Sample records for subgradient projections methods

  1. On The Behavior of Subgradient Projections Methods for Convex Feasibility Problems in Euclidean Spaces

    PubMed Central

    Butnariu, Dan; Censor, Yair; Gurfil, Pini; Hadar, Ethan

    2010-01-01

    We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm’s behavior in the inconsistent case. We present numerical results of computational experiments that illustrate the computational advantage of the new method. PMID:20182556

  2. On The Behavior of Subgradient Projections Methods for Convex Feasibility Problems in Euclidean Spaces.

    PubMed

    Butnariu, Dan; Censor, Yair; Gurfil, Pini; Hadar, Ethan

    2008-07-03

    We study some methods of subgradient projections for solving a convex feasibility problem with general (not necessarily hyperplanes or half-spaces) convex sets in the inconsistent case and propose a strategy that controls the relaxation parameters in a specific self-adapting manner. This strategy leaves enough user-flexibility but gives a mathematical guarantee for the algorithm's behavior in the inconsistent case. We present numerical results of computational experiments that illustrate the computational advantage of the new method.

  3. On the efficiency of a randomized mirror descent algorithm in online optimization problems

    NASA Astrophysics Data System (ADS)

    Gasnikov, A. V.; Nesterov, Yu. E.; Spokoiny, V. G.

    2015-04-01

    A randomized online version of the mirror descent method is proposed. It differs from the existing versions by the randomization method. Randomization is performed at the stage of the projection of a subgradient of the function being optimized onto the unit simplex rather than at the stage of the computation of a subgradient, which is common practice. As a result, a componentwise subgradient descent with a randomly chosen component is obtained, which admits an online interpretation. This observation, for example, has made it possible to uniformly interpret results on weighting expert decisions and propose the most efficient method for searching for an equilibrium in a zero-sum two-person matrix game with sparse matrix.

  4. Privacy Preservation in Distributed Subgradient Optimization Algorithms.

    PubMed

    Lou, Youcheng; Yu, Lean; Wang, Shouyang; Yi, Peng

    2017-07-31

    In this paper, some privacy-preserving features for distributed subgradient optimization algorithms are considered. Most of the existing distributed algorithms focus mainly on the algorithm design and convergence analysis, but not the protection of agents' privacy. Privacy is becoming an increasingly important issue in applications involving sensitive information. In this paper, we first show that the distributed subgradient synchronous homogeneous-stepsize algorithm is not privacy preserving in the sense that the malicious agent can asymptotically discover other agents' subgradients by transmitting untrue estimates to its neighbors. Then a distributed subgradient asynchronous heterogeneous-stepsize projection algorithm is proposed and accordingly its convergence and optimality is established. In contrast to the synchronous homogeneous-stepsize algorithm, in the new algorithm agents make their optimization updates asynchronously with heterogeneous stepsizes. The introduced two mechanisms of projection operation and asynchronous heterogeneous-stepsize optimization can guarantee that agents' privacy can be effectively protected.

  5. String-averaging incremental subgradients for constrained convex optimization with applications to reconstruction of tomographic images

    NASA Astrophysics Data System (ADS)

    Massambone de Oliveira, Rafael; Salomão Helou, Elias; Fontoura Costa, Eduardo

    2016-11-01

    We present a method for non-smooth convex minimization which is based on subgradient directions and string-averaging techniques. In this approach, the set of available data is split into sequences (strings) and a given iterate is processed independently along each string, possibly in parallel, by an incremental subgradient method (ISM). The end-points of all strings are averaged to form the next iterate. The method is useful to solve sparse and large-scale non-smooth convex optimization problems, such as those arising in tomographic imaging. A convergence analysis is provided under realistic, standard conditions. Numerical tests are performed in a tomographic image reconstruction application, showing good performance for the convergence speed when measured as the decrease ratio of the objective function, in comparison to classical ISM.

  6. Simultaneous beam sampling and aperture shape optimization for SPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less

  7. Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients.

    PubMed

    Bouboulis, Pantelis; Slavakis, Konstantinos; Theodoridis, Sergios

    2012-03-01

    This paper presents a wide framework for non-linear online supervised learning tasks in the context of complex valued signal processing. The (complex) input data are mapped into a complex reproducing kernel Hilbert space (RKHS), where the learning phase is taking place. Both pure complex kernels and real kernels (via the complexification trick) can be employed. Moreover, any convex, continuous and not necessarily differentiable function can be used to measure the loss between the output of the specific system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. In order to derive analytically the subgradients, the principles of the (recently developed) Wirtinger's calculus in complex RKHS are exploited. Furthermore, both linear and widely linear (in RKHS) estimation filters are considered. To cope with the problem of increasing memory requirements, which is present in almost all online schemes in RKHS, the sparsification scheme, based on projection onto closed balls, has been adopted. We demonstrate the effectiveness of the proposed framework in a non-linear channel identification task, a non-linear channel equalization problem and a quadrature phase shift keying equalization scheme, using both circular and non circular synthetic signal sources.

  8. Simultaneous beam sampling and aperture shape optimization for SPORT.

    PubMed

    Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei

    2015-02-01

    Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.

  9. ɛ-subgradient algorithms for bilevel convex optimization

    NASA Astrophysics Data System (ADS)

    Helou, Elias S.; Simões, Lucas E. A.

    2017-05-01

    This paper introduces and studies the convergence properties of a new class of explicit ɛ-subgradient methods for the task of minimizing a convex function over a set of minimizers of another convex minimization problem. The general algorithm specializes to some important cases, such as first-order methods applied to a varying objective function, which have computationally cheap iterations. We present numerical experimentation concerning certain applications where the theoretical framework encompasses efficient algorithmic techniques, enabling the use of the resulting methods to solve very large practical problems arising in tomographic image reconstruction. ES Helou was supported by FAPESP grants 2013/07375-0 and 2013/16508-3 and CNPq grant 311476/2014-7. LEA Simões was supported by FAPESP grants 2011/02219-4 and 2013/14615-7.

  10. Superiorization with level control

    NASA Astrophysics Data System (ADS)

    Cegielski, Andrzej; Al-Musallam, Fadhel

    2017-04-01

    The convex feasibility problem is to find a common point of a finite family of closed convex subsets. In many applications one requires something more, namely finding a common point of closed convex subsets which minimizes a continuous convex function. The latter requirement leads to an application of the superiorization methodology which is actually settled between methods for convex feasibility problem and the convex constrained minimization. Inspired by the superiorization idea we introduce a method which sequentially applies a long-step algorithm for a sequence of convex feasibility problems; the method employs quasi-nonexpansive operators as well as subgradient projections with level control and does not require evaluation of the metric projection. We replace a perturbation of the iterations (applied in the superiorization methodology) by a perturbation of the current level in minimizing the objective function. We consider the method in the Euclidean space in order to guarantee the strong convergence, although the method is well defined in a Hilbert space.

  11. A subgradient approach for constrained binary optimization via quantum adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Karimi, Sahar; Ronagh, Pooya

    2017-08-01

    Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.

  12. Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings

    NASA Astrophysics Data System (ADS)

    Slavakis, Konstantinos; Theodoridis, Sergios

    2008-12-01

    Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.

  13. On Nonconvex Decentralized Gradient Descent

    DTIC Science & Technology

    2016-08-01

    and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math . Program., 116: 5-16, 2009. [2] H...splitting, and regularized Gauss-Seidel methods, Math . Pro- gram., Ser. A, 137: 91-129, 2013. [3] P. Bianchi and J. Jakubowicz, Convergence of a multi-agent...subgradient method under random communication topologies , IEEE J. Sel. Top. Signal Process., 5:754-771, 2011. [11] A. Nedic and A. Ozdaglar, Distributed

  14. Online Sequential Projection Vector Machine with Adaptive Data Mean Update

    PubMed Central

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958

  15. Online Sequential Projection Vector Machine with Adaptive Data Mean Update.

    PubMed

    Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei

    2016-01-01

    We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.

  16. Adaptive multiregression in reproducing kernel Hilbert spaces: the multiaccess MIMO channel case.

    PubMed

    Slavakis, Konstantinos; Bouboulis, Pantelis; Theodoridis, Sergios

    2012-02-01

    This paper introduces a wide framework for online, i.e., time-adaptive, supervised multiregression tasks. The problem is formulated in a general infinite-dimensional reproducing kernel Hilbert space (RKHS). In this context, a fairly large number of nonlinear multiregression models fall as special cases, including the linear case. Any convex, continuous, and not necessarily differentiable function can be used as a loss function in order to quantify the disagreement between the output of the system and the desired response. The only requirement is the subgradient of the adopted loss function to be available in an analytic form. To this end, we demonstrate a way to calculate the subgradients of robust loss functions, suitable for the multiregression task. As it is by now well documented, when dealing with online schemes in RKHS, the memory keeps increasing with each iteration step. To attack this problem, a simple sparsification strategy is utilized, which leads to an algorithmic scheme of linear complexity with respect to the number of unknown parameters. A convergence analysis of the technique, based on arguments of convex analysis, is also provided. To demonstrate the capacity of the proposed method, the multiregressor is applied to the multiaccess multiple-input multiple-output channel equalization task for a setting with poor resources and nonavailable channel information. Numerical results verify the potential of the method, when its performance is compared with those of the state-of-the-art linear techniques, which, in contrast, use space-time coding, more antenna elements, as well as full channel information.

  17. MRF energy minimization and beyond via dual decomposition.

    PubMed

    Komodakis, Nikos; Paragios, Nikos; Tziritas, Georgios

    2011-03-01

    This paper introduces a new rigorous theoretical framework to address discrete MRF-based optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first decomposing it into a set of appropriately chosen subproblems, and then combining their solutions in a principled way. In order to determine the limits of this method, we analyze the conditions that these subproblems have to satisfy and demonstrate the extreme generality and flexibility of such an approach. We thus show that by appropriately choosing what subproblems to use, one can design novel and very powerful MRF optimization algorithms. For instance, in this manner we are able to derive algorithms that: 1) generalize and extend state-of-the-art message-passing methods, 2) optimize very tight LP-relaxations to MRF optimization, and 3) take full advantage of the special structure that may exist in particular MRFs, allowing the use of efficient inference techniques such as, e.g., graph-cut-based methods. Theoretical analysis on the bounds related with the different algorithms derived from our framework and experimental results/comparisons using synthetic and real data for a variety of tasks in computer vision demonstrate the extreme potentials of our approach.

  18. Improved Sensitivity Relations in State Constrained Optimal Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettiol, Piernicola, E-mail: piernicola.bettiol@univ-brest.fr; Frankowska, Hélène, E-mail: frankowska@math.jussieu.fr; Vinter, Richard B., E-mail: r.vinter@imperial.ac.uk

    2015-04-15

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjointmore » state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because it is validated for a stronger set of necessary conditions.« less

  19. A note on convergence of solutions of total variation regularized linear inverse problems

    NASA Astrophysics Data System (ADS)

    Iglesias, José A.; Mercier, Gwenael; Scherzer, Otmar

    2018-05-01

    In a recent paper by Chambolle et al (2017 Inverse Problems 33 015002) it was proven that if the subgradient of the total variation at the noise free data is not empty, the level-sets of the total variation denoised solutions converge to the level-sets of the noise free data with respect to the Hausdorff distance. The condition on the subgradient corresponds to the source condition introduced by Burger and Osher (2007 Multiscale Model. Simul. 6 365–95), who proved convergence rates results with respect to the Bregman distance under this condition. We generalize the result of Chambolle et al to total variation regularization of general linear inverse problems under such a source condition. As particular applications we present denoising in bounded and unbounded, convex and non convex domains, deblurring and inversion of the circular Radon transform. In all these examples the convergence result applies. Moreover, we illustrate the convergence behavior through numerical examples.

  20. Set Convergences In Nonlinear Analysis and Optimization (Abstracts) (Convergences en Analyse Multivoque et Unilaterale (Resumes de Conferences),

    DTIC Science & Technology

    1992-06-01

    Anal. Appl. 102 (1984), 399-414. 43 On B-subgradients and applications Alejandro Jofre Departamento de Ingenieria Matemrtica, Universidad de Chile...Universitd de Provence51)2S Catania Italic 3, place Victor Hugo 13331 Marseille Cedex Steve Robinson Michel Th~raDepartment of Industrial Engineering

  1. Multivariate Epi-splines and Evolving Function Identification Problems

    DTIC Science & Technology

    2015-04-15

    such extrinsic information as well as observed function and subgradient values often evolve in applications, we establish conditions under which the...previous study [30] dealt with compact intervals of IR. Splines are intimately tied to optimization problems through their variational theory pioneered...approxima- tion. Motivated by applications in curve fitting, regression, probability density estimation, variogram computation, financial curve construction

  2. Development and Evaluation of a Casualty Evacuation Model for a European Conflict.

    DTIC Science & Technology

    1987-08-18

    W Applications and Computations," lIE Transactions, 16, 2, 127-134 "- ( 1984 ).-,’’ ,., 3. Ali, A. I., Helgason, R. V., Kennington, J. L., and kall ...Part II," Mathematical Programming, 1, 6-25 ( 1971 ). 38. Held, M., Wolfe, P., and Crowder, H., "Validation of Subgradient Optimization", Mathematical...California, Los Angeles, CA, ( 1971 ). Si 66. Swoveland, C., "A Two-Stage Decomposition Algorithm for a Generalized Muticommodity Flow Problem," INFOR

  3. Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules formore » cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.« less

  4. Sparse Recovery via l1 and L1 Optimization

    DTIC Science & Technology

    2014-11-01

    problem, with t being the descent direc- tion, obtaining ut = uxx + f − 1 µ p(u) (6) as an evolution equation. We can hope that these L1 regularized (or...implementation. He considered a wide class of second–order elliptic equations and, with Friedman [14], an extension to parabolic equa- tions. In [15, 16...obtaining an elliptic PDE, or by gradi- ent descent to obtain a parabolic PDE. Addition- ally, some PDEs can be rewritten using the L1 subgradient such as the

  5. Efficient Exact Inference With Loss Augmented Objective in Structured Learning.

    PubMed

    Bauer, Alexander; Nakajima, Shinichi; Muller, Klaus-Robert

    2016-08-19

    Structural support vector machine (SVM) is an elegant approach for building complex and accurate models with structured outputs. However, its applicability relies on the availability of efficient inference algorithms--the state-of-the-art training algorithms repeatedly perform inference to compute a subgradient or to find the most violating configuration. In this paper, we propose an exact inference algorithm for maximizing nondecomposable objectives due to special type of a high-order potential having a decomposable internal structure. As an important application, our method covers the loss augmented inference, which enables the slack and margin scaling formulations of structural SVM with a variety of dissimilarity measures, e.g., Hamming loss, precision and recall, Fβ-loss, intersection over union, and many other functions that can be efficiently computed from the contingency table. We demonstrate the advantages of our approach in natural language parsing and sequence segmentation applications.

  6. Distributed Optimization of Multi-Agent Systems: Framework, Local Optimizer, and Applications

    NASA Astrophysics Data System (ADS)

    Zu, Yue

    Convex optimization problem can be solved in a centralized or distributed manner. Compared with centralized methods based on single-agent system, distributed algorithms rely on multi-agent systems with information exchanging among connected neighbors, which leads to great improvement on the system fault tolerance. Thus, a task within multi-agent system can be completed with presence of partial agent failures. By problem decomposition, a large-scale problem can be divided into a set of small-scale sub-problems that can be solved in sequence/parallel. Hence, the computational complexity is greatly reduced by distributed algorithm in multi-agent system. Moreover, distributed algorithm allows data collected and stored in a distributed fashion, which successfully overcomes the drawbacks of using multicast due to the bandwidth limitation. Distributed algorithm has been applied in solving a variety of real-world problems. Our research focuses on the framework and local optimizer design in practical engineering applications. In the first one, we propose a multi-sensor and multi-agent scheme for spatial motion estimation of a rigid body. Estimation performance is improved in terms of accuracy and convergence speed. Second, we develop a cyber-physical system and implement distributed computation devices to optimize the in-building evacuation path when hazard occurs. The proposed Bellman-Ford Dual-Subgradient path planning method relieves the congestion in corridor and the exit areas. At last, highway traffic flow is managed by adjusting speed limits to minimize the fuel consumption and travel time in the third project. Optimal control strategy is designed through both centralized and distributed algorithm based on convex problem formulation. Moreover, a hybrid control scheme is presented for highway network travel time minimization. Compared with no controlled case or conventional highway traffic control strategy, the proposed hybrid control strategy greatly reduces total travel time on test highway network.

  7. Stochastic Routing and Scheduling Policies for Energy Harvesting Communication Networks

    NASA Astrophysics Data System (ADS)

    Calvo-Fullana, Miguel; Anton-Haro, Carles; Matamoros, Javier; Ribeiro, Alejandro

    2018-07-01

    In this paper, we study the joint routing-scheduling problem in energy harvesting communication networks. Our policies, which are based on stochastic subgradient methods on the dual domain, act as an energy harvesting variant of the stochastic family of backpresure algorithms. Specifically, we propose two policies: (i) the Stochastic Backpressure with Energy Harvesting (SBP-EH), in which a node's routing-scheduling decisions are determined by the difference between the Lagrange multipliers associated to their queue stability constraints and their neighbors'; and (ii) the Stochastic Soft Backpressure with Energy Harvesting (SSBP-EH), an improved algorithm where the routing-scheduling decision is of a probabilistic nature. For both policies, we show that given sustainable data and energy arrival rates, the stability of the data queues over all network nodes is guaranteed. Numerical results corroborate the stability guarantees and illustrate the minimal gap in performance that our policies offer with respect to classical ones which work with an unlimited energy supply.

  8. Sequential Nonlinear Learning for Distributed Multiagent Systems via Extreme Learning Machines.

    PubMed

    Vanli, Nuri Denizcan; Sayin, Muhammed O; Delibalta, Ibrahim; Kozat, Suleyman Serdar

    2017-03-01

    We study online nonlinear learning over distributed multiagent systems, where each agent employs a single hidden layer feedforward neural network (SLFN) structure to sequentially minimize arbitrary loss functions. In particular, each agent trains its own SLFN using only the data that is revealed to itself. On the other hand, the aim of the multiagent system is to train the SLFN at each agent as well as the optimal centralized batch SLFN that has access to all the data, by exchanging information between neighboring agents. We address this problem by introducing a distributed subgradient-based extreme learning machine algorithm. The proposed algorithm provides guaranteed upper bounds on the performance of the SLFN at each agent and shows that each of these individual SLFNs asymptotically achieves the performance of the optimal centralized batch SLFN. Our performance guarantees explicitly distinguish the effects of data- and network-dependent parameters on the convergence rate of the proposed algorithm. The experimental results illustrate that the proposed algorithm achieves the oracle performance significantly faster than the state-of-the-art methods in the machine learning and signal processing literature. Hence, the proposed method is highly appealing for the applications involving big data.

  9. Joint reconstruction via coupled Bregman iterations with applications to PET-MR imaging

    NASA Astrophysics Data System (ADS)

    Rasch, Julian; Brinkmann, Eva-Maria; Burger, Martin

    2018-01-01

    Joint reconstruction has recently attracted a lot of attention, especially in the field of medical multi-modality imaging such as PET-MRI. Most of the developed methods rely on the comparison of image gradients, or more precisely their location, direction and magnitude, to make use of structural similarities between the images. A challenge and still an open issue for most of the methods is to handle images in entirely different scales, i.e. different magnitudes of gradients that cannot be dealt with by a global scaling of the data. We propose the use of generalized Bregman distances and infimal convolutions thereof with regard to the well-known total variation functional. The use of a total variation subgradient respectively the involved vector field rather than an image gradient naturally excludes the magnitudes of gradients, which in particular solves the scaling behavior. Additionally, the presented method features a weighting that allows to control the amount of interaction between channels. We give insights into the general behavior of the method, before we further tailor it to a particular application, namely PET-MRI joint reconstruction. To do so, we compute joint reconstruction results from blurry Poisson data for PET and undersampled Fourier data from MRI and show that we can gain a mutual benefit for both modalities. In particular, the results are superior to the respective separate reconstructions and other joint reconstruction methods.

  10. Optimization-based sale transactions and hydrothermal scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasannan, B.; Luh, P.B.; Yan, H.

    1995-12-31

    Selling and purchasing power are important activities for utilities because of potential savings. When a selling utility presents an offer including prices, power levels and durations, a purchasing utility selects power levels and durations within the offered range subject to relevant constraints. The decisionmaking process is complicated because transactions are coupled with system demand and reserve, therefore decisions have to be made in conjunction with the commitment and dispatching of units. Furthermore, transaction decisions have to be made in almost real time in view of the competitiveness of the power market caused by deregulation. In this paper, transactions are analyzedmore » from a selling utility`s viewpoint for a system consisting of thermal, hydro and pumped-storage units. To effectively solve the problem, linear sale revenues are approximated by nonlinear functions, and non-profitable options are identified and eliminated from consideration. The multipliers are then updated at the high level by using a modified subgradient method to obtain near optimal solutions quickly. Testing results show that the algorithm produces good sale offers efficiently.« less

  11. Optimization-based sale transactions and hydrothermal scheduling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasannan, B.; Luh, P.B.; Yan, H.

    1996-05-01

    Selling and purchasing power are important activities for utilities because of potential savings. When a selling utility presents an offer including prices, power levels and durations, a purchasing utility selects power levels and durations within the offered range subject to relevant constraints. The decisionmaking process is complicated because transactions are coupled with system demand and reserve, therefore decisions have to be made in conjunction with the commitment and dispatching of units. Furthermore, transaction decisions have to be made in almost real time in view of the competitiveness of the power market caused by deregulation. In this paper, transactions are analyzedmore » from a selling utility`s viewpoint for a system consisting of thermal, hydro and pumped-storage units. To effectively solve the problem, linear sale revenues are approximated by nonlinear functions, and non-profitable options are identified and eliminated from consideration. The multipliers are then updated at the high level by using a modified subgradient method to obtain near optimal solutions quickly. Testing results show that the algorithm produces good sale offers efficiently.« less

  12. Simultaneous gene finding in multiple genomes.

    PubMed

    König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario

    2016-11-15

    As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Stable sequential Kuhn-Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem

    NASA Astrophysics Data System (ADS)

    Sumin, M. I.

    2015-06-01

    A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.

  14. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less

  15. Robust Rate Maximization for Heterogeneous Wireless Networks under Channel Uncertainties

    PubMed Central

    Xu, Yongjun; Hu, Yuan; Li, Guoquan

    2018-01-01

    Heterogeneous wireless networks are a promising technology in next generation wireless communication networks, which has been shown to efficiently reduce the blind area of mobile communication and improve network coverage compared with the traditional wireless communication networks. In this paper, a robust power allocation problem for a two-tier heterogeneous wireless networks is formulated based on orthogonal frequency-division multiplexing technology. Under the consideration of imperfect channel state information (CSI), the robust sum-rate maximization problem is built while avoiding sever cross-tier interference to macrocell user and maintaining the minimum rate requirement of each femtocell user. To be practical, both of channel estimation errors from the femtocells to the macrocell and link uncertainties of each femtocell user are simultaneously considered in terms of outage probabilities of users. The optimization problem is analyzed under no CSI feedback with some cumulative distribution function and partial CSI with Gaussian distribution of channel estimation error. The robust optimization problem is converted into the convex optimization problem which is solved by using Lagrange dual theory and subgradient algorithm. Simulation results demonstrate the effectiveness of the proposed algorithm by the impact of channel uncertainties on the system performance. PMID:29466315

  16. Multi-temporal Land Use Mapping of Coastal Wetlands Area using Machine Learning in Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Farda, N. M.

    2017-12-01

    Coastal wetlands provide ecosystem services essential to people and the environment. Changes in coastal wetlands, especially on land use, are important to monitor by utilizing multi-temporal imagery. The Google Earth Engine (GEE) provides many machine learning algorithms (10 algorithms) that are very useful for extracting land use from imagery. The research objective is to explore machine learning in Google Earth Engine and its accuracy for multi-temporal land use mapping of coastal wetland area. Landsat 3 MSS (1978), Landsat 5 TM (1991), Landsat 7 ETM+ (2001), and Landsat 8 OLI (2014) images located in Segara Anakan lagoon are selected to represent multi temporal images. The input for machine learning are visible and near infrared bands, PCA band, invers PCA bands, bare soil index, vegetation index, wetness index, elevation from ASTER GDEM, and GLCM (Harralick) texture, and also polygon samples in 140 locations. There are 10 machine learning algorithms applied to extract coastal wetlands land use from Landsat imagery. The algorithms are Fast Naive Bayes, CART (Classification and Regression Tree), Random Forests, GMO Max Entropy, Perceptron (Multi Class Perceptron), Winnow, Voting SVM, Margin SVM, Pegasos (Primal Estimated sub-GrAdient SOlver for Svm), IKPamir (Intersection Kernel Passive Aggressive Method for Information Retrieval, SVM). Machine learning in Google Earth Engine are very helpful in multi-temporal land use mapping, the highest accuracy for land use mapping of coastal wetland is CART with 96.98 % Overall Accuracy using K-Fold Cross Validation (K = 10). GEE is particularly useful for multi-temporal land use mapping with ready used image and classification algorithms, and also very challenging for other applications.

  17. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks

    PubMed Central

    Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei

    2016-01-01

    In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network’s performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks. PMID:27483282

  18. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks.

    PubMed

    Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei

    2016-07-30

    In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.

  19. Two Project Methods: Preliminary Observations on the Similarities and Differences between William Heard Kilpatrick's Project Method and John Dewey's Problem-Solving Method

    ERIC Educational Resources Information Center

    Sutinen, Ari

    2013-01-01

    The project method became a famous teaching method when William Heard Kilpatrick published his article "Project Method" in 1918. The key idea in Kilpatrick's project method is to try to explain how pupils learn things when they work in projects toward different common objects. The same idea of pupils learning by work or action in an…

  20. Energy optimization in mobile sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, Shengwei

    Mobile sensor networks are considered to consist of a network of mobile robots, each of which has computation, communication and sensing capabilities. Energy efficiency is a critical issue in mobile sensor networks, especially when mobility (i.e., locomotion control), routing (i.e., communications) and sensing are unique characteristics of mobile robots for energy optimization. This thesis focuses on the problem of energy optimization of mobile robotic sensor networks, and the research results can be extended to energy optimization of a network of mobile robots that monitors the environment, or a team of mobile robots that transports materials from stations to stations in a manufacturing environment. On the energy optimization of mobile robotic sensor networks, our research focuses on the investigation and development of distributed optimization algorithms to exploit the mobility of robotic sensor nodes for network lifetime maximization. In particular, the thesis studies these five problems: 1. Network-lifetime maximization by controlling positions of networked mobile sensor robots based on local information with distributed optimization algorithms; 2. Lifetime maximization of mobile sensor networks with energy harvesting modules; 3. Lifetime maximization using joint design of mobility and routing; 4. Optimal control for network energy minimization; 5. Network lifetime maximization in mobile visual sensor networks. In addressing the first problem, we consider only the mobility strategies of the robotic relay nodes in a mobile sensor network in order to maximize its network lifetime. By using variable substitutions, the original problem is converted into a convex problem, and a variant of the sub-gradient method for saddle-point computation is developed for solving this problem. An optimal solution is obtained by the method. Computer simulations show that mobility of robotic sensors can significantly prolong the lifetime of the whole robotic sensor network while consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  1. Multi-Role Project (MRP): A New Project-Based Learning Method for STEM

    ERIC Educational Resources Information Center

    Warin, Bruno; Talbi, Omar; Kolski, Christophe; Hoogstoel, Frédéric

    2016-01-01

    This paper presents the "Multi-Role Project" method (MRP), a broadly applicable project-based learning method, and describes its implementation and evaluation in the context of a Science, Technology, Engineering, and Mathematics (STEM) course. The MRP method is designed around a meta-principle that considers the project learning activity…

  2. Voting strategy for artifact reduction in digital breast tomosynthesis.

    PubMed

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  3. Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing

    2017-12-14

    Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.

  4. Nonlinear optimization with linear constraints using a projection method

    NASA Technical Reports Server (NTRS)

    Fox, T.

    1982-01-01

    Nonlinear optimization problems that are encountered in science and industry are examined. A method of projecting the gradient vector onto a set of linear contraints is developed, and a program that uses this method is presented. The algorithm that generates this projection matrix is based on the Gram-Schmidt method and overcomes some of the objections to the Rosen projection method.

  5. The Project Method in Agricultural Education: Then and Now

    ERIC Educational Resources Information Center

    Roberts, T. Grady; Harlin, Julie F.

    2007-01-01

    The purpose of this philosophical paper was to synthesize theoretical and historical foundations of the project method and compare them to modern best-practices. A review of historical and contemporary literature related to the project method yielded six themes: 1) purpose of projects; 2) project classification; 3) the process; 4) the context; 5)…

  6. Combined Heat and Power Protocol for Uniform Methods Project | Advanced

    Science.gov Websites

    Manufacturing Research | NREL Combined Heat and Power Protocol for Uniform Methods Project Combined Heat and Power Protocol for Uniform Methods Project NREL developed a protocol that provides a ; is consistent with the scope and other protocols developed for the Uniform Methods Project (UMP

  7. Statistical CT noise reduction with multiscale decomposition and penalized weighted least squares in the projection domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Shaojie; Tang Xiangyang; School of Automation, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121

    2012-09-15

    Purposes: The suppression of noise in x-ray computed tomography (CT) imaging is of clinical relevance for diagnostic image quality and the potential for radiation dose saving. Toward this purpose, statistical noise reduction methods in either the image or projection domain have been proposed, which employ a multiscale decomposition to enhance the performance of noise suppression while maintaining image sharpness. Recognizing the advantages of noise suppression in the projection domain, the authors propose a projection domain multiscale penalized weighted least squares (PWLS) method, in which the angular sampling rate is explicitly taken into consideration to account for the possible variation ofmore » interview sampling rate in advanced clinical or preclinical applications. Methods: The projection domain multiscale PWLS method is derived by converting an isotropic diffusion partial differential equation in the image domain into the projection domain, wherein a multiscale decomposition is carried out. With adoption of the Markov random field or soft thresholding objective function, the projection domain multiscale PWLS method deals with noise at each scale. To compensate for the degradation in image sharpness caused by the projection domain multiscale PWLS method, an edge enhancement is carried out following the noise reduction. The performance of the proposed method is experimentally evaluated and verified using the projection data simulated by computer and acquired by a CT scanner. Results: The preliminary results show that the proposed projection domain multiscale PWLS method outperforms the projection domain single-scale PWLS method and the image domain multiscale anisotropic diffusion method in noise reduction. In addition, the proposed method can preserve image sharpness very well while the occurrence of 'salt-and-pepper' noise and mosaic artifacts can be avoided. Conclusions: Since the interview sampling rate is taken into account in the projection domain multiscale decomposition, the proposed method is anticipated to be useful in advanced clinical and preclinical applications where the interview sampling rate varies.« less

  8. Highlight removal based on the regional-projection fringe projection method

    NASA Astrophysics Data System (ADS)

    Qi, Zhaoshuai; Wang, Zhao; Huang, Junhui; Xing, Chao; Gao, Jianmin

    2018-04-01

    In fringe projection profilometry, highlight usually causes the saturation and blooming in captured fringes and reduces the measurement accuracy. To solve the problem, a regional-projection fringe projection (RP-FP) method is proposed. Regional projection patterns (RP patterns) are projected onto the tested object surface to avoid the saturation and blooming. Then, an image inpainting technique is employed to reconstruct the missing phases in the captured RP patterns and a complete surface of the tested object is obtained. Experiments verified the effectiveness of the proposed method. The method can be widely used in industrial inspections and quality controlling in mechanical and manufacturing industries.

  9. How to Select a Project Delivery Method for School Facilities

    ERIC Educational Resources Information Center

    Kalina, David

    2007-01-01

    In this article, the author discusses and explains three project delivery methods that are commonly used today in the United States. The first project delivery method mentioned is the design-bid-build, which is still the predominant method of project delivery for public works and school construction in the United States. The second is the…

  10. Application fuzzy multi-attribute decision analysis method to prioritize project success criteria

    NASA Astrophysics Data System (ADS)

    Phong, Nguyen Thanh; Quyen, Nguyen Le Hoang Thuy To

    2017-11-01

    Project success is a foundation for project owner to manage and control not only for the current project but also for future potential projects in construction companies. However, identifying the key success criteria for evaluating a particular project in real practice is a challenging task. Normally, it depends on a lot of factors, such as the expectation of the project owner and stakeholders, triple constraints of the project (cost, time, quality), and company's mission, vision, and objectives. Traditional decision-making methods for measuring the project success are usually based on subjective opinions of panel experts, resulting in irrational and inappropriate decisions. Therefore, this paper introduces a multi-attribute decision analysis method (MADAM) for weighting project success criteria by using fuzzy Analytical Hierarchy Process approach. It is found that this method is useful when dealing with imprecise and uncertain human judgments in evaluating project success criteria. Moreover, this research also suggests that although cost, time, and quality are three project success criteria projects, the satisfaction of project owner and acceptance of project stakeholders with the completed project criteria is the most important criteria for project success evaluation in Vietnam.

  11. Learning binary code via PCA of angle projection for image retrieval

    NASA Astrophysics Data System (ADS)

    Yang, Fumeng; Ye, Zhiqiang; Wei, Xueqi; Wu, Congzhong

    2018-01-01

    With benefits of low storage costs and high query speeds, binary code representation methods are widely researched for efficiently retrieving large-scale data. In image hashing method, learning hashing function to embed highdimensions feature to Hamming space is a key step for accuracy retrieval. Principal component analysis (PCA) technical is widely used in compact hashing methods, and most these hashing methods adopt PCA projection functions to project the original data into several dimensions of real values, and then each of these projected dimensions is quantized into one bit by thresholding. The variances of different projected dimensions are different, and with real-valued projection produced more quantization error. To avoid the real-valued projection with large quantization error, in this paper we proposed to use Cosine similarity projection for each dimensions, the angle projection can keep the original structure and more compact with the Cosine-valued. We used our method combined the ITQ hashing algorithm, and the extensive experiments on the public CIFAR-10 and Caltech-256 datasets validate the effectiveness of the proposed method.

  12. The Effect of Project Exhibition Event on Physics Success and Prospective Teachers' Opinions about Projects

    ERIC Educational Resources Information Center

    Güven Yildirim, Ezgi; Köklükaya, Ayse Nesibe

    2018-01-01

    The purposes of this study were first to investigate the effects of the project-based learning (PBL) method and project exhibition event on the success of physics teacher candidates, and second, to reveal the experiment group students' views toward this learning method and project exhibition. The research model called explanatory mixed method, in…

  13. Comparison of microstickies measurement methods. Part I, sample preparation and measurement methods

    Treesearch

    Mahendra R. Doshi; Angeles Blanco; Carlos Negro; Gilles M. Dorris; Carlos C. Castro; Axel Hamann; R. Daniel Haynes; Carl Houtman; Karen Scallon; Hans-Joachim Putz; Hans Johansson; R.A. Venditti; K. Copeland; H.-M. Chang

    2003-01-01

    Recently, we completed a project on the comparison of macrostickies measurement methods. Based on the success of the project, we decided to embark on this new project on comparison of microstickies measurement methods. When we started this project, there were some concerns and doubts principally due to the lack of an accepted definition of microstickies. However, we...

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, S.; Paschal, C.B.; Galloway, R.L.

    Four methods of producing maximum intensity projection (MIP) images were studied and compared. Three of the projection methods differ in the interpolation kernel used for ray tracing. The interpolation kernels include nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation. The fourth projection method is a voxel projection method that is not explicitly a ray-tracing technique. The four algorithms` performance was evaluated using a computer-generated model of a vessel and using real MR angiography data. The evaluation centered around how well an algorithm transferred an object`s width to the projection plane. The voxel projection algorithm does not suffer from artifactsmore » associated with the nearest neighbor algorithm. Also, a speed-up in the calculation of the projection is seen with the voxel projection method. Linear interpolation dramatically improves the transfer of width information from the 3D MRA data set over both nearest neighbor and voxel projection methods. Even though the cubic convolution interpolation kernel is theoretically superior to the linear kernel, it did not project widths more accurately than linear interpolation. A possible advantage to the nearest neighbor interpolation is that the size of small vessels tends to be exaggerated in the projection plane, thereby increasing their visibility. The results confirm that the way in which an MIP image is constructed has a dramatic effect on information contained in the projection. The construction method must be chosen with the knowledge that the clinical information in the 2D projections in general will be different from that contained in the original 3D data volume. 27 refs., 16 figs., 2 tabs.« less

  15. A Statistical Project Control Tool for Engineering Managers

    NASA Technical Reports Server (NTRS)

    Bauch, Garland T.

    2001-01-01

    This slide presentation reviews the use of a Statistical Project Control Tool (SPCT) for managing engineering projects. A literature review pointed to a definition of project success, (i.e., A project is successful when the cost, schedule, technical performance, and quality satisfy the customer.) The literature review also pointed to project success factors, and traditional project control tools, and performance measures that are detailed in the report. The essential problem is that with resources becoming more limited, and an increasing number or projects, project failure is increasing, there is a limitation of existing methods and systematic methods are required. The objective of the work is to provide a new statistical project control tool for project managers. Graphs using the SPCT method plotting results of 3 successful projects and 3 failed projects are reviewed, with success and failure being defined by the owner.

  16. Scheduling of House Development Projects with CPM and PERT Method for Time Efficiency (Case Study: House Type 36)

    NASA Astrophysics Data System (ADS)

    Kholil, Muhammad; Nurul Alfa, Bonitasari; Hariadi, Madjumsyah

    2018-04-01

    Network planning is one of the management techniques used to plan and control the implementation of a project, which shows the relationship between activities. The objective of this research is to arrange network planning on house construction project on CV. XYZ and to know the role of network planning in increasing the efficiency of time so that can be obtained the optimal project completion period. This research uses descriptive method, where the data collected by direct observation to the company, interview, and literature study. The result of this research is optimal time planning in project work. Based on the results of the research, it can be concluded that the use of the both methods in scheduling of house construction project gives very significant effect on the completion time of the project. The company’s CPM (Critical Path Method) method can complete the project with 131 days, PERT (Program Evaluation Review and Technique) Method takes 136 days. Based on PERT calculation obtained Z = -0.66 or 0,2546 (from normal distribution table), and also obtained the value of probability or probability is 74,54%. This means that the possibility of house construction project activities can be completed on time is high enough. While without using both methods the project completion time takes 173 days. So using the CPM method, the company can save time up to 42 days and has time efficiency by using network planning.

  17. Project-Based Learning in Programmable Logic Controller

    NASA Astrophysics Data System (ADS)

    Seke, F. R.; Sumilat, J. M.; Kembuan, D. R. E.; Kewas, J. C.; Muchtar, H.; Ibrahim, N.

    2018-02-01

    Project-based learning is a learning method that uses project activities as the core of learning and requires student creativity in completing the project. The aims of this study is to investigate the influence of project-based learning methods on students with a high level of creativity in learning the Programmable Logic Controller (PLC). This study used experimental methods with experimental class and control class consisting of 24 students, with 12 students of high creativity and 12 students of low creativity. The application of project-based learning methods into the PLC courses combined with the level of student creativity enables the students to be directly involved in the work of the PLC project which gives them experience in utilizing PLCs for the benefit of the industry. Therefore, it’s concluded that project-based learning method is one of the superior learning methods to apply on highly creative students to PLC courses. This method can be used as an effort to improve student learning outcomes and student creativity as well as to educate prospective teachers to become reliable educators in theory and practice which will be tasked to create qualified human resources candidates in order to meet future industry needs.

  18. THe Case Method of Instruction (CMI) Project. Final Report.

    ERIC Educational Resources Information Center

    McWilliam, P. J.; And Others

    This final report describes the Case Method of Instruction (CMI) Project, a project to develop, field test, and disseminate training materials to facilitate the use of the Case Method of Instruction by inservice and preservice instructors in developmental disabilities. CMI project activities focused on developing a collection of case stories and…

  19. Project-Method Fit: Exploring Factors That Influence Agile Method Use

    ERIC Educational Resources Information Center

    Young, Diana K.

    2013-01-01

    While the productivity and quality implications of agile software development methods (SDMs) have been demonstrated, research concerning the project contexts where their use is most appropriate has yielded less definitive results. Most experts agree that agile SDMs are not suited for all project contexts. Several project and team factors have been…

  20. A Formula for Fixing Troubled Projects: The Scientific Method Meets Leadership

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2006-01-01

    This presentation focuses on project management, specifically addressing project issues using the scientific method of problem-solving. Two sample projects where this methodology has been applied are provided.

  1. Project Method, as One of the Basic Methods of Environmental Education

    ERIC Educational Resources Information Center

    Szállassy, Noémi

    2008-01-01

    Our aim was to present in this paper the one of the most important methods of environmental education, the project method. We present here the steps and phases of project method and we give an example of how to use these elements in planning an activity for celebrating the World Day for Water.

  2. Planning "and" Sprinting: Use of a Hybrid Project Management Methodology within a CIS Capstone Course

    ERIC Educational Resources Information Center

    Baird, Aaron; Riggins, Frederick J.

    2012-01-01

    An increasing number of information systems projects in industry are managed using hybrid project management methodologies, but this shift in project management methods is not fully represented in our CIS curriculums. CIS capstone courses often include an applied project that is managed with traditional project management methods (plan first,…

  3. Chapter 3: Design of the Saber-Tooth Project.

    ERIC Educational Resources Information Center

    Ward, Phillip

    1999-01-01

    Used data from interviews, surveys, and document analysis to describe the methods and reform processes of the Saber Tooth Project, examining selection of sites; demographics (school sites, teachers, data sources, and project assumptions); and project phases (development, planning, implementation, and support). The project's method of reform was…

  4. Using the Project Method in Distributive Education. Teacher's Manual.

    ERIC Educational Resources Information Center

    Maletta, Edwin

    The document explains how to integrate the project training methods into a distributive education curriculum for grades 10 or 11. The purpose of this teacher's manual is to give an overall picture of the project method in use. Ten sample projects are included which could apply to any distributive education student concentrating on the major areas…

  5. Viewing-zone control of integral imaging display using a directional projection and elemental image resizing method.

    PubMed

    Alam, Md Ashraful; Piao, Mei-Lan; Bang, Le Thanh; Kim, Nam

    2013-10-01

    Viewing-zone control of integral imaging (II) displays using a directional projection and elemental image (EI) resizing method is proposed. Directional projection of EIs with the same size of microlens pitch causes an EI mismatch at the EI plane. In this method, EIs are generated computationally using a newly introduced algorithm: the directional elemental image generation and resizing algorithm considering the directional projection geometry of each pixel as well as an EI resizing method to prevent the EI mismatch. Generated EIs are projected as a collimated projection beam with a predefined directional angle, either horizontally or vertically. The proposed II display system allows reconstruction of a 3D image within a predefined viewing zone that is determined by the directional projection angle.

