. Thrust splay structures and other complexities above the subduction interface may explain this relief growth, as well as the distribution of asperities under the oceanward forearc, and the down-dip segmentation of coupling and seismicity on the megathrust. Combining those results with geological knowledge at the scale of the whole Central Andes, we show that the Andean orogeny results from protracted processes of bivergent crustal shortening in a wide region squeezed between the rigid Marginal Block and the S America Plate. The overall growth curve of Andean orogeny over the past 50 Myr appears synchronous with the onset of the "ramp-shaped" temperature decrease since the Early Eocene climatic optimum. Andean growth and global cooling may have operated under the same forcing mechanism at plate-scale, involving viscous flow in the mantle. But Andean growth appears modulated by climatic feedbacks causative of stepwise reductions of erosive power over the Andean margin. The first of such events is coeval with Late Eocene cooling and promoted the eastward propagation of deformation towards the continent interior. The second one, coeval with Late Miocene cooling, is associated with the establishment of hyper-aridity in the Atacama Desert, and is responsible of a tectonic "freezing" which promoted since the triggering of subduction of the Brazilian craton, the Andean bivergent growth, and rapid uplift throughout the Andes-Altiplano. Armijo R., Lacassin R., Coudurier-Curveur A., Carrizo D., Coupled tectonic evolution of Andean orogeny and global climate, Earth Science Reviews, 143, 1-35, doi:10.1016/j.earscirev.2015.01.005, 2015.

  12. Strength of the Subduction Plate Interface beneath the Seismogenic Zone: A Microstructural Investigation of Deformation Mechanisms within a Phyllosilicate- and Amphibole-rich Shear Zone

    NASA Astrophysics Data System (ADS)

    Seyler, C.; Kirkpatrick, J. D.; Šilerová, D.

    2017-12-01

    Localization of strain at plate boundaries requires rheological weakening of the lithosphere. The rheology of the subduction plate interface is dictated by the dominant grain-scale deformation mechanisms. However, little is known about the deformation mechanisms within phases commonly found in subduction zones, such as phyllosilicates and amphiboles. We investigate the Leech River Shear Zone on Vancouver Island, British Columbia to explore deformation processes downdip of the seismogenic zone and evaluate the bulk rheology of the plate interface. This shear zone juxtaposes a metamorphosed accretionary prism against a metabasaltic oceanic plateau, representing a paleo-plate interface from the ancient Cascadia subduction zone. Preliminary geothermometry results record a prograde deformation temperature of 573.6±11.2 ˚C in the overriding accretionary wedge, and the hornblende-chlorite-epidote-plagioclase mineral assemblage suggests upper greenschist to lower amphibolite facies metamorphism of the downgoing oceanic crust. Detailed mapping of the plate interface documents a 200 m wide mylonitic shear zone developed across the lithologic contact. Asymmetric shear fabrics, isoclinal folding, boudinage, and a steeply plunging, penetrative stretching lineation are consistent with sinistral-oblique subduction. Numerous discordant quartz veins are variably sheared into sigmoidal shapes as well as isoclinally folded and boudinaged, indicating cyclical synkinematic fracture and vein formation. At the grain-scale, interconnected, anastomosing layers of muscovite, chlorite, and graphite in the accretionary prism rocks likely deformed through kinking and dislocation glide. Framework minerals such as quartz and feldspar deformed by dislocation creep. In the metabasalt, hornblende and chlorite form a continuous S—C fabric in which asymmetric hornblende porphyroclasts deformed by rigid grain rotation and dissolution-precipitation creep. The strength of the subduction plate interface beneath the seismogenic zone was therefore controlled by multiple syn-kinematic mechanisms, with overall strength dominated by the rheology of phyllosilicates and amphibole, generating very low viscosities at the plate interface and enhancing strain localization.

  13. Trench-parallel variations in Pacific and Indo-Australian crustal velocity structure due to Louisville Ridge seamount subduction

    NASA Astrophysics Data System (ADS)

    Stratford, W. R.; Knight, T. P.; Peirce, C.; Watts, A. B.; Grevemeyer, I.; Paulatto, M.; Bassett, D.; Hunter, J.; Kalnins, L. M.

    2012-12-01

    Variations in trench and forearc morphology, and lithospheric velocity structure are observed where the Louisville Ridge seamount chain subducts at the Tonga-Kermadec Trench. Subduction of these seamounts has affected arc and back-arc processes along the trench for the last 5 Myr. High subduction rates (80 mm/yr in the north, 55 mm/yr in the south), a fast southwards migrating collision zone (~180 km/myr), and the obliquity of the subducting plate and the seamount chain to the trench, make this an ideal location to study the effects of seamount subduction on lithospheric structure. The "before and after" subduction regions have been targeted by several large-scale geophysical projects in recent years; the most recent being the R/V Sonne cruise SO215 in 2011. The crust and upper mantle velocity structure observed in profiles along strike of the seamount chain and perpendicular to the trench from this study, are compared to a similar profile from SO195, recorded ~100 km to the north. The affects of the passage of the seamounts through the subduction system are indicated by velocity anomalies in the crust and mantle of the overriding plate. Preliminary results indicate that in the present collision zone, mantle velocities (Pn) are reduced by ~5%. Around 100 km to the north, where seamounts are inferred to have subducted ~1 Myr ago, a reduction of 7% in mantle P-wave velocity is observed. The width of the trench slope and elevation of the forearc also vary along strike. At the collision zone a >100 km wide collapse region of kilometre-scale block faults comprise the trench slope, while the forearc is elevated. The elevated forearc has a 5 km think upper crust with a Vp of 2.5-5.5 km/s and the collapse zone also has upper crustal velocities as low as 2.5 km/s. To the east in the Pacific Plate, lower P-wave velocities are also observed and attributed to serpentinization due to deep fracturing in the outer trench high. Large bending faults permeate the crust and the Osbourn Seamount, currently on the verge of subduction, is fractured stepwise down into the trench. Pn velocities in the hinge zone of the Pacific Plate are as low as 7.3 km/s indicating that fracturing and serpentinization may also extend to sub-crustal depths. Finally, trench-parallel variations in subduction zone velocity structure are used to infer the degree to which seamount subduction has altered the physical state of the Pacific and Indo-Australian plates both pre- and post subduction.

  14. Intracontinental subduction and hinged unroofing along the Salmon River Suture Zone, west central Idaho

    NASA Astrophysics Data System (ADS)

    Selverstone, Jane; Wernicke, Brian P.; Aliberti, Elaine A.

    1992-02-01

    The Salmon River suture zone in west central Idaho juxtaposes volcanic arc rocks of the Wallowa terrane directly against cratonic North America. Detailed metamorphic studies along a 10 km traverse perpendicular to the suture indicate that the arc and two crystalline fragments thrust upon it each record different pressure-temperature (P-T) histories. From lowest to highest structural level: the Wallowa terrane shows only subgreenschist metamorphism, the Rapid River plate (RRP) records unroofing and cooling from ˜8 kbar and 550°C to 6 kbar and 475°-500°C, and the Pollock Mountain plate (PMP) shows evidence for polymetamorphism and records burial and heating paths to final equilibration conditions of 9-11 kbar and 600°-625° C. Ar-Ar hornblende ages combined with the P-T data suggest that currently exposed levels of the RRP and PMP were juxtaposed against one another at 15-20 km depth at or prior to 118 Ma, indicating that 10-20 km of uplift, and hence also the onset of collision-related metamorphism, occurred before ˜118 Ma. Correlation of the metamorphic and age data with geometric constraints from the initial Sr 0.706 line and the dimensions of the RRP and PMP permit construction of large-scale retrodeformable sections of the west side of the suture from Late Jurassic through Late Cretaceous time. The abrupt nature of the Sr 0.706 line implies that the arc-continent boundary extends vertically through most of the crust, which requires sharp downwarping of the arc lithosphere in order to account for the PMP metamorphic data. Narrow zoned overgrowths on PMP garnets record this burial event and require initially rapid (≥3 km/m.y.) uplift rates in order to be preserved. We suggest that the onset of rapid uplift resulted from the separation of the negatively buoyant lithospheric root from the downwarped arc, allowing buoyant rise of fragments of thickened crust. Detachment of the root is suggested to change the environment of crustal shortening from one in which footwalls of thrusts or shear zones sink to one in which hanging walls rise. This mechanism represents an alternative to cessation of shortening or onset of tectonic denudation as an explanation for the transition from burial to uplift of high-pressure metamorphic terrains. Subsequent uplift appears to have been slow and to have occurred in a hinged fashion such that mineral and whole rock ages decrease systematically towards the suture zone. The consumption of lithosphere during ≥40 km of shortening between two crustal blocks implies that the Salmon River suture is the trace of an intracontinental subduction zone. Burial and collision apparently began before about 130 Ma, and thus any precollision strike-slip faulting or tectonic escape of intervening terranes was likely accomplished in Jurassic and earliest Cretaceous time.

  15. The Great Maule earthquake: seismicity prior to and after the main shock from amphibious seismic networks

    NASA Astrophysics Data System (ADS)

    Lieser, K.; Arroyo, I. G.; Grevemeyer, I.; Flueh, E. R.; Lange, D.; Tilmann, F. J.

    2013-12-01

    The Chilean subduction zone is among the seismically most active plate boundaries in the world and its coastal ranges suffer from a magnitude 8 or larger megathrust earthquake every 10-20 years. The Constitución-Concepción or Maule segment in central Chile between ~35.5°S and 37°S was considered to be a mature seismic gap, rupturing last in 1835 and being seismically quiet without any magnitude 4.5 or larger earthquakes reported in global catalogues. It is located to the north of the nucleation area of the 1960 magnitude 9.5 Valdivia earthquake and to the south of the 1928 magnitude 8 Talca earthquake. On 27 February 2010 this segment ruptured in a Mw=8.8 earthquake, nucleating near 36°S and affecting a 500-600 km long segment of the margin between 34°S and 38.5°S. Aftershocks occurred along a roughly 600 km long portion of the central Chilean margin, most of them offshore. Therefore, a network of 30 ocean-bottom-seismometers was deployed in the northern portion of the rupture area for a three month period, recording local offshore aftershocks between 20 September 2010 and 25 December 2010. In addition, data of a network consisting of 33 landstations of the GeoForschungsZentrum Potsdam were included into the network, providing an ideal coverage of both the rupture plane and areas affected by post-seismic slip as deduced from geodetic data. Aftershock locations are based on automatically detected P wave onsets and a 2.5D velocity model of the combined on- and offshore network. Aftershock seismicity analysis in the northern part of the survey area reveals a well resolved seismically active splay fault in the accretionary prism of the Chilean forearc. Our findings imply that in the northernmost part of the rupture zone, co-seismic slip most likely propagated along the splay fault and not the subduction thrust fault. In addition, the updip limit of aftershocks along the plate interface can be verified to about 40 km landwards from the deformation front. Prior to the Great Maule earthquake the Collaborative Research Center SFB 574 'Volatiles and Fluids in Subduction Zones' shot several wide-angle profiles and operated a network, also consisting of OBS and land stations for six months in 2008. Both projects provide a great opportunity to study the evolution of a subduction zone within the seismic cycle of a great earthquake. The most profound features are (i) a sharp reduction in intraslab seismic activity after the Maule earthquake and (ii) a sharp increase in seismic activity at the slab interface above 50 km depth, where large parts of the rupture zone were largely aseismic prior to the Maule earthquake. Further, the aftershock seismicity shows a broader depth distribution above 50 km depth.

