Sample records for subjective visual vertical

  1. Verticality perception during and after galvanic vestibular stimulation.

    PubMed

    Volkening, Katharina; Bergmann, Jeannine; Keller, Ingo; Wuehr, Max; Müller, Friedemann; Jahn, Klaus

    2014-10-03

    The human brain constructs verticality perception by integrating vestibular, somatosensory, and visual information. Here we investigated whether galvanic vestibular stimulation (GVS) has an effect on verticality perception both during and after application, by assessing the subjective verticals (visual, haptic and postural) in healthy subjects at those times. During stimulation the subjective visual vertical and the subjective haptic vertical shifted towards the anode, whereas this shift was reversed towards the cathode in all modalities once stimulation was turned off. Overall, the effects were strongest for the haptic modality. Additional investigation of the time course of GVS-induced changes in the haptic vertical revealed that anodal shifts persisted for the entire 20-min stimulation interval in the majority of subjects. Aftereffects exhibited different types of decay, with a preponderance for an exponential decay. The existence of such reverse effects after stimulation could have implications for GVS-based therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The Subjective Visual Vertical: Validation of a Simple Test

    ERIC Educational Resources Information Center

    Tesio, Luigi; Longo, Stefano; Rota, Viviana

    2011-01-01

    The study sought to provide norms for a simple test of visual perception of verticality (subjective visual vertical). The study was designed as a cohort study with a balanced design. The setting was the Rehabilitation Department of a University Hospital. Twenty-two healthy adults, of 23-58 years, 11 men (three left handed) and 11 women (three left…

  3. The Role of Visual Cues in Microgravity Spatial Orientation

    NASA Technical Reports Server (NTRS)

    Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.

    2003-01-01

    In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body rotation or by simply cognitively initiating a visual reorientation-altered the illusion of convexity produced when viewing a flat, shaded disc. It changed at least one person's ability to recognize previously presented two-dimensional shapes. Overall, results show that most astronauts become more dependent on dynamic visual motion cues and some become responsive to stationary orientation cues. The direction of the subjective vertical is labile in the absence of gravity. This can interfere with the ability to properly interpret shading, or to recognize complex objects in different orientations.

  4. Anisotropic perception of visual angle: implications for the horizontal-vertical illusion, overconstancy of size, and the moon illusion.

    PubMed

    Higashiyama, A

    1992-03-01

    Three experiments investigated anisotropic perception of visual angle outdoors. In Experiment 1, scales for vertical and horizontal visual angles ranging from 20 degrees to 80 degrees were constructed with the method of angle production (in which the subject reproduced a visual angle with a protractor) and the method of distance production (in which the subject produced a visual angle by adjusting viewing distance). In Experiment 2, scales for vertical and horizontal visual angles of 5 degrees-30 degrees were constructed with the method of angle production and were compared with scales for orientation in the frontal plane. In Experiment 3, vertical and horizontal visual angles of 3 degrees-80 degrees were judged with the method of verbal estimation. The main results of the experiments were as follows: (1) The obtained angles for visual angle are described by a quadratic equation, theta' = a + b theta + c theta 2 (where theta is the visual angle; theta', the obtained angle; a, b, and c, constants). (2) The linear coefficient b is larger than unity and is steeper for vertical direction than for horizontal direction. (3) The quadratic coefficient c is generally smaller than zero and is negatively larger for vertical direction than for horizontal direction. And (4) the obtained angle for visual angle is larger than that for orientation. From these results, it was possible to predict the horizontal-vertical illusion, over-constancy of size, and the moon illusion.

  5. Perception of self-tilt in a true and illusory vertical plane

    NASA Technical Reports Server (NTRS)

    Groen, Eric L.; Jenkin, Heather L.; Howard, Ian P.; Oman, C. M. (Principal Investigator)

    2002-01-01

    A tilted furnished room can induce strong visual reorientation illusions in stationary subjects. Supine subjects may perceive themselves upright when the room is tilted 90 degrees so that the visual polarity axis is kept aligned with the subject. This 'upright illusion' was used to induce roll tilt in a truly horizontal, but perceptually vertical, plane. A semistatic tilt profile was applied, in which the tilt angle gradually changed from 0 degrees to 90 degrees, and vice versa. This method produced larger illusory self-tilt than usually found with static tilt of a visual scene. Ten subjects indicated self-tilt by setting a tactile rod to perceived vertical. Six of them experienced the upright illusion and indicated illusory self-tilt with an average gain of about 0.5. This value is smaller than with true self-tilt (0.8), but comparable to the gain of visually induced self-tilt in erect subjects. Apparently, the contribution of nonvisual cues to gravity was independent of the subject's orientation to gravity itself. It therefore seems that the gain of visually induced self-tilt is smaller because of lacking, rather than conflicting, nonvisual cues. A vector analysis is used to discuss the results in terms of relative sensory weightings.

  6. Does gravity influence the visual line bisection task?

    PubMed

    Drakul, A; Bockisch, C J; Tarnutzer, A A

    2016-08-01

    The visual line bisection task (LBT) is sensitive to perceptual biases of visuospatial attention, showing slight leftward (for horizontal lines) and upward (for vertical lines) errors in healthy subjects. It may be solved in an egocentric or allocentric reference frame, and there is no obvious need for graviceptive input. However, for other visual line adjustments, such as the subjective visual vertical, otolith input is integrated. We hypothesized that graviceptive input is incorporated when performing the LBT and predicted reduced accuracy and precision when roll-tilted. Twenty healthy right-handed subjects repetitively bisected Earth-horizontal and body-horizontal lines in darkness. Recordings were obtained before, during, and after roll-tilt (±45°, ±90°) for 5 min each. Additionally, bisections of Earth-vertical and oblique lines were obtained in 17 subjects. When roll-tilted ±90° ear-down, bisections of Earth-horizontal (i.e., body-vertical) lines were shifted toward the direction of the head (P < 0.001). However, after correction for vertical line-bisection errors when upright, shifts disappeared. Bisecting body-horizontal lines while roll-tilted did not cause any shifts. The precision of Earth-horizontal line bisections decreased (P ≤ 0.006) when roll-tilted, while no such changes were observed for body-horizontal lines. Regardless of the trial condition and paradigm, the scanning direction of the bisecting cursor (leftward vs. rightward) significantly (P ≤ 0.021) affected line bisections. Our findings reject our hypothesis and suggest that gravity does not modulate the LBT. Roll-tilt-dependent shifts are instead explained by the headward bias when bisecting lines oriented along a body-vertical axis. Increased variability when roll-tilted likely reflects larger variability when bisecting body-vertical than body-horizontal lines. Copyright © 2016 the American Physiological Society.

  7. Visual exploration during locomotion limited by fear of heights.

    PubMed

    Kugler, Günter; Huppert, Doreen; Eckl, Maria; Schneider, Erich; Brandt, Thomas

    2014-01-01

    Visual exploration of the surroundings during locomotion at heights has not yet been investigated in subjects suffering from fear of heights. Eye and head movements were recorded separately in 16 subjects susceptible to fear of heights and in 16 non-susceptible controls while walking on an emergency escape balcony 20 meters above ground level. Participants wore mobile infrared eye-tracking goggles with a head-fixed scene camera and integrated 6-degrees-of-freedom inertial sensors for recording head movements. Video recordings of the subjects were simultaneously made to correlate gaze and gait behavior. Susceptibles exhibited a limited visual exploration of the surroundings, particularly the depth. Head movements were significantly reduced in all three planes (yaw, pitch, and roll) with less vertical head oscillations, whereas total eye movements (saccade amplitudes, frequencies, fixation durations) did not differ from those of controls. However, there was an anisotropy, with a preference for the vertical as opposed to the horizontal direction of saccades. Comparison of eye and head movement histograms and the resulting gaze-in-space revealed a smaller total area of visual exploration, which was mainly directed straight ahead and covered vertically an area from the horizon to the ground in front of the feet. This gaze behavior was associated with a slow, cautious gait. The visual exploration of the surroundings by susceptibles to fear of heights differs during locomotion at heights from the earlier investigated behavior of standing still and looking from a balcony. During locomotion, anisotropy of gaze-in-space shows a preference for the vertical as opposed to the horizontal direction during stance. Avoiding looking into the abyss may reduce anxiety in both conditions; exploration of the "vertical strip" in the heading direction is beneficial for visual control of balance and avoidance of obstacles during locomotion.

  8. Learning to Read Vertical Text in Peripheral Vision

    PubMed Central

    Subramanian, Ahalya; Legge, Gordon E.; Wagoner, Gunther Harrison; Yu, Deyue

    2014-01-01

    Purpose English–language text is almost always written horizontally. Text can be formatted to run vertically, but this is seldom used. Several studies have found that horizontal text can be read faster than vertical text in the central visual field. No studies have investigated the peripheral visual field. Studies have also concluded that training can improve reading speed in the peripheral visual field for horizontal text. We aimed to establish whether the horizontal vertical differences are maintained and if training can improve vertical reading in the peripheral visual field. Methods Eight normally sighted young adults participated in the first study. Rapid Serial Visual Presentation (RSVP) reading speed was measured for horizontal and vertical text in the central visual field and at 10° eccentricity in the upper or lower (horizontal text), and right or left (vertical text) visual fields. Twenty-one normally sighted young adults split equally between 2 training and 1 control group participated in the second study. Training consisted of RSVP reading either using vertical text in the left visual field or horizontal text in the inferior visual field. Subjects trained daily over 4 days. Pre and post horizontal and vertical RSVP reading speeds were carried out for all groups. For the training groups these measurements were repeated 1 week and 1 month post training. Results Prior to training, RSVP reading speeds were faster for horizontal text in the central and peripheral visual fields when compared to vertical text. Training vertical reading improved vertical reading speeds by an average factor of 2.8. There was partial transfer of training to the opposite (right) hemifield. The training effects were retained for up to a month. Conclusions RSVP training can improve RSVP vertical text reading in peripheral vision. These findings may have implications for patients with macular degeneration or hemianopic field loss. PMID:25062130

  9. Haptic subjective vertical shows context dependence: task and vision play a role during dynamic tilt stimulation.

    PubMed

    Wright, William Geoffrey; Glasauer, Stefan

    2003-10-01

    Perceiving one's vertical is an integral part of efficiently functioning in an environment physically polarized along that dimension. How one determines the direction of gravity is not a task left only to inertial sensors, such as the vestibular organs, rather as numerous studies have shown, this task is influenced visually and somatosensorily. In addition, there is evidence that higher order cognitive effects such as expectancies and context are critical in perception of the vertical. One's ability to integrate these various inputs during normal activity is not generally questioned, one's doubts being satisfied by observing a waiter navigating a crowded restaurant with a tray balanced on one hand, neither tripping or dropping an entree. But how these various sources are integrated is still debated. Most research focuses on subjective vertical perception used visual matching/alignment tasks, verbal reports, or saccadic eye movements as a dependent measure. Although a motor task involving a joystick or indicator to be aligned with gravity without visual feedback is used much less frequently, there is good evidence that individuals easily orient limbs to an external gravity-aligned coordinate axis while being statically tilted. By exposure to a dynamic situation, the central nervous system should be no more challenged by the task of determining the subjective vertical than during static conditions, because our spatial orientation systems were likely selected for just that. In addition, the sensitive calibration between visual and other sensory input also must have been key to its selection. This sensory interaction can be tested by changing the relation between the various sources. With the advent of virtual reality technology, a complex and "natural" visual stimulus is achievable and is easily manipulable. How one tests perception of verticality is also a pertinent question when researching spatial orientation systems. The system's performance may be better indicated by a task of higher relevance to its normal function. In other words, the dependent measure can be made more or less relevant to real-world tasks. With an experimental design that attempts to mimic natural conditions, the current study focuses on two main topics. First, how does manipulation of the visual inputs during passive roll-tilt affect one's sense of body orientation? And second, how does changing the task used to measure subjective vertical affect one's performance?

  10. Effects of blurring and vertical misalignment on visual fatigue of stereoscopic displays

    NASA Astrophysics Data System (ADS)

    Baek, Sangwook; Lee, Chulhee

    2015-03-01

    In this paper, we investigate two error issues in stereo images, which may produce visual fatigue. When two cameras are used to produce 3D video sequences, vertical misalignment can be a problem. Although this problem may not occur in professionally produced 3D programs, it is still a major issue in many low-cost 3D programs. Recently, efforts have been made to produce 3D video programs using smart phones or tablets, which may present the vertical alignment problem. Also, in 2D-3D conversion techniques, the simulated frame may have blur effects, which can also introduce visual fatigue in 3D programs. In this paper, to investigate the relationship between these two errors (vertical misalignment and blurring in one image), we performed a subjective test using simulated 3D video sequences that include stereo video sequences with various vertical misalignments and blurring in a stereo image. We present some analyses along with objective models to predict the degree of visual fatigue from vertical misalignment and blurring.

  11. A Bayesian Account of Visual-Vestibular Interactions in the Rod-and-Frame Task.

    PubMed

    Alberts, Bart B G T; de Brouwer, Anouk J; Selen, Luc P J; Medendorp, W Pieter

    2016-01-01

    Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject's head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities.

  12. Human comfort response to random motions with a dominant vertical motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1975-01-01

    Subjective ride comfort response ratings were measured on the Langley Visual Motion Simulator with vertical acceleration inputs with various power spectra shapes and magnitudes. The data obtained are presented.

  13. A System for the Measurement of the Subjective Visual Vertical using a Virtual Reality Device.

    PubMed

    Negrillo-Cárdenas, José; Rueda-Ruiz, Antonio J; Ogayar-Anguita, Carlos J; Lomas-Vega, Rafael; Segura-Sánchez, Rafael J

    2018-05-31

    The Subjective Visual Vertical (SVV) is a common test for evaluating the perception of verticality. Altered verticality has been connected with disorders in the otolithic, visual or proprioceptive systems, caused by stroke, Parkinson's disease or multiple sclerosis, among others. Currently, this test is carried out using a variety of specific, mostly homemade apparatuses that include moving planes, buckets, hemispheric domes or a line projected in a screen. Our aim is to develop a flexible, inexpensive, user-friendly and easily extensible system based on virtual reality for the measurement of the SVV and several related visual diagnostic tests, and validate it through an experimental evaluation. Two different hardware configurations were tested with 50 healthy volunteers in a controlled environment; 28 of them were males and 22 females, with ages ranging from 18 to 49 years, being 23 the average age. The Intraclass Correlation Coefficient (ICC) was computed in each device. In addition, a usability survey was conducted. ICC = 0.85 in the first configuration (CI = 0.75-0.92), ICC = 0.76 in the second configuration (CI = 0.61-0.87), both with 95% of confidence, which means a substantial reliability. Moreover, 92.2% of subjects rated the usability of the system as "very good". Our evaluation showed that the proposed system is suitable for the measurement of SVV in healthy subjects. The next step is to perform a more elaborated experimentation on patients and compare the results with the measurements obtained from traditional methods.

  14. Assessment of the perception of verticality and horizontality with self-paced saccades.

    PubMed

    Pettorossi, V E; Bambagioni, D; Bronstein, A M; Gresty, M A

    1998-07-01

    We investigated the ability of human subjects (Ss) to make self-paced saccades in the earth-vertical and horizontal directions (space-referenced task) and in the direction of the head-vertical and horizontal axis (self-referenced task) during whole body tilts of 0 degrees, 22.5 degrees, 45 degrees and 90 degrees in the frontal (roll) plane. Saccades were recorded in the dark with computerised video-oculography. During space-referenced tasks, the saccade vectors did not fully counter-rotate to compensate for larger angles of body tilt. This finding is in agreement with the 'A' effect reported for the visual vertical. The error was significantly larger for saccades intended to be space-horizontal than space-vertical. This vertico-horizontal dissociation implies greater difficulty in defining horizontality than verticality with the non-visual motor task employed. In contrast, normal Ss (and an alabyrinthine subject tested) were accurate in orienting saccades to their own (cranio-centric) vertical and horizontal axes regardless of tilt indicating that cranio-centric perception is robust and apparently not affected by gravitational influences.

  15. Unipedal balance in healthy adults: effect of visual environments yielding decreased lateral velocity feedback.

    PubMed

    Deyer, T W; Ashton-Miller, J A

    1999-09-01

    To test the (null) hypotheses that the reliability of unipedal balance is unaffected by the attenuation of visual velocity feedback and that, relative to baseline performance, deterioration of balance success rates from attenuated visual velocity feedback will not differ between groups of young men and older women, and the presence (or absence) of a vertical foreground object will not affect balance success rates. Single blind, single case study. University research laboratory. Two volunteer samples: 26 healthy young men (mean age, 20.0yrs; SD, 1.6); 23 healthy older women (mean age, 64.9 yrs; SD, 7.8). Normalized success rates in unipedal balance task. Subjects were asked to transfer to and maintain unipedal stance for 5 seconds in a task near the limit of their balance capabilities. Subjects completed 64 trials: 54 trials of three experimental visual scenes in blocked randomized sequences of 18 trials and 10 trials in a normal visual environment. The experimental scenes included two that provided strong velocity/weak position feedback, one of which had a vertical foreground object (SVWP+) and one without (SVWP-), and one scene providing weak velocity/strong position (WVSP) feedback. Subjects' success rates in the experimental environments were normalized by the success rate in the normal environment in order to allow comparisons between subjects using a mixed model repeated measures analysis of variance. The normalized success rate was significantly greater in SVWP+ than in WVSP (p = .0001) and SVWP- (p = .013). Visual feedback significantly affected the normalized unipedal balance success rates (p = .001); neither the group effect nor the group X visual environment interaction was significant (p = .9362 and p = .5634, respectively). Normalized success rates did not differ significantly between the young men and older women in any visual environment. Near the limit of the young men's or older women's balance capability, the reliability of transfer to unipedal balance was adversely affected by visual environments offering attenuated visual velocity feedback cues and those devoid of vertical foreground objects.

  16. Patients with migraine correctly estimate the visual verticality.

    PubMed

    Crevits, Luc; Vanacker, Leen; Verraes, Anouk

    2012-05-01

    We wanted to study otolith function by measuring the static subjective visual vertical (SVV) in migraine patients and in controls with and without kinetosis (motion sickness). Forty-seven patients with moderately severe migraine and 96 healthy controls were enrolled. Using a questionnaire, persons with kinetosis were identified. The SVV test was performed in a totally dark room. Subjects wore a stiffneck to stabilize the head in an erect position. They were required to adjust an infrared line to the gravitational vertical with a hand-held infrared remote controlled potentiometer. The deviation of SVV in the group of migraine patients was not significantly different from that of controls, regardless of whether an aura was associated. SVV was not significantly influenced by the presence of dizziness/non specific vertigo or kinetosis. Patients with moderately severe migraine under prophylactic medication correctly estimate the visual verticality in the headache-free period. It is suggested that a deviation of SVV in a headache-free migraine patient may not be attributed to his migraine disorder as such regardless whether kinetosis is associated. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. High variability of the subjective visual vertical test of vertical perception, in some people with neck pain - Should this be a standard measure of cervical proprioception?

    PubMed

    Treleaven, Julia; Takasaki, Hiroshi

    2015-02-01

    Subjective visual vertical (SVV) assesses visual dependence for spacial orientation, via vertical perception testing. Using the computerized rod-and-frame test (CRFT), SVV is thought to be an important measure of cervical proprioception and might be greater in those with whiplash associated disorder (WAD), but to date research findings are inconsistent. The aim of this study was to investigate the most sensitive SVV error measurement to detect group differences between no neck pain control, idiopathic neck pain (INP) and WAD subjects. Cross sectional study. Neck Disability Index (NDI), Dizziness Handicap Inventory short form (DHIsf) and the average constant error (CE), absolute error (AE), root mean square error (RMSE), and variable error (VE) of the SVV were obtained from 142 subjects (48 asymptomatic, 36 INP, 42 WAD). The INP group had significantly (p < 0.03) greater VE and RMSE when compared to both the control and WAD groups. There were no differences seen between the WAD and controls. The results demonstrated that people with INP (not WAD), had an altered strategy for maintaining the perception of vertical by increasing variability of performance. This may be due to the complexity of the task. Further, the SVV performance was not related to reported pain or dizziness handicap. These findings are inconsistent with other measures of cervical proprioception in neck pain and more research is required before the SVV can be considered an important measure and utilized clinically. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  18. Eye Movement Patterns of the Elderly during Stair Descent:Effect of Illumination

    NASA Astrophysics Data System (ADS)

    Kasahara, Satoko; Okabe, Sonoko; Nakazato, Naoko; Ohno, Yuko

    The relationship between the eye movement pattern during stair descent and illumination was studied in 4 elderly people in comparison with that in 5 young people. The illumination condition was light (85.0±30.9 lx) or dark (0.7±0.3 lx), and data of eye movements were obtained using an eye mark recorder. A flight of 15 steps was used for the experiment, and data on 3 steps in the middle, on which the descent movements were stabilized, were analyzed. The elderly subjects pointed their eyes mostly directly in front in the facial direction regardless of the illumination condition, but the young subjects tended to look down under the light condition. The young subjects are considered to have confirmed the safety of the front by peripheral vision, checked the stepping surface by central vision, and still maintained the upright position without leaning forward during stair descent. The elderly subjects, in contrast, always looked at the visual target by central vision even under the light condition and leaned forward. The range of eye movements was larger vertically than horizontally in both groups, and a characteristic eye movement pattern of repeating a vertical shuttle movement synchronous with descent of each step was observed. Under the dark condition, the young subjects widened the range of vertical eye movements and reduced duration of fixation. The elderly subjects showed no change in the range of eye movements but increased duration of fixation during stair descent. These differences in the eye movements are considered to be compensatory reactions to narrowing of the vertical visual field, reduced dark adaptation, and reduced dynamic visual acuity due to aging. These characteristics of eye movements of the elderly lead to an anteriorly leaned posture and lack of attention to the front during stair descent.

  19. Subjective Vertical Conflict Theory and Space Motion Sickness.

    PubMed

    Chen, Wei; Chao, Jian-Gang; Wang, Jin-Kun; Chen, Xue-Wen; Tan, Cheng

    2016-02-01

    Space motion sickness (SMS) remains a troublesome problem during spaceflight. The subjective vertical (SV) conflict theory postulates that all motion sickness provoking situations are characterized by a condition in which the SV sensed from gravity and visual and idiotropic cues differs from the expected vertical. This theory has been successfully used to predict motion sickness in different vehicles on Earth. We have summarized the most outstanding and recent studies on the illusions and characteristics associated with spatial disorientation and SMS during weightlessness, such as cognitive map and mental rotation, the visual reorientation and inversion illusions, and orientation preferences between visual scenes and the internal z-axis of the body. The relationships between the SV and the incidence of and susceptibility to SMS as well as spatial disorientation were addressed. A consistent framework was presented to understand and explain SMS characteristics in more detail on the basis of the SV conflict theory, which is expected to be more advantageous in SMS prediction, prevention, and training.

  20. Subjective visual vertical assessment with mobile virtual reality system.

    PubMed

    Ulozienė, Ingrida; Totilienė, Milda; Paulauskas, Andrius; Blažauskas, Tomas; Marozas, Vaidotas; Kaski, Diego; Ulozas, Virgilijus

    2017-01-01

    The subjective visual vertical (SVV) is a measure of a subject's perceived verticality, and a sensitive test of vestibular dysfunction. Despite this, and consequent upon technical and logistical limitations, SVV has not entered mainstream clinical practice. The aim of the study was to develop a mobile virtual reality based system for SVV test, evaluate the suitability of different controllers and assess the system's usability in practical settings. In this study, we describe a novel virtual reality based system that has been developed to test SVV using integrated software and hardware, and report normative values across healthy population. Participants wore a mobile virtual reality headset in order to observe a 3D stimulus presented across separate conditions - static, dynamic and an immersive real-world ("boat in the sea") SVV tests. The virtual reality environment was controlled by the tester using a Bluetooth connected controllers. Participants controlled the movement of a vertical arrow using either a gesture control armband or a general-purpose gamepad, to indicate perceived verticality. We wanted to compare 2 different methods for object control in the system, determine normal values and compare them with literature data, to evaluate the developed system with the help of the system usability scale questionnaire and evaluate possible virtually induced dizziness with the help of subjective visual analog scale. There were no statistically significant differences in SVV values during static, dynamic and virtual reality stimulus conditions, obtained using the two different controllers and the results are compared to those previously reported in the literature using alternative methodologies. The SUS scores for the system were high, with a median of 82.5 for the Myo controller and of 95.0 for the Gamepad controller, representing a statistically significant difference between the two controllers (P<0.01). The median of virtual reality-induced dizziness for both devices was 0.7. The mobile virtual reality based system for implementation of subjective visual vertical test, is accurate and applicable in the clinical environment. The gamepad-based virtual object control method was preferred by the users. The tests were well tolerated with low dizziness scores in the majority of patients. Copyright © 2018 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.

  1. The head-centered meridian effect: auditory attention orienting in conditions of impaired visuo-spatial information.

    PubMed

    Olivetti Belardinelli, Marta; Santangelo, Valerio

    2005-07-08

    This paper examines the characteristics of spatial attention orienting in situations of visual impairment. Two groups of subjects, respectively schizophrenic and blind, with different degrees of visual spatial information impairment, were tested. In Experiment 1, the schizophrenic subjects were instructed to detect an auditory target, which was preceded by a visual cue. The cue could appear in the same location as the target, separated from it respectively by the vertical visual meridian (VM), the vertical head-centered meridian (HCM) or another meridian. Similarly to normal subjects tested with the same paradigm (Ferlazzo, Couyoumdjian, Padovani, and Olivetti Belardinelli, 2002), schizophrenic subjects showed slower reactions times (RTs) when cued, and when the target locations were on the opposite sides of the HCM. This HCM effect strengthens the assumption that different auditory and visual spatial maps underlie the representation of attention orienting mechanisms. In Experiment 2, blind subjects were asked to detect an auditory target, which had been preceded by an auditory cue, while staring at an imaginary point. The point was located either to the left or to the right, in order to control for ocular movements and maintain the dissociation between the HCM and the VM. Differences between crossing and no-crossing conditions of HCM were not found. Therefore it is possible to consider the HCM effect as a consequence of the interaction between visual and auditory modalities. Related theoretical issues are also discussed.

  2. Stimulation from Cochlear Implant Electrodes Assists with Recovery from Asymmetric Perceptual Tilt: Evidence from the Subjective Visual Vertical Test

    PubMed Central

    Gnanasegaram, Joshua J.; Parkes, William J.; Cushing, Sharon L.; McKnight, Carmen L.; Papsin, Blake C.; Gordon, Karen A.

    2016-01-01

    Vestibular end organ impairment is highly prevalent in children who have sensorineural hearing loss (SNHL) rehabilitated with cochlear implants (CIs). As a result, spatial perception is likely to be impacted in this population. Of particular interest is the perception of visual vertical because it reflects a perceptual tilt in the roll axis and is sensitive to an imbalance in otolith function. The objectives of the present study were thus to identify abnormalities in perception of the vertical plane in children with SNHL and determine whether such abnormalities could be resolved with stimulation from the CI. Participants included 53 children (15.2 ± 4.0 years of age) with SNHL and vestibular loss, confirmed with vestibular evoked myogenic potential (VEMP) testing. Testing protocol was validated in a sample of nine young adults with normal hearing (28.8 ± 7.7 years). Perception of visual vertical was assessed using the static Subjective Visual Vertical (SVV) test performed with and without stimulation in the participants with cochleovestibular loss. Trains of electrical pulses were delivered by an electrode in the left and/or right ear. Asymmetric spatial orientation deficits were found in nearly half of the participants with CIs (24/53 [45%]). The abnormal perception in this cohort was exacerbated by visual tilts in the direction of their deficit. Electric pulse trains delivered using the CI shifted this abnormal perception towards center (i.e., normal; p = 0.007). Importantly, this benefit was realized regardless of which ear was stimulated. These results suggest a role for CI stimulation beyond the auditory system, in particular, for improving vestibular/balance function. PMID:27679562

  3. Virtual-reality-Based 3D navigation training for emergency egress from spacecraft.

    PubMed

    Aoki, Hirofumi; Oman, Charles M; Natapoff, Alan

    2007-08-01

    Astronauts have reported spatial disorientation and navigation problems inside spacecraft whose interior visual vertical direction varies from module to module. If they had relevant preflight practice they might orient better. This experiment examined the influence of relative body orientation and individual spatial skills during VR training on a simulated emergency egress task. During training, 36 subjects were each led on 12 tours through a space station by a virtual tour guide. Subjects wore a head-mounted display and controlled their motion with a game-pad. Each tour traversed multiple modules and involved up to three changes in visual vertical direction. Each subject was assigned to one of three groups that maintained different postures: visually upright relative to the "local" module; constant orientation relative to the "station" irrespective of local visual vertical; and "mixed" (local, followed by station orientation). Groups were balanced on the basis of mental rotation and perspective-taking test scores. Subjects then performed 24 emergency egress testing trials without the tour guide. Smoke reduced visibility during the last 12 trials. Egress time, sense of direction (by pointing to origin and destination) and configuration knowledge were measured. Both individual 3D spatial abilities and orientation during training influence emergency egress performance, pointing, and configuration knowledge. Local training facilitates landmark and route learning, but station training enhances sense of direction relative to station, and, therefore, performance in low visibility. We recommend a sequence of local, followed by station, and then randomized orientation training, preferably customized to a trainee's 3D spatial ability.

  4. EventSlider User Manual

    DTIC Science & Technology

    2016-09-01

    is a Windows Presentation Foundation (WPF) control developed using the .NET framework in Microsoft Visual Studio. As a WPF control, it can be used in...any WPF application as a graphical visual element. The purpose of the control is to visually display time-related events as vertical lines on a...available on the control. 15. SUBJECT TERMS Windows Presentation Foundation, WPF, control, C#, .NET framework, Microsoft Visual Studio 16. SECURITY

  5. Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration

    NASA Technical Reports Server (NTRS)

    Hamerman, J. A.

    1979-01-01

    This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.

  6. Perception of the dynamic visual vertical during sinusoidal linear motion.

    PubMed

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion. Copyright © 2017 the American Physiological Society.

  7. A Bayesian Account of Visual–Vestibular Interactions in the Rod-and-Frame Task

    PubMed Central

    de Brouwer, Anouk J.; Medendorp, W. Pieter

    2016-01-01

    Abstract Panoramic visual cues, as generated by the objects in the environment, provide the brain with important information about gravity direction. To derive an optimal, i.e., Bayesian, estimate of gravity direction, the brain must combine panoramic information with gravity information detected by the vestibular system. Here, we examined the individual sensory contributions to this estimate psychometrically. We asked human subjects to judge the orientation (clockwise or counterclockwise relative to gravity) of a briefly flashed luminous rod, presented within an oriented square frame (rod-in-frame). Vestibular contributions were manipulated by tilting the subject’s head, whereas visual contributions were manipulated by changing the viewing distance of the rod and frame. Results show a cyclical modulation of the frame-induced bias in perceived verticality across a 90° range of frame orientations. The magnitude of this bias decreased significantly with larger viewing distance, as if visual reliability was reduced. Biases increased significantly when the head was tilted, as if vestibular reliability was reduced. A Bayesian optimal integration model, with distinct vertical and horizontal panoramic weights, a gain factor to allow for visual reliability changes, and ocular counterroll in response to head tilt, provided a good fit to the data. We conclude that subjects flexibly weigh visual panoramic and vestibular information based on their orientation-dependent reliability, resulting in the observed verticality biases and the associated response variabilities. PMID:27844055

  8. Auditory enhancement of visual perception at threshold depends on visual abilities.

    PubMed

    Caclin, Anne; Bouchet, Patrick; Djoulah, Farida; Pirat, Elodie; Pernier, Jacques; Giard, Marie-Hélène

    2011-06-17

    Whether or not multisensory interactions can improve detection thresholds, and thus widen the range of perceptible events is a long-standing debate. Here we revisit this question, by testing the influence of auditory stimuli on visual detection threshold, in subjects exhibiting a wide range of visual-only performance. Above the perceptual threshold, crossmodal interactions have indeed been reported to depend on the subject's performance when the modalities are presented in isolation. We thus tested normal-seeing subjects and short-sighted subjects wearing their usual glasses. We used a paradigm limiting potential shortcomings of previous studies: we chose a criterion-free threshold measurement procedure and precluded exogenous cueing effects by systematically presenting a visual cue whenever a visual target (a faint Gabor patch) might occur. Using this carefully controlled procedure, we found that concurrent sounds only improved visual detection thresholds in the sub-group of subjects exhibiting the poorest performance in the visual-only conditions. In these subjects, for oblique orientations of the visual stimuli (but not for vertical or horizontal targets), the auditory improvement was still present when visual detection was already helped with flanking visual stimuli generating a collinear facilitation effect. These findings highlight that crossmodal interactions are most efficient to improve perceptual performance when an isolated modality is deficient. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion.