  6. Accelerating separable footprint (SF) forward and back projection on GPU

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobin; McGaffin, Madison G.; Long, Yong; Fessler, Jeffrey A.; Wen, Minhua; Lin, James

    2017-03-01

    Statistical image reconstruction (SIR) methods for X-ray CT can improve image quality and reduce radiation dosages over conventional reconstruction methods, such as filtered back projection (FBP). However, SIR methods require much longer computation time. The separable footprint (SF) forward and back projection technique simplifies the calculation of intersecting volumes of image voxels and finite-size beams in a way that is both accurate and efficient for parallel implementation. We propose a new method to accelerate the SF forward and back projection on GPU with NVIDIA's CUDA environment. For the forward projection, we parallelize over all detector cells. For the back projection, we parallelize over all 3D image voxels. The simulation results show that the proposed method is faster than the acceleration method of the SF projectors proposed by Wu and Fessler.13 We further accelerate the proposed method using multiple GPUs. The results show that the computation time is reduced approximately proportional to the number of GPUs.

  7. Research on Bidding Decision-making of International Public-Private Partnership Projects

    NASA Astrophysics Data System (ADS)

    Hu, Zhen Yu; Zhang, Shui Bo; Liu, Xin Yan

    2018-06-01

    In order to select the optimal quasi-bidding project for an investment enterprise, a bidding decision-making model for international PPP projects was established in this paper. Firstly, the literature frequency statistics method was adopted to screen out the bidding decision-making indexes, and accordingly the bidding decision-making index system for international PPP projects was constructed. Then, the group decision-making characteristic root method, the entropy weight method, and the optimization model based on least square method were used to set the decision-making index weights. The optimal quasi-bidding project was thus determined by calculating the consistent effect measure of each decision-making index value and the comprehensive effect measure of each quasi-bidding project. Finally, the bidding decision-making model for international PPP projects was further illustrated by a hypothetical case. This model can effectively serve as a theoretical foundation and technical support for the bidding decision-making of international PPP projects.

  8. A method for evaluating the funding of components of natural resource and conservation projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellington, John F., E-mail: welling@ipfw.edu; Lewis, Stephen A., E-mail: lewis.sa07@gmail.com

    Many public and private entities such as government agencies and private foundations have missions related to the improvement, protection, and sustainability of the environment. In pursuit of their missions, they fund projects with related outcomes. Typically, the funding scene consists of scarce funding dollars for the many project requests. In light of funding limitations and funder's search for innovative funding schemes, a method to support the allocation of scarce dollars among project components is presented. The proposed scheme has similarities to methods in the project selection literature but differs in its focus on project components and its connection to andmore » enumeration of the universe of funding possibilities. The value of having access to the universe is demonstrated with illustrations. The presentation includes Excel implementations that should appeal to a broad spectrum of project evaluators and reviewers. Access to the space of funding possibilities facilitates a rich analysis of funding alternatives. - Highlights: • Method is given for allocating scarce funding dollars among competing projects. • Allocations are made to fund parts of projects • Proposed method provides access to the universe of funding possibilities. • Proposed method facilitates a rich analysis of funding possibilities. • Excel spreadsheet implementations are provided.« less

  9. Substrate comprising a nanometer-scale projection array

    DOEpatents

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  10. Risk assessment for construction projects of transport infrastructure objects

    NASA Astrophysics Data System (ADS)

    Titarenko, Boris

    2017-10-01

    The paper analyzes and compares different methods of risk assessment for construction projects of transport objects. The management of such type of projects demands application of special probabilistic methods due to large level of uncertainty of their implementation. Risk management in the projects requires the use of probabilistic and statistical methods. The aim of the work is to develop a methodology for using traditional methods in combination with robust methods that allow obtaining reliable risk assessments in projects. The robust approach is based on the principle of maximum likelihood and in assessing the risk allows the researcher to obtain reliable results in situations of great uncertainty. The application of robust procedures allows to carry out a quantitative assessment of the main risk indicators of projects when solving the tasks of managing innovation-investment projects. Calculation of damage from the onset of a risky event is possible by any competent specialist. And an assessment of the probability of occurrence of a risky event requires the involvement of special probabilistic methods based on the proposed robust approaches. Practice shows the effectiveness and reliability of results. The methodology developed in the article can be used to create information technologies and their application in automated control systems for complex projects.

  11. Project Management, Critical Praxis, and Process-Oriented Approach to Teamwork

    ERIC Educational Resources Information Center

    Ding, Huiling; Ding, Xin

    2008-01-01

    To help alleviate issues of free-riding and conflicts in team projects, this study proposes the systematic incorporation of project management methods to introduce a process-oriented approach to and a critical praxis in team projects. We examined how the systematic use of project management methods influenced students' performance in team…

  12. Prioritizing sewer rehabilitation projects using AHP-PROMETHEE II ranking method.

    PubMed

    Kessili, Abdelhak; Benmamar, Saadia

    2016-01-01

    The aim of this paper is to develop a methodology for the prioritization of sewer rehabilitation projects for Algiers (Algeria) sewer networks to support the National Sanitation Office in its challenge to make decisions on prioritization of sewer rehabilitation projects. The methodology applies multiple-criteria decision making. The study includes 47 projects (collectors) and 12 criteria to evaluate them. These criteria represent the different issues considered in the prioritization of the projects, which are structural, hydraulic, environmental, financial, social and technical. The analytic hierarchy process (AHP) is used to determine weights of the criteria and the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE II) method is used to obtain the final ranking of the projects. The model was verified using the sewer data of Algiers. The results have shown that the method can be used for prioritizing sewer rehabilitation projects.

  13. A New Tool for Effective and Efficient Project Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, Jesse A

    2011-12-01

    Organizations routinely handle thousands of projects per year, and it is difficult to manage all these projects concurrently. Too often, projects do not get the attention they need when they need it. Management inattention can lead to late projects or projects with less than desirable content and/or deliverables. This paper discusses the application of Visual Project Management (VPM) as a method to track and manage projects. The VPM approach proved to be a powerful management tool without the overhead and restrictions of traditional management methods.

  14. Lessons learned applying CASE methods/tools to Ada software development projects

    NASA Technical Reports Server (NTRS)

    Blumberg, Maurice H.; Randall, Richard L.

    1993-01-01

    This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones.

  15. 77 FR 8328 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Panel Face-to-Face Service Methods Project Committee will be held Tuesday, March 13, 2012, at 2 p.m...

  16. 77 FR 61053 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Service Methods Project Committee will be held Tuesday, November 13, 2012, at 2:00 p.m. Eastern Time via...

  17. 77 FR 47166 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Service Methods Project Committee will be held Tuesday, September 11, 2012, at 2 p.m. Eastern Time via...

  18. 76 FR 78342 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of Meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Service Methods Project Committee will be held Tuesday, January 10, 2012, at 2 p.m. Eastern Time via...

  19. 77 FR 2611 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Service Methods Project Committee will be held Tuesday, February 14, 2012, at 2 p.m. Eastern Time via...

  20. Climate Action Benefits: Methods of Analysis

    EPA Pesticide Factsheets

    This page provides detailed information on the methods used in the CIRA analyses, including the overall framework, temperature projections, precipitation projections, sea level rise projections, uncertainty, and limitations.

  1. 76 FR 22631 - Community Facility Loans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... restrictive language in 7 CFR part 1942 that limits projects using alternate construction methods to loans... field staff and applicants understand when a project qualifies as an alternate construction method. None... contracting method projects must comply with the requirements for ``maximum open and free competition'' in...

  2. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    ERIC Educational Resources Information Center

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  3. Manufacturing Methods and Technology (MMT) project execution report

    NASA Astrophysics Data System (ADS)

    Swim, P. A.

    1982-10-01

    This document is a summary compilation of the manufacturing methods and technology program project status reports (RCS DRCMT-301) submitted to IBEA from DARCOM major Army subcommands and project managers. Each page of the computerized section lists project number, title, status, funding, and projected completion date. Summary pages give information relating to the overall DARCOM program.

  4. WE-AB-207A-02: John’s Equation Based Consistency Condition and Incomplete Projection Restoration Upon Circular Orbit CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J; Qi, H; Wu, S

    Purpose: In transmitted X-ray tomography imaging, projections are sometimes incomplete due to a variety of reasons, such as geometry inaccuracy, defective detector cells, etc. To address this issue, we have derived a direct consistency condition based on John’s Equation, and proposed a method to effectively restore incomplete projections based on this consistency condition. Methods: Through parameter substitutions, we have derived a direct consistency condition equation from John’s equation, in which the left side is only projection derivative of view and the right side is projection derivative of other geometrical parameters. Based on this consistency condition, a projection restoration method ismore » proposed, which includes five steps: 1) Forward projecting reconstructed image and using linear interpolation to estimate the incomplete projections as the initial result; 2) Performing Fourier transform on the projections; 3) Restoring the incomplete frequency data using the consistency condition equation; 4) Performing inverse Fourier transform; 5) Repeat step 2)∼4) until our criteria is met to terminate the iteration. Results: A beam-blocking-based scatter correction case and a bad-pixel correction case were used to demonstrate the efficacy and robustness of our restoration method. The mean absolute error (MAE), signal noise ratio (SNR) and mean square error (MSE) were employed as our evaluation metrics of the reconstructed images. For the scatter correction case, the MAE is reduced from 63.3% to 71.7% with 4 iterations. Compared with the existing Patch’s method, the MAE of our method is further reduced by 8.72%. For the bad-pixel case, the SNR of the reconstructed image by our method is increased from 13.49% to 21.48%, with the MSE being decreased by 45.95%, compared with linear interpolation method. Conclusion: Our studies have demonstrated that our restoration method based on the new consistency condition could effectively restore the incomplete projections, especially for their high frequency component.« less

  5. 18 CFR 4.96 - Amendment of exemption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... design, location, method of construction or operation of its project, it must first notify the..., location, method of construction or operation of the project, the exemption holder may implement the..., method of construction or the operation of the project works, the exemption holder may not implement the...

  6. A New Strategy for Dealing with Social Loafers on the Group Project: The Segment Manager Method

    ERIC Educational Resources Information Center

    Dommeyer, Curt J.

    2012-01-01

    Professors often give members of a group project the same grade or they use peer evaluations to provide individualized grades. Unfortunately, both these methods have shortcomings. This article describes the segment manager method (SMM), a method for assigning individualized grades on the group project that does not rely on peer evaluations. A…

  7. Software Program: Software Management Guidebook

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The purpose of this NASA Software Management Guidebook is twofold. First, this document defines the core products and activities required of NASA software projects. It defines life-cycle models and activity-related methods but acknowledges that no single life-cycle model is appropriate for all NASA software projects. It also acknowledges that the appropriate method for accomplishing a required activity depends on characteristics of the software project. Second, this guidebook provides specific guidance to software project managers and team leaders in selecting appropriate life cycles and methods to develop a tailored plan for a software engineering project.

  8. 18 CFR 4.104 - Amendment of exemption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... change the design, location, method of construction or operation of its project, it must first notify the..., location, method of construction or operation of the project, the exemption holder may implement the..., method of construction or the operation of the project works, the exemption holder may not implement the...

  9. Discriminative Projection Selection Based Face Image Hashing

    NASA Astrophysics Data System (ADS)

    Karabat, Cagatay; Erdogan, Hakan

    Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussian mixture model at the quantization step. Our simulation results on three different databases demonstrate that the proposed method has superior performance in comparison to previously proposed random projection based methods.

  10. The algorithm for duration acceleration of repetitive projects considering the learning effect

    NASA Astrophysics Data System (ADS)

    Chen, Hongtao; Wang, Keke; Du, Yang; Wang, Liwan

    2018-03-01

    Repetitive project optimization problem is common in project scheduling. Repetitive Scheduling Method (RSM) has many irreplaceable advantages in the field of repetitive projects. As the same or similar work is repeated, the proficiency of workers will be correspondingly low to high, and workers will gain experience and improve the efficiency of operations. This is learning effect. Learning effect is one of the important factors affecting the optimization results in repetitive project scheduling. This paper analyzes the influence of the learning effect on the controlling path in RSM from two aspects: one is that the learning effect changes the controlling path, the other is that the learning effect doesn't change the controlling path. This paper proposes corresponding methods to accelerate duration for different types of critical activities and proposes the algorithm for duration acceleration based on the learning effect in RSM. And the paper chooses graphical method to identity activities' types and considers the impacts of the learning effect on duration. The method meets the requirement of duration while ensuring the lowest acceleration cost. A concrete bridge construction project is given to verify the effectiveness of the method. The results of this study will help project managers understand the impacts of the learning effect on repetitive projects, and use the learning effect to optimize project scheduling.

  11. Service and Methods Demonstration - Annual Report

    DOT National Transportation Integrated Search

    1975-11-01

    This report contains a description of the Service and Methods Demonstration Program. Transit demonstration projects undertaken in previous years are reviewed. Recently completed and current demonstration projects are described and project results fro...

  12. Identifying inaccuracy of MS Project using system analysis

    NASA Astrophysics Data System (ADS)

    Fachrurrazi; Husin, Saiful; Malahayati, Nurul; Irzaidi

    2018-05-01

    The problem encountered in project owner’s financial accounting report is the difference in total project costs of MS Project to the Indonesian Standard (Standard Indonesia Standard / Cost Estimating Standard Book of Indonesia). It is one of the MS Project problems concerning to its cost accuracy, so cost data cannot be used in an integrated way for all project components. This study focuses on finding the causes of inaccuracy of the MS Projects. The aim of this study, which is operationally, are: (i) identifying cost analysis procedures for both current methods (SNI) and MS Project; (ii) identifying cost bias in each element of the cost analysis procedure; and (iii) analysing the cost differences (cost bias) in each element to identify what the cause of inaccuracies in MS Project toward SNI is. The method in this study is comparing for both the system analysis of MS Project and SNI. The results are: (i) MS Project system in Work of Resources element has limitation for two decimal digits only, have led to its inaccuracy. Where the Work of Resources (referred to as effort) in MS Project represents multiplication between the Quantities of Activities and Requirements of resources in SNI; (ii) MS Project and SNI have differences in the costing methods (the cost estimation methods), in which the SNI uses the Quantity-Based Costing (QBC), meanwhile MS Project uses the Time-Based Costing (TBC). Based on this research, we recommend to the contractors who use SNI should make an adjustment for Work of Resources in MS Project (with correction index) so that it can be used in an integrated way to the project owner’s financial accounting system. Further research will conduct for improvement the MS Project as an integrated tool toward all part of the project participant.

  13. Research on cross - Project software defect prediction based on transfer learning

    NASA Astrophysics Data System (ADS)

    Chen, Ya; Ding, Xiaoming

    2018-04-01

    According to the two challenges in the prediction of cross-project software defects, the distribution differences between the source project and the target project dataset and the class imbalance in the dataset, proposing a cross-project software defect prediction method based on transfer learning, named NTrA. Firstly, solving the source project data's class imbalance based on the Augmented Neighborhood Cleaning Algorithm. Secondly, the data gravity method is used to give different weights on the basis of the attribute similarity of source project and target project data. Finally, a defect prediction model is constructed by using Trad boost algorithm. Experiments were conducted using data, come from NASA and SOFTLAB respectively, from a published PROMISE dataset. The results show that the method has achieved good values of recall and F-measure, and achieved good prediction results.

  14. Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.

  15. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Youngsoo; Carlberg, Kevin Thomas

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over allmore » space and time in a weighted ℓ 2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.« less

  16. A velocity-correction projection method based immersed boundary method for incompressible flows

    NASA Astrophysics Data System (ADS)

    Cai, Shanggui

    2014-11-01

    In the present work we propose a novel direct forcing immersed boundary method based on the velocity-correction projection method of [J.L. Guermond, J. Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41 (1)(2003) 112]. The principal idea of immersed boundary method is to correct the velocity in the vicinity of the immersed object by using an artificial force to mimic the presence of the physical boundaries. Therefore, velocity-correction projection method is preferred to its pressure-correction counterpart in the present work. Since the velocity-correct projection method is considered as a dual class of pressure-correction method, the proposed method here can also be interpreted in the way that first the pressure is predicted by treating the viscous term explicitly without the consideration of the immersed boundary, and the solenoidal velocity is used to determine the volume force on the Lagrangian points, then the non-slip boundary condition is enforced by correcting the velocity with the implicit viscous term. To demonstrate the efficiency and accuracy of the proposed method, several numerical simulations are performed and compared with the results in the literature. China Scholarship Council.

  17. An Analytical Method for Measuring Competence in Project Management

    ERIC Educational Resources Information Center

    González-Marcos, Ana; Alba-Elías, Fernando; Ordieres-Meré, Joaquín

    2016-01-01

    The goal of this paper is to present a competence assessment method in project management that is based on participants' performance and value creation. It seeks to close an existing gap in competence assessment in higher education. The proposed method relies on information and communication technology (ICT) tools and combines Project Management…

  18. 26 CFR 1.43-4 - Qualified enhanced oil recovery costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the anticipated use in a project or activity is a reasonable method. (b) Costs defined—(1) Qualified... used in the tertiary recovery method. Therefore, the storage tank is used directly in the project and... qualified tertiary recovery method. As part of the enhanced oil recovery project, K drills injection wells...

  19. 77 FR 55525 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee will be conducted. The Taxpayer Advocacy Panel is soliciting public comments, ideas, and...

  20. Environmental impact assessment for alternative-energy power plants in México.

    PubMed

    González-Avila, María E; Beltrán-Morales, Luis Felipe; Braker, Elizabeth; Ortega-Rubio, Alfredo

    2006-07-01

    Ten Environmental Impact Assessment Reports (EIAR) were reviewed for projects involving alternative power plants in Mexico developed during the last twelve years. Our analysis focused on the methods used to assess the impacts produced by hydroelectric and geothermal power projects. These methods used to assess impacts in EIARs ranged from the most simple, descriptive criteria, to quantitative models. These methods are not concordant with the level of the EIAR required by the environmental authority or even, with the kind of project developed. It is concluded that there is no correlation between the tools used to assess impacts and the assigned type of the EIAR. Because the methods to assess impacts produced by these power projects have not changed during 2000 years, we propose a quantitative method, based on ecological criteria and tools, to assess the impacts produced by hydroelectric and geothermal plants, according to the specific characteristics of the project. The proposed method is supported by environmental norms, and can assist environmental authorities in assigning the correct level and tools to be applied to hydroelectric and geothermal projects. The proposed method can be adapted to other production activities in Mexico and to other countries.

  1. A one-shot-projection method for measurement of specular surfaces.

    PubMed

    Wang, Zhenzhou

    2015-02-09

    In this paper, a method is proposed to measure the shapes of specular surfaces with one-shot-projection of structured laser patterns. By intercepting the reflection of the reflected laser pattern twice with two diffusive planes, the closed form solution is achieved for each reflected ray. The points on the specular surface are reconstructed by computing the intersections of the incident rays and the reflected rays. The proposed method can measure both static and dynamic specular shapes due to its one-shot-projection, which is beyond the capability of most of state of art methods that need multiple projections. To our knowledge, the proposed method is the only method so far that could yield the closed form solutions for the dynamic and specular surfaces.

  2. Efficient and effective implementation of alternative project delivery methods.

    DOT National Transportation Integrated Search

    2017-05-01

    Over the past decade, the Maryland Department of Transportation State Highway : Administration (MDOT SHA) has implemented Alternative Project Delivery (APD) methods : in a number of transportation projects. While these innovative practices have produ...

  3. The Filtered Abel Transform and Its Application in Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang

    2003-01-01

    Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal to an integral transform of the original projection data with the kernel function being the Abel transform of the filtering function. The kernel function is independent of the projection data and can be obtained separately when the filtering function is selected. Users can select the best filtering function for a particular set of experimental data. When the kernal function is obtained, it can be used repeatedly to a number of projection data sets (rovs) from the same experiment. When an entire flame image that contains a large number of projection lines needs to be processed, the new approach significantly reduces computational effort in comparison with the conventional approach in which each projection data set is deconvoluted separately. Computer codes have been developed to perform the filter Abel transform for an entire flame field. Measured soot volume fraction data of a jet diffusion flame are processed as an example.

  4. Iterative optimizing quantization method for reconstructing three-dimensional images from a limited number of views

    DOEpatents

    Lee, Heung-Rae

    1997-01-01

    A three-dimensional image reconstruction method comprises treating the object of interest as a group of elements with a size that is determined by the resolution of the projection data, e.g., as determined by the size of each pixel. One of the projections is used as a reference projection. A fictitious object is arbitrarily defined that is constrained by such reference projection. The method modifies the known structure of the fictitious object by comparing and optimizing its four projections to those of the unknown structure of the real object and continues to iterate until the optimization is limited by the residual sum of background noise. The method is composed of several sub-processes that acquire four projections from the real data and the fictitious object: generate an arbitrary distribution to define the fictitious object, optimize the four projections, generate a new distribution for the fictitious object, and enhance the reconstructed image. The sub-process for the acquisition of the four projections from the input real data is simply the function of acquiring the four projections from the data of the transmitted intensity. The transmitted intensity represents the density distribution, that is, the distribution of absorption coefficients through the object.

  5. MO-F-211-01: Methods for Completing Practice Quality Improvement (PQI).

    PubMed

    Johnson, J; Brown, K; Ibbott, G; Pawlicki, T

    2012-06-01

    Practice Quality Improvement (PQI) is becoming an expected part of routine practice in healthcare as an approach to provide more efficient, effective and high quality care. Additionally, as part of the ABR's Maintenance of Certification (MOC) pathway, medical physicists are now expected to complete a PQI project. This session will describe the history behind and benefits of the ABR's MOC program, provide details of quality improvement methods and how to successfully complete a PQI project. PQI methods include various commonly used engineering and management tools. The Plan-Do-Study-Act (PDSA) cycle will be presented as one project planning and implementation tool. Other PQI analysis instruments such as flowcharts, Pareto charts, process control charts and fishbone diagrams will also be explained with examples. Cause analysis, solution development and implementation, and post-implementation measurement will be presented. Project identification and definition as well as appropriate measurement tool selection will be offered. Methods to choose key quality metrics (key quality indicators) will also be addressed. Several sample PQI projects and templates available through the AAPM and other organizations will be described. At least three examples of completed PQI projects will be shared. 1. Identify and define a PQI project 2. Identify and select measurement methods/techniques for use with the PQI project 3. Describe example(s) of completed projects. © 2012 American Association of Physicists in Medicine.

  6. Evaluation on Collaborative Satisfaction for Project Management Team in Integrated Project Delivery Mode

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Li, Y.; Wu, Q.

    2013-05-01

    Integrated Project Delivery (IPD) is a newly-developed project delivery approach for construction projects, and the level of collaboration of project management team is crucial to the success of its implementation. Existing research has shown that collaborative satisfaction is one of the key indicators of team collaboration. By reviewing the literature on team collaborative satisfaction and taking into consideration the characteristics of IPD projects, this paper summarizes the factors that influence collaborative satisfaction of IPD project management team. Based on these factors, this research develops a fuzzy linguistic method to effectively evaluate the level of team collaborative satisfaction, in which the authors adopted the 2-tuple linguistic variables and 2-tuple linguistic hybrid average operators to enhance the objectivity and accuracy of the evaluation. The paper demonstrates the practicality and effectiveness of the method through carrying out a case study with the method.

  7. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    PubMed

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  8. WE-AB-207A-12: HLCC Based Quantitative Evaluation Method of Image Artifact in Dental CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y; Wu, S; Qi, H

    Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCCmore » profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter>Geometry>Beam hardening>Lag>Noise>Artifact-free in dental CBCT.« less

  9. Projecting climate change impacts on hydrology: the potential role of daily GCM output

    NASA Astrophysics Data System (ADS)

    Maurer, E. P.; Hidalgo, H. G.; Das, T.; Dettinger, M. D.; Cayan, D.

    2008-12-01

    A primary challenge facing resource managers in accommodating climate change is determining the range and uncertainty in regional and local climate projections. This is especially important for assessing changes in extreme events, which will drive many of the more severe impacts of a changed climate. Since global climate models (GCMs) produce output at a spatial scale incompatible with local impact assessment, different techniques have evolved to downscale GCM output so locally important climate features are expressed in the projections. We compared skill and hydrologic projections using two statistical downscaling methods and a distributed hydrology model. The downscaling methods are the constructed analogues (CA) and the bias correction and spatial downscaling (BCSD). CA uses daily GCM output, and can thus capture GCM projections for changing extreme event occurrence, while BCSD uses monthly output and statistically generates historical daily sequences. We evaluate the hydrologic impacts projected using downscaled climate (from the NCEP/NCAR reanalysis as a surrogate GCM) for the late 20th century with both methods, comparing skill in projecting soil moisture, snow pack, and streamflow at key locations in the Western United States. We include an assessment of a new method for correcting for GCM biases in a hybrid method combining the most important characteristics of both methods.

  10. Joint Probabilistic Projection of Female and Male Life Expectancy

    PubMed Central

    Raftery, Adrian E.; Lalic, Nevena; Gerland, Patrick

    2014-01-01

    BACKGROUND The United Nations (UN) produces population projections for all countries every two years. These are used by international organizations, governments, the private sector and researchers for policy planning, for monitoring development goals, as inputs to economic and environmental models, and for social and health research. The UN is considering producing fully probabilistic population projections, for which joint probabilistic projections of future female and male life expectancy at birth are needed. OBJECTIVE We propose a methodology for obtaining joint probabilistic projections of female and male life expectancy at birth. METHODS We first project female life expectancy using a one-sex method for probabilistic projection of life expectancy. We then project the gap between female and male life expectancy. We propose an autoregressive model for the gap in a future time period for a particular country, which is a function of female life expectancy and a t-distributed random perturbation. This method takes into account mortality data limitations, is comparable across countries, and accounts for shocks. We estimate all parameters based on life expectancy estimates for 1950–2010. The methods are implemented in the bayesLife and bayesPop R packages. RESULTS We evaluated our model using out-of-sample projections for the period 1995–2010, and found that our method performed better than several possible alternatives. CONCLUSIONS We find that the average gap between female and male life expectancy has been increasing for female life expectancy below 75, and decreasing for female life expectancy above 75. Our projections of the gap are lower than the UN’s 2008 projections for most countries and so lead to higher projections of male life expectancy. PMID:25580082

  11. FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data.

    PubMed

    DeTomaso, David; Yosef, Nir

    2016-08-23

    A key challenge in the emerging field of single-cell RNA-Seq is to characterize phenotypic diversity between cells and visualize this information in an informative manner. A common technique when dealing with high-dimensional data is to project the data to 2 or 3 dimensions for visualization. However, there are a variety of methods to achieve this result and once projected, it can be difficult to ascribe biological significance to the observed features. Additionally, when analyzing single-cell data, the relationship between cells can be obscured by technical confounders such as variable gene capture rates. To aid in the analysis and interpretation of single-cell RNA-Seq data, we have developed FastProject, a software tool which analyzes a gene expression matrix and produces a dynamic output report in which two-dimensional projections of the data can be explored. Annotated gene sets (referred to as gene 'signatures') are incorporated so that features in the projections can be understood in relation to the biological processes they might represent. FastProject provides a novel method of scoring each cell against a gene signature so as to minimize the effect of missed transcripts as well as a method to rank signature-projection pairings so that meaningful associations can be quickly identified. Additionally, FastProject is written with a modular architecture and designed to serve as a platform for incorporating and comparing new projection methods and gene selection algorithms. Here we present FastProject, a software package for two-dimensional visualization of single cell data, which utilizes a plethora of projection methods and provides a way to systematically investigate the biological relevance of these low dimensional representations by incorporating domain knowledge.

  12. [The highest proportion of tobacco materials in the blend analysis using PPF projection method for the near-infrared spectrum and Monte Carlo method].

    PubMed

    Mi, Jin-Rui; Ma, Xiang; Zhang, Ya-Juan; Wang, Yi; Wen, Ya-Dong; Zhao, Long-Lian; Li, Jun-Hui; Zhang, Lu-Da

    2011-04-01

    The present paper builds a model based on Monte Carlo method in the projection of the blending tobacco. This model is made up of two parts: the projecting points of tobacco materials, whose coordinates are calculated by means of the PPF (projection based on principal component and Fisher criterion) projection method for the tobacco near-infrared spectrum; and the point of tobacco blend, which is produced by linear additive to the projecting point coordinates of tobacco materials. In order to analyze the projection points deviation from initial state levels, Monte Carlo method is introduced to simulate the differences and changes of raw material projection. The results indicate that there are two major factors affecting the relative deviation: the highest proportion of tobacco materials in the blend, which is too high to make the deviation under control; and the quantity of materials, which is so small to control the deviation. The conclusion is close to the principle of actual formulating designing, particularly, the more in the quantity while the lower in proportion of each. Finally the paper figures out the upper limit of the proportions in the different quantity of materials by theory. It also has important reference value for other agricultural products blend.

  13. Relationship between Students' Scores on Research Methods and Statistics, and Undergraduate Project Scores

    ERIC Educational Resources Information Center

    Ossai, Peter Agbadobi Uloku

    2016-01-01

    This study examined the relationship between students' scores on Research Methods and statistics, and undergraduate project at the final year. The purpose was to find out whether students matched knowledge of research with project-writing skill. The study adopted an expost facto correlational design. Scores on Research Methods and Statistics for…

  14. Negotiating a Systems Development Method

    NASA Astrophysics Data System (ADS)

    Karlsson, Fredrik; Hedström, Karin

    Systems development methods (or methods) are often applied in tailored version to fit the actual situation. Method tailoring is in most the existing literature viewed as either (a) a highly rational process with the method engineer as the driver where the project members are passive information providers or (b) an unstructured process where the systems developer makes individual choices, a selection process without any driver. The purpose of this chapter is to illustrate that important design decisions during method tailoring are made by project members through negotiation. The study has been carried out using the perspective of actor-network theory. Our narratives depict method tailoring as more complex than (a) and (b) show the driver role rotates between the project members, and design decisions are based on influences from several project members. However, these design decisions are not consensus decisions.

  15. Optimized Projection Matrix for Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Pi, Yiming; Cao, Zongjie

    2010-12-01

    Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  16. Methods and Management of the Healthy Brain Study: A Large Multisite Qualitative Research Project

    ERIC Educational Resources Information Center

    Laditka, Sarah B.; Corwin, Sara J.; Laditka, James N.; Liu, Rui; Friedman, Daniela B.; Mathews, Anna E.; Wilcox, Sara

    2009-01-01

    Purpose of the study: To describe processes used in the Healthy Brain project to manage data collection, coding, and data distribution in a large qualitative project, conducted by researchers at 9 universities in 9 states. Design and Methods: Project management protocols included: (a) managing audiotapes and surveys to ensure data confidentiality,…

  17. Impact of Functional Characteristics on Usage of LSS Methods in IT and Perceived Project Success

    ERIC Educational Resources Information Center

    Mushi, Francis Jeremiah

    2014-01-01

    High rates of Information Technology (IT) project failures continues; fail to meet established deadlines, exceeding budget, or not agreed-upon functionality. Failure often results from a fundamental confusion over what is involved in the project. Methods that have provided project success in Service and Manufacturing industries have not been…

  18. Comparison of forward- and back-projection in vivo EPID dosimetry for VMAT treatment of the prostate

    NASA Astrophysics Data System (ADS)

    Bedford, James L.; Hanson, Ian M.; Hansen, Vibeke N.

    2018-01-01

    In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy. The AutoBeam treatment planning system produced VMAT plans together with corresponding predicted portal images, and a total of 46 sets of gantry-resolved portal images were acquired in 13 patients using an iViewGT portal imager. For the forward-projection method, each acquisition of gantry-resolved images was combined into a single integrated image and compared with the predicted image. For the back-projection method, iViewDose was used to calculate the dose distribution in the patient for comparison with the planned dose. A gamma index for 3% and 3 mm was used for both methods. The results were investigated by delivering the same plans to a phantom and repeating some of the deliveries with deliberately introduced errors. The strongest agreement between forward- and back-projection methods is seen in the isocentric intensity/dose difference, with moderate agreement in the mean gamma. The strongest correlation is observed within a given patient, with less correlation between patients, the latter representing the accuracy of prediction of the two methods. The error study shows that each of the two methods has its own distinct sensitivity to errors, but that overall the response is similar. The forward- and back-projection EPID dosimetry methods show moderate agreement in this series of prostate VMAT patients, indicating that both methods can contribute to the verification of dose delivered to the patient.

  19. Research on Comprehensive Evaluation Method for Heating Project Based on Analytic Hierarchy Processing

    NASA Astrophysics Data System (ADS)

    Han, Shenchao; Yang, Yanchun; Liu, Yude; Zhang, Peng; Li, Siwei

    2018-01-01

    It is effective to reduce haze in winter by changing the distributed heat supply system. Thus, the studies on comprehensive index system and scientific evaluation method of distributed heat supply project are essential. Firstly, research the influence factors of heating modes, and an index system with multiple dimension including economic, environmental, risk and flexibility was built and all indexes were quantified. Secondly, a comprehensive evaluation method based on AHP was put forward to analyze the proposed multiple and comprehensive index system. Lastly, the case study suggested that supplying heat with electricity has great advantage and promotional value. The comprehensive index system of distributed heating supply project and evaluation method in this paper can evaluate distributed heat supply project effectively and provide scientific support for choosing the distributed heating project.

  20. Development of Optimization method about Capital Structure and Senior-Sub Structure by considering Project-Risk

    NASA Astrophysics Data System (ADS)

    Kawamoto, Shigeru; Ikeda, Yuichi; Fukui, Chihiro; Tateshita, Fumihiko

    Private finance initiative is a business scheme that materializes social infrastructure and public services by utilizing private-sector resources. In this paper we propose a new method to optimize capital structure, which is the ratio of capital to debt, and senior-sub structure, which is the ratio of senior loan to subordinated loan, for private finance initiative. We make the quantitative analysis of a private finance initiative's project using the proposed method. We analyze trade-off structure between risk and return in the project, and optimize capital structure and senior-sub structure. The method we propose helps to improve financial stability of the project, and to make a fund raising plan that is expected to be reasonable for project sponsor and moneylender.

  1. A Prospective, Randomized Crossover Study Comparing Direct Inspection by Light Microscopy versus Projected Images for Teaching of Hematopathology to Medical Students

    ERIC Educational Resources Information Center

    Carlson, Aaron M.; McPhail, Ellen D.; Rodriguez, Vilmarie; Schroeder, Georgene; Wolanskyj, Alexandra P.

    2014-01-01

    Instruction in hematopathology at Mayo Medical School has evolved from instructor-guided direct inspection under the light microscope (laboratory method), to photomicrographs of glass slides with classroom projection (projection method). These methods have not been compared directly to date. Forty-one second-year medical students participated in…

  2. Indicators of Functional Equivalency for Assessing Restoration Success

    EPA Science Inventory

    New restoration projects are being proposed around the Gulf of Mexico as a result of RESTORE Act funding. These projects would benefit from innovative methods for assessing their success. Many restoration projects elsewhere use structure-based condition assessment methods which...

  3. The performance evaluation model of mining project founded on the weight optimization entropy value method

    NASA Astrophysics Data System (ADS)

    Mao, Chao; Chen, Shou

    2017-01-01

    According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.

  4. The use of a projection method to simplify portal and hepatic vein segmentation in liver anatomy.

    PubMed

    Huang, Shaohui; Wang, Boliang; Cheng, Ming; Huang, Xiaoyang; Ju, Ying

    2008-12-01

    In living donor liver transplantation, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Couinaud divided the liver into 8 functionally independent segments. However, this method is not simple to perform in 3D space directly. Thus, we propose a rapid method to segment the liver based on the hepatic vessel tree. The most important step of this method is vascular projection. By carefully selecting a projection plane, a 3D point can be fixed in the projection plane. This greatly helps in rapid classification. This method was validated by applying it to a 3D liver depicted on CT images, and the result was in good agreement with Couinaud's classification.

  5. Iterative optimizing quantization method for reconstructing three-dimensional images from a limited number of views

    DOEpatents

    Lee, H.R.

    1997-11-18

    A three-dimensional image reconstruction method comprises treating the object of interest as a group of elements with a size that is determined by the resolution of the projection data, e.g., as determined by the size of each pixel. One of the projections is used as a reference projection. A fictitious object is arbitrarily defined that is constrained by such reference projection. The method modifies the known structure of the fictitious object by comparing and optimizing its four projections to those of the unknown structure of the real object and continues to iterate until the optimization is limited by the residual sum of background noise. The method is composed of several sub-processes that acquire four projections from the real data and the fictitious object: generate an arbitrary distribution to define the fictitious object, optimize the four projections, generate a new distribution for the fictitious object, and enhance the reconstructed image. The sub-process for the acquisition of the four projections from the input real data is simply the function of acquiring the four projections from the data of the transmitted intensity. The transmitted intensity represents the density distribution, that is, the distribution of absorption coefficients through the object. 5 figs.

  6. Forward problem solution as the operator of filtered and back projection matrix to reconstruct the various method of data collection and the object element model in electrical impedance tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ain, Khusnul; Physics Department - Airlangga University, Surabaya – Indonesia, khusnulainunair@yahoo.com; Kurniadi, Deddy

    2015-04-16

    Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection andmore » various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element.« less

  7. Singularity Preserving Numerical Methods for Boundary Integral Equations

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki (Principal Investigator)

    1996-01-01

    In the past twelve months (May 8, 1995 - May 8, 1996), under the cooperative agreement with Division of Multidisciplinary Optimization at NASA Langley, we have accomplished the following five projects: a note on the finite element method with singular basis functions; numerical quadrature for weakly singular integrals; superconvergence of degenerate kernel method; superconvergence of the iterated collocation method for Hammersteion equations; and singularity preserving Galerkin method for Hammerstein equations with logarithmic kernel. This final report consists of five papers describing these projects. Each project is preceeded by a brief abstract.

  8. Identifying Obstacles and Research Gaps of Telemedicine Projects: Approach for a State-of-the-Art Analysis.

    PubMed

    Harst, Lorenz; Timpel, Patrick; Otto, Lena; Wollschlaeger, Bastian; Richter, Peggy; Schlieter, Hannes

    2018-01-01

    This paper presents an approach for an evaluation of finished telemedicine projects using qualitative methods. Telemedicine applications are said to improve the performance of health care systems. While there are countless telemedicine projects, the vast majority never makes the threshold from testing to implementation and diffusion. Projects were collected from German project databases in the area of telemedicine following systematically developed criteria. In a testing phase, ten projects were subject to a qualitative content analysis to identify limitations, need for further research, and lessons learned. Using Mayring's method of inductive category development, six categories of possible future research were derived. Thus, the proposed method is an important contribution to diffusion and translation research regarding telemedicine, as it is applicable to a systematic research of databases.

  9. Methodical bases of selection and evaluation of the effectiveness of the projects of the urban territory renovation

    NASA Astrophysics Data System (ADS)

    Sizova, Evgeniya; Zhutaeva, Evgeniya; Chugunov, Andrei

    2018-03-01

    The article highlights features of processes of urban territory renovation from the perspective of a commercial entity participating in the implementation of a project. The requirements of high-rise construction projects to the entities, that carry out them, are considered. The advantages of large enterprises as participants in renovation projects are systematized, contributing to their most efficient implementation. The factors, which influence the success of the renovation projects, are presented. A method for selecting projects for implementation based on criteria grouped by qualitative characteristics and contributing to the most complete and comprehensive evaluation of the project is suggested. Patterns to prioritize and harmonize renovation projects in terms of multi-project activity of the enterprise are considered.

  10. Effect of Nano-CuO on Engineering and Microstructure Properties of Fibre-Reinforced Mortars Incorporating Metakaolin: Experimental and Numerical Studies

    PubMed Central

    Ghanei, Amir; Jafari, Faezeh; Mehrinejad Khotbehsara, Mojdeh; Mohseni, Ehsan; Cui, Hongzhi

    2017-01-01

    In this study, the effects of nano-CuO (NC) on engineering properties of fibre-reinforced mortars incorporating metakaolin (MK) were investigated. The effects of polypropylene fibre (PP) were also examined. A total of twenty-six mixtures were prepared. The experimental results were compared with numerical results obtained by adaptive neuro-fuzzy inference system (ANFIS) and Primal Estimated sub-GrAdient Solver for SVM (Pegasos) algorithm. Scanning Electron Microscope (SEM) was also employed to investigate the microstructure of the cement matrix. The mechanical test results showed that both compressive and flexural strengths of cement mortars decreased with the increase of MK content, however the strength values increased significantly with increasing NC content in the mixture. The water absorption of samples decreased remarkably with increasing NC particles in the mixture. When PP fibres were added, the strengths of cement mortars were further enhanced accompanied with lower water absorption values. The addition of 2 wt % and 3 wt % nanoparticles in cement mortar led to a positive contribution to strength and resistance to water absorption. Mixture of PP-MK10NC3 indicated the best results for both compressive and flexural strengths at 28 and 90 days. SEM images illustrated that the morphology of cement matrix became more porous with increasing MK content, but the porosity reduced with the inclusion of NC. In addition, it is evident from the SEM images that more cement hydration products adhered onto the surface of fibres, which would improve the fibre–matrix interface. The numerical results obtained by ANFIS and Pegasos were close to the experimental results. The value of R2 obtained for each data set (validate, test and train) was higher than 0.90 and the values of mean absolute percentage error (MAPE) and the relative root mean squared error (PRMSE) were near zero. The ANFIS and Pegasos models can be used to predict the mechanical properties and water absorptions of fibre-reinforced mortars with MK and NC. PMID:29065559

  11. Study on Resources Assessment of Coal Seams covered by Long-Distance Oil & Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Han, Bing; Fu, Qiang; Pan, Wei; Hou, Hanfang

    2018-01-01

    The assessment of mineral resources covered by construction projects plays an important role in reducing the overlaying of important mineral resources and ensuring the smooth implementation of construction projects. To take a planned long-distance gas pipeline as an example, the assessment method and principles for coal resources covered by linear projects are introduced. The areas covered by multiple coal seams are determined according to the linear projection method, and the resources covered by pipelines directly and indirectly are estimated by using area segmentation method on the basis of original blocks. The research results can provide references for route optimization of projects and compensation for mining right..

  12. Project Delivery Methods and Contracting Approaches Available for Implementation by the Texas Department of Transportation

    DOT National Transportation Integrated Search

    2001-10-01

    Public agencies across the country are pursuing innovative project delivery methods such as design-build (D-B) and construction manager-at-risk (CM-at-risk) to improve cycle-time performance on projects, and numerous transportation departments are cu...