  16. Strongly foliated garnetiferous amphibolite clasts in ophiolitic melanges, Yarlung Zangbo Suture Zone, Tibet; Early Cretaceous disruption of a back-arc basin?

    NASA Astrophysics Data System (ADS)

    Guilmette, C.; Hebert, R.; Wang, C.; Indares, A. D.; Ullrich, T. D.; Dostal, J.; Bedard, E.

    2007-12-01

    Metre to decameter-size clasts of amphibolite are found embedded in ophiolitic melanges underlying the Yarlung Zangbo Suture Zone Ophiolites, South Tibet, China. These ophiolites and melanges occur at the limit between Indian and Tibetan-derived rocks and represent remnants of an Early Cretaceous intraoceanic supra-subduction zone domain, the Neo-Tethys. In the Saga-Dazuka segment (500 km along-strike), we discovered new occurrences of strongly foliated amphibolites found as clasts in the ophiolitic melange. In garnet-free samples, hornblende is green-blue magnesio-hornblende and cpx is low-Al diopside. In garnet- bearing samples, garnet is almandine with a strong pyrope component (up to 30 mol%) whereas coexisting hornblende is brown Ti-rich tschermakite and clinopyroxene is Al-diopside. Plagioclase composition was ubiquitously shifted to albite during a late metasomatic event. Geochemistry of these rocks indicates that their igneous protoliths crystallized from a slightly differentiated tholeiitic basaltic liquid that did not undergo major fractionation. Trace element patterns reveal geochemical characteristics identical to those of the overlying ophiolitic crust. These are 1) trace element abundances similar to that of N-MORBs or BABBs, 2) a slight depletion of LREE and 3) a moderate to strong Ta-Nb negative anomaly and a slight Ti anomaly. Such characteristics suggest genesis over a spreading center close to a subduction zone, possibly a back-arc basin. Step-heating Ar/Ar plateau ages were obtained from hornblende separates. All ages fall in the range of 123-128 Ma, overlapping the crystallization ages from the overlying ophiolite (126-131 Ma). Pseudosections were built with the THERMOCALC software in the system NCFMASH. Results indicate that the observed assemblage Hb+Pl+Gt+Cpx is stable over a wide range of P-T conditions, between 10-18 kbars and at more than 800°C. Measured mineral modes and solid solution compositions were successfully modeled, indicating equilibrium between 11-13 kbars and 825-850°C, corresponding to high-P granulite facies conditions. In a general way, the geochemistry of the strongly foliated amphibolite clasts suggests that their igneous protolith probably crystallized within the same supra-subduction zone as the crustal rocks from the overlying ophiolite. Then some of these rocks were entrained to mantle depth and were rapidly exhumed, most likely along a lithospheric scale thrust fault underneath the ophiolite. This event corresponds with the end of magmatic activity within the ophiolitic crust and mantle and could be regarded as the inception of a subduction plane at the spreading ridge of a back-arc basin. The whole package was later on obducted over the Indian passive margin, at about 70 Ma. Such a model suggests that closure of the oceanic domain separating India from Eurasia implied disruption of at least one arc-back-arc system, thus requiring at least one early intraoceanic collision or major plate movement reorganization prior to the Late Cretaceous obduction.

  17. Seismicity, Deformation, and Metamorphism in the Western Hellenic Subduction Zone: New Constraints From Tomography

    NASA Astrophysics Data System (ADS)

    Halpaap, Felix; Rondenay, Stéphane; Ottemöller, Lars

    2018-04-01

    The Western Hellenic Subduction Zone is characterized by a transition from oceanic to continental subduction. In the southern oceanic portion of the system, abundant seismicity reaches depths of 100 km to 190 km, while the northern continental portion rarely exhibits deep earthquakes. Our study investigates how this oceanic-continental transition affects fluid release and related seismicity along strike. We present results from local earthquake tomography and double-difference relocation in conjunction with published images based on scattered teleseismic waves. Our tomographic images recover both subducting oceanic and continental crusts as low-velocity layers on top of high-velocity mantle. Although the northern and southern trenches are offset along the Kephalonia Transform Fault, continental and oceanic subducting crusts appear to align at depth. This suggests a smooth transition between slab retreat in the south and slab convergence in the north. Relocated hypocenters outline a single-planed Wadati-Benioff Zone with significant along-strike variability in the south. Seismicity terminates abruptly north of the Kephalonia Transform Fault, likely reflecting the transition from oceanic to continental subducted crust. Near 90 km depth, the low-velocity signature of the subducting crust fades out and the Wadati-Benioff Zone thins and steepens, marking the outline of the basalt-eclogite transition. Subarc melting of the mantle is only observed in the southernmost sector of the oceanic subduction, below the volcanic part of the arc. Beneath the nonvolcanic part, the overriding crust appears to have undergone large-scale silica enrichment. This enrichment is observed as an anomalously low Vp/Vs ratio and requires massive transport of dehydration-derived fluids updip through the subducting crust.

  18. Subduction dynamics: From the trench to the core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Kincaid, Chris

    1995-07-01

    Subduction occurs along convergent plate boundaries where one of the colliding lithospheric plates descends into the mantle. Subduction zones are recognized where plates converge at ˜2-15 cm/yr, although well developed trenches and volcanic arcs (e.g. the line of active volcanoes lying parallel to most ocean trenches, such as the Aleutian Islands in the North Pacific) occur when convergence rates are higher, 4-10 cm/yr. This report is meant to provide a brief review on the general topic of subduction dynamics. A recent spin on subduction studies is the growing realization that the need to understand this global Earth process may be argued not only on purely scientific grounds, but also in terms of societal relevance. While subducting slabs of oceanic lithosphere clearly provide the dominant driving force for mantle dynamics and plate tectonics, over half of the Earth's present 40,000 km of subduction zones are associated with continental margins where a large and rapidly increasing percentage of the Earth's population resides. Subductioninduced hazards along active continental margins include those associated with volcanic hazards (Blong, 1984; Tilling, 1989) such as lava flows, pyroclastic flows and ash fallout and tectonic processes, such as faulting, tsunamis and earthquakes. With regards to earthquake hazards, all of the great (magnitude >9) earthquakes in recorded history have occurred at subduction zones, with 50% of all energy released since 1900 being in four events (1964-Alaska; 1960-Chile; 1957- Aleutians; 1952-Kamchatka). Subduction zone hazards have significant impact on long time scales, such as contributions to global climate change (Robock, 1991; Simarski, 1992; Johnson, 1993; Bluth et al., 1993) and short time scales such as airline safety (Casadevall, 1992). Moreover, accretionary wedges are important in terms of resource potential and trenches have occasionally been suggested as nuclear waste disposal sites.

  19. Volatile transfer and recycling at convergent margins: Mass-balance and insights from high-P/T metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.

    The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.

  20. Progressive deformation and superposed fabrics related to Cretaceous crustal underthrusting in western Arizona, U.S.A.

    USGS Publications Warehouse

    Laubach, S.E.; Reynolds, S.J.; Spencer, J.E.; Marshak, S.

    1989-01-01

    In the Maria fold and thrust belt, a newly recognized E-trending Cretaceous orogenic belt in the southwestern United States, ductile thrusts, large folds and superposed cleavages record discordant emplacement of crystalline thrust sheets across previously tilted sections of crust. Style of deformation and direction of thrusting are in sharp contrast to those of the foreland fold-thrust belt in adjacent segments of the Cordillera. The net effect of polyphase deformation in the Maria belt was underthrusting of Paleozoic and Mesozoic metasedimentary rocks under the Proterozoic crystalline basement of North America. The structure of the Maria belt is illustrated by the Granite Wash Mountains in west-central Arizona, where at least four non-coaxial deformation events (D1-D4) occurred during the Cretaceous. SSE-facing D1 folds are associated with S-directed thrusts and a low-grade slaty cleavage. D1 structures are truncated by the gently-dipping Hercules thrust zone (D2), a regional SW-vergent shear zone that placed Proterozoic and Jurassic crystalline rocks over upturned Paleozoic and Mesozoic supracrustal rocks. Exposures across the footwall margin of the Hercules thrust zone show the progressive development of folds, cleavage and metamorphism related to thrusting. D3 and D4 structures include open folds and spaced cleavages that refold or transect D1 and D2 folds. The D2 Hercules thrust zone and a D3 shear zone are discordantly crosscut by late Cretaceous plutons. ?? 1989.