    PubMed

    Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-08-01

    The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Effect of a moving optical environment on the subjective median.

    DOT National Transportation Integrated Search

    1971-04-01

    The placement of a point in the median vertical plane under the influence of a moving optical environment was tested in 12 subjects. It was found that the median plane was displaced in the same direction as the movement of the visual environment when...

  11. Is adaptation to perceived interocular differences in height explained by vertical fusional eye movements?

    PubMed

    Maier, Felix M; Schaeffel, Frank

    2013-07-24

    To find out whether adaptation to a vertical prism involves more than fusional vertical eye movements. Adaptation to a vertical base-up 3 prism diopter prism was measured in a custom-programmed Maddox test in nine visually normal emmetropic subjects (mean age 27.0 ± 2.8 years). Vertical eye movements were binocularly measured in six of the subjects with a custom-programmed binocular video eye tracker. In the Maddox test, some subjects adjusted the perceived height as expected from the power of the prism while others appeared to ignore the prism. After 15 minutes of adaptation, the interocular difference in perceived height was reduced by on average 51% (from 0.86°-0.44°). The larger the initially perceived difference in height in a subject, the larger the amplitude of adaptation was. Eye tracking showed that the prism generated divergent vertical eye movements of 1.2° on average, which was less than expected from its power. Differences in eye elevation were maintained as long as the prism was in place. Small angles of lateral head tilt generated large interocular differences in eye elevation, much larger than the effects introduced by the prism. Vertical differences in retinal image height were compensated by vertical fusional eye movements but some subjects responded poorly to a vertical prism in both experiments; fusional eye movements were generally too small to realign both foveae with the fixation target; and the prism adaptation in the Maddox test was fully explained by the changes in vertical eye position, suggesting that no further adaptational mechanism may be involved.

  12. Perceived object stability depends on multisensory estimates of gravity.

    PubMed

    Barnett-Cowan, Michael; Fleming, Roland W; Singh, Manish; Bülthoff, Heinrich H

    2011-04-27

    How does the brain estimate object stability? Objects fall over when the gravity-projected centre-of-mass lies outside the point or area of support. To estimate an object's stability visually, the brain must integrate information across the shape and compare its orientation to gravity. When observers lie on their sides, gravity is perceived as tilted toward body orientation, consistent with a representation of gravity derived from multisensory information. We exploited this to test whether vestibular and kinesthetic information affect this visual task or whether the brain estimates object stability solely from visual information. In three body orientations, participants viewed images of objects close to a table edge. We measured the critical angle at which each object appeared equally likely to fall over or right itself. Perceived gravity was measured using the subjective visual vertical. The results show that the perceived critical angle was significantly biased in the same direction as the subjective visual vertical (i.e., towards the multisensory estimate of gravity). Our results rule out a general explanation that the brain depends solely on visual heuristics and assumptions about object stability. Instead, they suggest that multisensory estimates of gravity govern the perceived stability of objects, resulting in objects appearing more stable than they are when the head is tilted in the same direction in which they fall.

  13. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion

    NASA Technical Reports Server (NTRS)

    Zivotofsky, A. Z.; Rottach, K. G.; Averbuch-Heller, L.; Kori, A. A.; Thomas, C. W.; Dell'Osso, L. F.; Leigh, R. J.

    1996-01-01

    1. Measurements were made in four normal human subjects of the accuracy of saccades to remembered locations of targets that were flashed on a 20 x 30 deg random dot display that was either stationary or moving horizontally and sinusoidally at +/-9 deg at 0.3 Hz. During the interval between the target flash and the memory-guided saccade, the "memory period" (1.4 s), subjects either fixated a stationary spot or pursued a spot moving vertically sinusoidally at +/-9 deg at 0.3 Hz. 2. When saccades were made toward the location of targets previously flashed on a stationary background as subjects fixated the stationary spot, median saccadic error was 0.93 deg horizontally and 1.1 deg vertically. These errors were greater than for saccades to visible targets, which had median values of 0.59 deg horizontally and 0.60 deg vertically. 3. When targets were flashed as subjects smoothly pursued a spot that moved vertically across the stationary background, median saccadic error was 1.1 deg horizontally and 1.2 deg vertically, thus being of similar accuracy to when targets were flashed during fixation. In addition, the vertical component of the memory-guided saccade was much more closely correlated with the "spatial error" than with the "retinal error"; this indicated that, when programming the saccade, the brain had taken into account eye movements that occurred during the memory period. 4. When saccades were made to targets flashed during attempted fixation of a stationary spot on a horizontally moving background, a condition that produces a weak Duncker-type illusion of horizontal movement of the primary target, median saccadic error increased horizontally to 3.2 deg but was 1.1 deg vertically. 5. When targets were flashed as subjects smoothly pursued a spot that moved vertically on the horizontally moving background, a condition that induces a strong illusion of diagonal target motion, median saccadic error was 4.0 deg horizontally and 1.5 deg vertically; thus the horizontal error was greater than under any other experimental condition. 6. In most trials, the initial saccade to the remembered target was followed by additional saccades while the subject was still in darkness. These secondary saccades, which were executed in the absence of visual feedback, brought the eye closer to the target location. During paradigms involving horizontal background movement, these corrections were more prominent horizontally than vertically. 7. Further measurements were made in two subjects to determine whether inaccuracy of memory-guided saccades, in the horizontal plane, was due to mislocalization at the time that the target flashed, misrepresentation of the trajectory of the pursuit eye movement during the memory period, or both. 8. The magnitude of the saccadic error, both with and without corrections made in darkness, was mislocalized by approximately 30% of the displacement of the background at the time that the target flashed. The magnitude of the saccadic error also was influenced by net movement of the background during the memory period, corresponding to approximately 25% of net background movement for the initial saccade and approximately 13% for the final eye position achieved in darkness. 9. We formulated simple linear models to test specific hypotheses about which combinations of signals best describe the observed saccadic amplitudes. We tested the possibilities that the brain made an accurate memory of target location and a reliable representation of the eye movement during the memory period, or that one or both of these was corrupted by the illusory visual stimulus. Our data were best accounted for by a model in which both the working memory of target location and the internal representation of the horizontal eye movements were corrupted by the illusory visual stimulus. We conclude that extraretinal signals played only a minor role, in comparison with visual estimates of the direction of gaze, in planning eye movements to remembered targ.

  14. The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates.

    PubMed

    Fraser, Lindsey E; Makooie, Bobbak; Harris, Laurence R

    2015-01-01

    The subjective visual vertical (SVV) and the subjective haptic vertical (SHV) both claim to probe the underlying perception of gravity. However, when the body is roll tilted these two measures evoke different patterns of errors with SVV generally becoming biased towards the body (A-effect, named for its discoverer, Hermann Rudolph Aubert) and SHV remaining accurate or becoming biased away from the body (E-effect, short for Entgegengesetzt-effect, meaning "opposite", i.e., opposite to the A-effect). We compared the two methods in a series of five experiments and provide evidence that the two measures access two different but related estimates of gravitational vertical. Experiment 1 compared SVV and SHV across three levels of whole-body tilt and found that SVV showed an A-effect at larger tilts while SHV was accurate. Experiment 2 found that tilting either the head or the trunk independently produced an A-effect in SVV while SHV remained accurate when the head was tilted on an upright body but showed an A-effect when the body was tilted below an upright head. Experiment 3 repeated these head/body configurations in the presence of vestibular noise induced by using disruptive galvanic vestibular stimulation (dGVS). dGVS abolished both SVV and SHV A-effects while evoking a massive E-effect in the SHV head tilt condition. Experiments 4 and 5 show that SVV and SHV do not combine in an optimally statistical fashion, but when vibration is applied to the dorsal neck muscles, integration becomes optimal. Overall our results suggest that SVV and SHV access distinct underlying gravity percepts based primarily on head and body position information respectively, consistent with a model proposed by Clemens and colleagues.

  15. The Subjective Visual Vertical and the Subjective Haptic Vertical Access Different Gravity Estimates

    PubMed Central

    Fraser, Lindsey E.; Makooie, Bobbak; Harris, Laurence R.

    2015-01-01

    The subjective visual vertical (SVV) and the subjective haptic vertical (SHV) both claim to probe the underlying perception of gravity. However, when the body is roll tilted these two measures evoke different patterns of errors with SVV generally becoming biased towards the body (A-effect, named for its discoverer, Hermann Rudolph Aubert) and SHV remaining accurate or becoming biased away from the body (E-effect, short for Entgegengesetzt-effect, meaning “opposite”, i.e., opposite to the A-effect). We compared the two methods in a series of five experiments and provide evidence that the two measures access two different but related estimates of gravitational vertical. Experiment 1 compared SVV and SHV across three levels of whole-body tilt and found that SVV showed an A-effect at larger tilts while SHV was accurate. Experiment 2 found that tilting either the head or the trunk independently produced an A-effect in SVV while SHV remained accurate when the head was tilted on an upright body but showed an A-effect when the body was tilted below an upright head. Experiment 3 repeated these head/body configurations in the presence of vestibular noise induced by using disruptive galvanic vestibular stimulation (dGVS). dGVS abolished both SVV and SHV A-effects while evoking a massive E-effect in the SHV head tilt condition. Experiments 4 and 5 show that SVV and SHV do not combine in an optimally statistical fashion, but when vibration is applied to the dorsal neck muscles, integration becomes optimal. Overall our results suggest that SVV and SHV access distinct underlying gravity percepts based primarily on head and body position information respectively, consistent with a model proposed by Clemens and colleagues. PMID:26716835

  16. A pathway in the brainstem for roll-tilt of the subjective visual vertical: evidence from a lesion-behavior mapping study.

    PubMed

    Baier, Bernhard; Thömke, Frank; Wilting, Janine; Heinze, Caroline; Geber, Christian; Dieterich, Marianne

    2012-10-24

    The perceived subjective visual vertical (SVV) is an important sign of a vestibular otolith tone imbalance in the roll plane. Previous studies suggested that unilateral pontomedullary brainstem lesions cause ipsiversive roll-tilt of SVV, whereas pontomesencephalic lesions cause contraversive roll-tilts of SVV. However, previous data were of limited quality and lacked a statistical approach. We therefore tested roll-tilt of the SVV in 79 human patients with acute unilateral brainstem lesions due to stroke by applying modern statistical lesion-behavior mapping analysis. Roll-tilt of the SVV was verified to be a brainstem sign, and for the first time it was confirmed statistically that lesions of the medial longitudinal fasciculus (MLF) and the medial vestibular nucleus are associated with ipsiversive tilt of the SVV, whereas contraversive tilts are associated with lesions affecting the rostral interstitial nucleus of the MLF, the superior cerebellar peduncle, the oculomotor nucleus, and the interstitial nucleus of Cajal. Thus, these structures constitute the anatomical pathway in the brainstem for verticality perception. Present data indicate that graviceptive otolith signals present a predominant role in the multisensory system of verticality perception.

  17. "Far" and "Near" Visual Acuity While Walking and the Collective Contributions of Non-Ocular Mechanisms to Gaze Stabilization

    NASA Technical Reports Server (NTRS)

    Peters, Brian T.; vanEmmerik, Richard E. A.; Bloomberg, Jacob J.

    2006-01-01

    Gaze stabilization was quantified in subjects (n=11) as they walked on a motorized treadmill (1.8 m/s) and viewed visual targets at two viewing distances. A "far" target was positioned at 4 m (FAR) in front of the subject and the "near" target was placed at a distance of 0.5 m (NEAR). A direct measure of visual acuity was used to assess the overall effectiveness of the gaze stabilization system. The contributions of nonocular mechanisms to the gaze goal were also quantified using a measure of the distance between the subject and point in space where fixation of the visual target would require the least eye movement amplitude (i.e. the head fixation distance (HFD)). Kinematic variables mirrored those of previous investigations with the vertical trunk translation and head pitch signals, and the lateral translation and head yaw signals maintaining what appear as antiphase relationships. However, an investigation of the temporal relationships between the maxima and minima of the vertical translation and head pitch signals show that while the maximum in vertical translation occurs at the point of the minimum head pitch signal, the inverse is not true. The maximum in the head pitch signal lags the vertical translation minimum by an average of greater than 12 percent of the step cycle time. Three HFD measures, one each for data in the sagittal and transverse planes, and one that combined the movements from both planes, all revealed changes between the FAR and NEAR target viewing conditions. This reorganization of the nonocular degrees of freedom while walking was consistent with a strategy to reduce the magnitude of the eye movements required when viewing the NEAR target. Despite this reorganization, acuity measures show that image stabilization is not occurring while walking and viewing the NEAR target. Group means indicate that visual acuity is not affected while walking in the FAR condition, but a decrement of 0.15 logMAR (i.e. 1.5 eye chart lines) exists between the standing and walking acuity measures when viewing the NEAR target.

  18. Neurocognitive responses to a single session of static squats with whole body vibration.

    PubMed

    Amonette, William E; Boyle, Mandy; Psarakis, Maria B; Barker, Jennifer; Dupler, Terry L; Ott, Summer D

    2015-01-01

    The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition.

  19. Processing of proprioceptive and vestibular body signals and self-transcendence in Ashtanga yoga practitioners.

    PubMed

    Fiori, Francesca; David, Nicole; Aglioti, Salvatore M

    2014-01-01

    In the rod and frame test (RFT), participants are asked to set a tilted visual linear marker (i.e., a rod), embedded in a square, to the subjective vertical, irrespective of the surrounding frame. People not influenced by the frame tilt are defined as field-independent, while people biased in their rod verticality perception are field-dependent. Performing RFT requires the integration of proprioceptive, vestibular and visual signals with the latter accounting for field-dependency. Studies indicate that motor experts in body-related, balance-improving disciplines tend to be field-independent, i.e., better at verticality perception, suggesting that proprioceptive and vestibular expertise acquired by such exercise may weaken the influence of irrelevant visual signals. What remains unknown is whether the effect of body-related expertise in weighting perceptual information might also be mediated by personality traits, in particular those indexing self-focusing abilities. To explore this issue, we tested field-dependency in a class of body experts, namely yoga practitioners and in non-expert participants. Moreover we explored any link between performance on RFT and self-transcendence (ST), a complex personality construct, which refers to tendency to experience spiritual feelings and ideas. As expected, yoga practitioners (i) were more accurate in assessing the rod's verticality on the RFT, and (ii) expressed significantly higher ST. Interestingly, the performance in these two tests was negatively correlated. More specifically, when asked to provide verticality judgments, highly self-transcendent yoga practitioners were significantly less influenced by a misleading visual context. Our results suggest that being highly self-transcendent may enable yoga practitioners to optimize verticality judgment tasks by relying more on internal (vestibular and proprioceptive) signals coming from their own body, rather than on exteroceptive, visual cues.

  20. Processing of proprioceptive and vestibular body signals and self-transcendence in Ashtanga yoga practitioners

    PubMed Central

    Fiori, Francesca; David, Nicole; Aglioti, Salvatore M.

    2014-01-01

    In the rod and frame test (RFT), participants are asked to set a tilted visual linear marker (i.e., a rod), embedded in a square, to the subjective vertical, irrespective of the surrounding frame. People not influenced by the frame tilt are defined as field-independent, while people biased in their rod verticality perception are field-dependent. Performing RFT requires the integration of proprioceptive, vestibular and visual signals with the latter accounting for field-dependency. Studies indicate that motor experts in body-related, balance-improving disciplines tend to be field-independent, i.e., better at verticality perception, suggesting that proprioceptive and vestibular expertise acquired by such exercise may weaken the influence of irrelevant visual signals. What remains unknown is whether the effect of body-related expertise in weighting perceptual information might also be mediated by personality traits, in particular those indexing self-focusing abilities. To explore this issue, we tested field-dependency in a class of body experts, namely yoga practitioners and in non-expert participants. Moreover we explored any link between performance on RFT and self-transcendence (ST), a complex personality construct, which refers to tendency to experience spiritual feelings and ideas. As expected, yoga practitioners (i) were more accurate in assessing the rod's verticality on the RFT, and (ii) expressed significantly higher ST. Interestingly, the performance in these two tests was negatively correlated. More specifically, when asked to provide verticality judgments, highly self-transcendent yoga practitioners were significantly less influenced by a misleading visual context. Our results suggest that being highly self-transcendent may enable yoga practitioners to optimize verticality judgment tasks by relying more on internal (vestibular and proprioceptive) signals coming from their own body, rather than on exteroceptive, visual cues. PMID:25278866

  1. Effects of various runway lighting parameters upon the relation between runway visual range and visual range of centerline and edge lights in fog

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.

  2. Differential effect of visual motion adaption upon visual cortical excitability.

    PubMed

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer

    2017-03-01

    The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.

  3. Flipping a Switch "Down" When Not Aligned with the Gravitational Vertical.

    PubMed

    Bock, Otmar; Bury, Nils

    To flip a switch "down," our motor system can normally rely on concordant visual, gravitational, and egocentric cues about the vertical. However, divers must sometimes perform this task while visual cues are limited and gravitational cues are misaligned with egocentric cues. Astronauts must also flip switches "down" in absence of gravitational cues. Our study evaluates this ability using a laboratory simulation. The subjects were 24 healthy volunteers who were blindfolded, tilted into different angles of roll, and asked to silence an alarm by flipping a switch "down." The switch was constructed such that it could be flipped in any direction in the subjects' frontal plane. Two subjects deflected the switch in accordance with the direction of gravity, irrespective of their body orientation. Twenty subjects deflected it in accordance with their body orientation, irrespective of the direction of gravity. The remaining two persons could not be classified unequivocally. Notably, some egocentric responders deflected the rod consistently toward their feet, but others deflected it consistently toward other parts of their body. Since our findings disagree with perceptual studies where gravitational rather than egocentric cues predominated in the absence of vision, we posit that perception and action may access distinct internal representations of the vertical. On the practical side, our findings indicate that designers of spaceflight and underwater equipment should not rely on divers' intuitive knowledge on how to flip a switch "down." Bock O, Bury N. Flipping a switch "down" when not aligned with the gravitational vertical. Aerosp Med Hum Perform. 2016; 87(10):838-843.

  4. Comparison of Predictable Smooth Ocular and Combined Eye-Head Tracking Behaviour in Patients with Lesions Affecting the Brainstem and Cerebellum

    NASA Technical Reports Server (NTRS)

    Grant, Michael P.; Leigh, R. John; Seidman, Scott H.; Riley, David E.; Hanna, Joseph P.

    1992-01-01

    We compared the ability of eight normal subjects and 15 patients with brainstem or cerebellar disease to follow a moving visual stimulus smoothly with either the eyes alone or with combined eye-head tracking. The visual stimulus was either a laser spot (horizontal and vertical planes) or a large rotating disc (torsional plane), which moved at one sinusoidal frequency for each subject. The visually enhanced Vestibulo-Ocular Reflex (VOR) was also measured in each plane. In the horizontal and vertical planes, we found that if tracking gain (gaze velocity/target velocity) for smooth pursuit was close to 1, the gain of combined eye-hand tracking was similar. If the tracking gain during smooth pursuit was less than about 0.7, combined eye-head tracking was usually superior. Most patients, irrespective of diagnosis, showed combined eye-head tracking that was superior to smooth pursuit; only two patients showed the converse. In the torsional plane, in which optokinetic responses were weak, combined eye-head tracking was much superior, and this was the case in both subjects and patients. We found that a linear model, in which an internal ocular tracking signal cancelled the VOR, could account for our findings in most normal subjects in the horizontal and vertical planes, but not in the torsional plane. The model failed to account for tracking behaviour in most patients in any plane, and suggested that the brain may use additional mechanisms to reduce the internal gain of the VOR during combined eye-head tracking. Our results confirm that certain patients who show impairment of smooth-pursuit eye movements preserve their ability to smoothly track a moving target with combined eye-head tracking.

  5. Differential approach to strategies of segmental stabilisation in postural control.

    PubMed

    Isableu, Brice; Ohlmann, Théophile; Crémieux, Jacques; Amblard, Bernard

    2003-05-01

    The present paper attempts to clarify the between-subjects variability exhibited in both segmental stabilisation strategies and their subordinated or associated sensory contribution. Previous data have emphasised close relationships between the interindividual variability in both the visual control of posture and the spatial visual perception. In this study, we focused on the possible relationships that might link perceptual visual field dependence-independence and the visual contribution to segmental stabilisation strategies. Visual field dependent (FD) and field independent (FI) subjects were selected on the basis of their extreme score in a static rod and frame test where an estimation of the subjective vertical was required. In the postural test, the subjects stood in the sharpened Romberg position in darkness or under normal or stroboscopic illumination, in front of either a vertical or a tilted frame. Strategies of segmental stabilisation of the head, shoulders and hip in the roll plane were analysed by means of their anchoring index (AI). Our hypothesis was that FD subjects might use mainly visual cues for calibrating not only their spatial perception but also their strategies of segmental stabilisation. In the case of visual cue disturbances, a greater visual dependency to the strategies of segmental stabilisation in FD subjects should be validated by observing more systematic "en bloc" functioning (i.e. negative AI) between two adjacent segments. The main results are the following: 1. Strategies of segmental stabilisation differed between both groups and differences were amplified with the deprivation of either total vision and/or static visual cues. 2. In the absence of total vision and/or static visual cues, FD subjects have shown an increased efficiency of the hip stabilisation in space strategy and an "en bloc" operation of the shoulder-hip unit (whole trunk). The last "en bloc" operation was extended to the whole head-trunk unit in darkness, associated with a hip stabilisation in space. 3. The FI subjects have adopted neither a strategy of segmental stabilisation in space nor on the underlying segment, whatever the body segment considered and the visual condition. Thus, in this group, head, shoulder and hip moved independently from each other during stance control, roughly without taking into account the visual condition. The results, emphasising a differential weighting of sensory input involved in both perceptual and postural control, are discussed in terms of the differential choice and/or ability to select the adequate frame of reference common to both cognitive and motor spatial activities. We assumed that a motor-somesthetics "neglect" or a lack of mastering of these inputs/outputs rather than a mere visual dependence in FD subjects would generate these interindividual differences in both spatial perception and postural balance. This proprioceptive "neglect" is assumed to lead FD subjects to sensory reweighting, whereas proprioceptive dominance would lead FI subjects to a greater ability in selecting the adequate frame of reference in the case of intersensory disturbances. Finally, this study also provides evidence for a new interpretation of the visual field dependence-independence dimension in both spatial perception and postural control.

  6. The Kerala Decentration Meter. A new method and devise for fitting the optical of spectacle lenses in the visual axis.

    PubMed

    Joseph, T K; Kartha, C P

    1982-01-01

    Centring of spectacle lenses is much neglected field of ophthalmology. The prismatic effect caused by wrong centring results in a phoria on the eye muscles which in turn causes persistent eyestrain. The theory of visual axis, optical axis and angle alpha is discussed. Using new methods the visual axis and optical axis of 35 subjects were measured. The results were computed for facial asymmetry, parallax error, angle alpha and also decentration for near vision. The results show that decentration is required on account of each of these factors. Considerable correction is needed in the vertical direction, a fact much neglected nowadays; and vertical decentration results in vertical phoria which is more symptomatic than horizontal phorias. Angle Alpha was computed for each of these patients. A new devise called 'The Kerala Decentration Meter' using the pinhole method for measuring the degree of decentration from the datum centre of the frame, and capable of correcting all the factors described above, is shown with diagrams.

  7. Properties of visual evoked potentials to onset of movement on a television screen.

    PubMed

    Kubová, Z; Kuba, M; Hubacek, J; Vít, F

    1990-08-01

    In 80 subjects the dependence of movement-onset visual evoked potentials on some measures of stimulation was examined, and these responses were compared with pattern-reversal visual evoked potentials to verify the effectiveness of pattern movement application for visual evoked potential acquisition. Horizontally moving vertical gratings were generated on a television screen. The typical movement-onset reactions were characterized by one marked negative peak only, with a peak time between 140 and 200 ms. In all subjects the sufficient stimulus duration for acquisition of movement-onset-related visual evoked potentials was 100 ms; in some cases it was only 20 ms. Higher velocity (5.6 degree/s) produced higher amplitudes of movement-onset visual evoked potentials than did the lower velocity (2.8 degrees/s). In 80% of subjects, the more distinct reactions were found in the leads from lateral occipital areas (in 60% from the right hemisphere), with no correlation to handedness of subjects. Unlike pattern-reversal visual evoked potentials, the movement-onset responses tended to be larger to extramacular stimulation (annular target of 5 degrees-9 degrees) than to macular stimulation (circular target of 5 degrees diameter).

  8. Analysis, simulation and visualization of 1D tapping via reduced dynamical models

    NASA Astrophysics Data System (ADS)

    Blackmore, Denis; Rosato, Anthony; Tricoche, Xavier; Urban, Kevin; Zou, Luo

    2014-04-01

    A low-dimensional center-of-mass dynamical model is devised as a simplified means of approximately predicting some important aspects of the motion of a vertical column comprised of a large number of particles subjected to gravity and periodic vertical tapping. This model is investigated first as a continuous dynamical system using analytical, simulation and visualization techniques. Then, by employing an approach analogous to that used to approximate the dynamics of a bouncing ball on an oscillating flat plate, it is modeled as a discrete dynamical system and analyzed to determine bifurcations and transitions to chaotic motion along with other properties. The predictions of the analysis are then compared-primarily qualitatively-with visualization and simulation results of the reduced continuous model, and ultimately with simulations of the complete system dynamics.

  9. Gravity dependence of subjective visual vertical variability.

    PubMed

    Tarnutzer, A A; Bockisch, C; Straumann, D; Olasagasti, I

    2009-09-01

    The brain integrates sensory input from the otolith organs, the semicircular canals, and the somatosensory and visual systems to determine self-orientation relative to gravity. Only the otoliths directly sense the gravito-inertial force vector and therefore provide the major input for perceiving static head-roll relative to gravity, as measured by the subjective visual vertical (SVV). Intraindividual SVV variability increases with head roll, which suggests that the effectiveness of the otolith signal is roll-angle dependent. We asked whether SVV variability reflects the spatial distribution of the otolithic sensors and the otolith-derived acceleration estimate. Subjects were placed in different roll orientations (0-360 degrees, 15 degrees steps) and asked to align an arrow with perceived vertical. Variability was minimal in upright, increased with head-roll peaking around 120-135 degrees, and decreased to intermediate values at 180 degrees. Otolith-dependent variability was modeled by taking into consideration the nonuniform distribution of the otolith afferents and their nonlinear firing rate. The otolith-derived estimate was combined with an internal bias shifting the estimated gravity-vector toward the body-longitudinal. Assuming an efficient otolith estimator at all roll angles, peak variability of the model matched our data; however, modeled variability in upside-down and upright positions was very similar, which is at odds with our findings. By decreasing the effectiveness of the otolith estimator with increasing roll, simulated variability matched our experimental findings better. We suggest that modulations of SVV precision in the roll plane are related to the properties of the otolith sensors and to central computational mechanisms that are not optimally tuned for roll-angles distant from upright.

  10. A rapid quantification of binocular misalignment without recording eye movements: Vertical and torsional alignment nulling.

    PubMed

    Beaton, Kara H; Shelhamer, Mark J; Roberts, Dale C; Schubert, Michael C

    2017-05-01

    Small, innate asymmetries between the left and right otolith organs can cause ocular misalignment with symptoms that include double vision and motion sickness. Additionally, ocular misalignment affects nearly 5% of the US population. We have developed a portable, non-invasive technology that uses subjective perception of binocular visual signals to estimate relative binocular alignment. The Vertical Alignment Nulling (VAN) and Torsional Alignment Nulling (TAN) tests ask subjects to view one red and one blue line on a tablet computer while looking through color-matched red and blue filters so that each eye sees only one of the lines. Subjects align the red and blue lines, which are initially vertically offset from one another during VAN or rotated relative to one another during TAN, until they perceive a single continuous line. Ocular misalignments are inferred from actual offsets in the final line positions. During testing, all binocular visual cues are eliminated by employing active-matrix organic light-emitting diode (AMOLED) technology and testing in darkness. VAN and TAN can accurately account for visual offsets induced by prisms, and test-retest reliability is excellent, with resolution better than many current standard clinical tests. VAN and TAN tests are similar to the clinical Lancaster red-green test. However, VAN and TAN employ inexpensive, hand-held hardware that can be self-administered with results that are quickly quantifiable. VAN and TAN provide simple, sensitive, and quantitative measures of binocular positioning alignment that may be useful for detecting subtle abnormalities in ocular positioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1988-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  12. Convective flows in enclosures with vertical temperature or concentration gradients

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chai, A. T.; Sun, D. J.

    1989-01-01

    The transport process in the fluid phase during the growth of a crystal has a profound influence on the structure and quality of the solid phase. In vertical growth techniques the fluid phase is often subjected to vertical temperature and concentration gradients. The main objective is to obtain more experimental data on convective flows in enclosures with vertical temperature or concentration gradients. Among actual crystal systems the parameters vary widely. The parametric ranges studied for mass transfer are mainly dictated by the electrochemical system employed to impose concentration gradients. Temperature or concentration difference are maintained between two horizontal end walls. The other walls are kept insulated. Experimental measurements and observations were made of the heat transfer or mass transfer, flow patterns, and the mean and fluctuating temperature distribution. The method used to visualize the flow pattern in the thermal cases is an electrochemical pH-indicator method. Laser shadowgraphs are employed to visualize flow patterns in the solutal cases.

  13. Handwriting performance in the absence of visual control in writer's cramp patients: Initial observations

    PubMed Central

    Chakarov, Vihren; Hummel, Sibylla; Losch, Florian; Schulte-Mönting, Jürgen; Kristeva, Rumyana

    2006-01-01

    Background The present study was aimed at investigating the writing parameters of writer's cramp patients and control subjects during handwriting of a test sentence in the absence of visual control. Methods Eight right-handed patients with writer's cramp and eight healthy volunteers as age-matched control subjects participated in the study. The experimental task consisted in writing a test sentence repeatedly for fifty times on a pressure-sensitive digital board. The subject did not have visual control on his handwriting. The writing performance was stored on a PC and analyzed off-line. Results During handwriting all patients developed a typical dystonic limb posture and reported an increase in muscular tension along the experimental session. The patients were significantly slower than the controls, with lower mean vertical pressure of the pen tip on the paper and they could not reach the endmost letter of the sentence in the given time window. No other handwriting parameter differences were found between the two groups. Conclusion Our findings indicate that during writing in the absence of visual feedback writer's cramp patients are slower and could not reach the endmost letter of the test sentence, but their level of automatization is not impaired and writer's cramp handwriting parameters are similar to those of the controls except for even lower vertical pressure of the pen tip on the paper, which is probably due to a changed strategy in such experimental conditions. PMID:16594993

  14. Underwater disorientation as induced by two helicopter ditching devices.

    PubMed

    Cheung, B; Hofer, K; Brooks, C J; Gibbs, P

    2000-09-01

    Spatial orientation is based on the integration of concordant and redundant information from the visual, vestibular, and somatosensory systems. When a person is submerged underwater, somatosensory cues are reduced, and vestibular cues are ambiguous with respect to upright or inverted position. Visual cues may be lost as a result of reduced ambient light. Underwater disorientation has been cited as one of the major factors that could inhibit emergency egress after a helicopter ditching into water. One countermeasure to familiarize aircrew with underwater disorientation is emergency egress training. This study examined the relative degree of underwater disorientation induced by the Modular Egress Training Simulator (METS) and the Shallow Water Egress Trainer (SWET). There were 36 healthy subjects (28 males and 8 females) who participated in the study. Underwater disorientation was quantified by measuring the deviation of subjective vertical-pointing from the gravitational vertical, time to egress, and subjective reports of disorientation and ease of egress. A repeated measure design was employed with seat position (SWET chair, METS window, and METS aisle) as the sole factor. Subjective response data indicated that the degree of disorientation is rated significantly higher, and the ease of egress is rated worse from the two METS seat positions than from the SWET. This is supported by the findings that subjective vertical-pointing accuracy is worse in the METS seat positions than in the SWET (p < 0.01). The time to egress is longer from the two METS seat positions than from SWET (p < 0.01). Our results indicate that the METS device is effective for inducing underwater disorientation as provoked by simulated helicopter ditching. disorientation, vestibular, subjective pointing.

