Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.
Low-back electromyography (EMG) data-driven load classification for dynamic lifting tasks.
Totah, Deema; Ojeda, Lauro; Johnson, Daniel D; Gates, Deanna; Mower Provost, Emily; Barton, Kira
2018-01-01
Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task. Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset. Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69-92%. These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications. Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user.
Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)
NASA Technical Reports Server (NTRS)
Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.
2016-01-01
Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.
Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise
NASA Technical Reports Server (NTRS)
Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.
2017-01-01
INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.
Low-back electromyography (EMG) data-driven load classification for dynamic lifting tasks
Ojeda, Lauro; Johnson, Daniel D.; Gates, Deanna; Mower Provost, Emily; Barton, Kira
2018-01-01
Objective Numerous devices have been designed to support the back during lifting tasks. To improve the utility of such devices, this research explores the use of preparatory muscle activity to classify muscle loading and initiate appropriate device activation. The goal of this study was to determine the earliest time window that enabled accurate load classification during a dynamic lifting task. Methods Nine subjects performed thirty symmetrical lifts, split evenly across three weight conditions (no-weight, 10-lbs and 24-lbs), while low-back muscle activity data was collected. Seven descriptive statistics features were extracted from 100 ms windows of data. A multinomial logistic regression (MLR) classifier was trained and tested, employing leave-one subject out cross-validation, to classify lifted load values. Dimensionality reduction was achieved through feature cross-correlation analysis and greedy feedforward selection. The time of full load support by the subject was defined as load-onset. Results Regions of highest average classification accuracy started at 200 ms before until 200 ms after load-onset with average accuracies ranging from 80% (±10%) to 81% (±7%). The average recall for each class ranged from 69–92%. Conclusion These inter-subject classification results indicate that preparatory muscle activity can be leveraged to identify the intent to lift a weight up to 100 ms prior to load-onset. The high accuracies shown indicate the potential to utilize intent classification for assistive device applications. Significance Active assistive devices, e.g. exoskeletons, could prevent back injury by off-loading low-back muscles. Early intent classification allows more time for actuators to respond and integrate seamlessly with the user. PMID:29447252
Subject Load-Harness Interaction During Zero-Gravity Treadmill Exercise
NASA Technical Reports Server (NTRS)
McCrory, Jean L.; Baron, Heidi A.; Derr, Janice A.; Davis, Brian L.; Cavanagh, Peter R.
1996-01-01
When astronauts exercise on orbit, a subject load device (SLD) must be used to return the subject back to the supporting surface. The load in the SLD needs to be transferred the body by a harness which typically distributes this load between the pelvis and We shoulders. Through the use of a zero-gravity simulator, this research compared subject comfort and ground reaction forces during treadmill running at three levels of subject load (60%,80%, and 100% of body weight) in two harness designs ("shoulder only" and "waist "and shoulder ").
King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson
1998-01-01
A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.
NASA Technical Reports Server (NTRS)
Newby, Nathaniel J.; Scott-Pandorf, M. M.; Caldwell, E.; DeWitt, J.K.; Fincke, R.; Peters, B.T.
2010-01-01
NASA and Wyle engineers constructed a Horizontal Exercise Fixture (HEF) that was patented in 2006. Recently modifications were made to HEF with the goal of creating a device that mimics squat exercise on the Advanced Resistive Exercise Device (ARED) and can be used by bed rest subjects who must remain supine during exercise. This project posed several engineering challenges, such as how best to reproduce the hip motions (we used a sled that allowed hip motion in the sagittal plane), how to counterweight the pelvis against gravity (we used a pulley and free-weight mechanism), and how to apply large loads (body weight plus squat load) to the shoulders while simultaneously supporting the back against gravity (we tested a standard and a safety bar that allowed movement in the subject s z-axis, both of which used a retractable plate for back support). METHODS An evaluation of the HEF was conducted with human subjects (3F, 3M), who performed sets of squat exercises of increasing load from 10-repetition maximum (RM) up to 1-RM. Three pelvic counterweight loads were tested along with each of the two back-support squat bars. Data collection included 3-dimensional ground reaction forces (GRF), muscle activation (EMG), body motion (video-based motion capture), and subjective comments. These data were compared with previous ground-based ARED study data. RESULTS All subjects in the evaluation were able to perform low- to high-loading squats on the HEF. Four of the 6 subjects preferred a pelvic counterweight equivalent to 60 percent of their body weight. Four subjects preferred the standard squat bar, whereas 2 female subjects preferred the safety bar. EMG data showed muscle activation in the legs and low back typical of squat motion. GRF trajectories and eccentric-concentric loading ratios were similar to ARED. CONCLUSION: Squat exercise performed on HEF approximated squat exercise on ARED.
Articulating Support for Horizontal Resistive Exercise
NASA Technical Reports Server (NTRS)
Gundo, Daniel; Schaffner, Grant; Bentley, Jason; Loehr, James A.
2005-01-01
A versatile mechanical device provides support for a user engaged in any of a variety of resistive exercises in a substantially horizontal orientation. The unique features and versatility of the device promise to be useful in bedrest studies, rehabilitation, and specialized strength training. The device affords a capability for selectively loading and unloading of portions of the user s body through its support mechanisms, so that specific parts of the body can be trained with little or no effect on other parts that may be disabled or in the process of recovery from injury. Thus, the device is ideal for rehabilitation exercise programs prescribed by physicians and physical therapists. The capability for selective loading and support also offers potential benefits to strength and conditioning trainers and athletes who wish to selectively strengthen selected parts. The principal innovative aspect of the device is that it supports the subject s weight while enabling the subject, lying substantially horizontally, to perform an exercise that closely approximates a full standing squat. The device includes mechanisms that support the subject in such a way that the hips are free to translate both horizontally and vertically and are free to rotate about the line connecting the hips. At the same time, the shoulders are free to translate horizontally while the upper back is free to rotate about the line connecting the shoulders. Among the mechanisms for hip motion and support is a counterbalance that offsets the weight of the subject as the subject s pelvis translates horizontally and vertically and rotates the pelvis about the line connecting the hips. The counterbalance is connected to a pelvic support system that allows these pelvic movements. The subject is also supported at the shoulder by a mechanism that can tilt to provide continuous support of the upper back while allowing the rotation required for arching the back as the pelvis is displaced. The shoulder support also affords a capability for horizontal motion, and acts as the point of attachment of a load that is provided for squat and heel-raise exercises. The device is compatible with any resistive-exercise machine that provides bilateral loading via a moving cable or other mechanical linkage. The hip-translation and shoulder-translation and -rotation degrees of freedom of the supports can be locked individually or in combination in order to support the subject as necessary for exercises other than the standing squat. If necessary, for such exercises, the load can be applied directly to the subject by use of various attachments. In addition to the aforementioned heel raise, such exercises include the upright row, leg press, curls, extension of the triceps, front raise, lateral raise, and rear raise.
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-01-01
BACKGROUND--Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. METHODS--Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. RESULTS--The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. CONCLUSIONS--The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation. PMID:8511732
Bardsley, P A; Bentley, S; Hall, H S; Singh, S J; Evans, D H; Morgan, M D
1993-04-01
Incremental threshold loading (ITL) is a test of inspiratory muscle performance which is usually performed by breathing through a weighted inspiratory plunger, the load on the inspiratory muscles being increased by externally adding weights to the intake valve. This is not a true threshold device and may be inaccurate. This method was compared with a true threshold device consisting of a solenoid valve which only opens to supply air at a predetermined negative mouth pressure. Six naive, normal subjects (three men and three women) aged 22-24 years underwent three tests using each system. The inspiratory loads were increased every minute by equivalent amounts, -10 cm H2O with the solenoid valve and by 50 g with the weighted plunger, until the subjects could not inspire or sustain inspiration for a full minute. Six experienced subjects (four men and two women) aged 23-41 years were subsequently randomised to perform ITL with the solenoid valve, twice with the breathing pattern fixed and twice free. The solenoid valve generated a more accurate mouth pressure response and was less variable at higher loads than the weighted plunger. The work performed (expressed as the pressure-time product) was less with the solenoid valve but was more reproducible. ITL with the solenoid valve was not influenced by controlling the breathing pattern of the subjects. The solenoid valve has several features that make it superior to the weighted plunger as a device for ITL. It generates a more accurate mouth pressure response which is less variable at higher loads. Increases in load are smoother and quicker to introduce. ITL with the solenoid valve is not influenced by varying breathing patterns and does not require any external regulation.
A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee.
Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel
2016-09-29
This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments.
A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee
Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel
2016-01-01
This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments. PMID:27690057
Squat Ground Reaction Force on a Horizontal Squat Device, Free Weights, and Smith Machine
NASA Technical Reports Server (NTRS)
Scott-Pandorf, Melissa M.; Newby, Nathaniel J.; Caldwell, Erin; DeWitt, John K.; Peters, Brian T.
2010-01-01
Bed rest is an analog to spaceflight and advancement of exercise countermeasures is dependent on the development of exercise equipment that closely mimic actual upright exercise. The Horizontal Squat Device (HSD) was developed to allow a supine exerciser to perform squats that mimic upright squat exercise. PURPOSE: To compare vertical ground reaction force (GRFv) on the HSD with Free Weight (FW) or Smith Machine (SM) during squat exercise. METHODS: Subjects (3F, 3M) performed sets of squat exercise with increasing loads up to 1-repetition (rep) maximum. GRF data were collected and compared with previous GRF data for squat exercise performed with FW & SM. Loads on the HSD were adjusted to magnitudes comparable with FW & SM by subtracting the subject s body weight (BW). Peak GRFv for 45-, 55-, 64-, & 73-kg loads above BW were calculated. Percent (%) difference between HSD and the two upright conditions were computed. Effect size was calculated for the 45-kg load. RESULTS: Most subjects were unable to lift >45 kg on the HSD; however, 1 subject completed all loads. Anecdotal evidence suggested that most subjects shoulders or back failed before their legs. The mean % difference are shown. In the 45-kg condition, effect sizes were 0.37 & 0.83 (p>0.05) for HSD vs. FW and HSD vs. SM, respectively, indicating no differences between exercise modes. CONCLUSION: When BW was added to the target load, results indicated that vertical forces were similar to those in FW and SM exercise. The exercise prescription for the HSD should include a total external resistance equivalent to goal load plus subject BW. The HSD may be used as an analog to upright exercise in bed rest studies, but because most subjects were unable to lift >45 kg, it may be necessary to prescribe higher reps and lower loads to better target the leg musculature
Wang, Qian; Zeng, Hansong; Best, Thomas M.; Haas, Caroline; Heffner, Ned T.; Agarwal, Sudha; Zhao, Yi
2013-01-01
Massage therapy has a long history and has been widely believed effective in restoring tissue function, relieving pain and stress, and promoting overall well-being. However, the application of massage-like actions and the efficacy of massage are largely based on anecdotal experiences that are difficult to define and measure. This leads to a somewhat limited evidence-based interface of massage therapy with modern medicine. In this study, we introduce a mechatronic device that delivers highly reproducible massage-like mechanical loads to the hind limbs of small animals (rats and rabbits), where various massage-like actions are quantified by the loading parameters (magnitude, frequency and duration) of the compressive and transverse forces on the subject tissues. The effect of massage is measured by the difference in passive viscoelastic properties of the subject tissues before and after mechanical loading, both obtained by the same device. Results show that this device is useful in identifying the loading parameters that are most conducive to a change in tissue mechanical properties, and can determine the range of loading parameters that result in sustained changes in tissue mechanical properties and function. This device presents the first step in our effort for quantifying the application of massage-like actions used clinically and measurement of their efficacy that can readily be combined with various quantitative measures (e.g., active mechanical properties and physiological assays) for determining the therapeutic and mechanistic effects of massage therapies. PMID:23943071
Metal-shearing energy absorber
NASA Technical Reports Server (NTRS)
Fay, R. J.; Wittrock, E. P.
1971-01-01
Device, consisting of tongue of thin aluminum alloy strip, pull tab, slotted steel plate which serves as cutter, and steel buckle, absorbs mechanical energy when its ends are subjected to tensile loading. Device is applicable as auxiliary shock absorbing anchor for automobile and airplane safety belts.
A new device to study isoload eccentric exercise.
Guilhem, Gaël; Cornu, Christophe; Nordez, Antoine; Guével, Arnaud
2010-12-01
This study was designed to develop a new device allowing mechanical analysis of eccentric exercise against a constant load, with a view in mind to compare isoload (IL) and isokinetic (IK) eccentric exercises. A plate-loaded resistance training device was integrated to an IK dynamometer, to perform the acquisition of mechanical parameters (i.e., external torque, angular velocity). To determine the muscular torque produced by the subject, load torque was experimentally measured (TLexp) at 11 different loads from 30° to 90° angle (0° = lever arm in horizontal position). TLexp was modeled to take friction effect and torque variations into account. Validity of modeled load torque (TLmod) was tested by determining the root mean square (RMS) error, bias, and 2SD between the descending part of TLexp (from 30° to 90°) and TLmod. Validity of TLexp was tested by a linear regression and a Passing-Bablok regression. A pilot analysis on 10 subjects was performed to determine the contribution of the torque because of the moment of inertia to the amount of external work (W). Results showed the validity of TLmod (bias = 0%; RMS error = 0.51%) and TLexp SEM = 4.1 N·m; Intraclass correlation coefficient (ICC) = 1.00; slope = 0.99; y-intercept = -0.13). External work calculation showed a satisfactory reproducibility (SEM = 38.3 J; ICC = 0.98) and moment of inertia contribution to W showed a low value (3.2 ± 2.0%). Results allow us to validate the new device developed in this study. Such a device could be used in future work to study IL eccentric exercise and to compare the effect of IL and IK eccentric exercises in standardized conditions.
A biomechanical and physiological study of office seat and tablet device interaction.
Weston, Eric; Le, Peter; Marras, William S
2017-07-01
Twenty subjects performed typing tasks on a desktop computer and touch-screen tablet in two chairs for an hour each, and the effects of chair, device, and their interactions on each dependent measure were recorded. Biomechanical measures of muscle force, spinal load, and posture were examined, while discomfort was measured via heart rate variability (HRV) and subjective reports. HRV was sensitive enough to differentiate between chair and device interactions. Biomechanically, a lack of seat back mobility forced individuals to maintain an upright seating posture with increased extensor muscle forces and increased spinal compression. Effects were exacerbated by forward flexion upon interaction with a tablet device or by slouching. Office chairs should be designed with both the human and workplace task in mind and allow for reclined postures to off-load the spine. The degree of recline should be limited, however, to prevent decreased lumbar lordosis resulting from posterior hip rotation in highly reclined postures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J
2009-07-01
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Fracture Tests of Etched Components Using a Focused Ion Beam Machine
NASA Technical Reports Server (NTRS)
Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)
2000-01-01
Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.
Yoganandan, Narayan; Pintar, Frank A; Schlick, Michael; Humm, John R; Voo, Liming; Merkle, Andrew; Kleinberger, Michael
2015-09-18
The objective of the study was to develop a simple device, Vertical accelerator (Vertac), to apply vertical impact loads to Post Mortem Human Subject (PMHS) or dummy surrogates because injuries sustained in military conflicts are associated with this vector; example, under-body blasts from explosive devices/events. The two-part mechanically controlled device consisted of load-application and load-receiving sections connected by a lever arm. The former section incorporated a falling weight to impact one end of the lever arm inducing a reaction at the other/load-receiving end. The "launch-plate" on this end of the arm applied the vertical impact load/acceleration pulse under different initial conditions to biological/physical surrogates, attached to second section. It is possible to induce different acceleration pulses by using varying energy absorbing materials and controlling drop height and weight. The second section of Vertac had the flexibility to accommodate different body regions for vertical loading experiments. The device is simple and inexpensive. It has the ability to control pulses and flexibility to accommodate different sub-systems/components of human surrogates. It has the capability to incorporate preloads and military personal protective equipment (e.g., combat helmet). It can simulate vehicle roofs. The device allows for intermittent specimen evaluations (x-ray and palpation, without changing specimen alignment). The two free but interconnected sections can be used to advance safety to military personnel. Examples demonstrating feasibilities of the Vertac device to apply vertical impact accelerations using PMHS head-neck preparations with helmet and booted Hybrid III dummy lower leg preparations under in-contact and launch-type impact experiments are presented. Published by Elsevier Ltd.
A piezoelectric shock-loading response simulator for piezoelectric-based device developers
NASA Astrophysics Data System (ADS)
Rastegar, J.; Feng, Z.
2017-04-01
Pulsed loading of piezoelectric transducers occurs in many applications, such as those in munitions firing, or when a mechanical system is subjected to impact type loading. In this paper, an electronic simulator that can be programmed to generate electrical charges that a piezoelectric transducer generates as it is subjected to various shock loading profiles is presented. The piezoelectric output simulator can provide close to realistic outputs so that the circuit designer can use it to test the developed system under close to realistic conditions without the need for the costly and time consuming process of performing actual tests. The design of the electronic simulator and results of its testing are presented.
Assessing effect of meditation on cognitive workload using EEG signals
NASA Astrophysics Data System (ADS)
Jadhav, Narendra; Manthalkar, Ramchandra; Joshi, Yashwant
2017-06-01
Recent research suggests that meditation affects the structure and function of the brain. Cognitive load can be handled in effective way by the meditators. EEG signals are used to quantify cognitive load. The research of investigating effect of meditation on cognitive workload using EEG signals in pre and post-meditation is an open problem. The subjects for this study are young healthy 11 engineering students from our institute. The focused attention meditation practice is used for this study. EEG signals are recorded at the beginning of meditation and after four weeks of regular meditation using EMOTIV device. The subjects practiced meditation daily 20 minutes for 4 weeks. The 7 level arithmetic additions of single digit (low level) to three digits with carry (high level) are presented as cognitive load. The cognitive load indices such as arousal index, performance enhancement, neural activity, load index, engagement, and alertness are evaluated in pre and post meditation. The cognitive indices are improved in post meditation data. Power Spectral Density (PSD) feature is compared between pre and post-meditation across all subjects. The result hints that the subjects were handling cognitive load without stress (ease of cognitive functioning increased for the same load) after 4 weeks of meditation.
A tensile machine with a novel optical load cell for soft biological tissues application.
Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah
2014-11-01
The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.
Effects of graded load of artificial gravity on cardiovascular functions in humans.
Iwase, Satoshi; Fu, Qi; Narita, Kenichi; Morimoto, Eiichi; Takada, Hiroki; Mano, Tadaaki
2002-12-01
An artificial gravity and ergometric exercise loading device for human use was manufactured. It has the capacity of a max 2 G-load at the heart level, and a max 150 W of work-load. Eight subjects (six completed) were subjected to four repeated trials with or without 20 W ergometric exercise. Anti-G score, defined as the G-load x running time to the endpoint, was significantly higher in the exercise trials than standing trials. Heart rate (HR), mean arterial pressure (MAP), thoracic fluid index (TFI) were significantly superior during the exercise trials. Artificial gravity by centrifuge at 1.2 or 1.4 G with 40 or 60 W of ergometric workload may be an excellent countermeasure against cardiovascular deconditioning after long exposure to microgravity.
Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy.
Mackenzie, Samuel J; Getchell, Nancy; Modlesky, Christopher M; Miller, Freeman; Jaric, Slobodan
2009-08-01
Mackenzie SJ, Getchell N, Modlesky CM, Miller F, Jaric S. Using grasping tasks to evaluate hand force coordination in children with hemiplegic cerebral palsy. To assess force coordination in children with hemiplegic cerebral palsy (CP) using a device that allows for testing both unimanual and bimanual manipulation tasks performed under static and dynamic conditions. Nonequivalent groups design. University research laboratory for motor control. Six children with hemiplegic CP (age, mean +/- SD, 11.6+/-1.8 y) and 6 typically developing controls (11.6+/-1.6 y). Not applicable. Children performed simple lifting and force-matching static ramp tasks by way of both unimanual and bimanual pulling using a device that measures grip force (force acting perpendicularly at the digits-device contact area) and load force (tangential force). Main outcome measures were grip/load force ratios (grip force scaling) and correlation coefficients (force coupling). CP subjects showed significantly higher grip/load force ratios (P<.05) and slightly lower correlation coefficients than the control group, with more pronounced differences for most tasks when using their involved hand. For subjects with CP, switching from unimanual to bimanual conditions did not bring changes in scaling or coupling for the involved hand (P>.05). Compared with healthy children, the impaired hand function in the hemiplegic CP pediatric population could be reflected in excessive grip force that is also decoupled from ongoing changes in load force. Therefore, the bimanual grip load device used in this study could provide a sensitive measure of grip force coordination in CP, although nonmotor deficits should be taken into account when asking children to perform more complex tasks.
2010-10-01
mission, participants were given the NASA Task Load Index ( NASA TLX ) to measure subjective workload. Additional performance measures included mission...16 NASA TLX Workload Analyses...worksheet (See Appendix C), the Hidden Patterns Test (ETS, 1976), and an electronic form of the NASA Task Load Index ( TLX ; Hart & Staveland, 1988). The
Quantifying Trust, Distrust, and Suspicion in Human-System Interactions
2015-10-26
devices which require subjects to lie in restricted positions ( fMRI ), or to drink hazardous materials (PET), EEG and fNIRS can non-invasively measure... fMRI . Since fNIRS and fMRI both measure elements of the Blood Oxygen Level Dependent (BOLD) signal. Researchers have recently explored the...response inhibition load, verbal working memory load, and spatial working memory load [1, 7]. We have also successfully localized brain regions such as
DOE Office of Scientific and Technical Information (OSTI.GOV)
Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru; Buzhinskiy, O. I.
2015-12-15
A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation
NASA Technical Reports Server (NTRS)
Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.
2007-01-01
Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a pneumatic subject load device to apply a near constant gravity-replacement load to the test subject during exercise, and is currently used in conjunction with the General Clinical Research Center for evaluating exercise protocols using a bedrest analog. The enhanced ZLS (eZLS) at NASA Glenn Research Center features an offloaded treadmill that floats on a thin film of air and interfaces to a force reaction frame via variably-compliant isolators, or vibration isolation system. The isolators can be configured to simulate compliant interfaces to the vehicle, which affects mechanical loading to crewmembers during exercise, and has been used to validate system dynamic models for new countermeasures equipment designs, such as the second International Space Station treadmill slated for use in 2010. In the eZLS, the test subject and exercise device can be pitched at the appropriate angle for partial gravity simulations, such as lunar gravity (1/6th earth gravity). On both the eZLS and the NASA-Johnson Space Center standalone ZLS installed at the University of Texas Medical Branch in Galveston, Texas, USA, the subject's body weight relative to the treadmill is controlled via a linear motor subject load device (LM-SLD). The LM-SLD employs a force-feedback closed-loop control system to provide a relatively constant force to the test subject during locomotion, and is set and verified for subject safety prior to each session. Locomotion data were collected during parabolic flight and on the eZLS. The purpose was to determine the similarities and differences between locomotion in actual and simulated microgravity. Subjects attained greater amounts of hip flexion during walking and running during parabolic flight. During running, subjects had greater hip range of motion. Trunk motion was significantly less on the eZLS than during parabolic flight. Peak impact forces, loading rate, and impulse were greater on the eZLS than during parabolic while walking with a low external load (EL) and rning with a high EL. Activation timing differences existed between locations in all muscles except for the rectus femoris. The tibialis anterior and gluteus maximus were active for longer durations on the eZLS than in parabolic flight during walking. Ground reaction forces were greater with the LM-SLD than with bungees during eZLS locomotion. While the eZLS serves as a ground-based analog, researchers should be aware that subtle, but measurable, differences in kinematics and leg musculature activities exist between the environments. Aside from space applications, zero-gravity locomotion simulators may help medical researchers in the future with development of rehabilitative or therapeutic protocols for injured or ill patients. Zero-gravity locomotion simulators may be used as a ground-based test bed to support future missions for space exploration, and eventually may be used to simulate planetary locomotion in partial gravity environments, including the Moon and Mars. Figure: Zero-gravity Locomotion Simulator at the Cleveland Clinic, Cleveland, Ohio, USA
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.
2010-01-01
Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can concurrently improve musculoskeletal and cardiovascular conditioning in ambulatory subjects, but further work is required to validate its use as countermeasure to spaceflight-induced deconditioning.
Villa, Tomaso; La Barbera, Luigi; Galbusera, Fabio
2014-04-01
Preclinical evaluation of the long-term reliability of devices for lumbar fixation is a mandatory activity before they are put into market. The experimental setups are described in two different standards edited by the International Organization for Standardization (ISO) and the American Society for Testing Materials (ASTM), but the evaluation of the suitability of such tests to simulate the actual loading with in vivo situations has never been performed. To calculate through finite element (FE) simulations the stress in the rods of the fixator when subjected to ASTM and ISO standards. To compare the calculated stresses arising in the same fixator once it has been virtually mounted in a physiological environment and loaded with physiological forces and moments. FE simulations and validation experimental tests. FE models of the ISO and ASTM setups were created to conduct simulations of the tests prescribed by standards and calculate stresses in the rods. Validation of the simulations were performed through experimental tests; the same fixator was virtually mounted in an L2-L4 FE model of the lumbar spine and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between FE simulations and experimental tests showed good agreement between results obtained using the two methodologies, thus confirming the suitability of the FE method to evaluate stresses in the device in different loading situations. The usage of a physiological load with ASTM standard is impossible due to the extreme severity of the ASTM configuration; in this circumstance, the presence of an anterior support is suggested. Also, ISO prescriptions, although the choice of the setup correctly simulates the mechanical contribution of the discs, seem to overstress the device as compared with a physiological loading condition. Some daily activities, other than walking, can induce a further state of stress in the device that should be taken into account in setting up new experimental procedures. ISO standard loading prescriptions seems to be more severe than the expected physiological ones. The ASTM standard should be completed by including some anterior supporting device and declaring the value of the load to be imposed. Moreover, a further enhancement of standards would be simulating other movements representative of daily activities different from walking. Copyright © 2014 Elsevier Inc. All rights reserved.
Edmond P. Saliklis; Steven M. Cramer; John C. Hermanson
1998-01-01
A new method for obtaining triaxial stress versus strain data is presented. The method tests cubic specimens and can provide constitutive data along three mutually perpendicular axes. Issues of removing the effects of boundary conditions in the proposed device are discussed. Two devices were constructed and used to obtain triaxial stress versus strain data on...
Research Based on AMESim of Electro-hydraulic Servo Loading System
NASA Astrophysics Data System (ADS)
Li, Jinlong; Hu, Zhiyong
2017-09-01
Electro-hydraulic servo loading system is a subject studied by many scholars in the field of simulation and control at home and abroad. The electro-hydraulic servo loading system is a loading device simulation of stress objects by aerodynamic moment and other force in the process of movement, its function is all kinds of gas in the lab condition to analyze stress under dynamic load of objects. The purpose of this paper is the design of AMESim electro-hydraulic servo system, PID control technology is used to configure the parameters of the control system, complete the loading process under different conditions, the optimal design parameters, optimization of dynamic performance of the loading system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukezich, S.J.
1997-05-01
As a result of an incident in which a radioactive brachytherapy treatment source was temporarily unable to be retracted, an analysis was performed on the needle applicator used during the treatment. In this report, the results of laboratory evaluations of the physical, mechanical, and metallurgical condition of the subject applicator and two additional applicators are presented. A kink formed in the subject applicator during the incident. The laboratory investigation focused on identifying characteristics which would increase the susceptibility of an applicator to form a kink when subjected to bending loads. The results obtained during this investigation could not conclusively identifymore » the cause of the kink. The subject applicator exhibited no unique features which would have made it particularly susceptible to forming a kink. The three applicators examined represent two methods of manufacturing. A number of characteristics inherent to the method used to manufacture the subject applicator which could lead to an increased susceptibility to the formation of a kink were observed. The use of an insertion device, such as the biopsy needle used during this incident, could also dramatically increase the likelihood of the formation of a kink if the applicator is subjected to bending loads. 33 figs., 4 tabs.« less
Development of a pneumatic tensioning device for gap measurement during total knee arthroplasty.
Kwak, Dai-Soon; Kong, Chae-Gwan; Han, Seung-Ho; Kim, Dong-Hyun; In, Yong
2012-09-01
Despite the importance of soft tissue balancing during total knee arthroplasty (TKA), all estimating techniques are dependent on a surgeon's manual distraction force or subjective feeling based on experience. We developed a new device for dynamic gap balancing, which can offer constant load to the gap between the femur and tibia, using pneumatic pressure during range of motion. To determine the amount of distraction force for the new device, 3 experienced surgeons' manual distraction force was measured using a conventional spreader. A new device called the consistent load pneumatic tensor was developed on the basis of the biomechanical tests. Reliability testing for the new device was performed using 5 cadaveric knees by the same surgeons. Intraclass correlation coefficients (ICCs) were calculated. The distraction force applied to the new pneumatic tensioning device was determined to be 150 N. The interobserver reliability was very good for the newly tested spreader device with ICCs between 0.828 and 0.881. The new pneumatic tensioning device can enable us to properly evaluate the soft tissue balance throughout the range of motion during TKA with acceptable reproducibility.
NASA Technical Reports Server (NTRS)
Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; DeWitt, J. K.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.
2016-01-01
During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.
Estimated Muscle Loads During Squat Exercise in Microgravity Conditions
NASA Technical Reports Server (NTRS)
Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.
2012-01-01
Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.
In vivo surface roughness evolution of a stressed metallic implant
NASA Astrophysics Data System (ADS)
Tan, Henry
2016-10-01
Implant-associated infection, a serious medical issue, is caused by the adhesion of bacteria to the surface of biomaterials; for this process the surface roughness is an important property. Surface nanotopography of medical implant devices can control the extent of bacterial attachment by modifying the surface morphology; to this end a model is introduced to facilitate the analysis of a nanoscale smooth surface subject to mechanical loading and in vivo corrosion. At nanometre scale rough surface promotes friction, hence reduces the mobility of the bacteria; this sessile environment expedites the biofilm growth. This manuscript derives the controlling equation for surface roughness evolution for metallic implant subject to in-plane stresses, and predicts the in vivo roughness changes within 6 h of continued mechanical loading at different stress level. This paper provides analytic tool and theoretical information for surface nanotopography of medical implant devices.
A Comprehensive Approach for the Ergonomic Evaluation of 13 Emergency and Transport Ventilators.
Marjanovic, Nicolas; L'Her, Erwan
2016-05-01
Mechanical ventilation is an important part of emergency medicine and is frequently used for transportation. Human errors during ventilator settings are frequent and may be associated with high morbidity/mortality. The aim of the study was to provide a complete ergonomic evaluation of emergency and transport ventilators, taking into account objective and subjective human-machine interface assessments and individual mental work load. We performed a prospective bench ergonomic evaluation of 13 emergency and transport ventilators, using standardized conditions and a global methodological approach. The study was performed in an evaluation laboratory dedicated to respiratory care, and 12 emergency physicians unfamiliar with the tested devices were included in the evaluation. The ventilators were classified into 3 categories (simple, sophisticated, and ICU-like). Objective chronometric evaluations were conducted considering 9 tasks, and subjective evaluations were performed (ease of use, willingness to use, and user-friendliness of monitoring) using Likert scales. Mental work load evaluation was performed using the NASA Task Load Index scale. Overall task failure rate represented 4% of all attempts. Setting modifications, ventilation mode changes, and powering down durations were different between simple and other emergency and transport ventilator categories (P < .005). There was no difference between ventilator categories for the ease of use and user-friendliness of the monitoring. In contrast, the willingness to use was lower for simple devices, compared with sophisticated and ICU-like emergency and transport ventilators (2.9 ± 1.4 vs 3.9 ± 1.2, P = .002 and 4.3 ± 1, P < .001). No differences were observed between devices regarding the mental work load, except for several specific devices in the sophisticated category. A comprehensive ergonomic evaluation provides valuable information while investigating operational friendliness in emergency and transport ventilators. The choice of a device not only depends on its technical characteristics but should take into account its clinical operational setting and ergonomics in order to decrease mental work load. Sophisticated emergency and transport ventilators should only be used by clinicians who demonstrate expertise in mechanical ventilation. Copyright © 2016 by Daedalus Enterprises.
NASA Astrophysics Data System (ADS)
Waugh, Rachael C.; Dulieu-Barton, Janice M.; Quinn, S.
2015-03-01
Thermoelastic stress analysis (TSA) is an established active thermographic approach which uses the thermoelastic effect to correlate the temperature change that occurs as a material is subjected to elastic cyclic loading to the sum of the principal stresses on the surface of the component. Digital image correlation (DIC) tracks features on the surface of a material to establish a displacement field of a component subjected to load, which can then be used to calculate the strain field. The application of both DIC and TSA on a composite plate representative of aircraft secondary structure subject to resonant frequency loading using a portable loading device, i.e. `remote loading' is described. Laboratory based loading for TSA and DIC is typically imparted using a test machine, however in the current work a vibration loading system is used which is able to excite the component of interest at resonant frequency which enables TSA and DIC to be carried out. The accuracy of the measurements made under remote loading of both of the optical techniques applied is discussed. The data are compared to extract complimentary information from the two techniques. This work forms a step towards a combined strain based non-destructive evaluation procedure able to identify and quantify the effect of defects more fully, particularly when examining component performance in service applications.
Analysis of dynamical response of air blast loaded safety device
NASA Astrophysics Data System (ADS)
Tropkin, S. N.; Tlyasheva, R. R.; Bayazitov, M. I.; Kuzeev, I. R.
2018-03-01
Equipment of many oil and gas processing plants in the Russian Federation is considerably worn-out. This causes the decrease of reliability and durability of equipment and rises the accident rate. An air explosion is the one of the most dangerous cases for plants in oil and gas industry, usually caused by uncontrolled emission and inflammation of oil products. Air explosion can lead to significant danger for life and health of plant staff, so it necessitates safety device usage. A new type of a safety device is designed. Numerical simulation is necessary to analyse design parameters and performance of the safety device, subjected to air blast loading. Coupled fluid-structure interaction analysis is performed to determine strength of the protective device and its performance. The coupled Euler-Lagrange method, allowable in Abaqus by SIMULIA, is selected as the most appropriate analysis tool to study blast wave interaction with the safety device. Absorption factors of blast wave are evaluated for the safety device. This factors allow one to assess efficiency of the safety device, and its main structural component – dampener. Usage of CEL allowed one to model fast and accurately the dampener behaviour, and to develop the parametric model to determine safety device sizes.
Ralph L. Amateis; Harold E. Burkhart
2015-01-01
A Fakopp TreeSonic acoustic device was used to measure time of flight (TOF) impulses through sample trees prior to felling from 27-year-old loblolly pine (Pinus taeda L.) plantations established at different planting densities. After felling, the sample trees were sawn into lumber and the boards subjected to edgewise bending under 2-point loading. Bending properties...
Self-locking mechanical center joint
NASA Technical Reports Server (NTRS)
Bush, H. G.; Wallsom, R. E. (Inventor)
1985-01-01
A device for connecting, rotating and locking together a pair of structural half columns is described. The device is composed of an identical pair of cylindrical hub assemblies connected at their inner faces by a spring loaded hinge; each hub assembly having a structural half column attached to its outer end. Each hub assembly has a spring loading locking ring member movably attached adjacent to its inner face and includes a latch member for holding the locking ring in a rotated position subject to the force of its spring. Each hub assembly also has a hammer member for releasing the latch on the opposing hub assembly when the hub assemblies are rotated together. The spring loaded hinge connecting the hub assemblies rotates the hub assemblies and attached structural half columns together bringing the inner faces of the opposing hub assemblies into contact with one another.
Santoni, Brandon G; Nayak, Aniruddh N; Cooper, Seth A; Smithson, Ian R; Cox, Jacob L; Marberry, Scott T; Sanders, Roy W
2016-04-01
This study compared the stabilizing effect of 2 intertrochanteric (IT) fracture fixation devices in a cadaveric hemi-pelvis biomechanical model. Eleven pairs of cadaveric osteopenic female hemi-pelves with intact hip joint and capsular ligaments were used. An unstable IT fracture (OTA 31-A2) was created in each specimen and stabilized with a single lag screw device (Gamma 3) or an integrated dual screw (IDS) device (InterTAN). The hemi-pelves were inverted, coupled to a biaxial apparatus and subjected to 13.5 k cycles of loading (3 months) using controlled, oscillating pelvic rotation (0-90 degrees) plus cyclic axial femoral loading at a 2:1 body weight (BW) ratio. Femoral head rotation and varus collapse were monitored optoelectonically. For specimens surviving 3 months of loading, additional loading was performed in 0.25 × BW/250 cycle increments to a maximum of 4 × BW or failure. Femoral head rotation with IDS fixation was significantly less than the single lag screw construct after 3 months of simulated loading (P = 0.016). Maximum femoral head rotation at the end of 4 × BW loading was 7× less for the IDS construct (P = 0.006). Varus collapse was significantly less with the IDS construct over the entire loading cycle (P = 0.021). In this worst-case model of an osteopenic, unstable, IT fracture, the IDS construct, likely owing to its larger surface area, noncylindrical profile, and fracture compression, provided significantly greater stability and resistance to femoral head rotation and varus collapse.
Petrini, Lorenza; Bertini, Alessandro; Berti, Francesca; Pennati, Giancarlo; Migliavacca, Francesco
2017-05-01
Nickel-titanium alloys are commonly adopted for producing cardiovascular minimally invasive devices such as self-expandable stents, aortic valves and stent-grafts. These devices are subjected to cyclic loads (due to blood pulsatility, leg or heart movements), that can induce fatigue fracture, and may also be subjected to very large deformations (due to crimping procedure, a tortuous physiological path or overloads), that can induce material yield. Recently, the authors developed a new constitutive model that considers inelastic strains due to not-completed reverse phase transformation (not all the stress-induced martensite turns back to austenite) or/and plasticity and their accumulation during cyclic loads. In this article, the model is implemented in the finite element code ABAQUS/Standard and it is used to investigate the effects of inelastic strain accumulation on endovascular nickel-titanium devices. In particular, the behavior of a transcatheter aortic valve is studied considering the following steps: (1) crimping, (2) expansion in a tube resembling a durability test chamber and (3) cyclic loads due to pressure variation applied on the inner surface of the tube. The analyses are performed twice, activating and not activating that part of the new model which describes the development of irreversible strain. From the results, it is interesting to note that plasticity has a very significant effect on the local material response, inducing stress modification from compression to tension. However, permanent deformations are concentrated in few zones of the stent frame and their presence does not affect the global behavior of the device that maintains its capability of recovering the original shape. In conclusion, this work suggests that at least for cardiovascular devices where the crimping is high (local strain may reach values of 8%-9%), taking into account inelastic effects due to plasticity and not-completed reverse phase transformation can be important, and hence using a suitable constitutive model is recommended.
Odell, Dan; Barr, Alan; Goldberg, Robert; Chung, Jeffrey; Rempel, David
2007-04-01
The goal of this study was to determine whether a new dynamic arm support system reduced shoulder and arm muscle load for seated and standing hand/ arm tasks. The new system provides support for both horizontal and vertical arm motion. A total of 11 participants performed ten tasks (five seated and five standing) both with and without the arm support. Outcomes were assessed with electromyography and subjective feedback. Muscle activity was measured over the dominant side supraspinatus, triceps and forearm extensor muscles. Significant (p < 0.01) reductions in static muscle activity were observed in one of ten tasks performed with the support device for the supraspinatus muscle, in five tasks for the triceps and in one task for forearm extensor muscles. Likewise, a significant improvement in subjective measures was reported with the support device for 'ease of task' for two of ten tasks, for 'forearm comfort' for three of ten tasks and for 'shoulder effort' for six of ten tasks. The results suggest that a dynamic forearm support may improve subjective comfort and reduce static muscle loads in the upper extremity for tasks that involve horizontal movement of the arms. For rapid motions, the value of the support is limited due to internal inertia and friction.
Crews, Ryan T; Shen, Biing-Jiun; Campbell, Laura; Lamont, Peter J; Boulton, Andrew J M; Peyrot, Mark; Kirsner, Robert S; Vileikyte, Loretta
2016-08-01
Studies indicate that off-loading adherence is low in patients with diabetic foot ulcers (DFUs), which may subsequently delay healing. However, there is little empirical evidence for this relationship or the factors that influence adherence. This prospective, multicenter, international study of 79 (46 from the U.K. and 33 the U.S.) persons with type 2 diabetes and plantar DFUs assessed the association between off-loading adherence and DFU healing over a 6-week period. Additionally, potential demographic, disease, and psychological determinants of adherence were examined. DFUs were off-loaded with a removable device (77% a removable cast walker). Off-loading adherence was assessed objectively by activity monitors. Patient-reported measures included Hospital Anxiety and Depression Scale (HADS), Neuropathy and Foot Ulcer Quality of Life (NeuroQoL) instrument, and Revised Illness Perception Questionnaire (IPQ-R). Off-loading adherence was monitored for 35 ± 10 days, and devices were used during 59 ± 22% of subjects' activity. In multivariate analyses, smaller baseline DFU size, U.K. study site, and better off-loading adherence predicted smaller DFU size at 6 weeks (P < 0.05). Better off-loading adherence was, in turn, predicted by larger and more severe baseline DFUs, more severe neuropathy, and NeuroQoL foot pain (P < 0.05). In contrast, greater NeuroQoL postural instability predicted worse off-loading adherence (P < 0.001). HADS and IPQ-R measures were not significantly associated with off-loading adherence. Off-loading adherence is associated with the amount of DFU healing that occurs, while postural instability is a powerful predictor of nonadherence. Clinicians should take this neuropathic symptom into consideration when selecting an off-loading device, as off-loading-induced postural instability may further contribute to nonadherence. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad
2017-03-12
In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person's daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress.
Mehrabi, Reza; Dorri, Milad; Elahinia, Mohammad
2017-01-01
In this study, an umbrella-shaped device that is used for osteonecrosis treatment is simulated. The femoral head is subjected to various complex loadings as a result of a person’s daily movements. Implant devices used in the body are made of shape memory alloy materials because of their remarkable resistance to wear and corrosion, good biocompatibility, and variable mechanical properties. Since this NiTi umbrella-shaped implant is simultaneously under several loadings, a 3-D model of shape memory alloy is utilized to investigate the behavior of the implant under different conditions. Shape memory and pseudo-elasticity behavior of NiTi is analyzed using a numerical model. The simulation is performed within different temperatures and in an isothermal condition with varied and complex loadings. The objective of this study is to evaluate the performance of the device under thermal and multi-axial forces via numerically study. Under tensile loading, the most critical points are on the top part of the implant. It is also shown that changes in temperature have a minor effect on the Von Mises stress. Applied forces and torques have significant influence on the femoral head. Simulations results indicate that the top portion of the umbrella is under the most stress when embedded in the body. Consequently, the middle, curved portion of the umbrella is under the least amount of stress. PMID:28952502
A Programmable Smoke Delivery Device for PET Imaging with Cigarettes Containing 11C-nicotine
Zuo, Yantao; Garg, Pradeep K; Nazih, Rachid; Garg, Sudha; Rose, Jed E; Murugesan, Thangaraju; Mukhin, Alexey G
2017-01-01
Introduction PET imaging with 11C-nicotine-loaded cigarettes is a valuable tool to directly assess fast nicotine kinetics and its neuropharmacological role in tobacco dependence. To eliminate variations among puffs inhaled by subjects, this work aimed to develop a programmable smoke delivery device (SDD) to produce highly reproducible and adjustable puffs of cigarette smoke for PET experiments. New method The SDD was built around a programmable syringe pump as a smoking machine to draw a puff of smoke from a 11C-nicotine-loaded cigarette and make it available for a subject to take the smoke into the mouth and then inhale it during PET data acquisition. Brain nicotine time activity curves and total body absorbed 11C-nicotine doses (TAD) were measured in smokers who inhaled a single puff of smoke via the SDD from a 11C-nicotine-loaded cigarette. Results Nearly identical brain nicotine kinetics were observed between participants who inhaled a puff of smoke through the SDD and those who inhaled directly from a cigarette. Comparison with existing methods This new device minimizes puff variations that exist with earlier smoke delivery apparatuses which could introduce confounding factors. Conclusions The SDD is effective in delivering 11C-nicotine from the study cigarettes. Despite a 2-sec increase in aging of smoke delivered through the SDD versus smoke taken directly from a cigarette, the difference in brain nicotine kinetics after 11C-nicotine delivery with and without use of the SDD is negligible. This refined device may be useful for future research on the deposition and pharmacokinetics of nicotine inhaled with tobacco smoke. PMID:28347784
A programmable smoke delivery device for PET imaging with cigarettes containing 11C-nicotine.
Zuo, Yantao; Garg, Pradeep K; Nazih, Rachid; Garg, Sudha; Rose, Jed E; Murugesan, Thangaraju; Mukhin, Alexey G
2017-05-01
PET imaging with 11 C-nicotine-loaded cigarettes is a valuable tool to directly assess fast nicotine kinetics and its neuropharmacological role in tobacco dependence. To eliminate variations among puffs inhaled by subjects, this work aimed to develop a programmable smoke delivery device (SDD) to produce highly reproducible and adjustable puffs of cigarette smoke for PET experiments. The SDD was built around a programmable syringe pump as a smoking machine to draw a puff of smoke from a 11 C-nicotine-loaded cigarette and make it available for a subject to take the smoke into the mouth and then inhale it during PET data acquisition. Brain nicotine time activity curves and total body absorbed 11 C-nicotine doses (TAD) were measured in smokers who inhaled a single puff of smoke via the SDD from a 11 C-nicotine-loaded cigarette. Nearly identical brain nicotine kinetics were observed between participants who inhaled a puff of smoke through the SDD and those who inhaled directly from a cigarette. This new device minimizes puff variations that exist with earlier smoke delivery apparatuses which could introduce confounding factors. The SDD is effective in delivering 11 C-nicotine from the study cigarettes. Despite a 2-s increase in aging of smoke delivered through the SDD versus smoke taken directly from a cigarette, the difference in brain nicotine kinetics after 11 C-nicotine delivery with and without use of the SDD is negligible. This refined device may be useful for future research on the deposition and pharmacokinetics of nicotine inhaled with tobacco smoke. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of implant loading device for animal study about various loading protocol: a pilot study
Yoon, Joon-Ho; Park, Young-Bum; Cho, Yuna; Kim, Chang-Sung; Choi, Seong-Ho; Moon, Hong-Seok; Lee, Keun-Woo
2012-01-01
PURPOSE The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method,simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (µε) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study. PMID:23236575
A real-time plantar pressure feedback device for foot unloading.