  13. 75 FR 38770 - El Dorado County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... criteria for project proposals, and establish methods for soliciting project proposals. DATES: The meeting... norms and operating guidelines, learn about successful RACs, discuss criteria for project proposals and establish methods for soliciting proposals. More information will be posted on the Eldorado National Forest...

  14. Combining Project Management Methods: A Case Study of Dlstributed Work Practices

    NASA Astrophysics Data System (ADS)

    Backlund, Per; Lundell, Björn

    The increasing complexity of information systems development (ISD) projects call for improved project management practices. This, together with an endeavour to improve the success rate of ISD projects (Lyytinen and Robey 1999; Cooke-Davies 2002; White and Fortune 2002), has served as drivers for various efforts in process improvement such as the introduction of new development methods (Fitzgerald 1997; Iivari and Maansaari 1998).

  15. SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, C; Qi, H; Chen, Z

    Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using meanmore » filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.« less

  16. Phase retrieval with the reverse projection method in the presence of object's scattering

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Gao, Kun; Wang, Dajiang

    2017-08-01

    X-ray grating interferometry can provide substantially increased contrast over traditional attenuation-based techniques in biomedical applications, and therefore novel and complementary information. Recently, special attention has been paid to quantitative phase retrieval in X-ray grating interferometry, which is mandatory to perform phase tomography, to achieve material identification, etc. An innovative approach, dubbed ;Reverse Projection; (RP), has been developed for quantitative phase retrieval. The RP method abandons grating scanning completely, and is thus advantageous in terms of higher efficiency and reduced radiation damage. Therefore, it is expected that this novel method would find its potential in preclinical and clinical implementations. Strictly speaking, the reverse projection method is applicable for objects exhibiting only absorption and refraction. In this contribution, we discuss the phase retrieval with the reverse projection method for general objects with absorption, refraction and scattering simultaneously. Especially, we investigate the influence of the object's scattering on the retrieved refraction signal. Both theoretical analysis and numerical experiments are performed. The results show that the retrieved refraction signal is the product of object's refraction and scattering signals for small values. In the case of a strong scattering, the reverse projection method cannot provide reliable phase retrieval. Those presented results will guide the use of the reverse projection method for future practical applications, and help to explain some possible artifacts in the retrieved images and/or reconstructed slices.

  17. Implicit and Explicit: An Experiment in Applied Psycholinguistics, Assessing Different Methods of Teaching Grammatical Structures in English as a Foreign Language.

    ERIC Educational Resources Information Center

    Olsson, Margareta

    Project 3 of the GUME research project on foreign language teaching methods, in line with Projects 1 and 2, questions whether the best effect in language teaching is achieved solely by intensive drilling of the structure in question (the implicit method) or if grammatical explanations further the assimilation of the patterns so that, within the…

  18. SU-E-J-167: Improvement of Time-Ordered Four Dimensional Cone-Beam CT; Image Mosaicing with Real and Virtual Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, M; Kida, S; Masutani, Y

    2014-06-01

    Purpose: In the previous study, we developed time-ordered fourdimensional (4D) cone-beam CT (CBCT) technique to visualize nonperiodic organ motion, such as peristaltic motion of gastrointestinal organs and adjacent area, using half-scan reconstruction method. One important obstacle was that truncation of projection was caused by asymmetric location of flat-panel detector (FPD) in order to cover whole abdomen or pelvis in one rotation. In this study, we propose image mosaicing to extend projection data to make possible to reconstruct full field-of-view (FOV) image using half-scan reconstruction. Methods: The projections of prostate cancer patients were acquired using the X-ray Volume Imaging system (XVI,more » version 4.5) on Synergy linear accelerator system (Elekta, UK). The XVI system has three options of FOV, S, M and L, and M FOV was chosen for pelvic CBCT acquisition, with a FPD panel 11.5 cm offset. The method to produce extended projections consists of three main steps: First, normal three-dimensional (3D) reconstruction which contains whole pelvis was implemented using real projections. Second, virtual projections were produced by reprojection process of the reconstructed 3D image. Third, real and virtual projections in each angle were combined into one extended mosaic projection. Then, 4D CBCT images were reconstructed using our inhouse reconstruction software based on Feldkamp, Davis and Kress algorithm. The angular range of each reconstruction phase in the 4D reconstruction was 180 degrees, and the range moved as time progressed. Results: Projection data were successfully extended without discontinuous boundary between real and virtual projections. Using mosaic projections, 4D CBCT image sets were reconstructed without artifacts caused by the truncation, and thus, whole pelvis was clearly visible. Conclusion: The present method provides extended projections which contain whole pelvis. The presented reconstruction method also enables time-ordered 4D CBCT reconstruction of organs with non-periodic motion with full FOV without projection-truncation artifacts. This work was partly supported by the JSPS Core-to-Core Program(No. 23003). This work was partly supported by JSPS KAKENHI 24234567.« less

  19. Virtual fringe projection system with nonparallel illumination based on iteration

    NASA Astrophysics Data System (ADS)

    Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian

    2017-06-01

    Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.

  20. Contextualizing and assessing the social capital of seniors in congregate housing residences: study design and methods

    PubMed Central

    Moore, Spencer; Shiell, Alan; Haines, Valerie; Riley, Therese; Collier, Carrie

    2005-01-01

    Background This article discusses the study design and methods used to contextualize and assess the social capital of seniors living in congregate housing residences in Calgary, Alberta. The project is being funded as a pilot project under the Institute of Aging, Canadian Institutes for Health Research. Design/Methods Working with seniors living in 5 congregate housing residencies in Calgary, the project uses a mixed method approach to develop grounded measures of the social capital of seniors. The project integrates both qualitative and quantitative methods in a 3-phase research design: 1) qualitative, 2) quantitative, and 3) qualitative. Phase 1 uses gender-specific focus groups; phase 2 involves the administration of individual surveys that include a social network module; and phase 3 uses anamolous-case interviews. Not only does the study design allow us to develop grounded measures of social capital but it also permits us to test how well the three methods work separately, and how well they fit together to achieve project goals. This article describes the selection of the study population, the multiple methods used in the research and a brief discussion of our conceptualization and measurement of social capital. PMID:15836784

  1. Projection-slice theorem based 2D-3D registration

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  2. Development of a Coordinate Transformation method for direct georeferencing in map projection frames

    NASA Astrophysics Data System (ADS)

    Zhao, Haitao; Zhang, Bing; Wu, Changshan; Zuo, Zhengli; Chen, Zhengchao

    2013-03-01

    This paper develops a novel Coordinate Transformation method (CT-method), with which the orientation angles (roll, pitch, heading) of the local tangent frame of the GPS/INS system are transformed into those (omega, phi, kappa) of the map projection frame for direct georeferencing (DG). Especially, the orientation angles in the map projection frame were derived from a sequence of coordinate transformations. The effectiveness of orientation angles transformation was verified through comparing with DG results obtained from conventional methods (Legat method and POSPac method) using empirical data. Moreover, the CT-method was also validated with simulated data. One advantage of the proposed method is that the orientation angles can be acquired simultaneously while calculating position elements of exterior orientation (EO) parameters and auxiliary points coordinates by coordinate transformation. These three methods were demonstrated and compared using empirical data. Empirical results show that the CT-method is both as sound and effective as Legat method. Compared with POSPac method, the CT-method is more suitable for calculating EO parameters for DG in map projection frames. DG accuracy of the CT-method and Legat method are at the same level. DG results of all these three methods have systematic errors in height due to inconsistent length projection distortion in the vertical and horizontal components, and these errors can be significantly reduced using the EO height correction technique in Legat's approach. Similar to the results obtained with empirical data, the effectiveness of the CT-method was also proved with simulated data. POSPac method: The method is presented by Applanix POSPac software technical note (Hutton and Savina, 1997). It is implemented in the POSEO module of POSPac software.

  3. A Decision Support System for Evaluating and Selecting Information Systems Projects

    NASA Astrophysics Data System (ADS)

    Deng, Hepu; Wibowo, Santoso

    2009-01-01

    This chapter presents a decision support system (DSS) for effectively solving the information systems (IS) project selection problem. The proposed DSS recognizes the multidimensional nature of the IS project selection problem, the availability of multicriteria analysis (MA) methods, and the preferences of the decision-maker (DM) on the use of specific MA methods in a given situation. A knowledge base consisting of IF-THEN production rules is developed for assisting the DM with a systematic adoption of the most appropriate method with the efficient use of the powerful reasoning and explanation capabilities of intelligent DSS. The idea of letting the problem to be solved determines the method to be used is incorporated into the proposed DSS. As a result, effective decisions can be made for solving the IS project selection problem. An example is presented to demonstrate the applicability of the proposed DSS for solving the problem of selecting IS projects in real world situations.

  4. Camera calibration based on the back projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  5. Integrating the Complete Research Project into a Large Qualitative Methods Course

    ERIC Educational Resources Information Center

    Raddon, Mary-Beth; Nault, Caleb; Scott, Alexis

    2008-01-01

    Participatory exercises are standard practice in qualitative methods courses; less common are projects that engage students in the entire research process, from research design to write-up. Although the teaching literature provides several models of complete research projects, their feasibility, and appropriateness for large, compulsory,…

  6. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  7. Zero-Slack, Noncritical Paths

    ERIC Educational Resources Information Center

    Simons, Jacob V., Jr.

    2017-01-01

    The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…

  8. Lessons from comparative effectiveness research methods development projects funded under the Recovery Act.

    PubMed

    Zurovac, Jelena; Esposito, Dominick

    2014-11-01

    The American Recovery and Reinvestment Act of 2009 (ARRA) directed nearly US$29.2 million to comparative effectiveness research (CER) methods development. To help inform future CER methods investments, we describe the ARRA CER methods projects, identify barriers to this research and discuss the alignment of topics with published methods development priorities. We used several existing resources and held discussions with ARRA CER methods investigators. Although funded projects explored many identified priority topics, investigators noted that much work remains. For example, given the considerable investments in CER data infrastructure, the methods development field can benefit from additional efforts to educate researchers about the availability of new data sources and about how best to apply methods to match their research questions and data.

  9. Projection pursuit water quality evaluation model based on chicken swam algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Zhe

    2018-03-01

    In view of the uncertainty and ambiguity of each index in water quality evaluation, in order to solve the incompatibility of evaluation results of individual water quality indexes, a projection pursuit model based on chicken swam algorithm is proposed. The projection index function which can reflect the water quality condition is constructed, the chicken group algorithm (CSA) is introduced, the projection index function is optimized, the best projection direction of the projection index function is sought, and the best projection value is obtained to realize the water quality evaluation. The comparison between this method and other methods shows that it is reasonable and feasible to provide decision-making basis for water pollution control in the basin.

  10. Projection methods for the numerical solution of Markov chain models

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.

  11. Accurate sparse-projection image reconstruction via nonlocal TV regularization.

    PubMed

    Zhang, Yi; Zhang, Weihua; Zhou, Jiliu

    2014-01-01

    Sparse-projection image reconstruction is a useful approach to lower the radiation dose; however, the incompleteness of projection data will cause degeneration of imaging quality. As a typical compressive sensing method, total variation has obtained great attention on this problem. Suffering from the theoretical imperfection, total variation will produce blocky effect on smooth regions and blur edges. To overcome this problem, in this paper, we introduce the nonlocal total variation into sparse-projection image reconstruction and formulate the minimization problem with new nonlocal total variation norm. The qualitative and quantitative analyses of numerical as well as clinical results demonstrate the validity of the proposed method. Comparing to other existing methods, our method more efficiently suppresses artifacts caused by low-rank reconstruction and reserves structure information better.

  12. Project risk management in the construction of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Titarenko, Boris; Hasnaoui, Amir; Titarenko, Roman; Buzuk, Liliya

    2018-03-01

    This paper shows the project risk management methods, which allow to better identify risks in the construction of high-rise buildings and to manage them throughout the life cycle of the project. One of the project risk management processes is a quantitative analysis of risks. The quantitative analysis usually includes the assessment of the potential impact of project risks and their probabilities. This paper shows the most popular methods of risk probability assessment and tries to indicate the advantages of the robust approach over the traditional methods. Within the framework of the project risk management model a robust approach of P. Huber is applied and expanded for the tasks of regression analysis of project data. The suggested algorithms used to assess the parameters in statistical models allow to obtain reliable estimates. A review of the theoretical problems of the development of robust models built on the methodology of the minimax estimates was done and the algorithm for the situation of asymmetric "contamination" was developed.

  13. SU-E-I-20: Dead Time Count Loss Compensation in SPECT/CT: Projection Versus Global Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siman, W; Kappadath, S

    Purpose: To compare projection-based versus global correction that compensate for deadtime count loss in SPECT/CT images. Methods: SPECT/CT images of an IEC phantom (2.3GBq 99mTc) with ∼10% deadtime loss containing the 37mm (uptake 3), 28 and 22mm (uptake 6) spheres were acquired using a 2 detector SPECT/CT system with 64 projections/detector and 15 s/projection. The deadtime, Ti and the true count rate, Ni at each projection, i was calculated using the monitor-source method. Deadtime corrected SPECT were reconstructed twice: (1) with projections that were individually-corrected for deadtime-losses; and (2) with original projections with losses and then correcting the reconstructed SPECTmore » images using a scaling factor equal to the inverse of the average fractional loss for 5 projections/detector. For both cases, the SPECT images were reconstructed using OSEM with attenuation and scatter corrections. The two SPECT datasets were assessed by comparing line profiles in xyplane and z-axis, evaluating the count recoveries, and comparing ROI statistics. Higher deadtime losses (up to 50%) were also simulated to the individually corrected projections by multiplying each projection i by exp(-a*Ni*Ti), where a is a scalar. Additionally, deadtime corrections in phantoms with different geometries and deadtime losses were also explored. The same two correction methods were carried for all these data sets. Results: Averaging the deadtime losses in 5 projections/detector suffices to recover >99% of the loss counts in most clinical cases. The line profiles (xyplane and z-axis) and the statistics in the ROIs drawn in the SPECT images corrected using both methods showed agreement within the statistical noise. The count-loss recoveries in the two methods also agree within >99%. Conclusion: The projection-based and the global correction yield visually indistinguishable SPECT images. The global correction based on sparse sampling of projections losses allows for accurate SPECT deadtime loss correction while keeping the study duration reasonable.« less

  14. A simple method for determining stress intensity factors for a crack in bi-material interface

    NASA Astrophysics Data System (ADS)

    Morioka, Yuta

    Because of violently oscillating nature of stress and displacement fields near the crack tip, it is difficult to obtain stress intensity factors for a crack between two dis-similar media. For a crack in a homogeneous medium, it is a common practice to find stress intensity factors through strain energy release rates. However, individual strain energy release rates do not exist for bi-material interface crack. Hence it is necessary to find alternative methods to evaluate stress intensity factors. Several methods have been proposed in the past. However they involve mathematical complexity and sometimes require additional finite element analysis. The purpose of this research is to develop a simple method to find stress intensity factors in bi-material interface cracks. A finite element based projection method is proposed in the research. It is shown that the projection method yields very accurate stress intensity factors for a crack in isotropic and anisotropic bi-material interfaces. The projection method is also compared to displacement ratio method and energy method proposed by other authors. Through comparison it is found that projection method is much simpler to apply with its accuracy comparable to that of displacement ratio method.

  15. The Ecology and Acoustic Behavior of Minke Whales in the Hawaiian and other Pacific Islands

    DTIC Science & Technology

    2012-09-30

    the SECR density estimation methods (developed by project partners, Len Thomas, from St. Andrews, and Steve Martin from SPAWAR Systems San Diego...PROJECTS Related projects were conducted by Len Thomas, Vincent Janik, and Steve Martin. These projects are using density estimates derived from...Martin, D.K. Mellinger, S. Jarvis , R.P. Morrissey, C. Ciminello, and N.DiMarzio, 2010. Spatially explicit capture recapture methods to estimate minke

  16. Methods to achieve accurate projection of regional and global raster databases

    USGS Publications Warehouse

    Usery, E.L.; Seong, J.C.; Steinwand, D.R.; Finn, M.P.

    2002-01-01

    This research aims at building a decision support system (DSS) for selecting an optimum projection considering various factors, such as pixel size, areal extent, number of categories, spatial pattern of categories, resampling methods, and error correction methods. Specifically, this research will investigate three goals theoretically and empirically and, using the already developed empirical base of knowledge with these results, develop an expert system for map projection of raster data for regional and global database modeling. The three theoretical goals are as follows: (1) The development of a dynamic projection that adjusts projection formulas for latitude on the basis of raster cell size to maintain equal-sized cells. (2) The investigation of the relationships between the raster representation and the distortion of features, number of categories, and spatial pattern. (3) The development of an error correction and resampling procedure that is based on error analysis of raster projection.

  17. Grey Comprehensive Evaluation of Biomass Power Generation Project Based on Group Judgement

    NASA Astrophysics Data System (ADS)

    Xia, Huicong; Niu, Dongxiao

    2017-06-01

    The comprehensive evaluation of benefit is an important task needed to be carried out at all stages of biomass power generation projects. This paper proposed an improved grey comprehensive evaluation method based on triangle whiten function. To improve the objectivity of weight calculation result of only reference comparison judgment method, this paper introduced group judgment to the weighting process. In the process of grey comprehensive evaluation, this paper invited a number of experts to estimate the benefit level of projects, and optimized the basic estimations based on the minimum variance principle to improve the accuracy of evaluation result. Taking a biomass power generation project as an example, the grey comprehensive evaluation result showed that the benefit level of this project was good. This example demonstrates the feasibility of grey comprehensive evaluation method based on group judgment for benefit evaluation of biomass power generation project.

  18. Economic evaluation of environmental epidemiological projects in national industrial complexes.

    PubMed

    Shin, Youngchul

    2017-01-01

    In this economic evaluation of environmental epidemiological monitoring projects, we analyzed the economic feasibility of these projects by determining the social cost and benefit of these projects and conducting a cost/benefit analysis. Here, the social cost was evaluated by converting annual budgets for these research and survey projects into present values. Meanwhile, the societal benefit of these projects was evaluated by using the contingent valuation method to estimate the willingness-to-pay of residents living in or near industrial complexes. In addition, the extent to which these projects reduced negative health effects (i.e., excess disease and premature death) was evaluated through expert surveys, and the analysis was conducted to reflect the unit of economic value, based on the cost of illness and benefit transfer method. The results were then used to calculate the benefit of these projects in terms of the decrease in negative health effects. For residents living near industrial complexes, the benefit/cost ratio was 1.44 in the analysis based on resident surveys and 5.17 in the analysis based on expert surveys. Thus, whichever method was used for the economic analysis, the economic feasibility of these projects was confirmed.

  19. An alternative extragradient projection method for quasi-equilibrium problems.

    PubMed

    Chen, Haibin; Wang, Yiju; Xu, Yi

    2018-01-01

    For the quasi-equilibrium problem where the players' costs and their strategies both depend on the rival's decisions, an alternative extragradient projection method for solving it is designed. Different from the classical extragradient projection method whose generated sequence has the contraction property with respect to the solution set, the newly designed method possesses an expansion property with respect to a given initial point. The global convergence of the method is established under the assumptions of pseudomonotonicity of the equilibrium function and of continuity of the underlying multi-valued mapping. Furthermore, we show that the generated sequence converges to the nearest point in the solution set to the initial point. Numerical experiments show the efficiency of the method.

  20. Projecting technological change

    Treesearch

    Kenneth E. Skog

    2007-01-01

    Improving efficiency in the use of both wood and nonwood inputs has characterized the US forest sector over the last 50 years. This chapter explores methods used to reflect this pattern of technological change and others in the Timber Assessment Projection System models. The development and use of three types of technology projection methods are explained: (1)...

  1. ESP v2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    This product includes both a presentation and an extended abstract. We describe the Emission Scenario Projection (ESP) method, version 2.0. ESP is used to develop multi-decadal projections of U.S. greenhouse gas (GHG) and criteria pollutant emissions. The resulting future-year em...

  2. Effective Teaching Methods--Project-based Learning in Physics

    ERIC Educational Resources Information Center

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  3. 76 FR 72707 - Office of the Assistant Secretary for Planning and Evaluation; Medicare Program; Meeting of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... actuarial and economic assumptions and methods by which Trustees might more accurately project health... (a)(2)). The Panel will discuss the long range (75 year) projection methods and assumptions in... making recommendations to the Medicare Trustees on how the Trustees might more accurately project health...

  4. 76 FR 52688 - Notice of Intent To Prepare an Environmental Impact Statement for the Sheep Mountain Uranium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... project employing open pit and underground mining methods and using heap leach methods for uranium...] Notice of Intent To Prepare an Environmental Impact Statement for the Sheep Mountain Uranium Project... comments regarding issues and resource information for the proposed Sheep Mountain Uranium Project (the...

  5. Projecting adverse event incidence rates using empirical Bayes methodology.

    PubMed

    Ma, Guoguang Julie; Ganju, Jitendra; Huang, Jing

    2016-08-01

    Although there is considerable interest in adverse events observed in clinical trials, projecting adverse event incidence rates in an extended period can be of interest when the trial duration is limited compared to clinical practice. A naïve method for making projections might involve modeling the observed rates into the future for each adverse event. However, such an approach overlooks the information that can be borrowed across all the adverse event data. We propose a method that weights each projection using a shrinkage factor; the adverse event-specific shrinkage is a probability, based on empirical Bayes methodology, estimated from all the adverse event data, reflecting evidence in support of the null or non-null hypotheses. Also proposed is a technique to estimate the proportion of true nulls, called the common area under the density curves, which is a critical step in arriving at the shrinkage factor. The performance of the method is evaluated by projecting from interim data and then comparing the projected results with observed results. The method is illustrated on two data sets. © The Author(s) 2013.

  6. MO-E-18C-02: Hands-On Monte Carlo Project Assignment as a Method to Teach Radiation Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, P; Vallieres, M; Seuntjens, J

    2014-06-15

    Purpose: To present a hands-on project on Monte Carlo methods (MC) recently added to the curriculum and to discuss the students' appreciation. Methods: Since 2012, a 1.5 hour lecture dedicated to MC fundamentals follows the detailed presentation of photon and electron interactions. Students also program all sampling steps (interaction length and type, scattering angle, energy deposit) of a MC photon transport code. A handout structured in a step-by-step fashion guides student in conducting consistency checks. For extra points, students can code a fully working MC simulation, that simulates a dose distribution for 50 keV photons. A kerma approximation to dosemore » deposition is assumed. A survey was conducted to which 10 out of the 14 attending students responded. It compared MC knowledge prior to and after the project, questioned the usefulness of radiation physics teaching through MC and surveyed possible project improvements. Results: According to the survey, 76% of students had no or a basic knowledge of MC methods before the class and 65% estimate to have a good to very good understanding of MC methods after attending the class. 80% of students feel that the MC project helped them significantly to understand simulations of dose distributions. On average, students dedicated 12.5 hours to the project and appreciated the balance between hand-holding and questions/implications. Conclusion: A lecture on MC methods with a hands-on MC programming project requiring about 14 hours was added to the graduate study curriculum since 2012. MC methods produce “gold standard” dose distributions and slowly enter routine clinical work and a fundamental understanding of MC methods should be a requirement for future students. Overall, the lecture and project helped students relate crosssections to dose depositions and presented numerical sampling methods behind the simulation of these dose distributions. Research funding from governments of Canada and Quebec. PP acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290)« less

  7. Iterative methods for dose reduction and image enhancement in tomography

    DOEpatents

    Miao, Jianwei; Fahimian, Benjamin Pooya

    2012-09-18

    A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.

  8. The nuclear weapons inheritance project: student-to-student dialogues and interactive peer education in disarmament activism.

    PubMed

    Buhmann, Caecilie Böck

    2007-01-01

    The Nuclear Weapons Inheritance Project is a student run and student initiated project founded in 2001 with the purpose of increasing awareness of health effects of nuclear policies and empowering university students to take action in a local and international context. The project uses dialogues to discuss nuclear disarmament with university students and a method of interactive peer education to train new trainers. The project has met more than 1500 students in nuclear weapon states in dialogue and trained about 400 students from all over the world. This article describes the methods and results of the project and discuss how the experience of the project can be used in other projects seeking to increase awareness of a topic and to initiate action on social injustice.

  9. Using the scenario method in the context of health and health care--a scoping review.

    PubMed

    Vollmar, Horst Christian; Ostermann, Thomas; Redaèlli, Marcus

    2015-10-16

    The scenario technique is a method for future research and for strategic planning. Today, it includes both qualitative and quantitative elements. The aims of this scoping review are to give an overview of the application of the scenario method in the fields of health care and to make suggestions for better reporting in future scenario projects. Between January 2013 and October 2013 we conducted a systematic search in the databases Medline, Embase, PsycInfo, Eric, The Cochrane Library, Scopus, Web of Science, and Cinahl since inception for the term 'scenario(s)' in combination with other terms, e.g. method, model, and technique. Our search was not restricted by date or language. In addition, we screened the reference lists of the included articles. A total of 576 bibliographical records were screened. After removing duplicates and three rounds of screening, 41 articles covering 38 different scenario projects were included for the final analysis. Nine of the included articles addressed disease related issues, led by mental health and dementia (n = 4), and followed by cancer (n = 3). Five scenario projects focused on public health issues at an organizational level and five focused on the labor market for different health care professionals. In addition, four projects dealt with health care 'in general', four with the field of biotechnology and personalized medicine, and additional four with other technology developments. Some of the scenario projects suffered from poor reporting of methodological aspects. Despite its potential, use of the scenario method seems to be published rarely in comparison to other methods such as the Delphi-technique, at least in the field of health care. This might be due to the complexity of the methodological approach. Individual project methods and activities vary widely and are poorly reported. Improved criteria are required for reporting of scenario project methods. With improved standards and greater transparency, the scenario method will be a good tool for scientific health care planning and strategic decision-making in public health.

  10. System dynamic simulation: A new method in social impact assessment (SIA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karami, Shobeir, E-mail: shobeirkarami@gmail.com; Karami, Ezatollah, E-mail: ekarami@shirazu.ac.ir; Buys, Laurie, E-mail: l.buys@qut.edu.au

    Many complex social questions are difficult to address adequately with conventional methods and techniques, due to the complicated dynamics, and hard to quantify social processes. Despite these difficulties researchers and practitioners have attempted to use conventional methods not only in evaluative modes but also in predictive modes to inform decision making. The effectiveness of SIAs would be increased if they were used to support the project design processes. This requires deliberate use of lessons from retrospective assessments to inform predictive assessments. Social simulations may be a useful tool for developing a predictive SIA method. There have been limited attempts tomore » develop computer simulations that allow social impacts to be explored and understood before implementing development projects. In light of this argument, this paper aims to introduce system dynamic (SD) simulation as a new predictive SIA method in large development projects. We propose the potential value of the SD approach to simulate social impacts of development projects. We use data from the SIA of Gareh-Bygone floodwater spreading project to illustrate the potential of SD simulation in SIA. It was concluded that in comparison to traditional SIA methods SD simulation can integrate quantitative and qualitative inputs from different sources and methods and provides a more effective and dynamic assessment of social impacts for development projects. We recommend future research to investigate the full potential of SD in SIA in comparing different situations and scenarios.« less

  11. Social cost impact assessment of pipeline infrastructure projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, John C., E-mail: matthewsj@battelle.org; Allouche, Erez N., E-mail: allouche@latech.edu; Sterling, Raymond L., E-mail: sterling@latech.edu

    A key advantage of trenchless construction methods compared with traditional open-cut methods is their ability to install or rehabilitate underground utility systems with limited disruption to the surrounding built and natural environments. The equivalent monetary values of these disruptions are commonly called social costs. Social costs are often ignored by engineers or project managers during project planning and design phases, partially because they cannot be calculated using standard estimating methods. In recent years some approaches for estimating social costs were presented. Nevertheless, the cost data needed for validation of these estimating methods is lacking. Development of such social cost databasesmore » can be accomplished by compiling relevant information reported in various case histories. This paper identifies eight most important social cost categories, presents mathematical methods for calculating them, and summarizes the social cost impacts for two pipeline construction projects. The case histories are analyzed in order to identify trends for the various social cost categories. The effectiveness of the methods used to estimate these values is also discussed. These findings are valuable for pipeline infrastructure engineers making renewal technology selection decisions by providing a more accurate process for the assessment of social costs and impacts. - Highlights: • Identified the eight most important social cost factors for pipeline construction • Presented mathematical methods for calculating those social cost factors • Summarized social cost impacts for two pipeline construction projects • Analyzed those projects to identify trends for the social cost factors.« less

  12. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks.

    PubMed

    Feng, Cun-Fang; Xu, Xin-Jian; Wang, Sheng-Jun; Wang, Ying-Hai

    2008-06-01

    We study projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. We relax some limitations of previous work, where projective-anticipating and projective-lag synchronization can be achieved only on two coupled chaotic systems. In this paper, we realize projective-anticipating and projective-lag synchronization on complex dynamical networks composed of a large number of interconnected components. At the same time, although previous work studied projective synchronization on complex dynamical networks, the dynamics of the nodes are coupled partially linear chaotic systems. In this paper, the dynamics of the nodes of the complex networks are time-delayed chaotic systems without the limitation of the partial linearity. Based on the Lyapunov stability theory, we suggest a generic method to achieve the projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random dynamical networks, and we find both its existence and sufficient stability conditions. The validity of the proposed method is demonstrated and verified by examining specific examples using Ikeda and Mackey-Glass systems on Erdos-Renyi networks.

  13. Risk assessment of underpass infrastructure project based on IS0 31000 and ISO 21500 using fishbone diagram and RFMEA (project risk failure mode and effects analysis) method

    NASA Astrophysics Data System (ADS)

    Purwanggono, Bambang; Margarette, Anastasia

    2017-12-01

    Completion time of highway construction is very meaningful for smooth transportation, moreover expected number of ownership motor vehicle will increase each year. Therefore, this study was conducted with to analyze the constraints that contained in an infrastructure development project. This research was conducted on Jatingaleh Underpass Project, Semarang. This research was carried out while the project is running, on the implementation, this project is experiencing delays. This research is done to find out what are the constraints that occur in execution of a road infrastructure project, in particular that causes delays. The method that used to find the root cause is fishbone diagram to obtain a possible means of mitigation. Coupled with the RFMEA method used to determine the critical risks that must be addressed immediately on road infrastructure project. The result of data tabulation in this study indicates that the most possible mitigation tool to make a Standard Operating Procedure (SOP) recommendations to disrupt utilities that interfere project implementation. Process of risk assessment has been carried out systematically based on ISO 31000:2009 on risk management and for determination of delayed variables, the requirements of process groups according to ISO 21500:2013 on project management were used.

  14. Using tailored methodical approaches to achieve optimal science outcomes

    NASA Astrophysics Data System (ADS)

    Wingate, Lory M.

    2016-08-01

    The science community is actively engaged in research, development, and construction of instrumentation projects that they anticipate will lead to new science discoveries. There appears to be very strong link between the quality of the activities used to complete these projects, and having a fully functioning science instrument that will facilitate these investigations.[2] The combination of using internationally recognized standards within the disciplines of project management (PM) and systems engineering (SE) has been demonstrated to lead to achievement of positive net effects and optimal project outcomes. Conversely, unstructured, poorly managed projects will lead to unpredictable, suboptimal project outcomes ultimately affecting the quality of the science that can be done with the new instruments. The proposed application of these two specific methodical approaches, implemented as a tailorable suite of processes, are presented in this paper. Project management (PM) is accepted worldwide as an effective methodology used to control project cost, schedule, and scope. Systems engineering (SE) is an accepted method that is used to ensure that the outcomes of a project match the intent of the stakeholders, or if they diverge, that the changes are understood, captured, and controlled. An appropriate application, or tailoring, of these disciplines can be the foundation upon which success in projects that support science can be optimized.

  15. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  16. Risk analysis using AS/NZS 4360:2004, Bow-Tie diagram and ALARP on construction projects of Banyumanik Hospital

    NASA Astrophysics Data System (ADS)

    Sari, Diana Puspita; Pujotomo, Darminto; Wardani, Nadira Kusuma

    2017-11-01

    The Determination of risk is an uncertain event. Risks can have negative or positive impacts on project objectives. A project was defined as a series of activities and tasks that have a purpose, specifications, and limits of cost. Banyumanik Hospital Development Project is one of the construction projects in Semarang which have experienced some problems. The first problem is project delays on building stake. The second problem is delay of material supply. Finally, the problem that occurs is less management attention to health safety as evidenced by the unavailability of PPE for the workers. These problems will pose a risk to be a very important risk management performed by contractors at the Banyumanik Hospital Development Project to reduce the impact that would be caused by the risk borne by the provider of construction services. This research aim to risk identification, risk assessment and risk mitigation. Project risk management begins with the identification of risks based on the project life cycle. The risk assessment carried out by AS I NZS 4360: 2004 to the impacts of cost, time and quality. The results obtained from the method of AS I NZS 4360: 2004 is the risk that requires the handling of mitigation. Mitigated risk is the risk that had significant and high level. There are four risks that require risk mitigation with Bow-Tie diagrams which is work accidents, contract delays, material delays and design changes. Bow-Tie diagram method is a method for identifying causal and preventive action and recovery of a risk. Results obtained from Bow-Tie diagram method is a preventive action and recovery. This action is used as input to the ALARP method. ALARP method is used to determine the priority of the strategy proposed in the category broadly acceptable, tolerable, and unacceptable.

  17. 26 CFR 1.175-6 - Adoption or change of method.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... project or farm as to which the method or change of method is to apply; (4) Set forth the amount of all... farm. The authorization with respect to the special project or single farm will not affect the method... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Adoption or change of method. 1.175-6 Section 1...

  18. Project Delivery Methods.

    ERIC Educational Resources Information Center

    Dolan, Thomas G.

    2003-01-01

    Describes project delivery methods that are replacing the traditional Design/Bid/Build linear approach to the management, design, and construction of new facilities. These variations can enhance construction management and teamwork. (SLD)

  19. Lesion insertion in the projection domain: Methods and initial results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng

    2015-12-15

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated bothmore » axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions.« less

  20. Lesion insertion in the projection domain: Methods and initial results

    PubMed Central

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia

    2015-01-01

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically acquired for the ACR phantom in terms of Hounsfield unit and high-contrast resolution. For the validation of the lesion realism, lesions of various types were successfully inserted, including well circumscribed and invasive lesions, homogeneous and heterogeneous lesions, high-contrast and low-contrast lesions, isolated and vessel-attached lesions, and small and large lesions. The two experienced radiologists who reviewed the original and inserted lesions could not identify the lesions that were inserted. The same lesion, when inserted into the projection domain and reconstructed with different parameters, demonstrated a parameter-dependent appearance. Conclusions: A framework has been developed for projection-domain insertion of lesions into commercial CT images, which can be potentially expanded to all geometries of CT scanners. Compared to conventional image-domain methods, the authors’ method reflected the impact of scan and reconstruction parameters on lesion appearance. Compared to prior projection-domain methods, the authors’ method has the potential to achieve higher anatomical complexity by employing clinical patient projections and real patient lesions. PMID:26632058

  1. Projector primary-based optimization for superimposed projection mappings

    NASA Astrophysics Data System (ADS)

    Ahmed, Bilal; Lee, Jong Hun; Lee, Yong Yi; Lee, Kwan H.

    2018-01-01

    Recently, many researchers have focused on fully overlapping projections for three-dimensional (3-D) projection mapping systems but reproducing a high-quality appearance using this technology still remains a challenge. On top of existing color compensation-based methods, much effort is still required to faithfully reproduce an appearance that is free from artifacts, colorimetric inconsistencies, and inappropriate illuminance over the 3-D projection surface. According to our observation, this is due to the fact that overlapping projections are treated as an additive-linear mixture of color. However, this is not the case according to our elaborated observations. We propose a method that enables us to use high-quality appearance data that are measured from original objects and regenerate the same appearance by projecting optimized images using multiple projectors, ensuring that the projection-rendered results look visually close to the real object. We prepare our target appearances by photographing original objects. Then, using calibrated projector-camera pairs, we compensate for missing geometric correspondences to make our method robust against noise. The heart of our method is a target appearance-driven adaptive sampling of the projection surface followed by a representation of overlapping projections in terms of the projector-primary response. This gives off projector-primary weights to facilitate blending and the system is applied with constraints. These samples are used to populate a light transport-based system. Then, the system is solved minimizing the error to get the projection images in a noise-free manner by utilizing intersample overlaps. We ensure that we make the best utilization of available hardware resources to recreate projection mapped appearances that look as close to the original object as possible. Our experimental results show compelling results in terms of visual similarity and colorimetric error.

  2. A projection hybrid high order finite volume/finite element method for incompressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Busto, S.; Ferrín, J. L.; Toro, E. F.; Vázquez-Cendón, M. E.

    2018-01-01

    In this paper the projection hybrid FV/FE method presented in [1] is extended to account for species transport equations. Furthermore, turbulent regimes are also considered thanks to the k-ε model. Regarding the transport diffusion stage new schemes of high order of accuracy are developed. The CVC Kolgan-type scheme and ADER methodology are extended to 3D. The latter is modified in order to profit from the dual mesh employed by the projection algorithm and the derivatives involved in the diffusion term are discretized using a Galerkin approach. The accuracy and stability analysis of the new method are carried out for the advection-diffusion-reaction equation. Within the projection stage the pressure correction is computed by a piecewise linear finite element method. Numerical results are presented, aimed at verifying the formal order of accuracy of the scheme and to assess the performance of the method on several realistic test problems.

  3. Model-based sphere localization (MBSL) in x-ray projections

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc

    2017-08-01

    The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.

  4. Bayesian Probabilistic Projection of International Migration.

    PubMed

    Azose, Jonathan J; Raftery, Adrian E

    2015-10-01

    We propose a method for obtaining joint probabilistic projections of migration for all countries, broken down by age and sex. Joint trajectories for all countries are constrained to satisfy the requirement of zero global net migration. We evaluate our model using out-of-sample validation and compare point projections to the projected migration rates from a persistence model similar to the method used in the United Nations' World Population Prospects, and also to a state-of-the-art gravity model.

  5. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    NASA Astrophysics Data System (ADS)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-06-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning, spiral learning and peer assessment. Namely, the course is articulated during a semester through the structured (progressive and incremental) development of a sequence of four projects, whose duration, scope and difficulty of management increase as the student gains theoretical and instrumental knowledge related to planning, monitoring and controlling projects. Moreover, the proposal is complemented using peer assessment. The proposal has already been implemented and validated for the last 3 years in two different universities. In the first year, project-based learning and spiral learning methods were combined. Such a combination was also employed in the other 2 years; but additionally, students had the opportunity to assess projects developed by university partners and by students of the other university. A total of 154 students have participated in the study. We obtain a gain in the quality of the subsequently projects derived from the spiral project-based learning. Moreover, this gain is significantly bigger when peer assessment is introduced. In addition, high-performance students take advantage of peer assessment from the first moment, whereas the improvement in poor-performance students is delayed.

  6. Multiresolution and Explicit Methods for Vector Field Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Nielson, Gregory M.

    1997-01-01

    This is a request for a second renewal (3d year of funding) of a research project on the topic of multiresolution and explicit methods for vector field analysis and visualization. In this report, we describe the progress made on this research project during the second year and give a statement of the planned research for the third year. There are two aspects to this research project. The first is concerned with the development of techniques for computing tangent curves for use in visualizing flow fields. The second aspect of the research project is concerned with the development of multiresolution methods for curvilinear grids and their use as tools for visualization, analysis and archiving of flow data. We report on our work on the development of numerical methods for tangent curve computation first.

  7. Lessons Learned from Client Projects in an Undergraduate Project Management Course

    ERIC Educational Resources Information Center

    Pollard, Carol E.

    2012-01-01

    This work proposes that a subtle combination of three learning methods offering "just in time" project management knowledge, coupled with hands-on project management experience can be particularly effective in producing project management students with employable skills. Students were required to apply formal project management knowledge to gain…

  8. Using Single-Case Design and Personalized Behavior Change Projects to Teach Research Methods

    ERIC Educational Resources Information Center

    Morgan, David L.

    2009-01-01

    Students in research methods courses, especially those taught in an intense format, might be hard pressed to actually conduct research studies due to logistics and time constraints. I describe the use of single-case research design and a personalized behavior project as an alternative research project for students in an undergraduate psychology…

  9. Statistics on Science and Technology in Latin America, Experience with UNESCO Pilot Projects, 1972-1974.

    ERIC Educational Resources Information Center

    Thebaud, Schiller

    This report examines four UNESCO pilot projects undertaken in 1972 in Brazil, Colombia, Peru, and Uruguay to study the methods used for national statistical surveys of science and technology. The projects specifically addressed the problems of comparing statistics gathered by different methods in different countries. Surveys carried out in Latin…

  10. Experience in Use of Project Method during Technology Lessons in Secondary Schools of the USA

    ERIC Educational Resources Information Center

    Sheludko, Inna

    2015-01-01

    The article examines the opportunities and prospects for the use of experience of project method during "technology lessons" in US secondary schools, since the value of project technology implementation experience into the educational process in the USA for ensuring holistic development of children, preparing them for adult life, in…

  11. Database Design Learning: A Project-Based Approach Organized through a Course Management System

    ERIC Educational Resources Information Center

    Dominguez, Cesar; Jaime, Arturo

    2010-01-01

    This paper describes an active method for database design learning through practical tasks development by student teams in a face-to-face course. This method integrates project-based learning, and project management techniques and tools. Some scaffolding is provided at the beginning that forms a skeleton that adapts to a great variety of…

  12. Materials Discovery | Materials Science | NREL

    Science.gov Websites

    measurement methods and specialized analysis algorithms. Projects Basic Research The basic research projects applications using high-throughput combinatorial research methods. Email | 303-384-6467 Photo of John Perkins

  13. Estimation of Phase in Fringe Projection Technique Using High-order Instantaneous Moments Based Method

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod

    2010-04-01

    For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.

  14. Projection screen having reduced ambient light scattering

    DOEpatents

    Sweatt, William C [Albuquerque, NM

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  15. Research methods in nursing students' Bachelor's theses in Sweden: A descriptive study.