  15. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.

    PubMed

    Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea

    2017-05-01

    Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.

  16. The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses.

    PubMed

    Keshner, E A; Kenyon, R V

    2000-01-01

    We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.

  17. Selective Defects of Visual Tracking in Progressive Supranuclear Palsy (PSP): Implications for mechanisms of motion vision

    PubMed Central

    Joshi, Anand C.; Riley, David E.; Mustari, Michael J.; Cohen, Mark L.; Leigh, R. John

    2010-01-01

    Smooth ocular tracking of a moving visual stimulus comprises a range of responses that encompass the ocular following response (OFR), a pre-attentive, short-latency mechanism, and smooth pursuit, which directs the retinal fovea at the moving stimulus. In order to determine how interdependent these two forms of ocular tracking are, we studied vertical OFR in progressive supranuclear palsy (PSP), a parkinsonian disorder in which vertical smooth pursuit is known to be impaired. We measured eye movements of 9 patients with PSP and 12 healthy control subjects. Subjects viewed vertically moving sine-wave gratings that had a temporal frequency of 16.7 Hz, contrast of 32%, and spatial frequencies of 0.17, 0.27 or 0.44 cycles/°. We measured OFR amplitude as change in eye position in the 70 – 150 ms, open-loop interval following stimulus onset. Vertical smooth pursuit was studied as subjects attempted to track a 0.27 cycles/° grating moving sinusoidally through several cycles at frequencies between 0.1 – 2.5 Hz. We found that OFR amplitude, and its dependence on spatial frequency, was similar in PSP patients (group mean 0.10°) and control subjects (0.11°), but the latency to onset of OFR was greater for PSP patients (group mean 99 ms) than control subjects (90 ms). When OFR amplitude was re-measured, taking into account the increased latency in PSP patients, there was still no difference from control subjects. We confirmed that smooth pursuit was consistently impaired in PSP; group mean tracking gain at 0.7 Hz was 0.29 for PSP patients and 0.63 for controls. Neither PSP patients nor control subjects showed any correlation between OFR amplitude and smooth-pursuit gain. We propose that OFR is spared because it is generated by low-level motion processing that is dependent on posterior cerebral cortex, which is less affected in PSP. Conversely, smooth pursuit depends more on projections from frontal cortex to the pontine nuclei, both of which are involved in PSP. The accessory optic pathway, which is heavily involved in PSP, seems unlikely to contribute to the OFR in humans. PMID:20123108

  18. Potential Visual Impacts of Utility-Scale Solar Energy Development within Solar Energy Zones on Selected Viewpoints in Death Valley and Joshua Tree National Parks, and El Camino Real De Tierra Adentro National Historic Trail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert G.; Abplanalp, Jennifer M.; Cantwell, Brian L.

    In connection with the Bureau of Land Management’s (BLM’s) Solar Programmatic Environmental Impact Statement (Solar PEIS), Argonne National Laboratory (Argonne) has conducted an extended visual impact analysis for selected key observation points (KOPs) within three National Park Service (NPS) units located within the 25-mi (40-km) viewshed of four solar energy zones (SEZs) identified in the Solar PEIS. The analysis includes only those NPS units that the Solar PEIS identified as potentially subject to moderate or strong visual contrasts associated with solar development within the SEZs. The NPS units included in the analysis are Death Valley and Joshua Tree National Parksmore » and El Camino Real De Tierra Adentro National Historic Trail. The analysis showed that certain KOPs in each of these NPS units could potentially be subject to major visual contrast and impacts from solar development within the SEZs, but many of the KOPs would likely be subject to moderate, minor, or negligible contrasts and impacts, generally because they were relatively distant from the relevant SEZ, had views of the SEZ partially blocked by intervening terrain, and/or had very low vertical angles of view toward the SEZ. For all three NPS units, power tower facilities were found to be major contributors to potential visual contrasts, primarily because of the long-distance visibility of intensely bright reflection of light from the receivers on the central towers, but also because of the height and strong vertical line of the tower structures and the potential for night-sky impacts from FAA-mandated hazard navigation lighting.« less

  19. Effects of Speed and Visual-Target Distance on Toe Trajectory During the Swing Phase of Treadmill Walking

    NASA Technical Reports Server (NTRS)

    Miller, Christopher A.; Feiveson, Al; Bloomberg, Jacob J.

    2007-01-01

    Toe trajectory during swing phase is a precise motor control task that can provide insights into the sensorimotor control of the legs. The purpose of this study was to determine changes in vertical toe trajectory during treadmill walking due to changes in walking speed and target distance. For each trial, subjects walked on a treadmill at one of five speeds while performing a dynamic visual acuity task at either a far or near target distance (five speeds two targets distances = ten trials). Toe clearance decreased with increasing speed, and the vertical toe peak just before heel strike increased with increasing speed, regardless of target distance. The vertical toe peak just after toe-off was lower during near-target visual acuity tasks than during far-target tasks, but was not affected by speed. The ankle of the swing leg appeared to be the main joint angle that significantly affected all three toe trajectory events. The foot angle of the swing leg significantly affected toe clearance and the toe peak just before heel strike. These results will be used to enhance the analysis of lower limb kinematics during the sensorimotor treadmill testing, where differing speeds and/or visual target distances may be used.

  20. Binocular Coordination of the Human Vestibulo-Ocular Reflex during Off-axis Pitch Rotation

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Reschke, M. F.; Kaufman, G. D.; Black, F. O.; Paloski, W. H.

    2006-01-01

    Head movements in the sagittal pitch plane typically involve off-axis rotation requiring both vertical and horizontal vergence ocular reflexes to compensate for angular and translational motion relative to visual targets of interest. The purpose of this study was to compare passive pitch VOR responses during rotation about an Earth-vertical axis (canal only cues) with off-axis rotation (canal and otolith cues). Methods. Eleven human subjects were oscillated sinusoidally at 0.13, 0.3 and 0.56 Hz while lying left-side down with the interaural axis either aligned with the axis of rotation or offset by 50 cm. In a second set of measurements, twelve subjects were also tested during sinusoidally varying centrifugation over the same frequency range. The modulation of vertical and horizontal vergence ocular responses was measured with a binocular videography system. Results. Off-axis pitch rotation enhanced the vertical VOR at lower frequencies and enhanced the vergence VOR at higher frequencies. During sinusoidally varying centrifugation, the opposite trend was observed for vergence, with both vertical and vergence vestibulo-ocular reflexes being suppressed at the highest frequency. Discussion. These differential effects of off-axis rotation over the 0.13 to 0.56 Hz range are consistent with the hypothesis that otolith-ocular reflexes are segregated in part on the basis of stimulus frequency. At the lower frequencies, tilt otolith-ocular responses compensate for declining canal input. At higher frequencies, translational otolith-ocular reflexes compensate for declining visual contributions to the kinematic demands required for fixating near targets.

  1. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.

    PubMed

    Kang, Jiyeon; Vashista, Vineet; Agrawal, Sunil K

    2017-09-01

    Pelvic movement is important to human locomotion as the center of mass is located near the center of pelvis. Lateral pelvic motion plays a crucial role to shift the center of mass on the stance leg, while swinging the other leg and keeping the body balanced. In addition, vertical pelvic movement helps to reduce metabolic energy expenditure by exchanging potential and kinetic energy during the gait cycle. However, patient groups with cerebral palsy or stroke have excessive pelvic motion that leads to high energy expenditure. In addition, they have higher chances of falls as the center ofmass could deviate outside the base of support. In this paper, a novel control method is suggested using tethered pelvic assist device (TPAD) to teach subjects to walk with a specified target pelvic trajectory while walking on a treadmill. In this method, a force field is applied to the pelvis to guide it to move on a target trajectory and correctional forces are applied, if the pelvis motion has excessive deviations from the target trajectory. Three different experimentswith healthy subjects were conducted to teach them to walk on a new target pelvic trajectory with the presented control method. For all three experiments, the baseline trajectory of the pelvis was experimentally determined for each participating subject. To design a target pelvic trajectory which is different from the baseline, Experiment I scaled up the lateral component of the baseline pelvic trajectory, while Experiment II scaled down the lateral component of the baseline trajectory. For both Experiments I and II, the controller generated a 2-D force field in the transverse plane to provide the guidance force. In this paper, seven subjects were recruited for each experiment who walked on the treadmill with suggested control methods and visual feedback of their pelvic trajectory. The results show that the subjects were able to learn the target pelvic trajectory in each experiment and also retained the training effects after the completion of the experiment. In Experiment III, both lateral and vertical components of the pelvic trajectory were scaled down from the baseline trajectory. The force field was extended to three dimensions in order to correct the vertical pelvic movement as well. Three subgroups (force feedback alone, visual feedback alone, and both force and visual feedback) were recruited to understand the effects of force feedback and visual feedback alone to distinguish the results from Experiments I and II. The results showthat a trainingmethod that combines visual and force feedback is superior to the training methods with visual or force feedback alone. We believe that the present control strategy holds potential in training and correcting abnormal pelvic movements in different patient populations.

  2. Torsional ARC Effectively Expands the Visual Field in Hemianopia

    PubMed Central

    Satgunam, PremNandhini; Peli, Eli

    2012-01-01

    Purpose Exotropia in congenital homonymous hemianopia has been reported to provide field expansion that is more useful when accompanied with harmonios anomalous retinal correspondence (HARC). Torsional strabismus with HARC provides a similar functional advantage. In a subject with hemianopia demonstrating a field expansion consistent with torsion we documented torsional strabismus and torsional HARC. Methods Monocular visual fields under binocular fixation conditions were plotted using a custom dichoptic visual field perimeter (DVF). The DVF was also modified to measure perceived visual directions under dissociated and associated conditions across the central 50° diameter field. The field expansion and retinal correspondence of a subject with torsional strabismus (along with exotropia and right hypertropia) with congenital homonymous hemianopia was compared to that of another exotropic subject with acquired homonymous hemianopia without torsion and to a control subject with minimal phoria. Torsional rotations of the eyes were calculated from fundus photographs and perimetry. Results Torsional ARC documented in the subject with congenital homonymous hemianopia provided a functional binocular field expansion up to 18°. Normal retinal correspondence was mapped for the full 50° visual field in the control subject and for the seeing field of the acquired homonymous hemianopia subject, limiting the functional field expansion benefit. Conclusions Torsional strabismus with ARC, when occurring with homonymous hemianopia provides useful field expansion in the lower and upper fields. Dichoptic perimetry permits documentation of ocular alignment (lateral, vertical and torsional) and perceived visual direction under binocular and monocular viewing conditions. Evaluating patients with congenital or early strabismus for HARC is useful when considering surgical correction, particularly in the presence of congenital homonymous hemianopia. PMID:22885782

  3. Orientation of human optokinetic nystagmus to gravity: a model-based approach

    NASA Technical Reports Server (NTRS)

    Gizzi, M.; Raphan, T.; Rudolph, S.; Cohen, B.

    1994-01-01

    Optokinetic nystagmus (OKN) was induced by having subjects watch a moving display in a binocular, head-fixed apparatus. The display was composed of 3.3 degrees stripes moving at 35 degrees/s for 45 s. It subtended 88 degrees horizontally by 72 degrees vertically of the central visual field and could be oriented to rotate about axes that were upright or tilted 45 degrees or 90 degrees. The head was held upright or was tilted 45 degrees left or right on the body during stimulation. Head-horizontal (yaw axis) and head-vertical (pitch axis) components of OKN were recorded with electro-oculography (EOG). Slow phase velocity vectors were determined and compared with the axis of stimulation and the spatial vertical (gravity axis). With the head upright, the axis of eye rotation during yaw axis OKN was coincident with the stimulus axis and the spatial vertical. With the head tilted, a significant vertical component of eye velocity appeared during yaw axis stimulation. As a result the axis of eye rotation shifted from the stimulus axis toward the spatial vertical. Vertical components developed within 1-2 s of stimulus onset and persisted until the end of stimulation. In the six subjects there was a mean shift of the axis of eye rotation during yaw axis stimulation of approximately 18 degrees with the head tilted 45 degrees on the body. Oblique optokinetic stimulation with the head upright was associated with a mean shift of the axis of eye rotation toward the spatial vertical of 9.2 degrees. When the head was tilted and the same oblique stimulation was given, the axis of eye rotation rotated to the other side of the spatial vertical by 5.4 degrees. This counterrotation of the axis of eye rotation is similar to the "Muller (E) effect," in which the perception of the upright is counterrotated to the opposite side of the spatial vertical when subjects are tilted in darkness. The data were simulated by a model of OKN with a "direct" and "indirect" pathway. It was assumed that the direct visual pathway is oriented in a body, not a spatial frame of reference. Despite the short optokinetic after-nystagmus time constants, strong horizontal to vertical cross-coupling could be produced if the horizontal and vertical time constants were in proper ratio and there were no suppression of nystagmus in directions orthogonal to the stimulus direction. The model demonstrates that the spatial orientation of OKN can be achieved by restructuring the system matrix of velocity storage. We conclude that an important function of velocity storage is to orient slow-phase velocity toward the spatial vertical during movement in a terrestrial environment.

  4. Interplay of Gravicentric, Egocentric, and Visual Cues About the Vertical in the Control of Arm Movement Direction.

    PubMed

    Bock, Otmar; Bury, Nils

    2018-03-01

    Our perception of the vertical corresponds to the weighted sum of gravicentric, egocentric, and visual cues. Here we evaluate the interplay of those cues not for the perceived but rather for the motor vertical. Participants were asked to flip an omnidirectional switch down while their egocentric vertical was dissociated from their visual-gravicentric vertical. Responses were directed mid-between the two verticals; specifically, the data suggest that the relative weight of congruent visual-gravicentric cues averages 0.62, and correspondingly, the relative weight of egocentric cues averages 0.38. We conclude that the interplay of visual-gravicentric cues with egocentric cues is similar for the motor and for the perceived vertical. Unexpectedly, we observed a consistent dependence of the motor vertical on hand position, possibly mediated by hand orientation or by spatial selective attention.

  5. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Santos-Pontelli, Taiza E G; Rimoli, Brunna P; Favoretto, Diandra B; Mazin, Suleimy C; Truong, Dennis Q; Leite, Joao P; Pontes-Neto, Octavio M; Babyar, Suzanne R; Reding, Michael; Bikson, Marom; Edwards, Dylan J

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients.

  6. Transient cardio-respiratory responses to visually induced tilt illusions

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Ramsdell, C. D.; Mullen, T. J.; Oman, C. M.; Harm, D. L.; Paloski, W. H.

    2000-01-01

    Although the orthostatic cardio-respiratory response is primarily mediated by the baroreflex, studies have shown that vestibular cues also contribute in both humans and animals. We have demonstrated a visually mediated response to illusory tilt in some human subjects. Blood pressure, heart and respiration rate, and lung volume were monitored in 16 supine human subjects during two types of visual stimulation, and compared with responses to real passive whole body tilt from supine to head 80 degrees upright. Visual tilt stimuli consisted of either a static scene from an overhead mirror or constant velocity scene motion along different body axes generated by an ultra-wide dome projection system. Visual vertical cues were initially aligned with the longitudinal body axis. Subjective tilt and self-motion were reported verbally. Although significant changes in cardio-respiratory parameters to illusory tilts could not be demonstrated for the entire group, several subjects showed significant transient decreases in mean blood pressure resembling their initial response to passive head-up tilt. Changes in pulse pressure and a slight elevation in heart rate were noted. These transient responses are consistent with the hypothesis that visual-vestibular input contributes to the initial cardiovascular adjustment to a change in posture in humans. On average the static scene elicited perceived tilt without rotation. Dome scene pitch and yaw elicited perceived tilt and rotation, and dome roll motion elicited perceived rotation without tilt. A significant correlation between the magnitude of physiological and subjective reports could not be demonstrated.

  7. Processing of visual gravitational motion in the peri-sylvian cortex: Evidence from brain-damaged patients.

    PubMed

    Maffei, Vincenzo; Mazzarella, Elisabetta; Piras, Fabrizio; Spalletta, Gianfranco; Caltagirone, Carlo; Lacquaniti, Francesco; Daprati, Elena

    2016-05-01

    Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. Twenty-seven of them also aligned a luminous bar to the vertical direction (subjective visual vertical, SVV). Using voxel-based lesion-symptom mapping as well as lesion subtraction analysis, we found that lesions mainly centered on the posterior insula are associated with greater deviations of SVV, consistent with several previous studies. Instead, lesions mainly centered on the parietal operculum decrease the ability to discriminate natural from unnatural gravitational acceleration with a timed motor response in the interception task. Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of visual focus and gait speed on walking balance in the frontal plane.

    PubMed

    Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle

    2015-08-01

    We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Postural abnormalities and contraversive pushing following right hemisphere brain damage.

    PubMed

    Lafosse, C; Kerckhofs, E; Vereeck, L; Troch, M; Van Hoydonck, G; Moeremans, M; Sneyers, C; Broeckx, J; Dereymaeker, L

    2007-06-01

    We investigated the presence of postural abnormalities in a consecutive sample of stroke patients, with either left or right brain damage, in relation to their perceived body position in space. The presence or absence of posture-related symptoms was judged by two trained therapists and subsequently analysed by hierarchical classes analysis (HICLAS). The subject classes resulting from the HICLAS model were further validated with respect to posture-related measurements, such as centre of gravity position and head position, as well as measurements related to the postural body scheme, such as the perception of postural and visual verticality. The results of the classification analysis clearly demonstrated a relation between the presence of right brain damage and abnormalities in body geometry. The HICLAS model revealed three classes of subjects: The first class contained almost all the patients without neglect and without any signs of contraversive pushing. They were mainly characterised by a normal body axis in any position. The second class were all neglect patients but predominantly without any contraversive pushing. The third class contained right brain damaged patients, all showing neglect and mostly exhibiting contraversive pushing. The patients in the third class showed a clear resistance to bringing the weight over to the ipsilesional side when the therapist attempted to make the subject achieve a vertical posture across the midline. The clear correspondence between abnormalities of the observed body geometry and the tilt of the subjective postural and visual vertical suggests that a patient's postural body geometry is characterised by leaning towards the side of space where he/she feels aligned with an altered postural body scheme. The presence of contraversive pushing after right brain damage points in to a spatial higher-order processing deficit underlying the higher frequency and severity of the axial postural abnormalities found after right brain lesions.

  10. Fixed-base simulator study of the effect of time delays in visual cues on pilot tracking performance

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Riley, D. R.

    1975-01-01

    Factors were examined which determine the amount of time delay acceptable in the visual feedback loop in flight simulators. Acceptable time delays are defined as delays which significantly affect neither the results nor the manner in which the subject 'flies' the simulator. The subject tracked a target aircraft as it oscillated sinusoidally in a vertical plane only. The pursuing aircraft was permitted five degrees of freedom. Time delays of from 0.047 to 0.297 second were inserted in the visual feedback loop. A side task was employed to maintain the workload constant and to insure that the pilot was fully occupied during the experiment. Tracking results were obtained for 17 aircraft configurations having different longitudinal short-period characteristics. Results show a positive correlation between improved handling qualities and a longer acceptable time delay.

  11. Moving visual scenes influence the apparent direction of gravity.

    NASA Technical Reports Server (NTRS)

    Dichgans, J.; Held, R.; Young, L. R.; Brandt, T.

    1972-01-01

    It is shown that an observer viewing a wide-angled display rotating about its line of sight develops a feeling that his body is tilted and has the illusion that a vertical straight edge is tilted in a direction opposite to that of rotation. Experiments on subjects who monocularly viewed rotating disks with various settings within restricted fields of view are described to substantiate these findings. Displacement of the perceived vertical increased to a maximum of average 15 deg when the stimulus speed increased to 30 deg per sec.

  12. Role of orientation reference selection in motion sickness, supplement 2S

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1987-01-01

    Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals. The conceptual basis of the present proposal hinges on the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with benign paroxysmal positional vertigo (BPPV) syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans. The overall objectives are to determine: if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects; if abnormal vertical canal-otolith function is the source of abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and if it can be quantified by vestibular and oculomotor reflex measurements; and quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability.

  13. Vestibular compensation after vestibular schwannoma surgery: normalization of the subjective visual vertical and disability.

    PubMed

    Batuecas-Caletrio, Angel; Santacruz-Ruiz, Santiago; Muñoz-Herrera, Angel; Sousa, Pablo; Otero, Alvaro; Perez-Fernandez, Nicolas

    2013-05-01

    The degree of caloric weakness before surgery influences faster or slower recovery of patients undergoing vestibular schwannoma surgery. The Dizziness Handicap Inventory (DHI) is a good index to show the recovery of patients as it relates directly to an improvement or not of the subjective visual vertical (SVV). To evaluate the process of recovery of patients as measured by the SVV and the DHI after surgical removal of vestibular schwannoma. We studied 24 consecutive patients of the University Hospital of Salamanca who underwent vestibular schwannoma surgery. We assessed age, tumour size, degree of canalicular weakness and preoperative SVV, and their relationship with DHI and SVV at discharge and also at 1, 3 and 6 months postoperatively. Patients with lesser degrees of caloric weakness took longer to normalize SVV than those with a higher caloric weakness before surgery (p < 0.05). There was a significant correlation between DHI and improvements in SVV with time. The differences disappeared in 6 months where all patients, with greater or lesser degree of caloric weakness, had the same results.

  14. Unconscious analyses of visual scenes based on feature conjunctions.

    PubMed

    Tachibana, Ryosuke; Noguchi, Yasuki

    2015-06-01

    To efficiently process a cluttered scene, the visual system analyzes statistical properties or regularities of visual elements embedded in the scene. It is controversial, however, whether those scene analyses could also work for stimuli unconsciously perceived. Here we show that our brain performs the unconscious scene analyses not only using a single featural cue (e.g., orientation) but also based on conjunctions of multiple visual features (e.g., combinations of color and orientation information). Subjects foveally viewed a stimulus array (duration: 50 ms) where 4 types of bars (red-horizontal, red-vertical, green-horizontal, and green-vertical) were intermixed. Although a conscious perception of those bars was inhibited by a subsequent mask stimulus, the brain correctly analyzed the information about color, orientation, and color-orientation conjunctions of those invisible bars. The information of those features was then used for the unconscious configuration analysis (statistical processing) of the central bars, which induced a perceptual bias and illusory feature binding in visible stimuli at peripheral locations. While statistical analyses and feature binding are normally 2 key functions of the visual system to construct coherent percepts of visual scenes, our results show that a high-level analysis combining those 2 functions is correctly performed by unconscious computations in the brain. (c) 2015 APA, all rights reserved).

  15. Changes in Lower Facial Height and Facial Esthetics with Incremental Increases in Occlusal Vertical Dimension in Dentate Subjects.

    PubMed

    Orenstein, Noah P; Bidra, Avinash S; Agar, John R; Taylor, Thomas D; Uribe, Flavio; Litt, Mark D; Little, Mark D

    2015-01-01

    To determine if there are objective changes in lower facial height and subjective changes in facial esthetics with incremental increases in occlusal vertical dimension in dentate subjects. Twenty subjects of four different races and both sexes with a Class I dental occlusion had custom diagnostic occlusal prostheses (mandibular overlays) fabricated on casts mounted on a semi-adjustable articulator. The overlays were fabricated at 2-mm, 3-mm, 4-mm, and 5-mm openings of the anterior guide pin of a semi-adjustable articulator. Direct facial measurements were made between pronasale and menton on each subject while wearing the four different overlays. Thereafter, two digital photographs (frontal and profile) were taken for each subject at maximum intercuspation (baseline) and wearing each of the four mandibular overlays. The photographs of eight subjects were standardized and displayed in a random order to 60 judges comprising 30 laypeople, 15 general dentists, and 15 prosthodontists. Using a visual analog scale, each judge was asked to rate the facial esthetics twice for each of the 80 images. For objective changes, although an anterior guide pin-lower facial height relationship of 1:0.63 mm was observed, the findings were not correlated (P>.20). For subjective changes, the visual analog scale ratings of judges were uncorrelated with increases in anterior guide pin opening up to 5 mm, irrespective of the judge's background status or the sexes of the judges or the subjects (P>.80). Incremental increases in anterior guide pin opening up to 5 mm did not correlate to similar increases in lower facial height. Additionally, it made no difference in a judge's evaluation of facial esthetics irrespective of the judge's background status (layperson, general dentist, or prosthodontist) or sex.

  16. Temporal dynamics of ocular position dependence of the initial human vestibulo-ocular reflex.

    PubMed

    Crane, Benjamin T; Tian, Junru; Demer, Joseph L

    2006-04-01

    While an ideal vestibulo-ocular reflex (VOR) generates ocular rotations compensatory for head motion, during visually guided movements, Listing's Law (LL) constrains the eye to rotational axes lying in Listing's Plane (LP). The present study was conducted to explore the recent proposal that the VOR's rotational axis is not collinear with the head's, but rather follows a time-dependent strategy intermediate between LL and an ideal VOR. Binocular LPs were defined during visual fixation in eight normal humans. The VOR was evoked by a highly repeatable transient whole-body yaw rotation in darkness at a peak acceleration of 2800 deg/s2. Immediately before rotation, subjects regarded targets 15 or 500 cm distant located at eye level, 20 degrees up, or 20 degrees down. Eye and head responses were compared with LL predictions in the position and velocity domains. LP orientation varied both among subjects and between individual subject's eyes, and rotated temporally with convergence by 5 +/- 5 degrees (+/-SEM). In the position domain, the eye compensated for head displacement even when the head rotated out of LP. Even within the first 20 ms from onset of head rotation, the ocular velocity axis tilted relative to the head axis by 30% +/- 8% of vertical gaze position. Saccades increased this tilt. Regardless of vertical gaze position, the ocular rotation axis tilted backward 4 degrees farther in abduction than in adduction. There was also a binocular vertical eye velocity transient and lateral tilt of the ocular axis. These disconjugate, short-latency axis perturbations appear intrinsic to the VOR and may have neural or mechanical origins.

  17. Audiovisual correspondence between musical timbre and visual shapes

    PubMed Central

    Adeli, Mohammad; Rouat, Jean; Molotchnikoff, Stéphane

    2014-01-01

    This article investigates the cross-modal correspondences between musical timbre and shapes. Previously, such features as pitch, loudness, light intensity, visual size, and color characteristics have mostly been used in studies of audio-visual correspondences. Moreover, in most studies, simple stimuli e.g., simple tones have been utilized. In this experiment, 23 musical sounds varying in fundamental frequency and timbre but fixed in loudness were used. Each sound was presented once against colored shapes and once against grayscale shapes. Subjects had to select the visual equivalent of a given sound i.e., its shape, color (or grayscale) and vertical position. This scenario permitted studying the associations between normalized timbre and visual shapes as well as some of the previous findings for more complex stimuli. One hundred and nineteen subjects (31 females and 88 males) participated in the online experiment. Subjects included 36 claimed professional musicians, 47 claimed amateur musicians, and 36 claimed non-musicians. Thirty-one subjects have also claimed to have synesthesia-like experiences. A strong association between timbre of envelope normalized sounds and visual shapes was observed. Subjects have strongly associated soft timbres with blue, green or light gray rounded shapes, harsh timbres with red, yellow or dark gray sharp angular shapes and timbres having elements of softness and harshness together with a mixture of the two previous shapes. Color or grayscale had no effect on timbre-shape associations. Fundamental frequency was not associated with height, grayscale or color. The significant correspondence between timbre and shape revealed by the present work allows designing substitution systems which might help the blind to perceive shapes through timbre. PMID:24910604

  18. Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Santos-Pontelli, Taiza E. G.; Rimoli, Brunna P.; Favoretto, Diandra B.; Mazin, Suleimy C.; Truong, Dennis Q.; Leite, Joao P.; Pontes-Neto, Octavio M.; Babyar, Suzanne R.; Reding, Michael; Bikson, Marom; Edwards, Dylan J.

    2016-01-01

    Pathologic tilt of subjective visual vertical (SVV) frequently has adverse functional consequences for patients with stroke and vestibular disorders. Repetitive transcranial magnetic stimulation (rTMS) of the supramarginal gyrus can produce a transitory tilt on SVV in healthy subjects. However, the effect of transcranial direct current stimulation (tDCS) on SVV has never been systematically studied. We investigated whether bilateral tDCS over the temporal-parietal region could result in both online and offline SVV misperception in healthy subjects. In a randomized, sham-controlled, single-blind crossover pilot study, thirteen healthy subjects performed tests of SVV before, during and after the tDCS applied over the temporal-parietal region in three conditions used on different days: right anode/left cathode; right cathode/left anode; and sham. Subjects were blind to the tDCS conditions. Montage-specific current flow patterns were investigated using computational models. SVV was significantly displaced towards the anode during both active stimulation conditions when compared to sham condition. Immediately after both active conditions, there were rebound effects. Longer lasting after-effects towards the anode occurred only in the right cathode/left anode condition. Current flow models predicted the stimulation of temporal-parietal regions under the electrodes and deep clusters in the posterior limb of the internal capsule. The present findings indicate that tDCS over the temporal-parietal region can significantly alter human SVV perception. This tDCS approach may be a potential clinical tool for the treatment of SVV misperception in neurological patients. PMID:27031726

  19. Adaptive Changes in the Perception of Fast and Slow Movement at Different Head Positions.

    PubMed

    Panichi, Roberto; Occhigrossi, Chiara; Ferraresi, Aldo; Faralli, Mario; Lucertini, Marco; Pettorossi, Vito E

    2017-05-01

    This paper examines the subjective sense of orientation during asymmetric body rotations in normal subjects. Self-motion perception was investigated in 10 healthy individuals during asymmetric whole-body rotation with different head orientations. Both on-vertical axis and off-vertical axis rotations were employed. Subjects tracked a remembered earth-fixed visual target while rotating in the dark for four cycles of asymmetric rotation (two half-sinusoidal cycles of the same amplitude, but of different duration). The rotations induced a bias in the perception of velocity (more pronounced with fast than with slow motion). At the end of rotation, a marked target position error (TPE) was present. For the on-vertical axis rotations, the TPE was no different if the rotations were performed with a 30° nose-down, a 60° nose-up, or a 90° side-down head tilt. With off-vertical axis rotations, the simultaneous activation of the semicircular canals and otolithic receptors produced a significant increase of TPE for all head positions. This difference between on-vertical and off-vertical axis rotation was probably partly due to the vestibular transfer function and partly due to different adaptation to the speed of rotation. Such a phenomenon might be generated in different components of the vestibular system. The adaptive process enhancing the perception of dynamic movement around the vertical axis is not related to the specific semicircular canals that are activated; the addition of an otolithic component results in a significant increase of the TPE.Panichi R, Occhigrossi C, Ferraresi A, Faralli M, Lucertini M, Pettorossi VE. Adaptive changes in the perception of fast and slow movement at different head positions. Aerosp Med Hum Perform. 2017; 88(5):463-468.