Femery, Virginie G; Moretto, Pierre G; Hespel, Jean-Michel G; Thévenon, André; Lensel, Ghislaine
2004-10-01
To develop and test a plantar pressure control device that provides both visual and auditory feedback and is suitable for correcting plantar pressure distribution patterns in persons susceptible to neuropathic foot ulceration. Pilot test. Sports medicine laboratory in a university in France. One healthy man in his mid thirties. Not applicable. Main outcome measures A device was developed based on real-time feedback, incorporating an acoustic alarm and visual signals, adjusted to a specific pressure load. Plantar pressure measured during walking, at 6 sensor locations over 27 steps under 2 different conditions: (1) natural and (2) unloaded in response to device feedback. The subject was able to modify his gait in response to the auditory and visual signals. He did not compensate for the decrease of peak pressure under the first metarsal by increasing the duration of the load shift under this area. Gait pattern modification centered on a mediolateral load shift. The auditory signal provided a warning system alerting the user to potentially harmful plantar pressures. The visual signal warned of the degree of pressure. People who have lost nociceptive perception, as in cases of diabetic neuropathy, may be able to change their walking pattern in response to the feedback provided by this device. The visual may have diagnostic value in determining plantar pressures in such patients. This pilot test indicates that further studies are warranted.
Subburaj, Karupppasamy; Souza, Richard B.; Wyman, Bradley T.; Le Graverand-Gastineau, Marie-Pierre Hellio; Li, Xiaojuan; Link, Thomas M.; Majumdar, Sharmila
2014-01-01
Purpose To prospectively evaluate changes in T1ρ and T2 relaxation times in the meniscal body with acute loading using MRI in osteoarthritic knees and to compare these findings with those of age-matched healthy controls. Materials and Methods Female subjects above 40 years of age with (N1 = 20) and without osteoarthritis (OA) (N2 = 10) were imaged on a 3 Tesla MR scanner using a custom made loading device. MR images were acquired, with the knee flexed at 20°, with and without a compressive load of 50% of the subject's bodyweight. The subjects were categorized based on the radiographic evidence of OA. Three different zones (outer, middle, and inner) of meniscus body were defined (each occupying 1/3rd the width). After adjusting for age and body mass index in the general linear regression model, repeated measures analysis of variance was used to detect significant differences in T1ρ and T2 with and without loading. Results In the unloaded condition, the average T1ρ and T2 times were elevated in the outer and middle zones of the medial meniscus in OA subjects compared with the controls. In the loaded condition, T1ρ and T2 times of the outer zone of the medial meniscus was significantly elevated in OA subjects compared with controls. Finally the change (from unloaded to loaded) was significantly higher in controls than OA subjects (15.1% versus 8.3%; P = 0.039 for ΔT1ρ, and 11.5% versus 6.9%, P = 0.049 for ΔT2). Conclusion These findings suggest that while the OA process appears to affect the relaxation times of all regions within the meniscus, it may affect some regions sooner or to a greater degree. Furthermore, the differences in the change in relaxation times between unloaded and loaded conditions may reveal evidence about load transmission failure of the outer zone of the medial meniscus in subjects with knee OA. It is possible that these metrics (ΔT1ρ and ΔT2) may be valuable as an early biomechanical biomarker, which could be used to predict load transmission to the underlying articular cartilage. PMID:24347310
Hydrologic Performance of Bioretention Cells Subjected to Varying Hydrologic Loading Regimes
A short description is given of the rain gardens that were constructed as part of the large parking lot project. I discuss the construction of the gardens this past summer, including the installation of sensors and monitoring devices that will allow us to compare hydrologic perfo...
Friction-reducing devices for lateral patient transfers: a clinical evaluation.
Baptiste, Andrea; Boda, Sruthi V; Nelson, Audrey L; Lloyd, John D; Lee, William E
2006-04-01
The purpose of this study was to assess the performance of lateral transfer devices compared with the traditional draw sheet method in acute care settings through subjective feedback of caregivers actually using the devices. Every 2 weeks, the eight participating acute care units each received one of the devices, which had been randomly selected. Data were collected through caregiver surveys, which rated comfort, ease of use, perceived injury risk, time efficiency, and patient safety. An overall performance rating was calculated as the sum of these five categories. Caregivers rated air-assisted devices significantly higher (p < .05) than other devices. Lateral transfer devices are recommended over the traditional draw sheet method for performing lateral patient transfers. These friction-reducing devices are a cost-effective solution to the load of lateral patient transfers and should be favorably considered when purchasing patient-handling technologies.
Shock enhancement of cellular materials subjected to intensive pulse loading
NASA Astrophysics Data System (ADS)
Zhang, J.; Fan, J.; Wang, Z.; Zhao, L.; Li, Z.
2018-03-01
Cellular materials can dissipate a large amount of energy due to their considerable stress plateau, which contributes to their extensive applications in structural design for crashworthiness. However, in some experiments with specimens subjected to intense impact loads, transmitted stress enhancement has been observed, leading to severe damage to the objects protected. Transmitted stress through two-dimensional Voronoi cellular materials as a protective device is qualitatively studied in this paper. Dimensionless parameters of material properties and loading parameters are defined to give critical conditions for shock enhancement and clarify the correlation between the deformations and stress enhancement. The effect of relative density on this amplifying phenomenon is investigated as well. In addition, local strain fields are calculated by using the optimal local deformation gradient, which gives a clear presentation of deformations and possible local non-uniformity in the crushing process. This research provides valuable insight into the reliability of cellular materials as protective structures.
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
1999-01-01
It is hypothesized that bone loss experienced by astronauts in zero gravity conditions may be curtailed by appropriate exercise. According to Wolf's law, bone regenerates when muscles produce stresses by pulling on the bone during daily activity and/or exercise on Earth. To use this theory to prevent or decrease bone loss, one needs to quantify musculoskeletal loads and relate them to bone density changes. In the context of the space program, it is desirable to determine musculoskeletal loads during exercise so that one may make similar measurements on Earth and in space. In this manner, load measurements on Earth may be used as reference to generate similar loads during exercise in space. A research project to investigate the effects of high-resistive exercise to decrease bone density loss underzero-gravity conditions is being carried out in Life Sciences Research Laboratories at NASA JSC. The project consists of a bed-rest study whereby subjects remain in horizontal position for seventeen weeks. During the study, a subset of those subjects executes a regime of resistive exercises in the horizontal exercise machine (HEM). The HEM was designed so that subjects remain horizontal while exercising to minimize gravity loading even during exercise. Bone density of each subject is measured throughout the duration of their participation. The objective of the study is to determine if the resistive exercises are effective in diminishing or eliminating bone loss. My participation in this project relates to instrumentation, measurement, and processing of signals from displacement sensors (optical encoders) and load-cells. Measurement of displacements will be used to determine the motion of the body during exercise, and load measurements will be used (along with displacement data) to determine forces and torques exerted on each section of the body during exercise. Further, I have assisted in specifying new sensors to be added to the HEM and to a new prototype resistive exercise machine called the Interim Resistive Exercise Device (IRED). New load cells and encoders should be mounted in these devices to obtain more complete kineto-dynamic information. This report includes a description of the instrumentation that was built to perform measurements in the HEM and the IRED, along with the software that was developed to collect the measurements. It also includes examples of measurements taken in the HEM. Finally, a plan is laid out that describes how these measurements may be used to determine forces exerted by muscles for each exercise.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Annett, Martin S.
2013-01-01
A series of 16 vertical tests were conducted on a Test Device for Human Occupant Restraint (THOR) - NT 50th percentile Anthropomorphic Test Device (ATD) at NASA Langley Research Center (LaRC). The purpose of the tests conducted at NASA LaRC was threefold. The first was to add vertical response data to the growing test database for THOR-NT development and validation. Second, the THOR-NT analytical computational models currently in development must be validated for the vertical loading environment. The computational models have been calibrated for frontal crash environments with concentration on accurately replicating head/neck, thoracic, and lower extremity responses. Finally, familiarity with the THOR ATD is necessary because NASA is interested in evaluating advanced ATDs for use in future flight and research projects. The THOR was subjected to vertical loading conditions ranging between 5 and 16 g in magnitude and 40 to 120 milliseconds (msec) in duration. It was also tested under conditions identical to previous tests conducted on the Hybrid II and III ATDs to allow comparisons to be made. Variations in the test setup were also introduced, such as the addition of a footrest in an attempt to offload some of the impact load into the legs. A full data set of the THOR-NT ATD will be presented and discussed. Results from the tests show that the THOR was largely insensitive to differences in the loading conditions, perhaps due in part to their small magnitudes. THOR responses, when compared to the Hybrid II and III in the lumbar region, demonstrated that the THOR more closely resembled the straight spine Hybrid setup. In the neck region, the THOR behaved more like the Hybrid III. However in both cases, the responses were not identical, indicating that the THOR would show differences in response than the Hybrid II and III ATDs when subjected to identical impact conditions. The addition of a footrest did not significantly affect the THOR response due to the nature of how the loading conditions were applied.
NASA Technical Reports Server (NTRS)
Hancock, P. A.; Robinson, M. A.
1989-01-01
The present experiment examined the influence of several task-related factors on tracking performance and concomitant workload. The manipulated factors included tracking order, the presence or absence of knowledge of performance, and the control device. Summed root mean square error (rmse) and perceived workload were measured at the termination of each trial. Perceived workload was measured using the NASA Task Load Index (TLX) and the Subjective Workload Assessment Technique (SWAT). Results indicated a large and expected effect for track order on both performance and the perception of load. In general, trackball input was more accurate and judged for lower load than input using a mouse. The presence or absence of knowledge of performance had little effect on either performance or workload. There were a number of interactions between factors shown in performance that were mirrored by perceived workload scores. Results from each workload scale were equivalent in terms of sensitivity to task manipulations. The pattern of results affirm the utility of these workload measures in assessing the imposed load of multiple task-related variables.
Clinical evaluation of a new noninvasive ankle arthrometer.
Nauck, Tanja; Lohrer, Heinz; Gollhofer, Albert
2010-06-01
A nonradiographic arthrometer was developed to objectively quantify anterior talar drawer instability in stable and unstable ankles. Diagnostic validity of this device was previously demonstrated in a cadaver study. The aim of the present study was to validate the ankle arthrometer in an in vivo setting. Twenty-three subjects participated in the study. An orthopedic surgeon first performed a manual anterior talar drawer test to classify the subjects' ankles as stable or unstable. The subjects were then evaluated using the ankle arthrometer, and filled out a validated self-reported questionnaire (German version of the Foot and Ankle Ability Measure [FAAM-G]). Ankle stiffness was calculated from the low linear region (40-60 N) of the load deformation curves obtained from the ankle arthrometer. Reliability testing of these stiffness values was done based on load deformation curves, with 150 and 200 N maximum anterior drawer loads applied in the ankle arthrometer. Using the manual anterior drawer test, 16 ankles were classified as stable and 7 were classified as unstable. Arthrometer stiffness analysis differentiated stable from unstable ankles (P = 0.00 and P = 0.01, respectively). Test-retest demonstrated an accurate reliability (intraclass correlation coefficient = 0.80). A significant correlation was found between both FAAM-G subscales and the arthrometer stiffness values (r = 0.43 and 0.54; P = 0.04 and 0.01). Discussion Subjects with and without mechanical ankle instability could be differentiated by ankle arthrometer stiffness analysis and the FAAM-G questionnaire results. This nonradiographic device may be relevant for screening athletes at risk for ankle injuries, for clinical follow-up studies, and implementing preventive strategies. Validity and reliability of the new ankle arthrometer is demonstrated in a small cohort in an in vivo setting.
Factors That Influence the Rating of Perceived Exertion After Endurance Training.
Roos, Lilian; Taube, Wolfgang; Tuch, Carolin; Frei, Klaus Michael; Wyss, Thomas
2018-03-15
Session rating of perceived exertion (sRPE) is an often used measure to assess athletes' training load. However, little is known which factors could optimize the quality of data collection thereof. The aim of the present study was to investigate the effects of (i) the survey methods and (ii) the time points when sRPE was assessed on the correlation between subjective (sRPE) and objective (heart rate training impulse; TRIMP) assessment of training load. In the first part, 45 well-trained subjects (30 men, 15 women) performed 20 running sessions with a heart rate monitor and reported sRPE 30 minutes after training cessation. For the reporting the subjects were grouped into three survey method groups (paper-pencil, online questionnaire, and mobile device). In the second part of the study, another 40 athletes (28 men, 12 women) performed 4x5 running sessions with the four time points to report the sRPE randomly assigned (directly after training cessation, 30 minutes post-exercise, in the evening of the same day, the next morning directly after waking up). The assessment of sRPE is influenced by time point, survey method, TRIMP, sex, and training type. It is recommended to assess sRPE values via a mobile device or online tool, as the survey method "paper" displayed lower correlations between sRPE and TRIMP. Subjective training load measures are highly individual. When compared at the same relative intensity, lower sRPE values were reported by women, for the training types representing slow runs, and for time points with greater duration between training cessation and sRPE assessment. The assessment method for sRPE should be kept constant for each athlete and comparisons between athletes or sexes are not recommended.
de Toledo, Joelly Mahnic; Loss, Jefferson Fagundes; Janssen, Thomas W; van der Scheer, Jan W; Alta, Tjarco D; Willems, W Jaap; Veeger, DirkJan H E J
2012-10-01
Following shoulder arthroplasty, any well-planned rehabilitation program should include muscle strengthening. However, it is not always clear how different external loads influence shoulder kinematics in patients with shoulder prostheses. The objective of this study was to describe shoulder kinematics and determine the contribution of the scapulothoracic joint to total shoulder motion of patients with total and reverse shoulder arthroplasties and of healthy individuals during rehabilitation exercises (anteflexion and elevation in the scapular plane) using different loading conditions (without external load, 1 kg and elastic resistance). Shoulder motions were measured using an electromagnetic tracking device. A force transducer was used to record force signals during loaded conditions using elastic resistance. Statistical comparisons were made using a three-way repeated-measures analysis of variance with a Bonferroni post hoc testing. The scapula contributed more to movement of the arm in subjects with prostheses compared to healthy subjects. The same applies for loaded conditions (1 kg and elastic resistance) relative to unloaded tasks. For scapular internal rotation, upward rotation and posterior tilt no significant differences among groups were found during both exercises. Glenohumeral elevation angles during anteflexion were significantly higher in the total shoulder arthroplasty group compared to the reverse shoulder arthroplasty group. Differences in contribution of the scapula to total shoulder motion between patients with different types of arthroplasties were not significant. However, compared to healthy subjects, they were. Furthermore, scapular kinematics of patients with shoulder arthroplasty was influenced by implementation of external loads, but not by the type of load. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Amonette, William E.; Bentley, Jason R.; Lee, Stuart M. C.; Loehr, James A.; Schneider, Suzanne
2004-01-01
Musculoskeletal unloading in microgravity has been shown to induce losses in bone mineral density, muscle cross-sectional area, and muscle strength. Currently, an Interim Resistive Exercise Device (iRED) is being flown on board the ISS to help counteract these losses. Free weight training has shown successful positive musculoskeletal adaptations. In biomechanical research, ground reaction forces (GRF) trajectories are used to define differences between exercise devices. The purpose of this evaluation is to quantify the differences in GRF between the iRED and free weight exercise performed on a Smith machine during a squat. Due to the differences in resistance properties, inertial loading and load application to the body between the two devices, we hypothesize that subjects using iRED will produce GRF that are significantly different from the Smith machine. There will be differences in bar/harness range of motion and the time when peak GRF occurred in the ROMbar. Three male subjects performed three sets of ten squats on the iRED and on the Smith Machine on two separate days at a 2-second cadence. Statistically significant differences were found between the two devices in all measured GRF variables. Average Fz and Fx during the Smith machine squat were significantly higher than iRED. Average Fy (16.82 plus or minus.23; p less than .043) was significantly lower during the Smith machine squat. The mean descent/ascent ratio of the magnitude of the resultant force vector of all three axes for the Smith machine and iRED was 0.95 and 0.72, respectively. Also, the point at which maximum Fz occurred in the range of motion (Dzpeak) was at different locations with the two devices.
A Material Model for the Cyclic Behavior of Nitinol
NASA Astrophysics Data System (ADS)
Rebelo, Nuno; Zipse, Achim; Schlun, Martin; Dreher, Gael
2011-07-01
The uniaxial behavior of Nitinol in different forms and at different temperatures has been well documented in the literature. Mathematical models for the three-dimensional behavior of this class of materials, covering superelasticity, plasticity, and shape memory effects have been previously developed. Phenomenological models embedded in FEA analysis are part of common practice today in the development of devices made out of Nitinol. In vivo loading of medical devices has cyclic characteristics. There have been some indications in the literature that cyclic loading of Nitinol modifies substantially its behavior. A consortium of several stent manufacturers, Safe Technology and Dassault Systèmes Simulia Corp., dedicated to the development of fatigue laws suitable for life prediction of Nitinol devices, has conducted an extensive experimental study of the modifications in uniaxial behavior of both Nitinol wire and tubing due to cyclic loading. The Abaqus Nitinol material model has been extended to capture some of the phenomena observed and is described in this article. Namely, a preload beyond 6% strain alters the transformation plateaus; if the cyclic load amplitude is large enough, permanent deformations (residual martensite) are observed; the lower plateau increases; and the upper plateau changes. The modifications to the upper plateau are very interesting in the sense that it appears broken: its start stress gets lowered creating a new plateau up to the highest level of cyclic strain, followed by resuming the original plateau until full transformation. Since quite often the geometry of a device at the point at which it is subjected to cyclic loading is very much dependent on the manufacturing, deployment, and preloading sequence, it is important that analyses be conducted with the original material behavior up to that point, and then with the cyclic behavior thereafter.
NASA Astrophysics Data System (ADS)
Anton, S. R.; Erturk, A.; Inman, D. J.
2010-04-01
Vibration energy harvesting has received considerable attention in the research community over the past decade. Typical vibration harvesting systems are designed to be added on to existing host structures and capture ambient vibration energy. An interesting application of vibration energy harvesting exists in unmanned aerial vehicles (UAVs), where a multifunctional approach, as opposed to the traditional method, is needed due to weight and aerodynamic considerations. The authors propose a multifunctional design for energy harvesting in UAVs where the piezoelectric harvesting device is integrated into the wing of a UAV and provides energy harvesting, energy storage, and load bearing capability. The brittle piezoceramic layer of the harvester is a critical member in load bearing applications; therefore, it is the goal of this research to investigate the bending strength of various common piezoceramic materials. Three-point bend tests are carried out on several piezoelectric ceramics including monolithic piezoceramics PZT-5A and PZT-5H, single crystal piezoelectric PMN-PZT, and commercially packaged QuickPack devices. Bending strength results are reported and can be used as a design tool in the development of piezoelectric vibration energy harvesting systems in which the active device is subjected to bending loads.
Locomotion in simulated microgravity: gravity replacement loads
NASA Technical Reports Server (NTRS)
McCrory, Jean L.; Baron, Heidi A.; Balkin, Sandy; Cavanagh, Peter R.
2002-01-01
BACKGROUND: When an astronaut walks or runs on a treadmill in microgravity, a subject load device (SLD) is used to return him or her back to the treadmill belt. The gravity replacement load (GRL) in the SLD is transferred, via a harness, to the pelvis and/or the shoulders. This research compared comfort and ground reaction forces during treadmill running in a microgravity locomotion simulator at GRLs of 60%, 80%, and 100% of body weight (BW). Two harness designs (shoulder springs only (SSO) and waist and shoulder springs (WSS)) were used. HYPOTHESES: 1) The 100% BW gravity replacement load conditions would be comfortably tolerated and would result in larger ground reaction forces and loading rates than the lower load conditions, and 2) the WSS harness would be more comfortable than the SSO harness. METHODS: Using the Penn State Zero Gravity Locomotion Simulator (ZLS), 8 subjects ran at 2.0 m x s(-1) (4.5 mph) for 3 min at each GRL setting in each harness. Subjective ratings of harness comfort, ground reaction forces, and GRL data were collected during the final minute of exercise. RESULTS: The 100% BW loading conditions were comfortably tolerated (2.3 on a scale of 0-10), although discomfort increased as the GRL increased. There were no overall differences in perceived comfort between the two harnesses. The loading rates (27.1, 33.8, 39.1 BW x s(-1)) and the magnitudes of the first (1.0, 1.4, 1.6 BW) and second (1.3, 1.7, 1.9 BW) peaks of the ground reaction force increased with increasing levels (60, 80, 100% BW respectively) of GRL. CONCLUSIONS: Subjects were able to tolerate a GRL of 100% BW well. The magnitude of the ground reaction force peaks and the loading rate is directly related to the magnitude of the GRL.
Kottink, Anke I R; Tenniglo, Martin J B; de Vries, Wiebe H K; Hermens, Hermie J; Buurke, Jaap H
2012-01-01
The aims of this study were: (i) to compare the neuro-prosthetic effect of implantable peroneal nerve stimulation to the orthotic effect of a standard of care intervention (no device, shoe or ankle foot orthosis) on walking, as assessed by spatiotemporal parameters; and (ii) to examine whether there is evidence of an enhanced lower-limb flexion reflex with peroneal nerve stimulation and compare the kinematic effect of an implantable peroneal nerve stimulation device vs standard of care intervention on initial loading response of the paretic limb, as assessed by hip, knee and ankle kinematics. Randomized controlled trial. A total of 23 chronic stroke survivors with drop foot. The intervention group received an implantable 2-channel peroneal nerve stimulator for correction of drop foot. The control group continued using a conventional walking device. Spatiotemporal parameters and hip, knee and ankle kinematics were measured while subjects walked with the device on using a 3-dimensional video camera system during baseline and after a follow-up period of 26 weeks. Peroneal nerve stimulation normalized stance and double support of the paretic limb and single support of the non-paretic limb, in comparison with using a conventional walking device. In addition, peroneal nerve stimulation is more effective to provide ankle dorsiflexion during swing and resulted in a normalized initial loading response. Although peroneal nerve stimulation and ankle foot orthosis are both prescribed to correct a drop foot in the same patient population, spatiotemporal parameters, dorsiflexion during swing and loading response are influenced in a functionally different way.
Reconstruction of improvised explosive device blast loading to personnel in the open
NASA Astrophysics Data System (ADS)
Wiri, Suthee; Needham, Charles
2016-05-01
Significant advances in reconstructing attacks by improvised explosive devices (IEDs) and other blast events are reported. A high-fidelity three-dimensional computational fluid dynamics tool, called Second-order Hydrodynamic Automatic Mesh Refinement Code, was used for the analysis. Computer-aided design models for subjects or vehicles in the scene accurately represent geometries of objects in the blast field. A wide range of scenario types and blast exposure levels were reconstructed including free field blast, enclosed space of vehicle cabin, IED attack on a vehicle, buried charges, recoilless rifle operation, rocket-propelled grenade attack and missile attack with single subject or multiple subject exposure to pressure levels from ˜ 27.6 kPa (˜ 4 psi) to greater than 690 kPa (>100 psi). To create a full 3D pressure time-resolved reconstruction of a blast event for injury and blast exposure analysis, a combination of intelligence data and Blast Gauge data can be used to reconstruct an actual in-theatre blast event. The methodology to reconstruct an event and the "lessons learned" from multiple reconstructions in open space are presented. The analysis uses records of blast pressure at discrete points, and the output is a spatial and temporal blast load distribution for all personnel involved.
The Comparison Of Dome And HMD Delivery Systems: A Case Study
NASA Technical Reports Server (NTRS)
Chen, Jian; Harm, Deborah L.; Loftin, R. Bowen; Tyalor, Laura C.; Leiss, Ernst L.
2002-01-01
For effective astronaut training applications, choosing the right display devices to present images is crucial. In order to assess what devices are appropriate, it is important to design a successful virtual environment for a comparison study of the display devices. We present a comprehensive system, a Virtual environment testbed (VET), for the comparison of Dome and Head Mounted Display (HMD) systems on an SGI Onyx workstation. By writing codelets, we allow a variety of virtual scenarios and subjects' information to be loaded without programming or changing the code. This is part of an ongoing research project conducted by the NASA / JSC.
Smart Materials for Electromagnetic and Optical Applications
NASA Astrophysics Data System (ADS)
Ramesh, Prashanth
The research presented in this dissertation focuses on the development of solid-state materials that have the ability to sense, act, think and communicate. Two broad classes of materials, namely ferroelectrics and wideband gap semiconductors were investigated for this purpose. Ferroelectrics possess coupled electromechanical behavior which makes them sensitive to mechanical strains and fluctuations in ambient temperature. Use of ferroelectrics in antenna structures, especially those subject to mechanical and thermal loads, requires knowledge of the phenomenological relationship between the ferroelectric properties of interest (especially dielectric permittivity) and the external physical variables, viz. electric field(s), mechanical strains and temperature. To this end, a phenomenological model of ferroelectric materials based on the Devonshire thermodynamic theory was developed. This model was then used to obtain a relationship expressing the dependence of the dielectric permittivity on the mechanical strain, applied electric field and ambient temperature. The relationship is shown to compare well with published experimental data and other related models in literature. A model relating ferroelectric loss tangent to the applied electric field and temperature is also discussed. Subsequently, relationships expressing the dependence of antenna operating frequency and radiation efficiency on those external physical quantities are described. These relationships demonstrate the tunability of load-bearing antenna structures that integrate ferroelectrics when they are subjected to mechanical and thermal loads. In order to address the inability of ferroelectrics to integrate microelectronic devices, a feature needed in a material capable of sensing, acting, thinking and communicating, the material Gallium Nitride (GaN) is pursued next. There is an increasing utilization of GaN in the area of microelectronics due to the advantages it offers over other semiconductors. This dissertation demonstrates GaN as a candidate material well suited for novel microelectromechanical systems. The potential of GaN for MEMS is demonstrated via the design, analysis, fabrication, testing and characterization of an optical microswitch device actuated by piezoelectric and electrostrictive means. The piezoelectric and electrostrictive properties of GaN and its differences from common piezoelectrics are discussed before elaborating on the device configuration used to implement the microswitch device. Next, the development of two recent fabrication technologies, Photoelectrochemical etch and Bias-enabled Dark Electrochemical etch, used to realize the 3-dimensional device structure in GaN are described in detail. Finally, an ultra-low-cost, laser-based, non-contact approach to test and characterize the microswitch device is described, followed by the device testing results.
Bruno Garza, J L; Young, J G
2015-01-01
Extended use of conventional computer input devices is associated with negative musculoskeletal outcomes. While many alternative designs have been proposed, it is unclear whether these devices reduce biomechanical loading and musculoskeletal outcomes. To review studies describing and evaluating the biomechanical loading and musculoskeletal outcomes associated with conventional and alternative input devices. Included studies evaluated biomechanical loading and/or musculoskeletal outcomes of users' distal or proximal upper extremity regions associated with the operation of alternative input devices (pointing devices, mice, other devices) that could be used in a desktop personal computing environment during typical office work. Some alternative pointing device designs (e.g. rollerbar) were consistently associated with decreased biomechanical loading while other designs had inconsistent results across studies. Most alternative keyboards evaluated in the literature reduce biomechanical loading and musculoskeletal outcomes. Studies of other input devices (e.g. touchscreen and gestural controls) were rare, however, those reported to date indicate that these devices are currently unsuitable as replacements for traditional devices. Alternative input devices that reduce biomechanical loading may make better choices for preventing or alleviating musculoskeletal outcomes during computer use, however, it is unclear whether many existing designs are effective.
Kato, Sawako; Ando, Masahiko; Kondo, Takaaki; Yoshida, Yasuko; Honda, Hiroyuki; Maruyama, Shoichi
2018-05-01
Modification of lifestyle habits, including diet and physical activity, is essential for the prevention and control of type 2 diabetes mellitus (T2DM) in elderly patients. However, individualized treatment is more critical for the elderly than for general patients. This study aimed to determine lifestyle interventions that resulted in lowering hemoglobin A 1c (HbA 1c ) in Japanese pre- and early diabetic elderly subjects. The BEST-LIFE trial is an ongoing, open-label, 6-month, randomized (1:1) parallel group trial. Subjects with HbA 1c of ≥5.6%-randomly assigned to the intervention or control group -use wearable monitoring devices loaded with Internet of things (IoT) systems that aids them with self-management and obtaining monthly remote health guidance from a public health nurse. The primary outcome is changes in HbA 1c after a 6-month intervention relative to the baseline values. The secondary outcome is the change of behavior modification stages. The background, rationale, and study design of this trial are also presented. One hundred forty-five subjects have already been enrolled in this lifestyle intervention program, which will end in 2019. The BEST-LIFE trial will provide new evidence regarding the effectiveness and safety of our program on lowering HbA 1c in elderly subjects with T2DM. It will also investigate whether information communication technology tools and monitoring devices loaded with IoT can support health care in elderly subjects. The trial registration number is UMIN-CTR: UMIN 000023356.
Development of a Portable Knee Rehabilitation Device That Uses Mechanical Loading.
Fitzwater, Daric; Dodge, Todd; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel
2013-12-01
Joint loading is a recently developed mechanical modality, which potentially provides a therapeutic regimen to activate bone formation and prevent degradation of joint tissues. To our knowledge, however, few joint loading devices are available for clinical or point-of-care applications. Using a voice-coil actuator, we developed an electromechanical loading system appropriate for human studies and preclinical trials that should prove both safe and effective. Two specific tasks for this loading system were development of loading conditions (magnitude and frequency) suitable for humans, and provision of a convenient and portable joint loading apparatus. Desktop devices have been previously designed to evaluate the effects of various loading conditions using small and large animals. However, a portable knee loading device is more desirable from a usability point of view. In this paper, we present such a device that is designed to be portable, providing a compact, user-friendly loader. The portable device was employed to evaluate its capabilities using a human knee model. The portable device was characterized for force-pulse width modulation duty cycle and loading frequency properties. The results demonstrate that the device is capable of producing the necessary magnitude of forces at appropriate frequencies to promote the stimulation of bone growth and which can be used in clinical studies for further evaluations.
Influence of Smartphones and Software on Acoustic Voice Measures
GRILLO, ELIZABETH U.; BROSIOUS, JENNA N.; SORRELL, STACI L.; ANAND, SUPRAJA
2016-01-01
This study assessed the within-subject variability of voice measures captured using different recording devices (i.e., smartphones and head mounted microphone) and software programs (i.e., Analysis of Dysphonia in Speech and Voice (ADSV), Multi-dimensional Voice Program (MDVP), and Praat). Correlations between the software programs that calculated the voice measures were also analyzed. Results demonstrated no significant within-subject variability across devices and software and that some of the measures were highly correlated across software programs. The study suggests that certain smartphones may be appropriate to record daily voice measures representing the effects of vocal loading within individuals. In addition, even though different algorithms are used to compute voice measures across software programs, some of the programs and measures share a similar relationship. PMID:28775797
Quantum dot as spin current generator and energy harvester
NASA Astrophysics Data System (ADS)
Szukiewicz, Barbara; Wysokiński, Karol I.
2015-05-01
The thermoelectric transport in the device composed of a central nanoscopic system in contact with two electrodes and subject to the external magnetic field of Zeeman type has been studied. The device can support pure spin current in the electrodes and may serve as a source of the temperature induced spin currents with possible applications in spintronics. The system may also be used as an energy harvester. We calculate its thermodynamic efficiency η and the power output P. The maximal efficiency of the device reaches the Carnot value when the device works reversibly but with the vanishing power. The interactions between carriers diminish the maximal efficiency of the device, which under the constant load drops well below the Carnot limit but may exceed the Curzon-Ahlborn limit. While the effect of intradot Coulomb repulsion on η depends on the parameters, the interdot/interlevel interaction strongly diminishes the device efficiency.
[Physical exercise versus exercise program using electrical stimulation devices for home use].
Santos, F M; Rodrigues, R G S; Trindade-Filho, E M
2008-02-01
To evaluate the effects of electrical muscle stimulation with devices for home use on neuromuscular conditioning. The study sample comprised 20 sedentary, right-handed, voluntary women aged from 18 to 25 years in the city of Maceió, Northeastern Brazil, in 2006. Subjects were randomly divided into two groups: group A included women who underwent muscle stimulation using commercial electrical devices; group B included those women who performed physical activities with loads. The training program for both groups consisted of two weekly sessions for two months, in a total of 16 sessions. Comparisons of body weight, cirtometry, fleximetry, and muscle strength before and after exercise were determined using the paired t-test. For the comparisons between both groups, Student's t-test was used and a 5% significance level was adopted. Muscle strength subjectively assessed before and after each intervention was increased in both groups. Significant increases in muscle mass and strength were seen only in those subjects who performed voluntary physical activity. Resisted knee flexion and extension exercises effectively increased muscle mass and strength when compared to electrical stimulation at 87 Hz which did not produce a similar effect. The study results showed that electrical stimulation devices for passive physical exercising commercially available are less effective than voluntary physical exercise.
Experimental and numerical investigation into the behavior of shape memory alloys
NASA Astrophysics Data System (ADS)
Philander, Oscar; Oliver, Graeme John; Sun, Bohua
2012-11-01
Research and development of smart alignment systems is currently being undertaken at the Smart Devices and MEMS Laboratory at the Cape Peninsula University of Technology. The intended devices will harness the remarkable phenomena of shape memory alloys (SMAs), i.e. the shape memory effect and pseudo-elasticity, for actuation purposes. These unique characteristics of shape memory alloy behavior results from an austenitic ⇔ martensitic phase transformation during heating or cooling and/or a de-twinning of the martensitic variants due to an applied load. This paper investigates the microscopic and macroscopic behavior of SMA wires and uses the dynamic one-dimensional thermodynamic and statistical thermodynamic constitutive model proposed by Müller and Achenbach and further refined by Müller and Seelecke in the design of SMA line actuators. This model permits the simulation of the response of a tensile specimen to a thermodynamic input and calculates all phase transformations, phase proportions and deformations as functions of time if the temperature and applied load are prescribed as functions of time. The aim of this research is to develop an understanding of the numerical model and its implementation in the design of SMA line actuators. Specific results should show response time of a given length of SMA wire subjected to an applied load and temperature increase, and the load - displacement relationships for both quasi-plastic and pseudo-elastic behaviors. This paper also introduces some of the devices currently under investigation by the Smart Alignment Systems Research Group.
Stief, Thomas; Peikenkamp, Klaus
2015-01-01
Stress occurring at the feet while wearing footwear is often determined using pressure measurement systems. However, other forms of stress, such as bending, torsional and shear loadings, cannot be detected in shoes during day-to-day activities. Nevertheless, the detection of these types of stresses would be helpful for understanding the mechanical aspects of various kinds of hard and soft tissue injuries. Therefore, we describe the development of a new measuring device that allows the reliable determination of bending and torsional load at the foot in shoes. The system consists of a measuring insole and an analogue device with Bluetooth interface. The specific shape of the insole base layer, the positions of the strain gauges, and the interconnections between them have all been selected in such a way so as to isolate bending and torsional moment detections in the medial and lateral metatarsal region. The system was calibrated using a classical two-point test procedure. A single case study was executed to evaluate the new device for practical use. This application consisted of one subject wearing neutral shoes walking on a treadmill. The calibration results (coefficients of determination R(2) > 0.999) show that bending and torsional load can be reliably detected using the measurement system presented. In the single case study, alternating bending and torsional load can be detected during walking, and the shape of the detected bending moments can be confirmed by the measurements of Arndt et al. (J Biomech 35:621-8, 2002). Despite some limitations, the presented device allows for the reliable determination of bending and torsional stresses at the foot in shoes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Adjusting and transferring loads, and car loading devices and grain doors (accounts XX-33-71 and XX-33-72). 1242.74 Section 1242.74 Transportation Other... loads, and car loading devices and grain doors (accounts XX-33-71 and XX-33-72). These accounts pertain...
NASA Astrophysics Data System (ADS)
Sassine, Nahia; Donzé, Frédéric-Victor; Bruch, Arnaud; Harthong, Barthélemy
2017-06-01
Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogenously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material.
Usage monitoring of electrical devices in a smart home.
Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A
2011-01-01
Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.
Analog Exercise Hardware to Implement a High Intensity Exercise Program During Bed Rest
NASA Technical Reports Server (NTRS)
Loerch, Linda; Newby, Nate; Ploutz-Snyder, Lori
2012-01-01
Background: In order to evaluate novel countermeasure protocols in a space flight analog prior to validation on the International Space Station (ISS), NASA's Human Research Program (HRP) is sponsoring a multi-investigator bedrest campaign that utilizes a combination of commercial and custom-made exercise training hardware to conduct daily resistive and aerobic exercise protocols. This paper will describe these pieces of hardware and how they are used to support current bedrest studies at NASA's Flight Analog Research Unit in Galveston, TX. Discussion: To implement candidate exercise countermeasure studies during extended bed rest studies the following analog hardware are being utilized: Stand alone Zero-Gravity Locomotion Simulator (sZLS) -- a custom built device by NASA, the sZLS allows bedrest subjects to remain supine as they run on a vertically-oriented treadmill (0-15 miles/hour). The treadmill includes a pneumatic subject loading device to provide variable body loading (0-100%) and a harness to keep the subject in contact with the motorized treadmill to provide a ground reaction force at their feet that is quantified by a Kistler Force Plate. Supine Cycle Ergometer -- a commercially available supine cycle ergometer (Lode, Groningen, Netherlands) is used for all cycle ergometer sessions. The ergometer has adjustable shoulder supports and handgrips to help stabilize the subject during exercise. Horizontal Squat Device (HSD) -- a custom built device by Quantum Fitness Corp (Stafford, TX), the HSD allows for squat exercises to be performed while lying in a supine position. The HSD can provide 0 to 600 pounds of force in selectable 5 lb increments, and allows hip translation in both the vertical and horizontal planes. Prone Leg Curl -- a commercially available prone leg curl machine (Cybex International Inc., Medway, MA) is used to complete leg curl exercises. Horizontal Leg Press -- a commercially available horizontal leg press (Quantum Fitness Corporation) is used for leg press and heel raise exercises. Minor modifications were made to the device including adding 200 lbs to the weight stack, raising the frame by 12 inches, making the footplate adjustable, and providing removable handles. Conclusion: A combination of novel and commercial exercise hardware are used to mimic the exercise hardware capabilities aboard the ISS, allowing scientific investigation of new countermeasure protocols in a space flight analog prior to flight validation
Biomechanical evaluation of CIBOR spine interbody fusion device.
Chong, Alexander C M; Harrer, Seth W; Heggeness, Michael H; Wooley, Paul H
2017-07-01
The CIBOR PEEK spinal interbody fusion device is an anterior lumbar interbody fusion construct with a hollow center designed to accommodate an osteoinductive carbon foam insert to promote bony ingrowth to induce fusion where rigid stabilization is needed. Three different sizes of the device were investigated. Part-I: implants were tested under axial compression and rotation using polyurethane foam blocks. Part-II: simulated 2-legged stance using cadaveric specimen using the L5-S1 lumbar spine segment. Part-III: a survey feedback form was used to investigate two orthopedic surgeons concern regarding the implant. In Part-I, the subsidence hysteresis under axial compression loading was found to be statistical significant difference between these three implant sizes. It was noted that the implants had migration as rotation applied, and the amount of subsidence was a factor of the axial compression loads applied. In Part-II, a minor subsidence and carbon foam debris were observed when compared to each implant size. Poor contact surface of the implant with the end plates of the L5 or S1 vertebrae from the anterior view under maximum loads was observed; however, the implant seemed to be stable. Each surgeon has their own subjective opinion about the CIBOR implant. Two out of the three different sizes of the device (medium and large sizes) provided appropriate rigid stabilization at the physiological loads. Neither orthopedic surgeon was 100% satisfied with overall performance of the implant, but felt potential improvement could be made. This study indicates an option for operative treatment of spine interbody fusion, as the CIBOR spine interbody fusion device has a hollow center. This hollow center is designed to accommodate a carbon foam insert to promote bony ingrowth. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1157-1168, 2017. © 2016 Wiley Periodicals, Inc.
MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design
NASA Astrophysics Data System (ADS)
Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.
2010-12-01
This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.
Gas loading of graphene-quartz surface acoustic wave devices
NASA Astrophysics Data System (ADS)
Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.
2013-08-01
Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.
NASA Astrophysics Data System (ADS)
Codina, R.; Ambrosini, D.
2018-03-01
For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.
Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke.
Khanna, Ira; Roy, Anindo; Rodgers, Mary M; Krebs, Hermano I; Macko, Richard M; Forrester, Larry W
2010-05-21
Hemiparesis after stroke often leads to impaired ankle motor control that impacts gait function. In recent studies, robotic devices have been developed to address this impairment. While capable of imparting forces to assist during training and gait, these devices add mass to the paretic leg which might encumber patients' gait pattern. The purpose of this study was to assess the effects of the added mass of one of these robots, the MIT's Anklebot, while unpowered, on gait of chronic stroke survivors during overground and treadmill walking. Nine chronic stroke survivors walked overground and on a treadmill with and without the anklebot mounted on the paretic leg. Gait parameters, interlimb symmetry, and joint kinematics were collected for the four conditions. Repeated-measures analysis of variance (ANOVA) tests were conducted to examine for possible differences across four conditions for the paretic and nonparetic leg. The added inertia and friction of the unpowered anklebot had no statistically significant effect on spatio-temporal parameters of gait, including paretic and nonparetic step time and stance percentage, in both overground and treadmill conditions. Noteworthy, interlimb symmetry as characterized by relative stance duration was greater on the treadmill than overground regardless of loading conditions. The presence of the unpowered robot loading reduced the nonparetic knee peak flexion on the treadmill and paretic peak dorsiflexion overground (p < 0.05). Our results suggest that for these subjects the added inertia and friction of this backdriveable robot did not significantly alter their gait pattern.
NASA Astrophysics Data System (ADS)
Yaqoob, Usman; Chung, Gwiy-Sang
2017-09-01
This study investigates the effect of reduced graphene oxide (rGO) on the energy harvesting performance of poly(vinylidenefluoride-trifluoroethylene)-barium titanate (P(VDF-TrFE)-BTO) nanocomposite devices. Several piezoelectric nanogenerators with different rGO contents were prepared, among them PBR5-NG (rGO = 0.5%) exhibited maximum output performance. PBR5-NG showed a maximum open circuit voltage of 8.5 Vpk-pk and short circuit current of 2 μApk-pk at an applied force of 2 N. Moreover, PBR5-NG displayed an output power of 4.5 μW at 2 MΩ load resistance. To confirm device stability, the fabricated device was subjected to several pressing-releasing cycles. The device had excellent stability, even after 1000 pressing-releasing cycles. Together, our results indicate that our fabricated PBR5-NG is a promising energy source for future flexible electronics.
Predicting successful tactile mapping of virtual objects.
Brayda, Luca; Campus, Claudio; Gori, Monica
2013-01-01
Improving spatial ability of blind and visually impaired people is the main target of orientation and mobility (O&M) programs. In this study, we use a minimalistic mouse-shaped haptic device to show a new approach aimed at evaluating devices providing tactile representations of virtual objects. We consider psychophysical, behavioral, and subjective parameters to clarify under which circumstances mental representations of spaces (cognitive maps) can be efficiently constructed with touch by blindfolded sighted subjects. We study two complementary processes that determine map construction: low-level perception (in a passive stimulation task) and high-level information integration (in an active exploration task). We show that jointly considering a behavioral measure of information acquisition and a subjective measure of cognitive load can give an accurate prediction and a practical interpretation of mapping performance. Our simple TActile MOuse (TAMO) uses haptics to assess spatial ability: this may help individuals who are blind or visually impaired to be better evaluated by O&M practitioners or to evaluate their own performance.
Chan, Danwin; Green, Simon; Fiatarone Singh, Maria; Barnard, Robert; Cheema, Birinder S
2016-10-01
Introduction This study assessed the feasibility and efficacy of a novel resistance training device used within an intradialytic progressive resistance training (PRT) intervention. Methods Non-randomized, within-subjects crossover design with outcomes assessed at baseline (week 0), postcontrol (week 13) and post-PRT intervention (week 26). Twenty-two hemodialysis patients (59% men, 71 ± 11 years) performed PRT three sessions per week for 12 weeks. The resistance training device was developed to enable the performance of 2 upper body and 3 lower body exercises, unilaterally and bilaterally, both before and during dialysis, with loads of 2.5 to 59 kg. Feasibility outcomes included adverse events, adherence and training load progression. Changes in upper and lower body muscular strength, six-minute walk, aspects of health-related quality of life (HRQoL) and depression were evaluated. Findings The PRT intervention was delivered without serious adverse events, resulted in 71.2% ± 23.3% adherence and significant adaptation of all training loads from pre to mid to post training (83.8%-185.6%, all P < 0.05). Lower body strength (P < 0.001) and HRQoL subscales (Role-Physical, Social Functioning, Role-Emotional) significantly increased (all P < 0.01) and a trend toward reduced depression was noted (P = 0.06). No significant changes were noted in other outcomes. Discussion PRT using the novel resistance training device was feasible and improved measures of physical and psychological health. This device can be utilized in most dialysis centers. Future studies are required to evaluate dose-response effects of PRT prescriptions in subpopulations, and the translation of PRT to standard dialysis practice. © 2016 International Society for Hemodialysis.
Loading Configurations and Ground Reaction Forces During Treadmill Running in Weightlessness
NASA Technical Reports Server (NTRS)
DeWitt, John; Schaffner, Grant; Blazine, Kristi; Bentley, Jason; Laughlin, Mitzi; Loehr, James; Hagan, Donald
2003-01-01
Studies have shown losses in bone mineral density of 1-2% per month in critical weight bearing areas such as the proximal femur during long-term space flight (Grigoriev, 1998). The astronauts currently onboard the International Space Station (ISS) use a treadmill as an exercise countermeasure to bone loss that occurs as a result of prolonged exposure to weightlessness. A crewmember exercising on the treadmill is attached by a harness and loading device. Ground reaction forces are obtained through the loading device that pulls the crewn1ember towards the treadmill surface during locomotion. McCrory et al. (2002) found that the magnitude of the peak ground reaction force (pGRF) during horizontal suspension running, or simulated weightlessness, was directly related to the load applied to the subject. It is thought that strain magnitude and strain rate affects osteogenesis, and is a function of the magnitude and rate of change of the ground reaction force. While it is not known if a minimum stimulus exists for osteogenesis, it has been hypothesized that in order to replicate the bone formation occurring in normal gravity (1 G), the exercise in weightlessness should mimic the forces that occur on earth. Specifically, the pGRF obtained in weightlessness should be comparable to that achieved in 1 G.