    PubMed

    Johansson, Linda; Silén, Marit

    2018-07-01

    During the nursing programme in Sweden, students complete an independent project that allows them to receive both a professional qualification as a nurse and a Bachelor's degree. This project gives students the opportunity to develop and apply skills such as critical thinking, problem-solving and decision-making, thus preparing them for their future work. However, only a few, small-scale studies have analysed the independent project to gain more insight into how nursing students carry out this task. The aim of the present study was to describe the methods, including ethical considerations and assessment of data quality, applied in nursing students' independent Bachelor's degree projects in a Swedish context. A descriptive study with a quantitative approach. A total of 490 independent projects were analysed using descriptive statistics. Literature reviews were the predominant project form. References were often used to support the analysis method. They were not, however, always relevant to the method. This was also true of ethical considerations. When a qualitative approach was used, and data collected through interviews, the participants were typically professionals. In qualitative projects involving analysis of biographies/autobiographies or blogs participants were either persons with a disease or next of kin of a person with a disease. Although most of the projects were literature reviews, it seemed unclear to the nursing students how the data should be analysed as well as what ethical issues should be raised in relation to the method. Consequently, further research and guidance are needed. In Sweden, independent projects are not considered research and are therefore not required to undergo ethics vetting. However, it is important that they be designed so as to avoid possible research ethics problems. Asking persons about their health, which occurred in some of the empirical projects, may therefore be considered questionable. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A contrast between DEMATEL-ANP and ANP methods for six sigma project selection: a case study in healthcare industry

    PubMed Central

    2015-01-01

    Background The project selection process is a crucial step for healthcare organizations at the moment of implementing six sigma programs in both administrative and caring processes. However, six-sigma project selection is often defined as a decision making process with interaction and feedback between criteria; so that it is necessary to explore different methods to help healthcare companies to determine the Six-sigma projects that provide the maximum benefits. This paper describes the application of both ANP (Analytic Network process) and DEMATEL (Decision Making trial and evaluation laboratory)-ANP in a public medical centre to establish the most suitable six sigma project and finally, these methods were compared to evaluate their performance in the decision making process. Methods ANP and DEMATEL-ANP were used to evaluate 6 six sigma project alternatives under an evaluation model composed by 3 strategies, 4 criteria and 15 sub-criteria. Judgement matrixes were completed by the six sigma team whose participants worked in different departments of the medical centre. Results The improving of care opportunity in obstetric outpatients was elected as the most suitable six sigma project with a score of 0,117 as contribution to the organization goals. DEMATEL-ANP performed better at decision making process since it reduced the error probability due to interactions and feedback. Conclusions ANP and DEMATEL-ANP effectively supported six sigma project selection processes, helping to create a complete framework that guarantees the prioritization of projects that provide maximum benefits to healthcare organizations. As DEMATEL- ANP performed better, it should be used by practitioners involved in decisions related to the implementation of six sigma programs in healthcare sector accompanied by the adequate identification of the evaluation criteria that support the decision making model. Thus, this comparative study contributes to choosing more effective approaches in this field. Suggestions of further work are also proposed so that these methods can be applied more adequate in six sigma project selection processes in healthcare. PMID:26391445

  17. RO1 Funding for Mixed Methods Research: Lessons learned from the Mixed-Method Analysis of Japanese Depression Project

    PubMed Central

    Arnault, Denise Saint; Fetters, Michael D.

    2013-01-01

    Mixed methods research has made significant in-roads in the effort to examine complex health related phenomenon. However, little has been published on the funding of mixed methods research projects. This paper addresses that gap by presenting an example of an NIMH funded project using a mixed methods QUAL-QUAN triangulation design entitled “The Mixed-Method Analysis of Japanese Depression.” We present the Cultural Determinants of Health Seeking model that framed the study, the specific aims, the quantitative and qualitative data sources informing the study, and overview of the mixing of the two studies. Finally, we examine reviewer's comments and our insights related to writing mixed method proposal successful for achieving RO1 level funding. PMID:25419196

  18. Mixed methods research.

    PubMed

    Halcomb, Elizabeth; Hickman, Louise

    2015-04-08

    Mixed methods research involves the use of qualitative and quantitative data in a single research project. It represents an alternative methodological approach, combining qualitative and quantitative research approaches, which enables nurse researchers to explore complex phenomena in detail. This article provides a practical overview of mixed methods research and its application in nursing, to guide the novice researcher considering a mixed methods research project.

  19. Project-Based Learning in Undergraduate Environmental Chemistry Laboratory: Using EPA Methods to Guide Student Method Development for Pesticide Quantitation

    ERIC Educational Resources Information Center

    Davis, Eric J.; Pauls, Steve; Dick, Jonathan

    2017-01-01

    Presented is a project-based learning (PBL) laboratory approach for an upper-division environmental chemistry or quantitative analysis course. In this work, a combined laboratory class of 11 environmental chemistry students developed a method based on published EPA methods for the extraction of dichlorodiphenyltrichloroethane (DDT) and its…

  20. Registration using natural features for augmented reality systems.

    PubMed

    Yuan, M L; Ong, S K; Nee, A Y C

    2006-01-01

    Registration is one of the most difficult problems in augmented reality (AR) systems. In this paper, a simple registration method using natural features based on the projective reconstruction technique is proposed. This method consists of two steps: embedding and rendering. Embedding involves specifying four points to build the world coordinate system on which a virtual object will be superimposed. In rendering, the Kanade-Lucas-Tomasi (KLT) feature tracker is used to track the natural feature correspondences in the live video. The natural features that have been tracked are used to estimate the corresponding projective matrix in the image sequence. Next, the projective reconstruction technique is used to transfer the four specified points to compute the registration matrix for augmentation. This paper also proposes a robust method for estimating the projective matrix, where the natural features that have been tracked are normalized (translation and scaling) and used as the input data. The estimated projective matrix will be used as an initial estimate for a nonlinear optimization method that minimizes the actual residual errors based on the Levenberg-Marquardt (LM) minimization method, thus making the results more robust and stable. The proposed registration method has three major advantages: 1) It is simple, as no predefined fiducials or markers are used for registration for either indoor and outdoor AR applications. 2) It is robust, because it remains effective as long as at least six natural features are tracked during the entire augmentation, and the existence of the corresponding projective matrices in the live video is guaranteed. Meanwhile, the robust method to estimate the projective matrix can obtain stable results even when there are some outliers during the tracking process. 3) Virtual objects can still be superimposed on the specified areas, even if some parts of the areas are occluded during the entire process. Some indoor and outdoor experiments have been conducted to validate the performance of this proposed method.

  1. Intercomparison Project on Parameterizations of Large-Scale Dynamics for Simulations of Tropical Convection

    NASA Astrophysics Data System (ADS)

    Sobel, A. H.; Wang, S.; Bellon, G.; Sessions, S. L.; Woolnough, S.

    2013-12-01

    Parameterizations of large-scale dynamics have been developed in the past decade for studying the interaction between tropical convection and large-scale dynamics, based on our physical understanding of the tropical atmosphere. A principal advantage of these methods is that they offer a pathway to attack the key question of what controls large-scale variations of tropical deep convection. These methods have been used with both single column models (SCMs) and cloud-resolving models (CRMs) to study the interaction of deep convection with several kinds of environmental forcings. While much has been learned from these efforts, different groups' efforts are somewhat hard to compare. Different models, different versions of the large-scale parameterization methods, and experimental designs that differ in other ways are used. It is not obvious which choices are consequential to the scientific conclusions drawn and which are not. The methods have matured to the point that there is value in an intercomparison project. In this context, the Global Atmospheric Systems Study - Weak Temperature Gradient (GASS-WTG) project was proposed at the Pan-GASS meeting in September 2012. The weak temperature gradient approximation is one method to parameterize large-scale dynamics, and is used in the project name for historical reasons and simplicity, but another method, the damped gravity wave (DGW) method, will also be used in the project. The goal of the GASS-WTG project is to develop community understanding of the parameterization methods currently in use. Their strengths, weaknesses, and functionality in models with different physics and numerics will be explored in detail, and their utility to improve our understanding of tropical weather and climate phenomena will be further evaluated. This presentation will introduce the intercomparison project, including background, goals, and overview of the proposed experimental design. Interested groups will be invited to join (it will not be too late), and preliminary results will be presented.

  2. Filtered back-projection algorithm for Compton telescopes

    DOEpatents

    Gunter, Donald L [Lisle, IL

    2008-03-18

    A method for the conversion of Compton camera data into a 2D image of the incident-radiation flux on the celestial sphere includes detecting coincident gamma radiation flux arriving from various directions of a 2-sphere. These events are mapped by back-projection onto the 2-sphere to produce a convolution integral that is subsequently stereographically projected onto a 2-plane to produce a second convolution integral which is deconvolved by the Fourier method to produce an image that is then projected onto the 2-sphere.

  3. The Second Life Researcher Toolkit - An Exploration of Inworld Tools, Methods and Approaches for Researching Educational Projects in Second Life

    NASA Astrophysics Data System (ADS)

    Moschini, Elena

    Academics are beginning to explore the educational potential of Second LifeTM (SL) by setting up inworld educational activities and projects. Given the relative novelty of the use of virtual world environments in higher education many such projects are still at pilot stage. However the initial pilot and experimentation stage will have to be followed by a rigorous evaluation process as for more traditional teaching projects. The chapter addresses issues about SL research tools and research methods. It introduces a "researcher toolkit" that includes: the various stages in the evaluation of SL educational projects and the theoretical framework that can inform such projects; an outline of the inworld tools that can be utilised or customised for academic research purposes; a review of methods for collecting feedback from participants and of the main ethical issues involved in researching virtual world environments; a discussion on the technical skills required to operate a research project in SL. The chapter also offers an indication of the inworld opportunities for the dissemination of SL research findings.

  4. Formal Methods Tool Qualification

    NASA Technical Reports Server (NTRS)

    Wagner, Lucas G.; Cofer, Darren; Slind, Konrad; Tinelli, Cesare; Mebsout, Alain

    2017-01-01

    Formal methods tools have been shown to be effective at finding defects in safety-critical digital systems including avionics systems. The publication of DO-178C and the accompanying formal methods supplement DO-333 allows applicants to obtain certification credit for the use of formal methods without providing justification for them as an alternative method. This project conducted an extensive study of existing formal methods tools, identifying obstacles to their qualification and proposing mitigations for those obstacles. Further, it interprets the qualification guidance for existing formal methods tools and provides case study examples for open source tools. This project also investigates the feasibility of verifying formal methods tools by generating proof certificates which capture proof of the formal methods tool's claim, which can be checked by an independent, proof certificate checking tool. Finally, the project investigates the feasibility of qualifying this proof certificate checker, in the DO-330 framework, in lieu of qualifying the model checker itself.

  5. Comparing Life-Cycle Costs of ESPCs and Appropriations-Funded Energy Projects: An Update to the 2002 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shonder, John A; Hughes, Patrick; Atkin, Erica

    2006-11-01

    A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipmentmore » prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.« less

  6. GPU-accelerated iterative reconstruction from Compton scattered data using a matched pair of conic projector and backprojector.

    PubMed

    Nguyen, Van-Giang; Lee, Soo-Jin

    2016-07-01

    Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Field curvature correction method for ultrashort throw ratio projection optics design using an odd polynomial mirror surface.

    PubMed

    Zhuang, Zhenfeng; Chen, Yanting; Yu, Feihong; Sun, Xiaowei

    2014-08-01

    This paper presents a field curvature correction method of designing an ultrashort throw ratio (TR) projection lens for an imaging system. The projection lens is composed of several refractive optical elements and an odd polynomial mirror surface. A curved image is formed in a direction away from the odd polynomial mirror surface by the refractive optical elements from the image formed on the digital micromirror device (DMD) panel, and the curved image formed is its virtual image. Then the odd polynomial mirror surface enlarges the curved image and a plane image is formed on the screen. Based on the relationship between the chief ray from the exit pupil of each field of view (FOV) and the corresponding predescribed position on the screen, the initial profile of the freeform mirror surface is calculated by using segments of the hyperbolic according to the laws of reflection. For further optimization, the value of the high-order odd polynomial surface is used to express the freeform mirror surface through a least-squares fitting method. As an example, an ultrashort TR projection lens that realizes projection onto a large 50 in. screen at a distance of only 510 mm is presented. The optical performance for the designed projection lens is analyzed by ray tracing method. Results show that an ultrashort TR projection lens modulation transfer function of over 60% at 0.5 cycles/mm for all optimization fields is achievable with f-number of 2.0, 126° full FOV, <1% distortion, and 0.46 TR. Moreover, in comparing the proposed projection lens' optical specifications to that of traditional projection lenses, aspheric mirror projection lenses, and conventional short TR projection lenses, results indicate that this projection lens has the advantages of ultrashort TR, low f-number, wide full FOV, and small distortion.

  8. High school peer tutors teach MedlinePlus: a model for Hispanic outreach*

    PubMed Central

    Warner, Debra G.; Olney, Cynthia A.; Wood, Fred B.; Hansen, Lucille; Bowden, Virginia M.

    2005-01-01

    Objectives: The objective was to introduce the MedlinePlus Website to the predominantly Hispanic residents of the Lower Rio Grande Valley region of Texas by partnering with a health professions magnet high school (known as Med High). Methods: Community assessment was used in the planning stages and included pre-project focus groups with students and teachers. Outreach methods included peer tutor selection, train-the-trainer sessions, school and community outreach, and pre- and posttests of MedlinePlus training sessions. Evaluation methods included Web statistics; end-of-project interviews; focus groups with students, faculty, and librarians; and end-of-project surveys of students and faculty. Results: Four peer tutors reached more than 2,000 people during the project year. Students and faculty found MedlinePlus to be a useful resource. Faculty and librarians developed new or revised teaching methods incorporating MedlinePlus. The project enhanced the role of school librarians as agents of change at Med High. The project continues on a self-sustaining basis. Conclusions: Using peer tutors is an effective way to educate high school students about health information resources and, through the students, to reach families and community members. PMID:15858628

  9. Evaluation Guidelines for Service and Methods Demonstration Projects

    DOT National Transportation Integrated Search

    1976-02-01

    The document consists of evaluation guidelines for planning, implementing, and reporting the findings of the evaluation of Service and Methods Demonstration (SMD) projects sponsored by the Urban Mass Transportation Administration (UMTA). The objectiv...

  10. Grid Standards and Codes | Grid Modernization | NREL

    Science.gov Websites

    simulations that take advantage of advanced concepts such as hardware-in-the-loop testing. Such methods of methods and solutions. Projects Accelerating Systems Integration Standards Sharp increases in goal of this project is to develop streamlined and accurate methods for New York utilities to determine

  11. 26 CFR 1.174-3 - Treatment as expenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) of this section. If adopted, the method shall apply to all research and experimental expenditures... method is requested, and a description of the project or projects with respect to which research or... change to a different method of treating research or experimental expenditures shall be in writing and...

  12. ASTM Validates Air Pollution Test Methods

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    The American Society for Testing and Materials (ASTM) has validated six basic methods for measuring pollutants in ambient air as the first part of its Project Threshold. Aim of the project is to establish nationwide consistency in measuring pollutants; determining precision, accuracy and reproducibility of 35 standard measuring methods. (BL)

  13. Using Replication Projects in Teaching Research Methods

    ERIC Educational Resources Information Center

    Standing, Lionel G.; Grenier, Manuel; Lane, Erica A.; Roberts, Meigan S.; Sykes, Sarah J.

    2014-01-01

    It is suggested that replication projects may be valuable in teaching research methods, and also address the current need in psychology for more independent verification of published studies. Their use in an undergraduate methods course is described, involving student teams who performed direct replications of four well-known experiments, yielding…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H; Kong, V; Jin, J

    Purpose: A synchronized moving grid (SMOG) has been proposed to reduce scatter and lag artifacts in cone beam computed tomography (CBCT). However, information is missing in each projection because certain areas are blocked by the grid. A previous solution to this issue is acquiring 2 complimentary projections at each position, which increases scanning time. This study reports our first Result using an inter-projection sensor fusion (IPSF) method to estimate missing projection in our prototype SMOG-based CBCT system. Methods: An in-house SMOG assembling with a 1:1 grid of 3 mm gap has been installed in a CBCT benchtop. The grid movesmore » back and forth in a 3-mm amplitude and up-to 20-Hz frequency. A control program in LabView synchronizes the grid motion with the platform rotation and x-ray firing so that the grid patterns for any two neighboring projections are complimentary. A Catphan was scanned with 360 projections. After scatter correction, the IPSF algorithm was applied to estimate missing signal for each projection using the information from the 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct CBCT images. The CBCTs were compared to those reconstructed using normal projections without applying the SMOG system. Results: The SMOG-IPSF method may reduce image dose by half due to the blocked radiation by the grid. The method almost completely removed scatter related artifacts, such as the cupping artifacts. The evaluation of line pair patterns in the CatPhan suggested that the spatial resolution degradation was minimal. Conclusion: The SMOG-IPSF is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.« less

  15. A program for handling map projections of small-scale geospatial raster data

    USGS Publications Warehouse

    Finn, Michael P.; Steinwand, Daniel R.; Trent, Jason R.; Buehler, Robert A.; Mattli, David M.; Yamamoto, Kristina H.

    2012-01-01

    Scientists routinely accomplish small-scale geospatial modeling using raster datasets of global extent. Such use often requires the projection of global raster datasets onto a map or the reprojection from a given map projection associated with a dataset. The distortion characteristics of these projection transformations can have significant effects on modeling results. Distortions associated with the reprojection of global data are generally greater than distortions associated with reprojections of larger-scale, localized areas. The accuracy of areas in projected raster datasets of global extent is dependent on spatial resolution. To address these problems of projection and the associated resampling that accompanies it, methods for framing the transformation space, direct point-to-point transformations rather than gridded transformation spaces, a solution to the wrap-around problem, and an approach to alternative resampling methods are presented. The implementations of these methods are provided in an open-source software package called MapImage (or mapIMG, for short), which is designed to function on a variety of computer architectures.

  16. 77 FR 40411 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Act, 5 U.S.C. App. (1988) that a meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods...

  17. 77 FR 37101 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Act, 5 U.S.C. App. (1988) that a meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods...

  18. 77 FR 21157 - Open Meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods Project Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... Face-to-Face Service Methods Project Committee AGENCY: Internal Revenue Service (IRS) Treasury. ACTION: Notice of meeting. SUMMARY: An open meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods... Act, 5 U.S.C. App. (1988) that a meeting of the Taxpayer Advocacy Panel Face-to-Face Service Methods...

  19. TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Y; Zhang, Y; Shao, Y

    Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with themore » source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm{sup 3} voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.« less

  20. WE-AB-207A-04: Random Undersampled Cone Beam CT: Theoretical Analysis and a Novel Reconstruction Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, C; Chen, L; Jia, X

    2016-06-15

    Purpose: Reducing x-ray exposure and speeding up data acquisition motived studies on projection data undersampling. It is an important question that for a given undersampling ratio, what the optimal undersampling approach is. In this study, we propose a new undersampling scheme: random-ray undersampling. We will mathematically analyze its projection matrix properties and demonstrate its advantages. We will also propose a new reconstruction method that simultaneously performs CT image reconstruction and projection domain data restoration. Methods: By representing projection operator under the basis of singular vectors of full projection operator, matrix representations for an undersampling case can be generated and numericalmore » singular value decomposition can be performed. We compared properties of matrices among three undersampling approaches: regular-view undersampling, regular-ray undersampling, and the proposed random-ray undersampling. To accomplish CT reconstruction for random undersampling, we developed a novel method that iteratively performs CT reconstruction and missing projection data restoration via regularization approaches. Results: For a given undersampling ratio, random-ray undersampling preserved mathematical properties of full projection operator better than the other two approaches. This translates to advantages of reconstructing CT images at lower errors. Different types of image artifacts were observed depending on undersampling strategies, which were ascribed to the unique singular vectors of the sampling operators in the image domain. We tested the proposed reconstruction algorithm on a Forbid phantom with only 30% of the projection data randomly acquired. Reconstructed image error was reduced from 9.4% in a TV method to 7.6% in the proposed method. Conclusion: The proposed random-ray undersampling is mathematically advantageous over other typical undersampling approaches. It may permit better image reconstruction at the same undersampling ratio. The novel algorithm suitable for this random-ray undersampling was able to reconstruct high-quality images.« less

  1. Molecular activity prediction by means of supervised subspace projection based ensembles of classifiers.

    PubMed

    Cerruela García, G; García-Pedrajas, N; Luque Ruiz, I; Gómez-Nieto, M Á

    2018-03-01

    This paper proposes a method for molecular activity prediction in QSAR studies using ensembles of classifiers constructed by means of two supervised subspace projection methods, namely nonparametric discriminant analysis (NDA) and hybrid discriminant analysis (HDA). We studied the performance of the proposed ensembles compared to classical ensemble methods using four molecular datasets and eight different models for the representation of the molecular structure. Using several measures and statistical tests for classifier comparison, we observe that our proposal improves the classification results with respect to classical ensemble methods. Therefore, we show that ensembles constructed using supervised subspace projections offer an effective way of creating classifiers in cheminformatics.

  2. Method for modeling social care processes for national information exchange.

    PubMed

    Miettinen, Aki; Mykkänen, Juha; Laaksonen, Maarit

    2012-01-01

    Finnish social services include 21 service commissions of social welfare including Adoption counselling, Income support, Child welfare, Services for immigrants and Substance abuse care. This paper describes the method used for process modeling in the National project for IT in Social Services in Finland (Tikesos). The process modeling in the project aimed to support common national target state processes from the perspective of national electronic archive, increased interoperability between systems and electronic client documents. The process steps and other aspects of the method are presented. The method was developed, used and refined during the three years of process modeling in the national project.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehoff, Ryan R.; List, III, Frederick Alyious; Carver, Keith

    ORNL Manufacturing Demonstration Facility worked with ECM Technologies LLC to investigate the use of precision electro-chemical machining technology to polish the surface of parts created by Arcam electron beam melting. The goals for phase one of this project have been met. The project goal was to determine whether electro-chemical machining is a viable method to improve the surface finish of Inconel 718 parts fabricated using the Arcam EBM method. The project partner (ECM) demonstrated viability for parts of both simple and complex geometry. During the course of the project, detailed process knowledge was generated. This project has resulted in themore » expansion of United States operations for ECM Technologies.« less

  4. High-speed high-accuracy three-dimensional shape measurement using digital binary defocusing method versus sinusoidal method

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Li, Beiwen; Zhang, Song

    2017-07-01

    This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  5. High-speed 3D imaging using digital binary defocusing method vs sinusoidal method

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Hyun, Jae-Sang; Li, Beiwen

    2017-02-01

    This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.

  6. An Assessment of Artificial Compressibility and Pressure Projection Methods for Incompressible Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)

    1998-01-01

    Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.

  7. MEASUREMENT ERROR ESTIMATION AND CORRECTION METHODS TO MINIMIZE EXPOSURE MISCLASSIFICATION IN EPIDEMIOLOGICAL STUDIES: PROJECT SUMMARY

    EPA Science Inventory

    This project summary highlights recent findings from research undertaken to develop improved methods to assess potential human health risks related to drinking water disinfection byproduct (DBP) exposures.

  8. The Impact of Project Management Maturity upon IT/IS Project Management Outcomes

    ERIC Educational Resources Information Center

    Carcillo, Anthony Joseph, Jr.

    2013-01-01

    Although it is assumed that increasing the institutionalization (or maturity) of project management in an organization leads to greater project success, the literature has diverse views. The purpose of this mixed methods study was to examine the correlation between project management maturity and IT/IS project outcomes. The sample consisted of two…

  9. Brain tumor segmentation based on local independent projection-based classification.

    PubMed

    Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin

    2014-10-01

    Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.

  10. Interdisciplinary Early Childhood Handicapped Personnel Training Project.

    ERIC Educational Resources Information Center

    Swartz, Stanley L.

    The report describes the Western Illinois University 0-6 Interdisciplinary Early Childhood Handicapped Personnel Training Project (WIU 0-6 Project)--a model project designed to demonstrate innovative methods to fill personnel needs for early childhood handicapped programs. The project is a 2 semester program to train professional educators in the…

  11. The Luneburg Sustainable University Project in International Comparison: An Assessment against North American Peers

    ERIC Educational Resources Information Center

    Beringer, Almut

    2007-01-01

    Purpose: To assess the Luneburg Sustainable University Project (the Project) in a non-European international context; to relate the project scholarly approach to selected scholarly and practice-oriented North American sustainability in higher education (SHE) methods; to analyze project innovations against North American initiatives.…

  12. Best Practices from WisDOT Mega and ARRA Projects

    DOT National Transportation Integrated Search

    2012-03-01

    Since 2004 WisDOT has developed a number of new techniques, methods, processes and procedures for management of two new : types of transportation projects: Mega projects and projects funded through the American Recovery and Reinvestment Act of ...

  13. Best practices from WisDOT mega and ARRA projects.

    DOT National Transportation Integrated Search

    2012-03-01

    Since 2004 WisDOT has developed a number of new techniques, methods, processes and procedures for management of two new types of transportation projects: "Mega projects" and projects funded through the American Recovery and Reinvestment Act of 2009 (...

  14. Final project report for NEET pulsed ion beam project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucheyev, S. O.

    The major goal of this project was to develop and demonstrate a novel experimental approach to access the dynamic regime of radiation damage formation in nuclear materials. In particular, the project exploited a pulsed-ion-beam method in order to gain insight into defect interaction dynamics by measuring effective defect interaction time constants and defect diffusion lengths. This project had the following four major objectives: (i) the demonstration of the pulsed ion beam method for a prototypical nuclear ceramic material, SiC; (ii) the evaluation of the robustness of the pulsed beam method from studies of defect generation rate effects; (iii) the measurementmore » of the temperature dependence of defect dynamics and thermally activated defect-interaction processes by pulsed ion beam techniques; and (iv) the demonstration of alternative characterization techniques to study defect dynamics. As we describe below, all these objectives have been met.« less

  15. Error and Complexity Analysis for a Collocation-Grid-Projection Plus Precorrected-FFT Algorithm for Solving Potential Integral Equations with LaPlace or Helmholtz Kernels

    NASA Technical Reports Server (NTRS)

    Phillips, J. R.

    1996-01-01

    In this paper we derive error bounds for a collocation-grid-projection scheme tuned for use in multilevel methods for solving boundary-element discretizations of potential integral equations. The grid-projection scheme is then combined with a precorrected FFT style multilevel method for solving potential integral equations with 1/r and e(sup ikr)/r kernels. A complexity analysis of this combined method is given to show that for homogeneous problems, the method is order n natural log n nearly independent of the kernel. In addition, it is shown analytically and experimentally that for an inhomogeneity generated by a very finely discretized surface, the combined method slows to order n(sup 4/3). Finally, examples are given to show that the collocation-based grid-projection plus precorrected-FFT scheme is competitive with fast-multipole algorithms when considering realistic problems and 1/r kernels, but can be used over a range of spatial frequencies with only a small performance penalty.

  16. A rapid parallelization of cone-beam projection and back-projection operator based on texture fetching interpolation

    NASA Astrophysics Data System (ADS)

    Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao

    2015-03-01

    Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.

  17. Design of a projection display screen with vanishing color shift for rear-projection HDTV

    NASA Astrophysics Data System (ADS)

    Liu, Xiu; Zhu, Jin-lin

    1996-09-01

    Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.

  18. A Compound LAMS-MOODLE Environment to Support Collaborative Project-Based Learning: A Case Study with the Group Investigation Method

    ERIC Educational Resources Information Center

    Paschalis, Giorgos

    2017-01-01

    Collaborative project-based learning is well established as a component of several courses in higher education, since it seems to motivate students and make them active in the learning process. Collaborative Project-Based Learning methods are demanded so that tutors become able to intervene and guide the students in flexible ways: by encouraging…

  19. The Benefits and Costs of National Service: Methods for Benefit Assessment with Application to Three AmeriCorps Programs.

    ERIC Educational Resources Information Center

    Neumann, George R.; And Others

    A study applied the principles of benefit-cost analysis to three prototype grants programs of AmeriCorps: AmeriCorps for Math and Literacy, Project First, and the East Bay Conservation Corps. It studied the methods these projects used and estimated the benefits using data from projects similar in approach and implementation. Benefits received by…

  20. Integrated Methods for Pupils To Reinforce Occupational and Verbal Effectiveness (Project IMPROVE). Final Evaluation Report, 1992-93. OREA Report.

    ERIC Educational Resources Information Center

    Guadalupe, Deana R.

    Integrated Methods for Pupils to Reinforce Occupational and Vocational Effectiveness (Project IMPROVE) was a federally funded project in its second year of operation in two Manhattan (New York) high schools in 1992-93. It served limited-English-proficient students, 186 Latino and 13 Asian-American, in grades 9-12. Students received instruction in…

  1. "A Marriage on the Rocks": An Unknown Letter by William H. Kilpatrick about His Project Method

    ERIC Educational Resources Information Center

    Knoll, Michael

    2010-01-01

    William H. Kilpatrick is worldwide known as "Mr. Project Method." But the origin of his celebrated paper of 1918 has never been explored. The discovery of a hitherto unknown letter reveals that Kilpatrick was an educational entrepreneur who, without regard for language and tradition, adopted the term "project" and used it in a provocative new way…

  2. Bayesian probabilistic population projections for all countries.

    PubMed

    Raftery, Adrian E; Li, Nan; Ševčíková, Hana; Gerland, Patrick; Heilig, Gerhard K

    2012-08-28

    Projections of countries' future populations, broken down by age and sex, are widely used for planning and research. They are mostly done deterministically, but there is a widespread need for probabilistic projections. We propose a bayesian method for probabilistic population projections for all countries. The total fertility rate and female and male life expectancies at birth are projected probabilistically using bayesian hierarchical models estimated via Markov chain Monte Carlo using United Nations population data for all countries. These are then converted to age-specific rates and combined with a cohort component projection model. This yields probabilistic projections of any population quantity of interest. The method is illustrated for five countries of different demographic stages, continents and sizes. The method is validated by an out of sample experiment in which data from 1950-1990 are used for estimation, and applied to predict 1990-2010. The method appears reasonably accurate and well calibrated for this period. The results suggest that the current United Nations high and low variants greatly underestimate uncertainty about the number of oldest old from about 2050 and that they underestimate uncertainty for high fertility countries and overstate uncertainty for countries that have completed the demographic transition and whose fertility has started to recover towards replacement level, mostly in Europe. The results also indicate that the potential support ratio (persons aged 20-64 per person aged 65+) will almost certainly decline dramatically in most countries over the coming decades.

  3. Uncertainty Analyses for Back Projection Methods

    NASA Astrophysics Data System (ADS)

    Zeng, H.; Wei, S.; Wu, W.

    2017-12-01

    So far few comprehensive error analyses for back projection methods have been conducted, although it is evident that high frequency seismic waves can be easily affected by earthquake depth, focal mechanisms and the Earth's 3D structures. Here we perform 1D and 3D synthetic tests for two back projection methods, MUltiple SIgnal Classification (MUSIC) (Meng et al., 2011) and Compressive Sensing (CS) (Yao et al., 2011). We generate synthetics for both point sources and finite rupture sources with different depths, focal mechanisms, as well as 1D and 3D structures in the source region. The 3D synthetics are generated through a hybrid scheme of Direct Solution Method and Spectral Element Method. Then we back project the synthetic data using MUSIC and CS. The synthetic tests show that the depth phases can be back projected as artificial sources both in space and time. For instance, for a source depth of 10km, back projection gives a strong signal 8km away from the true source. Such bias increases with depth, e.g., the error of horizontal location could be larger than 20km for a depth of 40km. If the array is located around the nodal direction of direct P-waves the teleseismic P-waves are dominated by the depth phases. Therefore, back projections are actually imaging the reflection points of depth phases more than the rupture front. Besides depth phases, the strong and long lasted coda waves due to 3D effects near trench can lead to additional complexities tested here. The strength contrast of different frequency contents in the rupture models also produces some variations to the back projection results. In the synthetic tests, MUSIC and CS derive consistent results. While MUSIC is more computationally efficient, CS works better for sparse arrays. In summary, our analyses indicate that the impact of various factors mentioned above should be taken into consideration when interpreting back projection images, before we can use them to infer the earthquake rupture physics.

  4. TU-F-18A-06: Dual Energy CT Using One Full Scan and a Second Scan with Very Few Projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, T; Zhu, L

    Purpose: The conventional dual energy CT (DECT) requires two full CT scans at different energy levels, resulting in dose increase as well as imaging errors from patient motion between the two scans. To shorten the scan time of DECT and thus overcome these drawbacks, we propose a new DECT algorithm using one full scan and a second scan with very few projections by preserving structural information. Methods: We first reconstruct a CT image on the full scan using a standard filtered-backprojection (FBP) algorithm. We then use a compressed sensing (CS) based iterative algorithm on the second scan for reconstruction frommore » very few projections. The edges extracted from the first scan are used as weights in the Objectives: function of the CS-based reconstruction to substantially improve the image quality of CT reconstruction. The basis material images are then obtained by an iterative image-domain decomposition method and an electron density map is finally calculated. The proposed method is evaluated on phantoms. Results: On the Catphan 600 phantom, the CT reconstruction mean error using the proposed method on 20 and 5 projections are 4.76% and 5.02%, respectively. Compared with conventional iterative reconstruction, the proposed edge weighting preserves object structures and achieves a better spatial resolution. With basis materials of Iodine and Teflon, our method on 20 projections obtains similar quality of decomposed material images compared with FBP on a full scan and the mean error of electron density in the selected regions of interest is 0.29%. Conclusion: We propose an effective method for reducing projections and therefore scan time in DECT. We show that a full scan plus a 20-projection scan are sufficient to provide DECT images and electron density with similar quality compared with two full scans. Our future work includes more phantom studies to validate the performance of our method.« less

  5. 7 CFR 4280.115 - Construction planning and performing development.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... projects as applicable. For contracts of $200,000 or less, the simple contract method, as specified in... warranty documents. (e) Simple contract method. The simple contract method may be used for small projects... Agency and may be used only if they are customarily used in the area and protect the interest of the...

  6. ESEA Title I Linking Project. Final Report.

    ERIC Educational Resources Information Center

    Holmes, Susan E.

    The Rasch model for test score equating was compared with three other equating procedures as methods for implementing the norm referenced method (RMC Model A) of evaluating ESEA Title I projects. The Rasch model and its theoretical limitations were described. The three other equating methods used were: linear observed score equating, linear true…

  7. Scatter measurement and correction method for cone-beam CT based on single grating scan

    NASA Astrophysics Data System (ADS)

    Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua

    2017-06-01

    In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.

  8. Accurate Projection Methods for the Incompressible Navier–Stokes Equations

    DOE PAGES

    Brown, David L.; Cortez, Ricardo; Minion, Michael L.

    2001-04-10

    This paper considers the accuracy of projection method approximations to the initial–boundary-value problem for the incompressible Navier–Stokes equations. The issue of how to correctly specify numerical boundary conditions for these methods has been outstanding since the birth of the second-order methodology a decade and a half ago. It has been observed that while the velocity can be reliably computed to second-order accuracy in time and space, the pressure is typically only first-order accurate in the L ∞-norm. Here, we identify the source of this problem in the interplay of the global pressure-update formula with the numerical boundary conditions and presentsmore » an improved projection algorithm which is fully second-order accurate, as demonstrated by a normal mode analysis and numerical experiments. In addition, a numerical method based on a gauge variable formulation of the incompressible Navier–Stokes equations, which provides another option for obtaining fully second-order convergence in both velocity and pressure, is discussed. The connection between the boundary conditions for projection methods and the gauge method is explained in detail.« less

  9. Tools and Methods for Risk Management in Multi-Site Engineering Projects

    NASA Astrophysics Data System (ADS)

    Zhou, Mingwei; Nemes, Laszlo; Reidsema, Carl; Ahmed, Ammar; Kayis, Berman

    In today's highly global business environment, engineering and manufacturing projects often involve two or more geographically dispersed units or departments, research centers or companies. This paper attempts to identify the requirements for risk management in a multi-site engineering project environment, and presents a review of the state-of-the-art tools and methods that can be used to manage risks in multi-site engineering projects. This leads to the development of a risk management roadmap, which will underpin the design and implementation of an intelligent risk mapping system.

  10. A systematic approach to the application of Automation, Robotics, and Machine Intelligence Systems /ARAMIS/ to future space projects

    NASA Technical Reports Server (NTRS)

    Smith, D. B. S.

    1982-01-01

    The potential applications of Automation, Robotics, and Machine Intelligence Systems (ARAMIS) to space projects are investigated, through a systematic method. In this method selected space projects are broken down into space project tasks, and 69 of these tasks are selected for study. Candidate ARAMIS options are defined for each task. The relative merits of these options are evaluated according to seven indices of performance. Logical sequences of ARAMIS development are also defined. Based on this data, promising applications of ARAMIS are

  11. Hybrid plasma modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Matthew Morgan; DeChant, Lawrence Justin.; Piekos, Edward Stanley

    2009-02-01

    This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficientmore » resources to complete the project and it was terminated mid-year.« less

  12. A projection operator method for the analysis of magnetic neutron form factors

    NASA Astrophysics Data System (ADS)

    Kaprzyk, S.; Van Laar, B.; Maniawski, F.

    1981-03-01

    A set of projection operators in matrix form has been derived on the basis of decomposition of the spin density into a series of fully symmetrized cubic harmonics. This set of projection operators allows a formulation of the Fourier analysis of magnetic form factors in a convenient way. The presented method is capable of checking the validity of various theoretical models used for spin density analysis up to now. The general formalism is worked out in explicit form for the fcc and bcc structures and deals with that part of spin density which is contained within the sphere inscribed in the Wigner-Seitz cell. This projection operator method has been tested on the magnetic form factors of nickel and iron.

  13. Resource Constrained Planning of Multiple Projects with Separable Activities

    NASA Astrophysics Data System (ADS)

    Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya

    In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.

  14. Low-cost rural surface alternatives : demonstration project.

    DOT National Transportation Integrated Search

    2015-06-01

    The goals of this project were to implement several stabilization methods for preventing or mitigating freeze-thaw damage to : granular surfaced roads and identify the most effective and economical methods for the soil and climate conditions of Iowa....

  15. Toward automated analysis of particle holograms

    NASA Technical Reports Server (NTRS)

    Caulfield, H. J.

    1987-01-01

    A preliminary study of approaches for extracting and analyzing data from particle holograms is discussed. It concludes that: (1) for thin spherical particles, out-of-focus methods are optimum; (2) for thin nonspherical particles, out-of-focus methods are useful but must be supplemented by in-focus methods; (3) a complex method of projection and back projection can remove out-of-focus data for deep particles.

  16. The Use of the Nelder-Mead Method in Determining Projection Parameters for Globe Photographs

    NASA Astrophysics Data System (ADS)

    Gede, M.

    2009-04-01

    A photo of a terrestrial or celestial globe can be handled as a map. The only hard issue is its projection: the so-called Tilted Perspective Projection which, if the optical axis of the photo intersects the globe's centre, is simplified to the Vertical Near-Side Perspective Projection. When georeferencing such a photo, the exact parameters of the projections are also needed. These parameters depend on the position of the viewpoint of the camera. Several hundreds of globe photos had to be georeferenced during the Virtual Globes Museum project, which made necessary to automatize the calculation of the projection parameters. The author developed a program for this task which uses the Nelder-Mead Method in order to find the optimum parameters when a set of control points are given as input. The Nelder-Mead method is a numerical algorithm for minimizing a function in a many-dimensional space. The function in the present application is the average error of the control points calculated from the actual values of parameters. The parameters are the geographical coordinates of the projection centre, the image coordinates of the same point, the rotation of the projection, the height of the perspective point and the scale of the photo (calculated in pixels/km). The program reads the Global Mappers Ground Control Point (.GCP) file format as input and creates projection description files (.PRJ) for the same software. The initial values of the geographical coordinates of the projection centre are calculated as the average of the control points, while the other parameters are set to experimental values which represent the most common circumstances of taking a globe photograph. The algorithm runs until the change of the parameters sinks below a pre-defined limit. The minimum search can be refined by using the previous result parameter set as new initial values. This paper introduces the calculation mechanism and examples of the usage. Other possible other usages of the method are also discussed.

  17. A novel evaluation method for building construction project based on integrated information entropy with reliability theory.

    PubMed

    Bai, Xiao-ping; Zhang, Xi-wei

    2013-01-01

    Selecting construction schemes of the building engineering project is a complex multiobjective optimization decision process, in which many indexes need to be selected to find the optimum scheme. Aiming at this problem, this paper selects cost, progress, quality, and safety as the four first-order evaluation indexes, uses the quantitative method for the cost index, uses integrated qualitative and quantitative methodologies for progress, quality, and safety indexes, and integrates engineering economics, reliability theories, and information entropy theory to present a new evaluation method for building construction project. Combined with a practical case, this paper also presents detailed computing processes and steps, including selecting all order indexes, establishing the index matrix, computing score values of all order indexes, computing the synthesis score, sorting all selected schemes, and making analysis and decision. Presented method can offer valuable references for risk computing of building construction projects.

  18. Spotting the difference in molecular dynamics simulations of biomolecules

    NASA Astrophysics Data System (ADS)

    Sakuraba, Shun; Kono, Hidetoshi

    2016-08-01

    Comparing two trajectories from molecular simulations conducted under different conditions is not a trivial task. In this study, we apply a method called Linear Discriminant Analysis with ITERative procedure (LDA-ITER) to compare two molecular simulation results by finding the appropriate projection vectors. Because LDA-ITER attempts to determine a projection such that the projections of the two trajectories do not overlap, the comparison does not suffer from a strong anisotropy, which is an issue in protein dynamics. LDA-ITER is applied to two test cases: the T4 lysozyme protein simulation with or without a point mutation and the allosteric protein PDZ2 domain of hPTP1E with or without a ligand. The projection determined by the method agrees with the experimental data and previous simulations. The proposed procedure, which complements existing methods, is a versatile analytical method that is specialized to find the "difference" between two trajectories.

  19. A Projection Quality-Driven Tube Current Modulation Method in Cone-Beam CT for IGRT: Proof of Concept.

    PubMed

    Men, Kuo; Dai, Jianrong

    2017-12-01

    To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.

  20. Development and evaluation of a digital dental modeling method based on grating projection and reverse engineering software.

    PubMed

    Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi

    2016-01-01

    For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Comparison of projection skills of deterministic ensemble methods using pseudo-simulation data generated from multivariate Gaussian distribution

    NASA Astrophysics Data System (ADS)

    Oh, Seok-Geun; Suh, Myoung-Seok

    2017-07-01

    The projection skills of five ensemble methods were analyzed according to simulation skills, training period, and ensemble members, using 198 sets of pseudo-simulation data (PSD) produced by random number generation assuming the simulated temperature of regional climate models. The PSD sets were classified into 18 categories according to the relative magnitude of bias, variance ratio, and correlation coefficient, where each category had 11 sets (including 1 truth set) with 50 samples. The ensemble methods used were as follows: equal weighted averaging without bias correction (EWA_NBC), EWA with bias correction (EWA_WBC), weighted ensemble averaging based on root mean square errors and correlation (WEA_RAC), WEA based on the Taylor score (WEA_Tay), and multivariate linear regression (Mul_Reg). The projection skills of the ensemble methods improved generally as compared with the best member for each category. However, their projection skills are significantly affected by the simulation skills of the ensemble member. The weighted ensemble methods showed better projection skills than non-weighted methods, in particular, for the PSD categories having systematic biases and various correlation coefficients. The EWA_NBC showed considerably lower projection skills than the other methods, in particular, for the PSD categories with systematic biases. Although Mul_Reg showed relatively good skills, it showed strong sensitivity to the PSD categories, training periods, and number of members. On the other hand, the WEA_Tay and WEA_RAC showed relatively superior skills in both the accuracy and reliability for all the sensitivity experiments. This indicates that WEA_Tay and WEA_RAC are applicable even for simulation data with systematic biases, a short training period, and a small number of ensemble members.