  20. An anatomical and psychophysical comparison of subjective verticals in patients with right brain damage.

    PubMed

    Rousseaux, Marc; Braem, Bérenger; Honoré, Jacques; Saj, Arnaud

    2015-08-01

    Brain hemisphere lesions often cause a contralesional tilt of the subjective vertical (SV) a phenomenon related to spatial neglect and postural disorders. Depending on the method employed, different perceptual systems come into play when this gravitational vertical is assessed. Here, we compared the anatomical and psychophysical characteristics of modality-dependent SV biases in patients with right hemisphere stroke. The SV was measured with visual, haptic and visual-haptic modalities (SV, SVV, SVHV) in 46 patients with a relatively recent stroke. Voxel-based lesion-symptom mapping (performed with NPM(®)) was used to highlight brain areas in which lesions best explained the severity of task biases (p < .05). Lesions explaining the SVV tilt (TSVV) were centered on the posterior part of the middle temporal gyrus, those explaining the TSHV were more limited and anterior, without convergence with the former. Lesions explaining the TSVHV were centered on the superior temporal gyrus and more anterior those explaining the TSVV, with convergence with lesions explaining both the TSVV and the TSHV. Patients showed counterclockwise deviations in the SVs. Constant and variable errors were greater for the SHV than for the SVV and for the SVHV. The TSVV and TVHV were closely related to the presence of left spatial neglect and hemianopia. Errors in the SVV and (at a lesser degree) SVHV were preferentially related to lesions in visual associative cortex. The SVV and especially the SVHV provide valuable estimates of patient difficulties, in view of the lower associated variable errors (i.e., greater precision) and closer relationships with clinical disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The influence of target angular velocity on visual latency difference determined using the rotating Pulfrich effect.

    PubMed

    Nickalls, R W

    1996-09-01

    Visual latency difference was determined directly in normal volunteers, using the rotating Pulfrich technique described by Nickalls [Vision Research, 26, 367-372 (1986)]. Subjects fixated a black vertical rod rotating clockwise on a horizontal turntable turning with constant angular velocity (16.6,33.3 or 44.7 revs/min) with a neutral density filter (OD 0.7 or 1.5) in front of the right eye. For all subjects the latency difference associated with the 1.5 OD filter was significantly greater (P < 0.001) with the rod rotating at 16.6 rev/min than at 33.3 revs/min. The existence of an inverse relationship between latency difference and angular velocity is hypothesized.

  2. Visually-induced reorientation illusions as a function of age.

    PubMed

    Howard, I P; Jenkin, H L; Hu, G

    2000-09-01

    We reported previously that supine subjects inside a furnished room who are tilted 90 degrees may experience themselves and the room as upright to gravity. We call this the levitation illusion because it creates sensations similar to those experienced in weightlessness. It is an example of a larger class of novel static reorientation illusions that we have explored. Stationary subjects inside a furnished room rotating about a horizontal axis experience complete self rotation about the roll or pitch axis. We call this a dynamic reorientation illusion. We have determined the incidence of static and dynamic reorientation illusions in subjects ranging in age from 9 to 78 yr. Some 90% of subjects of all ages experienced the dynamic reorientation illusion but the percentage of subjects experiencing static reorientation illusions increased with age. We propose that the dynamic illusion depends on a primitive mechanism of visual-vestibular interaction but that static reorientation illusions depend on learned visual cues to the vertical arising from the perceived tops and bottoms of familiar objects and spatial relationships between objects. Older people become more dependent on visual polarity to compensate for loss in vestibular sensitivity. Of 9 astronauts, 4 experienced the levitation illusion. The relationship between susceptibility to reorientation illusions on Earth and in space has still to be determined. We propose that the Space Station will be less disorienting if pictures of familiar objects line the walls.

  3. Deviations of the visual upright in three dimensions in disorders of the brainstem: a clinical exploration.

    PubMed

    Frisén, Lars

    2010-12-01

    Deviations of the subjective visual vertical in the roll or fronto-parallel plane occur commonly in disorders of the brainstem and have been extensively explored. In contrast, little is known about deviations in other directions. The present retrospective study focused on deviations in the pitch (sagittal) direction in 176 patients with a wide variety of disorders. The test task was to set a self-illuminated rod in the apparent upright position, in total darkness. Abnormal results (outside ± 4°) were recorded in 58% of the subjects. Negative (top backward) deviations were the most common, particularly with mass lesions in the pineal region, obstructive hydrocephalus, cerebellar lesions and crowding at the craniocervical junction. Positive and negative deviations were about equally common with focal intra-axial lesions. Negative deviations appeared related to dorsal locations of lesions and vice versa. Normal pressure hydrocephalus, Parkinson's disease and progressive supranuclear palsy were associated with smaller deviations, without a clear directional preponderance, and a larger individual variability. Most subjects lacked overt clinical corollaries. The most common ocular signs were aqueduct syndromes (n = 17) and ocular tilt reactions (n = 12), which were associated with deviations in 47 and 92% of instances, respectively. Subjective corollaries of deviation were never reported, not even by those subjects who showed a dramatic improvement upon resolution of the underlying condition. Deviations were also assessed in roll in a subgroup of 40 patients with focal lesions. Thirty subjects returned abnormal results: 13% in roll, 47% in pitch and 40% in pitch and roll. The direction of roll deviation appeared primarily related to laterality, with clockwise deviations with right-sided lesions and vice versa. All subjects with ocular tilt reactions had combined pitch and roll deviations, implying a common neural substrate. Correlation analyses, geometrical modelling and experimental self-observations indicated that deviations in pitch were attributable to cyclotorsional asymmetries between the eyes. The frequent co-existence of abnormal pitch and roll results implies that the true axis of deviation in focal brainstem disorders commonly falls outside traditional reference planes. The term 'visual upright in three dimensions' is suggested to identify unrestricted measurements, preserving the established term 'visual vertical' for measurements confined to the roll plane. Assessment of the visual upright in three dimensions provides a new, quantitative angle on brainstem disorders. The test appears useful for identifying a ubiquitous yet clinically silent feature of brainstem disease and also for monitoring the evolution of underlying conditions. More detailed explorations appear well motivated.

  4. Stroboscopic Goggles as a Countermeasure for Dynamic Visual Acuity and Landing Sickness in Crewmembers Returning from Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Rosenberg, M. J. F.; Kreutzberg, G. A.; Peters, B. T.; Reschke, M. F.

    2017-01-01

    Long-term exposure to microgravity causes sensorimotor adaptations that result in functional deficits upon returning to a gravitational environment. At landing, the vestibular system and the central nervous system, responsible for coordinating head and eye movements via the vestibulo-occular reflex (VOR), are adapted to microgravity and must re-adapt to the Earth's gravitational environment. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with astronauts reporting oscillopsia and blurred vision. These effects are caused by retinal slip, or the inability to keep an image focused on their retina, which is thought to drive motion sickness symptoms experienced upon landing. Retinal slip can be estimated by dynamic visual acuity (DVA); visual acuity while in motion. Peters et al. (2011) find that DVA is worsened in astronauts by an average of 0.75 eye-chart lines one day after landing. Previously, the use of stroboscopic goggles has shown to be effective in minimizing motion sickness symptoms due to retinal slip (Reschke et al. 2007). In this study, we simulated the decrement in DVA caused by sensorimotor re-adaptation by using minifying lenses and then testing the efficacy of stroboscopic goggles in preventing retinal slip and improving DVA. Dynamic visual acuity is assessed using an oscillating chair developed in the Neuroscience Laboratory at JSC. This chair is motor-driven and oscillates vertically at 2 Hz with a vertical displacement of +/- 2 cm to simulate the vertical translations that occur while walking. As the subject is being oscillated, they are asked to discern the direction of Landolt-C optotypes of varying sizes and record their direction using a gamepad. The visual acuity thresholds are determined using an algorithm that alters the size of the optotype based on the previous responses of the subject using a forced-choice best parameter estimation that is able to rapidly converge on the threshold value. Visual acuity thresholds were determined both for static (seated) and dynamic (oscillating) conditions. Dynamic visual acuity is defined as the difference between the dynamic and static conditions. We found that healthy subjects (n=20) have a significantly impaired DVA while wearing the minifying lenses, demonstrating that the VOR is in an adaptive state and retinal slip is occurring. When subjects' acuity was tested wearing the stroboscopic goggles with the minifying lenses, there was no significant difference in their DVA compared to their baseline DVA. This suggests that stroboscopic goggles are preventing retinal slip and would function as an efficient countermeasure for VOR adaptations and thus help mitigate landing sickness symptoms experienced by long-duration crewmembers. These goggles might also be used to counter blurred vision (caused by retinal slip) experienced by crewmembers during launch where the vehicle vibrations are greatest. The stroboscopic effect could be built into a section of their head mounted displays on the visor of their helmets to be used in these high vibration situation if a mission critical task is necessary.

  5. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms

    NASA Astrophysics Data System (ADS)

    McCormick, Lillian R.; Levin, Lisa A.

    2017-08-01

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with `fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  6. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  7. Neuronal network-based mathematical modeling of perceived verticality in acute unilateral vestibular lesions: from nerve to thalamus and cortex.

    PubMed

    Glasauer, S; Dieterich, M; Brandt, T

    2018-05-29

    Acute unilateral lesions of vestibular graviceptive pathways from the otolith organs and semicircular canals via vestibular nuclei and the thalamus to the parieto-insular vestibular cortex regularly cause deviations of perceived verticality in the frontal roll plane. These tilts are ipsilateral in peripheral and in ponto-medullary lesions and contralateral in ponto-mesencephalic lesions. Unilateral lesions of the vestibular thalamus or cortex cause smaller tilts of the perceived vertical, which may be either ipsilateral or contralateral. Using a neural network model, we previously explained why unilateral vestibular midbrain lesions rarely manifest with rotational vertigo. We here extend this approach, focussing on the direction-specific deviations of perceived verticality in the roll plane caused by acute unilateral vestibular lesions from the labyrinth to the cortex. Traditionally, the effect of unilateral peripheral lesions on perceived verticality has been attributed to a lesion-based bias of the otolith system. We here suggest, on the basis of a comparison of model simulations with patient data, that perceived visual tilt after peripheral lesions is caused by the effect of a torsional semicircular canal bias on the central gravity estimator. We further argue that the change of gravity coding from a peripheral/brainstem vectorial representation in otolith coordinates to a distributed population coding at thalamic and cortical levels can explain why unilateral thalamic and cortical lesions have a variable effect on perceived verticality. Finally, we propose how the population-coding network for gravity direction might implement the elements required for the well-known perceptual underestimation of the subjective visual vertical in tilted body positions.

  8. Identifying Head-Trunk and Lower Limb Contributions to Gaze Stabilization During Locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2003-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as - compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the shank and the transmissibility of the shock wave at heel strike (measured by the peak acceleration ratio of the head/shank) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.

  9. Removing the Interdependency between Horizontal and Vertical Eye-Movement Components in Electrooculograms

    PubMed Central

    Chang, Won-Du; Cha, Ho-Seung; Im, Chang-Hwan

    2016-01-01

    This paper introduces a method to remove the unwanted interdependency between vertical and horizontal eye-movement components in electrooculograms (EOGs). EOGs have been widely used to estimate eye movements without a camera in a variety of human-computer interaction (HCI) applications using pairs of electrodes generally attached either above and below the eye (vertical EOG) or to the left and right of the eyes (horizontal EOG). It has been well documented that the vertical EOG component has less stability than the horizontal EOG one, making accurate estimation of the vertical location of the eyes difficult. To address this issue, an experiment was designed in which ten subjects participated. Visual inspection of the recorded EOG signals showed that the vertical EOG component is highly influenced by horizontal eye movements, whereas the horizontal EOG is rarely affected by vertical eye movements. Moreover, the results showed that this interdependency could be effectively removed by introducing an individual constant value. It is therefore expected that the proposed method can enhance the overall performance of practical EOG-based eye-tracking systems. PMID:26907271

  10. Influence of low-level laser therapy on vertical jump in sedentary individuals

    PubMed Central

    Kakihata, Camila Mayumi Martin; Malanotte, Jéssica Aline; Higa, Jessica Yumie; Errero, Tatiane Kamada; Balbo, Sandra Lucinei; Bertolini, Gladson Ricardo Flor

    2015-01-01

    Objective To investigate the effects of low intensity laser (660nm), on the surae triceps muscle fatigue and power, during vertical jump in sedentary individuals, in addition to delayed onset muscle soreness. Methods We included 22 sedentary volunteers in the study, who were divided into three groups: G1 (n=8) without performing low intensity laser (control); G2 (n=7) subjected to 6 days of low intensity laser applications; and G3 (n=7) subjected to 10 days of low intensity laser applications. All subjects were evaluated by means of six evaluations of vertical jumps lasting 60 seconds each. In G2 and G3, laser applications in eight points, uniformly distributed directly to the skin in the region of the triceps surae were performed. Another variable analyzed was the delayed onset muscle soreness using the Visual Analog Scale of Pain. Results There was no significant difference in fatigue and mechanical power. In the evaluation of delayed onset muscle soreness, there was significant difference, being the first evaluation higher than the others. Conclusion The low intensity laser on the triceps surae, in sedentary individuals, had no significant effects on the variables evaluated. PMID:25993067

  11. Transfer of an induced preferred retinal locus of fixation to everyday life visual tasks.

    PubMed

    Barraza-Bernal, Maria J; Rifai, Katharina; Wahl, Siegfried

    2017-12-01

    Subjects develop a preferred retinal locus of fixation (PRL) under simulation of central scotoma. If systematic relocations are applied to the stimulus position, PRLs manifest at a location in favor of the stimulus relocation. The present study investigates whether the induced PRL is transferred to important visual tasks in daily life, namely pursuit eye movements, signage reading, and text reading. Fifteen subjects with normal sight participated in the study. To develop a PRL, all subjects underwent a scotoma simulation in a prior study, where five subjects were trained to develop the PRL in the left hemifield, five different subjects on the right hemifield, and the remaining five subjects could naturally chose the PRL location. The position of this PRL was used as baseline. Under central scotoma simulation, subjects performed a pursuit task, a signage reading task, and a reading-text task. In addition, retention of the behavior was also studied. Results showed that the PRL position was transferred to the pursuit task and that the vertical location of the PRL was maintained on the text reading task. However, when reading signage, a function-driven change in PRL location was observed. In addition, retention of the PRL position was observed over weeks and months. These results indicate that PRL positions can be induced and may further transferred to everyday life visual tasks, without hindering function-driven changes in PRL position.

  12. Perceived direction of gravity and the body-axis during static whole body roll-tilt in healthy subjects.

    PubMed

    Tamura, Atsushi; Wada, Yoshiro; Inui, Takuo; Shiotani, Akihiro

    2017-10-01

    We used the subjective visual vertical (SVV) and two different subjective visual body axis (SVBA) methods to quantify roll-tilt perception under gravity, and investigated the characteristics of these methods during static roll-tilt. In addition, we independently developed a compact device to facilitate evaluation of SVBA in different gravitational environments. Ten male volunteers participated in this study. We created a roll-tilt environment using a flight simulator in a dark room. The cockpit of the simulator was tilted leftward or rightward (-30°, -20°, -10°, 0°, 10°, 20° and 30°) in each randomly ordered trial. We quantified roll-tilt perception such that the experiment was conducted under 21 different conditions per participant. We found no significant differences among the SVV error and the two types of SVBA error. The SVV and the SVBA methods may be useful for evaluating subjective roll-tilt perception.

  13. The effect of saccade metrics on the corollary discharge contribution to perceived eye location

    PubMed Central

    Bansal, Sonia; Jayet Bray, Laurence C.; Peterson, Matthew S.

    2015-01-01

    Corollary discharge (CD) is hypothesized to provide the movement information (direction and amplitude) required to compensate for the saccade-induced disruptions to visual input. Here, we investigated to what extent these conveyed metrics influence perceptual stability in human subjects with a target-displacement detection task. Subjects made saccades to targets located at different amplitudes (4°, 6°, or 8°) and directions (horizontal or vertical). During the saccade, the target disappeared and then reappeared at a shifted location either in the same direction or opposite to the movement vector. Subjects reported the target displacement direction, and from these reports we determined the perceptual threshold for shift detection and estimate of target location. Our results indicate that the thresholds for all amplitudes and directions generally scaled with saccade amplitude. Additionally, subjects on average produced hypometric saccades with an estimated CD gain <1. Finally, we examined the contribution of different error signals to perceptual performance, the saccade error (movement-to-movement variability in saccade amplitude) and visual error (distance between the fovea and the shifted target location). Perceptual judgment was not influenced by the fluctuations in movement amplitude, and performance was largely the same across movement directions for different magnitudes of visual error. Importantly, subjects reported the correct direction of target displacement above chance level for very small visual errors (<0.75°), even when these errors were opposite the target-shift direction. Collectively, these results suggest that the CD-based compensatory mechanisms for visual disruptions are highly accurate and comparable for saccades with different metrics. PMID:25761955

  14. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS....646 Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal. (a...

  15. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects walked on a treadmill before and after a 30- minute exposure to 0.5X minifying during which self-generated sinusoidal vertical head rotations were performed while seated. Following exposure to visual-vestibular conflict subjects showed a restriction in compensatory head movements, increased knee and ankle flexion after heel-strike and a decrease in the rate of body loading during the rapid weight transfer phase after the heel strike event. Taken together, results from both studies provide evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alterations following exposure to visual-vestibular conflict. This information provides the basis for the design of a new generation of integrative tests that incorporate the evaluation of multiple neural control systems relevant to astronaut operational performance.

  16. Effects of combining vertical and horizontal information into a primary flight display

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Nataupsky, Mark; Steinmetz, George G.

    1987-01-01

    A ground-based aircraft simulation study was conducted to determine the effects of combining vertical and horizontal flight information into a single display. Two display configurations were used in this study. The first configuration consisted of a Primary Flight Display (PFD) format and a Horizontal Situation Display (HSD) with the PFD displayed conventionally above the HSD. For the second display configuration, the HSD format was combined with the PFD format. Four subjects participated in this study. Data were collected on performance parameters, pilot-control inputs, auditory evoked response parameters (AEP), oculometer measurements (eye-scan), and heart rate. Subjective pilot opinion was gathered through questionnaire data and scorings for both the Subjective Workload Assessment Technique (SWAT) and the NASA Task Load Index (NASA-TLX). The results of this study showed that, from a performance and subjective standpoint, the combined configuration was better than the separate configuration. Additionally, both the eye-transition and eye-dwell times for the separate HSD were notably higher than expected, with a 46% increase in available visual time when going from double to single display configuration.

  17. Relation between perception of vertical axis rotation and vestibulo-ocular reflex symmetry

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1991-01-01

    Subjects seated in a vertical axis rotation chair controlled their rotational velocity by adjusting a potentiometer. Their goal was to null out pseudorandom rotational perturbations in order to remain perceptually stationary. Most subjects showed a slow linear drift of velocity (a constant acceleration) to one side when they were deprived of an earth-fixed visual reference. The amplitude and direction of this drift can be considered a measure of a static bias in the subject's perception of rotation. The presence of a perceptual bias is consistent with a small, constant imbalance of vestibular function which could be of either central or peripheral origin. Deviations from perfect vestibulocular reflex (VOR) symmetry are also assumed to be related to imbalances in either peripheral or central vestibular function. Researchers looked for correlations between perceptual bias and various measures of vestibular reflex symmetry that might suggest a common source for both reflective and perceptual imbalances. No correlations were found. Measurement errors could not account for these results since repeated tests on the same subjects of both perceptual bias and VOR symmetry were well correlated.

  18. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1988-01-01

    Previous experiments with moving platform posturography have shown that different people have varying abilities to resolve conflicts among vestibular, visual, and proprioceptive sensory signals used to control upright posture. In particular, there is one class of subjects with a vestibular disorder known as benign paroxysmal positional vertigo (BPPV) who often are particularly sensitive to inaccurate visual information. That is, they will use visual sensory information for the control of their posture even when that visual information is inaccurate and is in conflict with accurate proprioceptive and vestibular sensory signals. BPPV has been associated with disorders of both posterior semicircular canal function and possibly otolith function. The present proposal hopes to take advantage of the similarities between the space motion sickness problem and the sensory orientation reference selection problems associated with the BPPV syndrome. These similarities include both etiology related to abnormal vertical canal-otolith function, and motion sickness initiating events provoked by pitch and roll head movements. The objectives of this proposal are to explore and quantify the orientation reference selection abilities of subjects and the relation of this selection to motion sickness in humans.

  19. Walking Speed Influences the Effects of Implicit Visual Feedback Distortion on Modulation of Gait Symmetry

    PubMed Central

    Maestas, Gabrielle; Hu, Jiyao; Trevino, Jessica; Chunduru, Pranathi; Kim, Seung-Jae; Lee, Hyunglae

    2018-01-01

    The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed. PMID:29632481

  20. Three-dimensional ocular kinematics underlying binocular single vision

    PubMed Central

    Misslisch, H.

    2016-01-01

    We have analyzed the binocular coordination of the eyes during far-to-near refixation saccades based on the evaluation of distance ratios and angular directions of the projected target images relative to the eyes' rotation centers. By defining the geometric point of binocular single vision, called Helmholtz point, we found that disparities during fixations of targets at near distances were limited in the subject's three-dimensional visual field to the vertical and forward directions. These disparities collapsed to simple vertical disparities in the projective binocular image plane. Subjects were able to perfectly fuse the vertically disparate target images with respect to the projected Helmholtz point of single binocular vision, independent of the particular location relative to the horizontal plane of regard. Target image fusion was achieved by binocular torsion combined with corrective modulations of the differential half-vergence angles of the eyes in the horizontal plane. Our findings support the notion that oculomotor control combines vergence in the horizontal plane of regard with active torsion in the frontal plane to achieve fusion of the dichoptic binocular target images. PMID:27655969

  1. Updating of visual orientation in a gravity-based reference frame.

    PubMed

    Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter

    2017-10-01

    The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.

  2. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms.

    PubMed

    McCormick, Lillian R; Levin, Lisa A

    2017-09-13

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with 'fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  3. Is perception of vertical impaired in individuals with chronic stroke with a history of 'pushing'?

    PubMed

    Mansfield, Avril; Fraser, Lindsey; Rajachandrakumar, Roshanth; Danells, Cynthia J; Knorr, Svetlana; Campos, Jennifer

    2015-03-17

    Post-stroke 'pushing' behaviour appears to be caused by impaired perception of vertical in the roll plane. While pushing behaviour typically resolves with stroke recovery, it is not known if misperception of vertical persists. The purpose of this study was to determine if perception of vertical is impaired amongst stroke survivors with a history of pushing behaviour. Fourteen individuals with chronic stroke (7 with history of pushing) and 10 age-matched healthy controls participated. Participants sat upright on a chair surrounded by a curved projection screen in a laboratory mounted on a motion base. Subjective visual vertical (SVV) was assessed using a 30 trial, forced-choice protocol. For each trial participants viewed a line projected on the screen and indicated if the line was tilted to the right or the left. For the subjective postural vertical (SPV), participants wore a blindfold and the motion base was tilted to the left or right by 10-20°. Participants were asked to adjust the angular movements of the motion base until they felt upright. SPV was not different between groups. SVV was significantly more biased towards the contralesional side for participants with history of pushing (-3.6 ± 4.1°) than those without (-0.1 ± 1.4°). Two individuals with history of pushing had SVV or SPV outside the maximum for healthy controls. Impaired vertical perception may persist in some individuals with prior post-stroke pushing, despite resolution of pushing behaviours, which could have consequences for functional mobility and falls. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. High resolution in-vivo imaging of skin with full field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.

    2014-03-01

    Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.

  5. Investigating Methods for Serving Visualizations of Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Roberts, J. T.; Cechini, M. F.; Lanjewar, K.; Rodriguez, J.; Boller, R. A.; Baynes, K.

    2017-12-01

    Several geospatial web servers, web service standards, and mapping clients exist for the visualization of two-dimensional raster and vector-based Earth science data products. However, data products with a vertical component (i.e., vertical profiles) do not have the same mature set of technologies and pose a greater technical challenge when it comes to visualizations. There are a variety of tools and proposed standards, but no obvious solution that can handle the variety of visualizations found with vertical profiles. An effort is being led by members of the NASA Global Imagery Browse Services (GIBS) team to gather a list of technologies relevant to existing vertical profile data products and user stories. The goal is to find a subset of technologies, standards, and tools that can be used to build publicly accessible web services that can handle the greatest number of use cases for the widest audience possible. This presentation will describe results of the investigation and offer directions for moving forward with building a system that is capable of effectively and efficiently serving visualizations of vertical profiles.

  6. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis.

    PubMed

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12-18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm.

  7. Effect of Postural Control Demands on Early Visual Evoked Potentials during a Subjective Visual Vertical Perception Task in Adolescents with Idiopathic Scoliosis

    PubMed Central

    Chang, Yi-Tzu; Meng, Ling-Fu; Chang, Chun-Ju; Lai, Po-Liang; Lung, Chi-Wen; Chern, Jen-Suh

    2017-01-01

    Subjective visual vertical (SVV) judgment and standing stability were separately investigated among patients with adolescent idiopathic scoliosis (AIS). Although, one study has investigated the central mechanism of stability control in the AIS population, the relationships between SVV, decreased standing stability, and AIS have never been investigated. Through event-related potentials (ERPs), the present study examined the effect of postural control demands (PDs) on AIS central mechanisms related to SVV judgment and standing stability to elucidate the time-serial stability control process. Thirteen AIS subjects (AIS group) and 13 age-matched adolescents (control group) aged 12–18 years were recruited. Each subject had to complete an SVV task (i.e., the modified rod-and-frame [mRAF] test) as a stimulus, with online electroencephalogram recording being performed in the following three standing postures: feet shoulder-width apart standing, feet together standing, and tandem standing. The behavioral performance in terms of postural stability (center of pressure excursion), SVV (accuracy and reaction time), and mRAF-locked ERPs (mean amplitude and peak latency of the P1, N1, and P2 components) was then compared between the AIS and control groups. In the behavioral domain, the results revealed that only the AIS group demonstrated a significantly accelerated SVV reaction time as the PDs increased. In the cerebral domain, significantly larger P2 mean amplitudes were observed during both feet shoulder-width-apart standing and feet together standing postures compared with during tandem standing. No group differences were noted in the cerebral domain. The results indicated that (1) during the dual-task paradigm, a differential behavioral strategy of accelerated SVV reaction time was observed in the AIS group only when the PDs increased and (2) the decrease in P2 mean amplitudes with the increase in the PD levels might be direct evidence of the competition for central processing attentional resources under the dual-task postural control paradigm. PMID:28713252

  8. Sensory factors limiting horizontal and vertical visual span for letter recognition

    PubMed Central

    Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.

    2014-01-01

    Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline. PMID:25187253

  9. Sensory factors limiting horizontal and vertical visual span for letter recognition

    PubMed Central

    Yu, Deyue; Legge, Gordon E.; Wagoner, Gunther; Chung, Susana T. L.

    2014-01-01

    Reading speed for English text is slower for text oriented vertically than horizontally. Yu, Park, Gerold, and Legge (2010) showed that slower reading of vertical text is associated with a smaller visual span (the number of letters recognized with high accuracy without moving the eyes). Three possible sensory determinants of the size of the visual span are: resolution (decreasing acuity at letter positions farther from the midline), mislocations (uncertainty about the relative position of letters in strings), and crowding (interference from flanking letters in recognizing the target letter). In the present study, we asked which of these factors is most important in determining the size of the visual span, and likely in turn in determining the horizontal/vertical difference in reading when letter size is above the critical print size for reading. We used a decomposition analysis to represent constraints due to resolution, mislocations, and crowding as losses in information transmitted (in bits) about letter recognition. Across vertical and horizontal conditions, crowding accounted for 75% of the loss in information, mislocations accounted for 19% of the loss, and declining acuity away from fixation accounted for only 6%. We conclude that crowding is the major factor limiting the size of the visual span, and that the horizontal/vertical difference in the size of the visual span is associated with stronger crowding along the vertical midline.

  10. Full-Body Gaze Control Mechanisms Elicited During Locomotion: Effects Of VOR Adaptation

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Houser, J.; Peters, B.; Miller, C.; Richards, J.; Marshburn, A.; Brady, R.; Cohen, H.; Bloomberg, J. J.

    2004-01-01

    Control of locomotion requires precise interaction between several sensorimotor subsystems. During locomotion the performer must satisfy two performance criteria: maintain stable forward translation and to stabilize gaze (McDonald, et al., 1997). Precise coordination demands integration of multiple sensorimotor subsystems for fulfilling both criteria. In order to test the general hypothesis that the whole body can serve as an integrated gaze stabilization system, we have previously investigated how the multiple, interdependent full-body sensorimotor subsystems respond to changes in gaze stabilization task constraints during locomotion (Mulavara and Bloomberg, 2003). The results suggest that the full body contributes to gaze stabilization during locomotion, and that its different functional elements respond to changes in visual task constraints. The goal of this study was to determine how the multiple, interdependent, full-body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated after the vestibulo-ocular reflex (VOR) gain has been altered. We investigated the potential of adaptive remodeling of the full-body gaze control system following exposure to visual-vestibular conflict known to adaptively reduce the VOR. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X manifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In this study we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results indicate that, following exposure to the 0.5X minifying lenses, there was a significant increase in the duration of stance and stride times, alteration in the amplitude of head movement with respect to space and a significant increase in the amount of knee flexion during the initial stance phase of the gait cycle. This study provides further evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alteration following exposure to visual-vestibular conflict.

  11. Differences in apparent straightness of dot and line stimuli.

    NASA Technical Reports Server (NTRS)

    Parlee, M. B.

    1972-01-01

    An investigation has been made of anisotropic responses to contoured and noncontoured stimuli to obtain an insight into the way these stimuli are processed. For this purpose, eight subjects judged the alignment of minimally contoured (3 dot) and contoured (line) stimuli. Stimuli, presented to each eye separately, vertically subtended either 8 or 32 deg visual angle and were located 10 deg left, center, or 10 deg right in the visual field. Location-dependent deviations from physical straightness were larger for dot stimuli than for lines. The results were the same for the two eyes. In a second experiment, subjects judged the alignment of stimuli composed of different densities of dots. Apparent straightness for these stimuli was the same as for lines. The results are discussed in terms of alternative mechanisms for analysis of contoured and minimally contoured stimuli.

  12. Design and test of a Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during training of upper limb movement.

    PubMed

    Simonsen, Daniel; Popovic, Mirjana B; Spaich, Erika G; Andersen, Ole Kæseler

    2017-11-01

    The present paper describes the design and test of a low-cost Microsoft Kinect-based system for delivering adaptive visual feedback to stroke patients during the execution of an upper limb exercise. Eleven sub-acute stroke patients with varying degrees of upper limb function were recruited. Each subject participated in a control session (repeated twice) and a feedback session (repeated twice). In each session, the subjects were presented with a rectangular pattern displayed on a vertical mounted monitor embedded in the table in front of the patient. The subjects were asked to move a marker inside the rectangular pattern by using their most affected hand. During the feedback session, the thickness of the rectangular pattern was changed according to the performance of the subject, and the color of the marker changed according to its position, thereby guiding the subject's movements. In the control session, the thickness of the rectangular pattern and the color of the marker did not change. The results showed that the movement similarity and smoothness was higher in the feedback session than in the control session while the duration of the movement was longer. The present study showed that adaptive visual feedback delivered by use of the Kinect sensor can increase the similarity and smoothness of upper limb movement in stroke patients.

  13. Identifying head-trunk and lower limb contributions to gaze stabilization during locomotion

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar P.; Bloomberg, Jacob J.

    2002-01-01

    The goal of the present study was to determine how the multiple, interdependent full-body sensorimotor subsystems respond to a change in gaze stabilization task constraints during locomotion. Nine subjects performed two gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2 m in front at the level of their eyes. While subjects performed the tasks we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, tibia and foot, accelerations along the vertical axis at the head and the tibia, and the vertical forces acting on the support surface. We tested the hypothesis that with the increased demands placed on visual acuity during the number recognition task, subjects would modify full-body segmental kinematics in order to reduce perturbations to the head in order to successfully perform the task. We found that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movement was on average 22% greater despite the fact that the trunk pitch and trunk vertical translation movement control were not significantly changed; 2) coordination patterns between head and trunk as reflected by the peak cross correlation between the head pitch and trunk pitch motion as well as the peak cross correlation between the head pitch and vertical trunk translation motion were not significantly changed; 3) knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle; 4) peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects. This was so even when the peak acceleration at the tibia and the transmission of the shock wave at heel strike (measured by the peak acceleration ratio of the head/tibia and the time lag between the tibial and head peak accelerations) remained unchanged. Taken together these results provide further evidence that the full body contributes to gaze stabilization during locomotion, and that its different functional elements can be modified online to contribute to gaze stabilization for different visual task constraints.