Guerrero, Waldo R; Ortega-Gutierrez, Santiago; Hayakawa, Minako; Derdeyn, Colin P; Rossen, James D; Hasan, David; Samaniego, Edgar A
2018-01-01
Treatment of ruptured posterior circulation dissecting aneurysms is technically challenging with potentially high morbidity and mortality. We sought to assess the safety and feasibility of using a flow-diversion device (FDD) and a specific acute antiplatelet aggregation protocol in the management of ruptured dissecting aneurysms. Subjects with ruptured dissecting aneurysms treated during a 3-year period were retrospectively identified from a prospective registry. Intraoperative complications, morbidity, and mortality were recorded. Tirofiban maintenance infusion without bolus was administered intravenously immediately after deployment of the FDD, and almost all patients were loaded with dual antiplatelet (aspirin and clopidogrel) post procedure. Clinical follow-up evaluation and modified Rankin Scale were assessed. Nine subjects with ruptured posterior circulation dissecting aneurysms were treated with an FDD: 5 vertebral artery, 2 basilar artery, and 2 posterior inferior cerebellar artery aneurysms. Average World Federation of Neurosurgical Societies score was 2 (range 1-5). Seven patients had external ventricular drain placed acutely for hydrocephalus. Eight patients received tirofiban infusion without bolus after FDD. No intraoperative complications occurred. Two subjects developed asymptomatic intraparenchymal hemorrhage found on surveillance noncontrast computed tomography. One subject suffered a major intraparenchymal hemorrhage and died a few days post intervention after additional anticoagulation was started for a left ventricular assist device. Follow-up modified Rankin Scale within 12 months was 0 in 3 subjects, 1 in 3 subjects, 2 in 1 subject, and 4 in 1. Treatment of dissecting posterior circulation aneurysms with FDDs is feasible and a potential alternative to deconstructive techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimum Parameters of a Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load
NASA Astrophysics Data System (ADS)
Alkmim, M. H.; de Morais, M. V. G.; Fabro, A. T.
2017-12-01
Parameter optimization for tuned liquid column dampers (TLCD), a class of passive structural control, have been previously proposed in the literature for reducing vibration in wind turbines, and several other applications. However, most of the available work consider the wind excitation as either a deterministic harmonic load or random load with white noise spectra. In this paper, a global direct search optimization algorithm to reduce vibration of a tuned liquid column damper (TLCD), a class of passive structural control device, is presented. The objective is to find optimized parameters for the TLCD under stochastic load from different wind power spectral density. A verification is made considering the analytical solution of undamped primary system under white noise excitation by comparing with result from the literature. Finally, it is shown that different wind profiles can significantly affect the optimum TLCD parameters.
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach.
Chertkov, Michael; Chernyak, Vladimir
2017-08-17
Thermostatically controlled loads, e.g., air conditioners and heaters, are by far the most widespread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control - changing from on to off, and vice versa, depending on temperature. We considered aggregation of a large group of similar devices into a statistical ensemble, where the devices operate following the same dynamics, subject to stochastic perturbations and randomized, Poisson on/off switching policy. Using theoretical and computational tools of statistical physics, we analyzed how the ensemble relaxes to a stationary distribution and established a relationship between the relaxation and the statistics of the probability flux associated with devices' cycling in the mixed (discrete, switch on/off, and continuous temperature) phase space. This allowed us to derive the spectrum of the non-equilibrium (detailed balance broken) statistical system and uncover how switching policy affects oscillatory trends and the speed of the relaxation. Relaxation of the ensemble is of practical interest because it describes how the ensemble recovers from significant perturbations, e.g., forced temporary switching off aimed at utilizing the flexibility of the ensemble to provide "demand response" services to change consumption temporarily to balance a larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach
Chertkov, Michael; Chernyak, Vladimir
2017-01-17
Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature - changing from on to off , and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the re- laxationmore » and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off , and continuous, temperature) phase space. This allowed us to derive and analyze spec- trum of the non-equilibrium (detailed balance broken) statistical system. and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching o aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.« less
Ensemble of Thermostatically Controlled Loads: Statistical Physics Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertkov, Michael; Chernyak, Vladimir
Thermostatically Controlled Loads (TCL), e.g. air-conditioners and heaters, are by far the most wide-spread consumers of electricity. Normally the devices are calibrated to provide the so-called bang-bang control of temperature - changing from on to off , and vice versa, depending on temperature. Aggregation of a large group of similar devices into a statistical ensemble is considered, where the devices operate following the same dynamics subject to stochastic perturbations and randomized, Poisson on/off switching policy. We analyze, using theoretical and computational tools of statistical physics, how the ensemble relaxes to a stationary distribution and establish relation between the re- laxationmore » and statistics of the probability flux, associated with devices' cycling in the mixed (discrete, switch on/off , and continuous, temperature) phase space. This allowed us to derive and analyze spec- trum of the non-equilibrium (detailed balance broken) statistical system. and uncover how switching policy affects oscillatory trend and speed of the relaxation. Relaxation of the ensemble is of a practical interest because it describes how the ensemble recovers from significant perturbations, e.g. forceful temporary switching o aimed at utilizing flexibility of the ensemble in providing "demand response" services relieving consumption temporarily to balance larger power grid. We discuss how the statistical analysis can guide further development of the emerging demand response technology.« less
Load regulating expansion fixture
Wagner, Lawrence M.; Strum, Michael J.
1998-01-01
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.
NASA Astrophysics Data System (ADS)
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-01
We explore optimization methods for planning the placement, sizing and operations of flexible alternating current transmission system (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to series compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of linear programs (LP) that are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically sized networks that suffer congestion from a range of causes, including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically sized network.
Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha
2014-10-24
We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l 1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPowermore » Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less
Kang, Yun-Seok; Bolte, John H; Moorhouse, Kevin; Donnelly, Bruce; Herriott, Rodney; Mallory, Ann
2012-10-01
The objectives of this study were to obtain biomechanical responses of post mortem human subjects (PMHS) by subjecting them to two moderate-speed rear impact sled test conditions (8.5g, 17 km/h; 10.5g, 24 km/h) while positioned in an experimental seat system, and to create biomechanical targets for internal and external biofidelity evaluation of rear impact ATDs. The experimental seat was designed to measure external loads on the head restraint (4 load cells), seat back (6 load cells), and seat pan (4 load cells) such that subject dynamic interaction with the seat could be evaluated. This seat system was capable of simulating the dynamic characteristics of modern vehicle seat backs by considering the moment-rotation properties of a typical passenger vehicle, thus providing a more realistic test environment than using a rigid seat with a non-rotating seat back as done in previous studies. Instrumentation used to measure biomechanical responses of the PMHS included both accelerometers and angular rate sensors (ARS). A total of fourteen sled tests using eight PMHS (males 175.8 ± 6.2 cm of stature and 78.4 ± 7.2 kg of weight) provided data sets of seven PMHS for both test conditions. The biomechanical responses are described at both speeds, and cervical spine injuries are documented. Biomechanical targets are also created for internal and external biofidelity evaluation of rear impact anthropomorphic test devices (ATDs).
Implementing wavelet inverse-transform processor with surface acoustic wave device.
Lu, Wenke; Zhu, Changchun; Liu, Qinghong; Zhang, Jingduan
2013-02-01
The objective of this research was to investigate the implementation schemes of the wavelet inverse-transform processor using surface acoustic wave (SAW) device, the length function of defining the electrodes, and the possibility of solving the load resistance and the internal resistance for the wavelet inverse-transform processor using SAW device. In this paper, we investigate the implementation schemes of the wavelet inverse-transform processor using SAW device. In the implementation scheme that the input interdigital transducer (IDT) and output IDT stand in a line, because the electrode-overlap envelope of the input IDT is identical with the one of the output IDT (i.e. the two transducers are identical), the product of the input IDT's frequency response and the output IDT's frequency response can be implemented, so that the wavelet inverse-transform processor can be fabricated. X-112(0)Y LiTaO(3) is used as a substrate material to fabricate the wavelet inverse-transform processor. The size of the wavelet inverse-transform processor using this implementation scheme is small, so its cost is low. First, according to the envelope function of the wavelet function, the length function of the electrodes is defined, then, the lengths of the electrodes can be calculated from the length function of the electrodes, finally, the input IDT and output IDT can be designed according to the lengths and widths for the electrodes. In this paper, we also present the load resistance and the internal resistance as the two problems of the wavelet inverse-transform processor using SAW devices. The solutions to these problems are achieved in this study. When the amplifiers are subjected to the input end and output end for the wavelet inverse-transform processor, they can eliminate the influence of the load resistance and the internal resistance on the output voltage of the wavelet inverse-transform processor using SAW device. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparison of the US and Russian Cycle Ergometers
NASA Technical Reports Server (NTRS)
Norcross, Jason; Bentley, Jason R.; Moore, Alan D.; Hagan, R. Donald
2007-01-01
The purpose of this study was to compare the U.S. and Russian cycle ergometers focusing on the mechanical differences of the devices and the physiological differences observed while using the devices. Methods: First, the mechanical loads provided by the U.S. Cycle Ergometer with Vibration Isolation System (CEVIS) and the Russian Veloergometer were measured using a calibration dynamometer. Results were compared and conversion equations were modeled to determine the actual load provided by each device. Second, ten male subjects (32.9 +/- 6.5 yrs, 180.6 +/- 4.4 cm; 81.9 +/- 6.9 kg) experienced with both cycling and exercise testing completed a standardized submaximal exercise test protocol on CEVIS and Veloergometer. The exercise protocol involved 8 sub-maximal workloads each lasting 3 minutes for a total of 24 minutes per session, or until the end of the stage when the subject reached 85% of peak oxygen consumption or age-predicted maximum heart rate (220 - age). The workload started at 50 Watts (W), increased to 100 W, and then increased 25 W every 3 minutes until reaching a peak workload of 250 W. Physiological variables were then compared at each workload by repeated measures ANOVA or paired t-tests (p<0.05). Results: While both CEVIS and Veloergometer produced significantly lower workloads than the displayed workload, CEVIS produced even lower loads than Veloergometer (p<0.05) at each indicated workload. Despite this fact, the only physiological variables that showed a significant difference between the ergometers were VE (125 - 250W), VO2 (175 and 250 W), and VCO2 (175 W). All other physiological data were not statistically different between CEVIS and Veloergometer. Conclusion: Although workloads were different between ergometers, relatively few physiological differences were observed. Therefore, CEVIS workloads of 87.5 - 262.5 W can be rounded to the nearest 25 W increment and performed on the Veloergometer.
Load regulating expansion fixture
Wagner, L.M.; Strum, M.J.
1998-12-15
A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.
Patellar tendon load in different types of eccentric squats.
Frohm, A; Halvorsen, K; Thorstensson, A
2007-07-01
Differences in mechanical loading of the patellar tendon have been suggested as a reason for varying effects in rehabilitation of patellar tendinopathy using different eccentric squat exercises and devices. The aim was to characterize the magnitude and pattern of mechanical load at the knee and on the patellar tendon during four types of eccentric squat. Subjects performed squats with a submaximal free weight and with maximal effort in a device for eccentric overloading (Bromsman), on a decline board and horizontal surface. Kinematics was recorded with a motion-capture system, reaction forces with force plates, and electromyography from three leg muscles with surface electrodes. Inverse dynamics was used to calculate knee joint kinetics. Eccentric work, mean and peak patellar tendon force, and angle at peak force were greater (25-30%) for squats on decline board compared to horizontal surface with free weight, but not in Bromsman. Higher knee load forces (60-80%), but not work, were observed with Bromsman than free weight. Angular excursions at the knee and ankle were larger with decline board, particularly with free weight, and smaller in Bromsman than with free weight. Mean electromyography was greater on a decline board for gastrocnemius (13%) and vastus medialis (6%) with free weight, but in Bromsman only for gastrocnemius (7%). The results demonstrated clear differences in the biomechanical loading on the knee during different squat exercises. Quantification of such differences provides information that could be used to explain differences in rehabilitation effects as well as in designing more optimal rehabilitation exercises for patellar tendinopathy.
Off-loading strategies in diabetic foot syndrome-evaluation of different devices.
Götz, Jürgen; Lange, Mario; Dullien, Silvia; Grifka, Joachim; Hertel, Gernot; Baier, Clemens; Koeck, Franz
2017-02-01
Diabetic foot syndrome is one of the most dreaded complications in diabetes mellitus. The purpose of this study was to assess the value of different offloading devices compared to walking in barefoot condition and in normal shoes both in healthy subjects and in patients with diabetes and neuropathy. Twenty patients with diabetes and polyneuropathy and ten healthy probands were included. Pedobarographic examination was performed in barefoot condition, with sneakers, postoperative shoes, Aircast® Diabetic Pneumatic Walker™ and VACO®diaped. In the diabetic group, a total contact cast was additionally tested. The most effective reduction of force was achieved by TCC (75%) and VACOdiaped (64.3%) with the VACO®diaped resulting in the most homogeneous distribution of forces all over the foot. A customized device like the TCC is still the most proven offloading device. However, a removable cast walker being based on vacuum pads and a cushioning sole, provides better results concerning force distribution.
Load power device, system and method of load control and management employing load identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Luebke, Charles John; Schoepf, Thomas J.
A load power device includes a power input, at least one power output for at least one load, a plurality of sensors structured to sense voltage and current at the at least one power output, and a processor. The processor provides: (a) load identification based upon the sensed voltage and current, and (b) load control and management based upon the load identification.
Effects of geared motor characteristics on tactile perception of tissue stiffness.
Longnion, J; Rosen, J; Sinanan, M; Hannaford, B
2001-01-01
Endoscopic haptic surgical devices have shown promise in addressing the loss of tactile sensation associated with minimally invasive surgery. However, these devices must be capable of generating forces and torques similar to those applied on the tissue with a standard endoscopic tool. Geared motors are a possible solution for actuation; however, they possess mechanical characteristics that could potentially interfere with tactile perception of tissue qualities. The aim of the current research was to determine how the characteristics of a geared motor suitable for a haptic surgical device affect a user's perception of stiffness. The experiment involved six blindfolded subjects who were asked to discriminate the stiffness of six distinct silicone rubber samples whose mechanical properties are similar to those of soft tissue. Using a novel testing device whose dimensions approximated those of an endoscopic grasper, each subject palpated 30 permutations of sample pairs for each of three types of mechanical loads; the motor (friction and inertia), a flywheel (with the same inertia as motor), and a control (no significant mechanical interference). One factor ANOVA of the error scores and palpation time showed that no significant difference existed among error scores, but mean palpation time for the control was significantly less than for the other two methods. These results indicated that the mechanical characteristics of a geared motor chosen for application in a haptic surgical device did not interfere with the subjects' perception of the silicone samples' stiffness, but these characteristics may significantly affect the energy expenditure and time required for tissue palpation. Therefore, before geared motors can be considered for use in haptic surgical devices, consideration should be given to factors such as palpation speed and fatigue.
Implicit Formulation of Muscle Dynamics in OpenSim
NASA Technical Reports Server (NTRS)
Humphreys, Brad; Dembia, Chris; Lewandowski, Beth; Van Den Bogert, Antonie
2017-01-01
Astronauts lose bone and muscle mass during spaceflight. Exercise countermeasure is the primary method for counteracting bone and muscle mass loss in space. New spacecraft exercise device concepts are currently being developed for the NASAs new crew exploration vehicle. The NASA Digital Astronaut Project (DAP) uses computational modeling to help determine if the new exercise devices will be effective as countermeasures. The NASA Digital Astronaut Project is developing the ability to utilize predictive simulation to provide insight into the change in kinematics and kinetics with a change in device and gravitational environment (1-g versus 0-g). For example, in space exercise the subject's body weight is applied in addition to the loads prescribed for musculoskeletal maintenance. How and where these loads are applied obviously directly impacts bone and tissue loads. Additionally, due to space vehicle structural requirements, exercise devices are often placed on vibration isolation systems. This changes the apparent impedance or stiffness of the device as seen by the user. Data collection under these conditions is often impractical and limited. Predictive modeling provides a means to have a virtual subject to test hypotheses. Predictive simulation provides a virtual subject for which we are able to perform studies such as sensitivity to device loading and vibration isolation without the need for laboratory kinematic or kinetic test data.Direct Collocation optimization provides an efficient means to perform task based optimization and predictive modeling. It is relatively straight forward to structure a physical exercise task in a Direct Collocation mathematical formulation: perform a motion such that you start at an initial pose, achieve a given amount of deflection i.e a squat, return to the initial pose, and minimize muscle activation cost. Direct Collocation is advantageous in that it does not require numerical integration to evaluate the objective function. Instead, the system dynamics are transformed to discrete time and the optimizer is constrained such that the solution is not considered to be a valid unless the dynamic equations are satisfied at all time points. The simulation and optimization are effectively done simultaneously. Due to the implicit integration, time steps can be more coarse than in a differential equation solver. In a gait scenario this means that that the model constraints and cost function are evaluated at 100 nodes in the gait cycle versus 10,000 integration steps in a variable-step forward dynamic simulation. Furthermore, no time is wasted on accurate simulations of movements that are far from the optimum. Constrained optimization algorithms require a Jacobian matrix that contains the partial derivatives of each of the dynamic constraints with respect to of each of the state and control variables at all time points. This is a large but sparse matrix. An implicit dynamics formulation requires computation of the dynamic residuals f as a function of the states x and their derivatives, and controls u:f(x, dxdt, u) 0If the dynamics of musculoskeletal system are formulated implicitly, the Jacobian elements are often available analytically, eliminating the need for numerical differentiation; this is obviously computationally advantageous. Additionally, implicit formulation of musculoskeletal dynamics do not suffer from singularities from low mass bodies, zero muscle activation, or other stiff system or
The Hopper: A Wearable Robotic Device Testbed for Micro-Gravity Bone-Loading Proof-of-Concept
NASA Technical Reports Server (NTRS)
Beck, C. E.; Rovekamp, R. N.; Neuhaus, P. D.
2015-01-01
Wearable robotic systems are showing increased potential for addressing crew countermeasures needs. Wearable robots offer a compactness, programmability, and eccentric loading capability not present in more conventional exercise equipment. Correspondingly, advancements in the man to machine interface has progressed, allowing for higher loads to be applied directly to the person in new and novel ways. Recently, the X1 exoskeleton, a lower extremity wearable robot originally designed for mobility assistance and rehabilitation, underwent human subject testing to assess its potential as a knee dynamometer. This was of interest to NASA physiologists because currently strength is not assessed in flight due to hardware limitations, and thus there is a poor understanding of the time course of in-flight changes to muscle strength. The study concluded that the X1 compared well with the Biodex, the "gold standard" in terrestrial dynamometry, with coefficients of variation less than 6.0%. In a following study, the X1 powered ankle was evaluated for its efficacy in exercising calf muscles. Current on-orbit countermeasures equipment does not adequately protect the calf from atrophy. The results of this study were also positive (targeted muscle activity demonstrated via comparing pre- and post-exercise magnetic resonance imaging T2 measurements), again showing the efficacy of wearable robotic devices for addressing the countermeasure needs of our astronauts. Based on these successes and lessons learned, the Grasshopper was co-developed between IHMC (Florida Institute for Human and Machine Cognition) and NASA. The Grasshopper, or the Hopper for short, is a wearable robotic device designed to address muscle and bone density loss for astronauts spending extended periods of time in micro-gravity. The Grasshopper connects to the user's torso like a hiking backpack, over the shoulders and around the waist. At the feet are footplates that strap to the user. There are two actuators, one at each "knee" joint, which are capable of high fidelity torque control. Because the Hopper uses motors instead of gravity to create the load on the user, the device is suited for use on space missions. Exercise in zero-gravity conditions is critical to maintain muscle strength and bone mass. In operation, the actuators try to fold up, or collapse, the device, putting a compressive load between the user's feet and torso. This force is similar to carrying a heavy backpack. The user then bends and extends his or her knees, replicating a weightlifting squat exercise. The applied load is precisely controlled by a computer, and can be programmed to simulate gravitation loads or any desired load prescription, such as free-weight squat exercise. It is even possible to perform eccentric exercises, or negatives, without the need for a spotter. Because the hip joints, as well as the spine and long leg bones, are in the applied load path, there is the potential to stimulate bone growth, countering the typical bone loss when astronauts return from extended duration space travel.
Power control system and method
Steigerwald, Robert Louis [Burnt Hills, NY; Anderson, Todd Alan [Niskayuna, NY
2008-02-19
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
Power control system and method
Steigerwald, Robert Louis; Anderson, Todd Alan
2006-11-07
A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.
On-line DNA analysis system with rapid thermal cycling
Swerdlow, Harold P.; Wittwer, Carl T.
1999-01-01
An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.
On-line DNA analysis system with rapid thermal cycling
Swerdlow, H.P.; Wittwer, C.T.
1999-08-10
This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.
Note: Motor-piezoelectricity coupling driven high temperature fatigue device
NASA Astrophysics Data System (ADS)
Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.
2018-01-01
The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.
Program for the development of high temperature electrical materials and components
NASA Technical Reports Server (NTRS)
Neff, W. S.; Lowry, L. R.
1972-01-01
Evaluation of high temperature, space-vacuum performance of selected electrical materials and components, high temperature capacitor development, and evaluation, construction, and endurance testing of compression sealed pyrolytic boron nitride slot insulation are described. The first subject above covered the aging evaluation of electrical devices constructed from selected electrical materials. Individual materials performances were also evaluated and reported. The second subject included study of methods of improving electrical performance of pyrolytic boron nitride capacitors. The third portion was conducted to evaluate the thermal and electrical performance of pyrolytic boron nitride as stator slot liner material under varied temperature and compressive loading. Conclusions and recommendations are presented.
In vitro wear of various orthotic device materials.
Casey, Jeffery; Dunn, William J; Wright, Edward
2003-11-01
Orthotic devices are advocated to decrease occlusal attrition caused by bruxism but tend to wear with time. This study investigated the wear rate of various materials used to fabricate orthotic devices. Five experimental groups (n=8) were studied: Splint Biocryl autopolymerized (SBA), Splint Biocryl autopolymerized plus additional heat and pressure (SBHP), Forestacryl autopolymerized (FA), Forestacryl autopolymerized plus additional heat and pressure (FHP), and Quick Splint 15-minute (QS), light-polymerized composite. Specimens were mounted to the base of a universal testing machine. A wear device using steatite balls and a load of 9.1 kg was positioned against the specimens, submerged in a 37 degrees C water bath and subjected to 2500 reciprocal cycles. Wear, in micrometers, was calculated as the maximum peak to valley measurement (Ry) using profilometry. Data were subjected to analysis of variance (ANOVA) and Tukey's HSD (alpha=.05). Mean acrylic wear in micrometers was as follows: FA 6.8 +/-3.0; FHP 7.1 +/- 1.8; SBA 20.4 +/- 5.6; SBHP 23.7 +/- 7.8; and QS 23.8 +/- 6.9. One-way ANOVA detected significant differences between groups (P<.001); the Tukey honestly significant difference test determined that FA and FHP specimens were significantly more resistant to wear than all other specimens (P=.007). Differences in in vitro wear resistance among various orthotic device materials exist. The in vitro wear resistance among other autopolymerizing materials appears to be related to proprietary differences.
Fundamentals of heat measurement. [heat flux transducers
NASA Technical Reports Server (NTRS)
Gerashchenko, O. A.
1979-01-01
Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.
Method to Eliminate Flux Linkage DC Component in Load Transformer for Static Transfer Switch
2014-01-01
Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2~30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method. PMID:25133255
Method to eliminate flux linkage DC component in load transformer for static transfer switch.
He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing
2014-01-01
Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.
NASA Astrophysics Data System (ADS)
Valeri, Guillermo; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.
2017-04-01
An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanborn, Brett; Song, Bo; Smith, Scott
Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less
Sanborn, Brett; Song, Bo; Smith, Scott
2015-12-29
Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less
In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection
Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed
2006-08-29
A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.
The Very Specific Vortex Shedding Test on VEGA Launch Vehicle
NASA Astrophysics Data System (ADS)
Leofanti, Jose Luis; Fotio, Domenico; Grillenbeck, Anton; Dillinger, Stephan; Scaccia, Aldo
2012-07-01
When tall structures are subjected to lateral wind flow, under certain conditions, vortices are shed from alternate sides of the structure inducing periodic cross wind loads on the structure. The periodic loads, in a relatively narrow and stable frequency band, can couple with the structure’s natural frequencies. To avoid this effect the VEGA Launch System (LS) comprised a decoupling device at the launch vehicle (LV) base called Anti Vortex Shedding (AVS). During the LV-Ground Segment combined test campaign in Kourou, the LV mounted on AVS was experimentally verified, including a modal characterization test, a verification under artificial operational loads and finally tested under real wind environment. The paper gives an overview on the particular aspects of test planning, the test setup preparation inside the launch pad gantry, the test performance, test results and the conclusion for the VEGA launch system’s operational readiness.
Load power device and system for real-time execution of hierarchical load identification algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh
A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.
Evaluation of load transfer devices : final report.
DOT National Transportation Integrated Search
1975-11-01
This report describes the procedures and findings of a study conducted to evaluate two types of load transfer devices used in Louisiana--steel dowel bars and starlugs (a patented device). A statistical comparison was accomplished by evaluating existi...
46 CFR 64.59 - Spring loaded pressure relief valve.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...
46 CFR 64.59 - Spring loaded pressure relief valve.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...
46 CFR 64.59 - Spring loaded pressure relief valve.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...
46 CFR 64.59 - Spring loaded pressure relief valve.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...
46 CFR 64.59 - Spring loaded pressure relief valve.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Spring loaded pressure relief valve. 64.59 Section 64.59... AND CARGO HANDLING SYSTEMS Pressure Relief Devices and Vacuum Relief Devices for MPTs § 64.59 Spring loaded pressure relief valve. A spring loaded pressure relief valve must— (a) Be set at a nominal...
Pneumatic bracing and total contact casting have equivocal effects on plantar pressure relief.
Hartsell, H D; Fellner, C; Saltzman, C L
2001-06-01
The purpose was to examine and compare plantar pressures produced in healthy subjects while wearing a running shoe (RS), total contact cast (TCC) and 'customized' pneumatic pre-fabricated walking brace (PWB). A repeated measures design was used to compare the plantar pressures recorded for three footwear types (RS, TCC, PWB) in two body regions (forefoot, heel). Nine healthy subjects walked at a self-selected walking pace on a motorized treadmill while wearing the RS, TCC and PWB (ordered randomization). Following a five-minute acclimatization period on the treadmill with each footwear device, plantar pressures were recorded from 84 constant gait speed and step length steps using the Pedar system of in-shoe array of capacitive sensors embedded in an insert. Mean spatially averaged peak plantar pressures were recorded for the metatarsal heads and heel region for each footwear device worn by each subject. A two-way analysis of variance with repeated measures and post-hoc Tukey tests analysed the data with a significance level of p=.05. The main effects of footwear (p=.005) and body region (p=.000), and interaction effect (body region x footwear device) (p=.000) were significant. Unloading of the forefoot was 63.72% and 58.77% for the TCC and PWB, respectively, whereas loading under the heel was increased 37.09% and 34.11% for the same two devices, respectively. Patients who develop neuropathic plantar ulcers in the forefoot region, but not in the heel region, may benefit from a reduction in plantar pressures by using either the TCC or a 'customized' PWB. An alternative footwear device still needs to be found for those patients with heel ulceration.
Negative viscosity can enhance learning of inertial dynamics.
Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A
2009-06-01
We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.
RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture.
Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan
2011-03-01
In this paper, we present and demonstrate RF-MEMS load sensors designed and fabricated in a suspended architecture that increases their quality-factor (Q-factor), accompanied with an increased resonance frequency shift under load. The suspended architecture is obtained by removing silicon under the sensor. We compare two sensors that consist of 195 μm × 195 μm resonators, where all of the resonator features are of equal dimensions, but one's substrate is partially removed (suspended architecture) and the other's is not (planar architecture). The single suspended device has a resonance of 15.18 GHz with 102.06 Q-factor whereas the single planar device has the resonance at 15.01 GHz and an associated Q-factor of 93.81. For the single planar device, we measured a resonance frequency shift of 430 MHz with 3920 N of applied load, while we achieved a 780 MHz frequency shift in the single suspended device. In the planar triplet configuration (with three devices placed side by side on the same chip, with the two outmost ones serving as the receiver and the transmitter), we observed a 220 MHz frequency shift with 3920 N of applied load while we obtained a 340 MHz frequency shift in the suspended triplet device with 3920 N load applied. Thus, the single planar device exhibited a sensitivity level of 0.1097 MHz/N while the single suspended device led to an improved sensitivity of 0.1990 MHz/N. Similarly, with the planar triplet device having a sensitivity of 0.0561 MHz/N, the suspended triplet device yielded an enhanced sensitivity of 0.0867 MHz/N.
Ferreira, A E R; Castro, B F M; Vieira, L C; Cassali, G D; Souza, C M; Fulgêncio, G O; Ayres, E; Oréfice, R L; Jorge, R; Silva-Cunha, A; Fialho, S L
2017-03-01
To evaluate the antiangiogenic activity of bevacizumab-loaded polyurethane using two animal models of neovascularization. The percentage of blood vessels was evaluated in a chicken chorioallantoic membrane model (n=42) and in the rabbit cornea (n=24) with neovascularization induced by alkali injury. In each model, the animals were randomly divided into the groups treated with the bevacizumab-loaded polyurethane device, phosphate-buffered-saline (negative control) and bevacizumab commercial solution (positive control). Clinical examination, as well as histopathological and immunohistochemical evaluation, were performed in the rabbit eyes. Microvascular density in hot spot areas was determined in semi-thin sections of corneal tissue by hematoxylin-eosin staining and factor VIII immunohistochemistry. Immunohistochemical analysis was also performed to evaluate VEGF expression. In the evaluated models, the use of bevacizumab (Avastin ® ) and the bevacizumab-loaded polyurethane device led to similar results with regard to inhibition of neovascularization. In the chorioallantoic membrane model, the bevacizumab-loaded polyurethane device reduced angiogenesis by 50.27% when compared to the negative control group. In the rabbit model of corneal neovascularization, the mean density of vessels/field was reduced by 46.87% on analysis of factor VIII immunohistochemistry photos in the bevacizumab-loaded polyurethane device group as compared to the negative control (PBS) sections. In both models, no significant difference could be identified between the bevacizumab-loaded polyurethane device and the positive control group, leading to similar results with regard to inhibition of neovascularization. The present study shows that the bevacizumab-loaded polyurethane device may release bevacizumab and inhibit neovascularization similarly to commercial bevacizumab solution in the short-term. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
NASA Astrophysics Data System (ADS)
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-03-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models
NASA Astrophysics Data System (ADS)
Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza
2018-02-01
Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.
Kutzner, Ines; Dymke, Jörn; Damm, Philipp; Duda, Georg N.; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36–55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies. PMID:28319145
Kutzner, Ines; Richter, Anja; Gordt, Katharina; Dymke, Jörn; Damm, Philipp; Duda, Georg N; Günzl, Reiner; Bergmann, Georg
2017-01-01
Aquatic exercises are widely used for rehabilitation or preventive therapies in order to enable mobilization and muscle strengthening while minimizing joint loading of the lower limb. The load reducing effect of water due to buoyancy is a main advantage compared to exercises on land. However, also drag forces have to be considered that act opposite to the relative motion of the body segments and require higher muscle activity. Due to these opposing effects on joint loading, the load-reducing effect during aquatic exercises remains unknown. The aim of this study was to quantify the joint loads during various aquatic exercises and to determine the load reducing effect of water. Instrumented knee and hip implants with telemetric data transfer were used to measure the resultant joint contact forces in 12 elderly subjects (6x hip, 6x knee) in vivo. Different dynamic, weight-bearing and non-weight-bearing activities were performed by the subjects on land and in chest-high water. Non-weight-bearing hip and knee flexion/extension was performed at different velocities and with additional Aquafins. Joint forces during aquatic exercises ranged between 32 and 396% body weight (BW). Highest forces occurred during dynamic activities, followed by weight-bearing and slow non-weight-bearing activities. Compared to the same activities on land, joint forces were reduced by 36-55% in water with absolute reductions being greater than 100%BW during weight-bearing and dynamic activities. During non-weight-bearing activities, high movement velocities and additional Aquafins increased the joint forces by up to 59% and resulted in joint forces of up to 301%BW. This study confirms the load reducing effect of water during weight-bearing and dynamic exercises. Nevertheless, high drag forces result in increased joint contact forces and indicate greater muscle activity. By the choice of activity, movement velocity and additional resistive devices joint forces can be modulated individually in the course of rehabilitation or preventive therapies.
Subtalar joint stress imaging with tomosynthesis.
Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko
2014-06-01
The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.
A pneumatic device for rapid loading of DNA sequencing gels.
Panussis, D A; Cook, M W; Rifkin, L L; Snider, J E; Strong, J T; McGrane, R M; Wilson, R K; Mardis, E R
1998-05-01
This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, in which a spring-loaded air cylinder generates positive pressure and flexible silica capillaries transfer the samples. A retractable capillary array carrier allows the delivery ends of the capillaries to be held up clear of the gel during loader attachment on the gel plates, while enabling their insertion in the gel wells once the device is securely mounted. Gel-loading devices capable of simultaneously transferring 72 samples onto the PE/ABI 373 and 377 are currently being used in our production sequencing groups while a 96-sample transfer prototype undergoes testing.
Dynamic-load-enabled ultra-low power multiple-state RRAM devices.
Yang, Xiang; Chen, I-Wei
2012-01-01
Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.
Deformation Behavior during Processing in Carbon Fiber Reinforced Plastics
NASA Astrophysics Data System (ADS)
Ogihara, Shinji; Kobayashi, Satoshi
In this study, we manufacture the device for measuring the friction between the prepreg curing process and subjected to pull-out tests with it The prepreg used in this study is a unidirectional carbon/epoxy, produced by TORAY designation of T700SC/2592.When creating specimens 4-ply prepregs are prepared and laminated. The 2-ply prepregs in the middle are shifted 50mm. In order to measure the friction between the prepreg during the cure process, we simulate the environment in the autoclave in the device, and we experiment in pull-out test. Test environment simulating temperature and pressure. The speed of displacement should be calculated by coefficient of thermal expansions (CTE). By calculation, 0.05mm/min gives the order of magnitude of displacement speed. In this study, 3 pull-out speeds are used: 0.01, 0.05 and 0.1mm/min. The specimen was heated by a couple of heaters, and we controlled the heaters with a temperature controller along the curing conditions of the prepreg. We put pressure using 4 bolts. Two strain gages were put on the bolt. We can understand the load applied to the specimen from the strain of the bolt. Pressure was adjusted the tightness of the bolt according to curing conditions. By using such a device, the pull-out test performed by tensile testing machine while adding temperature and pressure. During the 5 hours, we perform experiments while recording the load and stroke. The shear stress determined from the load and the stroke, and evaluated.
Efficient transformer for electromagnetic waves
Miller, R.B.
A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.
Structures and Dynamics Division research and technology plans, FY 1982
NASA Technical Reports Server (NTRS)
Bales, K. S.
1982-01-01
Computational devices to improve efficiency for structural calculations are assessed. The potential of large arrays of microprocessors operating in parallel for finite element analysis is defined, and the impact of specialized computer hardware on static, dynamic, thermal analysis in the optimization of structural analysis and design calculations is determined. General aviation aircraft crashworthiness and occupant survivability is also considered. Mechanics technology required for design coefficient, fault tolerant advanced composite aircraft components subject to combined loads, impact, postbuckling effects and local discontinuities are developed.
Casimir rack and pinion as a miniaturized kinetic energy harvester
NASA Astrophysics Data System (ADS)
Miri, MirFaez; Etesami, Zahra
2016-08-01
We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work.
An extensometer for global measurement of bone strain suitable for use in vivo in humans
NASA Technical Reports Server (NTRS)
Perusek, G. P.; Davis, B. L.; Sferra, J. J.; Courtney, A. C.; D'Andrea, S. E.
2001-01-01
An axial extensometer able to measure global bone strain magnitudes and rates encountered during physiological activity, and suitable for use in vivo in human subjects, is described. The extensometer uses paired capacitive sensors mounted to intraosseus pins and allows measurement of strain due to bending in the plane of the extensometer as well as uniaxial compression or tension. Data are presented for validation of the device against a surface-mounted strain gage in an acrylic specimen under dynamic four-point bending, with square wave and sinusoidal loading inputs up to 1500 mu epsilon and 20 Hz, representative of physiological strain magnitudes and frequencies. Pearson's correlation coefficient (r) between extensometer and strain gage ranged from 0.960 to 0.999. Mean differences between extensometer and strain gage ranged up to 15.3 mu epsilon. Errors in the extensometer output were directly proportional to the degree of bending that occurs in the specimen, however, these errors were predictable and less than 1 mu epsilon for the loading regime studied. The device is capable of tracking strain rates in excess of 90,000 mu epsilon/s.
Preliminary Analysis of a Submerged Wave Energy Device
NASA Astrophysics Data System (ADS)
Wagner, J. R.; Wagner, J. J.; Hayatdavoodi, M.; Ertekin, R. C.
2016-02-01
Preliminary analysis of a submerged wave energy harvesting device is presented. The device is composed of a thin, horizontally submerged plate that is restricted to heave oscillations under the influence of surface waves. The submerged plate is oscillating, and it can be attached to a fixed rotor, or a piston, to harvest the wave energy. A fully submerged wave energy converter is preferred over a surface energy convertor due to its durability and less visual and physical distractions it presents. In this study, the device is subject to nonlinear shallow-water waves. Wave loads on the submerged oscillating plate are obtained via the Level I Green-Naghdi equations. The unsteady motion of the plate is obtained by solving the nonlinear equations of motion. The results are obtained for a range of waves with varying heights and periods. The amplitude and period of plate oscillations are analyzed as functions of the wave parameters and plate width. Particular attention is given to the selection of the site of desired wave field. Initial estimation on the amount of energy extraction from the device, located near shore at a given site, is provided.
Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
Tucker, Michael R; Shirota, Camila; Lambercy, Olivier; Sulzer, James S; Gassert, Roger
2017-10-01
An improved understanding of mechanical impedance modulation in human joints would provide insights about the neuromechanics underlying functional movements. Experimental estimation of impedance requires specialized tools with highly reproducible perturbation dynamics and reliable measurement capabilities. This paper presents the design and mechanical characterization of the ETH Knee Perturbator: an actuated exoskeleton for perturbing the knee during gait. A novel wearable perturbation device was developed based on specific experimental objectives. Bench-top tests validated the device's torque limiting capability and characterized the time delays of the on-board clutch. Further tests demonstrated the device's ability to perform system identification on passive loads with static initial conditions. Finally, the ability of the device to consistently perturb human gait was evaluated through a pilot study on three unimpaired subjects. The ETH Knee Perturbator is capable of identifying mass-spring systems within 15% accuracy, accounting for over 95% of the variance in the observed torque in 10 out of 16 cases. Five-degree extension and flexion perturbations were executed on human subjects with an onset timing precision of 2.52% of swing phase duration and a rise time of 36.5 ms. The ETH Knee Perturbator can deliver safe, precisely timed, and controlled perturbations, which is a prerequisite for the estimation of knee joint impedance during gait. Tools such as this can enhance models of neuromuscular control, which may improve rehabilitative outcomes following impairments affecting gait and advance the design and control of assistive devices.
Retrospective Analysis of Inflight Exercise Loading and Physiological Outcomes
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, L. L.; Buxton, R. E.; De Witt, J. K.; Guilliams, M. E.; Hanson, A. M.; Peters, B. T.; Pandorf, M. M. Scott; Sibonga, J. D.
2014-01-01
Astronauts perform exercise throughout their missions to counter the health declines that occur as a result of long-term exposure to weightlessness. Although all astronauts perform exercise during their missions, the specific prescriptions, and thus the mechanical loading, differs among individuals. For example, inflight ground reaction force data indicate that subject-specific differences exist in foot forces created when exercising on the second-generation treadmill (T2) [1]. The current exercise devices allow astronauts to complete prescriptions at higher intensities, resulting in greater benefits with increased efficiency. Although physiological outcomes have improved, the specific factors related to the increased benefits are unknown. In-flight exercise hardware collect data that allows for exploratory analyses to determine if specific performance factors relate to physiological outcomes. These analyses are vital for understanding which components of exercise are most critical for optimal human health and performance. The relationship between exercise performance variables and physiological changes during flight has yet to be fully investigated. Identifying the critical performance variables that relate to improved physiological outcomes is vital for creating current and future exercise prescriptions to optimize astronaut health. The specific aims of this project are: 1) To quantify the exercise-related mechanical loading experienced by crewmembers on T2 and ARED during their mission on ISS; 2) To explore relationships between exercise loading variables, bone, and muscle health changes during the mission; 3) To determine if specific mechanical loading variables are more critical than others in protecting physiology; 4) To develop methodology for operational use in monitoring accumulated training loads during crew exercise programs. This retrospective analysis, which is currently in progress, is being conducted using data from astronauts that have flown long-duration missions onboard the ISS and have had access to exercise on the T2 and the Advanced Resistive Exercise Device (ARED). The specific exercise prescriptions vary for each astronaut. General exercise summary metrics will be developed to quantify exercise intensities, volumes, and durations for each subject. Where available, ground reaction force data will be used to quantify mechanical loading experienced by each astronaut. These inflight exercise metrics will be investigated relative to changes in pre- to post-flight bone and muscle health to identify which specific variables are related with improved or degraded physiological outcomes. The information generated from this analysis will fill gaps related to typical bone loading characterization, exercise performance capability, exercise volume and efficiency, and importance of exercise hardware. In addition, methods for quantification of exercise loading for use in monitoring the exercise programs during future space missions will be explored with the intent to inform exercise scientists and trainers as to the critical aspects of inflight exercise prescriptions.
Nanopore thin film enabled optical platform for drug loading and release.
Song, Chao; Che, Xiangchen; Que, Long
2017-08-07
In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.
Full Body Loading for Small Exercise Devices Project
NASA Technical Reports Server (NTRS)
Downs, Meghan; Hanson, Andrea; Newby, Nathaniel
2015-01-01
Protecting astronauts' spine, hip, and lower body musculoskeletal strength will be critical to safely and efficiently perform physically demanding vehicle egress, exploration, and habitat building activities necessary to expand human presence in the solar system. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume). Most small exercise device concepts are designed with single-cable loading, which inhibits the ability to perform full body exercises requiring two-point loading at the shoulders. Shoulder loading is critical to protect spine, hip, and lower body musculoskeletal strength. We propose a novel low-mass, low-maintenance, and rapid deploy pulley-based system that can attach to a single-cable small exercise device to enable two-point loading at the shoulders. This attachment could protect astronauts' health and save cost, space, and energy during all phases of the Journey to Mars.
Transportation and handling loads
NASA Technical Reports Server (NTRS)
Ostrem, F. E.
1971-01-01
Criteria and recommended practices are presented for the prediction and verification of transportation and handling loads for the space vehicle structure and for monitoring these loads during transportation and handling of the vehicle or major vehicle segments. Elements of the transportation and handling systems, and the forcing functions and associated loads are described. The forcing functions for common carriers and typical handling devices are assessed, and emphasis is given to the assessment of loads at the points where the space vehicle is supported during transportation and handling. Factors which must be considered when predicting the loads include the transportation and handling medium; type of handling fixture; transport vehicle speed; types of terrain; weather (changes in pressure of temperature, wind, etc.); and dynamics of the transportation modes or handling devices (acceleration, deceleration, and rotations of the transporter or handling device).
Dynamic MEMS devices for multi-axial fatigue and elastic modulus measurement
NASA Astrophysics Data System (ADS)
White, Carolyn D.; Xu, Rui; Sun, Xiaotian; Komvopoulos, Kyriakos
2003-01-01
For reliable MEMS device fabrication and operation, there is a continued demand for precise characterization of materials at the micron scale. This paper presents a novel material characterization device for fatigue lifetime testing. The fatigue specimen is subjected to multi-axial loading, which is typical of most MEMS devices. Polycrystalline silicon (polysilicon) fatigue devices were fabricated using the MUMPS process with a three layer mask process ground plane, anchor, and structural layer of polysilicon. A fatigue device consists of two or three beams, attached to a rotating ring and anchored to the substrate on each end. In order to generate a sufficiently large stress, the fatigue devices were tested in resonance to produce a von Mises equivalent stress as high as 1 GPa, which is in the fracture strength range reported for polysilicon. A further increase of the stress in the beam specimens was obtained by introducing a notch with a focused ion beam. The notch resulted into a stress concentration factor of about 3.8, thereby producing maximum von Mises equivalent stress in the range of 1 through 4 GPa. This study provides insight into multi-axial fatigue testing under typical MEMS conditions and additional information about micron-scale polysilicon mechanical behavior, which is the current basic building material for MEMS devices.
Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.
Vázquez-Guerrero, Jairo; Moras, Gerard
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766
What triggers the continuous muscle activity during upright standing?
Masani, Kei; Sayenko, Dimitry G; Vette, Albert H
2013-01-01
The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.
Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.
Yigit, Berk; Pekkan, Kerem
2016-01-01
In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non-dimensional indices are independent of body size for healthy conditions, but are sensitive to deviations caused by off-design disease states that alter the energetic load. Sensitivity simulations are used to identify the relationship between pulsatile power loss and non-dimensional characteristics, and optimal operational states are computed. © 2016 The Author(s).
A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process
An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng
2016-01-01
New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery. PMID:27122192
A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process.
An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng
2016-04-28
New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery.
A new after-loading intrauterine packing device: ten years experience.
Sklaroff, D M; Baker, A S; Tasbas, M
1985-12-01
A new variation of the uterine packing device for the treatment of endometrial carcinoma is described. It combines the advantages of the Holter technique with the after-loading method described by Simon. This device has been in use for more than 10 years and has been found most satisfactory.
Hitts Law? A test of the relationship between information load and movement precision
NASA Technical Reports Server (NTRS)
Zaleski, M.; Moray, N.