  1. Holocene compression in the Acequión valley (Andes Precordillera, San Juan province, Argentina): Geomorphic, tectonic, and paleoseismic evidence

    NASA Astrophysics Data System (ADS)

    Audemard, M.; Franck, A.; Perucca, L.; Laura, P.; Pantano, Ana; Avila, Carlos R.; Onorato, M. Romina; Vargas, Horacio N.; Alvarado, Patricia; Viete, Hewart

    2016-04-01

    The Matagusanos-Maradona-Acequión Valley sits within the Andes Precordillera fold-thrust belt of western Argentina. It is an elongated topographic depression bounded by the roughly N-S trending Precordillera Central and Oriental in the San Juan Province. Moreover, it is not a piggy-back basin as we could have expected between two ranges belonging to a fold-thrust belt, but a very active tectonic corridor coinciding with a thick-skinned triangular zone, squeezed between two different tectonic domains. The two domains converge, where the Precordillera Oriental has been incorporated to the Sierras Pampeanas province, becoming the western leading edge of the west-verging broken foreland Sierras Pampeanas domain. This latter province has been in turn incorporated into the active deformation framework of the Andes back-arc at these latitudes as a result of enhanced coupling between the converging plates due to the subduction of the Juan Fernández ridge that flattens the Nazca slab under the South American continent. This study focuses on the neotectonics of the southern tip of this N-S elongated depression, known as Acequión (from the homonym river that crosses the area), between the Del Agua and Los Pozos rivers. This depression dies out against the transversely oriented Precordillera Sur, which exhibits a similar tectonic style as Precordillera Occidental and Central (east-verging fold-thrust belt). This contribution brings supporting evidence of the ongoing deformation during the Late Pleistocene and Holocene of the triangular zone bounded between the two leading and converging edges of Precordillera Central and Oriental thrust fronts, recorded in a multi-episodic lake sequence of the Acequión and Nikes rivers. The herein gathered evidence comprise Late Pleistocene-Holocene landforms of active thrusting, fault kinematics (micro-tectonic) data and outcrop-scale (meso-tectonic) faulting and folding of recent lake and alluvial sequences. In addition, seismically-induced effects already reported in the literature by this working team further support the tectonic activity of neighboring faults in the Holocene. As a concluding remark we could state that the ongoing deformation in the region under study is driven by a compressional regime whose maximum horizontal stress in the late Pleistocene-Holocene is roughly east-west oriented. This is further supported by focal mechanism solutions.

  2. Radial and Azimuthal Anisotropy Tomography of the NE Japan Subduction Zone: Implications for the Pacific Slab and Mantle Wedge Dynamics

    NASA Astrophysics Data System (ADS)

    Ishise, Motoko; Kawakatsu, Hitoshi; Morishige, Manabu; Shiomi, Katsuhiko

    2018-05-01

    We investigate slab and mantle structure of the NE Japan subduction zone from P wave azimuthal and radial anisotropy using travel time tomography. Trench normal E-W-trending azimuthal anisotropy (AA) and radial anisotropy (RA) with VPV > VPH are found in the mantle wedge, which supports the existence of small-scale convection in the mantle wedge with flow-induced LPO of mantle minerals. In the subducting Pacific slab, trench parallel N-S-trending AA and RA with VPH > VPV are obtained. Considering the effect of dip of the subducting slab on apparent anisotropy, we suggest that both characteristics can be explained by the presence of laminar structure, in addition to AA frozen-in in the subducting plate prior to subduction.

  3. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake

    NASA Astrophysics Data System (ADS)

    Moreno, Marcos; Haberland, Christian; Oncken, Onno; Rietbrock, Andreas; Angiboust, Samuel; Heidbach, Oliver

    2014-04-01

    Constraints on the potential size and recurrence time of strong subduction-zone earthquakes come from the degree of locking between the down-going and overriding plates, in the period between large earthquakes. In many cases, this interseismic locking degree correlates with slip during large earthquakes or is attributed to variations in fluid content at the plate interface. Here we use geodetic and seismological data to explore the links between pore-fluid pressure and locking patterns at the subduction interface ruptured during the magnitude 8.8 Chile earthquake in 2010. High-resolution three-dimensional seismic tomography reveals variations in the ratio of seismic P- to S-wave velocities (Vp/Vs) along the length of the subduction-zone interface. High Vp/Vs domains, interpreted as zones of elevated pore-fluid pressure, correlate spatially with parts of the plate interface that are poorly locked and slip aseismically. In contrast, low Vp/Vs domains, interpreted as zones of lower pore-fluid pressure, correlate with locked parts of the plate interface, where unstable slip and earthquakes occur. Variations in pore-fluid pressure are caused by the subduction and dehydration of a hydrothermally altered oceanic fracture zone. We conclude that variations in pore-fluid pressure at the plate interface control the degree of interseismic locking and therefore the slip distribution of large earthquake ruptures.

  4. Asymmetric Subductions in an Asymmetric Earth: Geodynamics and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Dal Zilio, L.; Ficini, E.; Doglioni, C.; Gerya, T.

    2016-12-01

    The driving mechanism of plate tectonics is still controversial. Moreover, mantle kinematics is still poorly constrained due to the limited information available on its composition, thermal state, and physical parameters. The net rotation of the lithosphere, or so-called W-ward drift, however, indicates a decoupling of the plates relative to the underlying asthenosphere at about 100-200 km depth in the Low-Velocity Zone and a relative "E-ward" mantle counterflow. This mantle flow can account for a number of tectonic asymmetries on subduction dynamics such as steep versus shallow slab dip, diverging versus converging subduction hinge, low versus high topography of mountain belts, etc. This asymmetry is generally interpreted to reflect the age-dependent negative buoyancy of the subducting lithosphere. However, slab dip is insensitive to the age of the lithosphere. Here we investigate the role of mantle flow in controlling subduction dynamics using a high-resolution rheologically consistent two-dimensional numerical modeling. Results show the evolution of a subducting oceanic plate beneath a continent: when the subducting plate is dipping in opposite direction with respect to the mantle flow, the slab is sub-vertically deflected by the mantle flow, thus leading the coeval development of a back-arc basin. In contrast, agreement between mantle flow and dipping of the subducting slab relieves shallow dipping subduction zone, which in turn controls the development of a pronounced topography. Moreover, this study confirms that the age of the subducting oceanic lithosphere (i.e. its negative buoyancy) has a second order effect on the dip angle of the slab and, more generally, on subduction dynamics. Our numerical experiments show strong similarities to the observed evolution of subduction zone worldwide and demonstrate that the possibility of a horizontal mantle flow is universally valid.

  5. An Evaluation of Proposed Mechanisms of Slab Flattening in Central Mexico

    NASA Astrophysics Data System (ADS)

    Skinner, Steven M.; Clayton, Robert W.

    2011-08-01

    Central Mexico is the site of an enigmatic zone of flat subduction. The general geometry of the subducting slab has been known for some time and is characterized by a horizontal zone bounded on either side by two moderately dipping sections. We systematically evaluate proposed hypotheses for shallow subduction in Mexico based on the spatial and temporal evidence, and we find no simple or obvious explanation for the shallow subduction in Mexico. We are unable to locate an oceanic lithosphere impactor, or the conjugate of an impactor, that is most often called upon to explain shallow subduction zones as in South America, Japan, and Laramide deformation in the US. The only bathymetric feature that is of the right age and in the correct position on the conjugate plate is a set of unnamed seamounts that are too small to have a significant effect on the buoyancy of the slab. The only candidate that we cannot dismiss is a change in the dynamics of subduction through a change in wedge viscosity, possibly caused by water brought in by the slab.

  6. Highly oxidising fluids generated during serpentinite breakdown in subduction zones.

    PubMed

    Debret, B; Sverjensky, D A

    2017-09-04

    Subduction zones facilitate chemical exchanges between Earth's deep interior and volcanism that affects habitability of the surface environment. Lavas erupted at subduction zones are oxidized and release volatile species. These features may reflect a modification of the oxidation state of the sub-arc mantle by hydrous, oxidizing sulfate and/or carbonate-bearing fluids derived from subducting slabs. But the reason that the fluids are oxidizing has been unclear. Here we use theoretical chemical mass transfer calculations to predict the redox state of fluids generated during serpentinite dehydration. Specifically, the breakdown of antigorite to olivine, enstatite, and chlorite generates fluids with high oxygen fugacities, close to the hematite-magnetite buffer, that can contain significant amounts of sulfate. The migration of these fluids from the slab to the mantle wedge could therefore provide the oxidized source for the genesis of primary arc magmas that release gases to the atmosphere during volcanism. Our results also show that the evolution of oxygen fugacity in serpentinite during subduction is sensitive to the amount of sulfides and potentially metal alloys in bulk rock, possibly producing redox heterogeneities in subducting slabs.

  7. Metamorphic density controls on early-stage subduction dynamics

    NASA Astrophysics Data System (ADS)

    Duesterhoeft, Erik; Oberhänsli, Roland; Bousquet, Romain

    2013-04-01

    Subduction is primarily driven by the densification of the downgoing oceanic slab, due to dynamic P-T-fields in subduction zones. It is crucial to unravel slab densification induced by metamorphic reactions to understand the influence on plate dynamics. By analyzing the density and metamorphic structure of subduction zones, we may gain knowledge about the driving, metamorphic processes in a subduction zone like the eclogitization (i.e., the transformation of a MORB to an eclogite), the breakdown of hydrous minerals and the release of fluid or the generation of partial melts. We have therefore developed a 2D subduction zone model down to 250 km that is based on thermodynamic equilibrium assemblage computations. Our model computes the "metamorphic density" of rocks as a function of pressure, temperature and chemical composition using the Theriak-Domino software package at different time stages. We have used this model to investigate how the hydration, dehydration, partial melting and fractionation processes of rocks all influence the metamorphic density and greatly depend on the temperature field within subduction systems. These processes are commonly neglected by other approaches (e.g., gravitational or thermomechanical in nature) reproducing the density distribution within this tectonic setting. The process of eclogitization is assumed as being important to subduction dynamics, based on the very high density (3.6 g/cm3) of eclogitic rocks. The eclogitization in a MORB-type crust is possible only if the rock reaches the garnet phase stability field. This process is primarily temperature driven. Our model demonstrates that the initiation of eclogitization of the slab is not the only significant process that makes the descending slab denser and is responsible for the slab pull force. Indeed, our results show that the densification of the downgoing lithospheric mantle (due to an increase of pressure) starts in the early subduction stage and makes a significant contribution to the slab pull, where eclogitization does not occur. Thus, the lithospheric mantle acts as additional ballast below the sinking slab shortly after the initiation of subduction. Our calculation shows that the dogma of eclogitized basaltic, oceanic crust as the driving force of slab pull is overestimated during the early stage of subduction. These results improve our understanding of the force budget for slab pull during the intial and early stage of subduction. Therefore, the complex metamorphic structure of a slab and mantle wedge has an important impact on the development and dynamics of subduction zones. Further Reading: Duesterhoeft, Oberhänsli & Bousquet (2013), submitted to Earth and Planetary Science Letters

  8. A benchmark for subduction zone modeling

    NASA Astrophysics Data System (ADS)

    van Keken, P.; King, S.; Peacock, S.