  2. Out-of-Focus Projector Calibration Method with Distortion Correction on the Projection Plane in the Structured Light Three-Dimensional Measurement System.

    PubMed

    Zhang, Jiarui; Zhang, Yingjie; Chen, Bo

    2017-12-20

    The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.

  3. A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Piatkowski, Marian; Müthing, Steffen; Bastian, Peter

    2018-03-01

    In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.

  4. Collaborative decision-making on wind power projects based on AHP method

    NASA Astrophysics Data System (ADS)

    Badea, A.; Proştean, G.; Tămăşilă, M.; Vârtosu, A.

    2017-01-01

    The complexity of projects implementation in Renewable Energy Sources (RES) requires finding collaborative alliances between suppliers and project developers in RES. Links activities in supply chain in RES, respectively, transportation of heavy components, processing orders to purchase quality raw materials, storage and materials handling, packaging, and other complex activities requiring a logistics system collaboratively to be permanently dimensioned properly selected and monitored. Requirements imposed by stringency of wind power energy projects implementation inevitably involves constraints in infrastructure, implementation and logistics. Thus, following an extensive research in RES project, to eliminate these constraints were identified alternative collaboration to provide feasible solutions on different levels of performance. The paper presents a critical analysis of different collaboration alternatives in supply chain for RES projects, selecting the ones most suitable for particular situations by using decision-making method Analytic Hierarchy Process (AHP). The role of AHP method was to formulate a decision model by which can be establish the collaboration alternative choice through mathematical calculation to reduce the impact created by constraints encountered. The solution provided through AHP provides a framework for detecting optimal alternative collaboration between suppliers and project developers in RES and avoids some breaks in the chain by resizing safety buffers for leveling orders in RES projects.

  5. Faculty development projects for international health professions educators: Vehicles for institutional change?

    PubMed

    Burdick, William P; Friedman, Stacey R; Diserens, Deborah

    2012-01-01

    Projects are an important tool in faculty development, and project emphasis may offer insights into perceived education priorities. Impact of projects has been focused on individuals, not institutions or health. Education innovation projects of Fellows in an international faculty development program were examined to better understand perceived needs in health professions education and institutional impact of projects. Four hundred and thirty-five projects were analyzed to identify focus areas. Fellows were asked to identify changes in their schools and communities resulting from their projects. New education methods and curriculum change were common project focus areas. Regional differences were evident with a higher percentage of education methods projects by Fellows residing in India (52%), compared with South Africa (25%) and Brazil (24%). Fifty-six percent of projects were incorporated into the curriculum and/or incorporated as institutional policy. One-third to two-thirds of respondents noted improved teaching quality, collaboration, education research interest, assessment, student performance, and curriculum alignment with community health needs. National differences in project focus may offer insight into local conditions and needs. High rates of diffusion of projects and impact on faculty, students, and curriculum suggest that faculty development projects may be a strategy for institutional change in resource limited environments.

  6. Fan beam image reconstruction with generalized Fourier slice theorem.

    PubMed

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  7. Equidistant map projections of a triaxial ellipsoid with the use of reduced coordinates

    NASA Astrophysics Data System (ADS)

    Pędzich, Paweł

    2017-12-01

    The paper presents a new method of constructing equidistant map projections of a triaxial ellipsoid as a function of reduced coordinates. Equations for x and y coordinates are expressed with the use of the normal elliptic integral of the second kind and Jacobian elliptic functions. This solution allows to use common known and widely described in literature methods of solving such integrals and functions. The main advantage of this method is the fact that the calculations of x and y coordinates are practically based on a single algorithm that is required to solve the elliptic integral of the second kind. Equations are provided for three types of map projections: cylindrical, azimuthal and pseudocylindrical. These types of projections are often used in planetary cartography for presentation of entire and polar regions of extraterrestrial objects. The paper also contains equations for the calculation of the length of a meridian and a parallel of a triaxial ellipsoid in reduced coordinates. Moreover, graticules of three coordinates systems (planetographic, planetocentric and reduced) in developed map projections are presented. The basic properties of developed map projections are also described. The obtained map projections may be applied in planetary cartography in order to create maps of extraterrestrial objects.

  8. Report Card on Enrollment Projections and Other Selected Papers. Third Annual Meeting of the North Carolina Association for Institutional Research.

    ERIC Educational Resources Information Center

    Brown, Charles I., Ed.

    The major theme of Report Card 1 is enrollment projections. Reports in this section include: Barwick and Stafford's "Statewide Enrollment Projections for North Carolina, 1975-80"; Reiman's "Assumption-Based Model for Developing Institutional Enrollment Projections"; Rajasekhara's "Enrollment Projection," dealing with alternative methods;…

  9. A new method to make 2-D wear measurements less sensitive to projection differences of cemented THAs.

    PubMed

    The, Bertram; Flivik, Gunnar; Diercks, Ron L; Verdonschot, Nico

    2008-03-01

    Wear curves from individual patients often show unexplained irregular wear curves or impossible values (negative wear). We postulated errors of two-dimensional wear measurements are mainly the result of radiographic projection differences. We tested a new method that makes two-dimensional wear measurements less sensitive for radiograph projection differences of cemented THAs. The measurement errors that occur when radiographically projecting a three-dimensional THA were modeled. Based on the model, we developed a method to reduce the errors, thus approximating three-dimensional linear wear values, which are less sensitive for projection differences. An error analysis was performed by virtually simulating 144 wear measurements under varying conditions with and without application of the correction: the mean absolute error was reduced from 1.8 mm (range, 0-4.51 mm) to 0.11 mm (range, 0-0.27 mm). For clinical validation, radiostereometric analysis was performed on 47 patients to determine the true wear at 1, 2, and 5 years. Subsequently, wear was measured on conventional radiographs with and without the correction: the overall occurrence of errors greater than 0.2 mm was reduced from 35% to 15%. Wear measurements are less sensitive to differences in two-dimensional projection of the THA when using the correction method.

  10. California Schools Develop Joint Faculty Journalism Project.

    ERIC Educational Resources Information Center

    Patt, Bruce E.

    1995-01-01

    Describes the Joint Faculty Journalism project, undertaken in 1994-95 by California's community colleges and universities to develop methods for increasing alliances with journalism practitioners. Discusses project objectives and resulting recommendations related to increasing student recruitment and success. Reviews positive project outcomes and…

  11. Research Projects 1968.

    ERIC Educational Resources Information Center

    Swedish Council for Personnel Administration, Stockholm.

    The 39 research projects described cover several fields within the social and behavioral sciences related to personnel administration. The project description format includes: (1) project title, (2) principal investigator, (3) institution, (4) advisor, (5) grants, (6) background and purpose, (7) scope, material, methods, experimental design, (8)…

  12. Averaged ratio between complementary profiles for evaluating shape distortions of map projections and spherical hierarchical tessellations

    NASA Astrophysics Data System (ADS)

    Yan, Jin; Song, Xiao; Gong, Guanghong

    2016-02-01

    We describe a metric named averaged ratio between complementary profiles to represent the distortion of map projections, and the shape regularity of spherical cells derived from map projections or non-map-projection methods. The properties and statistical characteristics of our metric are investigated. Our metric (1) is a variable of numerical equivalence to both scale component and angular deformation component of Tissot indicatrix, and avoids the invalidation when using Tissot indicatrix and derived differential calculus for evaluating non-map-projection based tessellations where mathematical formulae do not exist (e.g., direct spherical subdivisions), (2) exhibits simplicity (neither differential nor integral calculus) and uniformity in the form of calculations, (3) requires low computational cost, while maintaining high correlation with the results of differential calculus, (4) is a quasi-invariant under rotations, and (5) reflects the distortions of map projections, distortion of spherical cells, and the associated distortions of texels. As an indicator of quantitative evaluation, we investigated typical spherical tessellation methods, some variants of tessellation methods, and map projections. The tessellation methods we evaluated are based on map projections or direct spherical subdivisions. The evaluation involves commonly used Platonic polyhedrons, Catalan polyhedrons, etc. Quantitative analyses based on our metric of shape regularity and an essential metric of area uniformity implied that (1) Uniform Spherical Grids and its variant show good qualities in both area uniformity and shape regularity, and (2) Crusta, Unicube map, and a variant of Unicube map exhibit fairly acceptable degrees of area uniformity and shape regularity.

  13. Projection methods for line radiative transfer in spherical media.

    NASA Astrophysics Data System (ADS)

    Anusha, L. S.; Nagendra, K. N.

    An efficient numerical method called the Preconditioned Bi-Conjugate Gradient (Pre-BiCG) method is presented for the solution of radiative transfer equation in spherical geometry. A variant of this method called Stabilized Preconditioned Bi-Conjugate Gradient (Pre-BiCG-STAB) is also presented. These methods are based on projections on the subspaces of the n dimensional Euclidean space mathbb {R}n called Krylov subspaces. The methods are shown to be faster in terms of convergence rate compared to the contemporary iterative methods such as Jacobi, Gauss-Seidel and Successive Over Relaxation (SOR).

  14. Alignment theory of parallel-beam computed tomography image reconstruction for elastic-type objects using virtual focusing method.

    PubMed

    Jun, Kyungtaek; Kim, Dongwook

    2018-01-01

    X-ray computed tomography has been studied in various fields. Considerable effort has been focused on reconstructing the projection image set from a rigid-type specimen. However, reconstruction of images projected from an object showing elastic motion has received minimal attention. In this paper, a mathematical solution to reconstructing the projection image set obtained from an object with specific elastic motions-periodically, regularly, and elliptically expanded or contracted specimens-is proposed. To reconstruct the projection image set from expanded or contracted specimens, methods are presented for detection of the sample's motion modes, mathematical rescaling of pixel values, and conversion of the projection angle for a common layer.

  15. Jet engine nozzle exit configurations, including projections oriented relative to pylons, and associated systems and methods

    NASA Technical Reports Server (NTRS)

    Mengle, Vinod G. (Inventor); Thomas, Russell H. (Inventor)

    2012-01-01

    Nozzle exit configurations and associated systems and methods are disclosed. An aircraft system in accordance with one embodiment includes a jet engine exhaust nozzle having an internal flow surface and an exit aperture, with the exit aperture having a perimeter that includes multiple projections extending in an aft direction. Aft portions of individual neighboring projections are spaced apart from each other by a gap, and a geometric feature of the multiple can change in a monotonic manner along at least a portion of the perimeter. Projections near a support pylon and/or associated heat shield can have particular configurations, including greater flow immersion than other projections.

  16. Optimal Couple Projections for Domain Adaptive Sparse Representation-based Classification.

    PubMed

    Zhang, Guoqing; Sun, Huaijiang; Porikli, Fatih; Liu, Yazhou; Sun, Quansen

    2017-08-29

    In recent years, sparse representation based classification (SRC) is one of the most successful methods and has been shown impressive performance in various classification tasks. However, when the training data has a different distribution than the testing data, the learned sparse representation may not be optimal, and the performance of SRC will be degraded significantly. To address this problem, in this paper, we propose an optimal couple projections for domain-adaptive sparse representation-based classification (OCPD-SRC) method, in which the discriminative features of data in the two domains are simultaneously learned with the dictionary that can succinctly represent the training and testing data in the projected space. OCPD-SRC is designed based on the decision rule of SRC, with the objective to learn coupled projection matrices and a common discriminative dictionary such that the between-class sparse reconstruction residuals of data from both domains are maximized, and the within-class sparse reconstruction residuals of data are minimized in the projected low-dimensional space. Thus, the resulting representations can well fit SRC and simultaneously have a better discriminant ability. In addition, our method can be easily extended to multiple domains and can be kernelized to deal with the nonlinear structure of data. The optimal solution for the proposed method can be efficiently obtained following the alternative optimization method. Extensive experimental results on a series of benchmark databases show that our method is better or comparable to many state-of-the-art methods.

  17. Relating Climate Change Risks to Water Supply Planning Assumptions: Recent Applications by the U.S. Bureau of Reclamation (Invited)

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.

    2009-12-01

    Presentation highlights recent methods carried by Reclamation to incorporate climate change and variability information into water supply assumptions for longer-term planning. Presentation also highlights limitations of these methods, and possible method adjustments that might be made to address these limitations. Reclamation was established more than one hundred years ago with a mission centered on the construction of irrigation and hydropower projects in the Western United States. Reclamation’s mission has evolved since its creation to include other activities, including municipal and industrial water supply projects, ecosystem restoration, and the protection and management of water supplies. Reclamation continues to explore ways to better address mission objectives, often considering proposals to develop new infrastructure and/or modify long-term criteria for operations. Such studies typically feature operations analysis to disclose benefits and effects of a given proposal, which are sensitive to assumptions made about future water supplies, water demands, and operating constraints. Development of these assumptions requires consideration to more fundamental future drivers such as land use, demographics, and climate. On the matter of establishing planning assumptions for water supplies under climate change, Reclamation has applied several methods. This presentation highlights two activities where the first focuses on potential changes in hydroclimate frequencies and the second focuses on potential changes in hydroclimate period-statistics. The first activity took place in the Colorado River Basin where there was interest in the interarrival possibilities of drought and surplus events of varying severity relevant to proposals on new criteria for handling lower basin shortages. The second activity occurred in California’s Central Valley where stakeholders were interested in how projected climate change possibilities translated into changes in hydrologic and water supply statistics relevant to a long-term federal Endangered Species Act consultation. Projected climate change possibilities were characterized by surveying a large ensemble of climate projections for change in period climate-statistics and then selecting a small set of projections featuring a bracketing set of period-changes relative to the those from the complete ensemble. Although both methods served the needs of their respective planning activities, each has limited applicability for other planning activities. First, each method addresses only one climate change aspect and not the other. Some planning activities may need to consider potential changes in both period-statistics and frequencies. Second, neither method addresses CMIP3 projected changes in climate variability. The first method bases frequency possibilities on historical information while the second method only surveys CMIP3 projections for change in period-mean and then superimposes those changes on historical variability. Third, artifacts of CMIP3 design lead to interpretation challenges when implementing the second method (e.g., inconsistent projection initialization, model-dependent expressions of multi-decadal variability). Presentation summarizes these issues and also potential method adjustments to address them when defining planning assumptions for water supplies.

  18. The DEVELOP National Program's Strategy for Communicating Applied Science Outcomes

    NASA Astrophysics Data System (ADS)

    Childs-Gleason, L. M.; Ross, K. W.; Crepps, G.; Favors, J.; Kelley, C.; Miller, T. N.; Allsbrook, K. N.; Rogers, L.; Ruiz, M. L.

    2016-12-01

    NASA's DEVELOP National Program conducts rapid feasibility projects that enable the future workforce and current decision makers to collaborate and build capacity to use Earth science data to enhance environmental management and policy. The program communicates its results and applications to a broad spectrum of audiences through a variety of methods: "virtual poster sessions" that engage the general public through short project videos and interactive dialogue periods, a "Campus Ambassador Corps" that communicates about the program and its projects to academia, scientific and policy conference presentations, community engagement activities and end-of-project presentations, project "hand-offs" providing results and tools to project partners, traditional publications (both gray literature and peer-reviewed), an interactive website project gallery, targeted brochures, and through multiple social media venues and campaigns. This presentation will describe the various methods employed by DEVELOP to communicate the program's scientific outputs, target audiences, general statistics, community response and best practices.

  19. Teaching Science and Engineering-Related Topics Using Experiential Methods: An Action-Research Study

    ERIC Educational Resources Information Center

    Aleong, Chandra; Aleong, John

    2007-01-01

    This article describes a portion of a long-term action-research project investigating the teaching of the science of transportation to high school students using the case study or experiential method. Other aspects integrated with the project-oriented study are the use of Constructivist theory, the Socratic Method, and the incorporation of…

  20. Analysis of a Knowledge-Management-Based Process of Transferring Project Management Skills

    ERIC Educational Resources Information Center

    Ioi, Toshihiro; Ono, Masakazu; Ishii, Kota; Kato, Kazuhiko

    2012-01-01

    Purpose: The purpose of this paper is to propose a method for the transfer of knowledge and skills in project management (PM) based on techniques in knowledge management (KM). Design/methodology/approach: The literature contains studies on methods to extract experiential knowledge in PM, but few studies exist that focus on methods to convert…

  1. Directional sinogram interpolation for sparse angular acquisition in cone-beam computed tomography.

    PubMed

    Zhang, Hua; Sonke, Jan-Jakob

    2013-01-01

    Cone-beam (CB) computed tomography (CT) is widely used in the field of medical imaging for guidance. Inspired by Betram's directional interpolation (BDI) methods, directional sinogram interpolation (DSI) was implemented to generate more CB projections by optimized (iterative) double-orientation estimation in sinogram space and directional interpolation. A new CBCT was subsequently reconstructed with the Feldkamp algorithm using both the original and interpolated CB projections. The proposed method was evaluated on both phantom and clinical data, and image quality was assessed by correlation ratio (CR) between the interpolated image and a gold standard obtained from full measured projections. Additionally, streak artifact reduction and image blur were assessed. In a CBCT reconstructed by 40 acquired projections over an arc of 360 degree, streak artifacts dropped 20.7% and 6.7% in a thorax phantom, when our method was compared to linear interpolation (LI) and BDI methods. Meanwhile, image blur was assessed by a head-and-neck phantom, where image blur of DSI was 20.1% and 24.3% less than LI and BDI. When our method was compared to LI and DI methods, CR increased by 4.4% and 3.1%. Streak artifacts of sparsely acquired CBCT were decreased by our method and image blur induced by interpolation was constrained to below other interpolation methods.

  2. Prospects and Problems of Transferring Quality-Improvement Methods from Health Care to Social Services: Two Case Studies

    PubMed Central

    Neubeck, Truls; Elg, Mattias; Schneider, Thomas; Andersson-Gäre, Boel

    2014-01-01

    Introduction: This study examines the use of quality-improvement (QI) methods in social services. Particularly the key aspects—generalizable knowledge, interprofessional teamwork, and measurements—are studied in projects from the QI program Forum for Values in Sweden. Methods: This is a mixed-method case study. Two projects using standard QI methods and tools as used in health care were chosen as critical cases to highlight some problems and prospects with the use of QI in social services. The cases were analyzed through documented results and qualitative interviews with participants one year after the QI projects ended. Results: The social service QI projects led to measurable improvements when they used standard methods and tools for QI in health care. One year after the projects, the improvements were either not continuously measured or not reported in any infrastructure for measurements. The study reveals that social services differ from health care regarding the availability and use of evidence, the role of professional expertise, and infrastructure for measurements. Conclusions: We argue that QI methods as used in health care are applicable in social services and can lead to measurable improvements. The study gives valuable insights for QI, not only in social services but also in health care, on how to assess and sustain improvements when infrastructures for measurements are lacking. In addition, when one forms QI teams, the focus should be on functions instead of professions, and QI methods can be used to support implementation of evidence-based practice. PMID:24867549

  3. An Adaptation of the Distance Driven Projection Method for Single Pinhole Collimators in SPECT Imaging

    NASA Astrophysics Data System (ADS)

    Ihsani, Alvin; Farncombe, Troy

    2016-02-01

    The modelling of the projection operator in tomographic imaging is of critical importance especially when working with algebraic methods of image reconstruction. This paper proposes a distance-driven projection method which is targeted to single-pinhole single-photon emission computed tomograghy (SPECT) imaging since it accounts for the finite size of the pinhole, and the possible tilting of the detector surface in addition to other collimator-specific factors such as geometric sensitivity. The accuracy and execution time of the proposed method is evaluated by comparing to a ray-driven approach where the pinhole is sub-sampled with various sampling schemes. A point-source phantom whose projections were generated using OpenGATE was first used to compare the resolution of reconstructed images with each method using the full width at half maximum (FWHM). Furthermore, a high-activity Mini Deluxe Phantom (Data Spectrum Corp., Durham, NC, USA) SPECT resolution phantom was scanned using a Gamma Medica X-SPECT system and the signal-to-noise ratio (SNR) and structural similarity of reconstructed images was compared at various projection counts. Based on the reconstructed point-source phantom, the proposed distance-driven approach results in a lower FWHM than the ray-driven approach even when using a smaller detector resolution. Furthermore, based on the Mini Deluxe Phantom, it is shown that the distance-driven approach has consistently higher SNR and structural similarity compared to the ray-driven approach as the counts in measured projections deteriorates.

  4. Projection transparencies from printed material

    NASA Technical Reports Server (NTRS)

    Grunewald, L. S.; Nickerson, T. B.

    1968-01-01

    Method for preparing project transparencies, or view graphs, permits the use of almost any expendable printed material, pictures, charts, or text, in unlimited color or black and white. The method can be accomplished by either of two techniques, with a slight difference in materials.

  5. 34 CFR 429.10 - What types of projects may be funded?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION BILINGUAL VOCATIONAL MATERIALS, METHODS, AND... cooperative agreements for— (a) Research in bilingual vocational training; (b) The development of instructional and curriculum materials, methods, or techniques; (c) Training projects to familiarize State...

  6. Field Evaluation of Advanced Methods of Subsurface Exploration for Transit Tunneling

    DOT National Transportation Integrated Search

    1980-06-01

    This report presents the results of a field evaluation of advanced methods of subsurface exploration on an ongoing urban rapid transit tunneling project. The objective of this study is to evaluate, through a field demonstration project, the feasibili...

  7. 77 FR 29537 - Community Facility Loans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... alternate contracting method projects must comply with the requirements for ``maximum open and free... of alternate construction contract methods (such as Design/Build and Construction Management) by the.... Further, these changes will give all applicants greater flexibility in developing projects. Therefore, a...

  8. Chapter 3: Commercial and Industrial Lighting Controls Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Carlson, Stephen

    This Commercial and Industrial Lighting Controls Evaluation Protocol (the protocol) describes methods to account for energy savings resulting from programmatic installation of lighting control equipment in large populations of commercial, industrial, government, institutional, and other nonresidential facilities. This protocol does not address savings resulting from changes in codes and standards, or from education and training activities. When lighting controls are installed in conjunction with a lighting retrofit project, the lighting control savings must be calculated parametrically with the lighting retrofit project so savings are not double counted.

  9. Annual Report on the Activities and Publications of the DHS-DNDO-NTNFC Sponsored Post-doctoral Fellow at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rim, Jung Ho; Tandon, Lav

    This report is a summary of the projects Jung Rim is working on as a DHS postdoctoral fellow at Los Alamos National Laboratory. These research projects are designed to explore different radioanalytical methods to support nuclear forensics applications. The current projects discussed here include development of alpha spectroscopy method for 240/239Pu Isotopic ratio measurement, non-destructive uranium assay method using gamma spectroscopy, and 236U non-destructive uranium analysis using FRAM code. This report documents the work that has been performed since the start of the postdoctoral appointment.

  10. Neutron Tomography of a Fuel Cell: Statistical Learning Implementation of a Penalized Likelihood Method

    NASA Astrophysics Data System (ADS)

    Coakley, Kevin J.; Vecchia, Dominic F.; Hussey, Daniel S.; Jacobson, David L.

    2013-10-01

    At the NIST Neutron Imaging Facility, we collect neutron projection data for both the dry and wet states of a Proton-Exchange-Membrane (PEM) fuel cell. Transmitted thermal neutrons captured in a scintillator doped with lithium-6 produce scintillation light that is detected by an amorphous silicon detector. Based on joint analysis of the dry and wet state projection data, we reconstruct a residual neutron attenuation image with a Penalized Likelihood method with an edge-preserving Huber penalty function that has two parameters that control how well jumps in the reconstruction are preserved and how well noisy fluctuations are smoothed out. The choice of these parameters greatly influences the resulting reconstruction. We present a data-driven method that objectively selects these parameters, and study its performance for both simulated and experimental data. Before reconstruction, we transform the projection data so that the variance-to-mean ratio is approximately one. For both simulated and measured projection data, the Penalized Likelihood method reconstruction is visually sharper than a reconstruction yielded by a standard Filtered Back Projection method. In an idealized simulation experiment, we demonstrate that the cross validation procedure selects regularization parameters that yield a reconstruction that is nearly optimal according to a root-mean-square prediction error criterion.

  11. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    EPA Pesticide Factsheets

    CAIRSENSE Project presentation was given at the 108th Annual Meeting of the Air & Waste Management Associate in June 2015. The presentation provides an overview of the CAIRSENSE Project and general info about the sensors used in the CAIRSENSE Project.

  12. Innovative methods of popularizing technical education

    NASA Astrophysics Data System (ADS)

    Shkitsa, L. Y.; Panchuk, V. G.; Kornuta, V. A.

    2017-05-01

    There have been analyzed reasons of the loss of technical education’s popularity. Also, the analysis of known educational and production methods, oriented at the innovative model of development of society, was performed. It is stated that the acquisition of 21st century’s skills as a result of competition of technical education are natural for the DIY ideology, which was realized in the institutions like Fab Lab. The new educational strategy, based on project-based learning, is proposed to be implemented as a special laboratory with equipment, which would be a center of innovative development for students at the Technical University. Moreover, the list of projects planned for implementation, that includes not only projects, specific to a particular university, but also projects, demanded by society as a whole, is specified. It is worth to implement trendy projects in the laboratory, such as toy-like, ecological projects; projects of the energy dependence decrease or the energy efficiency increase, modern digital or innovative projects etc. The student should gain knowledge, skills and, possibly, equipment that are available for immediate usage on the labor market or for the realization of his own projects or the community’s projects in everyday life after the realization of the particular project at the laboratory

  13. Study on evaluation of construction reliability for engineering project based on fuzzy language operator

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Fang; Ma, Yi-Yi; Song, Ping-Ping

    2018-03-01

    System Reliability Theory is a research hotspot of management science and system engineering in recent years, and construction reliability is useful for quantitative evaluation of project management level. According to reliability theory and target system of engineering project management, the defination of construction reliability appears. Based on fuzzy mathematics theory and language operator, value space of construction reliability is divided into seven fuzzy subsets and correspondingly, seven membership function and fuzzy evaluation intervals are got with the operation of language operator, which provides the basis of corresponding method and parameter for the evaluation of construction reliability. This method is proved to be scientific and reasonable for construction condition and an useful attempt for theory and method research of engineering project system reliability.

  14. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  15. Comparing Planning Hydrologic Ensembles associated with Paleoclimate, Projected Climate, and blended Climate Information Sets

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Prairie, J.; Pruitt, T.; Rajagopalan, B.; Woodhouse, C.

    2008-12-01

    Water resources adaptation planning under climate change involves making assumptions about probabilistic water supply conditions, which are linked to a given climate context (e.g., instrument records, paleoclimate indicators, projected climate data, or blend of these). Methods have been demonstrated to associate water supply assumptions with any of these climate information types. Additionally, demonstrations have been offered that represent these information types in a scenario-rich (ensemble) planning framework, either via ensembles (e.g., survey of many climate projections) or stochastic modeling (e.g., based on instrument records or paleoclimate indicators). If the planning goal involves using a hydrologic ensemble that jointly reflects paleoclimate (e.g., lower- frequency variations) and projected climate information (e.g., monthly to annual trends), methods are required to guide how these information types might be translated into water supply assumptions. However, even if such a method exists, there is lack of understanding on how such a hydrologic ensemble might differ from ensembles developed relative to paleoclimate or projected climate information alone. This research explores two questions: (1) how might paleoclimate and projected climate information be blended into an planning hydrologic ensemble, and (2) how does a planning hydrologic ensemble differ when associated with the individual climate information types (i.e. instrumental records, paleoclimate, projected climate, or blend of the latter two). Case study basins include the Gunnison River Basin in Colorado and the Missouri River Basin above Toston in Montana. Presentation will highlight ensemble development methods by information type, and comparison of ensemble results.

  16. Bayesian probabilistic population projections for all countries

    PubMed Central

    Raftery, Adrian E.; Li, Nan; Ševčíková, Hana; Gerland, Patrick; Heilig, Gerhard K.

    2012-01-01

    Projections of countries’ future populations, broken down by age and sex, are widely used for planning and research. They are mostly done deterministically, but there is a widespread need for probabilistic projections. We propose a Bayesian method for probabilistic population projections for all countries. The total fertility rate and female and male life expectancies at birth are projected probabilistically using Bayesian hierarchical models estimated via Markov chain Monte Carlo using United Nations population data for all countries. These are then converted to age-specific rates and combined with a cohort component projection model. This yields probabilistic projections of any population quantity of interest. The method is illustrated for five countries of different demographic stages, continents and sizes. The method is validated by an out of sample experiment in which data from 1950–1990 are used for estimation, and applied to predict 1990–2010. The method appears reasonably accurate and well calibrated for this period. The results suggest that the current United Nations high and low variants greatly underestimate uncertainty about the number of oldest old from about 2050 and that they underestimate uncertainty for high fertility countries and overstate uncertainty for countries that have completed the demographic transition and whose fertility has started to recover towards replacement level, mostly in Europe. The results also indicate that the potential support ratio (persons aged 20–64 per person aged 65+) will almost certainly decline dramatically in most countries over the coming decades. PMID:22908249

  17. The Effects of an Experiential Service-Learning Project on Residential Interior Design Students' Attitudes toward Design and Community

    ERIC Educational Resources Information Center

    Gomez-Lanier, Lilia

    2016-01-01

    This mixed research methods study explores whether project-based service-learning projects promote greater learning than standard project-based projects and whether introduced earlier into the curriculum promotes a greater student understanding of the world issues affecting their community. The present study focused on comparing sophomore and…

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 10: The NASA/DOD Aerospace Knowledge Diffusion Research Project

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The role of the NASA/DOD Aerospace Knowledge DIffusion Research Project in helping to maintain U.S. competitiveness is addressed. The phases of the project are examined in terms of the focus, emphasis, subjects, methods, and desired outcomes. The importance of the project to aerospace R&D is emphasized.

  19. A Qualitative Study Using Project-Based Learning in a Mainstream Middle School

    ERIC Educational Resources Information Center

    Wurdinger, Scott; Haar, Jean; Hugg, Robert; Bezon, Jennifer

    2007-01-01

    Project-based learning taps into students' interests by allowing them to create projects that result in meaningful learning experiences. The method requires teachers to identify projects that challenge students to work individually or in groups to create plans, solve problems they encounter, test their ideas, and present their projects to peers.…

  20. Laser-Induced-Fluorescence Photogrammetry and Videogrammetry

    NASA Technical Reports Server (NTRS)

    Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent

    2004-01-01

    An improved method of dot-projection photogrammetry and an extension of the method to encompass dot-projection videogrammetry overcome some deficiencies of dot-projection photogrammetry as previously practiced. The improved method makes it possible to perform dot-projection photogrammetry or videogrammetry on targets that have previously not been amenable to dot-projection photogrammetry because they do not scatter enough light. Such targets include ones that are transparent, specularly reflective, or dark. In standard dot-projection photogrammetry, multiple beams of white light are projected onto the surface of an object of interest (denoted the target) to form a known pattern of bright dots. The illuminated surface is imaged in one or more cameras oriented at a nonzero angle or angles with respect to a central axis of the illuminating beams. The locations of the dots in the image(s) contain stereoscopic information on the locations of the dots, and, hence, on the location, shape, and orientation of the illuminated surface of the target. The images are digitized and processed to extract this information. Hardware and software to implement standard dot-projection photogrammetry are commercially available. Success in dot-projection photogrammetry depends on achieving sufficient signal-to-noise ratios: that is, it depends on scattering of enough light by the target so that the dots as imaged in the camera(s) stand out clearly against the ambient-illumination component of the image of the target. In one technique used previously to increase the signal-to-noise ratio, the target is illuminated by intense, pulsed laser light and the light entering the camera(s) is band-pass filtered at the laser wavelength. Unfortunately, speckle caused by the coherence of the laser light engenders apparent movement in the projected dots, thereby giving rise to errors in the measurement of the centroids of the dots and corresponding errors in the computed shape and location of the surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.

  1. A contrast between DEMATEL-ANP and ANP methods for six sigma project selection: a case study in healthcare industry.

    PubMed

    Ortíz, Miguel A; Felizzola, Heriberto A; Nieto Isaza, Santiago

    2015-01-01

    The project selection process is a crucial step for healthcare organizations at the moment of implementing six sigma programs in both administrative and caring processes. However, six-sigma project selection is often defined as a decision making process with interaction and feedback between criteria; so that it is necessary to explore different methods to help healthcare companies to determine the Six-sigma projects that provide the maximum benefits. This paper describes the application of both ANP (Analytic Network process) and DEMATEL (Decision Making trial and evaluation laboratory)-ANP in a public medical centre to establish the most suitable six sigma project and finally, these methods were compared to evaluate their performance in the decision making process. ANP and DEMATEL-ANP were used to evaluate 6 six sigma project alternatives under an evaluation model composed by 3 strategies, 4 criteria and 15 sub-criteria. Judgement matrixes were completed by the six sigma team whose participants worked in different departments of the medical centre. The improving of care opportunity in obstetric outpatients was elected as the most suitable six sigma project with a score of 0,117 as contribution to the organization goals. DEMATEL-ANP performed better at decision making process since it reduced the error probability due to interactions and feedback. ANP and DEMATEL-ANP effectively supported six sigma project selection processes, helping to create a complete framework that guarantees the prioritization of projects that provide maximum benefits to healthcare organizations. As DEMATEL- ANP performed better, it should be used by practitioners involved in decisions related to the implementation of six sigma programs in healthcare sector accompanied by the adequate identification of the evaluation criteria that support the decision making model. Thus, this comparative study contributes to choosing more effective approaches in this field. Suggestions of further work are also proposed so that these methods can be applied more adequate in six sigma project selection processes in healthcare.

  2. B and F Projection Methods for Nearly Incompressible Linear and Nonlinear Elasticity and Plasticity using Higher-order NURBS Elements

    DTIC Science & Technology

    2007-08-01

    Infinite plate with a hole: sequence of meshes produced by h-refinement. The geometry of the coarsest mesh...recalled with an emphasis on k -refinement. In Section 3, the use of high-order NURBS within a projection technique is studied in the geometri - cally linear...case with a B̄ method to investigate the choice of approximation and projection spaces with NURBS.

  3. Ion mobility spectrometry: A personal view of its development at UCSB

    DTIC Science & Technology

    2014-09-15

    molecules. As we progressed we realized that new, more accurate algorithms were needed to augment our early projection approximation (PA) for determining...required. The goal was to maintain some of the speed of the projection approximation and retain the accuracy of the trajectory method. Christian...Bleiholder, while a postdoc in my group, did just that by development of the projection superposition approximation (PSA) [31–35]. This new method is 100

  4. Affine Projection Algorithm with Improved Data-Selective Method Using the Condition Number

    NASA Astrophysics Data System (ADS)

    Ban, Sung Jun; Lee, Chang Woo; Kim, Sang Woo

    Recently, a data-selective method has been proposed to achieve low misalignment in affine projection algorithm (APA) by keeping the condition number of an input data matrix small. We present an improved method, and a complexity reduction algorithm for the APA with the data-selective method. Experimental results show that the proposed algorithm has lower misalignment and a lower condition number for an input data matrix than both the conventional APA and the APA with the previous data-selective method.

  5. INNOVATIONS FOR INSTRUCTIONAL IMPROVEMENT.

    ERIC Educational Resources Information Center

    CUSHMAN, M.L.; STURGES, A.W.

    THE CATSKILL AREA PROJECT IN SMALL SCHOOL DESIGN, THE ROCKY MOUNTAIN AREA PROJECT FOR SMALL HIGH SCHOOLS, THE WESTERN STATES SMALL SCHOOLS PROJECT, AND THE TEXAS SMALL SCHOOLS PROJECT ARE DESCRIBED AND COMPARED. FINANCIAL SUPPORT COMPARISONS ARE MADE. METHODS OF IMPROVING INSTRUCTION ARE DIVIDED INTO TEACHER-CENTERED AND ADMINISTRATOR-CENTERED…

  6. 48 CFR 917.7000 - Scope of subpart.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 917.7000 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES SPECIAL CONTRACTING METHODS Cost Participation 917.7000 Scope of subpart. (a) This subpart.../or demonstration projects under DOE prime contracts. This subpart does not cover efforts and projects...

  7. ENVIRONMENTAL METHODS TESTING SITE PROJECT: DATA MANAGEMENT PROCEDURES PLAN

    EPA Science Inventory

    The Environmental Methods Testing Site (EMTS) Data Management Procedures Plan identifies the computer hardware and software resources used in the EMTS project. It identifies the major software packages that are available for use by principal investigators for the analysis of data...

  8. NERL MICROBIAL PROGRAM WITH EMPHASIS ON PROTOZOAN METHODS

    EPA Science Inventory

    The National Exposure Research Laboratory's facility in Cincinnati is engated in a variety of microbiological research projects that include studies on bacteria, viruses, fungi and protozoa. One of these was a protzoology project to determine the best way to evaluate methods rep...

  9. Comparison of Different Approach of Back Projection Method in Retrieving the Rupture Process of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Tan, F.; Wang, G.; Chen, C.; Ge, Z.

    2016-12-01

    Back-projection of teleseismic P waves [Ishii et al., 2005] has been widely used to image the rupture of earthquakes. Besides the conventional narrowband beamforming in time domain, approaches in frequency domain such as MUSIC back projection (Meng 2011) and compressive sensing (Yao et al, 2011), are proposed to improve the resolution. Each method has its advantages and disadvantages and should be properly used in different cases. Therefore, a thorough research to compare and test these methods is needed. We write a GUI program, which puts the three methods together so that people can conveniently use different methods to process the same data and compare the results. Then we use all the methods to process several earthquake data, including 2008 Wenchuan Mw7.9 earthquake and 2011 Tohoku-Oki Mw9.0 earthquake, and theoretical seismograms of both simple sources and complex ruptures. Our results show differences in efficiency, accuracy and stability among the methods. Quantitative and qualitative analysis are applied to measure their dependence on data and parameters, such as station number, station distribution, grid size, calculate window length and so on. In general, back projection makes it possible to get a good result in a very short time using less than 20 lines of high-quality data with proper station distribution, but the swimming artifact can be significant. Some ways, for instance, combining global seismic data, could help ameliorate this method. Music back projection needs relatively more data to obtain a better and more stable result, which means it needs a lot more time since its runtime accumulates obviously faster than back projection with the increase of station number. Compressive sensing deals more effectively with multiple sources in a same time window, however, costs the longest time due to repeatedly solving matrix. Resolution of all the methods is complicated and depends on many factors. An important one is the grid size, which in turn influences runtime significantly. More detailed results in this research may help people to choose proper data, method and parameters.

  10. Image restoration by the method of convex projections: part 2 applications and numerical results.

    PubMed

    Sezan, M I; Stark, H

    1982-01-01

    The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method.

  11. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction

    PubMed Central

    Nikazad, T; Davidi, R; Herman, G. T.

    2013-01-01

    We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data. PMID:23440911

  12. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction.

    PubMed

    Nikazad, T; Davidi, R; Herman, G T

    2012-03-01

    We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.

  13. Combinatorial Optimization in Project Selection Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Dewi, Sari; Sawaluddin

    2018-01-01

    This paper discusses the problem of project selection in the presence of two objective functions that maximize profit and minimize cost and the existence of some limitations is limited resources availability and time available so that there is need allocation of resources in each project. These resources are human resources, machine resources, raw material resources. This is treated as a consideration to not exceed the budget that has been determined. So that can be formulated mathematics for objective function (multi-objective) with boundaries that fulfilled. To assist the project selection process, a multi-objective combinatorial optimization approach is used to obtain an optimal solution for the selection of the right project. It then described a multi-objective method of genetic algorithm as one method of multi-objective combinatorial optimization approach to simplify the project selection process in a large scope.

  14. Fast and low-cost structured light pattern sequence projection.

    PubMed

    Wissmann, Patrick; Forster, Frank; Schmitt, Robert

    2011-11-21

    We present a high-speed and low-cost approach for structured light pattern sequence projection. Using a fast rotating binary spatial light modulator, our method is potentially capable of projection frequencies in the kHz domain, while enabling pattern rasterization as low as 2 μm pixel size and inherently linear grayscale reproduction quantized at 12 bits/pixel or better. Due to the circular arrangement of the projected fringe patterns, we extend the widely used ray-plane triangulation method to ray-cone triangulation and provide a detailed description of the optical calibration procedure. Using the proposed projection concept in conjunction with the recently published coded phase shift (CPS) pattern sequence, we demonstrate high accuracy 3-D measurement at 200 Hz projection frequency and 20 Hz 3-D reconstruction rate. © 2011 Optical Society of America

  15. Connecting University and Student Teaching Experiences through the Jackdaw Kit Project

    ERIC Educational Resources Information Center

    Marshall, Jill

    2010-01-01

    The author shares the challenges faced in her social studies methods class due to the constraints of NCLB. By incorporating the jackdaw kit project within her social studies methods course, her candidates were able to connect what they were talking about in methods and apply it to their students teaching situations where there was little time for…

  16. Interest and limitations of projective techniques in the assessment of personality disorders.

    PubMed

    Petot, J M

    2000-06-01

    Assessing personality disorders (PD) remains a difficult task because of persistent problems linked to concurrent validity of existing instruments, which are all structured interviews or self-report inventories. It has been advocated that indirect methods, projective techniques in particular, can strengthen PD assessment methods. The thematic apperception test (TAT) may be a significant adjuvant method of PD assessment.