1986-01-01
Recent technological developments have made viable a man-machine interface heavily dependent on graphics and pointing devices. This has led to new interest in classical reaction and movement time work by Human Factors specialists. Two experiments were designed and run to test the dependence of target capture time on information load (Hitt's Law) and movement precision (Fitts' Law). The proposed model linearly combines Hitt's and Fitts' results into a combination law which then might be called Hitts' Law. Subjects were required to react to stimuli by manipulating a joystick so as to cause a cursor to capture a target on a CRT screen. Response entropy and the relative precision of the capture movement were crossed in a factorial design and data obtained that were found to support the model.
Absolute and Relative Training Load and Its Relation to Fatigue in Football
Zurutuza, Unai; Castellano, Julen; Echeazarra, Ibon; Casamichana, David
2017-01-01
The aim of the study was to assess the relationship of external and internal training load (TL) indicators with the objective and subjective fatigue experienced by 15 semi-professional football players, over eight complete weeks of the competition period in the 2015–2016 season, which covered microcycles from 34th to 41st. The maximum heart rate (HRmax) and maximum speed (Vmax) of all the players were previously measured in specific tests. The TL was monitored via questionnaires on rating of perceived exertion (RPE), pulsometers and GPS devices, registering the variables: total distance (TD), player load 2D (PL2D), TD at >80% of the Vmax (TD80), TD in deceleration at < -2 m⋅sec-2 (TDD <-2), TD in acceleration >2 m⋅sec-2 (TDA >2), Edwards (ED), time spent at between 50 and 80% (50–80% HRmax), 80–90% (80–90% HRmax), and >90% of the HRmax (>90% HRmax), and RPE both respiratory/thoracic (RPEres) and leg/muscular (RPEmus). All the variables were analyzed taking into account both the absolute values accumulated over the week and the normalized values in relation to individual mean competition values. Neuromuscular fatigue was measured objectively using the countermovement jump test and subjectively via the Total Quality Recovery (TQR) scale questionnaire. Analytical correlation techniques were later applied within the general linear model. There is a correlation between the fatigue experienced by the player, assessed objectively and subjectively, and the load accumulated over the week, this being assessed in absolute and relative terms. Specifically, the load relative to competition correlated with the physical variables TD (-0.279), PL2D (-0.272), TDD < -2 (-0.294), TDA >2 (-0.309), and sRPEmus (-0.287). The variables related to heart rate produced a higher correlation with TQR. There is a correlation between objectively and subjectively assessed fatigue and the accumulated TL of a player over the week, with a higher sensitivity being shown when compared to the values related to the demands of competition. Monitoring load and assessing fatigue, we are closer to knowing what the prescription of an adequate dose of training should be in order for a player to be as fresh as possible and in top condition for a match. Normalizing training demands with respect to competition could be an appropriate strategy for individualizing player TL. PMID:28634456
Räsänen, Lasse P; Tanska, Petri; Mononen, Mika E; Lammentausta, Eveliina; Zbýň, Štefan; Venäläinen, Mikko S; Szomolanyi, Pavol; van Donkelaar, Corrinus C; Jurvelin, Jukka S; Trattnig, Siegfried; Nieminen, Miika T; Korhonen, Rami K
2016-10-03
The effects of fixed charge density (FCD) and cartilage swelling have not been demonstrated on cartilage mechanics on knee joint level before. In this study, we present how the spatial and local variations of FCD affects the mechanical response of the knee joint cartilage during standing (half of the body weight, 13 minutes) using finite element (FE) modeling. The FCD distribution of tibial cartilage of an asymptomatic subject was determined using sodium ( 23 Na) MRI at 7T and implemented into a 3-D FE-model of the knee joint (Subject-specific model, FCD: 0.18±0.08 mEq/ml). Tissue deformation in the Subject-specific model was validated against experimental, in vivo loading of the joint conducted with a MR-compatible compression device. For comparison, models with homogeneous FCD distribution (homogeneous model) and FCD distribution obtained from literature (literature model) were created. Immediately after application of the load (dynamic response), the variations in FCD had minor effects on cartilage stresses and strains. After 13 minutes of standing, the spatial and local variations in FCD had most influence on axial strains. In the superficial tibial cartilage in the Subject-specific model, axial strains were increased up to +13% due to smaller FCD (mean -11%), as compared to the homogeneous model. Compared to the literature model, those were decreased up to -18% due to greater FCD (mean +7%). The findings demonstrate that the spatial and local FCD variations in cartilage modulates strains in knee joint cartilage. Thereby, the results highlight the mechanical importance of site-specific content of proteoglycans in cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.
30 CFR 57.9311 - Anchoring stationary sizing devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and...
An exploratory investigation of cumulative shock fatigue.
NASA Technical Reports Server (NTRS)
Simonson, D.; Byrne, J. G.
1972-01-01
A simple device for producing cumulative shock loading in solids is described. The device uses a ballistic-impact-driven projectile to introduce high-stress waves into a solid. The impact time and load amplitude can be varied to produce fracture in one or several impacts in PMMA rods. The wavefront approached a square wave shape. Materials other than PMMA were loaded to failure to demonstrate the versatility of the device. Fracture morphologies observed with optical and scanning-electron microscopy are described.
Tirkkonen, Laura; Halonen, Heidi; Hyttinen, Jari; Kuokkanen, Hannu; Sievänen, Harri; Koivisto, Anna-Maija; Mannerström, Bettina; Sándor, George K. B.; Suuronen, Riitta; Miettinen, Susanna; Haimi, Suvi
2011-01-01
Mechanical stimulation is an essential factor affecting the metabolism of bone cells and their precursors. We hypothesized that vibration loading would stimulate differentiation of human adipose stem cells (hASCs) towards bone-forming cells and simultaneously inhibit differentiation towards fat tissue. We developed a vibration-loading device that produces 3g peak acceleration at frequencies of 50 and 100 Hz to cells cultured on well plates. hASCs were cultured using either basal medium (BM), osteogenic medium (OM) or adipogenic medium (AM), and subjected to vibration loading for 3 h d–1 for 1, 7 and 14 day. Osteogenesis, i.e. differentiation of hASCs towards bone-forming cells, was analysed using markers such as alkaline phosphatase (ALP) activity, collagen production and mineralization. Both 50 and 100 Hz vibration frequencies induced significantly increased ALP activity and collagen production of hASCs compared with the static control at 14 day in OM. A similar trend was detected for mineralization, but the increase was not statistically significant. Furthermore, vibration loading inhibited adipocyte differentiation of hASCs. Vibration did not affect cell number or viability. These findings suggest that osteogenic culture conditions amplify the stimulatory effect of vibration loading on differentiation of hASCs towards bone-forming cells. PMID:21613288
Padois, Karine; Bertholle, Valérie; Pirot, Fabrice; Hyunh, Truc Thanh Ngoc; Rossi, Alessandra; Colombo, Paolo; Falson, Françoise; Sonvico, Fabio
2012-12-01
The widespread use of indwelling medical devices has enormously increased the interest in materials incorporating antibiotics and antimicrobial agents as a means to prevent dangerous device-related infections. Recently, chlorhexidine-loaded polyurethane has been proposed as a material suitable for the production of devices which are able to resist microbial contamination. The aim of the present study was to characterize the in vitro release of chlorhexidine from new polymeric orthodontic chains realized with polyurethane loaded with two different chlorhexidine salts: chlorhexidine diacetate or chlorhexidine digluconate. The orthodontic chains constituted of three layers: a middle polyurethane layer loaded with chlorhexidine salt inserted between two layers of unloaded polymer. In vitro release of chlorhexidine diacetate and digluconate from orthodontic chains loaded with 10% or 20% (w/w) chlorhexidine salt was sustained for 42 days and followed Fickian diffusion. The drug diffusion through the polyurethane was found to be dependent not only on chlorhexidine loading, but also on the type of chlorhexidine salt. The antibacterial activity of 0.2% (w/w) chlorhexidine diacetate-loaded orthodontic chain was successfully tested towards clinically isolated biofilm forming ica-positive Staphylococcus epidermidis via agar diffusion test. In conclusion, the chlorhexidine salt-loaded chains could provide an innovative approach in the prevention of oral infections related to the use of orthodontic devices.
Edwards, Ann L; Dawson, Michael R; Hebert, Jacqueline S; Sherstan, Craig; Sutton, Richard S; Chan, K Ming; Pilarski, Patrick M
2016-10-01
Myoelectric prostheses currently used by amputees can be difficult to control. Machine learning, and in particular learned predictions about user intent, could help to reduce the time and cognitive load required by amputees while operating their prosthetic device. The goal of this study was to compare two switching-based methods of controlling a myoelectric arm: non-adaptive (or conventional) control and adaptive control (involving real-time prediction learning). Case series study. We compared non-adaptive and adaptive control in two different experiments. In the first, one amputee and one non-amputee subject controlled a robotic arm to perform a simple task; in the second, three able-bodied subjects controlled a robotic arm to perform a more complex task. For both tasks, we calculated the mean time and total number of switches between robotic arm functions over three trials. Adaptive control significantly decreased the number of switches and total switching time for both tasks compared with the conventional control method. Real-time prediction learning was successfully used to improve the control interface of a myoelectric robotic arm during uninterrupted use by an amputee subject and able-bodied subjects. Adaptive control using real-time prediction learning has the potential to help decrease both the time and the cognitive load required by amputees in real-world functional situations when using myoelectric prostheses. © The International Society for Prosthetics and Orthotics 2015.
49 CFR 174.101 - Loading Class 1 (explosive) materials.
Code of Federal Regulations, 2014 CFR
2014-10-01
... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...
49 CFR 174.101 - Loading Class 1 (explosive) materials.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...
49 CFR 174.101 - Loading Class 1 (explosive) materials.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...
49 CFR 174.101 - Loading Class 1 (explosive) materials.
Code of Federal Regulations, 2011 CFR
2011-10-01
... in a rail car equipped with any type of lighted heater or open-flame device, or electric devices... stock cars or in flat bottom gondola cars only if they are adequately braced. Boxed bombs, rocket... be loaded in closed cars, may be loaded in open-top cars or on flatcars, provided they are protected...
Kulduk, Ahmet; Altun, Necdet S; Senkoylu, Alpaslan
2015-12-01
The primary purpose of dynamic stabilization is to preserve the normal range of motion (ROM) by restricting abnormal movement in the spine. Our aim was to analyze the effects of two different dynamic stabilization systems using finite element modeling (FEM). Coflex and Dynesys dynamic devices were modeled and implanted at the L4-L5 segment using virtual FEM. A 400 N compressive force combined with 6 N flexion, extension, bending and axial rotation forces was applied to the L3-4 and L4-5 segments. ROM and disc loading forces were analyzed. Both systems reduced ROM and disc loading forces at the implanted lumbar segment, with the exception of the Coflex interspinous device, which increased ROM by 19% and did not change disc-loading forces in flexion. The Coflex device prevented excessive disc loading, but increased ROM abnormally in flexion. Neither device provided satisfactory motion preservation or load sharing in other directions. Copyright © 2015 John Wiley & Sons, Ltd.
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan; ...
2017-04-24
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
A Dimensionally Aligned Signal Projection for Classification of Unintended Radiated Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vann, Jason Michael; Karnowski, Thomas P.; Kerekes, Ryan
Characterization of unintended radiated emissions (URE) from electronic devices plays an important role in many research areas from electromagnetic interference to nonintrusive load monitoring to information system security. URE can provide insights for applications ranging from load disaggregation and energy efficiency to condition-based maintenance of equipment-based upon detected fault conditions. URE characterization often requires subject matter expertise to tailor transforms and feature extractors for the specific electrical devices of interest. We present a novel approach, named dimensionally aligned signal projection (DASP), for projecting aligned signal characteristics that are inherent to the physical implementation of many commercial electronic devices. These projectionsmore » minimize the need for an intimate understanding of the underlying physical circuitry and significantly reduce the number of features required for signal classification. We present three possible DASP algorithms that leverage frequency harmonics, modulation alignments, and frequency peak spacings, along with a two-dimensional image manipulation method for statistical feature extraction. To demonstrate the ability of DASP to generate relevant features from URE, we measured the conducted URE from 14 residential electronic devices using a 2 MS/s collection system. Furthermore, a linear discriminant analysis classifier was trained using DASP generated features and was blind tested resulting in a greater than 90% classification accuracy for each of the DASP algorithms and an accuracy of 99.1% when DASP features are used in combination. Furthermore, we show that a rank reduced feature set of the combined DASP algorithms provides a 98.9% classification accuracy with only three features and outperforms a set of spectral features in terms of general classification as well as applicability across a broad number of devices.« less
Inductively heated shape memory polymer for the magnetic actuation of medical devices.
Buckley, Patrick R; McKinley, Gareth H; Wilson, Thomas S; Small, Ward; Benett, William J; Bearinger, Jane P; McElfresh, Michael W; Maitland, Duncan J
2006-10-01
Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with nickel zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.
A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
Malosio, Matteo; Negri, Simone Pio; Pedrocchi, Nicola; Vicentini, Federico; Caimmi, Marco; Molinari Tosatti, Lorenzo
2012-01-01
The ankle represents a fairly complex bone structure, resulting in kinematics that hinders a flawless robot-assisted recovery of foot motility in impaired subjects. The paper proposes a novel device for ankle-foot neuro-rehabilitation based on a mechatronic redesign of the remarkable Agile Eye spherical robot on the basis of clinical requisites. The kinematic design allows the positioning of the ankle articular center close to the machine rotation center with valuable benefits in term of therapy functions. The prototype, named PKAnkle, Parallel Kinematic machine for Ankle rehabilitation, provides a 6-axes load cell for the measure of subject interaction forces/torques, and it integrates a commercial EMG-acquisition system. Robot control provides active and passive therapeutic exercises.
Hasenkamp, W; Villard, J; Delaloye, J R; Arami, A; Bertsch, A; Jolles, B M; Aminian, K; Renaud, P
2014-06-01
Ligament balance is an important and subjective task performed during total knee arthroplasty (TKA) procedure. For this reason, it is desirable to develop instruments to quantitatively assess the soft-tissue balance since excessive imbalance can accelerate prosthesis wear and lead to early surgical revision. The instrumented distractor proposed in this study can assist surgeons on performing ligament balance by measuring the distraction gap and applied load. Also the device allows the determination of the ligament stiffness which can contribute a better understanding of the intrinsic mechanical behavior of the knee joint. Instrumentation of the device involved the use of hall-sensors for measuring the distractor displacement and strain gauges to transduce the force. The sensors were calibrated and tested to demonstrate their suitability for surgical use. Results show the distraction gap can be measured reliably with 0.1mm accuracy and the distractive loads could be assessed with an accuracy in the range of 4N. These characteristics are consistent with those have been proposed, in this work, for a device that could assist on performing ligament balance while permitting surgeons evaluation based on his experience. Preliminary results from in vitro tests were in accordance with expected stiffness values for medial collateral ligament (MCL) and lateral collateral ligament (LCL). Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Mini Treadmill for Musculoskeletal Health
NASA Technical Reports Server (NTRS)
Humphreys, Bradley
2015-01-01
Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.
Dynamic simulations for preparing the acceptance test of JT-60SA cryogenic system
NASA Astrophysics Data System (ADS)
Cirillo, R.; Hoa, C.; Michel, F.; Poncet, J. M.; Rousset, B.
2016-12-01
Power generation in the future could be provided by thermo-nuclear fusion reactors like tokamaks. There inside, the fusion reaction takes place thanks to the generation of plasmas at hundreds of millions of degrees that must be confined magnetically with superconductive coils, cooled down to around 4.5 K. Within this frame, an experimental tokamak device, JT-60SA is currently under construction in Naka (Japan). The plasma works cyclically and the coil system is subject to pulsed heat loads. In order to size the refrigerator close to the average power and hence optimizing investment and operational costs, measures have to be taken to smooth the heat load. Here we present a dynamic model of the JT-60SA's Auxiliary Cold box (ACB) for preparing the acceptance tests of the refrigeration system planned in 2016 in Naka. The aim of this study is to simulate the pulsed load scenarios using different process controls. All the simulations have been performed with EcosimPro® and the associated cryogenic library: CRYOLIB.
Design and validation of a desk-free and posture-independent input device.
Lee, Yung-Hui; Su, Mu-Chuan
2008-05-01
This study investigates variations in performance, postures and strains on the hand-arm-shoulder musculature during the operation of a wireless mouse, trackpad and a new input device. The device is held between the flexed index and middle fingers with the palm facing sideways. The buttons and wheels are activated by flexion and/or rolling of the thumb. Eleven males and nine females participated in the study. All subjects performed an aiming task to test the pointing and dragging functions. The results of this study reveal that the new pointing device allowed users to adopt more ergonomic postures and has the advantage of reduced muscular loadings of the upper extremities. Mean (SD) muscular activities (%RVC) using the wireless mouse, the trackpad and the new input device were as follows: trapezius: 3.0 (1.7), 4.4 (2.9) and 1.4 (1.0), and extensor carpi ulnaris: 7.3 (4.4), 14.5 (8.4) and 5.6 (3.1), respectively. The device was used in a variety of hand positions, alternatively. The size of the working area was far greater when the new input device was used than when the two conventional analogues were used. Although reasonable performance was not achieved, the results support recommendations concerning the redesign of the device. The ergonomic efforts in the design of the input device are of heuristic value, providing a basis for future development.
Decreasing high postprandial stearic acid in impaired fasting glucose by dietary regulation.
Liu, L; Chu, X; Na, L; Yuan, F; Li, Y; Sun, C
2016-07-01
The objective of this study was to determine the postprandial change in free fatty acid (FFA) profiles in subjects with impaired fasting glucose (IFG), and to evaluate the effect of low glycemic index (GI) load on postprandial FFA profiles and inflammation. First, 50 IFG and 50 healthy subjects were recruited; and 2 -h postprandial changes in FFA profiles were determined. Second, the 50 IFG subjects then received three different loads: glucose load (GL), high glycemic index (HGI) load and low glycemic index (LGI) load, respectively. FFA profile, glucose, insulin, glucagon-like peptide 1 (GLP-1) and inflammatory biomarkers were assayed at 0, 30, 60, 90 and 120 min. Postprandial stearic acid (C18:0) increased compared with baseline in all subjects, whereas the change in postprandial C18:0 was more marked in IFG subjects than in healthy subjects. Compared with subjects who received the GL and HGI load, the area under the curve for insulin, GLP-1, C18:0 and tumor necrosis factor-alpha significantly decreased and adiponectin increased in subjects who received the LGI load. The rise in postprandial C18:0 in IFG subjects was inhibited by LGI load.
The effect of coloring liquid dipping time on the fracture load and color of zirconia ceramics
2017-01-01
PURPOSE The aims of the study were to evaluate the fracture load of zirconia core material after dipping in coloring liquid at different time intervals and to compare the color of dipped blocks with that of prefabricated shaded blocks. MATERIALS AND METHODS 3-unit bridge frameworks were designed digitally. Sixty frameworks were fabricated using uncolored zirconia blocks by CAD/CAM and divided into 4 groups randomly (n = 15). Group 2 (G2) was subjected to coloring liquids for 2 minutes, Group 4 (G4) for 4 minutes, and Group 6 (G6) for 6 minutes. CFS group was not subjected to any coloring procedure. After coloring, color differences between the test groups and a prefabricated shaded zirconia group (CPZ, n = 15) were evaluated by using a spectrophotometer. Fracture test was conducted immediately after shade evaluation with a Testometric test device at a cross-head speed of 1 mm/sec. Statistical analysis for evaluating color and fracture load was performed by using one way ANOVA followed by Tukey HSD test (P ≤ .05). Weibull analysis was conducted for distribution of fracture load. RESULTS There was no difference in terms of fracture load and color between CFS (1176.681 N) and G2 (985.638 N) group and between CPZ (81.340) and G2 (81.140) group, respectively. Fracture load values of G4 (779.340 N) and G6 (935.491 N) groups were statistically significantly lower than that of CFS group (P ≤ .005). The color values of G4 (79.340) and G6 (79.673) groups were statistically different than that of CPZ group (P ≤ .005). CONCLUSION Prolonged immersion of zirconia in coloring liquid not only negatively affected the fracture load of the zirconia being tested in the current study but also deteriorated the desired shade of the restoration. PMID:28243394
Nakadate, Hiromichi; Inuzuka, Koji; Akanuma, Suguru; Kakuta, Akira; Aomura, Shigeru
2014-04-16
Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (-72 kPa/41 ms, -67 kPa/104 ms, and -91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. The pressure loading device could produce positive pressure pulses with amplitudes of 53-1348 kPa and durations of 9-29.1 ms and negative pressure pulses with amplitudes of -52 - -93 kPa and durations of 42.9-179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure.
NASA Astrophysics Data System (ADS)
Efanov, V. V.; Birukov, A. S.; Demenko, O. G.
2014-12-01
The paper gives a brief description of pyromechanical and detonation devices separating spacecraft (SC) from the upper stage. Causes of significant shock loads in the design and equipment are explained. Technical solutions to reduce these loads implemented in future SC using the mechanism of gas-dynamic and mechanical damping are described.
[Device to assess in-socket pressure distribution for partial foot amputation].
Alvarez-Camacho, Michelín; Urrusti, José Luis; Acero, María Del Carmen; Galván Duque-Gastélum, Carlos; Rodríguez-Reyes, Gerardo; Mendoza-Cruz, Felipe
2014-07-01
A device for dynamic acquisition and distribution analysis of in-socket pressure for patients with partial foot amputation is presented in this work. By using the developed system, we measured and generated pressure distribution graphs, obtained maximal pressure, and calculated pressure-time integral (PTI) of three subjects with partial foot amputation and of a group of Healthy subjects (Hs) (n = 10). Average maximal pressure in the healthy group was 19.4 ± 4.11 PSI, while for the three amputated patients, this was 27.8 ± 1.38, 17.6 ± 1.15, 29.10 ± 3.9 PSI, respectively. Maximal pressure-time integral for healthy subjects was 11.56 ± 2.83 PSI*s, and for study subjects was 19.54 ± 1.9, 12.35 ± 1.48, and 13.17 ± 1.31 PSI*s, respectively. The results of the control group agree with those previously reported in the literature. The pressure distribution pattern showed clear differences between study subjects and those of the control group; these graphs allowed us to identify the pressure in regions-of-interest that could be critical, such as surgical scars. The system presented in this work will aid to assess the effectiveness with which prosthetic systems distribute load, given that the formation of ulcers is highly linked to the pressure exercised at the point of contact; in addition, these results will help to investigate the comfort perception of the prosthesis, a factor directly influenced by the stump's pressure distribution.
Advanced resistive exercise device
NASA Technical Reports Server (NTRS)
Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)
2008-01-01
The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.
Formative usability evaluation of a fixed-dose pen-injector platform device
Lange, Jakob; Nemeth, Tobias
2018-01-01
Background This article for the first time presents a formative usability study of a fixed-dose pen injector platform device used for the subcutaneous delivery of biopharmaceuticals, primarily for self-administration by the patient. The study was conducted with a user population of both naïve and experienced users across a range of ages. The goals of the study were to evaluate whether users could use the devices safely and effectively relying on the instructions for use (IFU) for guidance, as well as to benchmark the device against another similar injector established in the market. Further objectives were to capture any usability issues and obtain participants’ subjective ratings on the properties and performance of both devices. Methods A total of 20 participants in three groups studied the IFU and performed simulated injections into an injection pad. Results All participants were able to use the device successfully. The device was well appreciated by all users with, maximum usability feedback scores reported by 90% or more on handling forces and device feedback, and by 85% or more on fit and grip of the device. The presence of clear audible and visible feedbacks upon successful loading of a dose and completion of injection was seen to be a significant improvement over the benchmark injector. Conclusion The observation that the platform device can be safely and efficiently used by all user groups provides confidence that the device and IFU in their current form will pass future summative testing in specific applications. PMID:29670411
[Wearable Devices for Movement Monitoring of Patients with Parkinson’s Disease].
Li, Liang; Yu, Qian; Xu, Baoteng; Bai, Qifan; Zhang, Yunpeng; Zhang, Huijun; Mao, Chengjie; Liu, Chunfeng; Wang, Shouyan
2016-12-01
Quantitative assessment of the symptoms of Parkinson’s disease is the key for precise diagnosis and treatment and essential for long term management over years.The challenges of quantitative assessment on Parkinson’s disease are rich information,ultra-low load,long term and large range monitoring in free-moving condition.In this paper,we developed wearable devices with multiple sensors to monitor and quantify the movement symptoms of Parkinson’s disease.Five wearable sensors were used to record motion signals from bilateral forearms,legs and waist.A local area network based on low power Wi-Fi technology was built for long distance wireless data transmission.A software was developed for signal recording and analyzing.The size of each sensor was 39mm×33mm×16mm and the weight was 18 g.The sensors were rechargeable and able to run 12 hours.The wireless transmission radius is about 45 m.The wearable devices were tested in patients and normal subjects.The devices were reliable and accurate for movement monitoring in hospital.
Sensory Augmentation for the Blind
Kärcher, Silke M.; Fenzlaff, Sandra; Hartmann, Daniela; Nagel, Saskia K.; König, Peter
2012-01-01
Common navigational aids used by blind travelers during large-scale navigation divert attention away from important cues of the immediate environment (i.e., approaching vehicles). Sensory augmentation devices, relying on principles similar to those at work in sensory substitution, can potentially bypass the bottleneck of attention through sub-cognitive implementation of a set of rules coupling motor actions with sensory stimulation. We provide a late blind subject with a vibrotactile belt that continually signals the direction of magnetic north. The subject completed a set of behavioral tests before and after an extended training period. The tests were complemented by questionnaires and interviews. This newly supplied information improved performance on different time scales. In a pointing task we demonstrate an instant improvement of performance based on the signal provided by the device. Furthermore, the signal was helpful in relevant daily tasks, often complicated for the blind, such as keeping a direction over longer distances or taking shortcuts in familiar environments. A homing task with an additional attentional load demonstrated a significant improvement after training. The subject found the directional information highly expedient for the adjustment of his inner maps of familiar environments and describes an increase in his feeling of security when exploring unfamiliar environments with the belt. The results give evidence for a firm integration of the newly supplied signals into the behavior of this late blind subject with better navigational performance and more courageous behavior in unfamiliar environments. Most importantly, the complementary information provided by the belt lead to a positive emotional impact with enhanced feeling of security. The present experimental approach demonstrates the positive potential of sensory augmentation devices for the help of handicapped people. PMID:22403535
Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.
Kassem, Amr S; Atta, Osama; El-Mowafy, Omar
2012-01-01
The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.
System for energy harvesting and/or generation, storage, and delivery
NASA Technical Reports Server (NTRS)
DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)
2011-01-01
A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.
System for energy harvesting and/or generation, storage, and delivery
NASA Technical Reports Server (NTRS)
DeGreeff, Jenniffer Leigh (Inventor); Trainor, John T. (Inventor); Fleig, Patrick Franz (Inventor); Lakeman, Charles D. E. (Inventor)
2010-01-01
A device and method for harvesting, generating, storing, and delivering energy to a load, particularly for remote or inaccessible applications. The device preferably comprises one or more energy sources, at least one supercapacitor, at least one rechargeable battery, and a controller. The charging of the energy storage devices and the delivery of power to the load is preferably dynamically varied to maximize efficiency. A low power consumption charge pump circuit is preferably employed to collect power from low power energy sources while also enabling the delivery of higher voltage power to the load. The charging voltage is preferably programmable, enabling one device to be used for a wide range of specific applications.
Non-Invasive Tension Measurement Devices for Parachute Cordage
NASA Technical Reports Server (NTRS)
Litteken, Douglas A.; Daum, Jared S.
2016-01-01
The need for lightweight and non-intrusive tension measurements has arisen alongside the development of high-fidelity computer models of textile and fluid dynamics. In order to validate these computer models, data must be gathered in the operational environment without altering the design, construction, or performance of the test article. Current measurement device designs rely on severing a cord and breaking the load path to introduce a load cell. These load cells are very reliable, but introduce an area of high stiffness in the load path, directly affecting the structural response, adding excessive weight, and possibly altering the dynamics of the parachute during a test. To capture the required data for analysis validation without affecting the response of the system, non-invasive measurement devices have been developed and tested by NASA. These tension measurement devices offer minimal impact to the mass, form, fit, and function of the test article, while providing reliable, axial tension measurements for parachute cordage.
Hajibozorgi, M; Arjmand, N
2016-04-11
Range of motion (ROM) of the thoracic spine has implications in patient discrimination for diagnostic purposes and in biomechanical models for predictions of spinal loads. Few previous studies have reported quite different thoracic ROMs. Total (T1-T12), lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), pelvis, and entire trunk (T1) ROMs were measured using an inertial tracking device as asymptomatic subjects flexed forward from their neutral upright position to full forward flexion. Correlations between body height and the ROMs were conducted. An effect of measurement errors of the trunk flexion (T1) on the model-predicted spinal loads was investigated. Mean of peak voluntary total flexion of trunk (T1) was 118.4 ± 13.9°, of which 20.5 ± 6.5° was generated by flexion of the T1 to T12 (thoracic ROM), and the remaining by flexion of the T12 to S1 (lumbar ROM) (50.2 ± 7.0°) and pelvis (47.8 ± 6.9°). Lower thoracic ROM was significantly larger than upper thoracic ROM (14.8 ± 5.4° versus 5.8 ± 3.1°). There were non-significant weak correlations between body height and the ROMs. Contribution of the pelvis to generate the total trunk flexion increased from ~20% to 40% and that of the lumbar decreased from ~60% to 42% as subjects flexed forward from upright to maximal flexion while that of the thoracic spine remained almost constant (~16% to 20%) during the entire movement. Small uncertainties (±5°) in the measurement of trunk flexion angle resulted in considerable errors (~27%) in the model-predicted spinal loads only in activities involving small trunk flexion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Novel Musculoskeletal Loading and Assessment System
NASA Technical Reports Server (NTRS)
Downs, Meghan E.
2017-01-01
Ground based and ISS (International Space Station) exercise research have shown that axial loading via two-point loading at the shoulders and load quality (i.e. consistent load and at least 1:1 concentric to eccentric ratio) are extremely important to optimize musculoskeletal adaptations to resistance exercise. The Advanced Resistance Exercise Device (ARED) is on ISS now and is the "state of the art" for resistance exercise capabilities in microgravity; however, the ARED is far too large and power consuming for exploration vehicles. The single cable exercise device design selected for MPCV (Multi-Purpose Crew Vehicle), does not readily allow for the two-point loading at the shoulders.
An exergame system based on force platforms and body key-point detection for balance training.
Lavarda, Marcos D; de Borba, Pedro A; Oliveira, Matheus R; Borba, Gustavo B; de Souza, Mauren A; Gamba, Humberto R
2016-08-01
Postural instability affects a large number of people and can compromise even simple activities of the daily routine. Therapies for balance training can strongly benefit from auxiliary devices specially designed for this purpose. In this paper, we present a system for balance training that uses the metaphor of a game, what contributes to the motivation and engagement of the patients during a treatment. Such approach is usually named exergame, in which input devices for posturographic assessment and a visual output perform the interaction with the subject. The proposed system uses two force platforms, one positioned under the feet and the other under the hip of the subject. The force platforms employ regular load cells and a microcontroller-based signal acquisition module to capture and transmit the samples to a computer. Moreover, a computer vision module performs body key-point detection, based on real time segmentation of markers attached to the subject. For the validation of the system, we conducted experiments with 20 neurologically intact volunteers during two tests: comparison of the stabilometric parameters obtained from the system with those obtained from a commercial baropodometer and the practice of several exergames. Results show that the proposed system is completely functional and can be used as a versatile tool for balance training.
Calibration Device Designed for proof ring used in SCC Experiment
NASA Astrophysics Data System (ADS)
Hu, X. Y.; Kang, Z. Y.; Yu, Y. L.
2017-11-01
In this paper, a calibration device for proof ring used in SCC (Stress Corrosion Cracking) experiment was designed. A compact size loading device was developed to replace traditional force standard machine or a long screw nut. The deformation of the proof ring was measured by a CCD (Charge-Coupled Device) during the calibration instead of digital caliper or a dial gauge. The calibration device was verified at laboratory that the precision of force loading is ±0.1% and the precision of deformation measurement is ±0.002mm.
Innovative energy absorbing devices based on composite tubes
NASA Astrophysics Data System (ADS)
Tiwari, Chandrashekhar
Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and geometric nonlinearities that arise from large deformation and fiber reorientation. Developed non-linear analysis predicts the behavior of extension-twist coupled and angle ply flexible matrix composite tubes under multi-axial loadings. The predicted results show close correlation with experimental findings. It was also found that these devices exhibit variations with respect to rate of loading. It was found that the novel energy absorbing devices are capable of providing 4-5 times higher specific energy absorption (SEA) than currently used devices for similar purposes (such as wire bender which has SEA of 3.6 J/g).
Normalizing and scaling of data to derive human response corridors from impact tests.
Yoganandan, Narayan; Arun, Mike W J; Pintar, Frank A
2014-06-03
It is well known that variability is inherent in any biological experiment. Human cadavers (Post-Mortem Human Subjects, PMHS) are routinely used to determine responses to impact loading for crashworthiness applications including civilian (motor vehicle) and military environments. It is important to transform measured variables from PMHS tests (accelerations, forces and deflections) to a standard or reference population, termed normalization. The transformation process should account for inter-specimen variations with some underlying assumptions used during normalization. Scaling is a process by which normalized responses are converted from one standard to another (example, mid-size adult male to large-male and small-size female adults, and to pediatric populations). These responses are used to derive corridors to assess the biofidelity of anthropomorphic test devices (crash dummies) used to predict injury in impact environments and design injury mitigating devices. This survey examines the pros and cons of different approaches for obtaining normalized and scaled responses and corridors used in biomechanical studies for over four decades. Specifically, the equal-stress equal-velocity and impulse-momentum methods along with their variations are discussed in this review. Methods ranging from subjective to quasi-static loading to different approaches are discussed for deriving temporal mean and plus minus one standard deviation human corridors of time-varying fundamental responses and cross variables (e.g., force-deflection). The survey offers some insights into the potential efficacy of these approaches with examples from recent impact tests and concludes with recommendations for future studies. The importance of considering various parameters during the experimental design of human impact tests is stressed. Published by Elsevier Ltd.
Knee Joint Loading during Gait in Healthy Controls and Individuals with Knee Osteoarthritis
Kumar, Deepak; Manal, Kurt T.; Rudolph, Katherine S.
2013-01-01
Objective People with knee osteoarthritis (OA) are thought to walk with high loads at the knee which are yet to be quantfied using modeling techniques that account for subject specific EMG patterns, kinematics and kinetics. The objective was to estimate medial and lateral loading for people with knee OA and controls using an approach that is sensitive to subject specific muscle activation patterns. Methods 16 OA and 12 control (C) subjects walked while kinematic, kinetic and EMG data were collected. Muscle forces were calculated using an EMG-Driven model and loading was calculated by balancing the external moments with internal muscle and contact forces Results OA subjects walked slower and had greater laxity, static and dynamic varus alignment, less flexion and greater knee adduction moment (KAM). Loading (normalized to body weight) was no different between the groups but OA subjects had greater absolute medial load than controls and maintained a greater %total load on the medial compartment. These patterns were associated with body mass, sagittal and frontal plane moments, static alignment and close to signficance for dynamic alignment. Lateral compartment unloading during mid-late stance was observed in 50% of OA subjects. Conclusions Loading for control subjects was similar to data from instrumented prostheses. Knee OA subjects had high medial contact loads in early stance and half of the OA cohort demonstared lateral compartment lift-off. Results suggest that interventions aimed at reducing body weight and dynamic malalignment might be effective in reducing medial compartment loading and establishing normal medio-lateral load sharing patterns. PMID:23182814
In situ multi-axial loading frame to probe elastomers using X-ray scattering.
Pannier, Yannick; Proudhon, Henry; Mocuta, Cristian; Thiaudière, Dominique; Cantournet, Sabine
2011-11-01
An in situ tensile-shear loading device has been designed to study elastomer crystallization using synchrotron X-ray scattering at the Synchrotron Soleil on the DiffAbs beamline. Elastomer tape specimens of thickness 2 mm can be elongated by up to 500% in the longitudinal direction and sheared by up to 200% in the transverse direction. The device is fully automated and plugged into the TANGO control system of the beamline allowing synchronization between acquisition and loading sequences. Experimental results revealing the evolution of crystallization peaks under load are presented for several tension/shear loading sequences.
Subject-Specific Modeling of Muscle Force and Knee Contact in Total Knee Arthroplasty
Navacchia, Alessandro; Rullkoetter, Paul J.; Schütz, Pascal; List, Renate B.; Fitzpatrick, Clare K.; Shelburne, Kevin B.
2017-01-01
Understanding the mechanical loading environment and resulting joint mechanics for activities of daily living in total knee arthroplasty is essential to continuous improvement in implant design. Although survivorship of these devices is good, a substantial number of patients report dissatisfaction with the outcome of their procedure. Knowledge of in vivo kinematics and joint loading will enable improvement in preclinical assessment and refinement of implant geometry. The purpose of this investigation was to describe the mechanics of total knee arthroplasty during a variety of activities of daily living (gait, walking down stairs, and chair rise/sit). Estimates of muscle forces, tibial contact load, location, and pressure distribution was performed through a combination of mobile fluoroscopy data collection, musculoskeletal modeling, and finite element simulation. For the activities evaluated, joint compressive load was greatest during walking down stairs; however, the highest contact pressure occurred during chair rise/sit. The joint contact moment in the frontal plane was mainly varus for gait and walking down stairs, while it was valgus during chair rise/sit. Excursion of the center of pressure on the tibial component was similar during each activity and between the medial and lateral sides. The main determinants of center of pressure location were internal–external rotation, joint load, and tibial insert conformity. PMID:26792665
24 CFR 3280.302 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... any device or other means designed to transfer home anchoring loads to the ground. Anchoring equipment... means a specific anchoring assembly device designed to transfer home anchoring loads to the ground... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction Requirements...
Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
NASA Astrophysics Data System (ADS)
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
Makhsous, Mohsen; Lin, Fang; Bankard, James; Hendrix, Ronald W; Hepler, Matthew; Press, Joel
2009-01-01
Background Compared to standing posture, sitting decreases lumbar lordosis, increases low back muscle activity, disc pressure, and pressure on the ischium, which are associated with occupational LBP. A sitting device that reduces spinal load and low back muscle activities may help increase sitting comfort and reduce LBP risk. The objective of this study is to investigate the biomechanical effect of sitting with a reduced ischial support and an enhanced lumbar support (Off-Loading) on load, interface pressure and muscle activities. Methods A laboratory test in low back pain (LBP) and asymptomatic subjects was designed to test the biomechanical effect of using the Off-Loading sitting posture. The load and interface pressure on seat and the backrest, and back muscle activities associated with usual and this Off-Loading posture were recorded and compared between the two postures. Results Compared with Normal (sitting upright with full support of the seat and flat backrest) posture, sitting in Off-Loading posture significantly shifted the center of the force and the peak pressure on the seat anteriorly towards the thighs. It also significantly decreased the contact area on the seat and increased that on the backrest. It decreased the lumbar muscle activities significantly. These effects are similar in individuals with and without LBP. Conclusion Sitting with reduced ischial support and enhanced lumbar support resulted in reduced sitting load on the lumbar spine and reduced the lumbar muscular activity, which may potentially reduce sitting-related LBP. PMID:19193245
Experimental evaluation of cooling efficiency of the high performance cooling device
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-06-01
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less
Impact of strut height on offloading capacity of removable cast walkers.
Crews, Ryan T; Sayeed, Fraaz; Najafi, Bijan
2012-08-01
Reducing weight-bearing stress to diabetic foot ulcers is critical to healing and commonly called offloading. Removable cast walkers are frequently used for offloading; however, patient compliance is often poor. Walkers commonly extend to the knee. Patients complain about walkers' weight and diminished balance with their use. This study compared the offloading capacity of walkers that varied by height. Heights included: knee, ankle, and shoe levels. To ensure a fair comparison the outsole and insole were standardized across the devices. Eleven diabetic subjects with moderate to high risk of ulceration were recruited. Subjects completed four 20 m walking trials. Subjects performed one trial with each walker and one trial with an athletic shoe. Primary outcomes focused on plantar loading and were measured by pressure insoles. Secondary outcomes were associated with gait kinematics as collected by body worn sensors. Significant differences were found for the peak pressure and pressure time integrals of the different footwear. All walkers performed better than the athletic shoe. The ankle and knee-high devices performed best. Center of mass rotation data showed a trend of the ankle walker yielding a smaller range of motion (18% medial/lateral and 22% anterior/posterior) than the knee level. The ankle-high walker was able to provide similar offloading capacities as the knee-high walker. The diminished weight, along with potentially improved stability, may result in improved compliance with ankle-high walkers. A study comparing the use of the two devices for treating ulcers is now suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhu, Meiling; Worthington, Emma; Njuguna, James
2009-07-01
This paper presents, for the first time, a coupled piezoelectric-circuit finite element model (CPC-FEM) to analyze the power output of a vibration-based piezoelectric energy-harvesting device (EHD) when it is connected to a load resistor. Special focus is given to the effect of the load resistor value on the vibrational amplitude of the piezoelectric EHD, and thus on the current, voltage, and power generated by the device, which are normally assumed to be independent of the load resistor value to reduce the complexity of modeling and simulation. The presented CPC-FEM uses a cantilever with a sandwich structure and a seismic mass attached to the tip to study the following characteristics of the EHD as a result of changing the load resistor value: 1) the electric outputs: the current through and voltage across the load resistor; 2) the power dissipated by the load resistor; 3) the displacement amplitude of the tip of the cantilever; and 4) the shift in the resonant frequency of the device. It is found that these characteristics of the EHD have a significant dependence on the load resistor value, rather than being independent of it as is assumed in most literature. The CPC-FEM is capable of predicting the generated output power of the EHD with different load resistor values while simultaneously calculating the effect of the load resistor value on the displacement amplitude of the tip of the cantilever. This makes the CPC-FEM invaluable for validating the performance of a designed EHD before it is fabricated and tested, thereby reducing the recurring costs associated with repeat fabrication and trials. In addition, the proposed CPC-FEM can also be used for producing an optimized design for maximum power output.
A Mechanomodulatory Device to Minimize Incisional Scar Formation
Wong, Victor W.; Beasley, Bill; Zepeda, John; Dauskardt, Reinhold H.; Yock, Paul G.; Longaker, Michael T.; Gurtner, Geoffrey C.
2013-01-01
Objective To mechanically control the wound environment and prevent cutaneous scar formation. Approach We subjected various material substrates to biomechanical testing to investigate their ability to modulate skin behavior. Combinations of elastomeric materials, adhesives, and strain applicators were evaluated to develop topical stress-shielding devices. Noninvasive imaging modalities were utilized to characterize anatomic site-specific differences in skin biomechanical properties in humans. The devices were tested in a validated large animal model of hypertrophic scarring. Phase I within-patient controlled clinical trials were conducted to confirm their safety and efficacy in scar reduction in patients undergoing abdominoplasty surgery. Results Among the tested materials and device applicators, a polymer device was developed that effectively off-loaded high tension wounds and blocked pro-fibrotic pathways and excess scar formation in red Duroc swine. In humans, different anatomic sites exhibit unique biomechanical properties that may correlate with the propensity to form scars. In the clinical trial, utilization of this device significantly reduced incisional scar formation and improved scar appearance for up to 12 months compared with control incisions that underwent routine postoperative care. Innovation This is the first device that is able to precisely control the mechanical environment of incisional wounds and has been demonstrated in multiple clinical trials to significantly reduce scar formation after surgery. Conclusion Mechanomodulatory strategies to control the incisional wound environment can significantly reduce pathologic scarring and fibrosis after surgery. PMID:24527342
Development of an integrated countermeasure device for use in long-duration spaceflight
NASA Astrophysics Data System (ADS)
Streeper, T.; Cavanagh, P. R.; Hanson, A. M.; Carpenter, R. D.; Saeed, I.; Kornak, J.; Frassetto, L.; Grodsinsky, C.; Funk, J.; Lee, S. M. C.; Spiering, B. A.; Bloomberg, J.; Mulavara, A.; Sibonga, J.; Lang, T.
2011-06-01
Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4±9.0 years, 69.5±15.4 kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. All training was conducted with the subject in orthostasis. When configured for spaceflight, subjects will be fixed to the device via a vest with loop attachments secured to subject load devices. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO 2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO 2peak and 1RM. Results: VO 2peak and 1RM improved after 6 weeks, with additional improvements after 12 weeks (1.95±0.5, 2.28±0.5, 2.47±0.6 L min -1, and 131.2±63.9,182.8±75.0, 207.0±75.0 kg) for baseline, 6 weeks, and 12 weeks, respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3±39.5, 76.8±39.2, and 55.7±21.7 N m vs. 86.1±37.3, 85.1±34.3, and 62.1±26.4 N m, respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip.
A 3 kbar hydrogen-compatible gas loader for Paris-Edinburgh presses
NASA Astrophysics Data System (ADS)
Klotz, S.; Philippe, J.; Bull, C. L.; Loveday, J. S.; Nelmes, R. J.
2013-03-01
We present a device which allows compressed gases to be loaded into large volume opposed anvils used for high pressure neutron scattering in the multi-10 GPa range. The gases are initially loaded into clamps which can then be inserted into VX-Paris-Edinburgh load frames. The system is compatible with all inert gases as well as hydrogen and permits loading pressures of up to 3 kbar for which most gases have densities close to that of the liquid at ambient pressure. The device should have applications for the study of simple molecular solids as well as for loading gases as pressure-transmitting media.
Cardiopulmonary data acquisition system. Version 2.0, volume 1: User's guide
NASA Technical Reports Server (NTRS)
1979-01-01
The Cardiopulmonary Data Acquisition System is a computerized method of both collecting and analyzing physiological data on subjects during a treadmill or ergometer stress test in the clinic. The real time acquisition of the physiological data, such as, heart rate, blood pressure, work load, and respiratory gases is accomplished by an LSI-11 microcomputer which displays this data on a hard copy terminal. The data are also concurrently stored on a mass storage device and anytime after the test period a selectable number of copies of the plots or minute reports can be reproduced at the terminal.
Comparison of a novel fixation device with standard suturing methods for spinal cord stimulators.