    2003-04-01

    Our understanding of subduction zones hinges critically on the ability to discern its thermal structure and dynamics. Computational modeling has become an essential complementary approach to observational and experimental studies. The accurate modeling of subduction zones is challenging due to the unique geometry, complicated rheological description and influence of fluid and melt formation. The complicated physics causes problems for the accurate numerical solution of the governing equations. As a consequence it is essential for the subduction zone community to be able to evaluate the ability and limitations of various modeling approaches. The participants of a workshop on the modeling of subduction zones, held at the University of Michigan at Ann Arbor, MI, USA in 2002, formulated a number of case studies to be developed into a benchmark similar to previous mantle convection benchmarks (Blankenbach et al., 1989; Busse et al., 1991; Van Keken et al., 1997). Our initial benchmark focuses on the dynamics of the mantle wedge and investigates three different rheologies: constant viscosity, diffusion creep, and dislocation creep. In addition we investigate the ability of codes to accurate model dynamic pressure and advection dominated flows. Proceedings of the workshop and the formulation of the benchmark are available at www.geo.lsa.umich.edu/~keken/subduction02.html We strongly encourage interested research groups to participate in this benchmark. At Nice 2003 we will provide an update and first set of benchmark results. Interested researchers are encouraged to contact one of the authors for further details.

  9. Controls on continental strain partitioning above an oblique subduction zone, Northern Andes

    NASA Astrophysics Data System (ADS)

    Schütt, Jorina M.; Whipp, David M., Jr.

    2016-04-01

    Strain partitioning is a common process at obliquely convergent plate margins dividing oblique convergence into margin-normal slip on the plate-bounding fault and horizontal shearing on a strike-slip system parallel to the subduction margin. In subduction zones, strain partitioning in the upper continental plate is mainly controlled by the shear forces acting on the plate interface and the strength of the continental crust. The plate interface forces are influenced by the subducting plate dip angle and the obliquity angle between the normal to the plate margin and the convergence velocity vector, and the crustal strength of the continent is strongly affected by the presence or absence of a volcanic arc, with the presence of the volcanic arcs being common at steep subduction zones. Along the ˜7000 km western margin of South America the convergence obliquity, subduction dip angles and presence of a volcanic arc all vary, but strain partitioning is only observed along parts of it. This raises the questions, to what extent do subduction zone characteristics control strain partitioning in the overriding continental plate, and which factors have the largest influence? We address these questions using lithospheric-scale 3D numerical geodynamic experiments to investigate the influence of subduction dip angle, convergence obliquity, and weaknesses in the crust owing to the volcanic arc on strain partitioning behavior. We base the model design on the Northern Volcanic Zone of the Andes (5° N - 2° S), characterized by steep subduction (˜ 35°), a convergence obliquity between 31° -45° and extensive arc volcanism, and where strain partitioning is observed. The numerical modelling software (DOUAR) solves the Stokes flow and heat transfer equations for a viscous-plastic creeping flow to calculate velocity fields, thermal evolution, rock uplift and strain rates in a 1600 km x 1600 km box with depth 160 km. Subduction geometry and material properties are based on a simplified, generic subduction zone similar to the northern Andes. The upper surface is initially defined to resemble the Andes, but is free to deform during the experiments. We consider two main model designs, one with and one without a volcanic arc (weak continental zone). A relatively high angle of convergence obliquity is predicted to favor strain partitioning, but preliminary model results show no strain partitioning for a uniform continental crustal strength with a friction angle of Φ = 15° . However, strain partitioning does occur when including a weak zone in the continental crust resulting from arc volcanic activity with Φ = 5° . This results in margin-parallel northeastward translation of a continental sliver at 3.2 cm/year. The presence of the sliver agrees well with observations of a continental sliver identified by GPS measurements in the Northern Volcanic Zone with a translation velocity of about 1 cm/year, though the GPS-derived velocity may not be representative of the long-term rate of translation depending on whether the observation period includes one or more seismic cycles. Regardless, the observed behavior is consistent with the observed earthquake focal mechanisms and GPS measurements, suggesting significant northeastward transport of Andean crust along the margin of the northern Andes.

  10. Update on GPS-Acoustics Measurements on the Continental Slope of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.

    2017-12-01

    Land-based GPS measurements suggest the megathrust is locked offshore along the Cascadia Subduction Zone. However, land-based data alone lack geometric resolution to constrain the how the slip is distributed. GPS-Acoustic measurements can provide these constraints, but using traditional GPS-Acoustic approaches employing a ship is costly. Wave Gliders, a wave- and solar-powered, remotely-piloted sea surface platform, provide a low cost method for collecting GPS-A data. We have adapted GPS-Acoustic technology to the Wave Glider and in 2016 began annual measurements at three sites in the Cascadia Subduction Zone (CSZ). Here, we review positioning results collected during summer 2017 at two sites on the continental slope of the Cascadia Subduction Zone: One site is approximately 45 NM offshore central Oregon and the other approximately 50 NM offshore central Washington State. A third site is approximately 90 NM offshore central Oregon on the incoming Juan de Fuca plate. We will report on initial results of the GPS-A data collection and operational experiences of the missions in 2016 and 2017. Wave Glider based GPS-A measurement have the potential to significantly increase the number and frequency of measurements of strain accumulation in Cascadia Subduction Zone and elsewhere.

  11. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration

    PubMed Central

    Wei, S. Shawn; Wiens, Douglas A.; van Keken, Peter E.; Cai, Chen

    2017-01-01

    Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island–based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this “seismic belt” occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting. PMID:28097220

  12. Aqueous Silicate Polymers: An Alternative to `Supercritical' Fluids as Transport Agents in Subduction Zones

    NASA Astrophysics Data System (ADS)

    Mannig, C. E.

    2005-12-01

    The chemistry of subduction-zone fluids is complicated by melt-vapor miscibility and the existence of critical end-points in rock-H2O systems. It is commonly assumed that fluids in subduction zones attain properties intermediate in composition between hydrous silicate liquid and H2O, and that such fluids possess enhanced material transport capabilities. However, the relevance of supercritical, intermediate fluids to subduction zones presents four problems. (1) Albite-H2O is typically used as an analogue system, but the favorable position of its critical curve is not representative; critical curves for polymineralic subduction-zone lithologies lie at substantially higher P. (2) Even if albite-H2O is relevant, jadeite may interfere because of its different solubility and the positive clapeyron slope of its solidus, which points to liquid-structure changes that could cause reappearance of the liquid+vapor field. (3) Critical curves are features of very H2O-rich compositions; low-porosity, H2O-poor natural systems will coexist with intermediate fluids only over a narrow PT interval. (4) Intermediate fluids are expected only over short length scales because their migration will likely result in compositional shifts via reaction and mineral precipitation in the mantle wedge. Although supercritical, intermediate fluids are probably relatively unimportant in subduction zones, they reflect a chemical process that may hold the key to understanding high- P mass transfer. Miscibility in melt-vapor systems is a consequence of polymerization of dissolved components, primarily Si ± Al, Na and Ca. This behavior yields, e.g., aqueous Si-Si, Si-Al, Si-Na-Al, and Si-Ca oxide dimers and other multimers of varying stoichiometry (silicate polymers), even in subcritical, dilute, H2O-rich vapor. Silicate polymers in subcritical aqueous solutions have been inferred from high- P mineral-solubility experiments. The abundance of these species at high P shows that the chemistry of aqueous fluids in subduction-zones differs fundamentally from the more familiar ionic solutions of the upper crust. This has important consequences for minor element transport. Measurements of Fe, phosphorous and Ti solubility reveal that dissolved concentrations rise with increased aqueous albite content at fixed P and T, with maximum enhancements exceeding 10X at melt saturation. Subcritical silicate polymerization thus permits transport of low solubility components via their substitution into sites on aqueous multimers constructed of "polymer formers" such as Na, Al, and Si, even in dilute solutions. The partitioning of elements between the bulk fluid, the polymer network, and the rock matrix likely controls the overall compositional evolution of subduction-zone fluids. Because they form over a wider PT and bulk X range, subcritical silicate polymers in dilute solutions are likely responsible for more mass transfer in subduction zones than intermediate, supercritical fluids.

  13. Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate

    NASA Astrophysics Data System (ADS)

    Hawley, William B.; Allen, Richard M.; Richards, Mark A.

    2016-09-01

    The boundary between Earth’s strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.

  14. Horizontal mantle flow controls subduction dynamics.

    PubMed

    Ficini, E; Dal Zilio, L; Doglioni, C; Gerya, T V

    2017-08-08

    It is generally accepted that subduction is driven by downgoing-plate negative buoyancy. Yet plate age -the main control on buoyancy- exhibits little correlation with most of the present-day subduction velocities and slab dips. "West"-directed subduction zones are on average steeper (~65°) than "East"-directed (~27°). Also, a "westerly"-directed net rotation of the lithosphere relative to the mantle has been detected in the hotspot reference frame. Thus, the existence of an "easterly"-directed horizontal mantle wind could explain this subduction asymmetry, favouring steepening or lifting of slab dip angles. Here we test this hypothesis using high-resolution two-dimensional numerical thermomechanical models of oceanic plate subduction interacting with a mantle flow. Results show that when subduction polarity is opposite to that of the mantle flow, the descending slab dips subvertically and the hinge retreats, thus leading to the development of a back-arc basin. In contrast, concordance between mantle flow and subduction polarity results in shallow dipping subduction, hinge advance and pronounced topography of the overriding plate, regardless of their age-dependent negative buoyancy. Our results are consistent with seismicity data and tomographic images of subduction zones. Thus, our models may explain why subduction asymmetry is a common feature of convergent margins on Earth.

  15. Resolution Study of Marine CSEM Imaging of Subduction Zones

    NASA Astrophysics Data System (ADS)

    Gustafson, C.; Key, K.