  14. [Diagnosis and treatment options in vertigo syndromes].

    PubMed

    Strupp, M; Dieterich, M; Zwergal, A; Brandt, T

    2015-10-01

    The key to diagnosing vertigo and balance disorders is systematic analysis of case history with clinical examination of the vestibular, oculomotor, and cerebral systems in particular. Important criteria for differentiating between the various vertigo syndromes are 1) the time course of symptoms, 2) the type of symptoms, 3) modulating factors, and 4) associated symptoms. For clinical examination of the vestibular system, six important tests are available: assessment of spontaneous nystagmus, head impulse test, dynamic visual acuity, subjective visual verticality, positioning manoeuvre, and the Romberg test/gait analysis with eyes open and closed. On the basis of five clinical signs (vertical divergence, central fixation nystagmus, gaze-evoked nystagmus, saccades, normal head impulse test), the clinical examination is able to differentiate between acute central and peripheral vestibular syndromes with a sensitivity and specificity of over 90%. The most relevant laboratory examinations are caloric irrigation and the video head-impulse test for canal function and the vestibular evoked myogenic potentials for otolith function. Finally, treatment is based upon four therapeutic principles: physiotherapy, pharmacotherapy, psychotherapy, and in rare cases, surgery.

  15. Biocular image misalignment tolerance

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; van de Pol, Corina; Rowe, Terri L.; Lont, Lisa M.; Peterson, R. David

    2003-09-01

    Biocular helmet-mounted display (HMD) design flexibility and cost are directly related to image misalignment tolerance standards. Currently recommended tolerance levels are based on highly variable data from a number of studies. This paper presents progress of an ongoing study to evaluate optometric measures sensitive to misalignment in partial-overlap biocular optical systems like that proposed for the Comanche RAH-66 helicopter helmet integrated display sighting system (HIDSS). Horizontal divergent and relative vertical misalignments (offsets) of see-through biocular symbology viewed against a simulated daytime background were chosen for this study. Misalignments within and just beyond current tolerance recommendations were evaluated using pre, pre and post, and during measures of visual performance. Data were obtained from seven experimental and four control subjects. The diplopia responses from experimental and control subjects were essentially the same. However, accommodative facility showed a rate decrement following exposure to both types of misalignment. Horizontal heterophorias showed definite post-misalignment increases. Subject responses to questionnaires universally indicated increased adaptation to (ease with) visual tasks over the testing period.

  16. Textured insoles reduce vertical loading rate and increase subjective plantar sensation in overground running.

    PubMed

    Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee

    2018-05-01

    The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.

  17. Peripheral refraction profiles in subjects with low foveal refractive errors.

    PubMed

    Tabernero, Juan; Ohlendorf, Arne; Fischer, M Dominik; Bruckmann, Anna R; Schiefer, Ulrich; Schaeffel, Frank

    2011-03-01

    To study the variability of peripheral refraction in a population of 43 subjects with low foveal refractive errors. A scan of the refractive error in the vertical pupil meridian of the right eye of 43 subjects (age range, 18 to 80 years, foveal spherical equivalent, < ± 2.5 diopter) over the central ± 45° of the visual field was performed using a recently developed angular scanning photorefractor. Refraction profiles across the visual field were fitted with four different models: (1) "flat model" (refractions about constant across the visual field), (2) "parabolic model" (refractions follow about a parabolic function), (3) "bi-linear model" (linear change of refractions with eccentricity from the fovea to the periphery), and (4) "box model" ("flat" central area with a linear change in refraction from a certain peripheral angle). Based on the minimal residuals of each fit, the subjects were classified into one of the four models. The "box model" accurately described the peripheral refractions in about 50% of the subjects. Peripheral refractions in six subjects were better characterized by a "linear model," in eight subjects by a "flat model," and in eight by the "parabolic model." Even after assignment to one of the models, the variability remained strikingly large, ranging from -0.75 to 6 diopter in the temporal retina at 45° eccentricity. The most common peripheral refraction profile (observed in nearly 50% of our population) was best described by the "box model." The high variability among subjects may limit attempts to reduce myopia progression with a uniform lens design and may rather call for a customized approach.

  18. How do visual and postural cues combine for self-tilt perception during slow pitch rotations?

    PubMed

    Scotto Di Cesare, C; Buloup, F; Mestre, D R; Bringoux, L

    2014-11-01

    Self-orientation perception relies on the integration of multiple sensory inputs which convey spatially-related visual and postural cues. In the present study, an experimental set-up was used to tilt the body and/or the visual scene to investigate how these postural and visual cues are integrated for self-tilt perception (the subjective sensation of being tilted). Participants were required to repeatedly rate a confidence level for self-tilt perception during slow (0.05°·s(-1)) body and/or visual scene pitch tilts up to 19° relative to vertical. Concurrently, subjects also had to perform arm reaching movements toward a body-fixed target at certain specific angles of tilt. While performance of a concurrent motor task did not influence the main perceptual task, self-tilt detection did vary according to the visuo-postural stimuli. Slow forward or backward tilts of the visual scene alone did not induce a marked sensation of self-tilt contrary to actual body tilt. However, combined body and visual scene tilt influenced self-tilt perception more strongly, although this effect was dependent on the direction of visual scene tilt: only a forward visual scene tilt combined with a forward body tilt facilitated self-tilt detection. In such a case, visual scene tilt did not seem to induce vection but rather may have produced a deviation of the perceived orientation of the longitudinal body axis in the forward direction, which may have lowered the self-tilt detection threshold during actual forward body tilt. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effect of viewing distance on the generation of vertical eye movements during locomotion

    NASA Technical Reports Server (NTRS)

    Moore, S. T.; Hirasaki, E.; Cohen, B.; Raphan, T.

    1999-01-01

    Vertical head and eye coordination was studied as a function of viewing distance during locomotion. Vertical head translation and pitch movements were measured using a video motion analysis system (Optotrak 3020). Vertical eye movements were recorded using a video-based pupil tracker (Iscan). Subjects (five) walked on a linear treadmill at a speed of 1.67 m/s (6 km/h) while viewing a target screen placed at distances ranging from 0.25 to 2.0 m at 0. 25-m intervals. The predominant frequency of vertical head movement was 2 Hz. In accordance with previous studies, there was a small head pitch rotation, which was compensatory for vertical head translation. The magnitude of the vertical head movements and the phase relationship between head translation and pitch were little affected by viewing distance, and tended to orient the naso-occipital axis of the head at a point approximately 1 m in front of the subject (the head fixation distance or HFD). In contrast, eye velocity was significantly affected by viewing distance. When viewing a far (2-m) target, vertical eye velocity was 180 degrees out of phase with head pitch velocity, with a gain of 0. 8. This indicated that the angular vestibulo-ocular reflex (aVOR) was generating the eye movement response. The major finding was that, at a close viewing distance (0.25 m), eye velocity was in phase with head pitch and compensatory for vertical head translation, suggesting that activation of the linear vestibulo-ocular reflex (lVOR) was contributing to the eye movement response. There was also a threefold increase in the magnitude of eye velocity when viewing near targets, which was consistent with the goal of maintaining gaze on target. The required vertical lVOR sensitivity to cancel an unmodified aVOR response and generate the observed eye velocity magnitude for near targets was almost 3 times that previously measured. Supplementary experiments were performed utilizing body-fixed active head pitch rotations at 1 and 2 Hz while viewing a head-fixed target. Results indicated that the interaction of smooth pursuit and the aVOR during visual suppression could modify both the gain and phase characteristics of the aVOR at frequencies encountered during locomotion. When walking, targets located closer than the HFD (1.0 m) would appear to move in the same direction as the head pitch, resulting in suppression of the aVOR. The results of the head-fixed target experiment suggest that phase modification of the aVOR during visual suppression could play a role in generating eye movements consistent with the goal of maintaining gaze on targets closer than the HFD, which would augment the lVOR response.

  20. Combined influences of gravitoinertial force level and visual field pitch on visually perceived eye level

    NASA Technical Reports Server (NTRS)

    DiZio, P.; Li, W.; Lackner, J. R.; Matin, L.

    1997-01-01

    Psychophysical measurements of the level at which observers set a small visual target so as to appear at eye level (VPEL) were made on 13 subjects in 1.0 g and 1.5 g environments in the Graybiel Laboratory rotating room while they viewed a pitched visual field or while in total darkness. The gravitoinertial force was parallel to the z-axis of the head and body during the measurements. The visual field consisted of two 58 degrees high, luminous, pitched-from-vertical, bilaterally symmetric, parallel lines, viewed in otherwise total darkness. The lines were horizontally separated by 53 degrees and presented at each of 7 angles of pitch ranging from 30 degrees with the top of the visual field turned away from the subject (top backward) to 30 degrees with the top turned toward the subject (top forward). At 1.5 g, VPEL changed linearly with the pitch of the 2-line stimulus and was depressed with top backward pitch and elevated with top forward pitch as had been reported previously at 1.0 g (1,2); however, the slopes of the VPEL-vs-pitch functions at 1.0 g and 1.5 g were indistinguishable. As reported previously also (3,4), the VPEL in darkness was considerably lower at 1.5 g than at 1.0 g; however, although the y-intercept of the VPEL-vs-pitch function in the presence of the 2-line visual field (visual field erect) was also lower at 1.5 g than at 1.0 g as it was in darkness, the G-related difference was significantly attenuated by the presence of the visual field. The quantitative characteristics of the results are consistent with a model in which VPEL is treated as a consequence of an algebraic weighted average or a vector sum of visual and nonvisual influences although the two combining rules lead to fits that are equally good.

  1. Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.

    PubMed

    Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas

    2016-10-17

    Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Internal models of target motion: expected dynamics overrides measured kinematics in timing manual interceptions.

    PubMed

    Zago, Myrka; Bosco, Gianfranco; Maffei, Vincenzo; Iosa, Marco; Ivanenko, Yuri P; Lacquaniti, Francesco

    2004-04-01

    Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.

  3. Peripheral refraction and image blur in four meridians in emmetropes and myopes.

    PubMed

    Shen, Jie; Spors, Frank; Egan, Donald; Liu, Chunming

    2018-01-01

    The peripheral refractive error of the human eye has been hypothesized to be a major stimulus for the development of its central refractive error. The purpose of this study was to investigate the changes in the peripheral refractive error across horizontal, vertical and two diagonal meridians in emmetropic and low, moderate and high myopic adults. Thirty-four adult subjects were recruited and aberration was measured using a modified commercial aberrometer. We then computed the refractive error in power vector notation from second-order Zernike terms. Statistical analysis was performed to evaluate the statistical differences in refractive error profiles between the subject groups and across all measured visual field meridians. Small amounts of relative myopic shift were observed in emmetropic and low myopic subjects. However, moderate and high myopic subjects exhibited a relative hyperopic shift in all four meridians. Astigmatism J 0 and J 45 had quadratic or linear changes dependent on the visual field meridians. Peripheral Sphero-Cylindrical Retinal Image Blur increased in emmetropic eyes in most of the measured visual fields. The findings indicate an overall emmetropic or slightly relative myopic periphery (spherical or oblate retinal shape) formed in emmetropes and low myopes, while moderate and high myopes form relative hyperopic periphery (prolate, or less oblate, retinal shape). In general, human emmetropic eyes demonstrate higher amount of peripheral retinal image blur.

  4. The Role of Linear Acceleration in Visual-Vestibular Interactions and Implications in Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Correia, Manning J.; Luke, Brian L.; McGrath, Braden J.; Clark, John B.; Rupert, Angus H.

    1996-01-01

    While considerable attention has been given to visual-vestibular interaction (VVI) during angular motion of the head as might occur during an aircraft spin, much less attention has been given to VVI during linear motion of the head. Such interaction might occur, for example, while viewing a stationary or moving display during vertical take-off and landing operations Research into linear VVI, particularly during prolonged periods of linear acceleration, has been hampered by the unavailability of a programmable translator capable of large excursions We collaborated with Otis Elevator Co. and used their research tower and elevator, whose motion could be digitally programmed, to vertically translate human subjects over a distance of 92.3 meters with a peak linear acceleration of 2 meters/sec(exp 2) During pulsatile or sinusoidal translation, the subjects viewed moving stripes (optokinetic stimulus) or a fixed point source (light emitting diode, led, display), respectively and it was generally found that. The direction of linear acceleration relative to the cardinal head axes and the direction of the slow component of optokinetic nystagmus (OKN) determined the extent of VVI during concomitant stripe motion and linear acceleration. Acceleration along the z head axis (A(sub z)) produced the largest VVI, particularly when the slow component of OKN was in the same direction as eye movements produced by the linear acceleration and Eye movements produced by linear acceleration are suppressed by viewing a fixed target at frequencies below 10 Hz But, above this frequency the suppression produced by VVI is removed. Finally, as demonstrated in non-human primates, vergence of the eyes appears to modulate the vertical eye movement response to linear acceleration in humans.

  5. Temporal Dynamics of Ocular Position Dependence of the Initial Human Vestibulo-ocular Reflex

    PubMed Central

    Crane, Benjamin T.; Tian, Junru; Demer, Joseph L.

    2007-01-01

    Purpose While an ideal vestibulo-ocular reflex (VOR) generates ocular rotations compensatory for head motion, during visually guided movements, Listing’s Law (LL) constrains the eye to rotational axes lying in Listing’s Plane (LP). The present study was conducted to explore the recent proposal that the VOR’s rotational axis is not collinear with the head’s, but rather follows a time-dependent strategy intermediate between LL and an ideal VOR. Methods Binocular LPs were defined during visual fixation in eight normal humans. The VOR was evoked by a highly repeatable transient whole-body yaw rotation in darkness at a peak acceleration of 2800 deg/s2. Immediately before rotation, subjects regarded targets 15 or 500 cm distant located at eye level, 20° up, or 20° down. Eye and head responses were compared with LL predictions in the position and velocity domains. Results LP orientation varied both among subjects and between individual subject’s eyes, and rotated temporally with convergence by 5 ± 5° (±SEM). In the position domain, the eye compensated for head displacement even when the head rotated out of LP. Even within the first 20 ms from onset of head rotation, the ocular velocity axis tilted relative to the head axis by 30% ± 8% of vertical gaze position. Saccades increased this tilt. Regardless of vertical gaze position, the ocular rotation axis tilted backward 4° farther in abduction than in adduction. There was also a binocular vertical eye velocity transient and lateral tilt of the ocular axis. Conclusions These disconjugate, short-latency axis perturbations appear intrinsic to the VOR and may have neural or mechanical origins. PMID:16565376

  6. Validation of a Manually Oscillating Chair for In-The-Field Assessment of Dynamic Visual Acuity on Crewmembers Within Hours of Returning From Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Kreutzberg, G. A.; Rosenberg, M. J. F.; Peters, B. T.; Reschke,M. F.

    2017-01-01

    Long-duration spaceflight results in sensorimotor adaptations, which cause functional deficits during gravitational transitions, such as landing on a planetary surface after long-duration microgravity exposure. Both the vestibular system and the central nervous system are affected by gravitational transitions. These systems are responsible for coordinating head and eye movements via the vestibulo-ocular reflex (VOR) and go through an adaptation period upon exposure to microgravity. Consequently, they must also re-adapt to Earth's gravitational environment upon landing. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with crewmembers reporting oscillopsia and blurred vision caused by retinal slip, or the inability to keep an image focused on their retina. This is thought to drive motion sickness symptoms experienced by most crewmembers following landing. Retinal slip can be estimated by dynamic visual acuity (DVA); visual acuity while in motion. Previously, DVA has been assessed in the laboratory where subjects walked at 6.4 km/hr on a motorized treadmill. Using this method, Peters et al. (2011) found that DVA is worsened in astronauts by an average of 0.75 eye-chart lines one day after landing. However, it is believed that re-adaptation occurs quickly and that DVA might be worse immediately upon re-exposure to a gravitational environment. Since many crewmembers are unable to walk safely upon landing, it was necessary to develop a method for replicating the vertical head movements associated with walking. In addition, the use of a chair to imitate the head displacement caused by walking isolates eye-head interactions without allowing for trunk and lower-body compensation, as seen with treadmill walking (Mulavara & Bloomberg 2003). Therefore, a modality for assessing DVA in the field within a few hours of landing was developed. In this study, we validated the ability of a manually operated oscillating chair to reproduce the oscillatory frequency of walking on a treadmill. Healthy non-astronaut subjects (n=14) participated in one test session and completed three static (seated) and three dynamic (walking/oscillated) visual acuity tests. DVA was assessed using a motorized treadmill, an automated oscillating chair, and a manually operated chair, both developed in the Neuroscience Laboratory at JSC. The automated chair was motor-driven and set to oscillate vertically at 2 Hz with a vertical displacement of +/- 5 cm to simulate vertical translation while walking. The manually operated chair was oscillated vertically by a test operator to the beat of a metronome at 120 beats/min (2 Hz) and a vertical displacement of approximately +/- 5 cm. As the subject was oscillated, they were asked to discern the direction gap of Landolt-C optotypes of varying sizes and verbally reported the direction while an operator recorded their response using a gamepad. Subjects were outfitted with accelerometers (sampling rate = 128 Hz) on their head, trunk and lumbar spine. A fast Fourier transform was performed on the vertical trunk acceleration to compare the peak and spread of the distribution of oscillation frequencies for each oscillating condition. The spread of the frequency distribution for the manual chair was not significantly different from either the treadmill or the automated chair. However, all three conditions had similar non-zero standard error values, suggesting a variance in head movement frequency which may affect DVA. The average oscillation frequency of the manual chair (1.85 Hz) was significantly different (a=0.05) from that of treadmill walking (2.24 Hz), but not significantly different from that of the automated chair (1.85 Hz) and all three conditions had small standard errors (SEM = 0.04, 0.06, and 0.08 Hz for manual, treadmill, and automated respectively). This implies that both chairs oscillate at a frequency below that of treadmill walking, but are comparable to each other and reproducible across sessions. Additionally, DVA scores did not vary significantly across conditions. The smaller spread values of the oscillating chairs' frequencies indicated mitigation of variation induced by locomotor strategies, which enables better examination of the issue of VOR adaptation. Furthermore, due to the deconditioned state of crewmembers in the initial hours after landing, it is easier to transport a manual bouncing chair into the field and safer to perform a vision test while seated in a chair versus walking on a treadmill. Therefore, the manually oscillating chair has been deemed to meet and exceed the DVA testing capabilities previously obtained by treadmill walking.

  7. Helicopter Visual Segment Approach Lighting System (HALS) Test Report

    DTIC Science & Technology

    1988-08-01

    this Pegl 23. Ne. a# Palo$ 22. Ptuco Unclassified Unclassified 316 Form DOT F 1700.7 (8-721 Reproduction of e9Isted Ppe authorized TABLE OF CONTENTS...Subject Pilot Range Rate/Vertical Position Plots lii LIST OF ILLUSTRATIONS Figure Page I Basic Heliport IFR Lighting System 4 2 Heliport Approach...Instrument Flight Rules ( IFR ) Heliport Lighting System and a centerline HALS. The Basic IFR Approach Light System is presented in figure 1. It consists of

  8. The effect of vertical and horizontal symmetry on memory for tactile patterns in late blind individuals.

    PubMed

    Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B

    2013-02-01

    Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.

  9. Evaluating the Subjective Straight Ahead Before and After Spaceflight

    NASA Technical Reports Server (NTRS)

    Campbell, D. J.; Wood, S. J.; Reschke, M. F.; Clement, G.

    2017-01-01

    Introduction. This joint European Space Agency/NASA pre- and post-flight study investigates the influence of exposure to microgravity on the subjective straight ahead (SSA) in crewmembers returning from long-duration expeditions to the International Space Station (ISS). The SSA is a measure of the internal representation of body orientation and to be influenced by stimulation of sensory systems involved in postural control. The use of a vibrotactile sensory aid to correct the representation of body tilted relative to gravity is also tested as a countermeasure. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing." Research Plans. The ISS study will involve eight crewmembers who will participate in three pre-flight sessions (between 120 and 60 days before launch) and then three post-flight sessions on R plus 0/1 day, R plus 4 days, and R plus 8 days. Sixteen control subjects were also tested during three sessions to evaluate the effects of repeated testing and to establish normative values. The experimental protocol includes measurements of gaze and arm movements during the following tasks: (1) Near & Far Fixation: The subject is asked to look at actual targets in the true straight-ahead direction or to imagine these targets in the dark. Targets are located at near distance (arm's length) and far distance (beyond 2 meters). This task is successively performed with the subject's body aligned with the gravitational vertical, and with the subject's body tilted in pitch relative to the gravitational vertical using a tilt chair. Measures are then compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the vertical; (2) Eye and Arm Movements: The subject is asked to look and point in the SSA direction in darkness and then make horizontal and vertical eye or arm movements, relative to Earth coordinates (allocentric) and to the subject's head/body reference (egocentric). This task is successively performed with the subject's body aligned with the gravitational vertical, and with subject's body tilted in roll using a tilt chair; (3) Linear Vestibulo-Ocular Reflex: The subject is asked to fixate actual visual targets at near and far distances in the true straight-ahead direction, and to evaluate the distance of these targets. The subject is asked to continue fixating the same imagined targets in darkness while he/she is passively accelerated up and down on a spring-loaded vertical linear accelerator. Results. In the control subject population, the perceived tilt angles, translations, and distances were remarkably close to the actual values. The pointing tasks indicated that the orientation of arm saccades was influenced by both the gravitational vertical and the body idiotropic vector. Repeating the testing did not reveal any significant changes. Preliminary results obtained in three crewmembers before and after flight will also be presented. Applications. A change in an individual's egocentric reference might have negative consequences on evaluating the direction of an approaching object or on the accuracy of reaching movements or locomotion. Consequently, investigating how microgravity affects the target location will have theoretical, operational, and even clinical implications for future space exploration missions. The use of vibrotactile feedback as a sensorimotor countermeasure is applicable to balance therapy applications for patients with vestibular loss and the elderly to mitigate risks due to loss of spatial orientation.

  10. Interaction between postural asymmetry and visual feedback effects in undisturbed upright stance control in healthy adults.

    PubMed

    Rougier, Patrice R; Boudrahem, Samir

    2017-09-01

    The technique of additional visual feedback has been shown to significantly decrease the center of pressure (CP) displacements of a standing subject. Body-weight asymmetry is known to increase postural instability due to difficulties in coordinating the reaction forces exerted under each foot and is often a cardinal feature of various neurological and traumatic diseases. To examine the possible interactions between additional visual feedback and body-weight asymmetry effects, healthy adults were recruited in a protocol with and without additional visual feedback, with different levels of body-weight asymmetry. CP displacements under each foot were recorded and used to compute the resultant CP displacements (CP Res ) and to estimate vertically projected center of gravity (CG v ) and CP Res -CG v displacements. Overall, six conditions were randomly proposed combining two factors: asymmetry with three BW percentage distributions (50/50, 35/65 and 20/80; left/right leg) and feedback (with or without additional VFB). The additional visual feedback technique principally reduces CG v displacements, whereas asymmetry increases CP Res -CG v displacements along the mediolateral axis. Some effects on plantar CP displacements were also observed, but only under the unloaded foot. Interestingly, no interaction between additional visual feedback and body-weight asymmetry was reported. These results suggest that the various postural effects that ensue from manipulating additional visual feedback parameters, shown previously in healthy subjects in various studies, could also apply independently of the level of asymmetry. Visual feedback effects could be observed in patients presenting weight-bearing asymmetries. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Hemispheric differences in visual search of simple line arrays.

    PubMed

    Polich, J; DeFrancesco, D P; Garon, J F; Cohen, W

    1990-01-01

    The effects of perceptual organization on hemispheric visual-information processing were assessed with stimulus arrays composed of short lines arranged in columns. A visual-search task was employed in which subjects judged whether all the lines were vertical (same) or whether a single horizontal line was present (different). Stimulus-display organization was manipulated in two experiments by variation of line density, linear organization, and array size. In general, left-visual-field/right-hemisphere presentations demonstrated more rapid and accurate responses when the display was perceived as a whole. Right-visual-field/left-hemisphere superiorities were observed when the display organization coerced assessment of individual array elements because the physical qualities of the stimulus did not effect a gestalt whole. Response times increased somewhat with increases in array size, although these effects interacted with other stimulus variables. Error rates tended to follow the reaction-time patterns. The results suggest that laterality differences in visual search are governed by stimulus properties which contribute to, or inhibit, the perception of a display as a gestalt. The implications of these findings for theoretical interpretations of hemispheric specialization are discussed.

  12. Postural orientation in microgravity depends on straightening up movement performed

    NASA Astrophysics Data System (ADS)

    Vaugoyeau, Marianne; Assaiante, Christine

    2009-08-01

    Whether the vertical body orientation depends on the initial posture and/or the type of straightening up movement is the main question raised in this paper. Another objective was to specify the compensatory role of visual input while adopting an erected posture during microgravity. The final body orientation was analysed in microgravity during parabolic flights. After either (1) straightening up movement from a crouching or (2) a sitting posture, with and without vision. The main results are the following: (1) a vertical erected final posture is correctly achieved after sit to stand movement, whereas all subjects were tilted forward after straightening up from a crouching posture and (2) vision may contribute to correct final posture. These results suggest the existence of a re-weighting of the remaining sensory information, visual information, contact cutaneous cues and proprioceptive information under microgravity condition. We can put forward the alternative hypothesis that the control of body orientation under microgravity condition may also be achieved on the basis of a postural body scheme, that seems to be dependant on the type of movement and/ or the initial position of the whole body.

  13. Tilt and Translation Motion Perception during Pitch Tilt with Visual Surround Translation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Brita M.; Harm, Deborah L.; Reschke, Millard F.; Wood, Scott J.

    2006-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Previous studies suggest that multisensory integration is critical for discriminating linear accelerations arising from tilt and translation head motion. Visual input is especially important at low frequencies where canal input is declining. The NASA Tilt Translation Device (TTD) was designed to recreate postflight orientation disturbances by exposing subjects to matching tilt self motion with conflicting visual surround translation. Previous studies have demonstrated that brief exposures to pitch tilt with foreaft visual surround translation produced changes in compensatory vertical eye movement responses, postural equilibrium, and motion sickness symptoms. Adaptation appeared greatest with visual scene motion leading (versus lagging) the tilt motion, and the adaptation time constant appeared to be approximately 30 min. The purpose of this study was to compare motion perception when the visual surround translation was inphase versus outofphase with pitch tilt. The inphase stimulus presented visual surround motion one would experience if the linear acceleration was due to foreaft self translation within a stationary surround, while the outofphase stimulus had the visual scene motion leading the tilt by 90 deg as previously used. The tilt stimuli in these conditions were asymmetrical, ranging from an upright orientation to 10 deg pitch back. Another objective of the study was to compare motion perception with the inphase stimulus when the tilts were asymmetrical relative to upright (0 to 10 deg back) versus symmetrical (10 deg forward to 10 deg back). Twelve subjects (6M, 6F, 22-55 yrs) were tested during 3 sessions separated by at least one week. During each of the three sessions (out-of-phase asymmetrical, in-phase asymmetrical, inphase symmetrical), subjects were exposed to visual surround translation synchronized with pitch tilt at 0.1 Hz for a total of 30 min. Tilt and translation motion perception was obtained from verbal reports and a joystick mounted on a linear stage. Horizontal vergence and vertical eye movements were obtained with a binocular video system. Responses were also obtained during darkness before and following 15 min and 30 min of visual surround translation. Each of the three stimulus conditions involving visual surround translation elicited a significantly reduced sense of perceived tilt and strong linear vection (perceived translation) compared to pre-exposure tilt stimuli in darkness. This increase in perceived translation with reduction in tilt perception was also present in darkness following 15 and 30 min exposures, provided the tilt stimuli were not interrupted. Although not significant, there was a trend for the inphase asymmetrical stimulus to elicit a stronger sense of both translation and tilt than the out-of-phase asymmetrical stimulus. Surprisingly, the inphase asymmetrical stimulus also tended to elicit a stronger sense of peak-to-peak translation than the inphase symmetrical stimulus, even though the range of linear acceleration during the symmetrical stimulus was twice that of the asymmetrical stimulus. These results are consistent with the hypothesis that the central nervous system resolves the ambiguity of inertial motion sensory cues by integrating inputs from visual, vestibular, and somatosensory systems.

  14. Effect of Target Location on Dynamic Visual Acuity During Passive Horizontal Rotation

    NASA Technical Reports Server (NTRS)

    Appelbaum, Meghan; DeDios, Yiri; Kulecz, Walter; Peters, Brian; Wood, Scott

    2010-01-01

    The vestibulo-ocular reflex (VOR) generates eye rotation to compensate for potential retinal slip in the specific plane of head movement. Dynamic visual acuity (DVA) has been utilized as a functional measure of the VOR. The purpose of this study was to examine changes in accuracy and reaction time when performing a DVA task with targets offset from the plane of rotation, e.g. offset vertically during horizontal rotation. Visual acuity was measured in 12 healthy subjects as they moved a hand-held joystick to indicate the orientation of a computer-generated Landolt C "as quickly and accurately as possible." Acuity thresholds were established with optotypes presented centrally on a wall-mounted LCD screen at 1.3 m distance, first without motion (static condition) and then while oscillating at 0.8 Hz (DVA, peak velocity 60 deg/s). The effect of target location was then measured during horizontal rotation with the optotypes randomly presented in one of nine different locations on the screen (offset up to 10 deg). The optotype size (logMar 0, 0.2 or 0.4, corresponding to Snellen range 20/20 to 20/50) and presentation duration (150, 300 and 450 ms) were counter-balanced across five trials, each utilizing horizontal rotation at 0.8 Hz. Dynamic acuity was reduced relative to static acuity in 7 of 12 subjects by one step size. During the random target trials, both accuracy and reaction time improved proportional to optotype size. Accuracy and reaction time also improved between 150 ms and 300 ms presentation durations. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements when acquiring vertical targets. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of motion. Both reaction time and accuracy are functionally relevant DVA parameters of VOR function.

  15. Smooth-pursuit eye movements without head movement disrupt the static body balance.

    PubMed

    Kim, Sang-Yeob; Moon, Byeong-Yeon; Cho, Hyun Gug

    2016-04-01

    [Purpose] To investigate the changes of body balance in static posture in smooth-pursuit eye movements (SPEMs) without head movement. [Subjects and Methods] Forty subjects (24 males, 16 females) aged 23.24 ± 2.58 years participated. SPEMs were activated in three directions (horizontal, vertical, and diagonal movements); the target speed was set at three conditions (10°/s, 20°/s, and 30°/s); and the binocular visual field was limited to 50°. To compare the body balance changes, the general stability (ST) and the fall risk index (FI) were measured with TETRAX. The subjects wore a head-neck collar and stood on a balance plate for 32 s during each measurement in three directions. SPEMs were induced to each subject with nine target speeds and directions. All measured values were compared with those in stationary fixation. [Results] The ST and FI increased significantly in all SPEMs directions, with an increased target speed than that in stationary fixation. In the same condition of the target speed, the FI had the highest value relative to diagonal SPEMs. [Conclusion] SPEMs without head movement disrupt the stability of body balance in a static posture, and diagonal SPEMs may have a more negative effect in maintaining body balance than horizontal or vertical SPEMs.