Bowman, Richard G; Caraway, David; Bentley, Ishmael
2013-01-01
Spinal cord stimulation is a well-established treatment for chronic neuropathic pain of the trunk or limbs. Currently, the standard method of fixation is to affix the leads of the neuromodulation device to soft tissue, fascia or ligament, through the use of manually tying general suture. A novel semiautomated device is proposed that may be advantageous to the current standard. Comparison testing in an excised caprine spine and simulated bench top model was performed. Three tests were performed: 1) perpendicular pull from fascia of caprine spine; 2) axial pull from fascia of caprine spine; and 3) axial pull from Mylar film. Six samples of each configuration were tested for each scenario. Standard 2-0 Ethibond was compared with a novel semiautomated device (Anulex fiXate). Upon completion of testing statistical analysis was performed for each scenario. For perpendicular pull in the caprine spine, the failure load for standard suture was 8.95 lbs with a standard deviation of 1.39 whereas for fiXate the load was 15.93 lbs with a standard deviation of 2.09. For axial pull in the caprine spine, the failure load for standard suture was 6.79 lbs with a standard deviation of 1.55 whereas for fiXate the load was 12.31 lbs with a standard deviation of 4.26. For axial pull in Mylar film, the failure load for standard suture was 10.87 lbs with a standard deviation of 1.56 whereas for fiXate the load was 19.54 lbs with a standard deviation of 2.24. These data suggest a novel semiautomated device offers a method of fixation that may be utilized in lieu of standard suturing methods as a means of securing neuromodulation devices. Data suggest the novel semiautomated device in fact may provide a more secure fixation than standard suturing methods. © 2012 International Neuromodulation Society.
Wind Loads on Flat Plate Photovoltaic Array Fields
NASA Technical Reports Server (NTRS)
Miller, R.; Zimmerman, D.
1979-01-01
The aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays were investigated. Local pressure distributions and total aerodynamic forces on the arrays are shown. Design loads are presented to cover the conditions of array angles relative to the ground from 20 deg to 60 deg, variable array spacings, a ground clearance gap up to 1.2 m (4 ft) and array slant heights of 2.4 m (8 ft) and 4.8 m (16 ft). Several means of alleviating the wind loads on the arrays are detailed. The expected reduction of the steady state wind velocity with the use of fences as a load alleviation device are indicated to be in excess of a factor of three for some conditions. This yields steady state wind load reductions as much as a factor of ten compared to the load incurred if no fence is used to protect the arrays. This steady state wind load reduction is offset by the increase in turbulence due to the fence but still an overall load reduction of 2.5 can be realized. Other load alleviation devices suggested are the installation of air gaps in the arrays, blocking the flow under the arrays and rounding the edges of the array. A wind tunnel test plan to supplement the theoretical study and to evaluate the load alleviation devices is outlined.
Solomonow-Avnon, Deborah; Haim, Amir; Levin, Daniel; Elboim-Gabyzon, Michal; Rozen, Nimrod; Peled, Eli; Wolf, Alon
2016-10-01
Loading/excessive loading of the hip joint has been linked to onset and progression of hip osteoarthritis. Footwear-generated biomechanical manipulation in the frontal plane has been previously shown in a cohort of healthy subjects to cause a specific gait adaption when the foot center of pressure trajectory was shifted medially, which thereby significantly reduced hip joint reaction force. The objective of the present study was to validate these results in a cohort of female bilateral hip osteoarthritis patients. Sixteen patients underwent gait analysis while using a footworn biomechanical device, allowing controlled foot center of pressure manipulation, in three para-sagittal configurations: medial, lateral, and neutral. Hip osteoarthritis patients exhibited similar results to those observed in healthy subjects in that a medial center of pressure led to an increase in inter-maleolar distance while step width (i.e., distance between right and left foot center of pressure) remained constant. This adaptation, which we speculate subjects adopt to maintain base of support, was associated with significantly greater hip abduction, significantly decreased hip adduction moment, and significantly reduced joint reaction force compared to the neutral and lateral configurations. Recommendations for treatment of hip osteoarthritis emphasize reduction of loads on the pathological joint(s) during daily activities and especially in gait. Our results show that a medially deviated center of pressure causes a reduction in hip joint reaction force. The present study does not prove, but rather suggests, clinical significance, and further investigation is required to assess clinical implications. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1762-1771, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Stress intensity factors of eccentric cracks in bi-materials plate under mode I loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, A. E.
2015-05-15
Bi-material plates were generally used to joint electronic devices or mechanical components requiring dissimilar materials to be attached. During services, mechanical failure can be occurred due to the formation of cracks at the interfacial joint or away from the centre. Generally, linear elastic fracture mechanics approach is used to characterize these cracks based on stress intensity factors (SIF). Based on the literature survey, the SIFs for the central cracks were easily available. However, the SIFs for eccentric cracks were difficult to obtain. Therefore, this paper presented the SIFs for eccentric cracks subjected to mode I tension loading. Three important parametersmore » were used such as relative crack depth, a/L, relative offset distance, b/L and elastic mismatch, E{sub 1}/E{sub 2} or α. It was found that such parameters significantly affected the characteristic of SIFs and it was depend on the location of cracks.« less
On Market-Based Coordination of Thermostatically Controlled Loads With User Preference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sen; Zhang, Wei; Lian, Jianming
2014-12-15
This paper presents a market-based control framework to coordinate a group of autonomous Thermostatically Controlled Loads (TCL) to achieve the system-level objectives with pricing incentives. The problem is formulated as maximizing the social welfare subject to feeder power constraint. It allows the coordinator to affect the aggregated power of a group of dynamical systems, and creates an interactive market where the users and the coordinator cooperatively determine the optimal energy allocation and energy price. The optimal pricing strategy is derived, which maximizes social welfare while respecting the feeder power constraint. The bidding strategy is also designed to compute the optimalmore » price in real time (e.g., every 5 minutes) based on local device information. The coordination framework is validated with realistic simulations in GridLab-D. Extensive simulation results demonstrate that the proposed approach effectively maximizes the social welfare and decreases power congestion at key times.« less
Anderson, Patrick L; Mahoney, Arthur W; Webster, Robert J
2017-07-01
This paper examines shape sensing for a new class of surgical robot that consists of parallel flexible structures that can be reconfigured inside the human body. Known as CRISP robots, these devices provide access to the human body through needle-sized entry points, yet can be configured into truss-like structures capable of dexterous movement and large force application. They can also be reconfigured as needed during a surgical procedure. Since CRISP robots are elastic, they will deform when subjected to external forces or other perturbations. In this paper, we explore how to combine sensor information with mechanics-based models for CRISP robots to estimate their shapes under applied loads. The end result is a shape sensing framework for CRISP robots that will enable future research on control under applied loads, autonomous motion, force sensing, and other robot behaviors.
45. Building 102, view of waveguide "coaxial waste load" device ...
45. Building 102, view of waveguide "coaxial waste load" device connected to waveguide combiner. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Skeist, S. Merrill; Baker, Richard H.
2005-10-11
An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
Zhang, Bao-cheng; Liu, Hai-bo; Cai, Xian-hua; Wang, Zhi-hua; Xu, Feng; Kang, Hui; Ding, Ran; Luo, Xiao-qing
2015-09-22
The transoral atlantoaxial reduction plate (TARP) fixation has been introduced to achieve reduction, decompression, fixation and fusion of C1-C2 through a transoral-only approach. However, it may also be associated with potential disadvantages, including dysphagia and load shielding of the bone graft. To prevent potential disadvantages related to TARP fixation, a novel transoral atlantoaxial fusion cage with integrated plate (Cage + Plate) device for stabilization of the C1-C2 segment is designed. The aims of the present study were to compare the biomechanical differences between Cage + Plate device and Cage + TARP device for the treatment of basilar invagination (BI) with irreducible atlantoaxial dislocation (IAAD). A detailed, nonlinear finite element model (FEM) of the intact upper cervical spine had been developed and validated. Then a FEM of an unstable BI model treated with Cage + Plate fixation, was compared to that with Cage + TARP fixation. All models were subjected to vertical load with pure moments in flexion, extension, lateral bending and axial rotation. Range of motion (ROM) of C1-C2 segment and maximum von Mises Stress of the C2 endplate and bone graft were quantified for the two devices. Both devices significantly reduced ROM compared with the intact state. In comparison with the Cage + Plate model, the Cage + TARP model reduced the ROM by 82.5 %, 46.2 %, 10.0 % and 74.3 % in flexion, extension, lateral bending, and axial rotation. The Cage + Plate model showed a higher increase stresses on C2 endplate and bone graft than the Cage + TARP model in all motions. Our results indicate that the novel Cage + Plate device may provide lower biomechanical stability than the Cage + TARP device in flexion, extension, and axial rotation, however, it may reduce stress shielding of the bone graft for successful fusion and minimize the risk of postoperative dysphagia. Clinical trials are now required to validate the reproducibility and advantages of our findings using this anchored cage for the treatment of BI with IAAD.
Borges Radaelli, Manuel Tomás; Idogava, Henrique Takashi; Spazzin, Aloisio Oro; Noritomi, Pedro Yoshito; Boscato, Noéli
2018-04-30
An occlusal device is frequently recommended for patients with bruxism to protect implant-supported restorations and prevent marginal bone loss. Scientific evidence to support this treatment is lacking. The purpose of this 3-dimensional (3D) finite element study was to evaluate the influence of an acrylic resin occlusal device, implant length, and insertion depth on stress distribution with functional and parafunctional loadings. Computer-aided design software was used to construct 8 models. The models were composed of a mandibular bone section including the second premolar and first and second molars. Insertion depths (bone level and 2 mm subcrestal) were simulated at the first molar. Three natural antagonist maxillary teeth and the placement or not of an occlusal device were simulated. Functional (200-N axial and 10-N oblique) and parafunctional (1000-N axial and 25-N oblique) forces were applied. Finite element analysis (FEA) was used to determine the maximum principal stress for the cortical and trabecular bone and von Mises for implant and prosthetic abutment. Stress concentration was observed at the abutment-implant and the implant-bone interfaces. Occlusal device placement changed the pattern of stress distribution and reduced stress levels from parafunctional loading in all structures, except in the trabecular bone. Implants with subcrestal insertion depths had reduced stress at the implant-abutment interface and cortical bone around the implant abutment, while the stress increased in the bone in contact with the implant. Parafunctional loading increased the stress levels in all structures when compared with functional loading. An occlusal device resulted in the lowest stress levels at the abutment and implant and the most favorable stress distribution between the cortical and trabecular bone. Under parafunctional loading, an occlusal device was more effective in reducing stress distribution for longer implants inserted at bone level. Subcrestally, implant insertion yielded the most favorable biomechanical conditions at the abutment-implant interface and at the coronal surface of the cortical bone, mainly when there was no occlusal device. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei
2018-02-01
To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.
Advancement Of Tritium Powered Betavoltaic Battery Systems FY16 EOY Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staack, G.; Gaillard, J.; Hitchcock, D.
2016-10-12
The goal of this work is to increase the power output of tritium-powered betavoltaic batteries and investigate the change in power output and film resistance in real-time during tritium loading of adsorbent films. To this end, several tritium-compatible test vessels with the capability of measuring both the resistivity of a tritium trapping film and the power output of a betavoltaic device in-situ have been designed and fabricated using four electrically insulated feedthroughs in tritium-compatible load cells. Energy conversion devices were received from Widetronix, a betavoltaic manufacturing firm based in Ithaca, NY. Thin films were deposited on the devices and cappedmore » with palladium to facilitate hydrogen loading. Gold contacts were then deposited on top of the films to allow resistivity measurements of the film during hydrogen loading. Finally, the chips were wire bonded and installed in the test cells. The cells were then baked-out under vacuum and leak checked at temperature to reduce the chances of tritium leaks during loading. Following the bake-out, IV curves were measured to verify no internal wires were compromised, and the cells were delivered to Tritium for loading. Tritium loading is anticipated in October, 2017.« less
Can use of walkers or canes impede lateral compensatory stepping movements?
Bateni, Hamid; Heung, Evelyn; Zettel, John; McLlroy, William E; Maki, Brian E
2004-08-01
Although assistive devices, such as walkers and canes are often prescribed to aid in balance control, recent studies have suggested that such devices may actually increase risk of falling. In this study, we investigated one possible mechanism: the potential for walkers or canes to interfere with, or constrain, lateral movement of the feet and thereby impede execution of compensatory stepping reactions during lateral loss of balance. Lateral stepping reactions were evoked, in 10 healthy young adults (ages 22-27 years), by means of sudden unpredictable medio-lateral support surface translation. Subjects were tested while holding and loading a standard pickup walker or single-tip cane or while using no assistive device (hands free or holding an object). Results supported the hypothesis that using a walker or cane can interfere with compensatory stepping. Collisions between the swing-foot and mobility aid were remarkably frequent when using the walker (60% of stepping reactions) and also occurred in cane trials (11% of stepping reactions). Furthermore, such collisions were associated with a significant reduction (26-37%) in lateral step length. It appeared that subjects were sometimes able to avoid collision by increasing the forward or backward displacement of the swing-foot or by moving the cane; however, attempts to lift the walker out of the way occurred rarely and were usually impeded due to collision between the contralateral walker post and stance foot. The fact that compensatory stepping behavior was altered significantly in such a healthy cohort clearly demonstrates some of the safety limitations inherent to these assistive devices, as currently designed. Copyright 2003 Elsevier B.V.
Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices
NASA Astrophysics Data System (ADS)
Herrmann, F.; Hahn, D.; Büttgenbach, S.
1999-05-01
Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.
Complex Mobile Learning That Adapts to Learners' Cognitive Load
ERIC Educational Resources Information Center
Deegan, Robin
2015-01-01
Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…
Ohlinger, L.A.
1958-10-01
A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.
NASA Technical Reports Server (NTRS)
Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi; Inoue, Natsuhiko; Ohshima, Hiroshi; Sekiguchi, Chiharu
2003-01-01
PURPOSE: The objectives of this project were to investigate exercise load and body weight related to long-duration confinement in a closed environment simulating ISS flight conditions, and to evaluate subjects' motivation to continue the experiment and their adaptation to isolation. METHODS: Four Russian male subjects participated in a 240-d experiment (Group I), and four subjects (three male subjects and one female subject) from Austria, Canada, Japan, and Russia participated in a 110-d experiment (Group II). Exercise load was estimated during confinement using a modified Rating of Perceived Exertion scale. Free reports were used to determine subjects' motivation. Body weight was measured before, during, and after confinement. RESULTS: Group I achieved their lowest exercise loads during their first month of isolation; problems with adaptation to the isolation environment were also reported during this first month. Group II exercise load was significantly lower in the second month due to crewmember problems; loss of motivation could be noted from their free reports. The subject with the lowest exercise load retired from the isolation experiment earlier than scheduled. Exercise load was not correlated with prior exercise habits. Significant differences in body weight was observed between group I and II and between Russian and non-Russian subjects. One subject in Group I experienced a significant increase in his body weight. CONCLUSION: Exercise load may be a good indicator for adaptation problems and motivation changes in closed environments. Immobility, lack of space, and smoking cessation in general did not induce significant body weight changes.
21 CFR 830.300 - Devices subject to device identification data submission requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Devices subject to device identification data submission requirements. 830.300 Section 830.300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Identification Database § 830.300 Devices subject to device identification data submission requirements. (a) In...
NASA Technical Reports Server (NTRS)
Smith, Damon C. (Inventor)
2005-01-01
An exercise device 10 is particularly well suited for use in low gravity environments, and includes a frame 12 with plurality of resistance elements 30,82 supported in parallel on the frame. A load transfer member 20 is moveable relative to the frame for transferring the applied force to the free end of each captured resistance element. Load selection template 14 is removably secured both to the load transfer member, and a plurality of capture mechanisms engage the free end of corresponding resistance elements. The force applying mechanism 53 may be a handle, harness or other user interface for applying a force to move the load transfer member.
Tokarz, Richard D.
1983-01-01
A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.
A device for characterising the mechanical properties of the plantar soft tissue of the foot.
Parker, D; Cooper, G; Pearson, S; Crofts, G; Howard, D; Busby, P; Nester, C
2015-11-01
The plantar soft tissue is a highly functional viscoelastic structure involved in transferring load to the human body during walking. A Soft Tissue Response Imaging Device was developed to apply a vertical compression to the plantar soft tissue whilst measuring the mechanical response via a combined load cell and ultrasound imaging arrangement. Accuracy of motion compared to input profiles; validation of the response measured for standard materials in compression; variability of force and displacement measures for consecutive compressive cycles; and implementation in vivo with five healthy participants. Static displacement displayed average error of 0.04 mm (range of 15 mm), and static load displayed average error of 0.15 N (range of 250 N). Validation tests showed acceptable agreement compared to a Houndsfield tensometer for both displacement (CMC > 0.99 RMSE > 0.18 mm) and load (CMC > 0.95 RMSE < 4.86 N). Device motion was highly repeatable for bench-top tests (ICC = 0.99) and participant trials (CMC = 1.00). Soft tissue response was found repeatable for intra (CMC > 0.98) and inter trials (CMC > 0.70). The device has been shown to be capable of implementing complex loading patterns similar to gait, and of capturing the compressive response of the plantar soft tissue for a range of loading conditions in vivo. Copyright © 2015. Published by Elsevier Ltd.
Progress in extrapolating divertor heat fluxes towards large fusion devices
NASA Astrophysics Data System (ADS)
Sieglin, B.; Faitsch, M.; Eich, T.; Herrmann, A.; Suttrop, W.; Collaborators, JET; the MST1 Team; the ASDEX Upgrade Team
2017-12-01
Heat load to the plasma facing components is one of the major challenges for the development and design of large fusion devices such as ITER. Nowadays fusion experiments can operate with heat load mitigation techniques, e.g. sweeping, impurity seeding, but do not generally require it. For large fusion devices however, heat load mitigation will be essential. This paper presents the current progress of the extrapolation of steady state and transient heat loads towards large fusion devices. For transient heat loads, so-called edge localized modes are considered a serious issue for the lifetime of divertor components. In this paper, the ITER operation at half field (2.65 T) and half current (7.5 MA) will be discussed considering the current material limit for the divertor peak energy fluence of 0.5 {MJ}/{{{m}}}2. Recent studies were successful in describing the observed energy fluence in the JET, MAST and ASDEX Upgrade using the pedestal pressure prior to the ELM crash. Extrapolating this towards ITER results in a more benign heat load compared to previous scalings. In the presence of magnetic perturbation, the axisymmetry is broken and a 2D heat flux pattern is induced on the divertor target, leading to local increase of the heat flux which is a concern for ITER. It is shown that for a moderate divertor broadening S/{λ }{{q}}> 0.5 the toroidal peaking of the heat flux disappears.
Preatoni, Ezio; Colombo, Alessandro; Verga, Monica; Galvani, Christel; Faina, Marcello; Rodano, Renato; Preatoni, Ennio; Cardinale, Marco
2012-09-01
The aims of this study were to assess the behavior of a vibrating platform under different conditions and to compare the effects of an 8-week periodized training program with whole-body vibration (WBV) alone or in combination with conventional strength training (ST). Vibrating frequencies, displacements, and peak accelerations were tested through a piezoelectric accelerometer under different conditions of load and subjects' position. Eighteen national-level female athletes were assigned to 1 of 3 different groups performing WBV, conventional ST, or a combination of the 2 (WBV + ST). Isometric maximal voluntary contraction, dynamic maximal concentric force, and vertical jump tests were performed before and after the conditioning program. Vibrating displacements and maximum accelerations measured on the device were not always consistent with their expected values calculated from the display and manufacturers' information (sinusoidal waveforms). The WBV alone or in combination with low-intensity resistance exercise did not seem to induce significant enhancements in force and power when compared with ST. It appears that WBV cannot substitute parts of ST loading in a cohort of young female athletes. However, vibration effects might be limited by the behavior of the commercial platforms as the one used in the study. More studies are needed to analyze the performances of devices and the effectiveness of protocols.
Hao, Shiying; Gorjon, Jose; Taylor, Stephen
2014-03-01
This work describes the functions of the external, portable part of a telemetry system for powering and interrogating implantable electrical devices built within orthopaedic implants for real-time data acquisition of strain, load, temperature, humidity and other relevant data (e.g. from inertial sensors). The system contains a battery powered inductive energiser and demodulator to remotely power the implant electronics and demodulate the signals transmitted from the implanted device. Due to the housing of the internal coil, sufficient inductive coupling is obtained between the external and internal tuned circuits to enable simultaneous power and data transmission over the same inductive link. The actual performance of this system when used with one specific implant was studied, and some correspondence made to the relevant theory. Performance factors relating to both power efficiency and data reconstruction were identified. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
Optimization principles and the figure of merit for triboelectric generators.
Peng, Jun; Kang, Stephen Dongmin; Snyder, G Jeffrey
2017-12-01
Energy harvesting with triboelectric nanogenerators is a burgeoning field, with a growing portfolio of creative application schemes attracting much interest. Although power generation capabilities and its optimization are one of the most important subjects, a satisfactory elemental model that illustrates the basic principles and sets the optimization guideline remains elusive. We use a simple model to clarify how the energy generation mechanism is electrostatic induction but with a time-varying character that makes the optimal matching for power generation more restrictive. By combining multiple parameters into dimensionless variables, we pinpoint the optimum condition with only two independent parameters, leading to predictions of the maximum limit of power density, which allows us to derive the triboelectric material and device figure of merit. We reveal the importance of optimizing device capacitance, not only load resistance, and minimizing the impact of parasitic capacitance. Optimized capacitances can lead to an overall increase in power density of more than 10 times.
Experimental studies of breaking of elastic tired wheel under variable normal load
NASA Astrophysics Data System (ADS)
Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.
2017-10-01
The paper analyzes the braking of a vehicle wheel subjected to disturbances of normal load variations. Experimental tests and methods for developing test modes as sinusoidal force disturbances of the normal wheel load were used. Measuring methods for digital and analogue signals were used as well. Stabilization of vehicle wheel braking subjected to disturbances of normal load variations is a topical issue. The paper suggests a method for analyzing wheel braking processes under disturbances of normal load variations. A method to control wheel baking processes subjected to disturbances of normal load variations was developed.
30 CFR 57.9317 - Suspended loads.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...
... muscles can weaken over time or from certain events. Learn how to strengthen these muscles and regain…Plasma Viral Load TestingRead Article >>Procedures & DevicesPlasma Viral Load TestingA plasma viral load ...
2014-01-01
Background Intracranial pressure changes during head impact cause brain injuries such as vasogenic edema and cerebral contusion. However, the influence of impulsive pressure on endothelial function has not yet been fully studied in vitro. In this study, we developed a pressure loading device that produced positive and negative pressures by modifying an in vitro fluid percussion model and examined the effects of the amplitude and duration of the pressures on endothelial permeability. Methods Human umbilical vein endothelial cells were subjected to three types of positive pressure (average amplitude/average duration of 352 kPa/23 ms, 73 kPa/27 ms, and 70 kPa/44 ms) and three types of negative pressure (−72 kPa/41 ms, −67 kPa/104 ms, and −91 kPa/108 ms), and the transendothelial electrical resistance (TEER) was measured between 15 min and 24 h after pressure loading for quantifying the formation of an integral monolayer of endothelial cells. After loading, vascular endothelial- (VE-) cadherin, an endothelium-specific cell-cell adhesion molecule involved in endothelial barrier function, was stained and observed using fluorescence microscopy. Results The pressure loading device could produce positive pressure pulses with amplitudes of 53–1348 kPa and durations of 9–29.1 ms and negative pressure pulses with amplitudes of −52–−93 kPa and durations of 42.9–179.5 ms. The impulsive pressure reduced the TEER associated with the change in VE-cadherin localization. Additionally, TEER decreased considerably at 15 min and 6 h post-loading, with these changes being significant in positive pressure with larger amplitude and shorter duration and in all types of negative pressures compared to pre-loading. Conclusions The changes in intracranial pressure during head impact impair endothelial barrier function by the disruption of the integrity of endothelial cell-cell junctions, and the degree of increase in endothelial permeability depends on the amplitude, duration, and direction (compressive and tensile) of the impulsive pressure. PMID:24739360
Re-entry simulation chamber for thermo-mechanical characterisation of space materials
NASA Astrophysics Data System (ADS)
Liedtke, Volker
2003-09-01
During re-entry, materials and components are subject to very high thermal and mechanical loads. Any failure may cause loss of mission. Therefore, materials and components have to be tested under most rigid conditions to verify the suitability of the material and to verify the design of the components. The Re-Entry Simulation Chamber (RESiC) at ARC Seibersdorf research (ARCS) allows simulating the high thermal loads as well as complex mechanical load profiles that may occur during a re-entry; additionally, the influence of chemical reactions of materials with gaseous components of the atmosphere can be studied. The high vacuum chamber (better than 1×10-6 mbar) has a diameter of 650 mm and allows a sample height of 500 mm, or 1000 mm with extension flange. The gas dosing system is designed to emulate the increasing atmospheric pressure during the re-entry trajectory of a vehicle. Heating is performed by a 30 kW induction generator that allows a sufficiently rapid heating of larger components; electrically conductive materials such as metals or carbon fibre reinforced ceramics are directly heated, while for electrical insulators, susceptor plates or tubes will be employed. The uniaxial servo-hydraulic testing machine has a maximum load of 70 kN, either static or with a frequency of up to 70 Hz, with any given load profile (sinus, rectangular, triangular, ...). Strain measurements will be done by non-contacting laser speckle system for maximum flexibility and minimum instrumentation time effort (currently under application testing), or by strain gauges. All relevant process parameters are controlled and recorded by microcomputer. The highly sophisticated control software allows a convenient and reliable multi-channel data acquisition, e.g. temperatures at various positions of the test piece, pressure, loads, strains, and any other test data according to customer specifications; the data format is suitable for any further data processing. During the set-up and operation testing, the device has successfully been employed for thermal shock testing, thermal cycling and gas cycling tests, thermomechanical tests and combinations thereof, e.g. sintering or hot-pressing. During the current final test series, the device will be completed, further optimised and shall be fully operational in summer 2003.
Efficient Switching Arrangement for (N + 1)/N Redundancy
NASA Technical Reports Server (NTRS)
Lux, James; McMaster, Robert
2007-01-01
An efficient arrangement of four switches has been conceived for coupling, to four output ports, the output powers of any subset of four devices that are members of a redundant set of five devices. In normal operation, the output power of each of four of the devices would be coupled to one of the four output ports. The remaining device would be kept as a spare: normally, its output power would be coupled to a load, wherein that power would be dissipated. In the event of failure of one of the four normally used devices, that device would be disconnected from its output port and connected to the load, and the spare device would be connected to the output from which the failed device was disconnected. Alternatively or in addition, the outputs of one or more devices could be sent to ports other than the ones originally assigned to them.
DeVocht, James W; Owens, Edward F; Gudavalli, Maruti Ram; Strazewski, John; Bhogal, Ramneek; Xia, Ting
2013-01-01
The objectives of this study were to examine the force-time profiles of toggle recoil using an instrumented simulator to objectively measure and evaluate students' skill to determine if they become quicker and use less force during the course of their training and to compare them to course instructors and to field doctors of chiropractic (DCs) who use this specific technique in their practices. A load cell was placed within a toggle recoil training device. The preload, speed, and magnitude of the toggle recoil thrusts were measured from 60 students, 2 instructors, and 77 DCs (ie, who use the toggle recoil technique in their regular practice). Student data were collected 3 times during their toggle course (after first exposure, at midterm, and at course end.) Thrusts showed a dual-peak force-time profile not previously described in other forms of spinal manipulation. There was a wide range of values for each quantity measured within and between all 3 subject groups. The median peak load for students decreased over the course of their class, but they became slower. Field doctors were faster than students or instructors and delivered higher peak loads. Toggle recoil thrusts into a dropping mechanism varied based upon subject and amount of time practicing the task. As students progressed through the class, speed reduced as they increased control to lower peak loads. In the group studies, field DCs applied higher forces and were faster than both students and instructors. There appears to be a unique 2-peak feature of the force-time plot that is unique to toggle recoil manipulation with a drop mechanism. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.
Stress and Performance: Effects of Subjective Work Load and Time Urgency.
ERIC Educational Resources Information Center
Friend, Kenneth E.
1982-01-01
Measured subjective work load, time urgency, and other stress/motivation variables for management personnel taking a demanding problem-solving exam. Data suggest increases in psychological stresses like subjectively high work load and time urgency uniformly impair performance across the whole range of these variables. (Author)
Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration
Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang
2017-01-01
The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics. PMID:28240268
Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration.
Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang
2017-02-27
The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO 3 ) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d 33 of HA/BaTiO 3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO 3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO 3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO 3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO 3 piezoelectric ceramics.
Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration
NASA Astrophysics Data System (ADS)
Tang, Yufei; Wu, Cong; Wu, Zixiang; Hu, Long; Zhang, Wei; Zhao, Kang
2017-02-01
The piezoelectric effect of biological piezoelectric materials promotes bone growth. However, the material should be subjected to stress before it can produce an electric charge that promotes bone repair and reconstruction conducive to fracture healing. A novel method for in vitro experimentation of biological piezoelectric materials with physiological load is presented. A dynamic loading device that can simulate the force of human motion and provide periodic load to piezoelectric materials when co-cultured with cells was designed to obtain a realistic expression of piezoelectric effect on bone repair. Hydroxyapatite (HA)/barium titanate (BaTiO3) composite materials were fabricated by slip casting, and their piezoelectric properties were obtained by polarization. The d33 of HA/BaTiO3 piezoelectric ceramics after polarization was 1.3 pC/N to 6.8 pC/N with BaTiO3 content ranging from 80% to 100%. The in vitro biological properties of piezoelectric bioceramics with and without cycle loading were investigated. When HA/BaTiO3 piezoelectric bioceramics were affected by cycle loading, the piezoelectric effect of BaTiO3 promoted the growth of osteoblasts and interaction with HA, which was better than the effect of HA alone. The best biocompatibility and bone-inducing activity were demonstrated by the 10%HA/90%BaTiO3 piezoelectric ceramics.
Field Testing of Telemetry for Demand Response Control of Small Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanzisera, Steven; Weber, Adam; Liao, Anna
The electricity system in California, from generation through loads, must be prepared for high renewable penetration and increased electrification of end uses while providing increased resilience and lower operating cost. California has an aggressive renewable portfolio standard that is complemented by world-leading greenhouse gas goals. The goal of this project was to evaluate methods of enabling fast demand response (DR) signaling to small loads for low-cost site enablement. We used OpenADR 2.0 to meet telemetry requirements for providing ancillary services, and we used a variety of low-cost devices coupled with open-source software to enable an end-to-end fast DR. The devices,more » architecture, implementation, and testing of the system is discussed in this report. We demonstrate that the emerging Internet of Things (IoT) and Smart Home movements provide an opportunity for diverse small loads to provide fast, low-cost demand response. We used Internet-connected lights, thermostats, load interruption devices, and water heaters to demonstrate an ecosystem of controllable devices. The system demonstrated is capable of providing fast load shed for between 20 dollars and $300 per kilowatt (kW) of available load. The wide range results from some loads may have very low cost but also very little shed capability (a 10 watt [W] LED light can only shed a maximum of 10 W) while some loads (e.g., water heaters or air conditioners) can shed several kilowatts but have a higher initial cost. These costs, however, compare well with other fast demand response costs, with typically are over $100/kilowatt of shed. We contend these loads are even more attractive than their price suggests because many of them will be installed for energy efficiency or non-energy benefits (e.g., improved lighting quality or controllability), and the ability to use them for fast DR is a secondary benefit. Therefore the cost of enabling them for DR may approach zero if a software-only solution can be deployed to enable fast DR after devices are installed for other reasons. We recommend that the DR research community continue to engage with the IoT community to encourage the use of documented and open development interfaces. A library of device drivers and machine-readable interface specifications would significantly reduce the burden on users or system integrators for deploying systems in large numbers of buildings in California.« less
NASA Technical Reports Server (NTRS)
Stone, Ralph W., Jr.; Hultz, Burton E.
1949-01-01
The characteristics of a cargo-dropping device having extensible rotating blades as load-carrying surfaces have been studied in simulated vertical descent in the Langley 20-foot free-spinning tunnel. The investigation included tests to determine the variation in vertical sinking speed with load. A study of the blade characteristics and of the test results indicated a method of dynamically balancing the blades to permit proper functioning of the device.
King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson
1998-01-01
A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.
King, R.D.; DeDoncker, R.W.A.A.
1998-01-20
A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.
Overload protection: avoidance response to heavy plantar surface loading.
Robbins, S E; Hanna, A M; Gouw, G J
1988-02-01
Current footwear which are designed for use in running are examples of intentional biomechanical model integration into device design. The inadequacy of this footwear in protecting against injury is postulated to be due to fixation on inadequate models of locomotory biomechanics that do not provide for feedback control; in particular, an hypothesized plantar surface sensory-mediated feedback control system, which imparts overload protection during locomotion. A heuristic approach was used to identify the hypothesized system. A random series of loads (0 to 164 kg) was applied to the knee flexed at 90 degrees. In this testing system, plantar surface avoidance behavior was the difference between the sum of the leg weight and the load applied to the knee, and the load measured at the plantar surface; this was produced by activation of hip flexors. Significant avoidance behavior was found in all of the subjects (P less than 0.001). On all surfaces tested, including modern athletic footwear (P less than 0.001), its magnitude increased directly in relation to the load applied to the knee (P less than 0.001). There were significant differences in avoidance behavior in relation to the weight-bearing surfaces tested (P less than 0.05). With the identification of a feedback control system which would serve to moderate loading during locomotion, an explanation is provided as to why current athletic footwear do not protect and may be injurious; thus allowing the design of footwear which may be truly protective.
Pregnant woman and road safety: experimental crash test with post mortem human subject.
Delotte, Jerome; Behr, Michel; Thollon, Lionel; Arnoux, Pierre-Jean; Baque, Patrick; Bongain, Andre; Brunet, Christian
2008-05-01
Trauma affect between 3 and 7% of all pregnancies in industrialized countries, and the leading cause of these traumas is car crashes. The difficulty to appreciate physiologic and anatomic changes occurring during pregnancy explain that majority of studies were not based on anatomical data. We present a protocol to create a realistic anatomical model of pregnant woman using a post mortem human subject (PMHS). We inserted a physical model of the gravid uterus into the pelvis of a PMHS. 3D acceleration sensors were placed on the subject to measure the acceleration on different body segments. We simulated three frontal impact situations at 20 km/h between two average European cars. Two main kinematics events were identified as possible causes of injuries: lap belt loading and backrest impact. Cadaver experiments provide one interesting complementary approach to study injury mechanisms related to road accidents involving pregnant women. This anatomical accuracy makes it possible to progress in the field of safety devices.
Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System
ERIC Educational Resources Information Center
Deegan, Robin
2013-01-01
Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…
49 CFR 38.159 - Mobility aid accessibility.
Code of Federal Regulations, 2010 CFR
2010-10-01
... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...
49 CFR 38.159 - Mobility aid accessibility.
Code of Federal Regulations, 2011 CFR
2011-10-01
... boarding device (e.g., lift or ramp) complying with paragraph (b) or (c) of this section and sufficient...) Exception. If portable or station-based lifts, ramps or bridge plates meeting the applicable requirements of... device. (b) Vehicle lift—(1) Design load. The design load of the lift shall be at least 600 pounds (2665...
Demetropoulos, C K; Truumees, E; Herkowitz, H N; Yang, K H
2005-05-01
In surgery of the cervical spine, a Caspar pin distractor is often used to apply a tensile load to the spine in order to open up the disc space. This is often done in order to place a graft or other interbody fusion device in the spine. Ideally a tight interference fit is achieved. If the spine is over distracted, allowing for a large graft, there is an increased risk of subsidence into the endplate. If there is too little distraction, there is an increased risk of graft dislodgement or pseudoarthrosis. Generally, graft height is selected from preoperative measurements and observed distraction without knowing the intraoperative compressive load. This device was designed to give the surgeon an assessment of this applied load. Instrumentation of the device involved the application of strain gauges and the selection of materials that would survive standard autoclave sterilization. The device was calibrated, sterilized and once again calibrated to demonstrate its suitability for surgical use. Results demonstrate excellent linearity in the calibration, and no difference was detected in the pre- and post-sterilization calibrations.
Thompson, Melanie L; Backman, David; Branemark, Rickard; Mechefske, Chris K
2011-05-01
Osseointegrated transfemoral implants have been introduced as a prosthetic solution for above knee amputees. They have shown great promise, providing an alternative for individuals who could not be accommodated by conventional, socket-based prostheses; however, the occurrence of device failures is of concern. In an effort to improve the strength and longevity of the device, a new design has been proposed. This study investigates the mechanical behavior of the new taper-based assembly in comparison to the current hex-based connection for osseointegrated transfemoral implant systems. This was done to better understand the behavior of components under loading, in order to optimize the assembly specifications and improve the useful life of the system. Digital image correlation was used to measure surface strains on two assemblies during static loading in bending. This provided a means to measure deformation over the entire sample and identify critical locations as the assembly was subjected to a series of loading conditions. It provided a means to determine the effects of tightening specifications and connection geometry on the material response and mechanical behavior of the assemblies. Both osseoinegrated assemblies exhibited improved strength and mechanical performance when tightened to a level beyond the current specified tightening torque of 12 N m. This was shown by decreased strain concentration values and improved distribution of tensile strain. Increased tightening torque provides an improved connection between components regardless of design, leading to increased torque retention, decreased peak tensile strain values, and a more gradual, primarily compressive distribution of strains throughout the assembly.
An Energy Absorber for the International Space Station
NASA Technical Reports Server (NTRS)
Wilkes, Bob; Laurence, Lora
2000-01-01
The energy absorber described herein is similar in size and shape to an automotive shock absorber, requiring a constant, high load to compress over the stroke, and self-resetting with a small load. The differences in these loads over the stroke represent the energy absorbed by the device, which is dissipated as friction. This paper describes the evolution of the energy absorber, presents the results of testing performed, and shows the sensitivity of this device to several key design variables.
Grips for testing of electrical characteristics of a specimen under a mechanical load
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Timothy; Loyola, Bryan
Various technologies to facilitate coupled electrical and mechanical measurement of conductive materials are disclosed herein. A gripping device simultaneously holds a specimen in place and causes contact to be made between the specimen and a plurality of electrodes connected to an electrical measuring device. An electrical characteristic of the specimen is then measured while a mechanical load is applied to the specimen, and a relationship between the mechanical load and changes in the electrical characteristic can be identified.
Brayda, Luca; Campus, Claudio; Memeo, Mariacarla; Lucagrossi, Laura
2015-01-01
Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.
Govus, Andrew D; Coutts, Aaron; Duffield, Rob; Murray, Andrew; Fullagar, Hugh
2018-01-01
The relationship between pretraining subjective wellness and external and internal training load in American college football is unclear. To examine the relationship of pretraining subjective wellness (sleep quality, muscle soreness, energy, wellness Z score) with player load and session rating of perceived exertion (s-RPE-TL) in American college football players. Subjective wellness (measured using 5-point, Likert-scale questionnaires), external load (derived from GPS and accelerometry), and s-RPE-TL were collected during 3 typical training sessions per week for the second half of an American college football season (8 wk). The relationship of pretraining subjective wellness with player load and s-RPE training load was analyzed using linear mixed models with a random intercept for athlete and a random slope for training session. Standardized mean differences (SMDs) denote the effect magnitude. A 1-unit increase in wellness Z score and energy was associated with trivial 2.3% (90% confidence interval [CI] 0.5, 4.2; SMD 0.12) and 2.6% (90% CI 0.1, 5.2; SMD 0.13) increases in player load, respectively. A 1-unit increase in muscle soreness (players felt less sore) corresponded to a trivial 4.4% (90% CI -8.4, -0.3; SMD -0.05) decrease in s-RPE training load. Measuring pretraining subjective wellness may provide information about players' capacity to perform in a training session and could be a key determinant of their response to the imposed training demands American college football. Hence, monitoring subjective wellness may aid in the individualization of training prescription in American college football players.
Elastomeric load sharing device
NASA Technical Reports Server (NTRS)
Isabelle, Charles J. (Inventor); Kish, Jules G. (Inventor); Stone, Robert A. (Inventor)
1992-01-01
An elastomeric load sharing device, interposed in combination between a driven gear and a central drive shaft to facilitate balanced torque distribution in split power transmission systems, includes a cylindrical elastomeric bearing and a plurality of elastomeric bearing pads. The elastomeric bearing and bearing pads comprise one or more layers, each layer including an elastomer having a metal backing strip secured thereto. The elastomeric bearing is configured to have a high radial stiffness and a low torsional stiffness and is operative to radially center the driven gear and to minimize torque transfer through the elastomeric bearing. The bearing pads are configured to have a low radial and torsional stiffness and a high axial stiffness and are operative to compressively transmit torque from the driven gear to the drive shaft. The elastomeric load sharing device has spring rates that compensate for mechanical deviations in the gear train assembly to provide balanced torque distribution between complementary load paths of split power transmission systems.
Abdullahi, Yahaya; Coetzee, Ben; Van den Berg, Linda
2017-07-03
The study purpose was to determine relationships between results of internal and external match load determining methods. Twenty-one players, who participated in selected badminton championships during the 2014/2015 season served as subjects. The heart rate (HR) values and GPS data of each player were obtained via a fix Polar HR Transmitter Belt and MinimaxX GPS device. Moderate significant Spearman's rank correlations were found between HR and absolute duration (r = 0.43 at a low intensity (LI) and 0.44 at a high intensity (HI)), distance covered (r = 0.42 at a HI) and player load (PL) (r = 0.44 at a HI). Results also revealed an opposite trend for external and internal measures of load as the average relative HR value was found to be the highest for the HI zone (54.1%) compared to the relative measures of external load where average values (1.29-9.89%) were the lowest for the HI zone. In conclusion, our findings show that results of an internal and external badminton match load determining method are more related to each other in the HI zone than other zones and that the strength of relationships depend on the duration of activities that are performed in especially LI and HI zones. Overall, trivial to moderate relationships between results of an internal and external match load determining method in male, singles badminton players reaffirm the conclusions of others that these constructs measure distinctly different demands and should therefore be measured concurrently to fully understand the true requirements of badminton match play.
Closed Loop Control Compact Exercise Device for Use on MPCV
NASA Technical Reports Server (NTRS)
Sheehan, Chris; Funk, Justin; Funk, Nathan; Kutnick, Gilead; Humphreys, Brad; Bruinsma, Douwe; Perusek, Gail
2016-01-01
Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. To combat spaceflight physiological deconditioning, astronauts will use resistive and aerobic exercise regimens for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the mass and volume available for an exercise device in the next generation of spacecraft is limited. Therefore, compact exercise device prototypes are being developed for human in the loop evaluations. The NASA Human Research Program (HRP) is managing Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation for all exploration mission profiles from Multi-Purpose Crew Vehicle (MPCV) exploration missions (e.g., EM-2, up to 21 day) to Mars Transit (up to 1000 day) missions. Numerous technologies have been considered and evaluated against HRP-approved functional requirements and include flywheel, pneumatic and closed-loop microprocessor-controlled motor driven power plants. Motor driven technologies offer excellent torque density and load accuracy characteristics as well as the ability to create custom mechanical impedance (the dynamic relationship between force and velocity) and custom load versus position exercise algorithms. Further, closed-loop motor-driven technologies offer the ability to monitor exercise dose parameters and adapt to the needs of the crewmember for real time optimization of exercise prescriptions. A simple proportional-integral-derivative (PID) controller is demonstrated in a prototype motor driven exercise device with comparison to resistive static and dynamic load set points and aerobic work rate targets. The resistive load term in the algorithm includes a constant force component (Fcmg) as well as inertial component (Fima) and a discussion of system tuning is presented in terms of addressing key functional requirements and human interfaces. The device aerobic modality is modelled as a rowing exercise using ground data sets obtained from Concept 2 rowers as well as competitive rowing1. A discussion of software and electronic implementations are presented which demonstrate unique approaches to meeting the constrained mass, volume and power requirements of the MPCV. . In addition to utilizing traditional PID control, controllers utilizing state feedback with gains solved using a Linear Quadratic Regulator will be developed. Controllability and observability will be utilized to investigate the need for state measurement in the design. As the control system directly interacts with human test subjects, robust methods such as H-infinity are also being investigated.1. Kleshnev V. Biomechanics. In: Rowing, Handbook of Sports Medicine and Science. ed. by Secher N., Voliantis S. IOC Medical Commission, Blackwell Pub. pp. 22-34, 2007
VOLTTRON-Based System for Providing Ancillary Services with Residential Building Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Xin
2016-07-01
Ancillary services entail controlled modulation of building equipment to maintain a stable balance of generation and load in the power system. Ancillary services include frequency regulation and contingency reserves, whose acting time ranges from several seconds to several minutes. Many pilot studies have been implemented to use industrial loads to provide ancillary services, and some have explored services from commercial building loads or electric vehicle charging loads. Residential loads, such as space conditioning and water heating, represent a largely untapped resource for providing ancillary services. The residential building sector accounts for a significant fraction of the total electricity use inmore » the United States. Many loads in residential buildings are flexible and could potentially be curtailed or shifted at the request of the grid. However, there are many barriers that prevent residential loads being widely used for ancillary services. One of the major technical barriers is the lack of communication capabilities between end-use devices and the grid. End-use devices need to be able to receive the automatic generation control (AGC) signal from the grid operator and supply certain types of telemetry to verify response. With the advance of consumer electronics, communication-enabled, or 'connected,' residential equipment has emerged to overcome the communication barrier. However, these end-use devices have introduced a new interoperability challenge due to the existence of numerous standards and communication protocols among different end devices. In this paper, we present a VOLTTRON-based system that overcomes these technical challenges and provides ancillary services with residential loads. VOLTTRON is an open-source control and sensing platform for building energy management, facilitating interoperability solutions for end devices. We have developed drivers to communicate and control different types of end devices through standard-based interfaces, manufacturer-provided application programming interfaces, and proprietary communication interfaces. We document the ability to manage nine appliances, using four different standards or proprietary communication methods. A hardware-in-the-loop test was performed in a laboratory environment where the loads of a laboratory home and a large number of simulated homes are controlled by an aggregator. Upon receipt of an AGC signal, the VOLTTRON home energy management system (HEMS) of the laboratory home adjusts the end-device controls based on the comfort criteria set by the end users and sends telemetry to the aggregator to verify response. The aggregator then sends the AGC signal to other simulated homes in attempts to match the utility request as closely as possible. Frequency regulation is generally considered a higher value service than other ancillary services but it is also more challenging due to the constraint of short response time. A frequency regulation use case has been implemented with the regulation signals sent every 10 seconds. Experimental results indicate that the VOLTTRON-controlled residential loads are able to be controlled with sufficient fidelity to enable an aggregator to meet frequency regulation requirements. Future work is warranted, such as understanding the impact of this type of control on equipment life, and market requirements needed to open up residential loads to ancillary service aggregators.« less
Load capacity improvements in nucleic acid based systems using partially open feedback control.