    2016-12-01

    Marine controlled source electromagnetic (CSEM) data allow us to image seafloor electrical resistivity from which we can constrain the porosity and fluid content of the subsurface. In subduction zones, CSEM data can be used to constrain geologic structure, hydrogeology and fluid-tectonic processes. The scales of features we are interested in recovering with CSEM data range from large-scale features such as the incoming tectonic plate and subducting slab, to the narrow dipping plate boundary interface where slip occurs, to thin faults that cut the overriding forearc crust and shallow fluid seeps and mounds on the seafloor. Thus electrical structure is expected to vary on scales ranging from scales of meters to tens of kilometers. CSEM data collected by Scripps at the Middle America Trench in 2010 is the first and to-date the only application of the method for studying a subduction zone. The results from this pioneering data set highlight the types of new discoveries that are possible with CSEM data, such as imaging conductive bending faults and a water-rich channel of subducting sediments. In this work we explore the magnitude and scale of 2D resistivity structures that can be resolved with CSEM data through a suite of synthetic inversion studies. We build resistivity models that are representative of various known and hypothesized subduction zone plate boundary structures. We generate synthetic noisy data for these models and invert them using the freely available MARE2DEM inversion code. We compare the recovered models to the original models in order to determine which resistivity structures may be successfully identified using CSEM. We explore the potential effects of receiver spacing, frequency bandwidth and system noise levels on the ability of CSEM to recover these different subduction zone structures.

  16. On the initiation of subduction zones

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Wortel, Rinus; Vlaar, N. J.

    1989-03-01

    Analysis of the relation between intraplate stress fields and lithospheric rheology leads to greater insight into the role that initiation of subduction plays in the tectonic evolution of the lithosphere. Numerical model studies show that if after a short evolution of a passive margin (time span a few tens of million years) subduction has not yet started, continued aging of the passive margin alone does not result in conditions more favorable for transformation into an active margin. Although much geological evidence is available in supporting the key role small ocean basins play in orogeny and ophiolite emplacement, evolutionary frameworks of the Wilson cycle usually are cast in terms of opening and closing of wide ocean basins. We propose a more limited role for large oceans in the Wilson cycle concept. In general, initiation of subduction at passive margins requires the action of external plate-tectonic forces, which will be most effective for young passive margins prestressed by thick sedimentary loads. It is not clear how major subduction zones (such as those presently ringing the Pacific Basin) form but it is unlikely they form merely by aging of oceanic lithosphere. Conditions likely to exist in very young oceanic regions are quite favorable for the development of subduction zones, which might explain the lack of preservation of back-arc basins and marginal seas. Plate reorganizations probably occur predominantly by the formation of new spreading ridges, because stress relaxation in the lithosphere takes place much more efficiently through this process than through the formation of new subduction zones.

  17. Analysis of deep seismic reflection and other data from the southern Washington Cascades. Final report, September 15, 1992--December 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, W.D.; Johnson, S.Y.; Nuccio, V.F.

    1993-12-01

    This report describes results of a synthesis of geological, geological, geophysical and geochemical data from a largely volcanic rock covered region in southwestern Washington that has been identified as a underlain by thick marine sedimentary rocks. The work was funded by the Deep Source Gas projects at the Morgantown Energy Technology Center (METC). The subproject which resulted in this report is centered in the Branch of Geophysics, US Geological Survey (USGS) has involved one task focused on the application of geophysical methods to the study of phenomena associated with fossil and active subduction zones and non-subduction suture zones that maymore » have deeply emplaced sedimentary rocks. This report represents a summary synthesis of several geophysical and geological data sets. The Southern Washington Cascades Conductor (SWCC) has been examined using several types of data in addition to MT, seismic, magnetic, and gravity Specific geological mapping tasks have been completed trough funding by the Department of Energy and the USGS in the western part of the proposed basin near Morton, WA. Other regional geological studies using wells and outcrops done as part of the USGS Evolution of Sedimentary Basins programs have added information that constraint the possible nature of the SWCC rocks and their tectonic setting. Recently, evaluation of patterns of seismicity in the SWCC region has demonstrated the likelihood of several parallel and step-over strike-slip faults that may have produced the proposed basin or altered its geometry. In addition, the seismicity patterns trace the axis of key anticlinal structures and thrusts.« less

  18. The Keelung Submarine volcanoes and gas plumes in the nearshore of northern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Tsia, C. H.; Hsu, S. K.; Lin, S. S.

    2016-12-01

    Taiwan is located in the collision zone between Philippine Sea Plate and Eurasian Plate. The Philippine Sea Plate subducts northward beneath the Ryukyu arc system while the Eurasian Plate subducts eastward beneath the Luzon arc system. The Taiwan mountain building started at 9 My ago and the most active collision has migrated to middle Taiwan. In consequence, the northern Taiwan has changed its stress pattern from forms a series of thrust faults to normal faults. The stress pattern change has probably induced the post-collisional extension and volcanism in and off northern Taiwan. Under such a tectonic environment, the volcanism and gas plumes are widespread in northern Taiwan and its offshore area. Among the volcanoes of the northern Taiwan volcanic zone, the Tatun Volcano Group is the most obvious one. In this study, we use sub-bottom profiler, EK500 echo sounder, and multibeam echo sounder to study the geophysical structure of a submarine volcano in the nearshore of northern Taiwan. We have analyzed the shallow structures and identified the locations of the gas plumes. The identification of the gas plumes can help us understand the nature of the submarine volcano. Our results show that the gas plumes appear near the Kanchiao Fault and Keelung islet. Some intrusive volcanoes can be observed in the subbottom profiler data. Finally, according to the observations, we found that the Keelung Submarine Volcano is still active. We need the monitor of the active Keelung Submarine Volcano to avoid the volcanic hazard. Additionally, we need to pay attention to the earthquakes related to the Keelung Submarine Volcano.

  19. Extreme scale multi-physics simulations of the tsunamigenic 2004 Sumatra megathrust earthquake

    NASA Astrophysics Data System (ADS)

    Ulrich, T.; Gabriel, A. A.; Madden, E. H.; Wollherr, S.; Uphoff, C.; Rettenberger, S.; Bader, M.

    2017-12-01

    SeisSol (www.seissol.org) is an open-source software package based on an arbitrary high-order derivative Discontinuous Galerkin method (ADER-DG). It solves spontaneous dynamic rupture propagation on pre-existing fault interfaces according to non-linear friction laws, coupled to seismic wave propagation with high-order accuracy in space and time (minimal dispersion errors). SeisSol exploits unstructured meshes to account for complex geometries, e.g. high resolution topography and bathymetry, 3D subsurface structure, and fault networks. We present the up-to-date largest (1500 km of faults) and longest (500 s) dynamic rupture simulation modeling the 2004 Sumatra-Andaman earthquake. We demonstrate the need for end-to-end-optimization and petascale performance of scientific software to realize realistic simulations on the extreme scales of subduction zone earthquakes: Considering the full complexity of subduction zone geometries leads inevitably to huge differences in element sizes. The main code improvements include a cache-aware wave propagation scheme and optimizations of the dynamic rupture kernels using code generation. In addition, a novel clustered local-time-stepping scheme for dynamic rupture has been established. Finally, asynchronous output has been implemented to overlap I/O and compute time. We resolve the frictional sliding process on the curved mega-thrust and a system of splay faults, as well as the seismic wave field and seafloor displacement with frequency content up to 2.2 Hz. We validate the scenario by geodetic, seismological and tsunami observations. The resulting rupture dynamics shed new light on the activation and importance of splay faults.

  20. Eclogitization-induced mechanical instanility in granulite: Implications for deep seismicity in southern Tibet

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shi, F.; Yu, T.; Zhu, L.; Zhang, J.; Gasc, J.; Incel, S.; Schubnel, A.; Li, Z.; Liu, W.; Jin, Z.

    2017-12-01

    Southern Tibet is the most active orogenic region on Earth where the Indian plate thrusts under the Eurasian continent, pushing the Moho to unusual depths of 80 km. Seismicity is wide spread, reaching 100 km depth. Mechanisms of these deep earthquakes remain enigmatic. Here we examine the hypothesis of metamorphism induced mechanical instability in granulite-facies rocks, which are the dominant constituent in subducted Indian lower crust. We conducted deformation experiments on natural and nominally dry granulite in a DDIA apparatus within the stability fields of both granulite and eclogite. The system is interfaced with an acoustic emission (AE) monitoring system, allowing in-situ detection of mechanical instability along with the progress of eclogitization. We found that granulite deformed within its own stability field behaved in a ductile fashion without any AE activity. In contrast, numerous AE events were observed during deformation of metastable granulite in the eclogite field. The observed AE activities were episodic. Correlating closely to the AE burst episodes, measured differential stresses rose and fell during deformation, suggesting unstable fault slip. Microstructural observation shows that strain is highly localized around grain boundaries, which are decorated by eclogitization products. Time-resolved event location analysis showed large episodes corresponded to the growth of branches of macroscopic faults in recovered samples. It appears that ruptures originate from weakened grain boundaries, propagate through grains, and self-organize into macroscopic fault zones. No melting is required in the fault zones to facilitate brittle failure. This process may be responsible for the deep crustal seismicity in Southern Tibet and other continental-continental subduction regions.

  1. Subduction of hydrated basalt of the oceanic crust: Implications for recycling of water into the upper mantle and continental growth

    NASA Technical Reports Server (NTRS)

    Rapp, R. P.

    1994-01-01

    Subduction zones are presently the dominant sites on Earth for recycling and mass transfer between the crust and mantle; they feed hydrated basaltic oceanic crust into the upper mantle, where dehydration reactions release aqueous fluids and/or hydrous melts. The loci for fluid and/or melt generation will be determined by the intersection of dehydration reaction boundaries of primary hydrous minerals within the subducted lithosphere with slab geotherms. For metabasalt of the oceanic crust, amphibole is the dominant hydrous mineral. The dehydration melting solidus, vapor-absent melting phase relationships; and amphibole-out phase boundary for a number of natural metabasalts have been determined experimentally, and the pressure-temperature conditions of each of these appear to be dependent on bulk composition. Whether or not the dehydration of amphibole is a fluid-generating or partial melting reaction depends on a number of factors specific to a given subduction zone, such as age and thickness of the subducting oceanic lithosphere, the rate of convergence, and the maturity of the subduction zone. In general, subduction of young, hot oceanic lithosphere will result in partial melting of metabasalt of the oceanic crust within the garnet stability field; these melts are characteristically high-Al2O3 trondhjemites, tonalites and dacites. The presence of residual garnet during partial melting imparts a distinctive trace element signature (e.g., high La/Yb, high Sr/Y and Cr/Y combined with low Cr and Y contents relative to demonstrably mantle-derived arc magmas). Water in eclogitized, subducted basalt of the oceanic crust is therefore strongly partitioned into melts generated below about 3.5 GPa in 'hot' subduction zones. Although phase equilibria experiments relevant to 'cold' subduction of hydrated natural basalts are underway in a number of high-pressure laboratories, little is known with respect to the stability of more exotic hydrous minerals (e.g., ellenbergite) and the potential for oceanic crust (including metasediments) to transport water deeper into the mantle.