  16. The Effect of Optokinetic Stimulation on Perceptual and Postural Symptoms in Visual Vestibular Mismatch Patients.

    PubMed

    Van Ombergen, Angelique; Lubeck, Astrid J; Van Rompaey, Vincent; Maes, Leen K; Stins, John F; Van de Heyning, Paul H; Wuyts, Floris L; Bos, Jelte E

    2016-01-01

    Vestibular patients occasionally report aggravation or triggering of their symptoms by visual stimuli, which is called visual vestibular mismatch (VVM). These patients therefore experience discomfort, disorientation, dizziness and postural unsteadiness. Firstly, we aimed to get a better insight in the underlying mechanism of VVM by examining perceptual and postural symptoms. Secondly, we wanted to investigate whether roll-motion is a necessary trait to evoke these symptoms or whether a complex but stationary visual pattern equally provokes them. Nine VVM patients and healthy matched control group were examined by exposing both groups to a stationary stimulus as well as an optokinetic stimulus rotating around the naso-occipital axis for a prolonged period of time. Subjective visual vertical (SVV) measurements, posturography and relevant questionnaires were assessed. No significant differences between both groups were found for SVV measurements. Patients always swayed more and reported more symptoms than healthy controls. Prolonged exposure to roll-motion caused in patients and controls an increase in postural sway and symptoms. However, only VVM patients reported significantly more symptoms after prolonged exposure to the optokinetic stimulus compared to scores after exposure to a stationary stimulus. VVM patients differ from healthy controls in postural and subjective symptoms and motion is a crucial factor in provoking these symptoms. A possible explanation could be a central visual-vestibular integration deficit, which has implications for diagnostics and clinical rehabilitation purposes. Future research should focus on the underlying central mechanism of VVM and the effectiveness of optokinetic stimulation in resolving it.

  17. Audio-Visual Temporal Recalibration Can be Constrained by Content Cues Regardless of Spatial Overlap.

    PubMed

    Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin'ya

    2013-01-01

    It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap.

  18. Audio-Visual Temporal Recalibration Can be Constrained by Content Cues Regardless of Spatial Overlap

    PubMed Central

    Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin’Ya

    2013-01-01

    It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap. PMID:23658549

  19. Visual computed tomographic scoring of emphysema and its correlation with its diagnostic electrocardiographic sign: the frontal P vector.

    PubMed

    Chhabra, Lovely; Sareen, Pooja; Gandagule, Amit; Spodick, David H

    2012-03-01

    Verticalization of the frontal P vector in patients older than 45 years is virtually diagnostic of pulmonary emphysema (sensitivity, 96%; specificity, 87%). We investigated the correlation of P vector and the computed tomographic visual score of emphysema (VSE) in patients with established diagnosis of chronic obstructive pulmonary disease/emphysema. High-resolution computed tomographic scans of 26 patients with emphysema (age, >45 years) were reviewed to assess the type and extent of emphysema using the subjective visual scoring. Electrocardiograms were independently reviewed to determine the frontal P vector. The P vector and VSE were compared for statistical correlation. Both P vector and VSE were also directly compared with the forced expiratory volume at 1 second. The VSE and the orientation of the P vector (ÂP) had an overall significant positive correlation (r = +0.68; P = .0001) in all patients, but the correlation was very strong in patients with predominant lower-lobe emphysema (r = +0.88; P = .0004). Forced expiratory volume at 1 second and ÂP had almost a linear inverse correlation in predominant lower-lobe emphysema (r = -0.92; P < .0001). Orientation of the P vector positively correlates with visually scored emphysema. Both ÂP and VSE are strong reflectors of qualitative lung function in patients with predominant lower-lobe emphysema. A combination of more vertical ÂP and predominant lower-lobe emphysema reflects severe obstructive lung dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Visual display angles of conventional and a remotely piloted aircraft.

    PubMed

    Kamine, Tovy Haber; Bendrick, Gregg A

    2009-04-01

    Instrument display separation and proximity are important human factor elements used in the design and grouping of aircraft instrument displays. To assess display proximity in practical operations, the viewing visual angles of various displays in several conventional aircraft and in a remotely piloted vehicle were assessed. The horizontal and vertical instrument display visual angles from the pilot's eye position were measured in 12 different types of conventional aircraft, and in the ground control station (GCS) of a remotely piloted aircraft (RPA). A total of 18 categories of instrument display were measured and compared. In conventional aircraft almost all of the vertical and horizontal visual display angles lay within a "cone of easy eye movement" (CEEM). Mission-critical instruments particular to specific aircraft types sometimes displaced less important instruments outside the CEEM. For the RPA, all horizontal visual angles lay within the CEEM, but most vertical visual angles lay outside this cone. Most instrument displays in conventional aircraft were consistent with display proximity principles, but several RPA displays lay outside the CEEM in the vertical plane. Awareness of this fact by RPA operators may be helpful in minimizing information access cost, and in optimizing RPA operations.

  1. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Studies of the Ability to Hold the Eye in Eccentric Gaze: Measurements in Normal Subjects with the Head Erect

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Somers, Jeffrey T.; Feiveson, Alan H.; Leigh, R. John; Wood, Scott J.; Paloski, William H.; Kornilova, Ludmila

    2006-01-01

    We studied the ability to hold the eyes in eccentric horizontal or vertical gaze angles in 68 normal humans, age range 19-56. Subjects attempted to sustain visual fixation of a briefly flashed target located 30 in the horizontal plane and 15 in the vertical plane in a dark environment. Conventionally, the ability to hold eccentric gaze is estimated by fitting centripetal eye drifts by exponential curves and calculating the time constant (t(sub c)) of these slow phases of gazeevoked nystagmus. Although the distribution of time-constant measurements (t(sub c)) in our normal subjects was extremely skewed due to occasional test runs that exhibited near-perfect stability (large t(sub c) values), we found that log10(tc) was approximately normally distributed within classes of target direction. Therefore, statistical estimation and inference on the effect of target direction was performed on values of z identical with log10t(sub c). Subjects showed considerable variation in their eyedrift performance over repeated trials; nonetheless, statistically significant differences emerged: values of tc were significantly higher for gaze elicited to targets in the horizontal plane than for the vertical plane (P less than 10(exp -5), suggesting eccentric gazeholding is more stable in the horizontal than in the vertical plane. Furthermore, centrifugal eye drifts were observed in 13.3, 16.0 and 55.6% of cases for horizontal, upgaze and downgaze tests, respectively. Fifth percentile values of the time constant were estimated to be 10.2 sec, 3.3 sec and 3.8 sec for horizontal, upward and downward gaze, respectively. The difference between horizontal and vertical gazeholding may be ascribed to separate components of the velocity position neural integrator for eye movements, and to differences in orbital mechanics. Our statistical method for representing the range of normal eccentric gaze stability can be readily applied in a clinical setting to patients who were exposed to environments that may have modified their central integrators and thus require monitoring. Patients with gaze-evoked nystagmus can be flagged by comparing to the above established normative criteria.

  3. Attentional sensitivity and asymmetries of vertical saccade generation in monkey

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    The first goal of this study was to systematically document asymmetries in vertical saccade generation. We found that visually guided upward saccades have not only shorter latencies, but higher peak velocities, shorter durations and smaller errors. The second goal was to identify possible mechanisms underlying the asymmetry in vertical saccade latencies. Based on a recent model of saccade generation, three stages of saccade generation were investigated using specific behavioral paradigms: attention shift to a visual target (CUED paradigm), initiation of saccade generation (GAP paradigm) and release of the motor command to execute the saccade (DELAY paradigm). Our results suggest that initiation of a saccade (or "ocular disengagement") and its motor release contribute little to the asymmetry in vertical saccade latency. However, analysis of saccades made in the CUED paradigm indicated that it took less time to shift attention to a target in the upper visual field than to a target in the lower visual field. These data suggest that higher attentional sensitivity to targets in the upper visual field may contribute to shorter latencies of upward saccades.

  4. Reference Frames and 3-D Shape Perception of Pictured Objects: On Verticality and Viewpoint-From-Above

    PubMed Central

    van Doorn, Andrea J.; Wagemans, Johan

    2016-01-01

    Research on the influence of reference frames has generally focused on visual phenomena such as the oblique effect, the subjective visual vertical, the perceptual upright, and ambiguous figures. Another line of research concerns mental rotation studies in which participants had to discriminate between familiar or previously seen 2-D figures or pictures of 3-D objects and their rotated versions. In the present study, we disentangled the influence of the environmental and the viewer-centered reference frame, as classically done, by comparing the performances obtained in various picture and participant orientations. However, this time, the performance is the pictorial relief: the probed 3-D shape percept of the depicted object reconstructed from the local attitude settings of the participant. Comparisons between the pictorial reliefs based on different picture and participant orientations led to two major findings. First, in general, the pictorial reliefs were highly similar if the orientation of the depicted object was vertical with regard to the environmental or the viewer-centered reference frame. Second, a viewpoint-from-above interpretation could almost completely account for the shears occurring between the pictorial reliefs. More specifically, the shears could largely be considered as combinations of slants generated from the viewpoint-from-above, which was determined by the environmental as well as by the viewer-centered reference frame. PMID:27433329

  5. Visually induced self-motion sensation adapts rapidly to left-right reversal of vision

    NASA Technical Reports Server (NTRS)

    Oman, C. M.; Bock, O. L.

    1981-01-01

    Three experiments were conducted using 15 adult volunteers with no overt oculomotor or vestibular disorders. In all experiments, left-right vision reversal was achieved using prism goggles, which permitted a binocular field of vision subtending approximately 45 deg horizontally and 28 deg vertically. In all experiments, circularvection (CV) was tested before and immediately after a period of exposure to reversed vision. After one to three hours of active movement while wearing vision-reversing goggles, 10 of 15 (stationary) human subjects viewing a moving stripe display experienced a self-rotation illusion in the same direction as seen stripe motion, rather than in the opposite (normal) direction, demonstrating that the central neural pathways that process visual self-rotation cues can undergo rapid adaptive modification.

  6. Choroidal Blood Flow Decreases with Age: An MRI Study

    PubMed Central

    San Emeterio Nateras, Oscar; Harrison, Joseph M.; Muir, Eric R.; Zhang, Yi; Peng, Qi; Chalfin, Steven; Gutierrez, Juan E.; Johnson, Daniel A.; Kiel, Jeffrey W.; Duong, Timothy Q.

    2014-01-01

    Purpose To verify that a visual fixation protocol with cued eye blinks achieves sufficient stability for magnetic resonance imaging (MRI) blood-flow measurements and to determine if choroidal blood flow (ChBF) changes with age in humans. Methods The visual fixation stability achievable during an MRI scan was measured in five normal subjects using an eye-tracking camera outside the MRI scanner. Subjects were instructed to blink immediately after recorded MRI sound cues but to otherwise maintain stable visual fixation on a small target. Using this fixation protocol, ChBF was measured with MRI using a 3 Tesla clinical scanner in 17 normal subjects (24–68 years old). Arterial and intraocular pressures (IOP) were measured to calculate perfusion pressure in the same subjects. Results The mean temporal fluctuations (standard deviation) of the horizontal and vertical displacements were 29 ± 9 μm and 38 ± 11 μm within individual fixation periods, and 50 ± 34 μm and 48 ± 19 μm across different fixation periods. The absolute displacements were 67 ± 31 μm and 81 ± 26 μm. ChBF was negatively correlated with age (R =−0.7, p = 0.003), declining 2.7 ml/100 ml/min per year. There were no significant correlations between ChBF versus perfusion pressure, arterial pressure, or IOP. There were also no significant correlations between age versus perfusion pressure, arterial pressure, or IOP. Multiple regression analysis indicated that age was the only measured independent variable that was significantly correlated with ChBF (p = 0.03). Conclusions The visual fixation protocol with cued eye blinks was effective in achieving sufficient stability for MRI measurements. ChBF had a significant negative correlation with age. PMID:24655028

  7. Gravity receptors in a microcrustacean water flea - Sensitivity of antennal-socket setae in Daphnia magna

    NASA Technical Reports Server (NTRS)

    Meyers, D. G.; Farmer, J. M.

    1982-01-01

    Gravity receptors of Dephnia magna were discovered on the basal segment of the swimming antennae and were shown to respond to upward water currents that pass the animal as it sinks between swimming strokes. Sensitivity of the gravity perceiving mechanism was tested by subjecting daphnids to a series of five decreasingly dense aqueous solutions (neutral density to water) in darkness (to avoid visual cues). Three-dimensional, video analysis of body position (pitch, yaw and roll) and swimming path (hop and sink, vertical and horizontal patterns) revealed a gradual threshold that occurred near a density difference between the animal and its environment of less than 0.25%. Because daphnids do not sink but continue to slide after stroking in the increased density solutions, gravity perception appears to occur during a vertical swing of the longitudinal body axis to the vertical plane, about their center of gravity, and, thereby, implies a multidirectional sensitivity for the antennal-socket setae.

  8. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study.

    PubMed

    Kasten, Erich; Bunzenthal, Ulrike; Sabel, Bernhard A

    2006-11-25

    It has been argued that patients with visual field defects compensate for their deficit by making more frequent eye movements toward the hemianopic field and that visual field enlargements found after vision restoration therapy (VRT) may be an artefact of such eye movements. In order to determine if this was correct, we recorded eye movements in hemianopic subjects before and after VRT. Visual fields were measured in subjects with homonymous visual field defects (n=15) caused by trauma, cerebral ischemia or haemorrhage (lesion age >6 months). Visual field charts were plotted using both high-resolution perimetry (HRP) and conventional perimetry before and after a 3-month period of VRT, with eye movements being recorded with a 2D-eye tracker. This permitted quantification of eye positions and measurements of deviation from fixation. VRT lead to significant visual field enlargements as indicated by an increase of stimulus detection of 3.8% when tested using HRP and about 2.2% (OD) and 3.5% (OS) fewer misses with conventional perimetry. Eye movements were expressed as the standard deviations (S.D.) of the eye position recordings from fixation. Before VRT, the S.D. was +/-0.82 degrees horizontally and +/-1.16 degrees vertically; after VRT, it was +/-0.68 degrees and +/-1.39 degrees , respectively. A cluster analysis of the horizontal eye movements before VRT showed three types of subjects with (i) small (n=7), (ii) medium (n=7) or (iii) large fixation instability (n=1). Saccades were directed equally to the right or the left side; i.e., with no preference toward the blind hemifield. After VRT, many subjects showed a smaller variability of horizontal eye movements. Before VRT, 81.6% of the recorded eye positions were found within a range of 1 degrees horizontally from fixation, whereas after VRT, 88.3% were within that range. In the 2 degrees range, we found 94.8% before and 98.9% after VRT. Subjects moved their eyes 5 degrees or more 0.3% of the time before VRT versus 0.1% after VRT. Thus, in this study, subjects with homonymous visual field defects who were attempting to fixate a central target while their fields were being plotted, typically showed brief horizontal shifts with no preference toward or away from the blind hemifield. These eye movements were usually less than 1 degrees from fixation. Large saccades toward the blind field after VRT were very rare. VRT has no effect on either the direction or the amplitude of horizontal eye movements during visual field testing. These results argue against the theory that the visual field enlargements are artefacts induced by eye movements.

  9. Internal model of gravity for hand interception: parametric adaptation to zero-gravity visual targets on Earth.

    PubMed

    Zago, Myrka; Lacquaniti, Francesco

    2005-08-01

    Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.

  10. Visuomotor adaptation to a visual rotation is gravity dependent.

    PubMed

    Toma, Simone; Sciutti, Alessandra; Papaxanthis, Charalambos; Pozzo, Thierry

    2015-03-15

    Humans perform vertical and horizontal arm motions with different temporal patterns. The specific velocity profiles are chosen by the central nervous system by integrating the gravitational force field to minimize energy expenditure. However, what happens when a visuomotor rotation is applied, so that a motion performed in the horizontal plane is perceived as vertical? We investigated the dynamic of the adaptation of the spatial and temporal properties of a pointing motion during prolonged exposure to a 90° visuomotor rotation, where a horizontal movement was associated with a vertical visual feedback. We found that participants immediately adapted the spatial parameters of motion to the conflicting visual scene in order to keep their arm trajectory straight. In contrast, the initial symmetric velocity profiles specific for a horizontal motion were progressively modified during the conflict exposure, becoming more asymmetric and similar to those appropriate for a vertical motion. Importantly, this visual effect that increased with repetitions was not followed by a consistent aftereffect when the conflicting visual feedback was absent (catch and washout trials). In a control experiment we demonstrated that an intrinsic representation of the temporal structure of perceived vertical motions could provide the error signal allowing for this progressive adaptation of motion timing. These findings suggest that gravity strongly constrains motor learning and the reweighting process between visual and proprioceptive sensory inputs, leading to the selection of a motor plan that is suboptimal in terms of energy expenditure. Copyright © 2015 the American Physiological Society.

  11. Human performance capabilities in a simulated space station-like environment. 1: Fixed beam luminance and location

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Bartz, A. E.; Zahn, J. R.

    1972-01-01

    The effects of a fixed, intense, one-foot diameter beam of simulated sunlight imaged within the field of view, upon responses to a battery of visual, body balance and stability, eye-hand coordination, and mental tests were studied. Each subject's electrocardiogram and electro-oculograms (vertical and horizontal) were recorded throughout each two-hour testing period within the space-station-like environment. It is possible to say that both subjects adapted to the brightly illuminated white panels in approximately 30 seconds after their first exposure each day and thereafter did not experience ocular fatigue, eye strain, or other kinds of disturbances as a result of these viewing conditions.

  12. Effects of angular acceleration on man - Choice reaction time using visual and rotary motion information

    NASA Technical Reports Server (NTRS)

    Clark, B.; Stewart, J. D.

    1974-01-01

    This experiment was concerned with the effects of rotary acceleration on choice reaction time (RTc) to the motion of a luminous line on a cathode-ray tube. Specifically, it compared the (RTc) to rotary acceleration alone, visual acceleration alone, and simultaneous, double stimulation by both rotary and visual acceleration. Thirteen airline pilots were rotated about an earth-vertical axis in a precision rotation device while they observed a vertical line. The stimuli were 7 rotary and visual accelerations which were matched for rise time. The pilot responded as quickly as possible by displacing a vertical controller to the right or left. The results showed a decreasing (RTc) with increasing acceleration for all conditions, while the (RTc) to rotary motion alone was substantially longer than for all other conditions. The (RTc) to the double stimulation was significantly longer than that for visual acceleration alone.

  13. Stereo-motion cooperation and the use of motion disparity in the visual perception of 3-D structure.

    PubMed

    Cornilleau-Pérès, V; Droulez, J

    1993-08-01

    When an observer views a moving scene binocularly, both motion parallax and binocular disparity provide depth information. In Experiments 1A-1C, we measured sensitivity to surface curvature when these depth cues were available either individually or simultaneously. When the depth cues yielded comparable sensitivity to surface curvature, we found that curvature detection was easier with the cues present simultaneously, rather than individually. For 2 of the 6 subjects, this effect was stronger when the component of frontal translation of the surface was vertical, rather than horizontal. No such anisotropy was found for the 4 other subjects. If a moving object is observed binocularly, the patterns of optic flow are different on the left and right retinae. We have suggested elsewhere (Cornilleau-Pérès & Droulez, in press) that this motion disparity might be used as a visual cue for the perception of a 3-D structure. Our model consisted in deriving binocular disparity from the left and right distributions of vertical velocities, rather than from luminous intensities, as has been done in classical studies on stereoscopic vision. The model led to some predictions concerning the detection of surface curvature from motion disparity in the presence or absence of intensity-based disparity (classically termed binocular disparity). In a second set of experiments, we attempted to test these predictions, and we failed to validate our theoretical scheme from a physiological point of view.

  14. Dynamic modulation of ocular orientation during visually guided saccades and smooth-pursuit eye movements

    NASA Technical Reports Server (NTRS)

    Hess, Bernhard J M.; Angelaki, Dora E.

    2003-01-01

    Rotational disturbances of the head about an off-vertical yaw axis induce a complex vestibuloocular reflex pattern that reflects the brain's estimate of head angular velocity as well as its estimate of instantaneous head orientation (at a reduced scale) in space coordinates. We show that semicircular canal and otolith inputs modulate torsional and, to a certain extent, also vertical ocular orientation of visually guided saccades and smooth-pursuit eye movements in a similar manner as during off-vertical axis rotations in complete darkness. It is suggested that this graviceptive control of eye orientation facilitates rapid visual spatial orientation during motion.

  15. Optimal viewing position in vertically and horizontally presented Japanese words.

    PubMed

    Kajii, N; Osaka, N

    2000-11-01

    In the present study, the optimal viewing position (OVP) phenomenon in Japanese Hiragana was investigated, with special reference to a comparison between the vertical and the horizontal meridians in the visual field. In the first experiment, word recognition scores were determined while the eyes were fixating predetermined locations in vertically and horizontally displayed words. Similar to what has been reported for Roman scripts, OVP curves, which were asymmetric with respect to the beginning of words, were observed in both conditions. However, this asymmetry was less pronounced for vertically than for horizontally displayed words. In the second experiment, the visibility of individual characters within strings was examined for the vertical and horizontal meridians. As for Roman characters, letter identification scores were better in the right than in the left visual field. However, identification scores did not differ between the upper and the lower sides of fixation along the vertical meridian. The results showed that the model proposed by Nazir, O'Regan, and Jacobs (1991) cannot entirely account for the OVP phenomenon. A model in which visual and lexical factors are combined is proposed instead.

  16. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Bendrick, Gregg A.; Kamine, Tovy Haber

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. "cones") of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement" (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Methods: Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. Results: The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of "Maximum Eye Movement". However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of "Easy Eye Movement", though all were within the cone of "Maximum Eye Movement". All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Discussion: Most instrument displays in conventional aircraft lay within the cone of "Easy Eye Movement", though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight.

  17. The braingraph.org database of high resolution structural connectomes and the brain graph tools.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2017-10-01

    Based on the data of the NIH-funded Human Connectome Project, we have computed structural connectomes of 426 human subjects in five different resolutions of 83, 129, 234, 463 and 1015 nodes and several edge weights. The graphs are given in anatomically annotated GraphML format that facilitates better further processing and visualization. For 96 subjects, the anatomically classified sub-graphs can also be accessed, formed from the vertices corresponding to distinct lobes or even smaller regions of interests of the brain. For example, one can easily download and study the connectomes, restricted to the frontal lobes or just to the left precuneus of 96 subjects using the data. Partially directed connectomes of 423 subjects are also available for download. We also present a GitHub-deposited set of tools, called the Brain Graph Tools, for several processing tasks of the connectomes on the site http://braingraph.org.

  18. Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths.

    PubMed

    Indovina, Iole; Maffei, Vincenzo; Lacquaniti, Francesco

    2013-09-01

    By simulating self-motion on a virtual rollercoaster, we investigated whether acceleration cued by the optic flow affected the estimate of time-to-passage (TTP) to a target. In particular, we studied the role of a visual acceleration (1 g = 9.8 m/s(2)) simulating the effects of gravity in the scene, by manipulating motion law (accelerated or decelerated at 1 g, constant speed) and motion orientation (vertical, horizontal). Thus, 1-g-accelerated motion in the downward direction or decelerated motion in the upward direction was congruent with the effects of visual gravity. We found that acceleration (positive or negative) is taken into account but is overestimated in module in the calculation of TTP, independently of orientation. In addition, participants signaled TTP earlier when the rollercoaster accelerated downward at 1 g (as during free fall), with respect to when the same acceleration occurred along the horizontal orientation. This time shift indicates an influence of the orientation relative to visual gravity on response timing that could be attributed to the anticipation of the effects of visual gravity on self-motion along the vertical, but not the horizontal orientation. Finally, precision in TTP estimates was higher during vertical fall than when traveling at constant speed along the vertical orientation, consistent with a higher noise in TTP estimates when the motion violates gravity constraints.

  19. Influence of Near-Segment Positioning in a Rotationally Asymmetric Multifocal Intraocular Lens.

    PubMed

    Song, In Seok; Yoon, Sam Young; Kim, Jae Yong; Kim, Myoung Joon; Tchah, Hungwon

    2016-04-01

    To compare visual performance and higher order aberrations (HOAs) based on the position of the near segment in eyes with rotationally asymmetric multifocal intraocular lenses (IOLs). Asymmetric multifocal IOLs (Lentis Mplus LS-313; Oculentis Optikgeräte GmbH, Wetzlar, Germany) were implanted with the near segment positioned either inferiorly, superiorly, or temporally. Uncorrected distance (UDVA), intermediate (UIVA), and near (UNVA) visual acuity, corrected distance visual acuity (CDVA), and distance-corrected intermediate (DCIVA) and near (DCNVA) visual acuity, contrast sensitivity, HOAs, and subjective symptom questionnaires were compared at 1 month postoperatively. Forty-five eyes from 45 patients were evaluated (n = 25, 9, and 11 eyes in the inferior, superior, and temporal groups, respectively). No significant differences in UDVA, UIVA, UNVA, CDVA, DCIVA, or DCNVA were found between the three groups (P > .05). The temporal group showed the best results in UDVA, CDVA, and DCNVA, but the inferior group showed the best results in DCIVA and UNVA and the superior group showed the best results in UIVA. Contrast sensitivity and the subjective symptom questionnaire also did not demonstrate any significant differences (P > .05). Total HOA and spherical aberration did not demonstrate any statistically significant differences (P > .05), but vertical coma and horizontal coma demonstrated significant differences based on near segment position (P < .001). The position of the near segment in eyes with rotationally asymmetric multifocal IOLs demonstrates no significant effect on visual performance. Copyright 2016, SLACK Incorporated.

  20. Investigations of the pathogenesis of acquired pendular nystagmus

    NASA Technical Reports Server (NTRS)

    Averbuch-Heller, L.; Zivotofsky, A. Z.; Das, V. E.; DiScenna, A. O.; Leigh, R. J.

    1995-01-01

    We investigated the pathogenesis of acquired pendular nystagmus (APN) in six patients, three of whom had multiple sclerosis. First, we tested the hypothesis that the oscillations of APN are due to a delay in visual feedback secondary, for example, to demyelination of the optic nerves. We manipulated the latency to onset of visually guided eye movements using an electronic technique that induces sinusoidal oscillations in normal subjects. This manipulation did not change the characteristics of the APN, but did superimpose lower-frequency oscillations similar to those induced in normal subjects. These results are consistent with current models for smooth (non-saccadic) eye movements, which predict that prolongation of visual feedback could not account for the high-frequency oscillations that often characterize APN. Secondly, we attempted to determine whether an increase in the gain of the visually-enhanced vestibulo-ocular reflex (VOR), produced by viewing a near target, was accompanied by a commensurate increase in the amplitude of APN. Increases in horizontal or vertical VOR gain during near viewing occurred in four patients, but only two of them showed a parallel increase in APN amplitude. On the other hand, APN amplitude decreased during viewing of the near target in the two patients who showed no change in VOR gain. Taken together, these data suggest that neither delayed visual feedback nor a disorder of central vestibular mechanisms is primarily responsible for APN. More likely, these ocular oscillations are produced by abnormalities of internal feedback circuits, such as the reciprocal connections between brainstem nuclei and cerebellum.

  1. The Effect of Optokinetic Stimulation on Perceptual and Postural Symptoms in Visual Vestibular Mismatch Patients

    PubMed Central

    Van Rompaey, Vincent; Maes, Leen K.; Stins, John F.; Van de Heyning, Paul H.

    2016-01-01

    Background Vestibular patients occasionally report aggravation or triggering of their symptoms by visual stimuli, which is called visual vestibular mismatch (VVM). These patients therefore experience discomfort, disorientation, dizziness and postural unsteadiness. Objective Firstly, we aimed to get a better insight in the underlying mechanism of VVM by examining perceptual and postural symptoms. Secondly, we wanted to investigate whether roll-motion is a necessary trait to evoke these symptoms or whether a complex but stationary visual pattern equally provokes them. Methods Nine VVM patients and healthy matched control group were examined by exposing both groups to a stationary stimulus as well as an optokinetic stimulus rotating around the naso-occipital axis for a prolonged period of time. Subjective visual vertical (SVV) measurements, posturography and relevant questionnaires were assessed. Results No significant differences between both groups were found for SVV measurements. Patients always swayed more and reported more symptoms than healthy controls. Prolonged exposure to roll-motion caused in patients and controls an increase in postural sway and symptoms. However, only VVM patients reported significantly more symptoms after prolonged exposure to the optokinetic stimulus compared to scores after exposure to a stationary stimulus. Conclusions VVM patients differ from healthy controls in postural and subjective symptoms and motion is a crucial factor in provoking these symptoms. A possible explanation could be a central visual-vestibular integration deficit, which has implications for diagnostics and clinical rehabilitation purposes. Future research should focus on the underlying central mechanism of VVM and the effectiveness of optokinetic stimulation in resolving it. PMID:27128970

  2. Can stroke patients use visual analogue scales?

    PubMed

    Price, C I; Curless, R H; Rodgers, H

    1999-07-01

    Visual analogue scales (VAS) have been used for the subjective measurement of mood, pain, and health status after stroke. In this study we investigated how stroke-related impairments could alter the ability of subjects to answer accurately. Consent was obtained from 96 subjects with a clinical stroke (mean age, 72.5 years; 50 men) and 48 control subjects without cerebrovascular disease (mean age, 71.5 years; 29 men). Patients with reduced conscious level or severe dysphasia were excluded. Subjects were asked to rate the tightness that they could feel on the (unaffected) upper arm after 3 low-pressure inflations with a standard sphygmomanometer cuff, which followed a predetermined sequence (20 mm Hg, 40 mm Hg, 0 mm Hg). Immediately after each change, they rated the perceived tightness on 5 scales presented in a random order: 4-point rating scale (none, mild, moderate, severe), 0 to 10 numerical rating scale, mechanical VAS, horizontal VAS, and vertical VAS. Standard tests recorded deficits in language, cognition, and visuospatial awareness. Inability to complete scales with the correct pattern was associated with any stroke (P<0.001). There was a significant association between success using scales and milder clinical stroke subtype (P<0.01). Within the stroke group, logistic regression analysis identified significant associations (P<0.05) between impairments (cognitive and visuospatial) and inability to complete individual scales correctly. Many patients after a stroke are unable to successfully complete self-report measurement scales, including VAS.

  3. The development of an experimental facility and investigation of rapidly maneuvering Micro-Air-Vehicle wings

    NASA Astrophysics Data System (ADS)

    Wilson, Lee Alexander

    Vertical Takeoff-and-Landing (VTOL) Micro Air Vehicles (MAVs) provide a versatile operational platform which combines the capabilities of fixed wing and rotary wing MAVs. In order to improve performance of these vehicles, a better understanding of the rapid transition between horizontal and vertical flight is required. This study examines the flow structures around the Mini-Vertigo VTOL MAV using flow visualization techniques. This will gives an understanding of the flow structures which dominate the flight dynamics of rapid pitching maneuvers. This study consists of three objectives: develop an experimental facility, use flow visualization to investigate the flow around the experimental subject during pitching, and analyze the results. The flow around the Mini-Vertigo VTOL MAV is dominated by the slipstream from its propellers. The slipstream delays LE separation and causes drastic deflection in the flow. While the frequency of the vortices shed from the LE and TE varies with flow speed, the non-dimensional frequency does not. It does, however, vary slightly with the pitching rate. These results are applicable across a wide range of flight conditions. The results correlate to previous research done to examine the aerodynamic forces on the MAV.

  4. Processing of targets in smooth or apparent motion along the vertical in the human brain: an fMRI study.

    PubMed

    Maffei, Vincenzo; Macaluso, Emiliano; Indovina, Iole; Orban, Guy; Lacquaniti, Francesco

    2010-01-01

    Neural substrates for processing constant speed visual motion have been extensively studied. Less is known about the brain activity patterns when the target speed changes continuously, for instance under the influence of gravity. Using functional MRI (fMRI), here we compared brain responses to accelerating/decelerating targets with the responses to constant speed targets. The target could move along the vertical under gravity (1g), under reversed gravity (-1g), or at constant speed (0g). In the first experiment, subjects observed targets moving in smooth motion and responded to a GO signal delivered at a random time after target arrival. As expected, we found that the timing of the motor responses did not depend significantly on the specific motion law. Therefore brain activity in the contrast between different motion laws was not related to motor timing responses. Average BOLD signals were significantly greater for 1g targets than either 0g or -1g targets in a distributed network including bilateral insulae, left lingual gyrus, and brain stem. Moreover, in these regions, the mean activity decreased monotonically from 1g to 0g and to -1g. In the second experiment, subjects intercepted 1g, 0g, and -1g targets either in smooth motion (RM) or in long-range apparent motion (LAM). We found that the sites in the right insula and left lingual gyrus, which were selectively engaged by 1g targets in the first experiment, were also significantly more active during 1g trials than during -1g trials both in RM and LAM. The activity in 0g trials was again intermediate between that in 1g trials and that in -1g trials. Therefore in these regions the global activity modulation with the law of vertical motion appears to hold for both RM and LAM. Instead, a region in the inferior parietal lobule showed a preference for visual gravitational motion only in LAM but not RM.