Kulkarni, Vishwesh; Kharisov, Evgeny; Hovakimyan, Naira; Kim, Jongmin
2014-08-15
Synthetic biology is facilitating novel methods and components to build in vivo and in vitro circuits to better understand and re-engineer biological networks. Recently, Kim and Winfree have synthesized a remarkably elegant network of transcriptional oscillators in vitro using a modular architecture of synthetic gene analogues and a few enzymes that, in turn, could be used to drive a variety of downstream circuits and nanodevices. However, these oscillators are sensitive to initial conditions and downstream load processes. Furthermore, the oscillations are not sustained since the inherently closed design suffers from enzyme deactivation, NTP fuel exhaustion, and waste product build up. In this paper, we show that a partially open architecture in which an [Symbol: see text]1 adaptive controller, implemented inside an in silico computer that resides outside the wet-lab apparatus, can ensure sustained tunable oscillations in two specific designs of the Kim-Winfree oscillator networks. We consider two broad cases of operation: (1) the oscillator network operating in isolation and (2) the oscillator network driving a DNA tweezer subject to a variable load. In both scenarios, our simulation results show a significant improvement in the tunability and robustness of these oscillator networks. Our approach can be easily adopted to improve the loading capacity of a wide range of synthetic biological devices.
Rafferty, Anthony Richard; Johnson, Lucy; Davis, Peter G; Dawson, Jennifer Anne; Thio, Marta; Owen, Louise S
2017-11-30
Neonatal mask ventilation is a difficult skill to acquire and maintain. Mask leak is common and can lead to ineffective ventilation. The aim of this study was to determine whether newly available neonatal self-inflating bags and masks could reduce mask leak without additional load being applied to the face. Forty operators delivered 1 min episodes of mask ventilation to a mannequin using the Laerdal Upright Resuscitator, a standard Laerdal infant resuscitator (Laerdal Medical) and a T-Piece Resuscitator (Neopuff), using both the Laerdal snap-fit face mask and the standard Laerdal size 0/1 face mask (equivalent sizes). Participants were asked to use pressure sufficient to achieve 'appropriate' chest rise. Leak, applied load, airway pressure and tidal volume were measured continuously. Participants were unaware that load was being recorded. There was no difference in mask leak between resuscitation devices. Leak was significantly lower when the snap-fit mask was used with all resuscitation devices, compared with the standard mask (14% vs 37% leak, P<0.01). The snap-fit mask was preferred by 83% of participants. The device-mask combinations had no significant effect on applied load. The Laerdal Upright Resuscitator resulted in similar leak to the other resuscitation devices studied, and did not exert additional load to the face and head. The snap-fit mask significantly reduced overall leak with all resuscitation devices and was the mask preferred by participants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Wang, M. D.; Li, D. S.; Huang, Y.; Zhang, C.; Zhong, K. M.; Sun, L. N.
2013-08-01
In the notebook and clamshell mobile phone, data communication wire often requires repeated bending. Generally, communication wire with the actual application conditions, the test data cannot assess bending resistance performance of data communication wire is tested conventionally using wires with weights of 90 degree to test bending number, this test method and device is not fully reflect the fatigue performance in high frequency and light load application condition, at the same time it has a large difference between the test data of the long-term reliability of high frequency and low load conditions. In this paper, high frequency light load fatigue testing machine based on the giant magnetostrictive material and stroke multiplier is put forward, in which internal reflux stroke multiplier is driven by giant magnetostrictive material to realize the rapid movement of light load. This fatigue testing device has the following advantages: (1) When the load is far less than the friction, reducing friction is very effective to improve the device performance. Because the body is symmetrical, the friction loss of radial does not exist in theory, so the stress situation of mechanism is good with high transmission efficiency and long service life. (2) The installation position of the output hydraulic cylinder, can be arranged conveniently as ordinary cylinder. (3) Reciprocating frequency, displacement and speed of high frequency movement can be programmed easily to change with higher position precision. (4)Hydraulic oil in this device is closed to transmit, which does not produce any environment pollution. The device has no hydraulic pump and tank, and less energy conversion processes, so it is with the trend of green manufacturing.
46 CFR 190.01-5 - Vessels subject to load line.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Vessels subject to load line. 190.01-5 Section 190.01-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS CONSTRUCTION AND ARRANGEMENT Hull Structure § 190.01-5 Vessels subject to load line. (a) For vessels assigned a...
Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang
2018-04-01
This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.
NASA Astrophysics Data System (ADS)
Chan, M. L.; Tay, Francis E.; Logeeswaran, V. J.; Zeng, Kaiyang; Shen, Lu; Chau, Fook S.
2002-04-01
A rapid and accurate static and quasi-static method for determining the out-of-plane spring constraints of cantilevers and a micromachined vibratory sensor is presented. In the past, much of the effort in nanoindentation application was to investigate the thin-film mechanical properties. In this paper, we have utilized the nanoindentation method to measure directly some micromachined device (e.g. microgyroscope) spring constants. The cantilevers and devices tested were fabricated using the MUMPS process and an SOI process (patent pending). Spring constants are determined using a commercial nanoindentation apparatus UMIS-2000 configured with both Berkovich and spherical indenter tip that can be placed onto the device with high accuracy. Typical load resolution is 20micrometers N to 0.5N and a displacement resolution of 0.05nm. Information was deduced from the penetration depth versus load curves during both loading and unloading.
NASA Astrophysics Data System (ADS)
Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang
2018-04-01
This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.
Ceramic Fiber Structures for Cryogenic Load-Bearing Applications
NASA Technical Reports Server (NTRS)
Jaskowiak, Martha H.; Eckel, Andrew J.
2009-01-01
This invention is intended for use as a load-bearing device under cryogenic temperatures and/or abrasive conditions (i.e., during missions to the Moon). The innovation consists of small-diameter, ceramic fibers that are woven or braided into devices like ropes, belts, tracks, or cables. The fibers can be formed from a variety of ceramic materials like silicon carbide, carbon, aluminosilicate, or aluminum oxide. The fiber architecture of the weave or braid is determined by both the fiber properties and the mechanical requirements of the application. A variety of weave or braid architectures is possible for this application. Thickness of load-bearing devices can be achieved by using either a 3D woven structure, or a layered, 2D structure. For the prototype device, a belt approximately 0.10 in. (0.25 cm) thick, and 3.0 in. (7.6 cm) wide was formed by layering and stitching a 2D aluminosilicate fiber weave.
Wireless power transfer electric vehicle supply equipment installation and validation tool
Jones, Perry T.; Miller, John M.
2015-05-19
A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.
Electrothermal fracturing of tensile specimens
NASA Technical Reports Server (NTRS)
Blinn, H. O.; Hanks, J. G.; Perkins, H. P.
1970-01-01
Pulling device consisting of structural tube, connecting rod, spring-loaded nuts, loading rod, heating element, and three bulkheads fractures tensile specimens. Alternate heating and cooling increases tensile loading by increments until fracturing occurs. Load cell or strain gage, applied to pulling rod, determines forces applied.
Self-regulating control of parasitic loads in a fuel cell power system
NASA Technical Reports Server (NTRS)
Vasquez, Arturo (Inventor)
2011-01-01
A fuel cell power system comprises an internal or self-regulating control of a system or device requiring a parasitic load. The internal or self-regulating control utilizes certain components and an interconnection scheme to produce a desirable, variable voltage potential (i.e., power) to a system or device requiring parasitic load in response to varying operating conditions or requirements of an external load that is connected to a primary fuel cell stack of the system. Other embodiments comprise a method of designing such a self-regulated control scheme and a method of operating such a fuel cell power system.
Portable Load Measurement Device for Use During ARED Exercise on ISS
NASA Technical Reports Server (NTRS)
Hanson, A.; Peters, B.; Caldwell, E.; Sinka, J.; Kreutzburg, G.; Ploutz-Snyder, L.
2014-01-01
The Advanced Resistive Exercise Device (ARED) (Fig.1) is unique countermeasure hardware available to crewmembers aboard the International Space Station (ISS) used for resistance exercise training to protect against bone and muscle loss during long duration space missions. ARED instrumentation system was designed to measure and record exercise load data, but: - Reliably accurate data has not been available due to a defective force platform. - No ARED data has been recorded since mid-2011 due to failures in the instrumentation power system. ARED load data supports on-going HRP funded research, and is available to extramural researchers through LSDA-Repository. Astronaut Strength, Conditioning, and Rehabilitation specialists (ASCRs) use ARED data to track training progress and advance exercise prescriptions. ARED load data is necessary to fulfill medical requirements. HRP directed task intends to reduce to program risk (HRP IRMA Risk 1735), and evaluate the XSENS ForceShoeTM as a means of obtaining ARED load data during exercise sessions. The XSENS ForceShoes"TM" will fly as a hardware demonstration to ISS in May 2014 (39S). Additional portable load monitoring devices (PLMDs) are under evaluation in the ExPC Lab. PLMDs are favored over platform redesign as they support future exploration needs.
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
14 CFR 23.813 - Emergency exit access.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the door is subjected to the inertia loads resulting from the ultimate static load factors prescribed... it by the door when the door is subjected to the inertia loads resulting from the ultimate static...
Optical switches and switching methods
Doty, Michael
2008-03-04
A device and method for collecting subject responses, particularly during magnetic imaging experiments and testing using a method such as functional MRI. The device comprises a non-metallic input device which is coupled via fiber optic cables to a computer or other data collection device. One or more optical switches transmit the subject's responses. The input device keeps the subject's fingers comfortably aligned with the switches by partially immobilizing the forearm, wrist, and/or hand of the subject. Also a robust nonmetallic switch, particularly for use with the input device and methods for optical switching.
Fixation of a human rib by an intramedullary telescoping splint anchored by bone cement.
Liovic, Petar; Šutalo, Ilija D; Marasco, Silvana F
2016-09-01
A novel concept for rib fixation is presented that involves the use of a bioresorbable polymer intramedullary telescoping splint. Bone cement is used to anchor each end of the splint inside the medullary canal on each side of the fracture site. In this manner, rib fixation is achieved without fixation device protrusion from the rib, making the splint completely intramedullary. Finite element analysis is used to demonstrate that such a splint/cement composite can preserve rib fixation subjected to cough-intensity force loadings. Computational fluid dynamics and porcine rib experiments were used to study the anchor formation process required to complete the fixation.
[Bacterial contamination of stethoscopes in hospital].
Davullu, Sevcan; Burger, Sandrine; Kessler, Brigitte; Meunier, Olivier
2015-01-01
Although many publications on the subject are available, only few campaigns for stethoscopes cleaning and disinfection are conducted. Stethoscope is a "not critical" reusable medical device and should benefit from a cleaning disinfection "low level" after each use. We studied the bacterial contamination of stethoscopes in our hospital and measured the role of bacterial reservoir and/or vector stethoscope could play. Mean microbial load was estimated at 1.550 CFU per stethoscope. Results obtained in our hospital and those of the literature, led us to propose a simple and efficient cleaning method. We believe motivate everyone to change their habits and carry out disinfection more frequent their very handling stethoscope.
Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.
Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael
2018-01-24
Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.
Treshow, M.
1960-08-16
A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
10 CFR 71.45 - Lifting and tie-down standards for all packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... that failure of any lifting device under excessive load would not impair the ability of the package to... its yield strength, a static force applied to the center of gravity of the package having a vertical... package must be designed so that failure of the device under excessive load would not impair the ability...
Yeung, S S; Ng, G Y
2000-06-01
Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.
A Method to Analyze and Optimize the Load Sharing of Split Path Transmissions
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.
1996-01-01
Split-path transmissions are promising alternatives to the common planetary transmissions for rotorcraft. Heretofore, split-path designs proposed for or used in rotorcraft have featured load-sharing devices that add undesirable weight and complexity to the designs. A method was developed to analyze and optimize the load sharing in split-path transmissions without load-sharing devices. The method uses the clocking angle as a design parameter to optimize for equal load sharing. In addition, the clocking angle tolerance necessary to maintain acceptable load sharing can be calculated. The method evaluates the effects of gear-shaft twisting and bending, tooth bending, Hertzian deformations within bearings, and movement of bearing supports on load sharing. It was used to study the NASA split-path test gearbox and the U.S. Army's Comanche helicopter main rotor gearbox. Acceptable load sharing was found to be achievable and maintainable by using proven manufacturing processes. The analytical results compare favorably to available experimental data.
Shamaei, Kamran; Cenciarini, Massimo; Adams, Albert A; Gregorczyk, Karen N; Schiffman, Jeffrey M; Dollar, Aaron M
2014-06-01
In this study, we describe the mechanical design and control scheme of a quasi-passive knee exoskeleton intended to investigate the biomechanical behavior of the knee joint during interaction with externally applied impedances. As the human knee behaves much like a linear spring during the stance phase of normal walking gait, the exoskeleton implements a spring across the knee in the weight acceptance (WA) phase of the gait while allowing free motion throughout the rest of the gait cycle, accomplished via an electromechanical clutch. The stiffness of the device is able to be varied by swapping springs, and the timing of engagement/disengagement changed to accommodate different loading profiles. After describing the design and control, we validate the mechanical performance and reliability of the exoskeleton through cyclic testing on a mechanical knee simulator. We then describe a preliminary experiment on three healthy adults to evaluate the functionality of the device on both left and right legs. The kinetic and kinematic analyses of these subjects show that the exoskeleton assistance can partially/fully replace the function of the knee joint and obtain nearly invariant moment and angle profiles for the hip and ankle joints, and the overall knee joint and exoskeleton complex under the applied moments of the exoskeleton versus the control condition, implying that the subjects undergo a considerable amount of motor adaptation in their lower extremities to the exoskeletal impedances, and encouraging more in-depth future experiments with the device.
NASA Technical Reports Server (NTRS)
Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.
1993-01-01
Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.
Zhang, Dongdong; Huang, Yaxin; Zhao, Qilin; Li, Fei; Gao, Yifeng
2014-01-01
A novel hybrid FRP-aluminum truss system has been employed in a two-rut modular bridge superstructure composed of twin inverted triangular trusses. The actual flexural behavior of a one-rut truss has been previously investigated under the on-axis loading test; however, the structural performance of the one-rut truss subjected to an off-axis load is still not fully understood. In this paper, a geometrical linear finite element model is introduced and validated by the on-axis loading test; the structural performance of the one-rut truss subjected to off-axis load was numerically obtained; the dissimilarities of the structural performance between the two different loading cases are investigated in detail. The results indicated that (1) the structural behavior of the off-axis load differs from that of the on-axis load, and the off-axis load is the critical loading condition controlling the structural performance of the triangular truss; (2) under the off-axis load, the FRP trussed members and connectors bear certain out-of-plane bending moments and are subjected to a complicated stress state; and (3) the stress state of these members does not match that of the initial design, and optimization for the redesign of these members is needed, especially for the pretightened teeth connectors. PMID:25254254
Moerman, Kevin M; van Vijven, Marc; Solis, Leandro R; van Haaften, Eline E; Loenen, Arjan C Y; Mushahwar, Vivian K; Oomens, Cees W J
2017-04-01
Pressure ulcers are a type of local soft tissue injury due to sustained mechanical loading and remain a common issue in patient care. People with spinal cord injury (SCI) are especially at risk of pressure ulcers due to impaired mobility and sensory perception. The development of load improving support structures relies on realistic tissue load evaluation e.g. using finite element analysis (FEA). FEA requires realistic subject-specific mechanical properties and geometries. This study focuses on the effect of geometry. MRI is used for the creation of geometrically accurate models of the human buttock for three able-bodied volunteers and three volunteers with SCI. The effect of geometry on observed internal tissue deformations for each subject is studied by comparing FEA findings for equivalent loading conditions. The large variations found between subjects confirms the importance of subject-specific FEA.
Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices.
Steffensen, Søren Langer; Vestergaard, Merete Hedemark; Groenning, Minna; Alm, Martin; Franzyk, Henrik; Nielsen, Hanne Mørck
2015-08-01
Bacterial colonization and biofilm formation on medical devices constitute major challenges in clinical long-term use of e.g. catheters due to the risk of (re)infection of patients, which would result in additional use of antibiotics risking bacterial resistance development. The aim of the present project was to introduce a novel antibacterial approach involving an advanced composite material applicable for medical devices. The polymeric composites investigated consisted of a hydrogel network of cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) embedded in a poly(dimethylsiloxane) (PDMS) silicone elastomer produced using supercritical carbon dioxide (scCO2). In these materials, the hydrogel may contain an active pharmaceutical ingredient while the silicone elastomer provides the sufficient mechanical stability of the material. In these conceptual studies, the antimicrobial agent ciprofloxacin was loaded into the polymer matrix by a post-polymerization loading procedure. Sustained release of ciprofloxacin was demonstrated, and the release could be controlled by varying the hydrogel content in the range 13-38% (w/w) and by changing the concentration of ciprofloxacin during loading in the range of 1-20mg/mL. Devices containing 25% (w/w) hydrogel and loaded with ciprofloxacin displayed a strong antibacterial effect against Staphylococcus aureus bacterial colonization and subsequent biofilm formation on the device material was inhibited for 29days. In conclusion, the hydrogel/silicone composite represents a promising candidate material for medical devices that prevent bacterial colonization during long-term use. Copyright © 2015 Elsevier B.V. All rights reserved.
Overreaching in coordination dynamics therapy in an athlete with a spinal cord injury.
Schalow, G; Vaher, I; Jaigma, P
2008-03-01
A motocross athlete suffered a clinically complete spinal cord injury (SCI) during competition. Although MRIs (magnetic resonance imaging) showed a complete spinal cord injury at the Thoracic 11/12 levels, surface EMG recordings indicated the survival of few tract fibres across the injury site. Six weeks after the accident the subject began intensive Coordination Dynamics Therapy (CDT) at an up-to-date therapy centre. The subject trained at his physical limits to induce structural and functional repair. Exercising at variable loads between 20 and 200N (on a special CDT and recording device) generated periods of overreaching and super-compensation. By plotting coordination dynamics values (kinesiology), including high-load exertion (200N) and hysteresis curves, periods of overreaching and super-compensation were made graphically visible. It was found that symmetrical improvements of central nervous system (CNS) functioning occurred during overreaching. Improvements in spinal cord functioning were achieved throughout one year of CDT in this chronically injured subject with an almost anatomically complete SCI. It is discussed that the measuring of CNS functions by means of recording coordination dynamics is a powerful and non-invasive tool ideal for exact quantitative and qualitative measurements of improvement (or change) in CNS functioning. Such diagnostics may be of particular importance in sport during training and before competition. Also, coordination dynamics might be used to measure the effects of prolonged exposure to reduced gravitational conditions on CNS functions, such as faced by astronauts.
What can wave energy learn from offshore oil and gas?
Jefferys, E R
2012-01-28
This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.
Koppelaar, Elin; Knibbe, Hanneke J J; Miedema, Harald S; Burdorf, Alex
2012-07-01
Mechanical load during patient handling activities is an important risk factor for low back pain among nursing personnel. The aims of this study were to describe required and actual use of ergonomic devices during patient handling activities and to assess the influence of these ergonomic devices on mechanical load during patient handling activities. For each patient, based on national guidelines, it was recorded which specific ergonomic devices were required during distinct patient handling activities, defined by transferring a patient, providing personal care, repositioning patients in the bed, and putting on and taking off anti-embolism stockings. During real-time observations over ~60 h among 186 nurses on 735 separate patient handling activities in 17 nursing homes, it was established whether ergonomic devices were actually used. Mechanical load was assessed through observations of frequency and duration of a flexed or rotated trunk >30° and frequency of pushing, pulling, lifting or carrying requiring forces <100 N, between 100 and 230 N, and >230 N from start to end of each separate patient handling activity. The number of patients and nurses per ward and the ratio of nurses per patient were used as ward characteristics with potential influence on mechanical load. A mixed-effect model for repeated measurements was used to determine the influence of ergonomic devices and ward characteristics on mechanical load. Use of ergonomic devices was required according to national guidelines in 520 of 735 (71%) separate patient handling activities, and actual use was observed in 357 of 520 (69%) patient handling activities. A favourable ratio of nurses per patient was associated with a decreased duration of time spent in awkward back postures during handling anti-embolism stocking (43%), patient transfers (33%), and personal care of patients (24%) and also frequency of manually lifting patients (33%). Use of lifting devices was associated with a lower frequency of forces exerted (64%), adjustable bed and shower chairs with a shorter duration of awkward back postures (38%), and an anti-embolism stockings slide with a lower frequency of forces exerted (95%). In wards in nursing homes with a higher number of staff less awkward back postures as well as forceful lifting were observed during patient handling activities. The use of ergonomic devices was high and associated with less forceful movements and awkward back postures. Both aspects will most likely contribute to the prevention of low back pain among nurses.
The impact of physical and mental tasks on pilot mental workoad
NASA Technical Reports Server (NTRS)
Berg, S. L.; Sheridan, T. B.
1986-01-01
Seven instrument-rated pilots with a wide range of backgrounds and experience levels flew four different scenarios on a fixed-base simulator. The Baseline scenario was the simplest of the four and had few mental and physical tasks. An activity scenario had many physical but few mental tasks. The Planning scenario had few physical and many mental taks. A Combined scenario had high mental and physical task loads. The magnitude of each pilot's altitude and airspeed deviations was measured, subjective workload ratings were recorded, and the degree of pilot compliance with assigned memory/planning tasks was noted. Mental and physical performance was a strong function of the manual activity level, but not influenced by the mental task load. High manual task loads resulted in a large percentage of mental errors even under low mental task loads. Although all the pilots gave similar subjective ratings when the manual task load was high, subjective ratings showed greater individual differences with high mental task loads. Altitude or airspeed deviations and subjective ratings were most correlated when the total task load was very high. Although airspeed deviations, altitude deviations, and subjective workload ratings were similar for both low experience and high experience pilots, at very high total task loads, mental performance was much lower for the low experience pilots.
Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey
Zoha, Ahmed; Gluhak, Alexander; Imran, Muhammad Ali; Rajasegarar, Sutharshan
2012-01-01
Appliance Load Monitoring (ALM) is essential for energy management solutions, allowing them to obtain appliance-specific energy consumption statistics that can further be used to devise load scheduling strategies for optimal energy utilization. Fine-grained energy monitoring can be achieved by deploying smart power outlets on every device of interest; however it incurs extra hardware cost and installation complexity. Non-Intrusive Load Monitoring (NILM) is an attractive method for energy disaggregation, as it can discern devices from the aggregated data acquired from a single point of measurement. This paper provides a comprehensive overview of NILM system and its associated methods and techniques used for disaggregated energy sensing. We review the state-of-the art load signatures and disaggregation algorithms used for appliance recognition and highlight challenges and future research directions. PMID:23223081
The effect of inertial loading on wrist postural tremor in essential tremor.
Héroux, M E; Pari, G; Norman, K E
2009-05-01
Determine the effect of inertial loading on the strength of motor unit entrainment and the synergistic/competitive interaction between central and mechanical reflex tremor components in subjects with essential tremor (ET). Twenty-three subjects with ET and 22 controls held their hand in an outstretched position while supporting sub-maximal loads (no-load, 5%, 15% and 25% 1-repetition maximum). Hand postural tremor and wrist extensor neuromuscular activity were recorded. Inertial loading resulted in a reduction in postural tremor in all ET subjects. The largest reduction in tremor amplitude occurred between 5% and 15% loads, which was associated with spectral separation of the mechanical reflex and central tremor components in a large number of ET subjects. Despite an increase in overall neuromuscular activity with inertial loading, EMG tremor spectral power did not increase with loading. The effect of inertial loading on postural tremor amplitude appears to be mediated in large part by its effect on the interaction between mechanical reflex and central tremor components. Also, ET is associated with a constant absolute level of motor unit entrainment. The amplitude of postural tremor is dependent on both central and peripheral factors, with proportionally greater motor unit entrainment occurring at low contraction intensities.
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... for the loss of lading due to an accident. (1) Any dome, sump, or washout cover plate projecting from...
Structural Turnbuckle Bears Compressive or Tensile Loads
NASA Technical Reports Server (NTRS)
Bateman, W. A.; Lang, C. H.
1985-01-01
Column length adjuster based on turnbuckle principle. Device consists of internally and externally threaded bushing, threaded housing and threaded rod. Housing attached to one part and threaded rod attached to other part of structure. Turning double threaded bushing contracts or extends rod in relation to housing. Once adjusted, bushing secured with jamnuts. Device used for axially loaded members requiring length adjustment during installation.
The use of medication compliance devices by district nursing services.
McGraw, C; Drennan, V
2000-07-01
This article presents a critical review of the literature relating to medication compliance devices and the findings of a survey that examined the use of such devices by district nursing services. The UKCC (1992) does not regard the loading of compliance devices by nurses as safe practice; however, compliance devices continue to be used by district nurses. The evidence base concerning the value and use of medication compliance devices is examined and significant gaps in the literature relating to the use of such devices are identified. There is an absence of studies that focus on the effect of compliance devices on adherence among older patients and the nature and frequency of drug administration errors involving these devices. The survey findings show that nurse-loaded compliance devices are used in over one-third of the sample. Further research is necessary to assess the clinical effectiveness of, and clinical risk attached to, compliance devices for older patients in the community. It is suggested that this is an issue of serious concern for primary care groups considering the principles of clinical governance.
Design and Validation of a Low-Cost Portable Device to Quantify Postural Stability.
Zhu, Yong
2017-03-18
Measurement of the displacement of the center-of-pressure (COP) is an important tool used in biomechanics to assess postural stability and human balance. The goal of this research was to design and validate a low-cost portable device that can offer a quick indication of the state of postural stability and human balance related conditions. Approximate entropy (ApEn) values reflecting the amount of irregularity hiding in COP oscillations were used to calculate the index. The prototype adopted a portable design using the measurements of the load cells located at the four corners of a low-cost force platform. The test subject was asked to stand on the device in a quiet, normal, upright stance for 30 s with eyes open and subsequently for 30 s with eyes closed. Based on the COP displacement signals, the ApEn values were calculated. The results indicated that the prototype device was capable of capturing the increase in regularity of postural control in the visual-deprivation conditions. It was also able to decipher the subtle postural control differences along anterior-posterior and medial-lateral directions. The data analysis demonstrated that the prototype would enable the quantification of postural stability and thus provide a low-cost portable device to assess many conditions related to postural stability and human balance such as aging and pathologies.
Bartoo, G T; Nochlin, D; Chang, D; Kim, Y; Sumi, S M
1997-05-01
Using image analysis techniques to quantify the percentage area covered by the immunopositive marker for amyloid beta-peptide (A beta), we examined subjects with combinations of either early-onset or late-onset Alzheimer disease (AD) and either familial Alzheimer disease (FAD) or sporadic Alzheimer disease (SAD). We measured the mean and maximum A beta loads, in the hippocampus of each subject. There were no statistically significant differences in the mean A beta load between familial and sporadic AD subjects. Although sample sizes were too small for statistical testing, subjects with the epsilon 4/epsilon 4 allele of the apolipoprotein E (ApoE) gene had higher mean A beta loads than those with the epsilon 3/epsilon 3 or epsilon 3/epsilon 4 alleles. Members of the Volga German families (recently linked to chromosome 1) all had high mean A beta loads, and one of the chromosome 14-linked subjects had the highest mean A beta load while the other had a relatively small load, but the sample was too small for statistical comparisons. The duration of dementia and neuropsychological test scores showed a statistically significant correlation with the mean A beta load in the hippocampus, but not with the maximum A beta load. This difference indicates that the mean A beta load may be a more useful feature than the maximum A beta load as an objective neuropathological measure for cognitive status. This finding may help to improve the established methods for quantitative assessment of the neuropathological changes in AD.
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.
Dembia, Christopher L; Silder, Amy; Uchida, Thomas K; Hicks, Jennifer L; Delp, Scott L
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work.
Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads
Silder, Amy; Uchida, Thomas K.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion). We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available online, allowing others to reproduce and extend our work. PMID:28700630
Optical components damage parameters database system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong
2012-10-01
Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.
40 CFR 86.1308-84 - Dynamometer and engine equipment specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... technique involves the calibration of a master load cell (i.e., dynamometer case load cell). This... hydraulically actuated precalibrated master load cell. This calibration is then transferred to the flywheel torque measuring device. The technique involves the following steps: (i) A master load cell shall be...
30 CFR 57.6307 - Drill stem loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...
30 CFR 57.6307 - Drill stem loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...
30 CFR 57.6307 - Drill stem loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...
30 CFR 57.6307 - Drill stem loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...
30 CFR 57.6307 - Drill stem loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drill stem loading. 57.6307 Section 57.6307... Transportation-Surface and Underground § 57.6307 Drill stem loading. Explosive material shall not be loaded into blastholes with drill stem equipment or other devices that could be extracted while containing explosive...
PCA Based Stress Monitoring of Cylindrical Specimens Using PZTs and Guided Waves
Mujica, Luis; Ruiz, Magda; Camacho, Johanatan
2017-01-01
Since mechanical stress in structures affects issues such as strength, expected operational life and dimensional stability, a continuous stress monitoring scheme is necessary for a complete integrity assessment. Consequently, this paper proposes a stress monitoring scheme for cylindrical specimens, which are widely used in structures such as pipelines, wind turbines or bridges. The approach consists of tracking guided wave variations due to load changes, by comparing wave statistical patterns via Principal Component Analysis (PCA). Each load scenario is projected to the PCA space by means of a baseline model and represented using the Q-statistical indices. Experimental validation of the proposed methodology is conducted on two specimens: (i) a 12.7 mm (1/2″) diameter, 0.4 m length, AISI 1020 steel rod, and (ii) a 25.4 mm (1″) diameter, 6m length, schedule 40, A-106, hollow cylinder. Specimen 1 was subjected to axial loads, meanwhile specimen 2 to flexion. In both cases, simultaneous longitudinal and flexural guided waves were generated via piezoelectric devices (PZTs) in a pitch-catch configuration. Experimental results show the feasibility of the approach and its potential use as in-situ continuous stress monitoring application. PMID:29194384
Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D
2010-09-01
Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.
Yoganandan, Narayan; Moore, Jason; Arun, Mike W J; Pintar, Frank A
2014-11-01
During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine. Scatter plots showing injury and non-injury data as a function of peak normalized forces, pulse characteristics, impulse and power, loading rate and sacrum and spine accelerations were evaluated as potential metrics related to pathological outcomes with the focus of examining the role of the pulse characteristics from inferior-to-superior loading of the pelvis-sacrum-lumbar spine complex. Interrelationships were explored between non-fracture and fracture outcomes, and fracture patterns with a focus on migration of injuries from the hip-only to hip and spine to spine-only regions. Observations indicate that injury to the pelvis and or spine from inferior-to-superior loading is associated with pulse and not just peak velocity. The role of the effect of mass recruitment and injury migration parallel knee-thigh-hip complex studies, suggest a wider application of the recruitment concept and the role of the pulse characteristics.
Fastener load tests and retention systems tests for cryogenic wind-tunnel models
NASA Technical Reports Server (NTRS)
Wallace, J. W.
1984-01-01
A-286 stainless steel screws were tested to determine the tensile load capability and failure mode of various screw sizes and types at both cryogenic and room temperature. Additionally, five fastener retention systems were tested by using A-286 screws with specimens made from the primary metallic alloys that are currently used for cryogenic models. The locking system effectiveness was examined by simple no-load cycling to cryogenic temperatures (-275 F) as well as by dynamic and static loading at cryogenic temperatures. In general, most systems were found to be effective retention devices. There are some differences between the various devices with respect to ease of application, cleanup, and reuse. Results of tests at -275 F imply that the cold temperatures act to improve screw retention. The improved retention is probably the result of differential thermal contraction and/or increased friction (thread-binding effects). The data provided are useful in selecting screw sizes, types, and locking devices for model systems to be tested in cryogenic wind tunnels.
Willy, Richard W
2018-01-01
Running-related injuries are common and are associated with a high rate of reoccurrence. Biomechanics and errors in applied training loads are often cited as causes of running-related injuries. Clinicians and runners are beginning to utilize wearable technologies to quantify biomechanics and training loads with the hope of reducing the incidence of running-related injuries. Wearable devices can objectively assess biomechanics and training loads in runners, yet guidelines for their use by clinicians and runners are not currently available. This article outlines several applications for the use of wearable devices in the prevention and rehabilitation of running-related injuries. Applications for monitoring of training loads, running biomechanics, running epidemiology, return to running programs and gait retraining are discussed. Best-practices for choosing and use of wearables are described to provide guidelines for clinicians and runners. Finally, future applications are outlined for this rapidly developing field. Copyright © 2017 Elsevier Ltd. All rights reserved.
The FDA's role in medical device clinical studies of human subjects
NASA Astrophysics Data System (ADS)
Saviola, James
2005-03-01
This paper provides an overview of the United States Food and Drug Administration's (FDA) role as a regulatory agency in medical device clinical studies involving human subjects. The FDA's regulations and responsibilities are explained and the device application process discussed. The specific medical device regulatory authorities are described as they apply to the development and clinical study of retinal visual prosthetic devices. The FDA medical device regulations regarding clinical studies of human subjects are intended to safeguard the rights and safety of subjects. The data gathered in pre-approval clinical studies provide a basis of valid scientific evidence in order to demonstrate the safety and effectiveness of a medical device. The importance of a working understanding of applicable medical device regulations from the beginning of the device development project is emphasized particularly for novel, complex products such as implantable visual prosthetic devices.
Field data collection of miscellaneous electrical loads in Northern California: Initial results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenblatt, Jeffery B.; Pratt, Stacy; Willem, Henry
This report describes efforts to measure energy use of miscellaneous electrical loads (MELs) in 880 San Francisco Bay Area homes during the summer of 2012. Ten regions were selected for metering: Antioch, Berkeley, Fremont, Livermore, Marin County (San Rafael, Novato, Fairfax, and Mill Valley), Oakland/Emeryville, Pleasanton, Richmond, San Leandro, and Union City. The project focused on three major categories of devices: entertainment (game consoles, set-top boxes, televisions and video players), home office (computers, monitors and network equipment), and kitchen plug-loads (coffee/espresso makers, microwave ovens/toaster ovens/toasters, rice/slow cookers and wine chillers). These categories were important to meter because they either dominatedmore » the estimated overall energy use of MELs, are rapidly changing, or there are very little energy consumption data published. A total of 1,176 energy meters and 143 other sensors were deployed, and 90% of these meters and sensors were retrieved. After data cleaning, we obtained 711 valid device energy use measurements, which were used to estimate, for a number of device subcategories, the average time spent in high power, low power and “off” modes, the average energy use in each mode, and the average overall energy use. Consistent with observations made in previous studies, we find on average that information technology (IT) devices (home entertainment and home office equipment) consume more energy (15.0 and 13.0 W, respectively) than non-IT devices (kitchen plug-loads; 4.9 W). Opportunities for energy savings were identified in almost every device category, based on the time spent in various modes and/or the power levels consumed in those modes. Future reports will analyze the collected data in detail by device category and compare results to those obtained from prior studies.« less
Three-Dimensional Printing of Vitrification Loop Prototypes for Aquatic Species.
Tiersch, Nolan J; Childress, William M; Tiersch, Terrence R
2018-05-16
Vitrification is a method of cryopreservation that freezes samples rapidly, while forming an amorphous solid ("glass"), typically in small (μL) volumes. The goal of this project was to create, by three-dimensional (3D) printing, open vitrification devices based on an elliptical loop that could be efficiently used and stored. Vitrification efforts can benefit from the application of 3D printing, and to begin integration of this technology, we addressed four main variables: thermoplastic filament type, loop length, loop height, and method of loading. Our objectives were to: (1) design vitrification loops with varied dimensions; (2) print prototype loops for testing; (3) evaluate loading methods for the devices; and (4) classify vitrification responses to multiple device configurations. The various configurations were designed digitally using 3D CAD (Computer Aided Design) software, and prototype devices were produced with MakerBot ® 3D printers. The thermoplastic filaments used to produce devices were acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Vitrification devices were characterized by the film volumes formed with different methods of loading (pipetting or submersion). Frozen films were classified to determine vitrification quality: zero (opaque, or abundant crystalline ice formation); one (translucent, or partial vitrification), or two (transparent, or substantial vitrification, glass). A published vitrification solution was used to conduct experiments. Loading by pipetting formed frozen films more reliably than by submersion, but submersion yielded fewer filling problems and was more rapid. The loop designs that yielded the highest levels of vitrification enabled rapid transfer of heat, and most often were characterized as being longer and consisting of fewer layers (height). 3D printing can assist standardization of vitrification methods and research, yet can also provide the ability to quickly design and fabricate custom devices when needed.
NASA Astrophysics Data System (ADS)
Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.
Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.
Root elongation against a constant force: experiment with a computerized feedback-controlled device
NASA Technical Reports Server (NTRS)
Kuzeja, P. S.; Lintilhac, P. M.; Wei, C.
2001-01-01
Axial force was applied to the root tip of corn (Zea mays L. cv. Merit) seedlings using a computerized, feedback-controlled mechanical device. The system's feedback capability allowed continuous control of a constant tip load, and the attached displacement transducer provided the time course of root elongation. Loads up to 7.5 g decreased the root elongation rate by 0.13 mm h-1 g-1, but loads 7.5 to 17.5 g decreased the growth rate by only 0.04 mm h-1 g-1. Loads higher than 18 g stopped root elongation completely. Measurement of the cross-sectional areas of the root tips indicated that the 18 g load had applied about 0.98 MPa of axial pressure to the root, thereby exceeding the root's ability to respond with increased turgor pressure. Recorded time-lapse images of loaded roots showed that radial thickening (swelling) occurred behind the root cap, whose cross-sectional area increased with tip load.
Structural changes in loaded equine tendons can be monitored by a novel spectroscopic technique
Kostyuk, Oksana; Birch, Helen L; Mudera, Vivek; Brown, Robert A
2004-01-01
This study aimed to investigate the preferential collagen fibril alignment in unloaded and loaded tendons using elastic scattering spectroscopy. The device consisted of an optical probe, a pulsed light source (320–860 nm), a spectrometer and a PC. Two probes with either 2.75 mm or 300 μm source-detector separations were used to monitor deep and superficial layers, respectively. Equine superficial digital flexor tendons were subjected to ex vivo progressive tensional loading. Seven times more backscattered light was detected parallel rather than perpendicular to the tendon axis with the 2.75 mm separation probe in unloaded tendons. In contrast, using the 300 μm separation probe the plane of maximum backscatter (3-fold greater) was perpendicular to the tendon axis. There was no optical anisotropy in the cross-sectional plane of the tendon (i.e. the transversely cut tendon surface), with no structural anisotropy. During mechanical loading (9–14% strain) backscatter anisotropy increased 8.5- to 18.5-fold along the principal strain axis for 2.75 mm probe separation, but almost disappeared in the perpendicular plane (measured using the 300 μm probe separation). Optical (anisotropy) and mechanical (strain) measurements were highly correlated. We conclude that spatial anisotropy of backscattered light can be used for quantitative monitoring of collagen fibril alignment and tissue reorganization during loading, with the potential for minimally invasive real-time structural monitoring of fibrous tissues in normal, pathological or repairing tissues and in tissue engineering. PMID:14578479
Subject-specific modeling of muscle force and knee contact in total knee arthroplasty.
Navacchia, Alessandro; Rullkoetter, Paul J; Schütz, Pascal; List, Renate B; Fitzpatrick, Clare K; Shelburne, Kevin B
2016-09-01
Understanding the mechanical loading environment and resulting joint mechanics for activities of daily living in total knee arthroplasty is essential to continuous improvement in implant design. Although survivorship of these devices is good, a substantial number of patients report dissatisfaction with the outcome of their procedure. Knowledge of in vivo kinematics and joint loading will enable improvement in preclinical assessment and refinement of implant geometry. The purpose of this investigation was to describe the mechanics of total knee arthroplasty during a variety of activities of daily living (gait, walking down stairs, and chair rise/sit). Estimates of muscle forces, tibial contact load, location, and pressure distribution was performed through a combination of mobile fluoroscopy data collection, musculoskeletal modeling, and finite element simulation. For the activities evaluated, joint compressive load was greatest during walking down stairs; however, the highest contact pressure occurred during chair rise/sit. The joint contact moment in the frontal plane was mainly varus for gait and walking down stairs, while it was valgus during chair rise/sit. Excursion of the center of pressure on the tibial component was similar during each activity and between the medial and lateral sides. The main determinants of center of pressure location were internal-external rotation, joint load, and tibial insert conformity. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1576-1587, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Power quality improvement of a stand-alone power system subjected to various disturbances
NASA Astrophysics Data System (ADS)
Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din
In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.
Cryogenic, high speed, turbopump bearing cooling requirements
NASA Technical Reports Server (NTRS)
Dolan, Fred J.; Gibson, Howard G.; Cannon, James L.; Cody, Joe C.
1988-01-01
Although the Space Shuttle Main Engine (SSME) has repeatedly demonstrated the capability to perform during launch, the High Pressure Oxidizer Turbopump (HPOTP) main shaft bearings have not met their 7.5 hour life requirement. A tester is being employed to provide the capability of subjecting full scale bearings and seals to speeds, loads, propellants, temperatures, and pressures which simulate engine operating conditions. The tester design permits much more elaborate instrumentation and diagnostics than could be accommodated in an SSME turbopump. Tests were made to demonstrate the facilities; and the devices' capabilities, to verify the instruments in its operating environment and to establish a performance baseline for the flight type SSME HPOTP Turbine Bearing design. Bearing performance data from tests are being utilized to generate: (1) a high speed, cryogenic turbopump bearing computer mechanical model, and (2) a much improved, very detailed thermal model to better understand bearing internal operating conditions. Parametric tests were also made to determine the effects of speed, axial loads, coolant flow rate, and surface finish degradation on bearing performance.
A System For Load Isolation And Precision Pointing
NASA Astrophysics Data System (ADS)
Keckler, Claude R.; Hamilton, Brian J.
1983-11-01
A system capable of satisfying the accuracy and stability requirements dictated by Shuttle-borne payloads utilizing large optics has been under joint NASA/Sperry development. This device, denoted the Annular Suspension and Pointing System, employs a unique combination of conventional gimbals and magnetic bearing actuators, thereby providing for the "complete" isolation of the payload from its external environment, as well as for extremely accurate and stable pointing (≍0.01 arcseconds). This effort has been pursued through the fabrication and laboratory evaluation of engineering model hardware. Results from these tests have been instrumental in generating high fidelity computer simulations of this load isolation and precision pointing system, and in permitting confident predictions of the system's on-orbit performance. Applicability of this system to the Solar Optical Telescope mission has been examined using the computer simulation. The worst case pointing error predicted for this payload while subjected to vernier reaction control system thruster firings and crew motions aboard Shuttle was approximately 0.006 arcseconds.
Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device
Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.
1999-01-01
This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.
Rupp, Rüdiger; Plewa, Harry; Schuld, Christian; Gerner, Hans Jürgen; Hofer, Eberhard P; Knestel, Markus
2011-02-01
In incomplete spinal cord injured subjects, task-oriented training regimes are applied for enhancement of neuroplasticity to improve gait capacity. However, a sufficient training intensity can only be achieved during the inpatient phase, which is getting shorter and shorter due to economic restrictions. In the clinical environment, complex and expensive robotic devices have been introduced to maintain the duration and the intensity of the training, but up to now only a few exist for continuation of automated locomotion training at home. For continuation of the automated locomotion training at home prototypes of the compact, pneumatically driven orthosis MoreGait have been realized, which generate the key afferent stimuli for activation of the spinal gait pattern generator. Artificial pneumatic muscles with excellent weight-to-force ratio and safety characteristics have been integrated as joint actuators. Additionally, a Stimulative Shoe for generation of the appropriate foot loading pattern has been developed without the need for verticalization of the user. The first results of the pilot study in eight chronic incomplete spinal cord injured subjects indicate that the home-based therapy is safe and feasible. The therapy related improvements of the walking capacity are in the range of locomotion robots used in clinical settings.
Validity and reliability of a controlled pneumatic resistance exercise device.
Paulus, David C; Reynolds, Michael C; Schilling, Brian K
2008-01-01
During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.
An RF dosimeter for independent SAR measurement in MRI scanners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.
2013-12-15
Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independentmore » SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.« less
NASA Technical Reports Server (NTRS)
Jadaan, Osama
2001-01-01
Present capabilities of the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code include probabilistic life prediction of ceramic components subjected to fast fracture, slow crack growth (stress corrosion), and cyclic fatigue failure modes. Currently, this code has the capability to compute the time-dependent reliability of ceramic structures subjected to simple time-dependent loading. For example, in slow crack growth (SCG) type failure conditions CARES/Life can handle the cases of sustained and linearly increasing time-dependent loads, while for cyclic fatigue applications various types of repetitive constant amplitude loads can be accounted for. In real applications applied loads are rarely that simple, but rather vary with time in more complex ways such as, for example, engine start up, shut down, and dynamic and vibrational loads. In addition, when a given component is subjected to transient environmental and or thermal conditions, the material properties also vary with time. The objective of this paper is to demonstrate a methodology capable of predicting the time-dependent reliability of components subjected to transient thermomechanical loads that takes into account the change in material response with time. In this paper, the dominant delayed failure mechanism is assumed to be SCG. This capability has been added to the NASA CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code, which has also been modified to have the ability of interfacing with commercially available FEA codes executed for transient load histories. An example involving a ceramic exhaust valve subjected to combustion cycle loads is presented to demonstrate the viability of this methodology and the CARES/Life program.
NASA Technical Reports Server (NTRS)
Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.;
1998-01-01
Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.