  2. How to build a model illustrating sea-floor spreading and subduction

    USGS Publications Warehouse

    Lahr, J.C.

    1999-01-01

    This report describes how to build a model of the outer 300 km (180 miles) of the Earth that can be used to develop a better understanding of the principal features of plate tectonics, including sea-floor spreading, the pattern of magnetic stripes frozen into the sea floor, transform faulting, thrust faulting, subduction, and volcanism. In addition to a paper copy of this report, the materials required are a cardboard shoebox, glue, scissors, straight edge, and safety razor blade.

  3. The thrust belt in Southwest Montana and east-central Idaho

    USGS Publications Warehouse

    Ruppel, Edward T.; Lopez, David A.

    1984-01-01

    The leading edge of the Cordilleran fold and thrust in southwest Montana appears to be a continuation of the edge of the Wyoming thrust belt, projected northward beneath the Snake River Plain. Trces of the thrust faults that form the leading edge of the thrust belts are mostly concealed, but stratigraphic and structural evidence suggests that the belt enters Montana near the middle of the Centennial Mountains, continues west along the Red Rock River valley, and swings north into the Highland Mountains near Butte. The thrust belt in southwest Montana and east-central Idaho includes at least two major plates -- the Medicine Lodge and Grasshopper thrust plates -- each of which contains a distinctive sequence of rocks, different in facies and structural style from those of the cratonic region east of the thrust belt. The thrust plates are characterized by persuasive, open to tight and locally overturned folds, and imbricate thrust faults, structural styles unusual in Phanerozoic cratonic rocks. The basal decollement zones of the plates are composed of intensely sheared, crushed, brecciated, and mylonitized rocks, the decollement at the base of the Medicine Lodge plate is as much as 300 meters thick. The Medicine Lodge and Grasshopper thrust plates are fringed on the east by a 10- to 50-kilometer-wide zone of tightly folded rocks cut by imbricate thrust fauls, a zone that forms the eastern margin of the thrust belt in southwest Montana. The frontal fold and thrust zone includes rocks that are similar to those of the craton, even though they differ in details of thickness, composition, or stratigraphic sequence. The zone is interpreted to be one of terminal folding and thrusting in cratonic rocks overridden by the major thrust plates from farther west. The cratonic rocks were drape-folded over rising basement blocks that formed a foreland bulge in front of the thrust belt. The basement blocks are bounded by steep faults of Proterozoic ancestry, which also moved as tear faults during thrusting, and seem to have controlled the curving patterns of salients and reentrants at the leading edge of the thrust belt. Radiometric and stratiographic evidence shows that the thrust belt was in its present position by about 75 million year go.

  4. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Manea, Marina; Ferrari, Luca; Orozco, María Teresa; Wong Valenzuela, Raul; Husker, Allen Leroy; Kostoglodovc, Vlad; Ionescu, Constantin

    2017-04-01

    Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.

  5. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile

    NASA Astrophysics Data System (ADS)

    Manea, V. C.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R. W.; Husker, A.; Kostoglodov, V.

    2017-01-01

    Subducting plates around the globe display a large variability in terms of slab geometry, including regions where smooth and little variation in subduction parameters is observed. While the vast majority of subduction slabs plunge into the mantle at different, but positive dip angles, the end-member case of flat-slab subduction seems to strongly defy this rule and move horizontally several hundreds of kilometers before diving into the surrounding hotter mantle. By employing a comparative assessment for the Mexican, Peruvian and Chilean flat-slab subduction zones we find a series of parameters that apparently facilitate slab flattening. Among them, trench roll-back, as well as strong variations and discontinuities in the structure of oceanic and overriding plates seem to be the most important. However, we were not able to find the necessary and sufficient conditions that provide an explanation for the formation of flat slabs in all three subduction zones. In order to unravel the origin of flat-slab subduction, it is probably necessary a numerical approach that considers also the influence of surrounding plates, and their corresponding geometries, on 3D subduction dynamics.

  6. Remarkably Consistent Thermal State of the south Central Chile Subduction Zone from 36°S to 45°S

    NASA Astrophysics Data System (ADS)

    Rotman, H.; Spinelli, G. A.

    2013-12-01

    Delineating the rupture areas of large subduction zone earthquakes is necessary for understanding the controls on seismic and aseismic slip on faults. For the largest recorded earthquake, an event in south central Chile in 1960 with moment magnitude 9.5, the rupture area is only loosely defined due to limitations in the global seismic network at the time. The rupture extends ~900 km along strike on the margin. Coastal deformation is consistent with either a constant rupture width of ~200 km along the entire length, or a much narrower width (~115 km) for the southern half of the rupture. A southward narrowing of the seismogenic zone has been hypothesized to result from warming of the subduction zone to the south, where the subducting plate is younger. Here, we present results of thermal models at 36°S, 38°S, 43°S, and 45°S to examine potential along-strike changes the thermal state of the margin. We find that temperatures in the subduction zone are strongly affected by both fluid circulation in the high permeability upper oceanic crust and frictional heating on the plate boundary fault. Hydrothermal circulation preferentially cools transects with young subducting lithosphere; frictional heating preferentially warms transects with older subducting lithosphere. The combined effects of frictional heating and hydrothermal circulation increase decollement temperatures in the 36°S and 38°S transects by up to ~155°C, and decrease temperatures in the 45°S transect by up to ~150°C. In our preferred models, decollement temperatures 200 km landward of the trench in all four transects are ~350-400°C. This is consistent with a constant ~200 km wide seismogenic zone for the 1960 Mw 9.5 rupture, with decreasing slip magnitude in the southern half of the rupture.

  7. Variability of High Resolution Vp/Vs and Seismic Velocity Structure Along the Nicaragua/Costa Rica Segment of the Middle America Subduction Zone

    NASA Astrophysics Data System (ADS)

    Moore-Driskell, M. M.; DeShon, H. R.

    2012-12-01

    Previous studies of subduction zone earthquakes have shown that fault conditions control earthquake rupture and behavior. There are many potential properties that may vary along the subduction margin that could cause fault zone variability, including plate age, temperature, and/or geometry, convergence rate, state of hydration, overriding geology, subducting sediment packages, or subducting seamounts/ridges. The Nicaragua/Costa Rica segment of the Middle America subduction zone is highly variable along strike and down dip. We use this margin to examine how these variable conditions affect earthquake behavior by determining local ratios of compressional to shear wave velocities (Vp/Vs) and detailed seismic velocity structure. Vp/Vs is one of the best tools available to reliably define fault conditions because it is directly related to the Poisson's ratio of the fault material, and it is sensitive to the presence of fluids and changing permeability. Thus with well-resolved near source Vp/Vs measurements we can infer composition and/or high fluid pressures. Here, we use a technique developed by Lin and Shearer (2007) to determine local Vp/Vs in small areas (~2 x 2 x 2 km) with high seismicity. Within the seismogenic zone, we find the margin to be highly variable along strike in Vp/Vs and seismic velocity. These changes correlate to documented variability in incoming plate properties. Increased Vp/Vs is associated with intraplate earthquakes along Nicaragua and northern Costa Rica. We compare our results with other geophysical studies including new high-resolution images of seismic velocity structure, an extensive catalog of high quality relocated events, apparent stress calculations, coupling, and SSE/NVT occurrence. A better understanding of the connection between fault properties and earthquake behavior gives insight into the role of fluids in seismogenesis, the spectrum of earthquake rupture, and possible hazard at subduction zones.

  8. Characterizing Mega-Earthquake Related Tsunami on Subduction Zones without Large Historical Events

    NASA Astrophysics Data System (ADS)

    Williams, C. R.; Lee, R.; Astill, S.; Farahani, R.; Wilson, P. S.; Mohammed, F.

    2014-12-01

    Due to recent large tsunami events (e.g., Chile 2010 and Japan 2011), the insurance industry is very aware of the importance of managing its exposure to tsunami risk. There are currently few tools available to help establish policies for managing and pricing tsunami risk globally. As a starting point and to help address this issue, Risk Management Solutions Inc. (RMS) is developing a global suite of tsunami inundation footprints. This dataset will include both representations of historical events as well as a series of M9 scenarios on subductions zones that have not historical generated mega earthquakes. The latter set is included to address concerns about the completeness of the historical record for mega earthquakes. This concern stems from the fact that the Tohoku Japan earthquake was considerably larger than had been observed in the historical record. Characterizing the source and rupture pattern for the subduction zones without historical events is a poorly constrained process. In many case, the subduction zones can be segmented based on changes in the characteristics of the subducting slab or major ridge systems. For this project, the unit sources from the NOAA propagation database are utilized to leverage the basin wide modeling included in this dataset. The length of the rupture is characterized based on subduction zone segmentation and the slip per unit source can be determined based on the event magnitude (i.e., M9) and moment balancing. As these events have not occurred historically, there is little to constrain the slip distribution. Sensitivity tests on the potential rupture pattern have been undertaken comparing uniform slip to higher shallow slip and tapered slip models. Subduction zones examined include the Makran Trench, the Lesser Antilles and the Hikurangi Trench. The ultimate goal is to create a series of tsunami footprints to help insurers understand their exposures at risk to tsunami inundation around the world.

  9. 3D receiver function Kirchhoff depth migration image of Cascadia subduction slab weak zone

    NASA Astrophysics Data System (ADS)

    Cheng, C.; Allen, R. M.; Bodin, T.; Tauzin, B.

    2016-12-01

    We have developed a highly computational efficient algorithm of applying 3D Kirchhoff depth migration to telesismic receiver function data. Combine primary PS arrival with later multiple arrivals we are able to reveal a better knowledge about the earth discontinuity structure (transmission and reflection). This method is highly useful compare with traditional CCP method when dipping structure is met during the imaging process, such as subduction slab. We apply our method to the reginal Cascadia subduction zone receiver function data and get a high resolution 3D migration image, for both primary and multiples. The image showed us a clear slab weak zone (slab hole) in the upper plate boundary under Northern California and the whole Oregon. Compare with previous 2D receiver function image from 2D array(CAFE and CASC93), the position of the weak zone shows interesting conherency. This weak zone is also conherent with local seismicity missing and heat rising, which lead us to think about and compare with the ocean plate stucture and the hydralic fluid process during the formation and migration of the subduction slab.