  5. [A delayed motor production of open chains of linear strokes presented visually in static and dynamic modes: a comparison between 9 to 11 years old children and adults].

    PubMed

    Antonova, A A; Absatova, K A; Korneev, A A; Kurgansky, A V

    2015-01-01

    The production of drawing movements was studied in 29 right-handed children of 9-to-11 years old. The movements were the sequences of horizontal and vertical linear stokes conjoined at right angle (open polygonal chains) referred to throughout the paper as trajectories. The length of a trajectory varied from 4 to 6. The trajectories were presented visually to a subject in static (linedrawing) and dynamic (moving cursor that leaves no trace) modes. The subjects were asked to draw (copy) a trajectory in response to delayed go-signal (short click) as fast as possible without lifting the pen. The production latency time, the average movement duration along a trajectory segment, and overall number of errors committed by a subject during trajectory production were analyzed. A comparison of children's data with similar data in adults (16 subjects) shows the following. First, a substantial reduction in error rate is observed in the age range between 9 and 11 years old for both static and dynamic modes of trajectory presentation, with children of 11 still committing more error than adults. Second, the averaged movement duration shortens with age while the latency time tends to increase. Third, unlike the adults, the children of 9-11 do not show any difference in latency time between static and dynamic modes of visual presentation of trajectories. The difference in trajectory production between adult and children is attributed to the predominant involvement of on-line programming in children and pre-programming in adults.

  6. Eye-Tracking Reveals that the Strength of the Vertical-Horizontal Illusion Increases as the Retinal Image Becomes More Stable with Fixation

    PubMed Central

    Chouinard, Philippe A.; Peel, Hayden J.; Landry, Oriane

    2017-01-01

    The closer a line extends toward a surrounding frame, the longer it appears. This is known as a framing effect. Over 70 years ago, Teodor Künnapas demonstrated that the shape of the visual field itself can act as a frame to influence the perceived length of lines in the vertical-horizontal illusion. This illusion is typically created by having a vertical line rise from the center of a horizontal line of the same length creating an inverted T figure. We aimed to determine if the degree to which one fixates on a spatial location where the two lines bisect could influence the strength of the illusion, assuming that the framing effect would be stronger when the retinal image is more stable. We performed two experiments: the visual-field and vertical-horizontal illusion experiments. The visual-field experiment demonstrated that the participants could discriminate a target more easily when it was presented along the horizontal vs. vertical meridian, confirming a framing influence on visual perception. The vertical-horizontal illusion experiment determined the effects of orientation, size and eye gaze on the strength of the illusion. As predicted, the illusion was strongest when the stimulus was presented in either its standard inverted T orientation or when it was rotated 180° compared to other orientations, and in conditions in which the retinal image was more stable, as indexed by eye tracking. Taken together, we conclude that the results provide support for Teodor Künnapas’ explanation of the vertical-horizontal illusion. PMID:28392764

  7. Frequency encoded auditory display of the critical tracking task

    NASA Technical Reports Server (NTRS)

    Stevenson, J.

    1984-01-01

    The use of auditory displays for selected cockpit instruments was examined. In auditory, visual, and combined auditory-visual compensatory displays of a vertical axis, critical tracking task were studied. The visual display encoded vertical error as the position of a dot on a 17.78 cm, center marked CRT. The auditory display encoded vertical error as log frequency with a six octave range; the center point at 1 kHz was marked by a 20-dB amplitude notch, one-third octave wide. Asymptotic performance on the critical tracking task was significantly better when using combined displays rather than the visual only mode. At asymptote, the combined display was slightly, but significantly, better than the visual only mode. The maximum controllable bandwidth using the auditory mode was only 60% of the maximum controllable bandwidth using the visual mode. Redundant cueing increased the rate of improvement of tracking performance, and the asymptotic performance level. This enhancement increases with the amount of redundant cueing used. This effect appears most prominent when the bandwidth of the forcing function is substantially less than the upper limit of controllability frequency.

  8. Role of orientation reference selection in motion sickness

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Black, F. Owen

    1987-01-01

    The objectives of this proposal were developed to further explore and quantify the orientation reference selection abilities of subjects and the relation, if any, between motion sickness and orientation reference selection. The overall objectives of this proposal are to determine (1) if motion sickness susceptibility is related to sensory orientation reference selection abilities of subjects, (2) if abnormal vertical canal-otolith function is the source of these abnormal posture control strategies and if it can be quantified by vestibular and oculomotor reflex measurements, and (3) if quantifiable measures of perception of vestibular and visual motion cues can be related to motion sickness susceptibility and to orientation reference selection ability demonstrated by tests which systematically control the sensory imformation available for orientation.

  9. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    NASA Astrophysics Data System (ADS)

    Heidari, Manoutchehr; Wench, Allen

    1997-05-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  10. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    USGS Publications Warehouse

    Heidari, M.; Moench, A.

    1997-01-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  11. A Reevaluation of the Vestibulo-Ocular Reflex: New Ideas of its Purpose, Properties, Neural Substrate, and Disorders

    NASA Technical Reports Server (NTRS)

    Leigh, R. John; Brandt, Thomas

    1992-01-01

    Conventional views of the Vestibulo-Ocular Reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved-locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (less than 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).

  12. Vertical visual features have a strong influence on cuttlefish camouflage.

    PubMed

    Ulmer, K M; Buresch, K C; Kossodo, M M; Mäthger, L M; Siemann, L A; Hanlon, R T

    2013-04-01

    Cuttlefish and other cephalopods use visual cues from their surroundings to adaptively change their body pattern for camouflage. Numerous previous experiments have demonstrated the influence of two-dimensional (2D) substrates (e.g., sand and gravel habitats) on camouflage, yet many marine habitats have varied three-dimensional (3D) structures among which cuttlefish camouflage from predators, including benthic predators that view cuttlefish horizontally against such 3D backgrounds. We conducted laboratory experiments, using Sepia officinalis, to test the relative influence of horizontal versus vertical visual cues on cuttlefish camouflage: 2D patterns on benthic substrates were tested versus 2D wall patterns and 3D objects with patterns. Specifically, we investigated the influence of (i) quantity and (ii) placement of high-contrast elements on a 3D object or a 2D wall, as well as (iii) the diameter and (iv) number of 3D objects with high-contrast elements on cuttlefish body pattern expression. Additionally, we tested the influence of high-contrast visual stimuli covering the entire 2D benthic substrate versus the entire 2D wall. In all experiments, visual cues presented in the vertical plane evoked the strongest body pattern response in cuttlefish. These experiments support field observations that, in some marine habitats, cuttlefish will respond to vertically oriented background features even when the preponderance of visual information in their field of view seems to be from the 2D surrounding substrate. Such choices highlight the selective decision-making that occurs in cephalopods with their adaptive camouflage capability.

  13. DVA as a Diagnostic Test for Vestibulo-Ocular Reflex Function

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Appelbaum, Meghan

    2010-01-01

    The vestibulo-ocular reflex (VOR) stabilizes vision on earth-fixed targets by eliciting eyes movements in response to changes in head position. How well the eyes perform this task can be functionally measured by the dynamic visual acuity (DVA) test. We designed a passive, horizontal DVA test to specifically study the acuity and reaction time when looking in different target locations. Visual acuity was compared among 12 subjects using a standard Landolt C wall chart, a computerized static (no rotation) acuity test and dynamic acuity test while oscillating at 0.8 Hz (+/-60 deg/s). In addition, five trials with yaw oscillation randomly presented a visual target in one of nine different locations with the size and presentation duration of the visual target varying across trials. The results showed a significant difference between the static and dynamic threshold acuities as well as a significant difference between the visual targets presented in the horizontal plane versus those in the vertical plane when comparing accuracy of vision and reaction time of the response. Visual acuity increased proportional to the size of the visual target and increased between 150 and 300 msec duration. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of rotation. This DVA test could be used as a functional diagnostic test for visual-vestibular and neuro-cognitive impairments by assessing both accuracy and reaction time to acquire visual targets.

  14. Lateral interactions and speed of information processing in highly functioning multiple sclerosis patients.

    PubMed

    Nagy, Helga; Bencsik, Krisztina; Rajda, Cecília; Benedek, Krisztina; Janáky, Márta; Beniczky, Sándor; Kéri, Szabolcs; Vécsei, László

    2007-06-01

    Visual impairment is a common feature of multiple sclerosis. The aim of this study was to investigate lateral interactions in the visual cortex of highly functioning patients with multiple sclerosis and to compare that with basic visual and neuropsychologic functions. Twenty-two young, visually unimpaired multiple sclerosis patients with minimal symptoms (Expanded Disability Status Scale <2) and 30 healthy controls subjects participated in the study. Lateral interactions were investigated with the flanker task, during which participants were asked to detect the orientation of a low-contrast Gabor patch (vertical or horizontal), flanked with 2 collinear or orthogonal Gabor patches. Stimulus exposure time was 40, 60, 80, and 100 ms. Digit span forward/backward, digit symbol, verbal fluency, and California Verbal Learning Test procedures were used for background neuropsychologic assessment. Results revealed that patients with multiple sclerosis showed intact visual contrast sensitivity and neuropsychologic functions, whereas orientation detection in the orthogonal condition was significantly impaired. At 40-ms exposure time, collinear flankers facilitated the orientation detection performance of the patients resulting in normal performance. In conclusion, the detection of briefly presented, low-contrast visual stimuli was selectively impaired in multiple sclerosis. Lateral interactions between target and flankers robustly facilitated target detection in the patient group.

  15. Control of impact loading during distracted running before and after gait retraining in runners.

    PubMed

    Cheung, Roy T H; An, Winko W; Au, Ivan P H; Zhang, Janet H; Chan, Zoe Y S; MacPhail, Aislinn J

    2018-07-01

    Gait retraining using visual biofeedback has been reported to reduce impact loading in runners. However, most of the previous studies did not adequately examine the level of motor learning after training, as the modified gait pattern was not tested in a dual-task condition. Hence, this study sought to compare the landing peak positive acceleration (PPA) and vertical loading rates during distracted running before and after gait retraining. Sixteen recreational runners underwent a two-week visual biofeedback gait retraining program for impact loading reduction, with feedback on the PPA measured at heel. In the evaluation of PPA and vertical loading rates before and after the retraining, the participants performed a cognitive and verbal counting task while running. Repeated measures ANOVA indicated a significant interaction between feedback and training on PPA (F = 4.642; P = 0.048) but not vertical loading rates (F > 1.953; P > 0.067). Pairwise comparisons indicated a significantly lower PPA and vertical loading rates after gait retraining (P < 0.007; Cohen's d > 0.68). Visual feedback after gait retraining reduced PPA and vertical loading rates during distracted running (P < 0.033; Cohen's d > 0.36). Gait retraining is effective in lowering impact loading even when the runners are distracted. In dual-task situation, visual biofeedback provided beneficial influence on kinetics control after gait retraining.

  16. Light and dark adaptation of visually perceived eye level controlled by visual pitch.

    PubMed

    Matin, L; Li, W

    1995-01-01

    The pitch of a visual field systematically influences the elevation at which a monocularly viewing subject sets a target so as to appear at visually perceived eye level (VPEL). The deviation of the setting from true eye level average approximately 0.6 times the angle of pitch while viewing a fully illuminated complexly structured visual field and is only slightly less with one or two pitched-from-vertical lines in a dark field (Matin & Li, 1994a). The deviation of VPEL from baseline following 20 min of dark adaptation reaches its full value less than 1 min after the onset of illumination of the pitched visual field and decays exponentially in darkness following 5 min of exposure to visual pitch, either 30 degrees topbackward or 20 degrees topforward. The magnitude of the VPEL deviation measured with the dark-adapted right eye following left-eye exposure to pitch was 85% of the deviation that followed pitch exposure of the right eye itself. Time constants for VPEL decay to the dark baseline were the same for same-eye and cross-adaptation conditions and averaged about 4 min. The time constants for decay during dark adaptation were somewhat smaller, and the change during dark adaptation extended over a 16% smaller range following the viewing of the dim two-line pitched-from-vertical stimulus than following the viewing of the complex field. The temporal course of light and dark adaptation of VPEL is virtually identical to the course of light and dark adaptation of the scotopic luminance threshold following exposure to the same luminance. We suggest that, following rod stimulation along particular retinal orientations by portions of the pitched visual field, the storage of the adaptation process resides in the retinogeniculate system and is manifested in the focal system as a change in luminance threshold and in the ambient system as a change in VPEL. The linear model previously developed to account for VPEL, which was based on the interaction of influences from the pitched visual field and extraretinal influences from the body-referenced mechanism, was employed to incorporate the effects of adaptation. Connections between VPEL adaptation and other cases of perceptual adaptation of visual direction are described.

  17. [The application of subjective visual gravity in assessment of vestibular compensation: a pilot study].

    PubMed

    Zhao, Yuan; Chen, Taisheng; Wang, Wei; Xu, Kaixu; Wen, Chao; Liu, Qiang; Han, Xi; Li, Shanshan; Li, Xiaojie; Lin, Peng

    2016-05-01

    To discuss the characteristics of subjective visual gravity (subjective visual vertical/horizontal, SVV/SVH) and assess its clinical application for peripheral unilateral vestibular compensation. 69 cases of acute peripheral unilateral vestibular dysfunction patients (case group) accepted SVV/SVH, spontaneous nystagmus (SN), caloric test (CT) and other vestibular function tests. 49 healthy people (control group) accepted SVV/SVH only. SVV/SVH, SN and unilateral weakness (UW) were selected as for the observation indicators. The correlations between SVV/SVH, SN, UW and courses were investigated respectively, as well as the characteristic of SVV/SVH, SN in period of vestibular compensation. Among case group SVV, SVH positive in 42 patients(60.9%) and 44 patients(63.8%), the absolute values of the skew angle were in the range between 2.1°-20.0°, 2.1°-22.2°. Skew angles of SVV/SVH in control were in the range between -1.5°-2.0° and -2.0°-1.6°, and had no statistical significance with case group(t=5.336 and 5.864, P<0.05). SN-positive 28 cases (40.6%), the range of intensities at 2.4°-17.1°; UW-positive 50 cases (72.5%). In case group, positive correlation between SVV and SVH(r=0.948, P=0.00), negatively correlated between SVV/SVH and SN respectively(r values were -0.720, -0.733, P values were 0.00), no correlation between the skew angle of SVV/SVH, strength of SN and UW value(r values were 0.191, 0.189, and 0.179, P>0.05), there was no correlation between the absolute value of SVV, SVH, SN, UW with the duration (rs values were -0.075, -0.065, -0.212, and 0.126, P>0.05). Subjective visual gravity can be used not only to assess the range of unilateral peripheral vestibular dysfunction, but also help assess the static compensatory of otolithic, guidance and assessment of vestibular rehabilitation.

  18. What Is Being Done to Control Motion Sickness?

    NASA Technical Reports Server (NTRS)

    Hall, Y. D.

    1985-01-01

    AFT (Autogenic Feedback Training) involves practicing a series of mental exercises to speed up or slow down the control of autonomic activity. This produces a reduced tendency for autonomic activity levels to diverge from baseline (at rest) under stressful motion-sickness-inducing conditions. Subjects conditions. Subjects engaged in applying AFT exercises are required to closely monitor their own bodily sensations during motion-sickness-eliciting tests. These tests include the Coriolis Sickness Susceptibility Index (CSSI), which consists of sitting a subject into a rotating chair that moves at various speeds while a visual background turns at differing speeds and directions, and the Vertical Acceleration Rotation Device (VARD) test, which involves the placing of a subject in a drum that moves in an upward and downward motion until he or she is sick, while simultaneously monitoring the subject's vital signs. These tests provide investigators with evidence of slight changes in autonomic activities such as increases in heart rate, skin temperature, and sweat. All of these symptoms occur in subjects that experience bodily weakness or discomfort with the onset of motion sickness.

  19. Visual discrimination following partial telencephalic ablations in nurse sharks (Ginglymostoma cirratum).

    PubMed

    Graeber, R C; Schroeder, D M; Jane, J A; Ebbesson, S O

    1978-07-15

    An instrumental conditioning task was used to examine the role of the nurse shark telencephalon in black-white (BW) and horizontal-vertical stripes (HV) discrimination performance. In the first experiment, subjects initially received either bilateral anterior telencephalic control lesions or bilateral posterior telencephalic lesions aimed at destroying the central telencephalic nuclei (CN), which are known to receive direct input from the thalamic visual area. Postoperatively, the sharks were trained first on BW and then on HV. Those with anterior lesions learned both tasks as rapidly as unoperated subjects. Those with posterior lesions exhibited visual discrimination deficits related to the amount of damage to the CN and its connecting pathways. Severe damage resulted in an inability to learn either task but caused no impairments in motivation or general learning ability. In the second experiment, the sharks were first trained on BW and HV and then operated. Suction ablations were used to remove various portions of the CN. Sharks with 10% or less damage to the CN retained the preoperatively acquired discriminations almost perfectly. Those with 11-50% damage had to be retrained on both tasks. Almost total removal of the CN produced behavioral indications of blindness along with an inability to perform above the chance level on BW despite excellent retention of both discriminations over a 28-day period before surgery. It appears, however, that such sharks can still detect light. These results implicate the central telencephalic nuclei in the control of visually guided behavior in sharks.

  20. Cross-modal metaphorical mapping of spoken emotion words onto vertical space.

    PubMed

    Montoro, Pedro R; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando

    2015-01-01

    From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a 'positive-up/negative-down' embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis.

  1. Cross-modal metaphorical mapping of spoken emotion words onto vertical space

    PubMed Central

    Montoro, Pedro R.; Contreras, María José; Elosúa, María Rosa; Marmolejo-Ramos, Fernando

    2015-01-01

    From the field of embodied cognition, previous studies have reported evidence of metaphorical mapping of emotion concepts onto a vertical spatial axis. Most of the work on this topic has used visual words as the typical experimental stimuli. However, to our knowledge, no previous study has examined the association between affect and vertical space using a cross-modal procedure. The current research is a first step toward the study of the metaphorical mapping of emotions onto vertical space by means of an auditory to visual cross-modal paradigm. In the present study, we examined whether auditory words with an emotional valence can interact with the vertical visual space according to a ‘positive-up/negative-down’ embodied metaphor. The general method consisted in the presentation of a spoken word denoting a positive/negative emotion prior to the spatial localization of a visual target in an upper or lower position. In Experiment 1, the spoken words were passively heard by the participants and no reliable interaction between emotion concepts and bodily simulated space was found. In contrast, Experiment 2 required more active listening of the auditory stimuli. A metaphorical mapping of affect and space was evident but limited to the participants engaged in an emotion-focused task. Our results suggest that the association of affective valence and vertical space is not activated automatically during speech processing since an explicit semantic and/or emotional evaluation of the emotionally valenced stimuli was necessary to obtain an embodied effect. The results are discussed within the framework of the embodiment hypothesis. PMID:26322007

  2. Contrast Sensitivity, First-Order Motion and Initial Ocular Following in Demyelinating Optic Neuropathy

    PubMed Central

    Rucker, Janet C.; Sheliga, Boris M.; FitzGibbon, Edmond J.; Miles, Frederick A.; Leigh, R. John

    2008-01-01

    The ocular following response (OFR) is a measure of motion vision elicited at ultra-short latencies by sudden movement of a large visual stimulus. We compared the OFR to vertical sinusoidal gratings (spatial frequency 0.153 cycles/° or 0.458 cycles/°) of each eye in a subject with evidence of left optic nerve demyelination due to multiple sclerosis (MS). The subject showed substantial differences in vision measured with stationary low-contrast Sloan letters (20/63 OD and 20/200 OS at 2.5% contrast) and the Lanthony Desaturated 15-hue color test (Color Confusion Index 1.11 OD and 2.14 OS). Compared with controls, all of the subject's OFR to increasing contrast showed a higher threshold. The OFR of each of the subject's eyes were similar for the 0.153 cycles/° stimulus, and psychophysical measurements of his ability to detect these moving gratings were also similar for each eye. However, with the 0.458 cycles/° stimulus, the subject's OFR was asymmetric and the affected eye showed decreased responses (smaller slope constant as estimated by the Naka-Rushton equation). These results suggest that, in this case, optic neuritis caused a selective deficit that affected parvocellular pathways mediating higher spatial frequencies, lower-contrast, and color vision, but spared the field-holding mechanism underlying the OFR to lower spatial frequencies. The OFR may provide a useful method to study motion vision in individuals with disorders affecting anterior visual pathways. PMID:16649097

  3. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  4. Combined influence of visual scene and body tilt on arm pointing movements: gravity matters!

    PubMed

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R; Bourdin, Christophe; Mestre, Daniel R; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., 'combined' tilts equal to the sum of 'single' tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues.

  5. Combined Influence of Visual Scene and Body Tilt on Arm Pointing Movements: Gravity Matters!

    PubMed Central

    Scotto Di Cesare, Cécile; Sarlegna, Fabrice R.; Bourdin, Christophe; Mestre, Daniel R.; Bringoux, Lionel

    2014-01-01

    Performing accurate actions such as goal-directed arm movements requires taking into account visual and body orientation cues to localize the target in space and produce appropriate reaching motor commands. We experimentally tilted the body and/or the visual scene to investigate how visual and body orientation cues are combined for the control of unseen arm movements. Subjects were asked to point toward a visual target using an upward movement during slow body and/or visual scene tilts. When the scene was tilted, final pointing errors varied as a function of the direction of the scene tilt (forward or backward). Actual forward body tilt resulted in systematic target undershoots, suggesting that the brain may have overcompensated for the biomechanical movement facilitation arising from body tilt. Combined body and visual scene tilts also affected final pointing errors according to the orientation of the visual scene. The data were further analysed using either a body-centered or a gravity-centered reference frame to encode visual scene orientation with simple additive models (i.e., ‘combined’ tilts equal to the sum of ‘single’ tilts). We found that the body-centered model could account only for some of the data regarding kinematic parameters and final errors. In contrast, the gravity-centered modeling in which the body and visual scene orientations were referred to vertical could explain all of these data. Therefore, our findings suggest that the brain uses gravity, thanks to its invariant properties, as a reference for the combination of visual and non-visual cues. PMID:24925371

  6. Investigation of visually induced motion sickness in dynamic 3D contents based on subjective judgment, heart rate variability, and depth gaze behavior.

    PubMed

    Wibirama, Sunu; Hamamoto, Kazuhiko

    2014-01-01

    Visually induced motion sickness (VIMS) is an important safety issue in stereoscopic 3D technology. Accompanying subjective judgment of VIMS with objective measurement is useful to identify not only biomedical effects of dynamic 3D contents, but also provoking scenes that induce VIMS, duration of VIMS, and user behavior during VIMS. Heart rate variability and depth gaze behavior are appropriate physiological indicators for such objective observation. However, there is no information about relationship between subjective judgment of VIMS, heart rate variability, and depth gaze behavior. In this paper, we present a novel investigation of VIMS based on simulator sickness questionnaire (SSQ), electrocardiography (ECG), and 3D gaze tracking. Statistical analysis on SSQ data shows that nausea and disorientation symptoms increase as amount of dynamic motions increases (nausea: p<;0.005; disorientation: p<;0.05). To reduce VIMS, SSQ and ECG data suggest that user should perform voluntary gaze fixation at one point when experiencing vertical motion (up or down) and horizontal motion (turn left and right) in dynamic 3D contents. Observation of 3D gaze tracking data reveals that users who experienced VIMS tended to have unstable depth gaze than ones who did not experience VIMS.

  7. Ancient peat and apple extracts supplementation may improve strength and power adaptations in resistance trained men.

    PubMed

    Joy, Jordan M; Vogel, Roxanne M; Moon, Jordan R; Falcone, Paul H; Mosman, Matt M; Pietrzkowski, Zbigniew; Reyes, Tania; Kim, Michael P

    2016-07-18

    Increased cellular ATP levels have the potential to enhance athletic performance. A proprietary blend of ancient peat and apple extracts has been supposed to increase ATP production. Therefore, the purpose of this investigation was to determine the effects of this supplement on athletic performance when used during 12 weeks of supervised, periodized resistance training. Twenty-five healthy, resistance-trained, male subjects completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extract (TRT) or an equal-volume, visually-identical placebo (PLA) daily. Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2 week overreach and a 2 week taper phase. Strength was determined using 1-repetition-maximum (1RM) testing in the barbell back squat, bench press (BP), and deadlift exercises. Peak power and peak velocity were determined during BP at 30 % 1RM and vertical jump tests as well as a 30s Wingate test, which also provided relative power (watt:mass) A group x time interaction was present for squat 1RM, deadlift 1RM, and vertical jump peak power and peak velocity. Squat and deadlift 1RM increased in TRT versus PLA from pre to post. Vertical jump peak velocity increased in TRT versus PLA from pre to week 10 as did vertical jump peak power, which also increased from pre to post. Wingate peak power and watt:mass tended to favor TRT. Supplementing with ancient peat and apple extract while participating in periodized resistance training may enhance performance adaptations. ClinicalTrials.gov registration ID: NCT02819219 , retrospectively registered on 6/29/2016.

  8. Functional Coordination of a Full-Body Gaze Control Mechanisms Elicited During Locomotion

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Cohen, Helen S.

    2003-01-01

    Control of locomotion requires precise interaction between several sensorimotor subsystems. Exposure to the microgravity environment of spaceflight leads to postflight adaptive alterations in these multiple subsystems leading to postural and gait disturbances. Countermeasures designed to mitigate these postflight gait alterations will need to be assessed with a new generation of functional tests that evaluate the interaction of various elements central to locomotor control. The goal of this study is to determine how the multiple, interdependent, full- body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated. To explore this question two experiments were performed. In the first study (Study 1) we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects (n=9) performed two discreet gaze stabilization tasks while walking at 6.4 km/hr on a motorized treadmill: 1) focusing on a central point target; 2) reading numeral characters; both presented at 2m in front at eye level. The second study (Study 2) investigated the potential of adaptive remodeling of the full-body gaze control systems following exposure to visual-vestibular conflict. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X minifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In both studies we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results from Study 1 showed that while reading numeral characters as compared to the central point target: 1) compensatory head pitch movements were on average 22% greater 2) the peak acceleration measured at the head was significantly reduced by an average of 13% in four of the six subjects 3) the knee joint total movement was on average 11% greater during the period from the heel strike event to the peak knee flexion event in stance phase of the gait cycle. Results from Study 2 indicate that following exposure to visual-vestibular conflict changes in full-body strategies were observed consistent with the requirement to aid gaze stabilization during locomotion.

  9. Decline of vertical gaze and convergence with aging.

    PubMed

    Oguro, Hiroaki; Okada, Kazunori; Suyama, Nobuo; Yamashita, Kazuya; Yamaguchi, Shuhei; Kobayashi, Shotai

    2004-01-01

    Disturbance of vertical eye movement and ocular convergence is often observed in elderly people, but little is known about its frequency. The purpose of this study was to investigate age-associated changes in vertical eye movement and convergence in healthy elderly people, using a digital video camera system. We analyzed vertical eye movements and convergence in 113 neurologically normal elderly subjects (mean age 70 years) in comparison with 20 healthy young controls (mean age 32 years). The range of vertical eye movement was analyzed quantitatively and convergence was analyzed qualitatively. In the elderly subjects, the angle of vertical gaze decreased with advancing age and it was significantly smaller than that of the younger subjects. The mean angle of upward gaze was significantly smaller than that of downward gaze for both young and elderly subjects. Upward gaze impairment became apparent in subjects in their 70s, and downward gaze impairment in subjects in their 60s. Disturbance in convergence also increased with advancing age, and was found in 40.7% of the elderly subjects. These findings indicate that the mechanisms of age-related change are different for upward and downward vertical gaze. Digital video camera monitoring was useful for assessing and monitoring eye movements. Copyright 2004 S. Karger AG, Basel

  10. Postural stability changes during large vertical diplopia induced by prism wear in normal subjects.

    PubMed

    Matsuo, Toshihiko; Yamasaki, Hanako; Yasuhara, Hirotaka; Hasebe, Kayoko

    2013-01-01

    To test the effect of double vision on postural stability, we measured postural stability by electric stabilometry before prism-wearing and immediately, 15, 30, and 60min after continuous prism-wearing with 6 prism diopters in total (a 3-prism-diopter prism placed with the base up in front of one eye and with the base down in front of the other eye) in 20 normal adult individuals with their eyes open or closed. Changes in stabilometric parameters in the time course of 60min were analyzed statistically by repeated-measure analysis of variance. When subjectsセ eyes were closed, the total linear length (cm) and the unit-time length (cm/sec) of the sway path were significantly shortened during the 60-minute prism-wearing (p<0.05). No significant change was noted in any stabilometric parameters obtained with the eyes open during the time course. In conclusion, postural stability did not change with the eyes open in the condition of large vertical diplopia, induced by prism-wearing for 60min, while the stability became better when measured with the eyes closed. A postural control mechanism other than that derived from visual input might be reinforced under abnormal visual input such as non-fusionable diplopia.

  11. The Effect of Visual Experience on Perceived Haptic Verticality When Tilted in the Roll Plane

    PubMed Central

    Cuturi, Luigi F.; Gori, Monica

    2017-01-01

    The orientation of the body in space can influence perception of verticality leading sometimes to biases consistent with priors peaked at the most common head and body orientation, that is upright. In this study, we investigate haptic perception of verticality in sighted individuals and early and late blind adults when tilted counterclockwise in the roll plane. Participants were asked to perform a stimulus orientation discrimination task with their body tilted to their left ear side 90° relative to gravity. Stimuli were presented by using a motorized haptic bar. In order to test whether different reference frames relative to the head influenced perception of verticality, we varied the position of the stimulus on the body longitudinal axis. Depending on the stimulus position sighted participants tended to have biases away or toward their body tilt. Visually impaired individuals instead show a different pattern of verticality estimations. A bias toward head and body tilt (i.e., Aubert effect) was observed in late blind individuals. Interestingly, no strong biases were observed in early blind individuals. Overall, these results posit visual sensory information to be fundamental in influencing the haptic readout of proprioceptive and vestibular information about body orientation relative to gravity. The acquisition of an idiotropic vector signaling the upright might take place through vision during development. Regarding early blind individuals, independent spatial navigation experience likely enhanced by echolocation behavior might have a role in such acquisition. In the case of participants with late onset blindness, early experience of vision might lead them to anchor their visually acquired priors to the haptic modality with no disambiguation between head and body references as observed in sighted individuals (Fraser et al., 2015). With our study, we aim to investigate haptic perception of gravity direction in unusual body tilts when vision is absent due to visual impairment. Insofar, our findings throw light on the influence of proprioceptive/vestibular sensory information on haptic perceived verticality in blind individuals showing how this phenomenon is affected by visual experience. PMID:29270109

  12. Static roll-tilt over 5 minutes locally distorts the internal estimate of direction of gravity.

    PubMed

    Tarnutzer, A A; Bockisch, C J; Straumann, D; Marti, S; Bertolini, G

    2014-12-01

    The subjective visual vertical (SVV) indicates perceived direction of gravity. Even in healthy human subjects, roll angle-dependent misestimations, roll overcompensation (A-effect, head-roll > 60° and <135°) and undercompensation (E-effect, head-roll < 60°), occur. Previously, we demonstrated that, after prolonged roll-tilt, SVV estimates when upright are biased toward the preceding roll position, which indicates that perceived vertical (PV) is shifted by the prior tilt (Tarnutzer AA, Bertolini G, Bockisch CJ, Straumann D, Marti S. PLoS One 8: e78079, 2013). Hypothetically, PV in any roll position could be biased toward the previous roll position. We asked whether such a "global" bias occurs or whether the bias is "local". The SVV of healthy human subjects (N = 9) was measured in nine roll positions (-120° to +120°, steps = 30°) after 5 min of roll-tilt in one of two adaptation positions (±90°) and compared with control trials without adaptation. After adapting, adjustments were shifted significantly (P < 0.05) toward the previous adaptation position for nearby roll-tilted positions (±30°, ±60°) and upright only. We computationally simulated errors based on the sum of a monotonically increasing function (producing roll undercompensation) and a mixture of Gaussian functions (representing roll overcompensation centered around PV). In combination, the pattern of A- and E-effects could be generated. By shifting the function representing local overcompensation toward the adaptation position, the experimental postadaptation data could be fitted successfully. We conclude that prolonged roll-tilt locally distorts PV rather than globally shifting it. Short-term adaptation of roll overcompensation may explain these shifts and could reflect the brain's strategy to optimize SVV estimates around recent roll positions. Thus postural stability can be improved by visually-mediated compensatory responses at any sustained body-roll orientation. Copyright © 2014 the American Physiological Society.