Skazalski, C; Whiteley, R; Hansen, C; Bahr, R
2018-05-01
Use of a commercially available wearable device to monitor jump load with elite volleyball players has become common practice. The purpose of this study was to evaluate the validity and reliability of this device, the Vert, to count jumps and measure jump height with professional volleyball players. Jump count accuracy was determined by comparing jumps recorded by the device to jumps observed through systematic video analysis of three practice sessions and two league matches performed by a men's professional volleyball team. Jumps performed by 14 players were each coded for time and jump type and individually matched to device recorded jumps. Jump height validity of the device was examined against reference standards as participants performed countermovement jumps on a force plate and volleyball-specific jumps with a Vertec. The Vert device accurately counted 99.3% of the 3637 jumps performed during practice and match play. The device showed excellent jump height interdevice reliability for two devices placed in the same pouch during volleyball jumps (r = .99, 95% CI 0.98-0.99). The device had a minimum detectable change (MDC) of 9.7 cm and overestimated jump height by an average of 5.5 cm (95% CI 4.5-6.5) across all volleyball jumps. The Vert device demonstrates excellent accuracy counting volleyball-specific jumps during training and competition. While the device is not recommended to measure maximal jumping ability when precision is needed, it provides an acceptable measure of on-court jump height that can be used to monitor athlete jump load. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi
2016-01-01
Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm−2 & 19.1 Wh Kg−1 and 194 mF cm−2 & 4.5 Wh Kg−1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm−2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices. PMID:26936283
NASA Astrophysics Data System (ADS)
Khalid, Syed; Cao, Chuanbao; Wang, Lin; Zhu, Youqi
2016-03-01
Large areal capacitance is essentially required to integrate the energy storage devices at the microscale electronic appliances. Energy storage devices based on metal oxides are mostly fabricated with low mass loading per unit area which demonstrated low areal capacitance. It is still a challenge to fabricate supercapacitor devices of porous metal oxides with large areal capacitance. Herein we report microwave method followed by a pyrolysis of the as-prepared precursor is used to synthesize porous nickel cobaltite microspheres. Porous NiCo2O4 microspheres are capable to deliver large areal capacitance due to their high specific surface area and small crystallite size. The facile strategy is successfully demonstrated to fabricate aqueous-based asymmetric & symmetric supercapacitor devices of porous NiCo2O4 microspheres with high mass loading of electroactive materials. The asymmetric & symmetric devices exhibit maximum areal capacitance and energy density of 380 mF cm-2 & 19.1 Wh Kg-1 and 194 mF cm-2 & 4.5 Wh Kg-1 (based on total mass loading of 6.25 & 6.0 mg) respectively at current density of 1 mA cm-2. The successful fabrication of symmetric device also indicates that NiCo2O4 can also be used as the negative electrode material for futuristic asymmetric devices.
Crashworthiness Design of the Shear Bolts for Light Collision Safety Devices
NASA Astrophysics Data System (ADS)
Kim, Jin Sung; Huh, Hoon; Kwon, Tae Soo
This paper introduces the jig set for the crash test and the crash test results of shear bolts which are designed to fail at train crash conditions. The tension and shear bolts are attached to Light Collision Safety Devices(LCSD) as a mechanical fuse when tension and shear bolts reach their failure load designed. The kinetic energy due to the crash is absorbed by the secondary energy absorbing device after LCSD are detached from the main body by the fracture of shear bolts. A single shear bolt was designed to fail at the load of 250 kN. The jig set designed to convert a compressive loading to a shear loading was installed to the high speed crash tester for dynamic shear tests. Two strain gauges were attached at the parallel section of the jig set to measure the load responses acting on the shear bolts. Crash tests were performed with a carrier whose mass was 250 kg and the initial speed of the carrier was 9 m/sec. From the quasi-static and dynamic experiments as well as the numerical analysis, the capacity of the shear bolts were accurately predicted for the crashworthiness design.
Experimental research on a modular miniaturization nanoindentation device
NASA Astrophysics Data System (ADS)
Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang
2011-09-01
Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.
Simulation of drive of mechanisms, working in specific conditions
NASA Astrophysics Data System (ADS)
Ivanovskaya, A. V.; Rybak, A. T.
2018-05-01
This paper presents a method for determining the dynamic loads on the lifting actuator device other than the conventional methods, for example, ship windlass. For such devices, the operation of their drives is typical under special conditions: different environments, the influence of hydrometeorological factors, a high level of vibration, variability of loading, etc. Hoisting devices working in such conditions are not considered in the standard; however, relevant studies concern permissible parameters of the drive devices of this kind. As an example, the article studied the work deck lifting devices - windlass. To construct a model, the windlass is represented by a rod of the variable cross-section. As a result, a mathematical model of the longitudinal oscillations of such rod is obtained. Analytic dependencies have also been obtained to determine the natural frequencies of the lowest forms of oscillations, which are necessary and are the basis for evaluating the parameters of operation of this type of the device.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
Watkins, Michael L.; Keller, Paul Edwin; Amaya, Ivan A.
2015-06-16
A method of, and apparatus for, determining if a person operating equipment is experiencing an elevated cognitive load, wherein the person's use of a device at a first time is monitored so as to set a baseline signature. Then, at a later time, the person's use of the device is monitored to determine the person's performance at the second time, as represented by a performance signature. This performance signature can then be compared against the baseline signature to predict whether the person is experiencing an elevated cognitive load.
Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte
2013-01-01
The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of “bone-to-implant contact” and static and dynamic bone parameters in the vicinity of the devices (test zone) and in a bone area located 1.5 cm posterior to the devices (control zone). Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period), and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period). No significant differences between the devices were found regarding the percent of “bone-to-implant contact” (p = 0.1) or the static and dynamic bone parameters. However, the 5% threshold of “bone-to-implant contact” was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05). In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading. PMID:24124540
Effect of variable body mass on plantar foot pressure and off-loading device efficacy.
Pirozzi, Kelly; McGuire, James; Meyr, Andrew J
2014-01-01
An increasing body of evidence has implicated obesity as having a negative effect on the development, treatment, and outcome of lower extremity pathologic entities, including diabetic foot disease. The objective of the present study was to increase the body of knowledge with respect to the effects of obesity on foot function. Specifically, we attempted to (1) describe the relationship between an increasing body mass index (BMI) on plantar foot pressures during gait, and (2) evaluate the efficacy of commonly prescribed off-loading devices with an increasing BMI. A repeated measures design was used to compare the peak plantar foot pressures under multiple test conditions, with the volunteers acting as their own controls. The primary outcome measure was the mean peak plantar pressure in the heel, midfoot, forefoot, and first metatarsal, and the 2 variables were modification of patient weight (from "normal" BMI to "overweight," "obese," and "morbidly obese") and footwear (from an athletic sneaker to a surgical shoe, controlled ankle motion walker, and total contact cast). Statistically significant increases in the peak plantar pressures were observed with increasing volunteer BMI weight class, regardless of the off-loading device used. The present investigation has provided unique and specific data with respect to the changes that occur in the peak plantar pressures with variable BMIs across different anatomic levels and with commonly used off-loading devices. From our results, we have concluded that although the plantar pressures increase with increasing weight, it appears that at least some reduction in pressure can be achieved with an off-loading device, most effectively with the total contact cast, regardless of the patient's BMI. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Keyak, J H; Sigurdsson, S; Karlsdottir, G S; Oskarsdottir, D; Sigmarsdottir, A; Kornak, J; Harris, T B; Sigurdsson, G; Jonsson, B Y; Siggeirsdottir, K; Eiriksdottir, G; Gudnason, V; Lang, T F
2013-11-01
Proximal femoral (hip) strength computed by subject-specific CT scan-based finite element (FE) models has been explored as an improved measure for identifying subjects at risk of hip fracture. However, to our knowledge, no published study has reported the effect of loading condition on the association between incident hip fracture and hip strength. In the present study, we performed a nested age- and sex-matched case-control study in the Age Gene/Environment Susceptibility (AGES) Reykjavik cohort. Baseline (pre-fracture) quantitative CT (QCT) scans of 5500 older male and female subjects were obtained. During 4-7years follow-up, 51 men and 77 women sustained hip fractures. Ninety-seven men and 152 women were randomly selected as controls from a pool of age- and sex-matched subjects. From the QCT data, FE models employing nonlinear material properties computed FE-strength of the left hip of each subject in loading from a fall onto the posterolateral (FPL), posterior (FP) and lateral (FL) aspects of the greater trochanter (patent pending). For comparison, FE strength in stance loading (FStance) and total femur areal bone mineral density (aBMD) were also computed. For all loading conditions, the reductions in strength associated with fracture in men were more than twice those in women (p≤0.01). For fall loading specifically, posterolateral loading in men and posterior loading in women were most strongly associated with incident hip fracture. After adjusting for aBMD, the association between FP and fracture in women fell short of statistical significance (p=0.08), indicating that FE strength provides little advantage over aBMD for identifying female hip fracture subjects. However, in men, after controlling for aBMD, FPL was 424N (11%) less in subjects with fractures than in controls (p=0.003). Thus, in men, FE models of posterolateral loading include information about incident hip fracture beyond that in aBMD. © 2013.
Exer-Genie(Registered Trademark) Exercise Device Hardware Evaluation
NASA Technical Reports Server (NTRS)
Schaffner, Grant; Sharp,Carwyn; Stroud, Leah
2008-01-01
An engineering evaluation was performed on the ExerGenie(r) exercise device to quantify its capabilities and limitations to address questions from the Constellation Program. Three subjects performed rowing and circuit training sessions to assess the suitability of the device for aerobic exercise. Three subjects performed a resistive exercise session to assess the suitability of the device for resistive exercise. Since 1 subject performed both aerobic and resistive exercise sessions, a total of 5 subjects participated.
Comparison of oral fluid collection methods for the molecular detection of hepatitis B virus.
Portilho, M M; Mendonça, Acf; Marques, V A; Nabuco, L C; Villela-Nogueira, C A; Ivantes, Cap; Lewis-Ximenez, L L; Lampe, E; Villar, L M
2017-11-01
This study aims to compare the efficiency of four oral fluid collection methods (Salivette, FTA Card, spitting and DNA-Sal) to detect HBV DNA by qualitative PCR. Seventy-four individuals (32 HBV reactive and 42 with no HBV markers) donated serum and oral fluid. In-house qualitative PCR to detect HBV was used for both samples and commercial quantitative PCR for serum. HBV DNA was detected in all serum samples from HBV-infected individuals, and it was not detected in control group. HBV DNA from HBV group was detected in 17 samples collected with Salivette device, 16 samples collected by FTA Card device, 16 samples collected from spitting and 13 samples collected by DNA-Sal device. Samples that corresponded to a higher viral load in their paired serum sample could be detected using all oral fluid collection methods, but Salivette collection device yielded the largest numbers of positive samples and had a wide range of viral load that was detected. It was possible to detect HBV DNA using all devices tested, but higher number of positive samples was observed when samples were collected using Salivette device, which shows high concordance to viral load observed in the paired serum samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María
2012-01-01
This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.
NASA Astrophysics Data System (ADS)
Nogami, Hirofumi; Kobayashi, Takeshi; Okada, Hironao; Masuda, Takashi; Maeda, Ryutaro; Itoh, Toshihiro
2012-09-01
An animal health monitoring system and a wireless sensor node aimed at preventing the spread of animal-transmitted diseases and improving pastoral efficiency which are especially suitable for chickens, were developed. The sensor node uses a piezoelectric microelectromechanical system (MEMS) device and an event-driven system that is activated by the movements of a chicken. The piezoelectric MEMS device has two functions: a) it measures the activity of a chicken and b) switches the micro-control unit (MCU) of the wireless sensor node from the sleep mode. The piezoelectric MEMS device is required to produce high output voltages when the chicken moves. However, after the piezoelectric MEMS device was reflowed to the wireless sensor node, the output voltages of the piezoelectric MEMS device decreased. The main reason for this might be the loss of residual polarization, which is affected by the thermal load during the reflow process. After the reflow process, we were not able to apply a voltage to the piezoelectric MEMS device; thus, the piezoelectric output voltage was not increased by repoling the piezoelectric MEMS device. To address the thermal load of the reflow process, we established a thermal poling treatment, which achieves a higher temperature than the reflow process. We found that on increasing the thermal poling temperature, the piezoelectric output voltages did not decreased low significantly. Thus, we considered that a thermal poling temperature higher than that of the reflow process prevents the piezoelectric output voltage reduction caused by the thermal load.
Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM
NASA Technical Reports Server (NTRS)
Jullien, Pierre
2008-01-01
During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.
Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon
2016-07-28
Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Automatic generation and analysis of solar cell IV curves
Kraft, Steven M.; Jones, Jason C.
2014-06-03
A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.
Tunable drug loading and release from polypeptide multilayer nanofilms
Jiang, Bingbing; Li, Bingyun
2009-01-01
Polypeptide multilayer nanofilms were prepared using electrostatic layer-by-layer self-assembly nanotechnology. Small charged drug molecules (eg, cefazolin, gentamicin, and methylene blue) were loaded in polypeptide multilayer nanofilms. Their loading and release were found to be pH-dependent and could also be controlled by changing the number of film layers and drug incubation time, and applying heat-treatment after film formation. Antibioticloaded polypeptide multilayer nanofilms showed controllable antibacterial properties against Staphylococcus aureus. The developed biodegradable polypeptide multilayer nanofilms are capable of loading both positively- and negatively-charged drug molecules and promise to serve as drug delivery systems on biomedical devices for preventing biomedical device-associated infection, which is a significant clinical complication for both civilian and military patients. PMID:19421369
Kinematic and fatigue biomechanics of an interpositional facet arthroplasty device.
Dahl, Michael C; Freeman, Andrew L
2016-04-01
Although approximately 30% of chronic lumbar pain can be attributed to the facets, limited surgical options exist for patients. Interpositional facet arthroplasty (IFA) is a novel treatment for lumbar facetogenic pain designed to provide patients who gain insufficient relief from medical interventional treatment options with long-term relief, filling a void in the facet pain treatment continuum. This study aimed to quantify the effect of IFA on segmental range of motion (ROM) compared with the intact state, and to observe device position and condition after 10,000 cycles of worst-case loading. In situ biomechanical analysis of the lumbar spine following implantation of a novel IFA device was carried out. Twelve cadaveric functional spinal units (L2-L3 and L5-S1) were tested in 7.5 Nm flexion-extension, lateral bending, and torsion while intact and following device implantation. Additionally, specimens underwent 10,000 cycles of worst-case complex loading and were testing in ROM again. Load-displacement and fluoroscopic data were analyzed to determine ROM and to evaluate device position during cyclic testing. Devices and facets were evaluated post testing. Institutional support for implant evaluation was received by Zyga Technology. Range of motion post implantation decreased versus intact, and then was restored post cyclic-testing. Of the tested devices, 6.5% displayed slight movement (0.5-2 mm), all from tight L2-L3 facet joints with misplaced devices or insufficient cartilage. No damage was observed on the devices, and wear patterns were primarily linear. The results from this in situ cadaveric biomechanics and cyclic fatigue study demonstrate that a low-profile, conformable IFA device can maintain position and facet functionality post implantation and through 10,000 complex loading cycles. In vivo conditions were not accounted for in this model, which may affect implant behavior not predictable via a biomechanical study. However, these data along with published 1-year clinical results suggest that IFA may be a valid treatment option in patients with chronic lumbar zygapophysial pain who have exhausted medical interventional options. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Evaluation of an investigational wearable injector in healthy human volunteers.
Torjman, Marc C; Machnicki, Robert; Lessin, Jennifer; Loeum, Channy; Steinberger, Douglas; Mycroft, Sarah; Joseph, Jeffrey I
2017-01-01
Introduction of a wearable device for subcutaneous delivery of larger volume bolus injections would encourage patient compliance and reduce the burden on healthcare services. With one such wearable device commercially available, this study examined the safety and functionality of an investigational device in volunteers. Four devices were applied to the subject's abdomen: 1) Investigational Device, 2) Investigational Device: subject movement, 3) Control Device: FDA-cleared syringe driver with FDA-cleared infusion set, 4) Control Device: FDA-cleared syringe driver attached to investigational device. Three milliliters of saline were infused through the four devices over 3 minutes. 84 devices were applied to 21 subjects. Three milliliters of saline were safely delivered subcutaneously from the investigational and control devices. Two control devices had occlusions and in each case the pump reached its high pressure limit of 12 psi. VAS pain measurements showed minimal pain for all subjects. Pain scores were significantly (p < 0.001) higher than baseline at the end of injection: mean pain level ranged from 2.0-22.0 mm. The investigational device performed as intended with minimal pain during needle insertion and infusion, and no leaking of fluid at the skin puncture site. Two occlusions occurred with the control devices.
Apparatus for and method of testing an electrical ground fault circuit interrupt device
Andrews, L.B.
1998-08-18
An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.
Apparatus for and method of testing an electrical ground fault circuit interrupt device
Andrews, Lowell B.
1998-01-01
An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.
46 CFR 111.40-15 - Overcurrent device.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Overcurrent device. 111.40-15 Section 111.40-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-15 Overcurrent device. The total load on any overcurrent device located in a...
46 CFR 111.40-15 - Overcurrent device.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Overcurrent device. 111.40-15 Section 111.40-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-15 Overcurrent device. The total load on any overcurrent device located in a...
46 CFR 111.40-15 - Overcurrent device.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Overcurrent device. 111.40-15 Section 111.40-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-15 Overcurrent device. The total load on any overcurrent device located in a...
46 CFR 111.40-15 - Overcurrent device.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Overcurrent device. 111.40-15 Section 111.40-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-15 Overcurrent device. The total load on any overcurrent device located in a...
46 CFR 111.40-15 - Overcurrent device.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Overcurrent device. 111.40-15 Section 111.40-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Panelboards § 111.40-15 Overcurrent device. The total load on any overcurrent device located in a...
30 CFR 56.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Warning devices for restricted clearances. 56... Loading and Dumping Sites § 56.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 57.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Warning devices for restricted clearances. 57... Loading and Dumping Sites § 57.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 56.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Warning devices for restricted clearances. 56... Loading and Dumping Sites § 56.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 57.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Warning devices for restricted clearances. 57... Loading and Dumping Sites § 57.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 57.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Warning devices for restricted clearances. 57... Loading and Dumping Sites § 57.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 57.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Warning devices for restricted clearances. 57... Loading and Dumping Sites § 57.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 56.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Warning devices for restricted clearances. 56... Loading and Dumping Sites § 56.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 56.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Warning devices for restricted clearances. 56... Loading and Dumping Sites § 56.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 57.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Warning devices for restricted clearances. 57... Loading and Dumping Sites § 57.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
30 CFR 56.9306 - Warning devices for restricted clearances.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Warning devices for restricted clearances. 56... Loading and Dumping Sites § 56.9306 Warning devices for restricted clearances. Where restricted clearance creates a hazard to persons on mobile equipment, warning devices shall be installed in advance of the...
Detecting barely visible impact damages of honeycomb and laminate CFRP using digital shearography
NASA Astrophysics Data System (ADS)
Burkov, Mikhail; Lyubutin, Pavel; Byakov, Anton; Panin, Sergey
2017-12-01
The paper deals with testing of the developed shearographic device and signal processing software applied for nondestructive testing/evaluation (NDT/E) of carbon fiber reinforced polymers (CFRP). There were 4 types of test specimens: laminate CFRP, honeycomb CFRP, laminate CFRP with the channel stiffener, and laminate CFRP bolted with the aluminum plate. All the specimens were subjected to impact loading using the drop weight technique according to the ASTM D7136 standard in order to produce barely visible impact damages (BVID). The obtained shearograms easily reveal BVIDs as nonuniformities in strain fields. The results are analyzed and discussed in view of the sensitivity of shearography to delamination and debonding.
A Novel Treadmill with a Function of Simulating Walkway-Walking
NASA Astrophysics Data System (ADS)
Funabiki, Shigeyuki; Nishiyama, Shinji; Tanaka, Toshihiko; Fujihara, Jun-Ichi; Maniwa, Sokichi; Sakai, Yasuo
There are differences between walkway walking and walking on a treadmill. It is considered that these differences are based on the fact that the walking on the treadmill is a passive motion, while the walkway walking is an active motion. The differences in walking between on a floor and on a treadmill are investigated using the electromyograph and on the oral questionnaires from subjects. The obtained knowledge is as follows. (1) The muscular activity of the legs in walking on the treadmill without the tractive force is smaller than that in walking on the floor. (2) The walking on the treadmill with 60% of the tractive force being equivalent to the walkway walking from the rear downward of 30 degrees becomes similar to the usual walking on the floor. This paper proposes a novel treadmill with a function of simulating walkway-walking. The developed treadmill has a walking-load device towing the subject from the rear downward and controlling the walking speed according to the position of subject on the treadmill. The verification experiment of walking on the developed treadmill shows the availability to gait training and rehabilitation.
NASA Astrophysics Data System (ADS)
Koryanov, V.; Kazakovtsev, V.; Harri, A.-M.; Heilimo, J.; Haukka, H.; Aleksashkin, S.
2015-10-01
This research work is devoted to analysis of angular motion of the landing vehicle (LV) with an inflatable braking device (IBD), taking into account the influence of the wind load on the final stage of the movement. Using methods to perform a calculation of parameters of angular motion of the landing vehicle with an inflatable braking device based on the availability of small asymmetries, which are capable of complex dynamic phenomena, analyzes motion of the landing vehicle at the final stage of motion in the atmosphere.
Microfluidic size separation of cells and particles using a swinging bucket centrifuge.
Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck
2015-09-01
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.
Pelliccia, Francesco; Palmiero, Pasquale; Maiello, Maria; Losi, Maria-Angela
2012-07-01
Hand-carried ultrasound devices (HCDs), also named personal use echo, are pocket-size, compact, and battery-equipped echocardiographic systems. They have limited technical capabilities but offer some advantages compared with standard echocardiographic devices due to their simplicity of use, immediate availability at the patient's bedside, transportability, and relatively low cost. Current HCDs are considered as screening tools and are used to complement the physical examination by cardiologists. Many noncardiologic subspecialists, however, have adopted this technologic advancement rapidly raising the concern of an inappropriate use of HCD by health professionals who do not have any specific training. In keeping with the mission of the International Society of Cardiovascular Ultrasound to advance the science and art of cardiovascular ultrasound and encourage the knowledge of this subject, the purpose of this Expert Consensus document is to focus on the training for all health care professionals considering the use of HCD. Accordingly, this paper summarizes general aspects of HCD, such as technical characteristics and clinical indications, and then details the specific training requirements for noncardiologists (i.e., training program, minimum case load, duration, and certification of competence). © 2012, Wiley Periodicals, Inc.
Development of a measurement system for the mechanical load of functional appliances.
Shimazaki, Aya; Kimura, Hitoshi; Inou, Norio; Maki, Koutaro
2017-10-03
Devices called functional appliances are commonly used in orthodontics for treating maxillary protrusion. These devices mechanically force the mandible forward to apply traction force to the mandibular condyle. This promotes cartilaginous growth in the small mandible. However, no studies have clarified how much traction force is applied to the mandibular condyle. Moreover, it remains unknown as to how anatomical characteristics affect this traction force. Therefore, in this study, we developed a device for measuring the amount of force generated while individual patients wore functional appliances, and we investigated the relationship between forces with structures surrounding the mandibular condyle. We compared traction force values with cone-beam computed tomography image data in eight subjects. The functional appliance resulted in a traction force of 339-1477gf/mm, with a mean value of 196.5gf/mm for the elastic modulus of the mandible. A comparison with cone-beam computed tomography image data suggested that the mandibular traction force was affected by the mandibular condyle and shape of the articular eminence. This method can contribute to discovering efficient treatment techniques more suited to individual patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microfluidic size separation of cells and particles using a swinging bucket centrifuge
Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck
2015-01-01
Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900
Effect of Applied Potential on Fatigue Life of Electropolished Nitinol Wires
NASA Astrophysics Data System (ADS)
Sivan, Shiril; Di Prima, Matthew; Weaver, Jason D.
2017-09-01
Nitinol is used as a metallic biomaterial in medical devices due to its shape memory and pseudoelastic properties. The clinical performance of nitinol depends on factors which include the surface finish, the local environment, and the mechanical loads to which the device is subjected. Preclinical evaluations of device durability are performed with fatigue tests while electrochemical characterization methods such as ASTM F2129 are employed to evaluate corrosion susceptibility by determining the rest potential and breakdown potential. However, it is well established that the rest potential of a metal surface can vary with the local environment. Very little is known regarding the influence of voltage on fatigue life of nitinol. In this study, we developed a fatigue testing method in which an electrochemical system was integrated with a rotary bend wire fatigue tester. Samples were fatigued at various strain levels at electropotentials anodic and cathodic to the rest potential to determine if it could influence fatigue life. Wires at potentials negative to the rest potential had a significantly higher number of cycles to fracture than wires held at potentials above the breakdown potential. For wires for which no potential was applied, they had fatigue life similar to wires at negative potentials.
Hu, Chengzhi; Munglani, Gautam; Vogler, Hannes; Ndinyanka Fabrice, Tohnyui; Shamsudhin, Naveen; Wittel, Falk K; Ringli, Christoph; Grossniklaus, Ueli; Herrmann, Hans J; Nelson, Bradley J
2016-12-20
Quantification of mechanical properties of tissues, living cells, and cellular components is crucial for the modeling of plant developmental processes such as mechanotransduction. Pollen tubes are tip-growing cells that provide an ideal system to study the mechanical properties at the single cell level. In this article, a lab-on-a-chip (LOC) device is developed to quantitatively measure the biomechanical properties of lily (Lilium longiflorum) pollen tubes. A single pollen tube is fixed inside the microfluidic chip at a specific orientation and subjected to compression by a soft membrane. By comparing the deformation of the pollen tube at a given external load (compressibility) and the effect of turgor pressure on the tube diameter (stretch ratio) with finite element modeling, its mechanical properties are determined. The turgor pressure and wall stiffness of the pollen tubes are found to decrease considerably with increasing initial diameter of the pollen tubes. This observation supports the hypothesis that tip-growth is regulated by a delicate balance between turgor pressure and wall stiffness. The LOC device is modular and adaptable to a variety of cells that exhibit tip-growth, allowing for the straightforward measurement of mechanical properties.
Energy Power Research Institute Shows Benefits of Grid-Connected Devices at
product availability. With real-time status monitoring of the connected devices, a utility system could be devices, this approach can provide grid operators or other load management systems with real-time measure
Development of a nearshore oscillating surge wave energy converter with variable geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, N. M.; Lawson, M. J.; Yu, Y. H.
This paper presents an analysis of a novel wave energy converter concept that combines an oscillating surge wave energy converter (OSWEC) with control surfaces. The control surfaces allow for a variable device geometry that enables the hydrodynamic properties to be adapted with respect to structural loading, absorption range and power-take-off capability. The device geometry is adjusted on a sea state-to-sea state time scale and combined with wave-to-wave manipulation of the power take-off (PTO) to provide greater control over the capture efficiency, capacity factor, and design loads. This work begins with a sensitivity study of the hydrodynamic coefficients with respect tomore » device width, support structure thickness, and geometry. A linear frequency domain analysis is used to evaluate device performance in terms of absorbed power, foundation loads, and PTO torque. Previous OSWEC studies included nonlinear hydrodynamics, in response a nonlinear model that includes a quadratic viscous damping torque that was linearized via the Lorentz linearization. Inclusion of the quadratic viscous torque led to construction of an optimization problem that incorporated motion and PTO constraints. Results from this study found that, when transitioning from moderate-to-large sea states the novel OSWEC was capable of reducing structural loads while providing a near constant power output.« less
MacLeod, A.; Simpson, A. H. R. W.
2018-01-01
Objectives Secondary fracture healing is strongly influenced by the stiffness of the bone-fixator system. Biomechanical tests are extensively used to investigate stiffness and strength of fixation devices. The stiffness values reported in the literature for locked plating, however, vary by three orders of magnitude. The aim of this study was to examine the influence that the method of restraint and load application has on the stiffness produced, the strain distribution within the bone, and the stresses in the implant for locking plate constructs. Methods Synthetic composite bones were used to evaluate experimentally the influence of four different methods of loading and restraining specimens, all used in recent previous studies. Two plate types and three screw arrangements were also evaluated for each loading scenario. Computational models were also developed and validated using the experimental tests. Results The method of loading was found to affect the gap stiffness strongly (by up to six times) but also the magnitude of the plate stress and the location and magnitude of strains at the bone-screw interface. Conclusions This study demonstrates that the method of loading is responsible for much of the difference in reported stiffness values in the literature. It also shows that previous contradictory findings, such as the influence of working length and very large differences in failure loads, can be readily explained by the choice of loading condition. Cite this article: A. MacLeod, A. H. R. W. Simpson, P. Pankaj. Experimental and numerical investigation into the influence of loading conditions in biomechanical testing of locking plate fracture fixation devices. Bone Joint Res 2018;7:111–120. DOI: 10.1302/2046-3758.71.BJR-2017-0074.R2. PMID:29363522
NASA Technical Reports Server (NTRS)
Caldwell, E. E.; Newby, N. J.; Ploutz-Snyder, L.
2014-01-01
The 0-G ARED squat under loads the legs relative to the 1g ARED squat. In 1g the knee extensor/flexor muscles are primarily engaged due to the body's center of gravity is behind the knees during the motion of the squat. As body weight does not play a sufficient role 0 G, a crewmember's load exposure is limited by the load delivered by ARED through the exercise bar. Prescription loads for lowerbody resistance exercise in microgravity aim to include 1-G exercise bar load in addition to the crewmember's Earth body weight (BW); however, pressure points from the bar and the 1BW increased load at the shoulders translating to higher loads on the back have been a historical limitation for shoulders, requiring a decrease in exercise load at the start of the mission. Analogous to crewmembers, bed rest subjects report limitations of exercising with high loads on the back while performing squats on the horizontal exercise fixture (HEF), a custom exercise device that serves as an analog to 0-G ARED. Improvements for increasing loads on the HEF squat were suggested by distributing total exercise load between the hips and the bar1. The same is recommended for the 0-G ARED squat, with using current equipment on the ISS, which include the T2 running harness and T2 bungees. Quantification of this improvement has been accessed through computational modeling. The purpose of this study is to characterize joint torque during a squat with a distribution in exercise load on the ARED in 0 G. The analysis used existing models from NASA's Digital Astronaut Project. The biomechanics squat model was integrated with the ARED model and T2 bungees. The spring constant for the bungees were derived from ground testing. Forward dynamic simulation was performed for various conditions including anchor point attachments on the footplate of the ARED, bar load, hip load, and gravitational environment. The model confirms joint torques at knees is lower relative to 1G conditions primarily because the load delivery system is just with the exercise bar in 0 G. By distributing partial loads through use of the bungees to the hips joint-torque profiles were altered during a squat and provided options to enhance targeting lower-body loading in aims as for an improved countermeasure.
Fremerey, Peter; Reiß, Sebastian; Geupel, Andrea; Fischerauer, Gerhard; Moos, Ralf
2011-01-01
Recently, it has been shown that the degree of loading of several types of automotive exhaust aftertreatment devices can be directly monitored in situ and in a contactless way by a microwave-based method. The goal of this study was to clarify whether this method can also be applied to NOx storage and reduction catalysts (lean NOx traps) in order to obtain further knowledge about the reactions occurring in the catalyst and to compare the results with those obtained by wirebound NOx loading sensors. It is shown that both methods are able to detect the different catalyst loading states. However, the sensitivity of the microwave-based method turned out to be small compared to that previously observed for other exhaust aftertreatment devices. This may limit the practical applicability of the microwave-based NOx loading detection in lean NOx traps. PMID:22164074
AC resistance measuring instrument
Hof, P.J.
1983-10-04
An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument. 8 figs.
AC Resistance measuring instrument
Hof, Peter J.
1983-01-01
An auto-ranging AC resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.
Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang
2018-03-26
Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.
Combination Space Station Handrail Clamp and Pointing Device
NASA Technical Reports Server (NTRS)
Hughes, Stephen J. (Inventor)
1999-01-01
A device for attaching an experiment carrier to a space station handrail is provided. The device has two major components, a clamping mechanism for attachment to a space station handrail, and a pointing carrier on which an experiment package can be mounted and oriented. The handrail clamp uses an overcenter mechanism and the carrier mechanism uses an adjustable preload ball and socket for carrier positioning. The handrail clamp uses a stack of disk springs to provide a spring loaded button. This configuration provides consistent clamping force over a range of possible handrail thicknesses. Three load points are incorporated in the clamping mechanism thereby spreading the clamping load onto three separate points on the handrail. A four bar linkage is used to provide for a single actuation lever for all three load points. For additional safety, a secondary lock consisting of a capture plate and push lock keeps the clamp attached to the handrail in the event of main clamp failure. For the carrier positioning mechanism, a ball in a spring loaded socket uses friction to provide locking torque; however. the ball and socket are torque limited so that the ball ran slip under kick loads (125 pounds or greater). A lead screw attached to disk spring stacks is used to provide an adjustable spring force on the socket. A locking knob is attached to the lead screw to allow for hand manipulation of the lead screw.
Preparation for Testing a Multi-Bay Box Subjected to Combined Loads
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Jegley, Dawn
2015-01-01
The COmbined Loads Test System (COLTS) facility at NASA Langley Research Center provides a test capability to help develop validated structures technologies. The test machine was design to accommodate a range of fuselage structures and wing sections and subject them to both quasistatic and cyclic loading conditions. The COLTS facility is capable of testing fuselage barrels up to 4.6 m in diameter and 13.7 m long with combined mechanical, internal pressure, and thermal loads. The COLTS facility is currently being prepared to conduct a combined mechanical and pressure loading for a multi-bay pressure box to experimentally verify the structural performance of a composite structure which is 9.1 meters long and representative of a section of a hybrid wing body fuselage section in support of the Environmentally Responsible Aviation Project at NASA. This paper describes development of the multi-bay pressure box test using the COLTS facility. The multi-bay test article will be subjected to mechanical loads and internal pressure loads up to design ultimate load. Mechanical and pressure loads will be applied independently in some tests and simultaneously in others.
Biomechanical Comparison of Parallel and Crossed Suture Repair for Longitudinal Meniscus Tears.
Milchteim, Charles; Branch, Eric A; Maughon, Ty; Hughey, Jay; Anz, Adam W
2016-04-01
Longitudinal meniscus tears are commonly encountered in clinical practice. Meniscus repair devices have been previously tested and presented; however, prior studies have not evaluated repair construct designs head to head. This study compared a new-generation meniscus repair device, SpeedCinch, with a similar established device, Fast-Fix 360, and a parallel repair construct to a crossed construct. Both devices utilize self-adjusting No. 2-0 ultra-high molecular weight polyethylene (UHMWPE) and 2 polyether ether ketone (PEEK) anchors. Crossed suture repair constructs have higher failure loads and stiffness compared with simple parallel constructs. The newer repair device would exhibit similar performance to an established device. Controlled laboratory study. Sutures were placed in an open fashion into the body and posterior horn regions of the medial and lateral menisci in 16 cadaveric knees. Evaluation of 2 repair devices and 2 repair constructs created 4 groups: 2 parallel vertical sutures created with the Fast-Fix 360 (2PFF), 2 crossed vertical sutures created with the Fast-Fix 360 (2XFF), 2 parallel vertical sutures created with the SpeedCinch (2PSC), and 2 crossed vertical sutures created with the SpeedCinch (2XSC). After open placement of the repair construct, each meniscus was explanted and tested to failure on a uniaxial material testing machine. All data were checked for normality of distribution, and 1-way analysis of variance by ranks was chosen to evaluate for statistical significance of maximum failure load and stiffness between groups. Statistical significance was defined as P < .05. The mean maximum failure loads ± 95% CI (range) were 89.6 ± 16.3 N (125.7-47.8 N) (2PFF), 72.1 ± 11.7 N (103.4-47.6 N) (2XFF), 71.9 ± 15.5 N (109.4-41.3 N) (2PSC), and 79.5 ± 25.4 N (119.1-30.9 N) (2XSC). Interconstruct comparison revealed no statistical difference between all 4 constructs regarding maximum failure loads (P = .49). Stiffness values were also similar, with no statistical difference on comparison (P = .28). Both devices in the current study had similar failure load and stiffness when 2 vertical or 2 crossed sutures were tested in cadaveric human menisci. Simple parallel vertical sutures perform similarly to crossed suture patterns at the time of implantation.
Intramuscular pressures in antigravity muscles using gravity-independent, pneumatic hardware.
Macias, Brandon R; Minocha, Ranjeet; Cutuk, Adnan A; Hill, James; Shiau, Jonathon; Hargens, Alan R
2008-08-01
Resistive exercise helps prevent muscle atrophy in microgravity, but better exercise equipment is needed. Therefore, the purpose of this study was to determine if a pneumatic, gravity-independent leg-press device (LPD) provides sufficient force to leg musculature. We hypothesized that intramuscular pressure (IMP), a quantitative index of muscle force, is greater in the antigravity superficial posterior and deep posterior compartments than in the non-antigravity anterior compartment during bilateral leg-press exercise. Millar pressure transducers were inserted into the anterior, lateral, superficial posterior, and deep posterior muscle compartments of the left leg of eight healthy subjects (three women, five men). Subjects were supine on the Keiser SX-1, a pneumatic LPD. Then maximal voluntary contraction (MVC) was determined; each subject performed three consecutive voluntary contractions at approximately 18%, 50%, and 100% MVC while continuously measuring IMP. Repeated measures ANOVA were used to determine differences of IMPs between compartments and loads. The magnitudes of IMP (mean +/- SEM) at 18 - 3% (abbreviated approximately 18%), 50%, and 100% MVC in the superficial and deep posterior compartments were significantly greater than that in the anterior compartment during exercise (P < 0.05). Additionally, IMPs in all four compartments significantly rose as resistance increased at approximately 18%, 50%, and 100% MVC (P < 0.05). The LPD provides significantly increased resistance to all four compartments, but with greater loading of the antigravity compartments as compared to the non-antigravity compartment. Since antigravity muscles of the leg are contained primarily in the superficial and deep posterior compartments, the LPD may help prevent muscle atrophy associated with microgravity.
30 CFR 57.9308 - Switch throws.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 57...
30 CFR 57.9313 - Roadway maintenance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...
30 CFR 57.9305 - Truck spotters.
Code of Federal Regulations, 2010 CFR
2010-07-01
... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites § 57...
Carroll, Thomas; Nix, John; Hunter, Eric; Titze, Ingo; Abaza, Mona
2016-01-01
Objectives To evaluate vocal fatigue by using objective and subjective measurements of dose recorded by the National Center for Voice and Speech (NCVS) Dosimeter™ (Dosimeter). Study Design and Setting Seven subjects completed a two-week study period. The Dosimeter recorded vocal load, soft phonation tasks and subjective soft voice ratings. Three vocal doses (time, distance, and cycle) were measured in classical singers' larynges during an intensive practice period. Results Spikes in vocal load are reflected as harsher subjective ratings on the same day as well as 24–72 hours later. When at least 48 hours of vocal rest occurred before a vocal load, improved subjective evaluations were seen after the load. Conclusions The NCVS Dosimeter appears to be an effective tool for data collection on prolonged use of the voice. Significance This is the first multi-day study comparing objective and subjective data on vocal fatigue in a group of professional singers. PMID:17011424
NASA Astrophysics Data System (ADS)
Gallasch, Eugen; Kozlovskaya, Inessa
2007-02-01
Long term space flights induce atrophy and contractile changes on postural muscles such effecting tonic motor control. Functional testing of tonic motor control structures is a challenge because of the difficulties to deliver appropriate test forces on crew members. In this paper we propose two approaches for functional testing by using limb attached loading devices. The first approach is based on a frequency and amplitude controllable moving magnet exciter to deliver sinusoidal test forces during limb postures. The responding limb deflection is recorded by an embedded accelerometer to obtain limb impedance. The second approach is based on elastic limb loading to evoke self-excited oscillations during arm extensions. Here the contraction force at the oscillation onset provides information about limb stiffness. The rationale for both testing approaches is based on Feldman's λ-model. An arm expander based on the second approach was probed in a 6-month MIR space flight. The results obtained from the load oscillations, confirmed that this device is well suited to capture space flight induced neuromuscular changes.
Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi
NASA Astrophysics Data System (ADS)
Tridianto, E.; Permatasari, P. D.; Ali, I. R.
2018-03-01
Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.
Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R
2017-07-01
Foot loading rate, load magnitude, and the presence of diseases such as diabetes can all affect the mechanical properties of the plantar soft tissues of the human foot. The hydraulic plantar soft tissue reducer instrument was designed to gain insight into which variables are the most significant in determining these properties. It was used with gated magnetic resonance imaging to capture three-dimensional images of feet under dynamic loading conditions. Custom electronics controlled by LabVIEW software simultaneously recorded system pressure, which was then translated to applied force values based on calibration curves. Data were collected for two subjects, one without diabetes (Subject A) and one with diabetes (Subject B). For a 0.2-Hz loading rate, and strains 0.16, 0.18, 0.20, and 0.22, Subject A's average tangential heel pad stiffness was 10 N/mm and Subject B's was 24 N/mm. Maximum test loads were approximately 200 N. Loading rate and load magnitude limitations (both were lower than physiologic values) will continue to be addressed in the next version of the instrument. However, the current hydraulic plantar soft tissue reducer did produce a data set for healthy versus diabetic tissue stiffness that agrees with previous trends. These data are also being used to improve finite element analysis models of the foot as part of a related project.
30 CFR 57.9301 - Dump site restraints.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and Dumping Sites...
40 CFR 63.563 - Compliance and performance testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Marine Tank Vessel Loading Operations § 63.563 Compliance and performance testing. (a) The... indirectly, shall be secured closed during marine tank vessel loading operations either by using a car-seal... devices, sampling, and venting for maintenance. Marine tank vessel loading operations shall not be...
40 CFR 63.563 - Compliance and performance testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Marine Tank Vessel Loading Operations § 63.563 Compliance and performance testing. (a) The... indirectly, shall be secured closed during marine tank vessel loading operations either by using a car-seal... devices, sampling, and venting for maintenance. Marine tank vessel loading operations shall not be...
NASA Technical Reports Server (NTRS)
Caplin, R. S.; Royer, E. R.
1977-01-01
Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.
Portable 90 degree proof loading device
NASA Technical Reports Server (NTRS)
Bird, R. G.; Berson, L. A. (Inventor)
1985-01-01
A hydraulically actuated device is described for applying a test load to a bearing or the like to prove the integrity of its mounting or staking within a bore in a housing such as gear case. To accommodate limited access situations, the device is constructed in a right angle configuration in which a hydraulic cylinder applies axial pressure to a first thrust rod assemly which includes a first thrust rod through a threated spindle driving a linearly translated cam. Cam follower wheel transfers the translation to a second thrust rod assembly which includes a horizontal shaft and a spindle within a cross-arm housing portion and a tubular housing portion. The same second thrust direction applies the bearing loading in either of two directions depending upon the shape of the interface parts. The interface parts can bear on the bearing from either side with respect to the bearing mounting structural part.
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Ojha, A.; Garg, A. D.; Puntambekar, T. A.; Senecha, V. K.
2017-02-01
According to the quasi electrostatic model of linear response capacitive beam position monitor (BPM), the position sensitivity of the device depends only on the aperture of the device and it is independent of processing frequency and load impedance. In practice, however, due to the inter-electrode capacitive coupling (cross talk), the actual position sensitivity of the device decreases with increasing frequency and load impedance. We have taken into account the inter-electrode capacitance to derive and propose a new analytical expression for the position sensitivity as a function of frequency and load impedance. The sensitivity of a linear response shoe-box type BPM has been obtained through simulation using CST Studio Suite to verify and confirm the validity of the new analytical equation. Good agreement between the simulation results and the new analytical expression suggest that this method can be exploited for proper designing of BPM.
Note on performance of tapered grip tensile loading devices
NASA Technical Reports Server (NTRS)
Jones, M. H.; Brown, W. F., Jr.
1975-01-01
Alignment results are presented in terms of percent bending for a quick release, tapered grip, tensile loading device that has been proposed for testing sharply notched specimens of aluminum and magnesium alloys by a Task Group of the ASTM Committee E-24 on Fracture Testing of Metals. The results show that the bending introduced by the fixtures is strongly dependent on their relative rotational positions in respect to the loading rods which adapt them, to the tensile machine. For one set of tapered grips the highest bending was about 15%. Recommendations are made for improvement in the design of the tapered grips which should reduce the bending stresses substantially.
Challenges to validation of a complex nonsterile medical device tray.
Prince, Daniel; Mastej, Jozef; Hoverman, Isabel; Chatterjee, Raja; Easton, Diana; Behzad, Daniela
2014-01-01
Validation by steam sterilization of reusable medical devices requires careful attention to many parameters that directly influence whether or not complete sterilization occurs. Complex implant/instrument tray systems have a variety of configurations and components. Geobacillus stearothermophilus biological indicators (BIs) are used in overkill cycles to to simulate worst case conditions and are intended to provide substantial sterilization assurance. Survival of G. stearothermophilus spores was linked to steam access and size of load in the chamber. By a small and reproducible margin, it was determined that placement of the trays in a rigid container into minimally loaded chambers were more difficult to completely sterilize than maximally loaded chambers.
Maintaining a low viral load with Nevirapine?
1998-12-01
A study called INCAS enrolled 150 treatment-naive subjects. Half of the subjects had CD4+ counts of 370 and a viral load of about 32,000 copies. Subjects were divided into groups that received AZT and Nevirapine, ddI and Nevirapine, or AZT with ddI and Nevirapine. Researchers monitored the subjects for 1 year. Results indicated that subjects who received the triple drug combination had fewer complications and infections.
An Energy Saving Green Plug Device for Nonlinear Loads
NASA Astrophysics Data System (ADS)
Bloul, Albe; Sharaf, Adel; El-Hawary, Mohamed
2018-03-01
The paper presents a low cost a FACTS Based flexible fuzzy logic based modulated/switched tuned arm filter and Green Plug compensation (SFC-GP) scheme for single-phase nonlinear loads ensuring both voltage stabilization and efficient energy utilization. The new Green Plug-Switched filter compensator SFC modulated LC-Filter PWM Switched Capacitive Compensation Devices is controlled using a fuzzy logic regulator to enhance power quality, improve power factor at the source and reduce switching transients and inrush current conditions as well harmonic contents in source current. The FACTS based SFC-GP Device is a member of family of Green Plug/Filters/Compensation Schemes used for efficient energy utilization, power quality enhancement and voltage/inrush current/soft starting control using a dynamic error driven fuzzy logic controller (FLC). The device with fuzzy logic controller is validated using the Matlab / Simulink Software Environment for enhanced power quality (PQ), improved power factor and reduced inrush currents. This is achieved using modulated PWM Switching of the Filter-Capacitive compensation scheme to cope with dynamic type nonlinear and inrush cyclical loads..