  10. Magmatism and the Shallowing of the Chilean Flatslab in the Central Andes

    NASA Astrophysics Data System (ADS)

    Kay, S. M.

    2014-12-01

    The magmatic history of the flatslab region between the Central and Southern Andean volcanic zones reflects shallowing of the slab, lithospheric thinning, narrowing of the asthenospheric wedge, crustal thickening and forearc removal by subduction erosion. Newly revised contours on the northern margin of the modern flatslab (Mulcahy et al. 2014) show the flattest part extends from ~28° to 33°S and is bounded by Pleistocene volcanic activity. An eastward broadening of the magmatic arc began after 18 Ma as westward drift of South America accelerated, but the most distinctive retroarc magmatism occurred after near normal subduction of the southward drifting Juan Fernandez Ridge began at ~11 Ma and ended as magmatism ceased in the Pampean ranges, ~ 700 km east of the trench at ~4.7 Ma. Recent seismic work in the retroarc area indicate a ~60 km thick crust under the Precordillera fold-thrust belt with transitions at ~20 and ~40 km that are considered to be the top of crystalline basement and an eclogitic facies transition. Chemical constraints from ~15-7 Ma magmatic rocks suggest eclogization is related to crustal thickening over the shallowing slab in accord with field relations for major thrusting in the region by ~8-7 Ma. High Ba/Th ratios in <9 Ma volcanic rocks are interpreted to reflect phengite breakdown in the mantle wedge with the fluids facilitating eclogization of the lower crust. Evidence for mantle melt contributions in the magmas up until ~7 Ma comes from more primitive isotopic values in 1088-1251 Ma amphibolite and granulite facies xenoliths (eNd = 0 to -3; 87Sr/86Sr =704-0.710) than in Miocene volcanic rocks (eNd = 0-1.7; 0.70325-0.70345; zircon eHf ~ 0). From ~8 to 3 Ma, the active volcanic arc front near 28°S and 33°S was translated ~ 40-50 km eastward in a suspected response to forearc removal by subduction erosion. Given the position of the arc and distance to the trench, the same amount of forearc was likely removed in the intervening flatslab region. Trapping of subducted forearc material in the mantle wedge could help to explain a low Vp/Vs ratios (1.65-1.72, Wagner et al. 2008 ) in the mantle wedge above the flat-slab as a low Vp could result from orthopyroxene formation by reaction of silicic material with the mantle wedge and a high Vs can be explained by the current slab being too cool to hydrate the mantle wedge.

  11. Microstructures and strain variation: Evidence of multiple splays in the North Almora Thrust Zone, Kumaun Lesser Himalaya, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Joshi, Gaurav; Agarwal, Amar; Agarwal, K. K.; Srivastava, Samriddhi; Alva Valdivia, L. M.

    2017-01-01

    The North Almora Thrust zone (NATZ) marks the boundary of the Almora Crystalline Complex (ACC) against the Lesser Himalayan Sedimentary sequence (LHS) in the north. Its southern counterpart, the South Almora Thrust (SAT), is a sharply marked contact between the ACC and the LHS in the south. Published studies argue various contradictory emplacement modes of the North Almora Thrust. Recent studies have implied splays of smaller back thrusts in the NATZ. The present study investigates meso- and microstructures, and strain distribution in the NATZ and compares it with strain distribution across the SAT. In the NATZ, field evidence reveals repeated sequence of 10-500 m thick slices of proto- to ultra-mylonite, thrust over the Lesser Himalayan Rautgara quartzite. In accordance with the field evidence, the strain analysis reveals effects of splays of smaller thrust in the NATZ. The study therefore, argues that contrary to popular nomenclature the northern contact of the ACC with the LHS is not a single thrust plane, but a thrust zone marked by numerous thrust splays.

  12. Beach ridges as paleoseismic indicators of abrupt coastal subsidence during subduction zone earthquakes, and implications for Alaska-Aleutian subduction zone paleoseismology, southeast coast of the Kenai Peninsula, Alaska

    USGS Publications Warehouse

    Kelsey, Harvey M.; Witter, Robert C.; Engelhart, Simon E.; Briggs, Richard; Nelson, Alan R.; Haeussler, Peter J.; Corbett, D. Reide

    2015-01-01

    The Kenai section of the eastern Alaska-Aleutian subduction zone straddles two areas of high slip in the 1964 great Alaska earthquake and is the least studied of the three megathrust segments (Kodiak, Kenai, Prince William Sound) that ruptured in 1964. Investigation of two coastal sites in the eastern part of the Kenai segment, on the southeast coast of the Kenai Peninsula, identified evidence for two subduction zone earthquakes that predate the 1964 earthquake. Both coastal sites provide paleoseismic data through inferred coseismic subsidence of wetlands and associated subsidence-induced erosion of beach ridges. At Verdant Cove, paleo-beach ridges record the paleoseismic history; whereas at Quicksand Cove, buried soils in drowned coastal wetlands are the primary indicators of paleoearthquake occurrence and age. The timing of submergence and death of trees mark the oldest earthquake at Verdant Cove that is consistent with the age of a well documented ∼900-year-ago subduction zone earthquake that ruptured the Prince William Sound segment of the megathrust to the east and the Kodiak segment to the west. Soils buried within the last 400–450 years mark the penultimate earthquake on the southeast coast of the Kenai Peninsula. The penultimate earthquake probably occurred before AD 1840 from its absence in Russian historical accounts. The penultimate subduction zone earthquake on the Kenai segment did not rupture in conjunction with the Prince William Sound to the northeast. Therefore the Kenai segment, which is presently creeping, can rupture independently of the adjacent Prince William Sound segment that is presently locked.

  13. Boundary conditions traps when modeling interseismic deformation at subduction zones

    NASA Astrophysics Data System (ADS)

    Contreras, Marcelo; Gerbault, Muriel; Tassara, Andres; Bataille, Klaus; Araya, Rodolfo

    2017-04-01

    In order to gain insight on the controling factors for elastic strain build-up in subduction zones, such as those triggering the Mw 8. 2010 Maule earthquake, we published a modeling study to test the influence of the subducting plate thickness, variations in the updip and downdip limit of a 100% locked interplate zone, elastic parameters, and velocity reduction at the base of the subducted slab (Contreras et al., Andean Geology 43(3), 2016). When comparing our modeled predictions with interseismic GPS observations, our results indicated little influence of the subducting plate thickness, but a necessity to reduce the velocity at the corner-base of the subducted slab below the trench region, to 10% of the far-field convergence rate. Complementary numerical models allowed us to link this velocity reduction at the base of subducting slab with a long-term high flexural stress resulting from the mechanical interaction of the slab with the underlying mantle. This study discusses that even if only a small amount of these high deviatoric stresses transfer energy towards the upper portion of the slab, it may participate in triggering large earthquakes such as the Mw8.8 Maule event. The definition of initial and boundary conditions between short-term to long-term models evidence the mechanical inconsistencies that may appear when considering pre-flexed subducting slabs and unloaded underlying asthenosphere, potentially creating mis-balanced large stress discontinuities.

  14. Lithospheric Subduction on Earth and Venus?

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Garcia, E.; Stegman, D. R.; Schubert, G.

    2016-12-01

    There are three mechanisms by which terrestrial planets can shed excess heat: conduction across a surface thermal boundary layer; advection of heat through volcanic pipes; and mobile plates/subduction. On the Earth about 30% is released by conduction and 70% by subduction. The dominant mode of heat transport on Venus is largely unknown. Plate flexure models rule out significant heat loss by conduction and the resurfacing from active volcanism is in discordance with a surface age of 600 Ma. There are 9000 km of trenches on Venus that may have been subduction sites but they do not appear active today and are only 25% of the length of the subduction zones on the Earth. Turcotte and others have proposed an episodic recycling model that has short bursts ( 150 Ma) of plate tectonic activity followed by long periods ( 450 Ma) of stagnant lid convection. This talk will review the arguments for and against subduction zones on Venus and discuss possible new satellite observations that could help resolve the subduction issue. Figure Caption. (a) Global mosaic of Magellan SAR imagery. (b) Zoom of area along the Artemis trench, which has similar topography and fracture patterns as the Aleutian subduction zone on Earth. Trench and outer rise lines were digitized from the matching topography image (not shown). The Magellan SAR imagery and topography, displayed on Google Earth, can be downloaded at http://topex.ucsd.edu/venus/index.html

  15. Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M. R.; Kouhpeyma, M.

    2012-10-01

    The Binalud Mountains are situated in the south of the Kopeh Dagh as a transitional zone between the Alborz and Central Iran zones. The Palaeotethys suture of the north Iran is located in this area. The Binalud Mountains consists of relatively thick successions of sedimentary, metamorphic and igneous rocks. The earliest deformation, a polyphase synmetamorphic deformation which occurred entirely in ductile conditions, is distinguished in the metamorphic rocks of the eastern part. D1, D2 and D3 deformation phases are related to this deformation. The D4 deformation affected the area after a period of sedimentation and erosion. The thrust faults of the central and southern part of the eastern Binalud were classified as structures related to the D5 tectonic event. From the geodynamic point of view, in Late Palaeozoic times the studied area formed an oceanic trench generated by the subduction of the Palaeotethys oceanic lithosphere beneath the Turan Plate. In the Late Triassic, the Early Cimmerian Event resulted in a collisional type orogeny generating a transpression polyphase deformation and the metamorphism of Permian and older sediments. Following this collision, granite intrusions were emplaced in the area and caused contact metamorphism. The exhumation and erosion of the rocks deformed and metamorphosed during Early Cimmerian Event caused the formation of molassic type sediments in a Rhaetian-Lias back arc basin. The continuation of convergence between the Turan and Iran Plates caused the metamorphism of these sediments and their transformation to phyllite and meta-sandstone. During Late Mesozoic and Early Cenozoic times, the convergence between Central Iran and Turan Plates continued and a NE compression caused folding of the Cretaceous and older rocks in the Kopeh Dagh area. In the Binalud area this deformation caused the generation of several thrust fault systems with S to SW vergence, resulting in a thrusting of Palaeozoic and Mesozoic successions on each other and on the Neogene sediments at the southern border of the Binalud Mountains.

  16. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries

    USGS Publications Warehouse

    Wu, F.T.; Liang, W.-T.; Lee, J.-C.; Benz, H.; Villasenor, A.