  17. Manufacturing Methods and Technology Project Summary Reports

    DTIC Science & Technology

    1985-06-01

    Computer -Aided Design (CAD)/ Computer -Aided Manufacturing (CAM) Process for the Production of Cold Forged Gears Project 483 6121 - Robotic Welding and...Caliber Projectile Bodies Project 682 8370 - Automatic Inspection and 1-I1 Process Control of Weapons Parts Manufacturing METALS Project 181 7285 - Cast...designed for use on each project. Experience suggested that a general purpose computer interface might be designed that could be used on any project

  18. Three-dimensional digital projection in neurosurgical education: technical note.

    PubMed

    Martins, Carolina; Ribas, Eduardo Carvalhal; Rhoton, Albert L; Ribas, Guilherme Carvalhal

    2015-10-01

    Three-dimensional images have become an important tool in teaching surgical anatomy, and its didactic power is enhanced when combined with 3D surgical images and videos. This paper describes the method used by the last author (G.C.R.) since 2002 to project 3D anatomical and surgical images using a computer source. Projecting 3D images requires the superposition of 2 similar but slightly different images of the same object. The set of images, one mimicking the view of the left eye and the other mimicking the view of the right eye, constitute the stereoscopic pair and can be processed using anaglyphic or horizontal-vertical polarization of light for individual use or presentation to larger audiences. Classically, 3D projection could be obtained by using a double set of slides, projected through 2 slide projectors, each of them equipped with complementary filters, shooting over a medium that keeps light polarized (a silver screen) and having the audience wear appropriate glasses. More recently, a digital method of 3D projection has been perfected. In this method, a personal computer is used as the source of the images, which are arranged in a Microsoft PowerPoint presentation. A beam splitter device is used to connect the computer source to 2 digital, portable projectors. Filters, a silver screen, and glasses are used, similar to the classic method. Among other advantages, this method brings flexibility to 3D presentations by allowing the combination of 3D anatomical and surgical still images and videos. It eliminates the need for using film and film developing, lowering the costs of the process. In using small, powerful digital projectors, this method substitutes for the previous technology, without incurring a loss of quality, and enhances portability.

  19. Implementing Extreme Programming in Distributed Software Project Teams: Strategies and Challenges

    NASA Astrophysics Data System (ADS)

    Maruping, Likoebe M.

    Agile software development methods and distributed forms of organizing teamwork are two team process innovations that are gaining prominence in today's demanding software development environment. Individually, each of these innovations has yielded gains in the practice of software development. Agile methods have enabled software project teams to meet the challenges of an ever turbulent business environment through enhanced flexibility and responsiveness to emergent customer needs. Distributed software project teams have enabled organizations to access highly specialized expertise across geographic locations. Although much progress has been made in understanding how to more effectively manage agile development teams and how to manage distributed software development teams, managers have little guidance on how to leverage these two potent innovations in combination. In this chapter, I outline some of the strategies and challenges associated with implementing agile methods in distributed software project teams. These are discussed in the context of a study of a large-scale software project in the United States that lasted four months.

  20. The Convergence of Heat, Groundwater & Fracture Permeability. Innovative Play Fairway Modelling Applied to the Tularosa Basin Phase 1 Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Carlon R.; Nash, Gregory D.; Sorkhabi, Rasoul

    This report summarizes the activities and key findings of the project team occurring during Phase 1 (August 2014-October 2015) of the Tularosa Basin Geothermal Play Fairway Analysis Project. The Tularosa Basin Play Fairway Analysis (PFA) project tested two distinct geothermal exploration methodologies covering the entire basin within South Central New Mexico and Far West Texas. Throughout the initial phase of the project, the underexplored basin proved to be a challenging, yet ideal test bed to evaluate effectiveness of the team’s data collection techniques as well as the effectiveness of our innovative PFA. Phase 1 of the effort employed a low-cost,more » pragmatic approach using two methods to identify potential geothermal plays within the study area and then compared and contrasted the results of each method to rank and evaluate potential plays. Both methods appear to be very effective and highly transferable to other areas.« less

  1. Improved dense trajectories for action recognition based on random projection and Fisher vectors

    NASA Astrophysics Data System (ADS)

    Ai, Shihui; Lu, Tongwei; Xiong, Yudian

    2018-03-01

    As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.

  2. Cost-benefit evaluation of a decentralized water system for wastewater reuse and environmental protection.

    PubMed

    Chen, R; Wang, X C

    2009-01-01

    This paper proposed a net benefit value (NBV) model for cost-benefit evaluation of wastewater treatment and reuse projects, and attention was mainly paid to decentralized systems which are drawing wide interests all over the world especially in the water-deficient countries and regions. In the NBV model, all the factors related to project costs are monetary ones which can be calculated by using traditional methods, while many of the factors related to project benefits are non-monetary ones which need sophisticated methods for monetization. In this regard, the authors elaborated several methods for monetization of the benefits from wastewater discharge reduction, local environment improvement, and human health protection. The proposed model and methods were applied for the cost-benefit evaluation of a decentralized water reclamation and reuse project in a newly developed residential area in Xi'an, China. The system with dual-pipe collection and grey water treatment and reuse was found to be economically ineligible (NBV > 0) when all the treated water is reused for artificial pond replenishment, gardening and other non-potable purposes by taking into account the benefit of water saving. As environmental benefits are further considered, the economic advantage of the project is more significant.

  3. Linear feature projection-based real-time decoding of limb state from dorsal root ganglion recordings.

    PubMed

    Han, Sungmin; Chu, Jun-Uk; Park, Jong Woong; Youn, Inchan

    2018-05-15

    Proprioceptive afferent activities recorded by a multichannel microelectrode have been used to decode limb movements to provide sensory feedback signals for closed-loop control in a functional electrical stimulation (FES) system. However, analyzing the high dimensionality of neural activity is one of the major challenges in real-time applications. This paper proposes a linear feature projection method for the real-time decoding of ankle and knee joint angles. Single-unit activity was extracted as a feature vector from proprioceptive afferent signals that were recorded from the L7 dorsal root ganglion during passive movements of ankle and knee joints. The dimensionality of this feature vector was then reduced using a linear feature projection composed of projection pursuit and negentropy maximization (PP/NEM). Finally, a time-delayed Kalman filter was used to estimate the ankle and knee joint angles. The PP/NEM approach had a better decoding performance than did other feature projection methods, and all processes were completed within the real-time constraints. These results suggested that the proposed method could be a useful decoding method to provide real-time feedback signals in closed-loop FES systems.

  4. Particle Swarm-Based Translation Control for Immersed Tunnel Element in the Hong Kong-Zhuhai-Macao Bridge Project

    NASA Astrophysics Data System (ADS)

    Li, Jun-jun; Yang, Xiao-jun; Xiao, Ying-jie; Xu, Bo-wei; Wu, Hua-feng

    2018-03-01

    Immersed tunnel is an important part of the Hong Kong-Zhuhai-Macao Bridge (HZMB) project. In immersed tunnel floating, translation which includes straight and transverse movements is the main working mode. To decide the magnitude and direction of the towing force for each tug, a particle swarm-based translation control method is presented for non-power immersed tunnel element. A sort of linear weighted logarithmic function is exploited to avoid weak subgoals. In simulation, the particle swarm-based control method is evaluated and compared with traditional empirical method in the case of the HZMB project. Simulation results show that the presented method delivers performance improvement in terms of the enhanced surplus towing force.

  5. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage. PMID:24694143

  6. Implementation of Multiple Intelligences Supported Project-Based Learning in EFL/ESL Classrooms

    ERIC Educational Resources Information Center

    Bas, Gokhan

    2008-01-01

    This article deals with the implementation of Multiple Intelligences supported Project-Based learning in EFL/ESL Classrooms. In this study, after Multiple Intelligences supported Project-based learning was presented shortly, the implementation of this learning method into English classrooms. Implementation process of MI supported Project-based…

  7. Rationale, design, and methods for process evaluation in the Childhood Obesity Research Demonstration project

    USDA-ARS?s Scientific Manuscript database

    The cross-site process evaluation plan for the Childhood Obesity Research Demonstration (CORD) project is described here. The CORD project comprises 3 unique demonstration projects designed to integrate multi-level, multi-setting health care and public health interventions over a 4-year funding peri...

  8. How Configuration Management Helps Projects Innovate and Communicate

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis A.; Guidry, Carla F.

    2009-01-01

    This slide presentation reviews the concept of Configuration Management (CM) and compares it to the standard view of Project management (PM). It presents two PM models: (1) Kepner-Tregoe,, and the Deming models, describes why projects fail, and presents methods of how CM helps projects innovate and communicate.

  9. EPA Critical Path Science Plan Projects 19, 20 and 21: Human and Bovine Source Detection

    EPA Science Inventory

    The U.S. EPA Critical Path Science Plan Projects are: Project 19: develop novel bovine and human host-specific PCR assays and complete performance evaluation with other published methods. Project 20: Evaluate human-specific assays with water samples impacted with different lev...

  10. Project Pride Evaluation Report.

    ERIC Educational Resources Information Center

    Jennewein, Marilyn; And Others

    Project PRIDE (Probe, Research, Inquire, Discover, and Evaluate) is evaluated in this report to provide data to be used as a learning tool for project staff and student participants. Major objectives of the project are to provide an inter-disciplinary, objective approach to the study of the American heritage, and to incorporate methods and…

  11. Criteria for Developing a Successful Privatization Project

    DTIC Science & Technology

    1989-05-01

    conceptualization and planning are required when pursuing privatization projects. In fact, privatization project proponents need to know how to...selection of projects for analysis, methods of acquiring information about these projects, and the analysis framwork . Chapter IV includes the analysis. A...performed an analysis to determine cormion conceptual and creative approaches and lessons learned. This analysis was then used to develop criteria for

  12. Application of Standard Project Management Tools to Research--A Case Study from a Multi-National Clinical Trial

    ERIC Educational Resources Information Center

    Gist, Peter; Langley, David

    2007-01-01

    PRINCE2, which stands for Projects in Controlled Environments, is a project management method covering the organisation, management, and control of projects and is widely used in both government and commercial IT and building projects in the UK. This paper describes the application of PRINCE2 to the management of large clinical trials…

  13. Comparison of different numerical treatments for x-ray phase tomography of soft tissue from differential phase projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants

    X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less

  14. Using Remote Sensing, Geomorphology, and Soils to Map Episodic Streams in Drylands

    NASA Astrophysics Data System (ADS)

    Thibodeaux-Yost, S. N. S.

    2016-12-01

    Millions of acres of public land in the California deserts are currently being evaluated and permitted for the construction of large-scale renewable energy projects. The absence of a standard method for identifying episodic streams in arid and semi-arid (dryland) regions is a source of conflict between project developers and the government agencies responsible for conserving natural resources and permitting renewable energy projects. There is a need for a consistent, efficient, and cost-effective dryland stream delineation protocol that accurately reflects the extent and distribution of active watercourses. This thesis evaluates the stream delineation method and results used by the developer for the proposed Ridgecrest Solar Power Project on the El Paso Fan, Ridgecrest, Kern County, California. This evaluation is then compared and contrasted with results achieved using remote sensing, geomorphology, soils, and GIS analysis to identify stream presence on the site. This study's results identified 105 acres of watercourse, a value 10 times greater than that originally identified by the project developer. In addition, the applied methods provide an ecohydrologic base map to better inform project siting and potential project impact mitigation opportunities. This study concludes that remote sensing, geomorphology, and dryland soils can be used to accurately and efficiently identify episodic stream activity and the extent of watercourses in dryland environments.

  15. Microenterprise in health care and health education.

    PubMed Central

    Edler, A. A.

    1998-01-01

    Over the last decade, development aid has increasingly used a more collaborative model, with donors and recipients both contributing ideas, methods and goals. Though many examples of collateral aid projects exist in agriculture, business administration and banking, few have found their way into health care and health education, a typically donor-dominated model. The following case report describes a collateral project in health care education. This case report analyzes data-inducing project proposals, personal interviews and project reports obtained through standard archival research methods. The setting for this joint project was the collaboration between international nongovernmental (NGO) aid foundations and the faculty of a major sub-Saharan African Medical School's Department of Anesthesia. The initial goal of this project was to improve record keeping for all anesthetic records, both in the operating theatres and outside. Analysis of the data was performed using ethnographic methods of constant comparative analysis. The purpose of the analysis was to critically evaluate both the goals and their results in the Department of Anesthesiology. The findings of this analysis suggested that results included not only quality assurance and improvement programs in the department but also advances in the use of critical incidents as teaching tools, hospital-wide drug and equipment utilization information and the initiation of an outreach program to district hospitals throughout the country for similar projects. PMID:10604789

  16. New England Instructional Television Research Center (NETREC).

    ERIC Educational Resources Information Center

    Friedlander, Bernard Z.; Wetstone, Harriet S.

    Projects of the New England Instructional Television Research Center (NITREC) are summarized in a collection of papers. Objectives, rationale, and program of NETREC are defined, along with methods of formative evaluation during production. Seven videotest research projects cover methods of evaluating communicative effectiveness of primary-grade…

  17. Introducing quality improvement methods into local public health departments: structured evaluation of a statewide pilot project.

    PubMed

    Riley, William; Parsons, Helen; McCoy, Kim; Burns, Debra; Anderson, Donna; Lee, Suhna; Sainfort, François

    2009-10-01

    To test the feasibility and assess the preliminary impact of a unique statewide quality improvement (QI) training program designed for public health departments. One hundred and ninety-five public health employees/managers from 38 local health departments throughout Minnesota were selected to participate in a newly developed QI training program and 65 of those engaged in and completed eight expert-supported QI projects over a period of 10 months from June 2007 through March 2008. As part of the Minnesota Quality Improvement Initiative, a structured distance education QI training program was designed and deployed in a first large-scale pilot. To evaluate the preliminary impact of the program, a mixed-method evaluation design was used based on four dimensions: learner reaction, knowledge, intention to apply, and preliminary outcomes. Subjective ratings of three dimensions of training quality were collected from participants after each of the scheduled learning sessions. Pre- and post-QI project surveys were administered to collect participant reactions, knowledge, future intention to apply learning, and perceived outcomes. Monthly and final QI project reports were collected to further inform success and preliminary outcomes of the projects. The participants reported (1) high levels of satisfaction with the training sessions, (2) increased perception of the relevance of the QI techniques, (3) increased perceived knowledge of all specific QI methods and techniques, (4) increased confidence in applying QI techniques on future projects, (5) increased intention to apply techniques on future QI projects, and (6) high perceived success of, and satisfaction with, the projects. Finally, preliminary outcomes data show moderate to large improvements in quality and/or efficiency for six out of eight projects. QI methods and techniques can be successfully implemented in local public health agencies on a statewide basis using the collaborative model through distance training and expert facilitation. This unique training can improve both core and support processes and lead to favorable staff reactions, increased knowledge, and improved health outcomes. The program can be further improved and deployed and holds great promise to facilitate the successful dissemination of proven QI methods throughout local public health departments.

  18. Chapter 1: Introduction. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Michael; Haeri, Hossein; Reynolds, Arlis

    This chapter provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are or are among the most commonly used and accepted in the energy efficiency industry for certain measures or programs. As such, they draw from the existing body of research and best practices for energy efficiency program evaluation, measurement, and verification (EM&V). These protocols were developed as part of the Uniform Methods Project (UMP), funded by the U.S. Department of Energy (DOE). The principal objectivemore » for the project was to establish easy-to-follow protocols based on commonly accepted methods for a core set of widely deployed energy efficiency measures.« less

  19. An Overview of the Year 2000.

    ERIC Educational Resources Information Center

    Kutscher, Ronald E.

    1988-01-01

    This article indicates the sources of data and methods used to develop employment projections; summarizes the projections of the labor force, economic growth, industrial employment, and occupational employment; and discusses some important implications of the projections. (JOW)

  20. Evaluating Performance of Highway Safety Projects

    DOT National Transportation Integrated Search

    2016-12-01

    The purpose of this project was to investigate and document methods that the Idaho Transportation Department (ITD) and Local Highway Technical Assistance Council (LHTAC) can use to evaluate the performance of safety projects that have been implemente...

  1. Land Application of Wastewater Sludges: A National Science Foundation Student-Originated Studies Project.

    ERIC Educational Resources Information Center

    Bender, Timothy J.; Barnard, Walther M.

    1981-01-01

    Summarizes a student-originated studies project, funded by the National Science Foundation, on land application of wastewater sludges. Describes the students' proposal, research methods, and evaluation of the project. (DS)

  2. Evaluation of Oregon Department of Transportation project delivery.

    DOT National Transportation Integrated Search

    2007-08-01

    This report summarizes analysis of Oregon Department of Transportation (ODOT) methods of insourced and outsourced project delivery using data obtained from ODOT reporting systems, ratings of project effectiveness by ODOT Area Managers and by construc...

  3. A New Method of Synthetic Aperture Radar Image Reconstruction Using Modified Convolution Back-Projection Algorithm.

    DTIC Science & Technology

    1986-08-01

    SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONAVAILABILITY OF REPORT N/A \\pproved for public release, 21b. OECLASS FI) CAT ) ON/OOWNGRAOING SCMEOLLE...from this set of projections. The Convolution Back-Projection (CBP) algorithm is widely used technique in Computer Aide Tomography ( CAT ). In this work...University of Illinois at Urbana-Champaign. 1985 Ac % DTICEl_ FCTE " AUG 1 11986 Urbana. Illinois U,) I A NEW METHOD OF SYNTHETIC APERTURE RADAR IMAGE

  4. Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method

    NASA Astrophysics Data System (ADS)

    Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil

    2014-05-01

    Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.

  5. Production report: enhanced recovery. [Combustion, steam, soak steam drive, polymer and caustic, micellar/surfactant miscible hydrocarbons and CO/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noran, D.

    Schemes for producing additional oil using enhanced-recovery (ER) methods are under way throughout the world. The extent and intensity of ER activity is highest in the U.S. with 156 projects, about two-thirds of which are thermal. Venezuela has a strong ER commitment with at least 70 active projects, with a major thrust on steam soak. Significant projects, but limited in number, are under way in Canada, North Africa, Southeast Asia, and elsewhere in Latin America. A breakdown of active U.S. ER projects for 1970, 1973, and 1975 is tabulated for combustion, steam soak, steam drive, polymer and caustic, micellar/surfactant, misciblemore » hydrocarbon, and CO/sub 2/ methods. This Oil and Gas Journal Survey includes seven articles; the first six were prepared by David Noran, Journal Production Editor. The final article on Venezuelan activity was written by Alvaro Franco, Editor and Publisher, Petroleo Internacional. The articles are entitled: U.S. Thermal Recovery Activity Growing Steadily; Operators Accelerate Testing of Micellar/Surfactant Potential; Polymer and Caustic Methods on Rebound; Gas Miscible Projects Move at Slow Pace; Canadian Enhanced-Recovery Activity Moderate, Centers on Thermal Projects; Other Global Enhanced-Recovery Work Sparse; and Thermal Work Humming in Venezuela. Detailed information on each method is tabulated for each article. (MCW)« less

  6. Subspace-based interference removal methods for a multichannel biomagnetic sensor array.

    PubMed

    Sekihara, Kensuke; Nagarajan, Srikantan S

    2017-10-01

    In biomagnetic signal processing, the theory of the signal subspace has been applied to removing interfering magnetic fields, and a representative algorithm is the signal space projection algorithm, in which the signal/interference subspace is defined in the spatial domain as the span of signal/interference-source lead field vectors. This paper extends the notion of this conventional (spatial domain) signal subspace by introducing a new definition of signal subspace in the time domain. It defines the time-domain signal subspace as the span of row vectors that contain the source time course values. This definition leads to symmetric relationships between the time-domain and the conventional (spatial-domain) signal subspaces. As a review, this article shows that the notion of the time-domain signal subspace provides useful insights over existing interference removal methods from a unified perspective. Main results and significance. Using the time-domain signal subspace, it is possible to interpret a number of interference removal methods as the time domain signal space projection. Such methods include adaptive noise canceling, sensor noise suppression, the common temporal subspace projection, the spatio-temporal signal space separation, and the recently-proposed dual signal subspace projection. Our analysis using the notion of the time domain signal space projection reveals implicit assumptions these methods rely on, and shows that the difference between these methods results only from the manner of deriving the interference subspace. Numerical examples that illustrate the results of our arguments are provided.

  7. Subspace-based interference removal methods for a multichannel biomagnetic sensor array

    NASA Astrophysics Data System (ADS)

    Sekihara, Kensuke; Nagarajan, Srikantan S.

    2017-10-01

    Objective. In biomagnetic signal processing, the theory of the signal subspace has been applied to removing interfering magnetic fields, and a representative algorithm is the signal space projection algorithm, in which the signal/interference subspace is defined in the spatial domain as the span of signal/interference-source lead field vectors. This paper extends the notion of this conventional (spatial domain) signal subspace by introducing a new definition of signal subspace in the time domain. Approach. It defines the time-domain signal subspace as the span of row vectors that contain the source time course values. This definition leads to symmetric relationships between the time-domain and the conventional (spatial-domain) signal subspaces. As a review, this article shows that the notion of the time-domain signal subspace provides useful insights over existing interference removal methods from a unified perspective. Main results and significance. Using the time-domain signal subspace, it is possible to interpret a number of interference removal methods as the time domain signal space projection. Such methods include adaptive noise canceling, sensor noise suppression, the common temporal subspace projection, the spatio-temporal signal space separation, and the recently-proposed dual signal subspace projection. Our analysis using the notion of the time domain signal space projection reveals implicit assumptions these methods rely on, and shows that the difference between these methods results only from the manner of deriving the interference subspace. Numerical examples that illustrate the results of our arguments are provided.

  8. Balancing Plan-Driven and Agile Methods in Software Engineering Project Courses

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Port, Dan; Winsor Brown, A.

    2002-09-01

    For the past 6 years, we have been teaching a two-semester software engineering project course. The students organize into 5-person teams and develop largely web-based electronic services projects for real USC campus clients. We have been using and evolving a method called Model- Based (System) Architecting and Software Engineering (MBASE) for use in both the course and in industrial applications. The MBASE Guidelines include a lot of documents. We teach risk-driven documentation: if it is risky to document something, and not risky to leave it out (e.g., GUI screen placements), leave it out. Even so, students tend to associate more documentation with higher grades, although our grading eventually discourages this. We are always on the lookout for ways to have students learn best practices without having to produce excessive documentation. Thus, we were very interested in analyzing the various emerging agile methods. We found that agile methods and milestone plan-driven methods are part of a “how much planning is enough?” spectrum. Both agile and plan-driven methods have home grounds of project characteristics where they clearly work best, and where the other will have difficulties. Hybrid agile/plan-driven approaches are feasible, and necessary for projects having a mix of agile and plan-driven home ground characteristics. Information technology trends are going more toward the agile methods' home ground characteristics of emergent requirements and rapid change, although there is a concurrent increase in concern with dependability. As a result, we are currently experimenting with risk-driven combinations of MBASE and agile methods, such as integrating requirements, test plans, peer reviews, and pair programming into “agile quality management.”

  9. Text extraction method for historical Tibetan document images based on block projections

    NASA Astrophysics Data System (ADS)

    Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian

    2017-11-01

    Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.

  10. Proposal and Evaluation of Management Method for College Mechatronics Education Applying the Project Management

    NASA Astrophysics Data System (ADS)

    Ando, Yoshinobu; Eguchi, Yuya; Mizukawa, Makoto

    In this research, we proposed and evaluated a management method of college mechatronics education. We applied the project management to college mechatronics education. We practiced our management method to the seminar “Microcomputer Seminar” for 3rd grade students who belong to Department of Electrical Engineering, Shibaura Institute of Technology. We succeeded in management of Microcomputer Seminar in 2006. We obtained the good evaluation for our management method by means of questionnaire.

  11. A Demonstration-Research Project in Curriculum and Methods of Instruction for Elementary Level Mentally Retarded Children. Final Report.

    ERIC Educational Resources Information Center

    Goldstein, Herbert; And Others

    The 2-year demonstration and research project involved 17 experimental (E) and 7 control (C) special class teachers of mentally retarded students (average CA 9-3 and 9-7, average IQ 68 and 65, respectively). All E teachers were given inservice training in a specific teaching curriculum (Social Learning Curriculum) and method (inductive method),…

  12. Predicting the past: a simple reverse stand table projection method

    Treesearch

    Quang V. Cao; Shanna M. McCarty

    2006-01-01

    A stand table gives number of trees in each diameter class. Future stand tables can be predicted from current stand tables using a stand table projection method. In the simplest form of this method, a future stand table can be expressed as the product of a matrix of transitional proportions (based on diameter growth rates) and a vector of the current stand table. There...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altunbas, Cem, E-mail: caltunbas@gmail.com; Lai, Chao-Jen; Zhong, Yuncheng

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrancemore » exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear pixel gain variations as a function of change in x-ray spectrum and intensity. Hence, it can better suppress image artifacts due to beam hardening as well as artifacts that arise from detector entrance exposure variation.« less

  14. COMMUNITY-ORIENTED DESIGN AND EVALUATION PROCESS FOR SUSTAINABLE INFRASTRUCTURE

    EPA Science Inventory

    We met our first objective by completing the physical infrastructure of the La Fortuna-Tule water and sanitation project using the CODE-PSI method. This physical component of the project was important in providing a real, relevant, community-scale test case for the methods ...

  15. The Analysis of Seawater: A Laboratory-Centered Learning Project in General Chemistry.

    ERIC Educational Resources Information Center

    Selco, Jodye I.; Roberts, Julian L., Jr.; Wacks, Daniel B.

    2003-01-01

    Describes a sea-water analysis project that introduces qualitative and quantitative analysis methods and laboratory methods such as gravimetric analysis, potentiometric titration, ion-selective electrodes, and the use of calibration curves. Uses a problem-based cooperative teaching approach. (Contains 24 references.) (YDS)

  16. FIELD OPERATIONS AND METHODS FOR MEASURING THE ECOLOGICAL CONDITION OF WADEABLE STREAMS

    EPA Science Inventory

    The methods and instructions for field operations presented in this manual for surveys of wadeable streams were developed and tested during 5 years of pilot and demonstration projects (1993 through 1997). These projects were conducted under the sponsorship of the U.S. Environment...

  17. Catalog of Exemplary Projects: 1984-85.

    ERIC Educational Resources Information Center

    Virginia Community Coll. System, Sterling. Inst. for Instructional Excellence.

    This compilation of abstracts represents 39 projects that were funded by the State Council of Higher Education for Virginia under Adapter Grants (which involve experimentation with instructional methods or techniques) or Developer Grants (which involve the implementation of a uniquely innovative teaching method or other instructional procedure).…

  18. Space Science

    NASA Image and Video Library

    1995-06-08

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  19. Calibration of an arbitrarily arranged projection moiré system for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Tang, Ying; Yao, Jun; Zhou, Yihao; Sun, Chen; Yang, Peng; Miao, Hong; Chen, Jubing

    2018-05-01

    An arbitrarily arranged projection moiré system is presented for three-dimensional shape measurement. We develop a model for projection moiré system and derive a universal formula expressing the relation between height and phase variation before and after we put the object on the reference plane. With so many system parameters involved, a system calibration technique is needed. In this work, we provide a robust and accurate calibration method for an arbitrarily arranged projection moiré system. The system no longer puts restrictions on the configuration of the optical setup. Real experiments have been conducted to verify the validity of this method.

  20. Putting the environment into the NPV calculation -- Quantifying pipeline environmental costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dott, D.R.; Wirasinghe, S.C.; Chakma, A.

    1996-12-31

    Pipeline projects impact the environment through soil and habitat disturbance, noise during construction and compressor operation, river crossing disturbance and the risk of rupture. Assigning monetary value to these negative project consequences enables the environment to be represented in the project cost-benefit analysis. This paper presents the mechanics and implications of two environmental valuation techniques: (1) the contingent valuation method and (2) the stated preference method. The use of environmental value at the project economic-evaluation stage is explained. A summary of research done on relevant environmental attribute valuation is presented and discussed. Recommendations for further research in the field aremore » made.« less

  1. Use of the posteroanterior projection: a method of reducing x-ray exposure to specific radiosensitive organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, E.D.; Stears, J.G.; Gray, J.E.

    The posteroanterior projection was studied to determine if it could be a substitute for the commonly used anteroposterior projection as a method of reducing x-ray exposure to specific radiosensitive organs during intracranial tomography and scoliosis radiography. The use of the posteroanterior projection resulted in a reduction of 95% in exposure to the lens of the eye during intracranial tomography and of more than 90% to the thyroid, sternum, and breasts during scoliosis radiography. In addition to the major reduction in radiation exposure, the diagnostic capability of the examination was not reduced and comfort in most patients was not affected.

  2. A Simultaneous and Continuous Excitation Method for High-Speed Electrical Impedance Tomography with Reduced Transients and Noise Sensitivity

    PubMed Central

    Mylvaganam, Saba

    2018-01-01

    This paper presents a concept for soft field tomographic scan of all the projections of electromagnetic waves emanating from an array of electrodes. Instead of the sequential excitation of all pairs of electrodes in the list of all projections, the new method present here consists of a single and continuous excitation. This excitation signal is the linear combination of the excitation signals in the projection set at different AC frequencies. The response to a given projection is discriminated by selecting the corresponding AC frequency component in the signal spectra of the digitally demodulated signals. The main advantage of this method is the suppression of transients after each projection, which is particularly problematic in electrical impedance tomography due to contact impedance phenomena and skin effect. The second benefit over the sequential scan method is the increased number of samples for each measurement for reduced noise sensitivity with digital demodulation. The third benefit is the increased temporal resolution in high-speed applications. The main drawback is the increased number of signal sources required (one per electrode). This paper focuses on electrical impedance tomography, based on earlier work by the authors. An experimental proof-of-concept using a simple 4-electrodes electrical impedance tomographic system is presented using simulations and laboratory data. The method presented here may be extended to other modalities (ultrasonic, microwave, optical, etc.). PMID:29597327

  3. Using microstructure observations to quantify fracture properties and improve reservoir simulations. Final report, September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laubach, S.E.; Marrett, R.; Rossen, W.

    The research for this project provides new technology to understand and successfully characterize, predict, and simulate reservoir-scale fractures. Such fractures have worldwide importance because of their influence on successful extraction of resources. The scope of this project includes creation and testing of new methods to measure, interpret, and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to these methods is the use of microstructures as guides to the attributes of the large fractures that control reservoir behavior. One accomplishment of the project research is a demonstration that these microstructures can be reliably and inexpensively sampled. Specificmore » goals of this project were to: create and test new methods of measuring attributes of reservoir-scale fractures, particularly as fluid conduits, and test the methods on samples from reservoirs; extrapolate structural attributes to the reservoir scale through rigorous mathematical techniques and help build accurate and useful 3-D models of the interwell region; and design new ways to incorporate geological and geophysical information into reservoir simulation and verify the accuracy by comparison with production data. New analytical methods developed in the project are leading to a more realistic characterization of fractured reservoir rocks. Testing diagnostic and predictive approaches was an integral part of the research, and several tests were successfully completed.« less

  4. Best Practices from WisDOT Mega- and ARRA Projects : Brief

    DOT National Transportation Integrated Search

    2012-03-01

    With the inception of the Marquette Interchange Project in 2004 Wisconsins first ever highway megaproject (over $500 million) WisDOT developed a number of new techniques, methods, processes and procedures for project management. The depart...

  5. 3D methodology for evaluating rail crossing roughness.

    DOT National Transportation Integrated Search

    2015-03-02

    Description of Research Project The overall objective of this project is to investigate develop a quantitative method or measure for determining the need to rehabilitate rail crossings. The scope of the project includes investigation of sensor capabi...

  6. A probability approach to sawtimber tree-value projections

    Treesearch

    Roger E. McCay; Paul S. DeBald; Paul S. DeBald

    1973-01-01

    The authors present a method for projecting hardwood sawtimber tree values, using tree-development probabilities based on continuous forest inventory (CFI) data and describe some ways to use the resulting value projections to assemble management-planning information.

  7. Strategies for improving transportation project delivery performance.

    DOT National Transportation Integrated Search

    2016-09-01

    project delivery performance for the various contracting methods that are : applicable for CTDOTs use. The report is structured in two parts. Part A covers overall : project deliverability and Part B is focused on environmental review processes an...

  8. Re-evaluation of Montana's air quality program.

    DOT National Transportation Integrated Search

    2013-08-01

    This project examined the Montana DOTs current methods for determining projects for the Montana Air and Congestion Initiative (MACI) program, and made recommendations to improve and implement this program. A major project objective was to keep the...

  9. Extra projection data identification method for fast-continuous-rotation industrial cone-beam CT.

    PubMed

    Yang, Min; Duan, Shengling; Duan, Jinghui; Wang, Xiaolong; Li, Xingdong; Meng, Fanyong; Zhang, Jianhai

    2013-01-01

    Fast-continuous-rotation is an effective measure to improve the scanning speed and decrease the radiation dose for cone-beam CT. However, because of acceleration and deceleration of the motor, as well as the response lag of the scanning control terminals to the host PC, uneven-distributed and redundant projections are inevitably created, which seriously decrease the quality of the reconstruction images. In this paper, we first analyzed the aspects of the theoretical sequence chart of the fast-continuous-rotation mode. Then, an optimized sequence chart was proposed by extending the rotation angle span to ensure the effective 2π-span projections were situated in the stable rotation stage. In order to match the rotation angle with the projection image accurately, structure similarity (SSIM) index was used as a control parameter for extraction of the effective projection sequence which was exactly the complete projection data for image reconstruction. The experimental results showed that SSIM based method had a high accuracy of projection view locating and was easy to realize.

  10. Maintaining Perioperative Normothermia: Sustaining an Evidence-Based Practice Improvement Project.

    PubMed

    Levin, Rona F; Wright, Fay; Pecoraro, Kathleen; Kopec, Wendy

    2016-02-01

    Unintentional perioperative hypothermia has been shown to cause serious patient complications and, thus, to increase health care costs. In 2009, an evidence-based practice improvement project produced a significant decrease in unintentional perioperative hypothermia in colorectal surgical patients through monitoring of OR ambient room temperature. Project leaders engaged all interdisciplinary stakeholders in the original project, which facilitated the sustainability of the intervention method. An important aspect of sustainability is ongoing monitoring and evaluation of a new intervention method. Therefore, continued evaluation of outcomes of the protocol developed in 2009 was scheduled at specific time points after the initial small test of change with colorectal patients. This article focuses on how attention to sustainability factors during implementation of an improvement project led to the sustainability of a protocol for monitoring OR ambient room temperature with all types of surgical patients five years after the initial project. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  11. Developing an approach to effectively use super ensemble experiments for the projection of hydrological extremes under climate change

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Kim, H.; Utsumi, N.

    2017-12-01

    This study aims to develop a new approach which projects hydrology under climate change using super ensemble experiments. The use of multiple ensemble is essential for the estimation of extreme, which is a major issue in the impact assessment of climate change. Hence, the super ensemble experiments are recently conducted by some research programs. While it is necessary to use multiple ensemble, the multiple calculations of hydrological simulation for each output of ensemble simulations needs considerable calculation costs. To effectively use the super ensemble experiments, we adopt a strategy to use runoff projected by climate models directly. The general approach of hydrological projection is to conduct hydrological model simulations which include land-surface and river routing process using atmospheric boundary conditions projected by climate models as inputs. This study, on the other hand, simulates only river routing model using runoff projected by climate models. In general, the climate model output is systematically biased so that a preprocessing which corrects such bias is necessary for impact assessments. Various bias correction methods have been proposed, but, to the best of our knowledge, no method has proposed for variables other than surface meteorology. Here, we newly propose a method for utilizing the projected future runoff directly. The developed method estimates and corrects the bias based on the pseudo-observation which is a result of retrospective offline simulation. We show an application of this approach to the super ensemble experiments conducted under the program of Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI). More than 400 ensemble experiments from multiple climate models are available. The results of the validation using historical simulations by HAPPI indicates that the output of this approach can effectively reproduce retrospective runoff variability. Likewise, the bias of runoff from super ensemble climate projections is corrected, and the impact of climate change on hydrologic extremes is assessed in a cost-efficient way.

  12. Making sense of health information technology implementation: A qualitative study protocol

    PubMed Central

    2010-01-01

    Background Implementing new practices, such as health information technology (HIT), is often difficult due to the disruption of the highly coordinated, interdependent processes (e.g., information exchange, communication, relationships) of providing care in hospitals. Thus, HIT implementation may occur slowly as staff members observe and make sense of unexpected disruptions in care. As a critical organizational function, sensemaking, defined as the social process of searching for answers and meaning which drive action, leads to unified understanding, learning, and effective problem solving -- strategies that studies have linked to successful change. Project teamwork is a change strategy increasingly used by hospitals that facilitates sensemaking by providing a formal mechanism for team members to share ideas, construct the meaning of events, and take next actions. Methods In this longitudinal case study, we aim to examine project teams' sensemaking and action as the team prepares to implement new information technology in a tiertiary care hospital. Based on management and healthcare literature on HIT implementation and project teamwork, we chose sensemaking as an alternative to traditional models for understanding organizational change and teamwork. Our methods choices are derived from this conceptual framework. Data on project team interactions will be prospectively collected through direct observation and organizational document review. Through qualitative methods, we will identify sensemaking patterns and explore variation in sensemaking across teams. Participant demographics will be used to explore variation in sensemaking patterns. Discussion Outcomes of this research will be new knowledge about sensemaking patterns of project teams, such as: the antecedents and consequences of the ongoing, evolutionary, social process of implementing HIT; the internal and external factors that influence the project team, including team composition, team member interaction, and interaction between the project team and the larger organization; the ways in which internal and external factors influence project team processes; and the ways in which project team processes facilitate team task accomplishment. These findings will lead to new methods of implementing HIT in hospitals. PMID:21114860

  13. The LANDFIRE Prototype Project: nationally consistent and locally relevant geospatial data for wildland fire management

    Treesearch

    Matthew G. Rollins; Christine K. Frame

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, began in April of 2002 and ended in April of 2005. The project was funded by the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior. The objectives of the LANDFIRE Prototype Project were to develop the methods, tools, and protocols...

  14. Projected Use of Long-Term-Care Services by Enrolled Veterans

    ERIC Educational Resources Information Center

    Kinosian, Bruce; Stallard, Eric; Wieland, Darryl

    2007-01-01

    Purpose: The purpose of this article is to describe the projected use for long-term-care services through 2012. Design and Methods: We constructed a static-component projection model using age, function, and other covariates. We obtained enrollee projections from the Veterans Health Administration (VHA) and combined these with nursing home and…

  15. A Three Cohort Study of Role-Play Instruction for Agile Project Management

    ERIC Educational Resources Information Center

    Schmitz, Kurt

    2018-01-01

    Agile Project Management methods and processes that emphasize action and feedback over planning continue to gain prominence for Information Systems projects. This topic is an ideal candidate to lead the evolution of project management instruction from teaching "about" to learning "how to." This paper describes a role-play…

  16. Dimensions of Problem Based Learning--Dialogue and Online Collaboration in Projects

    ERIC Educational Resources Information Center

    Andreasen,, Lars Birch; Nielsen, Jørgen Lerche

    2013-01-01

    The article contributes to the discussions on problem based learning and project work, building on and reflecting the experiences of the authors. Four perspectives are emphasized as central to a contemporary approach to problem- and project-based learning: the exploration of problems, projects as a method, online collaboration, and the dialogic…

  17. Using Contests to Provide Business Students Project-Based Learning in Humanitarian Logistics: PSAid Example

    ERIC Educational Resources Information Center

    Özpolat, Koray; Chen, Yuwen; Hales, Doug; Yu, Degan; Yalcin, Mehmet G.

    2014-01-01

    Business students appreciate working on classroom projects that are both enjoyable and useful in preparing them for future careers. Promoting competition among project teams is also used as a method to motivate students. The Humanitarian Logistics Project (HLP) teaches undergraduate students the logistical implications of unsolicited material…

  18. Financial Energy Conservation Projects at Independent Colleges and Universities.

    ERIC Educational Resources Information Center

    Morrell, L. R.

    1981-01-01

    Factors affecting financial decisions for energy conservation projects at independent colleges and universities and methods that may be used when making a financial investment decision are examined, along with sources of funding for the projects. Projects that result in the conservation of energy resources might, in a time of extreme shortages,…

  19. Technical Assistance for Single Parent Homemaker Projects in Kentucky. Annual Report.

    ERIC Educational Resources Information Center

    Louisville Univ., KY. School of Education.

    During fiscal year 1990, the single parent/displaced homemaker project was monitored at the University of Louisville (Kentucky), and assistance was provided to the project directors. The method of inquiry and the results are discussed in this report. Communication with project directors was increased by visits from a technical assistant,…

  20. Innovative Methods for Estimating Densities and Detection Probabilities of Secretive Reptiles Including Invasive Constrictors and Rare Upland Snakes

    DTIC Science & Technology

    2018-01-30

    1  Department of Defense Legacy Resource Management Program Agreement # W9132T-14-2-0010 ( Project # 14-754) Innovative Methods for Estimating...Upland Snakes NA 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S) 5d. PROJECT NUMBER John D. Willson, Ph.D. 14-754 Shannon Pittman, Ph.D. 5e. TASK NUMBER...STATEMENT Publically available 13. SUPPLEMENTARY NOTES NA 14. ABSTRACT This project demonstrates the broad applicability of a novel simulation

  1. Preparing the Production of a New Product in Small and Medium-Sized Enterprises by Using the Method of Projects Management

    NASA Astrophysics Data System (ADS)

    Bijańska, Jolanta; Wodarski, Krzysztof; Wójcik, Janusz

    2016-06-01

    Efficient and effective preparation the production of new products is important requirement for a functioning and development of small and medium-sized enterprises. One of the methods, which support the fulfilment of this condition is project management. This publication presents the results of considerations, which are aimed at developing a project management model of preparation the production of a new product, adopted to specificity of small and medium-sized enterprises.

  2. Research and Development Project Selection Tools: Probing Wright Laboratory’s Project Selection Methods and Decision Criteria Using the Lateral Airfoil Concept

    DTIC Science & Technology

    1993-09-01

    mismanagement. The broad spectrum of personality types and large sums of money, $43.3 billion in R&D for fiscal year 1993 (FY93) (Goodwin, 1992:57...projects. He used a personal and telephone interview technique to fulfill ten specific objectives. His research provides the first historical data...exploratory nature of the determinant attribute identification process suggests a personal interview format for the data collection method (Emory and Cooper

  3. Multi-sensor image registration based on algebraic projective invariants.

    PubMed

    Li, Bin; Wang, Wei; Ye, Hao

    2013-04-22

    A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.

  4. Ranking of small scale proposals for water system repair using the Rapid Impact Assessment Matrix (RIAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakib-Manesh, T.E.; Hirvonen, K.O.; Jalava, K.J.