The effect of directional inertias added to pelvis and ankle on gait
2013-01-01
Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices. PMID:23597391
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1993-01-01
The behavior of thin laminated flat and curved panels subjected to transverse pressure and inplane loads is considered. The effects of panel geometry, boundary conditions and laminate stacking sequence on the response of panels subjected to transverse pressure loads up to 12.4 N/sq cm is presented. The response of thin laminated panels is evaluated analytically and selected results are compared with test data. A parametric study of the deformation and strain responses of panels with radius of curvature ranging from 20 to 305 cm is presented. The combination of inplane tensile and pressure loads is also considered.
The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.
Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo
2017-06-01
Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.
Beus, Michael J.; McCoy, William G.
1998-01-01
Apparatus for sensing the magnitude of a load on a cable as the cable is employed to support the load includes a beam structure clamped to the cable so that a length of the cable lies along the beam structure. A spacer associated with the beam structure forces a slight curvature in a portion of the length of cable under a cable "no-load" condition so that the portion of the length of cable is spaced from the beam structure to define a cable curved portion. A strain gauge circuit including strain gauges is secured to the beam structure by welding. As the cable is employed to support a load the load causes the cable curved portion to exert a force normal to the cable through the spacer and on the beam structure to deform the beam structure as the cable curved portion attempts to straighten under the load. As this deformation takes place, the resistance of the strain gauges is set to a value proportional to the magnitude of the normal strain on the beam structure during such deformation. The magnitude of the normal strain is manipulated in a control device to generate a value equal to the magnitude or weight of the load supported by the cable.
Dennerlein, J T; Yang, M C
2001-01-01
Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.
Wind Tunnel Testing of Microtabs and Microjets for Active Load Control of Wind Turbine Blades
NASA Astrophysics Data System (ADS)
Cooperman, Aubryn Murray
Increases in wind turbine size have made controlling loads on the blades an important consideration for future turbine designs. One approach that could reduce extreme loads and minimize load variation is to incorporate active control devices into the blades that are able to change the aerodynamic forces acting on the turbine. A wind tunnel model has been constructed to allow testing of different active aerodynamic load control devices. Two such devices have been tested in the UC Davis Aeronautical Wind Tunnel: microtabs and microjets. Microtabs are small surfaces oriented perpendicular to an airfoil surface that can be deployed and retracted to alter the lift coefficient of the airfoil. Microjets produce similar effects using air blown perpendicular to the airfoil surface. Results are presented here for both static and dynamic performance of the two devices. Microtabs, located at 95% chord on the lower surface and 90% chord on the upper surface, with a height of 1% chord, produce a change in the lift coefficient of 0.18, increasing lift when deployed on the lower surface and decreasing lift when deployed on the upper surface. Microjets with a momentum coefficient of 0.006 at the same locations produce a change in the lift coefficient of 0.19. The activation time for both devices is less than 0.3 s, which is rapid compared to typical gust rise times. The potential of active device to mitigate changes in loads was tested using simulated gusts. The gusts were produced in the wind tunnel by accelerating the test section air speed at rates of up to 7 ft/s 2. Open-loop control of microtabs was tested in two modes: simultaneous and sequential tab deployment. Activating all tabs along the model span simultaneously was found to produce a change in the loads that occurred more rapidly than a gust. Sequential tab deployment more closely matched the rates of change due to gusts and tab deployment. A closed-loop control system was developed for the microtabs using a simple feedback control based on lift measurements from a six-component balance. An alternative input to the control system that would be easier to implement on a turbine was also investigated: the lift force was estimated using the difference in surface pressure at 15% chord. Both control system approaches were found to decrease lift deviations by around 50% during rapid changes in the free stream air speed.
NASA Astrophysics Data System (ADS)
Jung, Youngjean
This dissertation concerns the constitutive description of superelasticity in NiTi alloys and the finite element analysis of a corresponding material model at large strains. Constitutive laws for shape-memory alloys subject to biaxial loading, which are based on direct experimental observations, are generally not available. A reliable constitutive model for shape-memory alloys is important for various applications because Nitinol is now widely used in biotechnology devices such as endovascular stents, vena cava filters, dental files, archwires and guidewires, etc. As part of a broader project, tension-torsion tests are conducted on thin-walled tubes (thickness/radius ratio of 1:10) of the polycrystalline superelastic Nitinol using various loading/unloading paths under isothermal conditions. This biaxial loading/unloading test was carefully designed to avoid torsional buckling and strain non-uniformities. A micromechanical constitutive model, algorithmic implementation and numerical simulation of polycrystalline superelastic alloys under biaxial loading are developed. The constitutive model is based on the micromechanical structure of Ni-Ti crystals and accounts for the physical observation of solid-solid phase transformations through the minimization of the Helmholtz energy with dissipation. The model is formulated in finite deformations and incorporates the effect of texture which is of profound significance in the mechanical response of polycrystalline Nitinol tubes. The numerical implementation is based on the constrained minimization of a functional corresponding to the Helmholtz energy with dissipation. Special treatment of loading/unloading conditions is also developed to distinguish between forward/reverse transformation state. Simulations are conducted for thin tubes of Nitinol under tension-torsion, as well as for a simplified model of a biomedical stent.
Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.
Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R
2018-03-01
The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.
Lai, Y-C; Li, H-Y; Hung, C-S; Lin, M-S; Shih, S-R; Ma, W-Y; Hua, C-H; Chuang, L-M; Sung, F-C; Wei, J-N
2013-03-01
To evaluate whether homeostasis model assessment and high-sensitivity C-reactive protein improve the prediction of isolated post-load hyperglycaemia. The subjects were 1458 adults without self-reported diabetes recruited between 2006 and 2010. Isolated post-load hyperglycaemia was defined as fasting plasma glucose < 7 mmol/l and 2-h post-load plasma glucose ≥ 11.1 mmol/l. Risk scores of isolated post-load hyperglycaemia were constructed by multivariate logistic regression. An independent group (n = 154) was enrolled from 2010 to 2011 to validate the models' performance. One hundred and twenty-three subjects (8.28%) were newly diagnosed as having diabetes mellitus. Among those with undiagnosed diabetes, 64 subjects (52%) had isolated post-load hyperglycaemia. Subjects with isolated post-load hyperglycaemia were older, more centrally obese and had higher blood pressure, HbA(1c), fasting plasma glucose, triglycerides, LDL cholesterol, high-sensitivity C-reactive protein and homeostasis model assessment of insulin resistance and lower homeostasis model assessment of β-cell function than those without diabetes. The risk scores included age, gender, BMI, homeostasis model assessment, high-sensitivity C-reactive protein and HbA(1c). The full model had high sensitivity (84%) and specificity (87%) and area under the receiver operating characteristic curve (0.91), with a cut-off point of 23.81; validation in an independent data set showed 88% sensitivity, 77% specificity and an area under curve of 0.89. Over half of those with undiagnosed diabetes had isolated post-load hyperglycaemia. Homeostasis model assessment and high-sensitivity C-reactive protein are useful to identify subjects with isolated post-load hyperglycaemia, with improved performance over fasting plasma glucose or HbA(1c) alone. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
Simple model of cable-stayed bridge deck subjected to static wind loading
NASA Astrophysics Data System (ADS)
Kang, Yi-Lung; Wang, Yang Cheng
1997-05-01
Cable-stayed bridges have been known since 18th century with aesthetics design. The structural system and the structural behavior are significantly different from those of continuous bridges. Compared to continuous bridge, cable- stayed bridges have more flexure bridge deck than those of continuous bridges.On the other hand, cable-stayed bridges have less stiffness to resist wind loading especially for lateral loads. The first considering of bridge engineering is safety. In 1940's, Tacoma Narrows Suspension Bridge destroyed by wind loading is a good example even though it is not a cable-stayed bridge. After the bridge was destroyed, a lot of research articles have been published regarding cable supported bridge subjected to wind loading. In recent days, high strength materials have been served. The bridge engineers use the advantages to expand the span length of cable-stayed bridges. Due to the span length increased and the use of high strength materials, cable- stayed bridges have more significant nonlinear behavior subjected to wind loading. In this paper, a slice bridge deck of cable-stayed bridge connected to internal support cables is considered. The deck has been considered to be subjected to lateral static wind loading. Since cables can not take compressive force, the deck has strongly nonlinear behavior even though the materials are linear elastic. Several primary load combinations have ben considered in this paper such as the bridge deck supposed to be moved horizontally without rotation or the bridge deck supposed to be moved horizontally with rotational deformation. The mathematical formulas and the numerical solutions are found and represented in graphical forms. The results can be provided to bridge designers and researchers for further study of this type of structure subjected to wind loading.
NASA Technical Reports Server (NTRS)
Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.
1988-01-01
Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.
Electronic system for high power load control. [solar arrays
NASA Technical Reports Server (NTRS)
Miller, E. L. (Inventor)
1980-01-01
Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.
Influence of beam-loaded effects on phase-locking in the high power microwave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenghong; Zhou, Zhigang; Qiu, Rong
2014-06-15
Owing to the power limitation of a single device, much more attentions are focused on developing high power microwave (HPM) oscillators that can be phase-locked to the external signal in the recent HPM researches. Although the phase-locking is proved to be feasible in the conventional devices (such as magnetrons), challenges still exist in the HPM devices due to beam-loaded effects, which are more obvious in HPM devices because of its high current and the low Q-factor of the device. A simple structured HPM oscillator (Bitron) is introduced to study such effects on the phase-locking in the HPM oscillator. The self-consistentmore » analysis is carried out to study such effects together with particle in cell simulations. Then the modified Adler equation is established for the phase-locking HPM oscillator. Finally, conditions for the phase-locking in the HPM oscillator are given.« less
A simple method for quantifying jump loads in volleyball athletes.
Charlton, Paula C; Kenneally-Dabrowski, Claire; Sheppard, Jeremy; Spratford, Wayne
2017-03-01
Evaluate the validity of a commercially available wearable device, the Vert, for measuring vertical displacement and jump count in volleyball athletes. Propose a potential method of quantifying external load during training and match play within this population. Validation study. The ability of the Vert device to measure vertical displacement in male, junior elite volleyball athletes was assessed against reference standard laboratory motion analysis. The ability of the Vert device to count jumps during training and match-play was assessed via comparison with retrospective video analysis to determine precision and recall. A method of quantifying external load, known as the load index (LdIx) algorithm was proposed using the product of the jump count and average kinetic energy. Correlation between two separate Vert devices and three-dimensional trajectory data were good to excellent for all jump types performed (r=0.83-0.97), with a mean bias of between 3.57-4.28cm. When matched against jumps identified through video analysis, the Vert demonstrated excellent precision (0.995-1.000) evidenced by a low number of false positives. The number of false negatives identified with the Vert was higher resulting in lower recall values (0.814-0.930). The Vert is a commercially available tool that has potential for measuring vertical displacement and jump count in elite junior volleyball athletes without the need for time-consuming analysis and bespoke software. Subsequently, allowing the collected data to better quantify load using the proposed algorithm (LdIx). Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
FACTS Devices Cost Recovery During Congestion Management in Deregulated Electricity Markets
NASA Astrophysics Data System (ADS)
Sharma, Ashwani Kumar; Mittapalli, Ram Kumar; Pal, Yash
2016-09-01
In future electricity markets, flexible alternating current transmission system (FACTS) devices will play key role for providing ancillary services. Since huge cost is involved for the FACTS devices placement in the power system, the cost invested has to be recovered in their life time for the replacement of these devices. The FACTS devices in future electricity markets can act as an ancillary services provider and have to be remunerated. The main contributions of the paper are: (1) investment recovery of FACTS devices during congestion management such as static VAR compensator and unified power flow controller along with thyristor controlled series compensator using non-linear bid curves, (2) the impact of ZIP load model on the FACTS cost recovery of the devices, (3) the comparison of results obtained without ZIP load model for both pool and hybrid market model, (4) secure bilateral transactions incorporation in hybrid market model. An optimal power flow based approach has been developed for maximizing social welfare including FACTS devices cost. The optimal placement of the FACTS devices have been obtained based on maximum social welfare. The results have been obtained for both pool and hybrid electricity market for IEEE 24-bus RTS.
Long Duration Exposure Facility (LDEF) structural verification test report
NASA Technical Reports Server (NTRS)
Jones, T. C.; Lucy, M. H.; Shearer, R. L.
1983-01-01
Structural load tests on the Long Duration Exposure Facility's (LDEF) primary structure were conducted. These tests had three purposes: (1) demonstrate structural adequacy of the assembled LDEF primary structure when subjected to anticipated flight loads; (2) verify analytical models and methods used in loads and stress analysis; and (3) perform tests to comply with the Space Transportation System (STS) requirements. Test loads were based on predicted limit loads which consider all flight events. Good agreement is shown between predicted and observed load, strain, and deflection data. Test data show that the LDEF structure was subjected to 1.2 times limit load to meet the STS requirements. The structural adequacy of the LDEF is demonstrated.
Yoda, Nobuhiro; Ogawa, Toru; Gunji, Yoshinori; Vanegas, Juan R; Kawata, Tetsuo; Sasaki, Keiichi
2016-08-01
The mechanisms by which the loads exerted on implants that support prostheses are modulated during mastication remain unclear. The purpose of this study was to evaluate the effects of food texture on 3-dimensional loads measured at a single implant using a piezoelectric transducer. Two subjects participated in this study. The transducer and the experimental superstructure, which had been adjusted to the subject's occlusal scheme, were attached to the implant with a titanium screw. The foods tested were chewing gum and peanuts. The mean maximum load on the implant in each chewing cycle was significantly higher during peanut chewing than during gum chewing. The direction of maximum load was significantly more widely dispersed during peanut chewing than during gum chewing. The range of changes in load direction during the force-increasing phase of each chewing cycle was significantly wider during peanut chewing than during gum chewing. The load on the implant was affected by food texture in both subjects. This measurement method can be useful to investigate the mechanisms of load modulation on implants during mastication.
Morelli, Moreno; Poitras, Philippe; Grimes, Valentine; Backman, David; Dervin, Geoffrey
2007-04-01
The purpose of this study was to determine what characteristics of fixation devices used in the treatment of osteochondritis dissecans (OCD) contribute to improved stability to resist shear loading. An OCD model was designed using rigid polyurethane foam. Each specimen consisted of two components, an osteochondral fragment and a corresponding defect. A total of 40 specimens were prepared and assigned to one of four groups: control (no extrinsic stabilizer); two 2-mm-diameter Kirschner wires (K-wires), 40 mm in length; one threaded washer and a 28-mm screw; and one threaded washer and a 38 mm screw. Each specimen was mounted onto an Iosipescu shear test fixture and subjected to shear loads at a pseudo-static displacement rate of 0.075 mm/s. All groups demonstrated some stability; controls were significantly less stable than all other groups. The group with the threaded washer and 38-mm screw demonstrated the greatest stability (p < 0.001), and no difference was noted between the K-wire and 28-mm screw groups. These results suggest that, in this OCD model, friction conferred some intrinsic stability to resist loads in shear. However, stability was improved with the use of long implants that compressed the fragments together.
Emitted vibration measurement device and method
NASA Astrophysics Data System (ADS)
Gisler, G. L.
1986-10-01
This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.
Błaszczyszyn, Artur; Kubasiewicz-Ross, Paweł; Gedrange, Tomasz; Dominiak, Marzena
2013-01-01
The paper presents clinical-radiological research on the impact of the new semi-cement luting agent in the immediately loaded implant-supported restoration on alveolar ridge resorption. 25 patients with a partially edentulous alveolar ridge in the anterior section of the maxilla or mandible were included in the study. The implants were inserted with the application of traditional burs or with a Piezosurgery device supplied by Mectron. Taking into account the method of implant bed preparation, the scientific material was divided into two groups. The implants were loaded immediately with single crown restorations cemented with the Implantlink semi cement application. The following indices were taken into consideration: pocket depth around implant calculated at four measuring points, marginal alveolar bone loss measured using radio-visiography, the 3-degree Wachtel scale of healing of the soft tissue. In addition, the presence and possible width or height of any recession around the implants was measured. The success of the implant treatment was assessed according to the Albrektsson success criteria. The research results were subjected to statistical analysis. The results of our study revealed no influence of the Implant-link semi cement on the crestal bone level, regardless of the bone bed preparation technique.
Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert
2011-01-01
The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and PAH—are not included in the lists of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Similar to the HSD, the average efficiency ratios and SOLs for TDS and Cl were negative. Flow rates, high concentrations of SS, and particle-size distributions (PSD) can affect the treatment efficacies of the two devices. Flow rates equal to or greater than the design flow rate of the HSD had minimal or negative removal efficiencies for TSS and SS loads. Similar TSS removal efficiencies were observed at the SFD, but SS was consistently removed throughout the flow regime. Removal efficiencies were high for both devices when concentrations of SS and TSS approached 200 mg/L. A small number of runoff events were analyzed for PSD; the average sand content at the HSD was 33 percent and at the SFD was 71 percent. The 71-percent sand content may reflect the 90-percent removal efficiency of SS at the SFD. Particles retained at the bottom of both devices were largely sand-size or greater.
Buckling analysis for anisotropic laminated plates under combined inplane loads
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
The buckling analysis presented considers rectangular flat or curved general laminates subjected to combined inplane normal and shear loads. Linear theory is used in the analysis. All prebuckling deformations and any initial imperfections are ignored. The analysis method can be readily extended to longitudinally stiffened structures subjected to combined inplane normal and shear loads.
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
2007-02-01
on/off control), trending and trend reports, load shedding/load manage- ment, remote setpoint adjustment, initial diagnosis of a service call and...building-specific operational data such as on/off scheduling com- mands, setpoints , and outside air temperature. With help from several other agencies and...interface for monitoring 3. Provide one interface for device/system management/configuration 4. ( Optimally ) provide one interface for device
30 CFR 57.9319 - Going over, under, or between railcars.
Code of Federal Regulations, 2010 CFR
2010-07-01
... NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Loading, Hauling, and Dumping Safety Devices, Provisions, and Procedures for Roadways, Railroads, and Loading and...
36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...
36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...
36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...
36 CFR 327.13 - Explosives, firearms, other weapons and fireworks.
Code of Federal Regulations, 2010 CFR
2010-07-01
... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...
Controlling release from 3D printed medical devices using CLIP and drug-loaded liquid resins.
Bloomquist, Cameron J; Mecham, Michael B; Paradzinsky, Mark D; Janusziewicz, Rima; Warner, Samuel B; Luft, J Christopher; Mecham, Sue J; Wang, Andrew Z; DeSimone, Joseph M
2018-05-28
Mass customization along with the ability to generate designs using medical imaging data makes 3D printing an attractive method for the fabrication of patient-tailored drug and medical devices. Herein we describe the application of Continuous Liquid Interface Production (CLIP) as a method to fabricate biocompatible and drug-loaded devices with controlled release properties, using liquid resins containing active pharmaceutical ingredients (API). In this work, we characterize how the release kinetics of a model small molecule, rhodamine B-base (RhB), are affected by device geometry, network crosslink density, and the polymer composition of polycaprolactone- and poly (ethylene glycol)-based networks. To demonstrate the applicability of using API-loaded liquid resins with CLIP, the UV stability was evaluated for a panel of clinically-relevant small molecule drugs. Finally, select formulations were tested for biocompatibility, degradation and encapsulation of docetaxel (DTXL) and dexamethasone-acetate (DexAc). Formulations were shown to be biocompatible over the course of 175 days of in vitro degradation and the clinically-relevant drugs could be encapsulated and released in a controlled fashion. This study reveals the potential of the CLIP manufacturing platform to serve as a method for the fabrication of patient-specific medical and drug-delivery devices for personalized medicine. Copyright © 2018. Published by Elsevier B.V.
Effect of low-speed impact damage on the buckling properties of E-glass/epoxy laminates
NASA Astrophysics Data System (ADS)
Yapici, A.; Metin, M.
2009-11-01
The postimpact buck ling loads of E-glass/epoxy laminates have been measured. Composite samples with the stacking sequence [+45/-45/90/0]2s were subjected to low-speed impact loadings at various energy levels. The tests were conducted on a specially developed vertical drop-weight testing machine. The main impact parameters, such as the peak load, absorbed energy, deflection at the peak load, and damage area, were evaluated and com pared. The damaged specimens were subjected to compressive axial forces, and their buckling loads were determined. The relation between the level of impact energy and buck ling loads is investigated.
NASA Technical Reports Server (NTRS)
Rouse, Marshall; Young, Richard D.; Gehrki, Ralph R.
2003-01-01
Results from an experimental and analytical study of a curved stiffened aluminum panel subjected to combined mechanical and internal pressure loads are presented. The panel loading conditions were simulated using a D-box test fixture. Analytical buckling load results calculated from a finite element analysis are presented and compared to experimental results. Buckling results presented indicate that the buckling load of the fuselage panel is significantly influenced by internal pressure loading. The experimental results suggest that the stress distribution is uniform in the panel prior to buckling. Nonlinear finite element analysis results correlates well with experimental results up to buckling.
Shin, Choongsoo S; Souza, Richard B; Kumar, Deepak; Link, Thomas M; Wyman, Bradley T; Majumdar, Sharmila
2011-12-01
To investigate the effect of acute loading on in vivo tibiofemoral contact area changes in both compartments, and to determine whether in vivo tibiofemoral contact area differs between subjects with medial knee osteoarthritis (OA) and healthy controls. Ten subjects with medial knee OA (KL3) and 11 control subjects (KL0) were tested. Coronal three-dimensional spoiled gradient-recalled (3D-SPGR) and T(2) -weighted fast spin-echo FSE magnetic resonance imaging (MRI) of the knee were acquired under both unloaded and loaded conditions. Tibiofemoral cartilage contact areas were measured using image-based 3D models. Tibiofemoral contact areas in both compartments significantly increased under loading (P < 0.001) and the increased contact area in the medial compartment was significantly larger than in the lateral compartment (P < 0.05). Medial compartment contact area was significantly larger in KL3 subjects than KL0 subjects, both at unloaded and loaded conditions (P < 0.05). Contact areas measured from 3D-SPGR and T(2) -weighted FSE images were strongly correlated (r = 0.904). Females with medial OA increased tibiofemoral contact area in the medial compartment compared to healthy subjects under both unloaded and loaded conditions. The contact area data presented in this study may provide a quantitative reference for further cartilage contact biomechanics such as contact stress analysis and cartilage biomechanical function difference between osteoarthritic and healthy knees. Copyright © 2011 Wiley Periodicals, Inc.
Roche, Christopher P; Staunch, Cameron; Hahn, William; Grey, Sean G; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D
2015-12-01
ASTM F2028-14 was adopted to recom mend a cyclic eccentric glenoid edge loading test that simulates the rocking horse loading mechanism beleived to cause aTSA glenoid loosening. While this method accurately simulates that failure mechanism, the recommended 750 N load may not be sufficient to simulate worst-case loading magnitudes, and the recommended 100,000 cycles may not be sufficient to simulate device fatigue-related failure modes. Finally, if greater loading magnitude or a larger number of cycles is performed, the recommended substrate density may not be sufficiently strong to support the elevated loads and cycles. To this end, a new test method is proposed to supplement ASTM F2028-14. A series of cyclic tests were performed to evaluate the long-term fixation strength of two different hybrid glenoid designs in both low (15 pcf) and high (30 pcf) density polyurethane blocks at elevated loads relative to ASTM F2028-14. To simulate a worst case clinical condition in which the humeral head is superiorly migrated, a cyclic load was applied to the superior glenoid rim to induce a maximum torque on the fixation pegs for three different cyclic loading tests: 1. 1,250 N load for 0.75 M cycles in a 15 pcf block, 2. 1,250 N load for 1.5 M cycles in a 30 pcf block, and 3. 2,000 N load for 0.65 M cycles in a 30 pcf block. All devices completed cyclic loading without failure, fracture, or loss of fixation regardless of glenoid design, polyurethane density, loading magnitude, or cycle length. No significant difference in post-cyclic displacement was noted between designs in any of the three tests. Post-cyclic radiographs demonstrated that each device maintained fixa - tion with the metal pegs within the bone-substitute blocks with no fatigue related failures. These results demonstrate that both cemented hybrid glenoids maintained fixation when tested according to each cyclic loading scenario, with no difference in post-cyclic displacement observed between designs. The lack of fatigue-related failures in these elevated load and high cycle test scenarios are promising, as are the relatively low displacements given the extreme nature of each test. This cyclic loading method is intended to supplement the ASTM F2028-14 standard that adequately simulates the rocking horse loading mechanism but may not adequately simulate the fatigue-related failure modes.
Self-actuating grapple automatically engages and releases loads from overhead cranes
NASA Technical Reports Server (NTRS)
Froehlich, J. A.; Karastas, G. A.
1966-01-01
Two-piece grapple mechanism consisting of a lift knob secured to the load and a grapple member connected to the crane or lift automatically disengages the load from the overhead lifting device when the load contacts the ground. The key feature is the sliding collar under the lift knob which enables the grapple latch to be stripped off over the lift knob.
Systems, methods, and products for graphically illustrating and controlling a droplet actuator
NASA Technical Reports Server (NTRS)
Brafford, Keith R. (Inventor); Pamula, Vamsee K. (Inventor); Paik, Philip Y. (Inventor); Pollack, Michael G. (Inventor); Sturmer, Ryan A. (Inventor); Smith, Gregory F. (Inventor)
2010-01-01
Systems for controlling a droplet microactuator are provided. According to one embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, and a display device displaying a user interface electronically coupled to the controller, wherein the system is programmed and configured to permit a user to effect a droplet manipulation by interacting with the user interface. According to another embodiment, a system is provided and includes a processor, a display device electronically coupled to the processor, and software loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller and programmed to display an interactive map of a droplet microactuator. According to yet another embodiment, a system is provided and includes a controller, a droplet microactuator electronically coupled to the controller, a display device displaying a user interface electronically coupled to the controller, and software for executing a protocol loaded and/or stored in a storage device electronically coupled to the controller, a memory device electronically coupled to the controller, and/or the controller.
Kaufman, K R; Levine, J A; Brey, R H; Iverson, B K; McCrady, S K; Padgett, D J; Joyner, M J
2007-10-01
Microprocessor-controlled knee joints appeared on the market a decade ago. These joints are more sophisticated and more expensive than mechanical ones. The literature is contradictory regarding changes in gait and balance when using these sophisticated devices. This study employed a crossover design to assess the comparative performance of a passive mechanical knee prosthesis compared to a microprocessor-controlled knee joint in 15 subjects with an above-knee amputation. Objective measurements of gait and balance were obtained. Subjects demonstrated significantly improved gait characteristics after receiving the microprocessor-controlled prosthetic knee joint (p<0.01). Improvements in gait were a transition from a hyperextended knee to a flexed knee during loading response which resulted in a change from an internal knee flexor moment to a knee extensor moment. The participants' balance also improved (p<0.01). All conditions of the Sensory Organization Test (SOT) demonstrated improvements in equilibrium score. The composite score also increased. Transfemoral amputees using a microprocessor-controlled knee have significant improvements in gait and balance.
36 CFR § 327.13 - Explosives, firearms, other weapons and fireworks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... possession of loaded firearms, ammunition, loaded projectile firing devices, bows and arrows, crossbows, or... ranges; or (4) Written permission has been received from the District Commander. (b) Possession of...
Flight Loads and Environments Initiative
NASA Technical Reports Server (NTRS)
Kaufman, Daniel; Kern, Dennis
2005-01-01
A viewgraph presentation on the design of a lightweight non-intrusive force measurement device (FMD) to reduce the cost per effective payload (PL) mass into orbit (CPMO) by improving launch vehicle (LV) loads and environments.
Upper Limb Muscle and Brain Activity in Light Assembly Task on Different Load Levels
NASA Astrophysics Data System (ADS)
Zadry, Hilma Raimona; Dawal, Siti Zawiah Md.; Taha, Zahari
2010-10-01
A study was conducted to investigate the effect of load on upper limb muscles and brain activities in light assembly task. The task was conducted at two levels of load (Low and high). Surface electromyography (EMG) was used to measure upper limb muscle activities of twenty subjects. Electroencephalography (EEG) was simultaneously recorded with EMG to record brain activities from Fz, Pz, O1 and O2 channels. The EMG Mean Power Frequency (MPF) of the right brachioradialis and the left upper trapezius activities were higher on the high-load task compared to low-load task. The EMG MPF values also decrease as time increases, that reflects muscle fatigue. Mean power of the EEG alpha bands for the Fz-Pz channels were found to be higher on the high-load task compared to low-load task, while for the O1-O2 channels, they were higher on the low-load task than on the high-load task. These results indicated that the load levels effect the upper limb muscle and brain activities. The high-load task will increase muscle activities on the right brachioradialis and the left upper tapezius muscles, and will increase the awareness and motivation of the subjects. Whilst the low-load task can generate drowsiness earlier. It signified that the longer the time and the more heavy of the task, the subjects will be more fatigue physically and mentally.
Edén, Arvid; Nilsson, Staffan; Hagberg, Lars; Fuchs, Dietmar; Zetterberg, Henrik; Svennerholm, Bo; Gisslén, Magnus
2016-12-15
We examined longitudinal cerebrospinal fluid (CSF) samples (median, 5 samples/patients; interquartile range [IQR], 3-8 samples/patient) in 75 neurologically asymptomatic human immunodeficiency virus (HIV)-infected patients receiving antiretroviral therapy. Twenty-seven patients (36%) had ≥1 CSF HIV RNA load of >20 copies/mL (23% had ≥1 load of >50 copies/mL), with a median HIV RNA load of 50 copies/mL (IQR, 32-77 copies/mL). In plasma, 42 subjects (52%) and 22 subjects (29%) had an HIV RNA load of >20 and >50 copies/mL, respectively. Two subjects had an increasing virus load in consecutive CSF samples, representing possible CSF escape. Of 418 samples, 9% had a CSF HIV RNA load of >20 copies/mL (5% had a load of >50 copies/mL) and 19% had a plasma HIV RNA load of >20 copies/mL (8% had a load of >50 copies/mL). A CSF-associated virus load of >20 copies/mL was associated with higher CSF level of neopterin. In conclusion, CSF escape was rare, and increased CSF HIV RNA loads usually represented CSF virus load blips. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Pawlik, Ralph; Krause, David; Bremenour, Frank
2011-01-01
The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.
Sandrock, R.J.
1961-12-12
A self-actuated gripping tool is described for transferring fuel elements and the like into reactors and other inaccessible locations. The tool will grasp or release the load only when properly positioned for this purpose. In addition, the load cannot be released except when unsupported by the tool, so that jarring or contact will not bring about accidental release of the load. The gripping members or jaws of the device are cam-actuated by an axially slidable shaft which has two lockable positions. A spring urges the shaft into one position and a solenoid is provided to overcome the spring and move it into the other position. The weight of the tool operates a sleeve to lock the shaft in its existing position. Only when the cable supporting the tool is slack is the device capable of being actuated either to grasp or release its load. (AEC)
Klaus, Jana; Mädebach, Andreas; Oppermann, Frank; Jescheniak, Jörg D
2017-04-01
This study investigated to what extent advance planning during sentence production is affected by a concurrent cognitive load. In two picture-word interference experiments in which participants produced subject-verb-object sentences while ignoring auditory distractor words, we assessed advance planning at a phonological (lexeme) and at an abstract-lexical (lemma) level under visuospatial or verbal working memory (WM) load. At the phonological level, subject and object nouns were found to be activated before speech onset with concurrent visuospatial WM load, but only subject nouns were found to be activated with concurrent verbal WM load, indicating a reduced planning scope as a function of type of WM load (Experiment 1). By contrast, at the abstract-lexical level, subject and object nouns were found to be activated regardless of type of concurrent load (Experiment 2). In both experiments, sentence planning had a more detrimental effect on concurrent verbal WM task performance than on concurrent visuospatial WM task performance. Overall, our results suggest that advance planning at the phonological level is more affected by a concurrently performed verbal WM task than advance planning at the abstract-lexical level. Also, they indicate an overlap of resources allocated to phonological planning in speech production and verbal WM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Jonathan Charles; Halse, Chris; Crowther, Ashley
2010-06-01
Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed in the context of multiple sensors and active control devices (such as flaps) distributed over the length of the blade, most work to date has been limited to consideration of a single control device per blade with very basic Proportional Derivative controllers, due to limitations in the aeroservoelastic codes used to performmore » turbine simulations. This work utilizes a new aeroservoelastic code developed at Delft University of Technology to model the NREL/Upwind 5 MW wind turbine to investigate the relative advantage of utilizing multiple-device AALC. System identification techniques are used to identify the frequencies and shapes of turbine vibration modes, and these are used with modern control techniques to develop both Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MIMO) LQR flap controllers. Comparison of simulation results with these controllers shows that the MIMO controller does yield some improvement over the SISO controller in fatigue load reduction, but additional improvement is possible with further refinement. In addition, a preliminary investigation shows that AALC has the potential to reduce off-axis gearbox loads, leading to reduced gearbox bearing fatigue damage and improved lifetimes.« less
Weber-Spickschen, Thomas Sanjay; Colcuc, Christian; Hanke, Alexander; Clausen, Jan-Dierk; James, Paul Abraham; Horstmann, Hauke
2017-01-01
The initial goals of rehabilitation after knee injuries and operations are to achieve full knee extension and to activate quadriceps muscle. In addition to regular physiotherapy, an android-based knee training device is designed to help patients achieve these goals and improve compliance in the early rehabilitation period. This knee training device combines fun in a computer game with muscular training or rehabilitation. Our aim was to test the feasibility and acceptability of this new device. 50 volunteered subjects enrolled to test out the computer game aided device. The first game was the high-striker game, which recorded maximum knee extension power. The second game involved controlling quadriceps muscular power to simulate flying an aeroplane in order to record accuracy of muscle activation. The subjects evaluated this game by completing a simple questionnaire. No technical problem was encountered during the usage of this device. No subjects complained of any discomfort after using this device. Measurements including maximum knee extension power, knee muscle activation and control were recorded successfully. Subjects rated their experience with the device as either excellent or very good and agreed that the device can motivate and monitor the progress of knee rehabilitation training. To the best of our knowledge, this is the first android-based tool available to fast track knee rehabilitation training. All subjects gave very positive feedback to this computer game aided knee device.
Chow, Daniel H K; Kwok, Monica L Y; Cheng, Jack C Y; Lao, Miko L M; Holmes, Andrew D; Au-Yang, Alexander; Yao, Fiona Y D; Wong, M S
2006-10-01
Concerns have been raised regarding the effect of carrying a backpack on adolescent posture and balance, but the effect of backpack loading combined with other factors affecting balance, such as adolescent idiopathic scoliosis (AIS), has not been determined. This study examines the effects of backpack load on the posture and balance of schoolgirls with AIS and normal controls. The standing posture of 26 schoolgirls with mild AIS (mean age 13, Cobb angle 10-25 degrees ) and 20 age-matched normal schoolgirls were recorded without a backpack and while carrying a standard dual-strap backpack loaded at 7.5%, 10%, 12.5% and 15% of the subject's bodyweight (BW). Kinematics of the pelvis, trunk and head were recorded using a motion analysis system and centre of pressure (COP) data were recorded using a force platform. Reliable COP data could only be derived for 13 of the subjects with AIS. Increasing backpack load causes a significantly increased flexion of the trunk in relation to the pelvis and extension of the head in relation to the trunk, as well as increased antero-posterior range of COP motion. While backpack load appears to affect balance predominantly in the antero-posterior direction, differences between groups were more evident in the medio-lateral direction, with AIS subjects showing poor balance in this direction. Overall, carrying a backpack causes similar sagittal plane changes in posture and balance in both normal and AIS groups. Load size or subject group did not influence balance, but the additive effect of backpack carrying and AIS on postural control alters the risk of fall in this population. Therefore, load limit recommendations based on normal subjects should not be applicable to subjects with AIS.
2006-11-01
analyze the associated gait biomechanics . Ten Army enlisted men participated in the study. Oxygen consumption (VO2) and gait biomechanics were...measured while Soldiers walked at 4.83 km/h and 0% grade under three realistic load weight configurations that were comprised of Army clothing and...increases users’ metabolic cost while carrying various loads and alters their gait biomechanics compared to conventional load carriage using a backpack
A nonlinear auxetic structural vibration damper with metal rubber particles
NASA Astrophysics Data System (ADS)
Ma, Yanhong; Scarpa, Fabrizio; Zhang, Dayi; Zhu, Bin; Chen, Lulu; Hong, Jie
2013-08-01
The work describes the mechanical performance of a metal rubber particles (MRP) damper design based on an auxetic (negative Poisson’s ratio) cellular configuration. The auxetic damper configuration is constituted by an anti-tetrachiral honeycomb, where the cylinders are filled with the MRP material. The MRP samples have been subjected to quasi-static loading to measure the stiffness and loss factor from the static hysteresis curve. A parametric experimental analysis has been carried out to investigate the effect of relative density and filling percentage on the static performance of the MRP, and to identify design guidelines for best use of MRP devices. An experimental assessment of the integrated auxetic-MRP damper concept has been provided through static and dynamic force response techniques.
Analysis tool and methodology design for electronic vibration stress understanding and prediction
NASA Astrophysics Data System (ADS)
Hsieh, Sheng-Jen; Crane, Robert L.; Sathish, Shamachary
2005-03-01
The objectives of this research were to (1) understand the impact of vibration on electronic components under ultrasound excitation; (2) model the thermal profile presented under vibration stress; and (3) predict stress level given a thermal profile of an electronic component. Research tasks included: (1) retrofit of current ultrasonic/infrared nondestructive testing system with sensory devices for temperature readings; (2) design of software tool to process images acquired from the ultrasonic/infrared system; (3) developing hypotheses and conducting experiments; and (4) modeling and evaluation of electronic vibration stress levels using a neural network model. Results suggest that (1) an ultrasonic/infrared system can be used to mimic short burst high vibration loads for electronics components; (2) temperature readings for electronic components under vibration stress are consistent and repeatable; (3) as stress load and excitation time increase, temperature differences also increase; (4) components that are subjected to a relatively high pre-stress load, followed by a normal operating load, have a higher heating rate and lower cooling rate. These findings are based on grayscale changes in images captured during experimentation. Discriminating variables and a neural network model were designed to predict stress levels given temperature and/or grayscale readings. Preliminary results suggest a 15.3% error when using grayscale change rate and 12.8% error when using average heating rate within the neural network model. Data were obtained from a high stress point (the corner) of the chip.
Self-Alining End Supports for Energy Absorber
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.; Eichelberger, C. P.; Fasanella, E.
1986-01-01
Simple devices stabilize axially-loaded compressive members. Energyabsorbing column held by two end supports, which stabilize column and tolerate misalinement. Column absorbs excess load by collapsing lengthwise. Self-alining supports small, lightweight, and almost maintenance-free. Their use eliminates alinement problem, opening up more applications and providing higher reliability for compressively-loaded energy absorbers.
2015-08-01
2 Fig. 3 FEA model for the ATD lower-leg loading...3 Fig. 4 Typical pressure distribution under the boot sole in the FEA result ................................ 4 Fig. 5 Load histories of...the ATD lower leg in 10-meter-per-second (m/s), 10-millisecond (msec) pulse loading FEA
Code of Federal Regulations, 2013 CFR
2013-01-01
... devices adequate to resist all loads identified in the MPS. This includes resistance to ground movements, seismic shaking, potential shearing, overturning and uplift loads caused by wind. Note that anchoring..., within allowable stress and settlement limitations, all applicable loads. Any foundation and anchorage...
29 CFR 1926.1501 - Cranes and derricks.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., chains, or other reciprocating, rotating, or other moving parts or equipment shall be guarded if such... more than one hoisting unit, each hoist shall have its rated load marked on it or its load block, and... contact between the load block or overhaul ball and the boom tip (anti-two-blocking device), or a system...
Analysis of the Thermal Loads on the KSTAR Cryogenic System
NASA Astrophysics Data System (ADS)
Kim, Y. S.; Oh, Y. K.; Kim, W. C.; Park, Y. M.; Lee, Y. J.; Jin, S. B.; Sa, J. W.; Choi, C. H.; Cho, K. W.; Bak, J. S.; Lee, G. S.
2004-06-01
A large-scale helium refrigeration system is one of the key components for the KSTAR (Korea Superconducting Tokamak Advanced Research) device. In the design of the refrigeration system, an estimation of the thermal loads on the cold mass is an important issue according to the operation scenario. The cold mass of the KSTAR device is about 250 tons including 30 superconducting (SC) coils and the magnet structure. In addition to the static thermal loads, pulsed thermal loads to the refrigeration system have been considered in the operation stage. The main pulsed thermal loads on magnet system are AC losses in the SC coils and eddy current losses in the magnet structure that depend on the magnetic field variation rate. The nuclear radiation loss due to plasma pulse operation is also considered. The designed cooling capacity of the refrigeration system is estimated to be about 9 kW at 4.5 K isothermal. In this paper, calculation of the various kinds of thermal loads on KSTAR cryogenic system and design of the large-scale helium refrigeration system are presented.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Baker, L. L.
1974-01-01
A method is presented to predict theoretical buckling loads of long, rectangular flat and curved laminated plates with arbitrary orientation of orthotropic axes each lamina. The plate is subjected to combined inplane normal and shear loads. Arbitrary boundary conditions may be stipulated along the longitudinal sides of the plate. In the absence of inplane shear loads and extensional-shear coupling, the analysis is also applicable to finite length plates. Numerical results are presented for curved laminated composite plates with boundary conditions and subjected to various loadings. These results indicate some of the complexities involved in the numerical solution of the analysis for general laminates. The results also show that the reduced bending stiffness approximation when applied to buckling problems could lead to considerable error in some cases and therefore must be used with caution.
ERIC Educational Resources Information Center
Haji, Faizal A.; Khan, Rabia; Regehr, Glenn; Drake, James; de Ribaupierre, Sandrine; Dubrowski, Adam
2015-01-01
As interest in applying cognitive load theory (CLT) to the study and design of pedagogic and technological approaches in healthcare simulation grows, suitable measures of cognitive load (CL) are needed. Here, we report a two-phased study investigating the sensitivity of subjective ratings of mental effort (SRME) and secondary-task performance…
NASA Technical Reports Server (NTRS)
Hall, William A. (Inventor)
1993-01-01
A bus programmable slave module card for use in a computer control system is disclosed which comprises a master computer and one or more slave computer modules interfacing by means of a bus. Each slave module includes its own microprocessor, memory, and control program for acting as a single loop controller. The slave card includes a plurality of memory means (S1, S2...) corresponding to a like plurality of memory devices (C1, C2...) in the master computer, for each slave memory means its own communication lines connectable through the bus with memory communication lines of an associated memory device in the master computer, and a one-way electronic door which is switchable to either a closed condition or a one-way open condition. With the door closed, communication lines between master computer memory (C1, C2...) and slave memory (S1, S2...) are blocked. In the one-way open condition invention, the memory communication lines or each slave memory means (S1, S2...) connect with the memory communication lines of its associated memory device (C1, C2...) in the master computer, and the memory devices (C1, C2...) of the master computer and slave card are electrically parallel such that information seen by the master's memory is also seen by the slave's memory. The slave card is also connectable to a switch for electronically removing the slave microprocessor from the system. With the master computer and the slave card in programming mode relationship, and the slave microprocessor electronically removed from the system, loading a program in the memory devices (C1, C2...) of the master accomplishes a parallel loading into the memory devices (S1, S2...) of the slave.
29 CFR 1926.753 - Hoisting and rigging.
Code of Federal Regulations, 2012 CFR
2012-07-01
... devices, anti-two block devices, and load moment indicators where required; (D) Air, hydraulic, and other... members: (i) Attached at their center of gravity and maintained reasonably level; (ii) Rigged from top...
29 CFR 1926.753 - Hoisting and rigging.
Code of Federal Regulations, 2013 CFR
2013-07-01
... devices, anti-two block devices, and load moment indicators where required; (D) Air, hydraulic, and other... members: (i) Attached at their center of gravity and maintained reasonably level; (ii) Rigged from top...
29 CFR 1926.753 - Hoisting and rigging.
Code of Federal Regulations, 2014 CFR
2014-07-01
... devices, anti-two block devices, and load moment indicators where required; (D) Air, hydraulic, and other... members: (i) Attached at their center of gravity and maintained reasonably level; (ii) Rigged from top...
Tunable actuation of dielectric elastomer by electromechanical loading rates
NASA Astrophysics Data System (ADS)
Li, Guorui; Zhang, Mingqi; Chen, Xiangping; Yang, Xuxu; Wong, Tuck-Whye; Li, Tiefeng; Huang, Zhilong
2017-10-01
Dielectric elastomer (DE) membranes are able to self-deform with the application of an electric field through the thickness direction. In comparison to conventional rigid counterparts, soft actuators using DE provide a variety of advantages such as high compliance, low noise, and light weight. As one of the challenges in the development of DE actuating devices, tuning the electromechanical actuating behavior is crucial in order to achieve demanded loading paths and to avoid electromechanical failures. In this paper, our experimental results show that the electromechanical loading conditions affect the actuating behaviors of the DE. The electrical actuating force can be tuned by 29.4% with the control of the electrical charging rate. In addition, controllable actuations have been investigated by the mechanical model in manipulating the electromechanical loading rate. The calculated results agree well with the experimental data. Lastly, it is believed that the mechanisms of controlling the electromechanical loading rate may serve as a guide for the design of DE devices and high performance soft robots in the near future.
Ultrasonic Drilling and Coring
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
1998-01-01
A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
49 CFR 178.338-14 - Gauging devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
... gauging devices, which accurately indicate the maximum permitted liquid level at the loading pressure, in... trycock line, or a differential pressure liquid level gauge must be used as the primary control for... filling. (2) The design pressure of each liquid level gauging device must be at least that of the tank. (3...
NASA Astrophysics Data System (ADS)
Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.
2013-03-01
Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.
Device for testing closure disks at high rates of change of pressure
Merten, Jr., Charles W.
1993-11-09
A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.
Robotic hand with modular extensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salisbury, Curt Michael; Quigley, Morgan
A robotic device is described herein. The robotic device includes a frame that comprises a plurality of receiving regions that are configured to receive a respective plurality of modular robotic extensions. The modular robotic extensions are removably attachable to the frame at the respective receiving regions by way of respective mechanical fuses. Each mechanical fuse is configured to trip when a respective modular robotic extension experiences a predefined load condition, such that the respective modular robotic extension detaches from the frame when the load condition is met.