    2009-01-01

    The NW moving Philippine Sea plate (PSP) collides with the Eurasian plate (EUP) in the vicinity of Taiwan, and at the same time, it subducts toward the north along SW Ryukyu. The Ryukyu subduction zone terminates against eastern Taiwan. While the Ryukyu Trench is a linear bathym??trie low about 100 km east of Taiwan, closer to Taiwan, it cannot be clearly identified bathymetrically owing to the deformation related to the collision, making the location of the intersection of the Ryukyu with Taiwan difficult to decipher. We propose a model for this complex of boundaries on the basis of seismicity and 3-D velocity structures. In this model the intersection is placed at the latitude of about 23.7??N, placing the northern part of the Coastal Range on EUP. As PSP gets deeper along the subduction zone it collides with EUP on the Taiwan side only where they are in direct contact. Thus, the Eurasian plate on the Taiwan side is being pushed and compressed by the NW moving Philippine Sea plate, at increasing depth toward the north. Offshore of northeastern Taiwan the wedge-shaped EUP on top of the Ryukyu subducting plate is connected to the EUP on the Ryukyu side and coupled to the NW moving PSP by friction at the plate interface. The two sides of the EUP above the western end of the subduction zone are not subjected to the same forces, and a difference in motions can be expected. The deformation of Taiwan as revealed by continuous GPS measurements, geodetic movement along the east coast of Taiwan, and the formation of the Hoping Basin can be understood in terms of the proposed model. Copyright 2009 by the American Geophysical Union.

  17. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents

    NASA Astrophysics Data System (ADS)

    Hacker, Bradley R.; Abers, Geoffrey A.; Peacock, Simon M.

    2003-01-01

    We present a new compilation of physical properties of minerals relevant to subduction zones and new phase diagrams for mid-ocean ridge basalt, lherzolite, depleted lherzolite, harzburgite, and serpentinite. We use these data to calculate H2O content, density and seismic wave speeds of subduction zone rocks. These calculations provide a new basis for evaluating the subduction factory, including (1) the presence of hydrous phases and the distribution of H2O within a subduction zone; (2) the densification of the subducting slab and resultant effects on measured gravity and slab shape; and (3) the variations in seismic wave speeds resulting from thermal and metamorphic processes at depth. In considering specific examples, we find that for ocean basins worldwide the lower oceanic crust is partially hydrated (<1.3 wt % H2O), and the uppermost mantle ranges from unhydrated to ˜20% serpentinized (˜2.4 wt % H2O). Anhydrous eclogite cannot be distinguished from harzburgite on the basis of wave speeds, but its ˜6% greater density may render it detectable through gravity measurements. Subducted hydrous crust in cold slabs can persist to several gigapascals at seismic velocities that are several percent slower than the surrounding mantle. Seismic velocities and VP/VS ratios indicate that mantle wedges locally reach 60-80% hydration.

  18. Plate tectonics on the Earth triggered by plume-induced subduction initiation.

    PubMed

    Gerya, T V; Stern, R J; Baes, M; Sobolev, S V; Whattam, S A

    2015-11-12

    Scientific theories of how subduction and plate tectonics began on Earth--and what the tectonic structure of Earth was before this--remain enigmatic and contentious. Understanding viable scenarios for the onset of subduction and plate tectonics is hampered by the fact that subduction initiation processes must have been markedly different before the onset of global plate tectonics because most present-day subduction initiation mechanisms require acting plate forces and existing zones of lithospheric weakness, which are both consequences of plate tectonics. However, plume-induced subduction initiation could have started the first subduction zone without the help of plate tectonics. Here, we test this mechanism using high-resolution three-dimensional numerical thermomechanical modelling. We demonstrate that three key physical factors combine to trigger self-sustained subduction: (1) a strong, negatively buoyant oceanic lithosphere; (2) focused magmatic weakening and thinning of lithosphere above the plume; and (3) lubrication of the slab interface by hydrated crust. We also show that plume-induced subduction could only have been feasible in the hotter early Earth for old oceanic plates. In contrast, younger plates favoured episodic lithospheric drips rather than self-sustained subduction and global plate tectonics.

  19. Shallow velocity structure of the Alaska Peninsula subduction zone and implications for controls on seismic behavior

    NASA Astrophysics Data System (ADS)

    Li, J.; Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Abers, G. A.; Keranen, K. M.; Saffer, D. M.

    2014-12-01

    Downdip and along-strike variations in the seismic behavior of subduction zone megathrust faults are thought to be strongly controlled by changes in the material properties along the plate boundary. Roughness and hydration of the incoming plate, fluid pressure and lithology in the subducting sediment channel are likely to control the distribution of shallower rupture. Here, we focus on the subduction zone offshore of the Alaska Peninsula. In 2011, the ALEUT program acquired deep penetration multichannel seismic (MCS) reflection and ocean bottom seismometer (OBS) data across the apparently freely sliding Shumagin Gap, the locked Semidi segment that last ruptured in 1938 M8.2 earthquake, and the locked western Kodiak asperity, which ruptured in the 1964 M9.2 earthquake. Seismic reflection data from the ALEUT cruise reveal significant variability in the thickness of sediment on the incoming plate and entering the trench, and the roughness and degree of hydration of the incoming plate. Oceanic crust entering the trench in the Shumagin gap is rugged with extensive faults and only a thin layer of sediment (<0.5 km thick). Farther east in the Semidi segment, the subducting plate has a smoother surface with thicker sediments (~1 km thick) and less faulting/hydration. To better constrain the properties of the accretionary prism and shallow part of the plate boundary, we are undertaking travel time tomography using reflection/refraction phases in OBS and MCS data, and constraints on the interface geometry from MCS images to estimate the detailed shallow velocity structure, with particular focus on properties within the shallow subduction channel. We observe refractions and reflections in OBS data from the shallow part of the subduction zone in both the Shumagin Gap and Semidi segment, including reflections off the top and base of what appears to be a layer of subducting sediment, which can be used for this work. We plan to present initial models of the shallow part of the subduction zone from both segments and discuss comparisons between the two.

  20. Superposed orogenic collision and core-complex formation at the present contact between the Dinarides and the Pannonian basin: The Bukulja and Cer Mountains in central and western Serbia

    NASA Astrophysics Data System (ADS)

    Matenco, Liviu; Toljic, Marinko; Ducea, Mihai; Stojadinovic, Uros

    2010-05-01

    Formation of large extensional detachments during orogenic collapse can follow inherited weakness zones such as major asymmetries given by pre-existing subduction zones active during mountain building processes. This is valid in particular in low-topography foreland coupling orogens of Mediterranean type where large amounts of deformation is concentrated in their lower plates, favoring weakness zones activated during a subsequent phase of extensional collapse. One good place to study the orogenic collapse post-dating major collision is the NE margin of the Dinarides in central and western Serbia, where Cretaceous-Eocene shortening and collision was recorded in the Alpine Tethys Sava zone between the European-derived Dacia and Tisza mega-units and the lower Adriatic plate. This is the same place where the Pannonian basin formed as a Miocene back-arc basin in response to a different subduction and roll-back taking place along the external Carpathians. A lineament of Paleogene and Miocene plutons is observed at the northern and eastern margin of the Dinarides, interpreted to be the product of both syn- to post-orogenic subduction magmatism and of decompressional melting during the Pannonian extension. Two of these plutons, Cer and Bukulja, located in western and respectively central Serbia, are intruded in the Jadar-Kopaonik composite thrust sheet, part of the lower Adriatic plate, near the contact with the main suture formed during the Cretaceous-Eocene subduction of the Sava zone. The Lower Miocene age (19-17Ma) Bukulja intrusion is a S-type granite with rare aplitic veins (Cvetkovic et al., 2007). The Cer intrusive complex is a S type two mica granite of around 16Ma in age with an older I-type quartz monzonite component (Koroneos et al. in press). Both granitoids are intruded into the Jadar-Kopaonik metamorphic series, which are in direct contact along the northern, eastern and southern flank with non-metamorphosed, mainly clastic sediments of Cretaceous-Miocene in age and, in the case of Bukulja, with serpentinized ophiolites. The metamorphic sequences are generally characterized by a Paleozoic age meta-sedimentary basement and a meta-sedimentary and meta-volcanic sequence. In the case of Bukulja, a succession of contrasting metamorphosed lithologies has been observed such as sandstones, black limestones, shallow water white limestones, basic volcanic sequences, deep nodular limestones and turbiditic sequences. The lower part of the sequence represents a metamorphosed Triassic sequence similar to what has been defined as the Kopaonik and Studenica series in southern Serbia. This part of the sequence is characterized by at least 3 successive stages of folding, asymmetric folds with WSW-ward vergence and NNE-SSW upright folds being affected by vertical flattening folds associated with extension (see also Marovic et al., 2007). The upper part of the sequence, which is the only part outcropping along the eastern flank of the Cer granitoid, is made up by metamorphosed distal turbidites which have been palinologically dated in Bukulja as Upper Cretaceous in age. This is the metamorphosed equivalent of the Upper Cretaceous - Eocene "flysch"-type of deposits commonly observed elsewhere in the main Sava subduction zone. These rocks are overprinted with a pervasive and strong extensional milonitic foliation indicating top-100 movement of the hanging-wall and are in direct contact with non-metamorphosed, but similar Upper Cretaceous distal turbidites. This suggests a large-scale tectonic omission along the eastern flanks of the Bukulja and Cer detachment. In the case of Bukulja, the extension was associated with the formation of the Early Miocene Morava basin in the detachment hanging-wall, which is an endemic lacustrine precursor of the much larger Middle-Late Miocene Pannonian basin. These finding points towards a bi-modal evolution of the internal Dinarides in central and western Serbia near the present-day contact with the Pannonian basin. An Upper Cretaceous-Eocene phase of top-WSW shortening and metamorphism in the Sava zone and its subducting lower Adriatic plate was subsequently followed by massive core-complex exhumation and top-E directed extension during initiation of the Carpathians back-arc extension. Interestingly, the newly defined extensional detachments accompanying the Pannonian extension closely follow the pre-existing subduction zone and its associated duplications in the lower orogenic plate. This conclusion is compatible with observations in other areas of the Dinarides, such as the Prosara-Motajica in Bosnia/Croatia or Kopaonik-Studenica in southern Serbia (Schefer et al., 2008; Ustaszewski et al., 2009).

Top