    2014-11-15

    Environmental impacts of small scale projects are often assessed poorly, or not assessed at all. This paper examines the usability of the Rapid Impact Assessment Matrix (RIAM) as a tool to prioritize project proposals for small scale water restoration projects in relation to proposals' potential to improve the environment. The RIAM scoring system was used to assess and rank the proposals based on their environmental impacts, the costs of the projects to repair the harmful impacts, and the size of human population living around the sites. A four-member assessment group (The expert panel) gave the RIAM-scores to the proposals. Themore » assumed impacts of the studied projects at the Eastern Finland water systems were divided into the ecological and social impacts. The more detailed assessment categories of the ecological impacts in this study were impacts on landscape, natural state, and limnology. The social impact categories were impacts to recreational use of the area, fishing, industry, population, and economy. These impacts were scored according to their geographical and social significance, their magnitude of change, their character, permanence, reversibility, and cumulativeness. The RIAM method proved to be an appropriate and recommendable method for the small-scale assessment and prioritizing of project proposals. If the assessments are well documented, the RIAM can be a method for easy assessing and comparison of the various kinds of projects. In the studied project proposals there were no big surprises in the results: the best ranks were received by the projects, which were assumed to return watersheds toward their original state.« less

  5. [Orthogonal Vector Projection Algorithm for Spectral Unmixing].

    PubMed

    Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li

    2015-12-01

    Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method.

  6. Calculating the Financial Impact of Population Growth on Education.

    ERIC Educational Resources Information Center

    Cline, Daniel H.

    It is particularly difficult to make accurate enrollment projections for areas that are experiencing a rapid expansion in their population. The traditional method of calculating cohort survival ratios must be modified and supplemented with additional information to ensure accuracy; cost projection methods require detailed analyses of current costs…

  7. 34 CFR 429.31 - What selection criteria does the Secretary use?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... information that shows— (i) High quality in the design of the project; (ii) An effective plan of management... looks for information that shows methods of evaluation that are appropriate for the project and, to the... VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION BILINGUAL VOCATIONAL MATERIALS, METHODS, AND...

  8. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... using the Standard Test Method for Measuring Mass per Unit Area of Geotextiles, ASTM D-5261-92... determined by the Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and... with the provisions of the FESOP, during the entire period of leachate recirculation and the post...

  9. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... using the Standard Test Method for Measuring Mass per Unit Area of Geotextiles, ASTM D-5261-92... determined by the Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and... with the provisions of the FESOP, during the entire period of leachate recirculation and the post...

  10. 40 CFR 258.41 - Project XL Bioreactor Landfill Projects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... using the Standard Test Method for Measuring Mass per Unit Area of Geotextiles, ASTM D-5261-92... determined by the Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and... with the provisions of the FESOP, during the entire period of leachate recirculation and the post...

  11. Promoting "Social and Emotional Learning" through Service-Learning Art Projects

    ERIC Educational Resources Information Center

    Russell, Robert L.; Hutzel, Karen

    2007-01-01

    This article intends to encourage teachers to explore ways "social and emotional learning" (SEL) and art education can enhance each other. Service-learning art projects were presented as one example, employing collaborate-and-create, asset-based methods integrated with SEL instruction. Advantages anticipated from combining these methods result…

  12. Partners in Inquiry: A Collaborative Life Science Investigation with Preservice Teachers and Kindergarten Students

    ERIC Educational Resources Information Center

    Eckhoff, Angela

    2017-01-01

    This article documents a collaborative project involving preservice early childhood education students' development of inquiry-based learning experiences alongside kindergarten students within a science methods course. To document this project, I utilized a multiple methods approach and data included classroom observations, transcripts from lesson…

  13. Selecting the Right Construction Delivery Method for a Specific Project.

    ERIC Educational Resources Information Center

    Klinger, Jeff; Booth, Scott

    2002-01-01

    Discusses the costs and benefits of various construction delivery methods for higher education facility projects, including the traditional lump sum general contracting approach (also known as design/bid/build); design-build; and, in the case of private institutions, guaranteed maximum pricing offered by those firms willing to perform construction…

  14. Instruments for Gathering Data

    ERIC Educational Resources Information Center

    Canals, Laia

    2017-01-01

    This chapter sets out various methods for gathering important data on the language uses of participants in a research project. These methods imply interaction between students, teachers and researchers. They are used in the design of research projects based on action research, ethnography or conversational analysis, this being the case with the…

  15. An Approach to Teaching Applied GIS: Implementation for Local Organizations.

    ERIC Educational Resources Information Center

    Benhart, John, Jr.

    2000-01-01

    Describes the instructional method, Client-Life Cycle GIS Project Learning, used in a course at Indiana University of Pennsylvania that enables students to learn with and about geographic information system (GIS). Discusses the course technical issues in GIS and an example project using this method. (CMK)

  16. High spatial resolution detection of low-energy electrons using an event-counting method, application to point projection microscopy

    NASA Astrophysics Data System (ADS)

    Salançon, Evelyne; Degiovanni, Alain; Lapena, Laurent; Morin, Roger

    2018-04-01

    An event-counting method using a two-microchannel plate stack in a low-energy electron point projection microscope is implemented. 15 μm detector spatial resolution, i.e., the distance between first-neighbor microchannels, is demonstrated. This leads to a 7 times better microscope resolution. Compared to previous work with neutrons [Tremsin et al., Nucl. Instrum. Methods Phys. Res., Sect. A 592, 374 (2008)], the large number of detection events achieved with electrons shows that the local response of the detector is mainly governed by the angle between the hexagonal structures of the two microchannel plates. Using this method in point projection microscopy offers the prospect of working with a greater source-object distance (350 nm instead of 50 nm), advancing toward atomic resolution.

  17. A STUDY ON IMPLEMENTATION OF PROCUREMENT MANAGEMENT METHOD THAT DELIVERLY'S UNCERTAINTY OF EQUIPMENTS, MATERIALS AND INSTRUCTIONS

    NASA Astrophysics Data System (ADS)

    Asaine, Keita; Asaine, Wataru; Shiratsuchi, Ryoma; Yoshida, Takaichi; Hashimoto, Masaaki

    This paper highlights the issues of procurement management in construction projects, such as late delivery of purchased equipments/materials and missing instructions from customers, which cause delays of construction schedule and over-budget cost. We point that most of these problems are caused by lack of synchronization between procurement activities and process control. Therefore, we propose a managerial method which enables better synchronization between the two by applying this method to a construction company. We discuss the necessary conditions and validity of incorporating it and show the way how to establish the mechanics through the case study. Furthermore, we analyze that the feature of this method is not only addressing procurement issues but also bringing additional benefits, such as shortening project lead time and reducing project cost.

  18. In the margins of the mind: development of a projective research methodology for the study of nursing practice.

    PubMed

    Regan, Mary; Liaschenko, Joan

    2008-01-01

    This article presents an original research method derived from the Thematic Apperception Test used in clinical psychology to understand human motivation and action. The research method is derived from the theory of projection, which states that humans will perceive stimuli in terms of their own expectations and motives and will credit others with their own attitudes, beliefs, traits, and dispositions. Projective techniques are one of a handful of methods that provide access to this type of knowledge since it resides below the level of consciousness. Use of this type of method in nursing research may be fruitful because of its capacity to make apparent the complex interplay between a clinician's beliefs and the interpretation of meaning that motivates clinical action.

  19. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations weremore » performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing seed orientations, as well as centroids, from a small number of radiographic projections, in support of intraoperative planning and adaptive replanning. Unlike standard back-projection methods, gIFPM avoids the need to match corresponding seed images on the projections. This algorithm also successfully reconstructs overlapping clustered and highly migrated seeds in the implant. The accuracy of better than 1 mm and 6 deg. demonstrates that gIFPM has the potential to support 2D Task Group 43 calculations in clinical practice.« less

  20. Clinical application and validation of an iterative forward projection matching algorithm for permanent brachytherapy seed localization from conebeam-CT x-ray projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.

    2010-09-15

    Purpose: To experimentally validate a new algorithm for reconstructing the 3D positions of implanted brachytherapy seeds from postoperatively acquired 2D conebeam-CT (CBCT) projection images. Methods: The iterative forward projection matching (IFPM) algorithm finds the 3D seed geometry that minimizes the sum of the squared intensity differences between computed projections of an initial estimate of the seed configuration and radiographic projections of the implant. In-house machined phantoms, containing arrays of 12 and 72 seeds, respectively, are used to validate this method. Also, four {sup 103}Pd postimplant patients are scanned using an ACUITY digital simulator. Three to ten x-ray images are selectedmore » from the CBCT projection set and processed to create binary seed-only images. To quantify IFPM accuracy, the reconstructed seed positions are forward projected and overlaid on the measured seed images to find the nearest-neighbor distance between measured and computed seed positions for each image pair. Also, the estimated 3D seed coordinates are compared to known seed positions in the phantom and clinically obtained VariSeed planning coordinates for the patient data. Results: For the phantom study, seed localization error is (0.58{+-}0.33) mm. For all four patient cases, the mean registration error is better than 1 mm while compared against the measured seed projections. IFPM converges in 20-28 iterations, with a computation time of about 1.9-2.8 min/iteration on a 1 GHz processor. Conclusions: The IFPM algorithm avoids the need to match corresponding seeds in each projection as required by standard back-projection methods. The authors' results demonstrate {approx}1 mm accuracy in reconstructing the 3D positions of brachytherapy seeds from the measured 2D projections. This algorithm also successfully localizes overlapping clustered and highly migrated seeds in the implant.« less

  1. Generating Sudoku puzzles and its applications in teaching mathematics

    NASA Astrophysics Data System (ADS)

    Evans, Ryan; Lindner, Brett; Shi, Yixun

    2011-07-01

    This article presents a few methods for generating Sudoku puzzles. These methods are developed based on the concepts of matrix, permutation, and modular functions, and therefore can be used to form application examples or student projects when teaching various mathematics courses. Mathematical properties of these methods are studied, connections between the methods are investigated, and student projects are suggested. Since most students tend to enjoy games, studies like this may help raising students' interests and enhance their problem-solving skills.

  2. Large project experiences with object-oriented methods and reuse

    NASA Technical Reports Server (NTRS)

    Wessale, William; Reifer, Donald J.; Weller, David

    1992-01-01

    The SSVTF (Space Station Verification and Training Facility) project is completing the Preliminary Design Review of a large software development using object-oriented methods and systematic reuse. An incremental developmental lifecycle was tailored to provide early feedback and guidance on methods and products, with repeated attention to reuse. Object oriented methods were formally taught and supported by realistic examples. Reuse was readily accepted and planned by the developers. Schedule and budget issues were handled by agreements and work sharing arranged by the developers.

  3. Best practices from WisDOT mega and ARRA projects : best practice catalog.

    DOT National Transportation Integrated Search

    2012-03-01

    Since 2004, the Wisconsin Department of Transportation (WisDOT) has developed a number of new techniques, methods, processes and procedures for management of two types of transportation projects: megaprojects and projects funded through the American ...

  4. Design-Build Highway Projects : A Review of Practices and Experiences, Final Report.

    DOT National Transportation Integrated Search

    2016-11-01

    Texas has employed different project delivery methods in recent years in an effort to add capacity, reduce congestion, and improve the effectiveness and efficiency of the states transportation system. These transportation improvement projects are ...

  5. Effective and efficient implementation of alternative project delivery : research summary.

    DOT National Transportation Integrated Search

    2017-05-01

    Alternative project delivery (APD) methods such as Design Build (DB) and Construction Manager at Risk (CMAR), are used by state departments of transportation to improve the efficiency and effectiveness of project delivery. The Maryland Department of ...

  6. A Symposium for Students.

    ERIC Educational Resources Information Center

    Chokotho, N. C.; Leisten, J. A.

    1981-01-01

    Suggests a method for students to engage in research projects and orally present results in class. The basic idea is to have students work on individual projects around a central theme. Describes 20 projects centered around the halogenation of ketones. (Author/JN)

  7. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  8. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  9. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  10. 5 CFR 470.301 - Program expectations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration... improved personnel methods. (b) The demonstration project must be proposed in a research context. The project plan must include a research design which contains: (1) Measurable goals or objectives; (2...

  11. The use of process mapping in healthcare quality improvement projects.

    PubMed

    Antonacci, Grazia; Reed, Julie E; Lennox, Laura; Barlow, James

    2018-05-01

    Introduction Process mapping provides insight into systems and processes in which improvement interventions are introduced and is seen as useful in healthcare quality improvement projects. There is little empirical evidence on the use of process mapping in healthcare practice. This study advances understanding of the benefits and success factors of process mapping within quality improvement projects. Methods Eight quality improvement projects were purposively selected from different healthcare settings within the UK's National Health Service. Data were gathered from multiple data-sources, including interviews exploring participants' experience of using process mapping in their projects and perceptions of benefits and challenges related to its use. These were analysed using inductive analysis. Results Eight key benefits related to process mapping use were reported by participants (gathering a shared understanding of the reality; identifying improvement opportunities; engaging stakeholders in the project; defining project's objectives; monitoring project progress; learning; increased empathy; simplicity of the method) and five factors related to successful process mapping exercises (simple and appropriate visual representation, information gathered from multiple stakeholders, facilitator's experience and soft skills, basic training, iterative use of process mapping throughout the project). Conclusions Findings highlight benefits and versatility of process mapping and provide practical suggestions to improve its use in practice.

  12. Geometrical force constraint method for vessel and x-ray angiogram simulation.

    PubMed

    Song, Shuang; Yang, Jian; Fan, Jingfan; Cong, Weijian; Ai, Danni; Zhao, Yitian; Wang, Yongtian

    2016-01-01

    This study proposes a novel geometrical force constraint method for 3-D vasculature modeling and angiographic image simulation. For this method, space filling force, gravitational force, and topological preserving force are proposed and combined for the optimization of the topology of the vascular structure. The surface covering force and surface adhesion force are constructed to drive the growth of the vasculature on any surface. According to the combination effects of the topological and surface adhering forces, a realistic vasculature can be effectively simulated on any surface. The image projection of the generated 3-D vascular structures is simulated according to the perspective projection and energy attenuation principles of X-rays. Finally, the simulated projection vasculature is fused with a predefined angiographic mask image to generate a realistic angiogram. The proposed method is evaluated on a CT image and three generally utilized surfaces. The results fully demonstrate the effectiveness and robustness of the proposed method.

  13. Methodology in the Assessment of Construction and Development Investment Projects, Including the Graphic Multi-Criteria Analysis - a Systemic Approach

    NASA Astrophysics Data System (ADS)

    Szafranko, Elżbieta

    2017-10-01

    Assessment of variant solutions developed for a building investment project needs to be made at the stage of planning. While considering alternative solutions, the investor defines various criteria, but a direct evaluation of the degree of their fulfilment by developed variant solutions can be very difficult. In practice, there are different methods which enable the user to include a large number of parameters into an analysis, but their implementation can be challenging. Some methods require advanced mathematical computations, preceded by complicating input data processing, and the generated results may not lend themselves easily to interpretation. Hence, during her research, the author has developed a systemic approach, which involves several methods and whose goal is to compare their outcome. The final stage of the proposed method consists of graphic interpretation of results. The method has been tested on a variety of building and development projects.

  14. Extension of moment projection method to the fragmentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shaohua; Yapp, Edward K.Y.; Akroyd, Jethro

    2017-04-15

    The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantagesmore » of MPM are drawn.« less

  15. Concave omnidirectional imaging device for cylindrical object based on catadioptric panoramic imaging

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojun; Wu, Yumei; Wen, Peizhi

    2018-03-01

    To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.

  16. Final report for “Extreme-scale Algorithms and Solver Resilience”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gropp, William Douglas

    2017-06-30

    This is a joint project with principal investigators at Oak Ridge National Laboratory, Sandia National Laboratories, the University of California at Berkeley, and the University of Tennessee. Our part of the project involves developing performance models for highly scalable algorithms and the development of latency tolerant iterative methods. During this project, we extended our performance models for the Multigrid method for solving large systems of linear equations and conducted experiments with highly scalable variants of conjugate gradient methods that avoid blocking synchronization. In addition, we worked with the other members of the project on alternative techniques for resilience and reproducibility.more » We also presented an alternative approach for reproducible dot-products in parallel computations that performs almost as well as the conventional approach by separating the order of computation from the details of the decomposition of vectors across the processes.« less

  17. Multi-projector auto-calibration and placement optimization for non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong

    2015-10-01

    Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.

  18. Component model reduction via the projection and assembly method

    NASA Technical Reports Server (NTRS)

    Bernard, Douglas E.

    1989-01-01

    The problem of acquiring a simple but sufficiently accurate model of a dynamic system is made more difficult when the dynamic system of interest is a multibody system comprised of several components. A low order system model may be created by reducing the order of the component models and making use of various available multibody dynamics programs to assemble them into a system model. The difficulty is in choosing the reduced order component models to meet system level requirements. The projection and assembly method, proposed originally by Eke, solves this difficulty by forming the full order system model, performing model reduction at the the system level using system level requirements, and then projecting the desired modes onto the components for component level model reduction. The projection and assembly method is analyzed to show the conditions under which the desired modes are captured exactly; to the numerical precision of the algorithm.

  19. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hanquan, E-mail: hanquan.wang@gmail.com; Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can bemore » computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.« less

  20. Decision problems in management of construction projects

    NASA Astrophysics Data System (ADS)

    Szafranko, E.

    2017-10-01

    In a construction business, one must oftentimes make decisions during all stages of a building process, from planning a new construction project through its execution to the stage of using a ready structure. As a rule, the decision making process is made more complicated due to certain conditions specific for civil engineering. With such diverse decision situations, it is recommended to apply various decision making support methods. Both, literature and hands-on experience suggest several methods based on analytical and computational procedures, some less and some more complex. This article presents the methods which can be helpful in supporting decision making processes in the management of civil engineering projects. These are multi-criteria methods, such as MCE, AHP or indicator methods. Because the methods have different advantages and disadvantages, whereas decision situations have their own specific nature, a brief summary of the methods alongside some recommendations regarding their practical applications has been given at the end of the paper. The main aim of this article is to review the methods of decision support and their analysis for possible use in the construction industry.

  1. The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation.

    PubMed

    Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa

    2010-02-21

    We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.

  2. Glucose Measurement: Time for a Gold Standard

    PubMed Central

    Hagvik, Joakim

    2007-01-01

    There is no internationally recognized reference method for the measurement of blood glucose. The Centers for Disease Control and Prevention (CDC) highlighted the need for standardization some years ago when a project was started. The project objectives were to (1) investigate whether there are significant differences in calibration levels among currently used glucose monitors for home use and (2) develop a reference method for glucose determination. A first study confirmed the assumption that currently used home-use monitors differ significantly and that standardization is necessary in order to minimize variability and to improve patient care. As a reference method, CDC recommended a method based on isotope dilution gas chromatography–mass spectrometry, an assay that has received support from clinical chemists worldwide. CDC initiated a preliminary study to establish the suitability of this method, but then the project came to a halt. It is hoped that CDC, with support from the industry, as well as academic and professional organizations such as the American Association for Clinical Chemistry and International Federation of Clinical Chemistry and Laboratory Medicine, will be able to finalize the project and develop the long-awaited and much needed “gold standard” for glucose measurement. PMID:19888402

  3. Winter bird population studies and project prairie birds for surveying grassland birds

    USGS Publications Warehouse

    Twedt, D.J.; Hamel, P.B.; Woodrey, M.S.

    2008-01-01

    We compared 2 survey methods for assessing winter bird communities in temperate grasslands: Winter Bird Population Study surveys are area-searches that have long been used in a variety of habitats whereas Project Prairie Bird surveys employ active-flushing techniques on strip-transects and are intended for use in grasslands. We used both methods to survey birds on 14 herbaceous reforested sites and 9 coastal pine savannas during winter and compared resultant estimates of species richness and relative abundance. These techniques did not yield similar estimates of avian populations. We found Winter Bird Population Studies consistently produced higher estimates of species richness, whereas Project Prairie Birds produced higher estimates of avian abundance for some species. When it is important to identify all species within the winter bird community, Winter Bird Population Studies should be the survey method of choice. If estimates of the abundance of relatively secretive grassland bird species are desired, the use of Project Prairie Birds protocols is warranted. However, we suggest that both survey techniques, as currently employed, are deficient and recommend distance- based survey methods that provide species-specific estimates of detection probabilities be incorporated into these survey methods.

  4. Fast alternating projection methods for constrained tomographic reconstruction

    PubMed Central

    Liu, Li; Han, Yongxin

    2017-01-01

    The alternating projection algorithms are easy to implement and effective for large-scale complex optimization problems, such as constrained reconstruction of X-ray computed tomography (CT). A typical method is to use projection onto convex sets (POCS) for data fidelity, nonnegative constraints combined with total variation (TV) minimization (so called TV-POCS) for sparse-view CT reconstruction. However, this type of method relies on empirically selected parameters for satisfactory reconstruction and is generally slow and lack of convergence analysis. In this work, we use a convex feasibility set approach to address the problems associated with TV-POCS and propose a framework using full sequential alternating projections or POCS (FS-POCS) to find the solution in the intersection of convex constraints of bounded TV function, bounded data fidelity error and non-negativity. The rationale behind FS-POCS is that the mathematically optimal solution of the constrained objective function may not be the physically optimal solution. The breakdown of constrained reconstruction into an intersection of several feasible sets can lead to faster convergence and better quantification of reconstruction parameters in a physical meaningful way than that in an empirical way of trial-and-error. In addition, for large-scale optimization problems, first order methods are usually used. Not only is the condition for convergence of gradient-based methods derived, but also a primal-dual hybrid gradient (PDHG) method is used for fast convergence of bounded TV. The newly proposed FS-POCS is evaluated and compared with TV-POCS and another convex feasibility projection method (CPTV) using both digital phantom and pseudo-real CT data to show its superior performance on reconstruction speed, image quality and quantification. PMID:28253298

  5. A Bayesian Ensemble Approach for Epidemiological Projections

    PubMed Central

    Lindström, Tom; Tildesley, Michael; Webb, Colleen

    2015-01-01

    Mathematical models are powerful tools for epidemiology and can be used to compare control actions. However, different models and model parameterizations may provide different prediction of outcomes. In other fields of research, ensemble modeling has been used to combine multiple projections. We explore the possibility of applying such methods to epidemiology by adapting Bayesian techniques developed for climate forecasting. We exemplify the implementation with single model ensembles based on different parameterizations of the Warwick model run for the 2001 United Kingdom foot and mouth disease outbreak and compare the efficacy of different control actions. This allows us to investigate the effect that discrepancy among projections based on different modeling assumptions has on the ensemble prediction. A sensitivity analysis showed that the choice of prior can have a pronounced effect on the posterior estimates of quantities of interest, in particular for ensembles with large discrepancy among projections. However, by using a hierarchical extension of the method we show that prior sensitivity can be circumvented. We further extend the method to include a priori beliefs about different modeling assumptions and demonstrate that the effect of this can have different consequences depending on the discrepancy among projections. We propose that the method is a promising analytical tool for ensemble modeling of disease outbreaks. PMID:25927892

  6. Potential implementation of light steel housing system for affordable housing project in Malaysia

    NASA Astrophysics Data System (ADS)

    Saikah, M.; Kasim, N.; Zainal, R.; Sarpin, N.; Rahim, M. H. I. A.

    2017-11-01

    An unparalleled number between housing demand and housing supply in Malaysia has increased the housing prices, which gives consequences to the homeownership issue. One way to reduce the housing price is by faster increase the number of affordable housing, but the construction sector faces difficulties in delivering as expected number by using conventional and current industrialised building system (IBS) due to the issue related high project cost, time and labour. Therefore, light steel housing (LSH) system as one of another type of IBS method can be utilised in housing construction project. This method can replace the conventional method that was currently used in the construction of affordable housing project. The objectives of this study are to identify the potential of LSH and influencing factors of system implementation. This is an initial stage to review the previous study related to LSH implementation in developed and developing countries. The previous study will be analysed regarding advantages and disadvantages of LSH and factors that influence the implementation of the system. Based on the literature review it is expected to define the potential and influencing factors of the LSH system. The findings are meaningful in framing and enhance construction housing method of an affordable housing project in Malaysia.

  7. 3D image acquisition by fiber-based fringe projection

    NASA Astrophysics Data System (ADS)

    Pfeifer, Tilo; Driessen, Sascha

    2005-02-01

    In macroscopic production processes several measuring methods are used to assure the quality of 3D parts. Definitely, one of the most widespread techniques is the fringe projection. It"s a fast and accurate method to receive the topography of a part as a computer file which can be processed in further steps, e.g. to compare the measured part to a given CAD file. In this article it will be shown how the fringe projection method is applied to a fiber-optic system. The fringes generated by a miniaturized fringe projector (MiniRot) are first projected onto the front-end of an image guide using special optics. The image guide serves as a transmitter for the fringes in order to get them onto the surface of a micro part. A second image guide is used to observe the micro part. It"s mounted under an angle relating to the illuminating image guide so that the triangulation condition is fulfilled. With a CCD camera connected to the second image guide the projected fringes are recorded and those data is analyzed by an image processing system.

  8. LYNX community advocacy & service engagement (CASE) project final report.

    DOT National Transportation Integrated Search

    2009-05-14

    This report is a final assessment of the Community Advocacy & Service Engagement (CASE) project, a LYNX-FTA research project designed : to study transit education and public engagement methods in Central Florida. In the Orlando area, as in other part...

  9. South Philadelphia Passive Sampler Method project communication sheet

    EPA Science Inventory

    The Environmental Protection Agency, Office of Research and Development (EPA ORD), EPA Region 3, and the City of Philadelphia Air Measurements Services (AMS) are collaborating on research project in South Philadelphia starting in the spring of 2013. This project investigates how...

  10. 24 CFR 290.11 - Notification requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., HUD acquires a project. (c) Methods of notification—(1) To tenants. Pre-disposition notification will... URBAN DEVELOPMENT HUD-OWNED PROPERTIES DISPOSITION OF MULTIFAMILY PROJECTS AND SALE OF HUD-HELD MULTIFAMILY MORTGAGES Disposition of Multifamily Projects § 290.11 Notification requirements. (a) In general...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, D; Kang, S; Kim, T

    Purpose: Patient breathing-related sorting method of projections in 4D digital tomosythesis (DTS) can be suffered from severe artifacts due to non-uniform angle distribution of projections and noncoplanar reconstructed images for each phase. In this study, we propose a method for optimally acquiring projection images in 4D DTS. Methods: In this method every pair of projections at x-ray tube’s gantry angles symmetrical with respect to the center of the range of gantry rotation is obtained at the same respiration amplitude. This process is challenging but becomes feasible with visual-biofeedback using a patient specific respiration guide wave which is in sinusoidal shapemore » (i.e., smooth and symmetrical enough). Depending on scan parameters such as the number of acquisition points per cycle, total scan angle and projections per acquisition amplitude, acquisition sequence is pre-determined. A simulation study for feasibility test was performed. To mimic actual situation closely, a group of volunteers were recruited and breathing data were acquired both with/without biofeedback. Then, x-ray projections for a humanoid phantom were virtually performed following (1) the breathing data from volunteers without guide, (2) the breathing data with guide and (3) the planned breathing data (i.e., ideal situation). Images from all of 3 scenarios were compared. Results: Scenario #2 showed significant artifact reduction compared to #1 while did minimal increase from the ideal situation (i.e., scenario #3). We verified the performance of the method with regard to the degree of inaccuracy during respiratory guiding. Also, the scan angle dependence-related differences in the DTS images could reduce between using the proposed method and the established patient breathing-related sorting method. Conclusion: Through the proposed 4D DTS method, it is possible to improve the accuracy of image guidance between intra/inter fractions with relatively low imaging dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less

  12. FBP and BPF reconstruction methods for circular X-ray tomography with off-center detector.

    PubMed

    Schäfer, Dirk; Grass, Michael; van de Haar, Peter

    2011-07-01

    Circular scanning with an off-center planar detector is an acquisition scheme that allows to save detector area while keeping a large field of view (FOV). Several filtered back-projection (FBP) algorithms have been proposed earlier. The purpose of this work is to present two newly developed back-projection filtration (BPF) variants and evaluate the image quality of these methods compared to the existing state-of-the-art FBP methods. The first new BPF algorithm applies redundancy weighting of overlapping opposite projections before differentiation in a single projection. The second one uses the Katsevich-type differentiation involving two neighboring projections followed by redundancy weighting and back-projection. An averaging scheme is presented to mitigate streak artifacts inherent to circular BPF algorithms along the Hilbert filter lines in the off-center transaxial slices of the reconstructions. The image quality is assessed visually on reconstructed slices of simulated and clinical data. Quantitative evaluation studies are performed with the Forbild head phantom by calculating root-mean-squared-deviations (RMSDs) to the voxelized phantom for different detector overlap settings and by investigating the noise resolution trade-off with a wire phantom in the full detector and off-center scenario. The noise-resolution behavior of all off-center reconstruction methods corresponds to their full detector performance with the best resolution for the FDK based methods with the given imaging geometry. With respect to RMSD and visual inspection, the proposed BPF with Katsevich-type differentiation outperforms all other methods for the smallest chosen detector overlap of about 15 mm. The best FBP method is the algorithm that is also based on the Katsevich-type differentiation and subsequent redundancy weighting. For wider overlap of about 40-50 mm, these two algorithms produce similar results outperforming the other three methods. The clinical case with a detector overlap of about 17 mm confirms these results. The BPF-type reconstructions with Katsevich differentiation are widely independent of the size of the detector overlap and give the best results with respect to RMSD and visual inspection for minimal detector overlap. The increased homogeneity will improve correct assessment of lesions in the entire field of view.

  13. Geophysical methods for road construction and maintenance

    NASA Astrophysics Data System (ADS)

    Rasul, Hedi; Karlson, Caroline; Jamali, Imran; Earon, Robert; Olofsson, Bo

    2015-04-01

    Infrastructure, such as road transportation, is a vital in civilized societies; which need to be constructed and maintained regularly. A large part of the project cost is attributed to subsurface conditions, where unsatisfactory conditions could increase either the geotechnical stabilization measures needed or the design cost itself. A way to collect information of the subsurface and existing installations which can lead to measures reducing the project cost and damage is to use geophysical methods during planning, construction and maintenance phases. The moisture in road layers is an important factor, which will affect the bearing capacity of the construction as well as the maintenances. Moisture in the road is a key factor for a well-functioning road. On the other hand the excessive moisture is the main reason of road failure and problems. From a hydrological point of view geophysical methods could help road planners identify the water table, geological strata, pollution arising from the road and the movement of the pollution before, during and after construction. Geophysical methods also allow road planners to collect valuable data for a large area without intrusive investigations such as with boreholes, i.e. minimizing the environmental stresses and costs. However, it is important to specify the investigation site and to choose the most appropriate geophysical method based on the site chosen and the objective of the investigation. Currently, numerous construction and rehabilitation projects are taking places around the world. Many of these projects are focused on infrastructural development, comprising both new projects and expansion of the existing infrastructural network. Geophysical methods can benefit these projects greatly during all phases. During the construction phase Ground Penetrating radar (GPR) is very useful in combination with Electrical Resistivity (ER) for detecting soil water content and base course compaction. However, ER and Electromagnetic (EM) methods can also be used for monitoring changes in water content and pollutant spreading during the maintenance phase. The objective of this study was to describe various geophysical methods which could benefit the road planning, construction and maintenance phases focusing on hydrological impacts.

  14. Solution of nonlinear time-dependent PDEs through componentwise approximation of matrix functions

    NASA Astrophysics Data System (ADS)

    Cibotarica, Alexandru; Lambers, James V.; Palchak, Elisabeth M.

    2016-09-01

    Exponential propagation iterative (EPI) methods provide an efficient approach to the solution of large stiff systems of ODEs, compared to standard integrators. However, the bulk of the computational effort in these methods is due to products of matrix functions and vectors, which can become very costly at high resolution due to an increase in the number of Krylov projection steps needed to maintain accuracy. In this paper, it is proposed to modify EPI methods by using Krylov subspace spectral (KSS) methods, instead of standard Krylov projection methods, to compute products of matrix functions and vectors. Numerical experiments demonstrate that this modification causes the number of Krylov projection steps to become bounded independently of the grid size, thus dramatically improving efficiency and scalability. As a result, for each test problem featured, as the total number of grid points increases, the growth in computation time is just below linear, while other methods achieved this only on selected test problems or not at all.

  15. LDRD final report : leveraging multi-way linkages on heterogeneous data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunlavy, Daniel M.; Kolda, Tamara Gibson

    2010-09-01

    This report is a summary of the accomplishments of the 'Leveraging Multi-way Linkages on Heterogeneous Data' which ran from FY08 through FY10. The goal was to investigate scalable and robust methods for multi-way data analysis. We developed a new optimization-based method called CPOPT for fitting a particular type of tensor factorization to data; CPOPT was compared against existing methods and found to be more accurate than any faster method and faster than any equally accurate method. We extended this method to computing tensor factorizations for problems with incomplete data; our results show that you can recover scientifically meaningfully factorizations withmore » large amounts of missing data (50% or more). The project has involved 5 members of the technical staff, 2 postdocs, and 1 summer intern. It has resulted in a total of 13 publications, 2 software releases, and over 30 presentations. Several follow-on projects have already begun, with more potential projects in development.« less

  16. Experience report: Using formal methods for requirements analysis of critical spacecraft software

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Ampo, Yoko

    1994-01-01

    Formal specification and analysis of requirements continues to gain support as a method for producing more reliable software. However, the introduction of formal methods to a large software project is difficult, due in part to the unfamiliarity of the specification languages and the lack of graphics. This paper reports results of an investigation into the effectiveness of formal methods as an aid to the requirements analysis of critical, system-level fault-protection software on a spacecraft currently under development. Our experience indicates that formal specification and analysis can enhance the accuracy of the requirements and add assurance prior to design development in this domain. The work described here is part of a larger, NASA-funded research project whose purpose is to use formal-methods techniques to improve the quality of software in space applications. The demonstration project described here is part of the effort to evaluate experimentally the effectiveness of supplementing traditional engineering approaches to requirements specification with the more rigorous specification and analysis available with formal methods.

  17. Subspace projection method for unstructured searches with noisy quantum oracles using a signal-based quantum emulation device

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Ostrove, Corey I.

    2017-01-01

    This paper describes a novel approach to solving unstructured search problems using a classical, signal-based emulation of a quantum computer. The classical nature of the representation allows one to perform subspace projections in addition to the usual unitary gate operations. Although bandwidth requirements will limit the scale of problems that can be solved by this method, it can nevertheless provide a significant computational advantage for problems of limited size. In particular, we find that, for the same number of noisy oracle calls, the proposed subspace projection method provides a higher probability of success for finding a solution than does an single application of Grover's algorithm on the same device.

  18. Evaluation on Cost Overrun Risks of Long-distance Water Diversion Project Based on SPA-IAHP Method

    NASA Astrophysics Data System (ADS)

    Yuanyue, Yang; Huimin, Li

    2018-02-01

    Large investment, long route, many change orders and etc. are main causes for costs overrun of long-distance water diversion project. This paper, based on existing research, builds a full-process cost overrun risk evaluation index system for water diversion project, apply SPA-IAHP method to set up cost overrun risk evaluation mode, calculate and rank weight of every risk evaluation indexes. Finally, the cost overrun risks are comprehensively evaluated by calculating linkage measure, and comprehensive risk level is acquired. SPA-IAHP method can accurately evaluate risks, and the reliability is high. By case calculation and verification, it can provide valid cost overrun decision making information to construction companies.

  19. Methods, apparatuses, and computer-readable media for projectional morphological analysis of N-dimensional signals

    DOEpatents

    Glazoff, Michael V.; Gering, Kevin L.; Garnier, John E.; Rashkeev, Sergey N.; Pyt'ev, Yuri Petrovich

    2016-05-17

    Embodiments discussed herein in the form of methods, systems, and computer-readable media deal with the application of advanced "projectional" morphological algorithms for solving a broad range of problems. In a method of performing projectional morphological analysis, an N-dimensional input signal is supplied. At least one N-dimensional form indicative of at least one feature in the N-dimensional input signal is identified. The N-dimensional input signal is filtered relative to the at least one N-dimensional form and an N-dimensional output signal is generated indicating results of the filtering at least as differences in the N-dimensional input signal relative to the at least one N-dimensional form.

  20. Tributyltin--critical pollutant in whole water samples--development of traceable measurement methods for monitoring under the European Water Framework Directive (WFD) 2000/60/EC.

    PubMed

    Richter, Janine; Fettig, Ina; Philipp, Rosemarie; Jakubowski, Norbert

    2015-07-01

    Tributyltin is listed as one of the priority substances in the European Water Framework Directive (WFD). Despite its decreasing input in the environment, it is still present and has to be monitored. In the European Metrology Research Programme project ENV08, a sensitive and reliable analytical method according to the WFD was developed to quantify this environmental pollutant at a very low limit of quantification. With the development of such a primary reference method for tributyltin, the project helped to improve the quality and comparability of monitoring data. An overview of project aims and potential analytical tools is given.

  1. Measuring efficiency of university-industry Ph.D. projects using best worst method.

    PubMed

    Salimi, Negin; Rezaei, Jafar

    A collaborative Ph.D. project, carried out by a doctoral candidate, is a type of collaboration between university and industry. Due to the importance of such projects, researchers have considered different ways to evaluate the success, with a focus on the outputs of these projects. However, what has been neglected is the other side of the coin-the inputs. The main aim of this study is to incorporate both the inputs and outputs of these projects into a more meaningful measure called efficiency. A ratio of the weighted sum of outputs over the weighted sum of inputs identifies the efficiency of a Ph.D. The weights of the inputs and outputs can be identified using a multi-criteria decision-making (MCDM) method. Data on inputs and outputs are collected from 51 Ph.D. candidates who graduated from Eindhoven University of Technology. The weights are identified using a new MCDM method called Best Worst Method (BWM). Because there may be differences in the opinion of Ph.D. candidates and supervisors on weighing the inputs and outputs, data for BWM are collected from both groups. It is interesting to see that there are differences in the level of efficiency from the two perspectives, because of the weight differences. Moreover, a comparison between the efficiency scores of these projects and their success scores reveals differences that may have significant implications. A sensitivity analysis divulges the most contributing inputs and outputs.

  2. Summary Report of the Demonstration and Evaluation for the City/University EPSDT Day Care Project.

    ERIC Educational Resources Information Center

    Hierta, Ebba L., Ed.; Axelrod, Pearl G., Ed.

    This summary report from a 3-year research and demonstration project describes the framework, methods and materials used by the University of Michigan-Ann Arbor Early Periodic Screening Diagnosis and Treatment (EPSDT) Day Care Project. The project served approximately 750 children and their families through day care centers and family day care…

  3. Modelling in Evaluating a Working Life Project in Higher Education

    ERIC Educational Resources Information Center

    Sarja, Anneli; Janhonen, Sirpa; Havukainen, Pirjo; Vesterinen, Anne

    2012-01-01

    This article describes an evaluation method based on collaboration between the higher education, a care home and university, in a R&D project. The aim of the project was to elaborate modelling as a tool of developmental evaluation for innovation and competence in project cooperation. The approach was based on activity theory. Modelling enabled a…

  4. Data Overload Impact on Project Management: How Knowledge Management Systems Can Improve Federal Agencies Effectiveness

    ERIC Educational Resources Information Center

    Rodriguez, Jacinto

    2013-01-01

    This mixed method exploratory case study was used to explore the effect data overload has on project management, how data overload affects project management effectiveness, how prepared program office staff is to manage multiple projects effectively, and how the program office's organizational structure and data management systems affect project…

  5. Risks Associated with Federal Construction Projects

    DTIC Science & Technology

    2011-06-01

    awarding contracts for construction projects (USACE, 2010). BIM offers a method to effectively design a facility while maximizing work performance during...includes Requirements, Programming, Funding, Solicitation, AEC Evaluation, Award , Project Validation, Design and Construction, and Project Management...includes the Solicitation, AEC Evaluation, and Award Steps. In this Phase, BIM is only used in the Solicitation and the AEC Evaluation steps

  6. Workshop Report: Distributive Education Project Development Workshop (Rutgers University, New Brunswick, June 19-30, 1967).

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. School of Education.

    This report of a 2-week workshop contains 12 papers presented by their authors, four business presentations, and 12 group and 25 individual projects. The papers pertain to the application of the project method, objectives and use of projects, and preparing culturally deprived students. The business presentations relate to advertising, credit,…

  7. A NEW METHOD TO QUANTIFY AND REDUCE THE NET PROJECTION ERROR IN WHOLE-SOLAR-ACTIVE-REGION PARAMETERS MEASURED FROM VECTOR MAGNETOGRAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falconer, David A.; Tiwari, Sanjiv K.; Moore, Ronald L.

    Projection errors limit the use of vector magnetograms of active regions (ARs) far from the disk center. In this Letter, for ARs observed up to 60° from the disk center, we demonstrate a method for measuring and reducing the projection error in the magnitude of any whole-AR parameter that is derived from a vector magnetogram that has been deprojected to the disk center. The method assumes that the center-to-limb curve of the average of the parameter’s absolute values, measured from the disk passage of a large number of ARs and normalized to each AR’s absolute value of the parameter atmore » central meridian, gives the average fractional projection error at each radial distance from the disk center. To demonstrate the method, we use a large set of large-flux ARs and apply the method to a whole-AR parameter that is among the simplest to measure: whole-AR magnetic flux. We measure 30,845 SDO /Helioseismic and Magnetic Imager vector magnetograms covering the disk passage of 272 large-flux ARs, each having whole-AR flux >10{sup 22} Mx. We obtain the center-to-limb radial-distance run of the average projection error in measured whole-AR flux from a Chebyshev fit to the radial-distance plot of the 30,845 normalized measured values. The average projection error in the measured whole-AR flux of an AR at a given radial distance is removed by multiplying the measured flux by the correction factor given by the fit. The correction is important for both the study of the evolution of ARs and for improving the accuracy of forecasts of an AR’s major flare/coronal mass ejection productivity.« less

  8. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets withmore » various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage.« less

  9. Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  10. History of the Federal Interagency Sedimentation Project

    USGS Publications Warehouse

    Skinner, John V.

    1989-01-01

    Since 1939, the date of the Project's inception, the team has operated under the direction of two lead agencies - the U.S. Geological Survey and U.S. Army Corps of Engineers. The supporting agencies are the Agricultural Research Service, Bureau of Reclamation, U.S. Forest Service, Bureau of Land Management, Federal Highway Administration, and the Tennessee Valley Authority. Overall direction of the Project rests with the Subcommittee on Sedimentation, Interagency Advisory Committee on Water Data. The Project's goals focus on improving and maintaining the quality of fluvial sediment data by (1) developing sediment samplers, laboratory analyzers, and automatic gages (2) evaluating methods, (3) standardizing equipment and methods and (4) procuring, calibrating and selling equipment.

  11. The inverse method of measuring resistivity in a rotating magnetic field: a student project

    NASA Astrophysics Data System (ADS)

    Kraftmakher, Yaakov

    2018-07-01

    An experiment is proposed for undergraduate laboratories, which can be used as a student project. An inverse method of contactless measuring resistivity in a rotating magnetic field is described: instead of the torque acting on the sample, the torque acting on the coils creating the rotating field is determined. This modification provides significant advantages. Originally, the technique was designed for measurement of the resistivity of metals at liquid helium temperatures and for controlling the purity and physical perfectness of metals. Our aim is to introduce this novelty as a subject of student projects. Liquid helium is rarely available in undergraduate laboratories, so the projects can be limited to liquid nitrogen or room temperatures.

  12. WE-DE-207B-12: Scatter Correction for Dedicated Cone Beam Breast CT Based On a Forward Projection Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L; Zhu, L; Vedantham, S

    2016-06-15

    Purpose: The image quality of dedicated cone-beam breast CT (CBBCT) is fundamentally limited by substantial x-ray scatter contamination, resulting in cupping artifacts and contrast-loss in reconstructed images. Such effects obscure the visibility of soft-tissue lesions and calcifications, which hinders breast cancer detection and diagnosis. In this work, we propose to suppress x-ray scatter in CBBCT images using a deterministic forward projection model. Method: We first use the 1st-pass FDK-reconstructed CBBCT images to segment fibroglandular and adipose tissue. Attenuation coefficients are assigned to the two tissues based on the x-ray spectrum used for imaging acquisition, and is forward projected to simulatemore » scatter-free primary projections. We estimate the scatter by subtracting the simulated primary projection from the measured projection, and then the resultant scatter map is further refined by a Fourier-domain fitting algorithm after discarding untrusted scatter information. The final scatter estimate is subtracted from the measured projection for effective scatter correction. In our implementation, the proposed scatter correction takes 0.5 seconds for each projection. The method was evaluated using the overall image spatial non-uniformity (SNU) metric and the contrast-to-noise ratio (CNR) with 5 clinical datasets of BI-RADS 4/5 subjects. Results: For the 5 clinical datasets, our method reduced the SNU from 7.79% to 1.68% in coronal view and from 6.71% to 3.20% in sagittal view. The average CNR is improved by a factor of 1.38 in coronal view and 1.26 in sagittal view. Conclusion: The proposed scatter correction approach requires no additional scans or prior images and uses a deterministic model for efficient calculation. Evaluation with clinical datasets demonstrates the feasibility and stability of the method. These features are attractive for clinical CBBCT and make our method distinct from other approaches. Supported partly by NIH R21EB019597, R21CA134128 and R01CA195512.The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.« less

  13. SU-D-206-04: Iterative CBCT Scatter Shading Correction Without Prior Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Y; Wu, P; Mao, T

    2016-06-15

    Purpose: To estimate and remove the scatter contamination in the acquired projection of cone-beam CT (CBCT), to suppress the shading artifacts and improve the image quality without prior information. Methods: The uncorrected CBCT images containing shading artifacts are reconstructed by applying the standard FDK algorithm on CBCT raw projections. The uncorrected image is then segmented to generate an initial template image. To estimate scatter signal, the differences are calculated by subtracting the simulated projections of the template image from the raw projections. Since scatter signals are dominantly continuous and low-frequency in the projection domain, they are estimated by low-pass filteringmore » the difference signals and subtracted from the raw CBCT projections to achieve the scatter correction. Finally, the corrected CBCT image is reconstructed from the corrected projection data. Since an accurate template image is not readily segmented from the uncorrected CBCT image, the proposed scheme is iterated until the produced template is not altered. Results: The proposed scheme is evaluated on the Catphan©600 phantom data and CBCT images acquired from a pelvis patient. The result shows that shading artifacts have been effectively suppressed by the proposed method. Using multi-detector CT (MDCT) images as reference, quantitative analysis is operated to measure the quality of corrected images. Compared to images without correction, the method proposed reduces the overall CT number error from over 200 HU to be less than 50 HU and can increase the spatial uniformity. Conclusion: An iterative strategy without relying on the prior information is proposed in this work to remove the shading artifacts due to scatter contamination in the projection domain. The method is evaluated in phantom and patient studies and the result shows that the image quality is remarkably improved. The proposed method is efficient and practical to address the poor image quality issue of CBCT images. This work is supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR16F010001), National High-tech R&D Program for Young Scientists by the Ministry of Science and Technology of China (Grant No. 2015AA020917).« less

  14. WE-G-BRF-03: A Quasi-Cine CBCT Reconstruction Technique for Real-Time On- Board Target Tracking of Lung Cancer Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Yin, F; Ren, L

    2014-06-15

    Purpose: To develop a quasi-cine CBCT reconstruction technique that uses extremely-small angle (∼3°) projections to generate real-time high-quality lung CBCT images. Method: 4D-CBCT is obtained at the beginning and used as prior images. This study uses extremely-small angle (∼3°) on-board projections acquired at a single respiratory phase to reconstruct the CBCT image at this phase. An adaptive constrained free-form deformation (ACFD) method is developed to deform the prior 4D-CBCT volume at the same phase to reconstruct the new CBCT. Quasi-cine CBCT images are obtained by continuously reconstructing CBCT images at subsequent phases every 3° angle (∼0.5s). Note that the priormore » 4D-CBCT images are dynamically updated using the latest CBCT images. The 4D digital extended-cardiac-torso (XCAT) phantom was used to evaluate the efficacy of ACFD. A lung patient was simulated with a tumor baseline shift of 2mm along superior-inferior (SI) direction after every respiratory cycle for 5 cycles. Limited-angle projections were simulated for each cycle. The 4D-CBCT reconstructed by these projections were compared with the ground-truth generated in XCAT.Volume-percentage-difference (VPD) and center-of-mass-shift (COMS) were calculated between the reconstructed and the ground-truth tumors to evaluate their geometric differences.The ACFD was also compared to a principal-component-analysis based motion-modeling (MM) method. Results: Using orthogonal-view 3° projections, the VPD/COMS values for tumor baseline shifts of 2mm, 4mm, 6mm, 8mm, 10mm were 11.0%/0.3mm, 25.3%/2.7mm, 22.4%/2.9mm, 49.5%/5.4mm, 77.2%/8.1mm for the MM method, and 2.9%/0.7mm, 3.9%/0.8mm, 6.2%/1mm, 7.9%/1.2mm, 10.1%/1.1mm for the ACFD method. Using orthogonal-view 0° projections (1 projection only), the ACFD method yielded VPD/COMS results of 5.0%/0.9mm, 10.5%/1.2mm, 15.1%/1.4mm, 20.9%/1.6mm and 24.8%/1.6mm. Using single-view instead of orthogonal-view projections yielded less accurate results for ACFD. Conclusion: The ACFD method accurately reconstructs snapshot CBCT images using orthogonal-view 3° projections. It has a great potential to provide real-time quasi-cine CBCT images for verification in lung radiation therapy. The research is supported by grant from Varian Medical Systems.« less

  15. WE-G-18A-02: Calibration-Free Combined KV/MV Short Scan CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M; Loo, B; Bazalova, M

    Purpose: To combine orthogonal kilo-voltage (kV) and Mega-voltage (MV) projection data for short scan cone-beam CT to reduce imaging time on current radiation treatment systems, using a calibration-free gain correction method. Methods: Combining two orthogonal projection data sets for kV and MV imaging hardware can reduce the scan angle to as small as 110° (90°+fan) such that the total scan time is ∼18 seconds, or within a breath hold. To obtain an accurate reconstruction, the MV projection data is first linearly corrected using linear regression using the redundant data from the start and end of the sinogram, and then themore » combined data is reconstructed using the FDK method. To correct for the different changes of attenuation coefficients in kV/MV between soft tissue and bone, the forward projection of the segmented bone and soft tissue from the first reconstruction in the redundant region are added to the linear regression model. The MV data is corrected again using the additional information from the segmented image, and combined with kV for a second FDK reconstruction. We simulated polychromatic 120 kVp (conventional a-Si EPID with CsI) and 2.5 MVp (prototype high-DQE MV detector) projection data with Poisson noise using the XCAT phantom. The gain correction and combined kV/MV short scan reconstructions were tested with head and thorax cases, and simple contrast-to-noise ratio measurements were made in a low-contrast pattern in the head. Results: The FDK reconstruction using the proposed gain correction method can effectively reduce artifacts caused by the differences of attenuation coefficients in the kV/MV data. The CNRs of the short scans for kV, MV, and kV/MV are 5.0, 2.6 and 3.4 respectively. The proposed gain correction method also works with truncated projections. Conclusion: A novel gain correction and reconstruction method was developed to generate short scan CBCT from orthogonal kV/MV projections. This work is supported by NIH Grant 5R01CA138426-05.« less

  16. A Survey of Current and Projected Ethical Dilemmas of Rehabilitation Counselors

    ERIC Educational Resources Information Center

    Hartley, Michael T.; Cartwright, Brenda Y.

    2016-01-01

    Purpose: This study surveyed current and projected ethical dilemmas of rehabilitation counselors. Method: As a mixed-methods approach, the study used both quantitative and qualitative analyses. Results: Of the 211 participants who completed the survey, 116 (55.0%) reported an ethical dilemma. Based on the descriptions, common themes involved roles…

  17. Effectiveness of Project Based Learning in Statistics for Lower Secondary Schools

    ERIC Educational Resources Information Center

    Siswono, Tatag Yuli Eko; Hartono, Sugi; Kohar, Ahmad Wachidul

    2018-01-01

    Purpose: This study aimed at investigating the effectiveness of implementing Project Based Learning (PBL) on the topic of statistics at a lower secondary school in Surabaya city, Indonesia, indicated by examining student learning outcomes, student responses, and student activity. Research Methods: A quasi experimental method was conducted over two…

  18. College Students; Justification for Digital Piracy: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Yu, Szde

    2012-01-01

    A mixed methods project was devoted to understanding college students' justification for digital piracy. The project consisted of two studies, a qualitative one and a quantitative one. Qualitative interviews were conducted to identify main themes in students' justification for digital piracy, and then the findings were tested in a quantitative…

  19. An Aural Learning Project: Assimilating Jazz Education Methods for Traditional Applied Pedagogy

    ERIC Educational Resources Information Center

    Gamso, Nancy M.

    2011-01-01

    The Aural Learning Project (ALP) was developed to incorporate jazz method components into the author's classical practice and her applied woodwind lesson curriculum. The primary objective was to place a more focused pedagogical emphasis on listening and hearing than is traditionally used in the classical applied curriculum. The components of the…

  20. Interim Particulate Matter Test Method for the Determination of Particulate Matter from Gas Turbine Engines, SERDP Project WP-1538 Final Report

    EPA Science Inventory

    Under Project No. WP-1538 of the Strategic Environmental Research and Development Program, the U. S. Air Force's Arnold Engineering Development Center (AEDC) is developing an interim test method for non-volatile particulate matter (PM) specifically for the Joint Strike Fighter (J...

  1. 48 CFR 36.301 - Use of two-phase design-build selection procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contractors. (iv) The suitability of the project for use of the two-phase selection method. (v) The capability... officer determines that this method is appropriate, based on the following: (1) Three or more offers are... been considered: (i) The extent to which the project requirements have been adequately defined. (ii...

  2. Does Project-Based Learning Enhance Iranian EFL Learners' Vocabulary Recall and Retention?

    ERIC Educational Resources Information Center

    Shafaei, Azadeh; Rahim, Hajar Abdul

    2015-01-01

    Vocabulary knowledge is an integral part of second/foreign language learning. Thus, using teaching methods that can help learners retain and expand their vocabulary knowledge is necessary to facilitate the language learning process. The current research investigated the effectiveness of an interactive classroom method, known as Project-Based…

  3. 75 FR 44851 - Proposed Collection; Comment Request for Regulation Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... Reduction Act of 1995, Public Law 104-13 (44 U.S.C. 3506(c)(2)(A)). Currently, the IRS is soliciting... Income and Earnings and Profits under the Dollar Approximate Separate Transactions Method of Accounting... Transactions Method of Accounting (DASTM). OMB Number: 1545-1051. Regulation Project Number: INTL-29-91...

  4. Flexible Delivery as a "Whole-Organisation": What Does This Mean in Practice?

    ERIC Educational Resources Information Center

    Henry, John; Wakefield, Lyn

    A research project called Support Services for Flexible Delivery was commissioned by the Australian organization TAFE (technical and further education) Frontiers. Since 1995, the project has been conducted by using a research approach called the Generalizations from Case Studies (GCS) research method. The GCS method was developed, tested, and…

  5. Landscape scale ecological monitoring as part of an EIA of major construction activities: experience at the Turkish section of the BTC crude oil pipeline project.

    PubMed

    Sahin, Sükran; Kurum, Ekrem

    2009-09-01

    Ecological monitoring is a complementary component of the overall environmental management and monitoring program of any Environmental Impact Assessment (EIA) report. The monitoring method should be developed for each project phase and allow for periodic reporting and assessment of compliance with the environmental conditions and requirements of the EIA. Also, this method should incorporate a variance request program since site-specific conditions can affect construction on a daily basis and require time-critical application of alternative construction scenarios or environmental management methods integrated with alternative mitigation measures. Finally, taking full advantage of the latest information and communication technologies can enhance the quality of, and public involvement in, the environmental management program. In this paper, a landscape-scale ecological monitoring method for major construction projects is described using, as a basis, 20 months of experience on the Baku-Tbilisi-Ceyhan (BTC) Crude Oil Pipeline Project, covering Turkish Sections Lot B and Lot C. This analysis presents suggestions for improving ecological monitoring for major construction activities.

  6. A heuristic method for consumable resource allocation in multi-class dynamic PERT networks

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Saeed; Noori, Siamak; Mazdeh, Mohammad Mahdavi

    2013-06-01

    This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a node of the network with exponential distribution according to its class. Indeed, each project arrives to the first service station and continues its routing according to precedence network of its class. Such system can be represented as a queuing network, while the discipline of queues is first come, first served. On the basis of presented method, a multi-class system is decomposed into several single-class dynamic PERT networks, whereas each class is considered separately as a minisystem. In modeling of single-class dynamic PERT network, we use Markov process and a multi-objective model investigated by Azaron and Tavakkoli-Moghaddam in 2007. Then, after obtaining the resources allocated to service stations in every minisystem, the final resources allocated to activities are calculated by the proposed method.

  7. A Visual Servoing-Based Method for ProCam Systems Calibration

    PubMed Central

    Berry, Francois; Aider, Omar Ait; Mosnier, Jeremie

    2013-01-01

    Projector-camera systems are currently used in a wide field of applications, such as 3D reconstruction and augmented reality, and can provide accurate measurements, depending on the configuration and calibration. Frequently, the calibration task is divided into two steps: camera calibration followed by projector calibration. The latter still poses certain problems that are not easy to solve, such as the difficulty in obtaining a set of 2D–3D points to compute the projection matrix between the projector and the world. Existing methods are either not sufficiently accurate or not flexible. We propose an easy and automatic method to calibrate such systems that consists in projecting a calibration pattern and superimposing it automatically on a known printed pattern. The projected pattern is provided by a virtual camera observing a virtual pattern in an OpenGL model. The projector displays what the virtual camera visualizes. Thus, the projected pattern can be controlled and superimposed on the printed one with the aid of visual servoing. Our experimental results compare favorably with those of other methods considering both usability and accuracy. PMID:24084121

  8. Image-Based 2D Re-Projection for Attenuation Substitution in PET Neuroimaging.

    PubMed

    Laymon, Charles M; Minhas, Davneet S; Becker, Carl R; Matan, Cristy; Oborski, Matthew J; Price, Julie C; Mountz, James M

    2018-02-27

    In dual modality positron emission tomography (PET)/magnetic resonance imaging (MRI), attenuation correction (AC) methods are continually improving. Although a new AC can sometimes be generated from existing MR data, its application requires a new reconstruction. We evaluate an approximate 2D projection method that allows offline image-based reprocessing. 2-Deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) brain scans were acquired (Siemens HR+) for six subjects. Attenuation data were obtained using the scanner's transmission source (SAC). Additional scanning was performed on a Siemens mMR including production of a Dixon-based MR AC (MRAC). The MRAC was imported to the HR+ and the PET data were reconstructed twice: once using native SAC (ground truth); once using the imported MRAC (imperfect AC). The re-projection method was implemented as follows. The MRAC PET was forward projected to approximately reproduce attenuation-corrected sinograms. The SAC and MRAC images were forward projected and converted to attenuation-correction factors (ACFs). The MRAC ACFs were removed from the MRAC PET sinograms by division; the SAC ACFs were applied by multiplication. The regenerated sinograms were reconstructed by filtered back projection to produce images (SUBAC PET) in which SAC has been substituted for MRAC. Ideally SUBAC PET should match SAC PET. Via coregistered T1 images, FreeSurfer (FS; MGH, Boston) was used to define a set of cortical gray matter regions of interest. Regional activity concentrations were extracted for SAC PET, MRAC PET, and SUBAC PET. SUBAC PET showed substantially smaller root mean square error than MRAC PET with averaged values of 1.5 % versus 8.1 %. Re-projection is a viable image-based method for the application of an alternate attenuation correction in neuroimaging.

  9. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging.

    PubMed

    Wu, Meng; Keil, Andreas; Constantin, Dragos; Star-Lack, Josh; Zhu, Lei; Fahrig, Rebecca

    2014-12-01

    The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kV and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10-15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%-10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. The authors have shown that it is possible to improve the image quality of kV CTs for patients with metal implants or fillings by completing the missing kV projection data with selectively acquired MV data that do not suffer from photon starvation. Numerical simulations demonstrated that dual-energy sinogram patch FBP and a modified kV/MV PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in kV projections. Combined kV/MV images may permit the improved delineation of structures of interest in CT images for patients with metal implants or fillings.

  10. Project evaluation and selection using fuzzy Delphi method and zero - one goal programming

    NASA Astrophysics Data System (ADS)

    Alias, Suriana; Adna, Nofarziah; Arsad, Roslah; Soid, Siti Khuzaimah; Ali, Zaileha Md

    2014-12-01

    Project evaluation and selection is a factor affecting the impotence of board director in which is trying to maximize all the possible goals. Assessment of the problem occurred in organization plan is the first phase for decision making process. The company needs a group of expert to evaluate the problems. The Fuzzy Delphi Method (FDM) is a systematic procedure to evoke the group's opinion in order to get the best result to evaluate the project performance. This paper proposes an evaluation and selection of the best alternative project based on combination of FDM and Zero - One Goal Programming (ZOGP) formulation. ZOGP is used to solve the multi-criteria decision making for final decision part by using optimization software LINDO 6.1. An empirical example on an ongoing decision making project in Johor, Malaysia is implemented for case study.

  11. Work step indication with grid-pattern projection for demented senior people.

    PubMed

    Uranishi, Yuki; Yamamoto, Goshiro; Asghar, Zeeshan; Pulli, Petri; Kato, Hirokazu; Oshiro, Osamu

    2013-01-01

    This paper proposes a work step indication method for supporting daily work with a grid-pattern projection. To support an independent life of demented senior people, it is desirable that an instruction is easy to understand visually and not complicated. The proposed method in this paper uses a range image sensor and a camera in addition to a projector. A 3D geometry of a target scene is measured by the range image sensor, and the grid-pattern is projected onto the scene directly. Direct projection of the work step is easier to be associated with the target objects around the assisted person, and the grid-pattern is a solution to indicate the spatial instruction. A prototype has been implemented and has demonstrated that the proposed grid-pattern projection is easy to show the work step.

  12. High-accuracy contouring using projection moiré

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Lamberti, Luciano; Sciammarella, Federico M.

    2005-09-01

    Shadow and projection moiré are the oldest forms of moiré to be used in actual technical applications. In spite of this fact and the extensive number of papers that have been published on this topic, the use of shadow moiré as an accurate tool that can compete with alternative devices poses very many problems that go to the very essence of the mathematical models used to obtain contour information from fringe pattern data. In this paper some recent developments on the projection moiré method are presented. Comparisons between the results obtained with the projection method and the results obtained by mechanical devices that operate with contact probes are presented. These results show that the use of projection moiré makes it possible to achieve the same accuracy that current mechanical touch probe devices can provide.

  13. Project implementation : classification of organic soils and classification of marls - training of INDOT personnel.

    DOT National Transportation Integrated Search

    2012-09-01

    This is an implementation project for the research completed as part of the following projects: SPR3005 Classification of Organic Soils : and SPR3227 Classification of Marl Soils. The methods developed for the classification of both soi...

  14. 48 CFR 301.607-70 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... General. In accordance with the Federal Acquisition Certification—Program and Project Managers (FAC-P/PM) program, HHS has established a certification program for Program or Project Managers. See HHS' Federal Acquisition Certification—Program and Project Managers Handbook (P/PM Handbook) for information on the methods...

  15. Research notes : ensuring project performance and adherence to completion dates.

    DOT National Transportation Integrated Search

    2009-04-01

    A recently completed ODOT research project, led by David Sillars at Oregon State University, sought to identify alternative methods to liquidated damages for ODOT to encourage on-time project delivery and to develop a model to aid in selecting among ...

  16. 24 CFR 290.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... respect to the disposition of multifamily projects under subpart A, HUD may follow any other method of... HUD-OWNED PROPERTIES DISPOSITION OF MULTIFAMILY PROJECTS AND SALE OF HUD-HELD MULTIFAMILY MORTGAGES Disposition of Multifamily Projects § 290.1 Applicability. The requirements of this part supplement the...

  17. Evaluation of geophysical methods and geophysical contractors on four projects in Kentucky.

    DOT National Transportation Integrated Search

    2007-03-01

    his report details four geophysical testing projects that were conducted in Kentucky for the Kentucky Transportation Cabinet. The four projects were as follows: KY 101, Edmonson and Warren Counties, US 31-W, Elizabethtown Bypass, Hardin County, KY 61...

  18. The NLM Indexing Initiative.

    PubMed Central

    Aronson, A. R.; Bodenreider, O.; Chang, H. F.; Humphrey, S. M.; Mork, J. G.; Nelson, S. J.; Rindflesch, T. C.; Wilbur, W. J.

    2000-01-01

    The objective of NLM's Indexing Initiative (IND) is to investigate methods whereby automated indexing methods partially or completely substitute for current indexing practices. The project will be considered a success if methods can be designed and implemented that result in retrieval performance that is equal to or better than the retrieval performance of systems based principally on humanly assigned index terms. We describe the current state of the project and discuss our plans for the future. PMID:11079836

  19. The topology of galaxy clustering.

    NASA Astrophysics Data System (ADS)

    Coles, P.; Plionis, M.

    The authors discuss an objective method for quantifying the topology of the galaxy distribution using only projected galaxy counts. The method is a useful complement to fully three-dimensional studies of topology based on the genus by virtue of the enormous projected data sets available. Applying the method to the Lick counts they find no evidence for large-scale non-gaussian behaviour, whereas the small-scale distribution is strongly non-gaussian, with a shift in the meatball direction.

  20. An interprojection sensor fusion approach to estimate blocked projection signal in synchronized moving grid-based CBCT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Kong, Vic; Ren, Lei

    2016-01-15

    Purpose: A preobject grid can reduce and correct scatter in cone beam computed tomography (CBCT). However, half of the signal in each projection is blocked by the grid. A synchronized moving grid (SMOG) has been proposed to acquire two complimentary projections at each gantry position and merge them into one complete projection. That approach, however, suffers from increased scanning time and the technical difficulty of accurately merging the two projections per gantry angle. Herein, the authors present a new SMOG approach which acquires a single projection per gantry angle, with complimentary grid patterns for any two adjacent projections, and usemore » an interprojection sensor fusion (IPSF) technique to estimate the blocked signal in each projection. The method may have the additional benefit of reduced imaging dose due to the grid blocking half of the incident radiation. Methods: The IPSF considers multiple paired observations from two adjacent gantry angles as approximations of the blocked signal and uses a weighted least square regression of these observations to finally determine the blocked signal. The method was first tested with a simulated SMOG on a head phantom. The signal to noise ratio (SNR), which represents the difference of the recovered CBCT image to the original image without the SMOG, was used to evaluate the ability of the IPSF in recovering the missing signal. The IPSF approach was then tested using a Catphan phantom on a prototype SMOG assembly installed in a bench top CBCT system. Results: In the simulated SMOG experiment, the SNRs were increased from 15.1 and 12.7 dB to 35.6 and 28.9 dB comparing with a conventional interpolation method (inpainting method) for a projection and the reconstructed 3D image, respectively, suggesting that IPSF successfully recovered most of blocked signal. In the prototype SMOG experiment, the authors have successfully reconstructed a CBCT image using the IPSF-SMOG approach. The detailed geometric features in the Catphan phantom were mostly recovered according to visual evaluation. The scatter related artifacts, such as cupping artifacts, were almost completely removed. Conclusions: The IPSF-SMOG is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.« less

  1. Comparative analysis of methods and sources of financing of the transport organizations activity

    NASA Astrophysics Data System (ADS)

    Gorshkov, Roman

    2017-10-01

    The article considers the analysis of methods of financing of transport organizations in conditions of limited investment resources. A comparative analysis of these methods is carried out, the classification of investment, methods and sources of financial support for projects being implemented to date are presented. In order to select the optimal sources of financing for the projects, various methods of financial management and financial support for the activities of the transport organization were analyzed, which were considered from the perspective of analysis of advantages and limitations. The result of the study is recommendations on the selection of optimal sources and methods of financing of transport organizations.

  2. The eta Carinae Treasury Project and the HST/STIS

    NASA Technical Reports Server (NTRS)

    Martin, John C.; Davidson, Kris

    2006-01-01

    The HST Eta Carinae Treasury Project made extensive use of the HST/STIS from 1998 to the time of its failure in 2004. As one of the most prolific users of that instrument, the Treasury Project used the cross-dispersed spatial resolution of the STIS as few projects did. We present several enhancements to the existing STIS data reduction methods that are applicable to non-Treasury Project data in the STIS archive.

  3. Error Cost Escalation Through the Project Life Cycle

    NASA Technical Reports Server (NTRS)

    Stecklein, Jonette M.; Dabney, Jim; Dick, Brandon; Haskins, Bill; Lovell, Randy; Moroney, Gregory

    2004-01-01

    It is well known that the costs to fix errors increase as the project matures, but how fast do those costs build? A study was performed to determine the relative cost of fixing errors discovered during various phases of a project life cycle. This study used three approaches to determine the relative costs: the bottom-up cost method, the total cost breakdown method, and the top-down hypothetical project method. The approaches and results described in this paper presume development of a hardware/software system having project characteristics similar to those used in the development of a large, complex spacecraft, a military aircraft, or a small communications satellite. The results show the degree to which costs escalate, as errors are discovered and fixed at later and later phases in the project life cycle. If the cost of fixing a requirements error discovered during the requirements phase is defined to be 1 unit, the cost to fix that error if found during the design phase increases to 3 - 8 units; at the manufacturing/build phase, the cost to fix the error is 7 - 16 units; at the integration and test phase, the cost to fix the error becomes 21 - 78 units; and at the operations phase, the cost to fix the requirements error ranged from 29 units to more than 1500 units

  4. Synopsis of Past Stimulation Methods in Enhanced (Engineered) Geothermal Systems, Boreholes, and Existing Hydrothermal Systems with Success Analysis and Recommendations for Future Projects

    NASA Astrophysics Data System (ADS)

    Broadhurst, T.; Mattson, E.

    2017-12-01

    Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.

  5. A Comparison of Earthquake Back-Projection Imaging Methods for Dense Local Arrays, and Application to the 2011 Virginia Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Michaelides, M.; Brown, L. D.; Quiros, D. A.

    2016-12-01

    Back-projection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. Back-projection is scalable to earthquakes with a wide range of magnitudes from very tiny to very large. Local dense arrays provide the opportunity to capture very tiny events for a range applications, such as tectonic microseismicity, source scaling studies, wastewater injection-induced seismicity, hydraulic fracturing, CO2 injection monitoring, volcano studies, and mining safety. While back-projection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed to overcome imaging issues. We compare the performance of back-projection using four previously used data pre-processing methods: full waveform, envelope, short-term averaging / long-term averaging (STA/LTA), and kurtosis. The goal is to identify an optimized strategy for an entirely automated imaging process that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the energy imaged at the source, preserves magnitude information, and considers computational cost. Real data issues include aliased station spacing, low signal-to-noise ratio (to <1), large noise bursts and spatially varying waveform polarity. For evaluation, the four imaging methods were applied to the aftershock sequence of the 2011 Virginia earthquake as recorded by the AIDA array with 200-400 m station spacing. These data include earthquake magnitudes from -2 to 3 with highly variable signal to noise, spatially aliased noise, and large noise bursts: realistic issues in many environments. Each of the four back-projection methods has advantages and disadvantages, and a combined multi-pass method achieves the best of all criteria. Preliminary imaging results from the 2011 Virginia dataset will be presented.

  6. Projected Changes in Hydrological Extremes in a Cold Region Watershed: Sensitivity of Results to Statistical Methods of Analysis

    NASA Astrophysics Data System (ADS)

    Dibike, Y. B.; Eum, H. I.; Prowse, T. D.

    2017-12-01

    Flows originating from alpine dominated cold region watersheds typically experience extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a warmer climate, there will be temperature- induced shift in precipitation from snow towards rain as well as changes in snowmelt timing affecting the frequency of extreme high and low flow events which could significantly alter ecosystem services. This study examines the potential changes in the frequency and severity of hydrologic extremes in the Athabasca River watershed in Alberta, Canada based on the Variable Infiltration Capacity (VIC) hydrologic model and selected and statistically downscaled climate change scenario data from the latest Coupled Model Intercomparison Project (CMIP5). The sensitivity of these projected changes is also examined by applying different extreme flow analysis methods. The hydrological model projections show an overall increase in mean annual streamflow in the watershed and a corresponding shift in the freshet timing to earlier period. Most of the streams are projected to experience increases during the winter and spring seasons and decreases during the summer and early fall seasons, with an overall projected increases in extreme high flows, especially for low frequency events. While the middle and lower parts of the watershed are characterised by projected increases in extreme high flows, the high elevation alpine region is mainly characterised by corresponding decreases in extreme low flow events. However, the magnitude of projected changes in extreme flow varies over a wide range, especially for low frequent events, depending on the climate scenario and period of analysis, and sometimes in a nonlinear way. Nonetheless, the sensitivity of the projected changes to the statistical method of analysis is found to be relatively small compared to the inter-model variability.

  7. Chapter 23: Combined Heat and Power Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Simons, George; Barsun, Stephan

    The main focus of most evaluations is to determine the energy-savings impacts of the installed measure. This protocol defines a combined heat and power (CHP) measure as a system that sequentially generates both electrical energy and useful thermal energy from one fuel source at a host customer's facility or residence. This protocol is aimed primarily at regulators and administrators of ratepayer-funded CHP programs; however, project developers may find the protocol useful to understand how CHP projects are evaluated.

  8. Producing a Brighter Future by Changing a Trend

    NASA Astrophysics Data System (ADS)

    Gwinn, Elaine

    2006-12-01

    As production of physics teachers declines across the nation, efforts are being employed at Ball Statue University to change that trend. BSU has been a PhysTEC coalition member since the Fall of 2001 and continues to be a Principal Project Institution for the project. This presentation will show various methods that have shown success toward the goal of the recruitment of more and better prepared science teachers. This will be an overview of the entire project, showing the current methods being utilized as well as the successful techniques used in the past.

  9. Metal artifact correction for x-ray computed tomography using kV and selective MV imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Meng, E-mail: mengwu@stanford.edu; Keil, Andreas; Constantin, Dragos

    Purpose: The overall goal of this work is to improve the computed tomography (CT) image quality for patients with metal implants or fillings by completing the missing kilovoltage (kV) projection data with selectively acquired megavoltage (MV) data that do not suffer from photon starvation. When both of these imaging systems, which are available on current radiotherapy devices, are used, metal streak artifacts are avoided, and the soft-tissue contrast is restored, even for regions in which the kV data cannot contribute any information. Methods: Three image-reconstruction methods, including two filtered back-projection (FBP)-based analytic methods and one iterative method, for combining kVmore » and MV projection data from the two on-board imaging systems of a radiotherapy device are presented in this work. The analytic reconstruction methods modify the MV data based on the information in the projection or image domains and then patch the data onto the kV projections for a FBP reconstruction. In the iterative reconstruction, the authors used dual-energy (DE) penalized weighted least-squares (PWLS) methods to simultaneously combine the kV/MV data and perform the reconstruction. Results: The authors compared kV/MV reconstructions to kV-only reconstructions using a dental phantom with fillings and a hip-implant numerical phantom. Simulation results indicated that dual-energy sinogram patch FBP and the modified dual-energy PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in the kV projections. The root-mean-square errors of soft-tissue patterns obtained using combined kV/MV data are 10–15 Hounsfield units smaller than those of the kV-only images, and the structural similarity index measure also indicates a 5%–10% improvement in the image quality. The added dose from the MV scan is much less than the dose from the kV scan if a high efficiency MV detector is assumed. Conclusions: The authors have shown that it is possible to improve the image quality of kV CTs for patients with metal implants or fillings by completing the missing kV projection data with selectively acquired MV data that do not suffer from photon starvation. Numerical simulations demonstrated that dual-energy sinogram patch FBP and a modified kV/MV PWLS method can successfully suppress metal streak artifacts and restore information lost due to photon starvation in kV projections. Combined kV/MV images may permit the improved delineation of structures of interest in CT images for patients with metal implants or fillings.« less

  10. Determination of the object surface function by structured light: application to the study of spinal deformities

    NASA Astrophysics Data System (ADS)

    Buendía, M.; Salvador, R.; Cibrián, R.; Laguia, M.; Sotoca, J. M.

    1999-01-01

    The projection of structured light is a technique frequently used to determine the surface shape of an object. In this paper, a new procedure is described that efficiently resolves the correspondence between the knots of the projected grid and those obtained on the object when the projection is made. The method is based on the use of three images of the projected grid. In two of them the grid is projected over a flat surface placed, respectively, before and behind the object; both images are used for calibration. In the third image the grid is projected over the object. It is not reliant on accurate determination of the camera and projector pair relative to the grid and object. Once the method is calibrated, we can obtain the surface function by just analysing the projected grid on the object. The procedure is especially suitable for the study of objects without discontinuities or large depth gradients. It can be employed for determining, in a non-invasive way, the patient's back surface function. Symmetry differences permit a quantitative diagnosis of spinal deformities such as scoliosis.

  11. A genetic fuzzy analytical hierarchy process based projection pursuit method for selecting schemes of water transportation projects

    NASA Astrophysics Data System (ADS)

    Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming

    2006-10-01

    The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix A it produces is relatively small, and the result obtained is both stable and accurate; therefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.

  12. The Impact of Climate Projection Method on the Analysis of Climate Change in Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Halper, E.; Shamir, E.

    2016-12-01

    In small basins with arid climates, rainfall characteristics are highly variable and stream flow is tightly coupled with the nuances of rainfall events (e.g. hourly precipitation patterns Climate change assessments in these basins typically employ CMIP5 projections downscaled with Bias Corrected Statistical Downscaling and Bias Correction/Constructed Analogs (BCSD-BCCA) methods, but these products have drawbacks. Specifically, BCSD-BCCA these projections do not explicitly account for localized physical precipitation mechanisms (e.g. monsoon and snowfall) that are essential to many hydrological systems in the U. S. Southwest. An investigation of the impact of different types of precipitation projections for two kinds of hydrologic studies is being conducted under the U.S. Bureau of Reclamation's Science and Technology Grant Program. An innovative modeling framework consisting of a weather generator of likely hourly precipitation scenarios, coupled with rainfall-runoff, river routing and groundwater models, has been developed in the Nogales, Arizona area. This framework can simulate the impact of future climate on municipal water operations. This framework allows the rigorous comparison of the BCSD-BCCA methods with alternative approaches including rainfall output from dynamical downscaled Regional Climate Models (RCM), a stochastic rainfall generator forced by either Global Climate Models (GCM) or RCM, and projections using historical records conditioned on either GCM or RCM. The results will provide guide for the use of climate change projections into hydrologic studies of semi-arid areas. The project extends this comparison to analyses of flood control. Large flows on the Bill Williams River are a concern for the operation of dams along the Lower Colorado River. After adapting the weather generator for this region, we will evaluate the model performance for rainfall and stream flow, with emphasis on statistical features important to the specific needs of flood management. The end product of the research is to develop a test to guide selection of a precipitation projection method (including downscaling procedure) for a given region and objective.

  13. Examining the Performance of Statistical Downscaling Methods: Toward Matching Applications to Data Products

    NASA Astrophysics Data System (ADS)

    Dixon, K. W.; Lanzante, J. R.; Adams-Smith, D.

    2017-12-01

    Several challenges exist when seeking to use future climate model projections in a climate impacts study. A not uncommon approach is to utilize climate projection data sets derived from more than one future emissions scenario and from multiple global climate models (GCMs). The range of future climate responses represented in the set is sometimes taken to be indicative of levels of uncertainty in the projections. Yet, GCM outputs are deemed to be unsuitable for direct use in many climate impacts applications. GCM grids typically are viewed as being too coarse. Additionally, regional or local-scale biases in a GCM's simulation of the contemporary climate that may not be problematic from a global climate modeling perspective may be unacceptably large for a climate impacts application. Statistical downscaling (SD) of climate projections - a type of post-processing that uses observations to inform the refinement of GCM projections - is often used in an attempt to account for GCM biases and to provide additional spatial detail. "What downscaled climate projection is the best one to use" is a frequently asked question, but one that is not always easy to answer, as it can be dependent on stakeholder needs and expectations. Here we present results from a perfect model experimental design illustrating how SD method performance can vary not only by SD method, but how performance can also vary by location, season, climate variable of interest, amount of projected climate change, SD configuration choices, and whether one is interested in central tendencies or the tails of the distribution. Awareness of these factors can be helpful when seeking to determine the suitability of downscaled climate projections for specific climate impacts applications. It also points to the potential value of considering more than one SD data product in a study, so as to acknowledge uncertainties associated with the strengths and weaknesses of different downscaling methods.

  14. Estimating 4D CBCT from prior information and extremely limited angle projections using structural PCA and weighted free-form deformation for lung radiotherapy

    PubMed Central

    Harris, Wendy; Zhang, You; Yin, Fang-Fang; Ren, Lei

    2017-01-01

    Purpose To investigate the feasibility of using structural-based principal component analysis (PCA) motion-modeling and weighted free-form deformation to estimate on-board 4D-CBCT using prior information and extremely limited angle projections for potential 4D target verification of lung radiotherapy. Methods A technique for lung 4D-CBCT reconstruction has been previously developed using a deformation field map (DFM)-based strategy. In the previous method, each phase of the 4D-CBCT was generated by deforming a prior CT volume. The DFM was solved by a motion-model extracted by global PCA and free-form deformation (GMM-FD) technique, using a data fidelity constraint and deformation energy minimization. In this study, a new structural-PCA method was developed to build a structural motion-model (SMM) by accounting for potential relative motion pattern changes between different anatomical structures from simulation to treatment. The motion model extracted from planning 4DCT was divided into two structures: tumor and body excluding tumor, and the parameters of both structures were optimized together. Weighted free-form deformation (WFD) was employed afterwards to introduce flexibility in adjusting the weightings of different structures in the data fidelity constraint based on clinical interests. XCAT (computerized patient model) simulation with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume to evaluate the method. The estimation accuracy was evaluated by the Volume-Percent-Difference (VPD)/Center-of-Mass-Shift (COMS) between lesions in the estimated and “ground-truth” on board 4D-CBCT. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. The method was also evaluated against 3 lung patients. Results The SMM-WFD method achieved substantially better accuracy than the GMM-FD method for CBCT estimation using extremely small scan angles or projections. Using orthogonal 15° scanning angles, the VPD/COMS were 3.47±2.94% and 0.23±0.22mm for SMM-WFD and 25.23±19.01% and 2.58±2.54mm for GMM-FD among all 8 XCAT scenarios. Compared to GMM-FD, SMM-WFD was more robust against reduction of the scanning angles down to orthogonal 10° with VPD/COMS of 6.21±5.61% and 0.39±0.49mm, and more robust against reduction of projection numbers down to only 8 projections in total for both orthogonal-view 30° and orthogonal-view 15° scan angles. SMM-WFD method was also more robust than the GMM-FD method against increasing levels of noise in the projection images. Additionally, the SMM-WFD technique provided better tumor estimation for all three lung patients compared to the GMM-FD technique. Conclusion Compared to the GMM-FD technique, the SMM-WFD technique can substantially improve the 4D-CBCT estimation accuracy using extremely small scan angles and low number of projections to provide fast low dose 4D target verification. PMID:28079267

  15. Community Outreach in Associate Degree Nursing Programs: AACC/Metropolitan Life Foundation Project, 1995-1996. AACC Project Brief.

    ERIC Educational Resources Information Center

    Barnett, Lynn

    In January 1995, five community colleges were selected to participate in a year-long project to implement new teaching methods in associate degree nursing programs to better meet community needs. Supported by the American Association for Community Colleges, with seed money from the Metropolitan Life Foundation, all of the projects also had…

  16. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  17. Final-Year Projects as a Major Element in the IE Curriculum

    ERIC Educational Resources Information Center

    Vitner, G.; Rozenes, S.

    2009-01-01

    This paper presents a multi-perspective view of the final-year project of an industrial engineering and management (IEM) department. The final year project is a major element of a 4-year curriculum within any engineering discipline. Such a project gives the student an opportunity to use and implement methods, techniques and tools that he or she…

  18. Software Effort Estimation Accuracy: A Comparative Study of Estimations Based on Software Sizing and Development Methods

    ERIC Educational Resources Information Center

    Lafferty, Mark T.

    2010-01-01

    The number of project failures and those projects completed over cost and over schedule has been a significant issue for software project managers. Among the many reasons for failure, inaccuracy in software estimation--the basis for project bidding, budgeting, planning, and probability estimates--has been identified as a root cause of a high…

  19. Exploring Equality through Creative Methods of Learning in Adult Literacy: Findings from a Peace Funded Project

    ERIC Educational Resources Information Center

    Mark, Rob

    2008-01-01

    The Literacy and Equality in Irish Society (LEIS) Project is an example of a project which used alternative non-text methodologies to help literacy and basic education learners explore and understand how inequalities in society have impacted on their lives. The project focused on inequalities, shifting the emphasis in literacy and basic skills…

  20. Studying Student Benefits of Assigning a Service-Learning Project Compared to a Traditional Final Project in a Business Statistics Class

    ERIC Educational Resources Information Center

    Phelps, Amy L.; Dostilio, Lina

    2008-01-01

    The present study addresses the efficacy of using service-learning methods to meet the GAISE guidelines (http://www.amstat.org/education/gaise/GAISECollege.htm) in a second business statistics course and further explores potential advantages of assigning a service-learning (SL) project as compared to the traditional statistics project assignment.…

Top