  13. Local and non-local deficits in amblyopia: acuity and spatial interactions.

    PubMed

    Bonneh, Yoram S; Sagi, Dov; Polat, Uri

    2004-12-01

    Amblyopic vision is thought to be limited by abnormal long-range spatial interactions, but their exact mode of action and relationship to the main amblyopic deficit in visual acuity is largely unknown. We studied this relationship in a group (N=59) of anisometropic (N=21) and strabismic (or combined, N=38) subjects, using (1) a single and multi-pattern (crowded) computerized static Tumbling-E test with scaled spacing of two pattern widths (TeVA), in addition to an optotype (ETDRS chart) acuity test (VA) and (2) contrast detection of Gabor patches with lateral flankers (lateral masking) along the horizontal and vertical axes as well as in collinear and parallel configurations. By correlating the different measures of visual acuity and contrast suppression, we found that (1) the VA of the strabismic subjects could be decomposed into two uncorrelated components measured in TeVA: acuity for isolated patterns and acuity reduction due to flanking patterns. The latter comprised over 60% of the VA magnitude, on the average and accounted for over 50% of its variance. In contrast, a slight reduction in acuity was found in the anisometropic subjects, and the acuity for a single pattern could account for 70% of the VA variance. (2) The lateral suppression (contrast threshold elevation) in a parallel configuration along the horizontal axis was correlated with the VA (R2=0.7), as well as with the crowding effect (TeVA elevation, R2=0.5) for the strabismic group. Some correlation with the VA was also found for the collinear configuration in the anisometropic group, but less suppression and no correlation were found for all the vertical configurations in all the groups. The results indicate the existence of a specific non-local component of the strabismic deficit, in addition to the local acuity deficit in all amblyopia types. This deficit might reflect long-range lateral inhibition, or alternatively, an inaccurate and scattered top-down attentional selection mechanism.

  14. Large Terrain Continuous Level of Detail 3D Visualization Tool

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    This software solved the problem of displaying terrains that are usually too large to be displayed on standard workstations in real time. The software can visualize terrain data sets composed of billions of vertices, and can display these data sets at greater than 30 frames per second. The Large Terrain Continuous Level of Detail 3D Visualization Tool allows large terrains, which can be composed of billions of vertices, to be visualized in real time. It utilizes a continuous level of detail technique called clipmapping to support this. It offloads much of the work involved in breaking up the terrain into levels of details onto the GPU (graphics processing unit) for faster processing.

  15. Using Tests Designed to Measure Individual Sensorimotor Subsystem Perfomance to Predict Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Peters, B. T.; Caldwell, E. E.; Batson, C. D.; Guined, J. R.; DeDios, Y. E.; Stepanyan, V.; Gadd, N. E.; Szecsy, D. L.; Mulavara, A. P.; Seidler, R. D.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functions during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The way each individual's brain synthesizes the available visual, vestibular and somatosensory information is likely the basis for much of the variation. Identifying the presence of biases in each person's use of information available from these sensorimotor subsystems and relating it to their ability to adapt to a novel locomotor task will allow us to customize a training program designed to enhance sensorimotor adaptability. Eight tests are being used to measure sensorimotor subsystem performance. Three of these use measures of body sway to characterize balance during varying sensorimotor challenges. The effect of vision is assessed by repeating conditions with eyes open and eyes closed. Standing on foam, or on a support surface that pitches to maintain a constant ankle angle provide somatosensory challenges. Information from the vestibular system is isolated when vision is removed and the support surface is compromised, and it is challenged when the tasks are done while the head is in motion. The integration and dominance of visual information is assessed in three additional tests. The Rod & Frame Test measures the degree to which a subject's perception of the visual vertical is affected by the orientation of a tilted frame in the periphery. Locomotor visual dependence is determined by assessing how much an oscillating virtual visual world affects a treadmill-walking subject. In the third of the visual manipulation tests, subjects walk an obstacle course while wearing up-down reversing prisms. The two remaining tests include direct measures of knee and ankle proprioception and a functional movement assessment that screens for movement restrictions and asymmetries. To assess each subject's locomotor adaptability subjects walk for twenty minutes on a treadmill that oscillates laterally at 0.3 Hz. Throughout the test metabolic cost provides a measure of exertion and step frequency provides a measure of stability. Additionally, at four points during the perturbation period, reaction time tests are used to probe changes in the amount of mental effort being used to perform the task. As with the adaptive capability observed in astronauts during gravitational transitions, our data shows significant variability between subjects. To aid in the analysis of the results, custom software tools have been developed to enhance in the visualization of the large number of output variables. Preliminary analyses of the data collected to date do not show a strong relationship between adaptability and any single predictor variable. Analysis continues to identify a multifactorial predictor outcome "signature" that do inform us of locomotor adaptability.

  16. Influence of auditory and audiovisual stimuli on the right-left prevalence effect.

    PubMed

    Vu, Kim-Phuong L; Minakata, Katsumi; Ngo, Mary Kim

    2014-01-01

    When auditory stimuli are used in two-dimensional spatial compatibility tasks, where the stimulus and response configurations vary along the horizontal and vertical dimensions simultaneously, a right-left prevalence effect occurs in which horizontal compatibility dominates over vertical compatibility. The right-left prevalence effects obtained with auditory stimuli are typically larger than that obtained with visual stimuli even though less attention should be demanded from the horizontal dimension in auditory processing. In the present study, we examined whether auditory or visual dominance occurs when the two-dimensional stimuli are audiovisual, as well as whether there will be cross-modal facilitation of response selection for the horizontal and vertical dimensions. We also examined whether there is an additional benefit of adding a pitch dimension to the auditory stimulus to facilitate vertical coding through use of the spatial-musical association of response codes (SMARC) effect, where pitch is coded in terms of height in space. In Experiment 1, we found a larger right-left prevalence effect for unimodal auditory than visual stimuli. Neutral, non-pitch coded, audiovisual stimuli did not result in cross-modal facilitation, but did show evidence of visual dominance. The right-left prevalence effect was eliminated in the presence of SMARC audiovisual stimuli, but the effect influenced horizontal rather than vertical coding. Experiment 2 showed that the influence of the pitch dimension was not in terms of influencing response selection on a trial-to-trial basis, but in terms of altering the salience of the task environment. Taken together, these findings indicate that in the absence of salient vertical cues, auditory and audiovisual stimuli tend to be coded along the horizontal dimension and vision tends to dominate audition in this two-dimensional spatial stimulus-response task.

  17. Three-dimensional organization of vestibular-related eye movements to off-vertical axis rotation and linear translation in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Angelaki, D. E.

    1999-01-01

    During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8-58 degrees /s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions.

  18. Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography

    PubMed Central

    Jing, Bowen; Chigan, Pengju; Ge, Zhengtong; Wu, Liang; Wang, Supin; Wan, Mingxi

    2017-01-01

    For the purpose of noninvasively visualizing the dynamics of the contact between vibrating vocal fold medial surfaces, an ultrasonic imaging method which is referred to as array-based transmission ultrasonic glottography is proposed. An array of ultrasound transducers is used to detect the ultrasound wave transmitted from one side of the vocal folds to the other side through the small-sized contact between the vocal folds. A passive acoustic mapping method is employed to visualize and locate the contact. The results of the investigation using tissue-mimicking phantoms indicate that it is feasible to use the proposed method to visualize and locate the contact between soft tissues. Furthermore, the proposed method was used for investigating the movement of the contact between the vibrating vocal folds of excised canine larynges. The results indicate that the vertical movement of the contact can be visualized as a vertical movement of a high-intensity stripe in a series of images obtained by using the proposed method. Moreover, a visualization and analysis method, which is referred to as array-based ultrasonic kymography, is presented. The velocity of the vertical movement of the contact, which is estimated from the array-based ultrasonic kymogram, could reach 0.8 m/s during the vocal fold vibration. PMID:28599522

  19. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.

    PubMed

    Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L

    2018-03-01

    We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.

  20. Patterned-string tasks: relation between fine motor skills and visual-spatial abilities in parrots.

    PubMed

    Krasheninnikova, Anastasia

    2013-01-01

    String-pulling and patterned-string tasks are often used to analyse perceptual and cognitive abilities in animals. In addition, the paradigm can be used to test the interrelation between visual-spatial and motor performance. Two Australian parrot species, the galah (Eolophus roseicapilla) and the cockatiel (Nymphicus hollandicus), forage on the ground, but only the galah uses its feet to manipulate food. I used a set of string pulling and patterned-string tasks to test whether usage of the feet during foraging is a prerequisite for solving the vertical string pulling problem. Indeed, the two species used techniques that clearly differed in the extent of beak-foot coordination but did not differ in terms of their success in solving the string pulling task. However, when the visual-spatial skills of the subjects were tested, the galahs outperformed the cockatiels. This supports the hypothesis that the fine motor skills needed for advanced beak-foot coordination may be interrelated with certain visual-spatial abilities needed for solving patterned-string tasks. This pattern was also found within each of the two species on the individual level: higher motor abilities positively correlated with performance in patterned-string tasks. This is the first evidence of an interrelation between visual-spatial and motor abilities in non-mammalian animals.

  1. Effects of Body Orientation and Retinal Image Pitch on the Perception of Gravity-Referenced Eye Level (GREL)

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.; Guzy, Larry T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    It has been asserted that the pitch orientation of a visual array and of an observer's body jointly determine the perception of GREL. The current study formally tests this assertion over an extended range with multiple combinations of visual and body pitch orientations. Ten subjects were individually secured in a Circolectric bed surrounded by a room (pitchroom) with walls that could be pitched at various angles with respect to gravity. The bed and the walls of the room were independently adjusted to each of five positions relative to gravitational vertical: -15, -7.5, 0, +7.5, and +15 degrees, yielding 25 combinations of body x room pitch angles, and retinal image pitch (RIP) conditions ranging from -30 to +30 degrees. Each subject set a target to apparent GREL while viewing it against a background of two electroluminescent strips on the outer edges of the far wall of the room. As determined by ANOVA, the orientation of the room, and its interaction with that of the observer, significantly altered GREL (p less than 0.01). Regression analysis showed that GREL was best described as a linear summation of the weighted independent contributions from a body-referenced mechanism (B) and a visual mechanism given by the orientation of the background array on the retina (RIP). The equation for this relationship is: GREL = .74 (B) +.64 (RIP) - 1.42; r-squared = .994.

  2. Pre-flight sensorimotor adaptation protocols for suborbital flight.

    PubMed

    Shelhamer, Mark; Beaton, Kara

    2012-01-01

    Commercial suborbital flights, which include 3-5 minutes of 0 g between hyper-g launch and landing phases, will present suborbital passengers with a challenging sensorimotor experience. Based on the results of neurovestibular research in parabolic and orbital flight, and the anticipated wide range of fitness and experience levels of suborbital passengers, neurovestibular disturbances are likely to be problematic in this environment. Pre-flight adaptation protocols might alleviate some of these issues. Therefore, we describe a set of sensorimotor tests to evaluate passengers before suborbital flight, including assessment of the angular vestibulo-ocular reflex (VOR), ocular skew and disconjugate torsion, subjective visual vertical, and roll vection. Performance on these tests can be examined for correlations with in-flight experience, such as motion sickness, disorientation, and visual disturbances, based on questionnaires and cabin video recordings. Through an understanding of sensorimotor adaptation to parabolic and orbital flight, obtained from many previous studies, we can then suggest appropriate pre-flight adaptation procedures.

  3. A reevaluation of the vestibulo-ocular reflex: new ideas of its purpose, properties, neural substrate, and disorders

    NASA Technical Reports Server (NTRS)

    Leigh, R. J.; Brandt, T.

    1993-01-01

    Conventional views of the vestibulo-ocular reflex (VOR) have emphasized testing with caloric stimuli and by passively rotating patients at low frequencies in a chair. The properties of the VOR tested under these conditions differ from the performance of this reflex during the natural function for which it evolved--locomotion. Only the VOR (and not visually mediated eye movements) can cope with the high-frequency angular and linear perturbations of the head that occur during locomotion; this is achieved by generating eye movements at short latency (< 16 msec). Interpretation of vestibular testing is enhanced by the realization that, although the di- and trisynaptic components of the VOR are essential for this short-latency response, the overall accuracy and plasticity of the VOR depend upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously upon a distributed, parallel network of neurons involving the vestibular nuclei. Neurons in this network variously encode inputs from the labyrinthine semicircular canals and otoliths, as well as from the visual and somatosensory systems. The central vestibular pathways branch to contact vestibular cortex (for perception) and the spinal cord (for control of posture). Thus, the vestibular nuclei basically coordinate the stabilization of gaze and posture, and contribute to the perception of verticality and self-motion. Consequently, brainstem disorders that disrupt the VOR cause not just only nystagmus, but also instability of posture (eg, increased fore-aft sway in patients with downbeat nystagmus) and disturbance of spatial orientation (eg, tilt of the subjective visual vertical in Wallenberg's syndrome).

  4. Characterizing visual asymmetries in contrast perception using shaded stimuli.

    PubMed

    Chacón, José; Castellanos, Miguel Ángel; Serrano-Pedraza, Ignacio

    2015-01-01

    Previous research has shown a visual asymmetry in shaded stimuli where the perceived contrast depended on the polarity of their dark and light areas (Chacón, 2004). In particular, circles filled out with a top-dark luminance ramp were perceived with higher contrast than top-light ones although both types of stimuli had the same physical contrast. Here, using shaded stimuli, we conducted four experiments in order to find out if the perceived contrast depends on: (a) the contrast level, (b) the type of shading (continuous vs. discrete) and its degree of perceived three-dimensionality, (c) the orientation of the shading, and (d) the sign of the perceived contrast alterations. In all experiments the observers' tasks were to equate the perceived contrast of two sets of elements (usually shaded with opposite luminance polarity), in order to determine the subjective equality point. Results showed that (a) there is a strong difference in perceived contrast between circles filled out with luminance ramp top-dark and top-light that is similar for different contrast levels; (b) we also found asymmetries in contrast perception with different shaded stimuli, and this asymmetry was not related with the perceived three-dimensionality but with the type of shading, being greater for continuous-shading stimuli; (c) differences in perceived contrast varied with stimulus orientation, showing the maximum difference on vertical axis with a left bias consistent with the bias found in previous studies that used visual-search tasks; and (d) asymmetries are consistent with an attenuation in perceived contrast that is selective for top-light vertically-shaded stimuli.

  5. 'Where' and 'what' in visual search.

    PubMed

    Atkinson, J; Braddick, O J

    1989-01-01

    A line segment target can be detected among distractors of a different orientation by a fast 'preattentive' process. One view is that this depends on detection of a 'feature gradient', which enables subjects to locate where the target is without necessarily identifying what it is. An alternative view is that a target can be identified as distinctive in a particular 'feature map' without subjects knowing where it is in that map. Experiments are reported in which briefly exposed arrays of line segments were followed by a pattern mask, and the threshold stimulus-mask interval determined for three tasks: 'what'--subjects reported whether the target was vertical or horizontal among oblique distractors; 'coarse where'--subjects reported whether the target was in the upper or lower half of the array; 'fine where'--subjects reported whether or not the target was in a set of four particular array positions. The threshold interval was significantly lower for the 'coarse where' than for the 'what' task, indicating that, even though localization in this task depends on the target's orientation difference, this localization is possible without absolute identification of target orientation. However, for the 'fine where' task, intervals as long as or longer than those for the 'what' task were required. It appears either that different localization processes work at different levels of resolution, or that a single localization process, independent of identification, can increase its resolution at the expense of processing speed. These possibilities are discussed in terms of distinct neural representations of the visual field and fixed or variable localization processes acting upon them.

  6. The elevator illusion results from the combination of body orientation and egocentric perception.

    PubMed

    Paillard, A; Denise, P; Barraud, P-A; Roux, A; Cian, C

    2009-10-30

    Perception of body orientation and apparent location of objects are altered when humans are using assisted means of locomotion and the resultant of the imposed acceleration and gravity is no longer aligned with the gravitational vertical. As the otolithic system cannot discriminate the acceleration of gravity from sustained inertial accelerations, individuals would perceive the resultant acceleration vector (GiA) as the vertical. However, when subjects are aligned on the GiA, an increase in the magnitude of GiA induced a lowering of the apparent visual horizon (i.e. "elevator illusion"). The main aim of this study was to quantify the contribution of body and egocentric perception in the elevator illusion. While being exposed to 1G and 1.3G and aligned on the GiA acceleration, subjects (N=20) were asked (1) to set a luminous target to the subjective horizon, (2) to set a luminous target on "straight ahead" position (egocentric task) and (3) to rotate a tilting tube to their subjective perception of body orientation. Results showed that increasing GiA lowered horizon and egocentric settings and induces a backward body tilt perception. Moreover, the elevator illusion can be expressed as the additive combination of two processes: one that is dependent on body tilt perception, and the other that is dependent on egocentric perception. Both misperceptions in hypergravity may be considered to be a consequence of excessive shearing of the otolith organs. However large inter-individual differences in body tilt perception were observed. This last result was discussed in terms of the contribution of extravestibular graviceptors.

  7. Cross-modal associations between materic painting and classical Spanish music.

    PubMed

    Albertazzi, Liliana; Canal, Luisa; Micciolo, Rocco

    2015-01-01

    The study analyses the existence of cross-modal associations in the general population between a series of paintings and a series of clips of classical (guitar) music. Because of the complexity of the stimuli, the study differs from previous analyses conducted on the association between visual and auditory stimuli, which predominantly analyzed single tones and colors by means of psychophysical methods and forced choice responses. More recently, the relation between music and shape has been analyzed in terms of music visualization, or relatively to the role played by emotion in the association, and free response paradigms have also been accepted. In our study, in order to investigate what attributes may be responsible for the phenomenon of the association between visual and auditory stimuli, the clip/painting association was tested in two experiments: the first used the semantic differential on a unidimensional rating scale of adjectives; the second employed a specific methodology based on subjective perceptual judgments in first person account. Because of the complexity of the stimuli, it was decided to have the maximum possible uniformity of style, composition and musical color. The results show that multisensory features expressed by adjectives such as "quick," "agitated," and "strong," and their antonyms "slow," "calm," and "weak" characterized both the visual and auditory stimuli, and that they may have had a role in the associations. The results also suggest that the main perceptual features responsible for the clip/painting associations were hue, lightness, timbre, and musical tempo. Contrary to what was expected, the musical mode usually related to feelings of happiness (major mode), or to feelings of sadness (minor mode), and spatial orientation (vertical and horizontal) did not play a significant role in the association. The consistency of the associations was shown when evaluated on the whole sample, and after considering the different backgrounds and expertise of the subjects. No substantial difference was found between expert and non-expert subjects. The methods used in the experiment (semantic differential and subjective judgements in first person account) corroborated the interpretation of the results as associations due to patterns of qualitative similarity present in stimuli of different sensory modalities and experienced as such by the subjects. The main result of the study consists in showing the existence of cross-modal associations between highly complex stimuli; furthermore, the second experiment employed a specific methodology based on subjective perceptual judgments.

  8. A low complexity visualization tool that helps to perform complex systems analysis

    NASA Astrophysics Data System (ADS)

    Beiró, M. G.; Alvarez-Hamelin, J. I.; Busch, J. R.

    2008-12-01

    In this paper, we present an extension of large network visualization (LaNet-vi), a tool to visualize large scale networks using the k-core decomposition. One of the new features is how vertices compute their angular position. While in the later version it is done using shell clusters, in this version we use the angular coordinate of vertices in higher k-shells, and arrange the highest shell according to a cliques decomposition. The time complexity goes from O(n\\sqrt n) to O(n) upon bounds on a heavy-tailed degree distribution. The tool also performs a k-core-connectivity analysis, highlighting vertices that are not k-connected; e.g. this property is useful to measure robustness or quality of service (QoS) capabilities in communication networks. Finally, the actual version of LaNet-vi can draw labels and all the edges using transparencies, yielding an accurate visualization. Based on the obtained figure, it is possible to distinguish different sources and types of complex networks at a glance, in a sort of 'network iris-print'.

  9. Human comfort response to dominant random motions in longitudinal modes of aircraft motion

    NASA Technical Reports Server (NTRS)

    Stone, R. W., Jr.

    1980-01-01

    The effects of random vertical and longitudinal accelerations and pitching velocity passenger ride comfort responses were examined on the NASA Langley Visual Motion Simulator. Effects of power spectral density shape were studied for motions where the peak was between 0 and 2 Hz. The subjective rating data and the physical motion data obtained are presented without interpretation or detailed analysis. There existed motions in all other degrees of freedom as well as the particular pair of longitudinal airplane motions studied. These unwanted motions, caused by the characteristics of the simulator may have introduced some interactive effects on passenger responses.

  10. Does my step look big in this? A visual illusion leads to safer stepping behaviour.

    PubMed

    Elliott, David B; Vale, Anna; Whitaker, David; Buckley, John G

    2009-01-01

    Tripping is a common factor in falls and a typical safety strategy to avoid tripping on steps or stairs is to increase foot clearance over the step edge. In the present study we asked whether the perceived height of a step could be increased using a visual illusion and whether this would lead to the adoption of a safer stepping strategy, in terms of greater foot clearance over the step edge. The study also addressed the controversial question of whether motor actions are dissociated from visual perception. 21 young, healthy subjects perceived the step to be higher in a configuration of the horizontal-vertical illusion compared to a reverse configuration (p = 0.01). During a simple stepping task, maximum toe elevation changed by an amount corresponding to the size of the visual illusion (p<0.001). Linear regression analyses showed highly significant associations between perceived step height and maximum toe elevation for all conditions. The perceived height of a step can be manipulated using a simple visual illusion, leading to the adoption of a safer stepping strategy in terms of greater foot clearance over a step edge. In addition, the strong link found between perception of a visual illusion and visuomotor action provides additional support to the view that the original, controversial proposal by Goodale and Milner (1992) of two separate and distinct visual streams for perception and visuomotor action should be re-evaluated.

  11. Position Information Encoded by Population Activity in Hierarchical Visual Areas

    PubMed Central

    Majima, Kei; Horikawa, Tomoyasu

    2017-01-01

    Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634

  12. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.

    PubMed

    Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L

    2016-08-02

    Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.

  13. Instrument Display Visual Angles for Conventional Aircraft and the MQ-9 Ground Control Station

    NASA Technical Reports Server (NTRS)

    Kamine, Tovy Haber; Bendrick, Gregg A.

    2008-01-01

    Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three physiologic cones of eye/head movement; 2) Understand how instrument displays comply with these design principles in conventional aircraft and an uninhabited aerial vehicle system. Which of the following is NOT a recognized physiologic principle of instrument display design? Cone of Easy Eye Movement 2) Cone of Binocular Eye Movement 3) Cone of Maximum Eye Movement 4) Cone of Head Movement 5) None of the above. Answer: # 2) Cone of Binocular Eye Movement

  14. Kinetic factors of vertical jumping for heading a ball in flexible flatfooted amateur soccer players with and without insole adoption.

    PubMed

    Arastoo, Ali Asghar; Aghdam, Esmaeil Moharrami; Habibi, Abdoul Hamid; Zahednejad, Shahla

    2014-06-01

    According to literature, little is known regarding the effects of orthotic management of flatfoot on kinetics of vertical jump. To compare the kinetic and temporal events of two-legged vertical jumping take-off from a force plate for heading a ball in normal and flexible flatfoot subjects with and without insole. A functional based interventional controlled study. Random sampling method was employed to draw a control group of 15 normal foot subjects to a group of 15 flatfoot subjects. A force platform was used to record kinetics of two-legged vertical jump shots. Results indicate that insole did not lead to a significant effect on kinetics regarding anterior-posterior and mediolateral directions (p > 0.05). Results of kinetics related to vertical direction for maximum force due to take-off and stance duration revealed significant differences between the normal and flexible flatfoot subjects without insole (p < 0.05) and no significant differences between the normal foot and flexible flatfoot subjects with insole adoption (p > 0.05). These results suggest that the use of an insole in the flexible flatfoot subjects led to improved stance time and decrease of magnitude of kinetics regarding vertical direction at take-off as the main feature of two-legged vertical jumping function. Adoption of the insole improved the design of the shoe-foot interface support for the flexible flatfoot athletes, enabling them to develop more effective take-off kinetics for vertical jumping in terms of ground reaction force and stance duration similar to that of normal foot subjects without insole. © The International Society for Prosthetics and Orthotics 2013.

  15. Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.

    PubMed

    Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain

    2013-02-01

    Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.

  16. Preadaptation to the stimulus rearrangement of weightlessness: Preliminary studies and concepts for trainer designs

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Reschke, M. F.

    1988-01-01

    An effort to develop preflight adaptation training (PAT) apparatus and procedures to adapt astronauts to the stimulus rearrangement of weightless spaceflight is being pursued. Based on the otolith tilt-translation reinterpretation model of sensory adaptation to weightlessness, two prototype preflight adaptation trainers (PAT) have been developed. These trainers couple pitch movement of the subject with translation of the visual surround. Subjects were exposed to this stimulus rearrangement for periods of 30 m. The hypothesis is that exposure to the rearrangement would attenuate vertical eye movements was supported by two experiments using the Miami University Seesaw (MUS) PAT prototype. The Dynamic Environment Simulator (DES) prototype failed to support this hypothesis; this result is attributed to a pecularity of the DES apparatus. A final experiment demonstrated that changes in vertical eye movements were not a consequence of fixation on an external target during exposure to a control condition. Together these experiments support the view that preflight adaptation training can alter eye movements in a manner consistent with adaptation to weightlessness. Following these initial studies, concepts for development of operational preflight trainers were proposed. The trainers are intended to: demonstrate the stimulus rearrangement of weightlessness; allow astronauts to train in altered sensory environment; modify sensory motor reflexes; and reduce/eliminate space motion sickness symptoms.

  17. Plasticity of the human otolith-ocular reflex

    NASA Technical Reports Server (NTRS)

    Wall, C. 3rd; Smith, T. R.; Furman, J. M.

    1992-01-01

    The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.

  18. Visual motion combined with base of support width reveals variable field dependency in healthy young adults.

    PubMed

    Streepey, Jefferson W; Kenyon, Robert V; Keshner, Emily A

    2007-01-01

    We previously reported responses to induced postural instability in young healthy individuals viewing visual motion with a narrow (25 degrees in both directions) and wide (90 degrees and 55 degrees in the horizontal and vertical directions) field of view (FOV) as they stood on different sized blocks. Visual motion was achieved using an immersive virtual environment that moved realistically with head motion (natural motion) and translated sinusoidally at 0.1 Hz in the fore-aft direction (augmented motion). We observed that a subset of the subjects (steppers) could not maintain continuous stance on the smallest block when the virtual environment was in motion. We completed a posteriori analyses on the postural responses of the steppers and non-steppers that may inform us about the mechanisms underlying these differences in stability. We found that when viewing augmented motion with a wide FOV, there was a greater effect on the head and whole body center of mass and ankle angle root mean square (RMS) values of the steppers than of the non-steppers. FFT analyses revealed greater power at the frequency of the visual stimulus in the steppers compared to the non-steppers. Whole body COM time lags relative to the augmented visual scene revealed that the time-delay between the scene and the COM was significantly increased in the steppers. The increased responsiveness to visual information suggests a greater visual field-dependency of the steppers and suggests that the thresholds for shifting from a reliance on visual information to somatosensory information can differ even within a healthy population.

  19. 3D Visualization of Global Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  20. Demonstration of Tuning to Stimulus Orientation in the Human Visual Cortex: A High-Resolution fMRI Study with a Novel Continuous and Periodic Stimulation Paradigm

    PubMed Central

    Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang

    2013-01-01

    Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413

  1. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    PubMed Central

    Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future. PMID:22408531

  2. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing.

    PubMed

    Wong, Man Sing; Nichol, Janet E; Lee, Kwon Ho

    2009-01-01

    The use of Geographic Information Systems (GIS) and Remote Sensing (RS) by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  3. Influence of eye rotation on peripheral eye length measurement obtained with a partial coherence interferometry instrument.

    PubMed

    Verkicharla, Pavan K; Suheimat, Marwan; Mallen, Edward A H; Atchison, David A

    2014-01-01

    The eye rotation approach for measuring peripheral eye length leads to concern about whether the rotation influences results, such as through pressure exerted by eyelids or extra-ocular muscles. This study investigated whether this approach is valid. Peripheral eye lengths were measured with a Lenstar LS 900 biometer for eye rotation and no-eye rotation conditions (head rotation for horizontal meridian and instrument rotation for vertical meridian). Measurements were made for 23 healthy young adults along the horizontal visual field (± 30°) and, for a subset of eight participants along the vertical visual field (± 25°). To investigate the influence of the duration of eye rotation, for six participants measurements were made at 0, 60, 120, 180 and 210 s after eye rotation to ± 30° along horizontal and vertical visual fields. Peripheral eye lengths were not significantly different for the conditions along the vertical meridian (F1,7 = 0.16, p = 0.71). The peripheral eye lengths for the conditions were significantly different along the horizontal meridian (F1,22 = 4.85, p = 0.04), although not at individual positions (p ≥ 0.10) and were not important. There were no apparent differences between the emmetropic and myopic groups. There was no significant change in eye length at any position after maintaining position for 210 s. Eye rotation and no-eye rotation conditions were similar for measuring peripheral eye lengths along horizontal and vertical visual field meridians at ± 30° and ± 25°, respectively. Either condition can be used to estimate retinal shape from peripheral eye lengths. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  4. Countermovement strategy changes with vertical jump height to accommodate feasible force constraints.

    PubMed

    Kim, Seyoung; Park, Sukyung; Choi, Sangkyu

    2014-09-22

    In this study, we developed a curve-fit model of countermovement dynamics and examined whether the characteristics of a countermovement jump can be quantified using the model parameter and its scaling; we expected that the model-based analysis would facilitate an understanding of the basic mechanisms of force reduction and propulsion with a simplified framework of the center of mass (CoM) mechanics. Ten healthy young subjects jumped straight up to five different levels ranging from approximately 10% to 35% of their body heights. The kinematic and kinetic data on the CoM were measured using a force plate system synchronized with motion capture cameras. All subjects generated larger vertical forces compared with their body weights from the countermovement and sufficiently lowered their CoM position to support the work performed by push-off as the vertical elevations became more challenging. The model simulation reasonably reproduced the trajectories of vertical force during the countermovement, and the model parameters were replaced by linear and polynomial regression functions in terms of the vertical jump height. Gradual scaling trends of the individual model parameters were observed as a function of the vertical jump height with different degrees of scaling, depending on the subject. The results imply that the subjects may be aware of the jumping dynamics when subjected to various vertical jump heights and may select their countermovement strategies to effectively accommodate biomechanical constraints, i.e., limited force generation for the standing vertical jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effects of Walking Speed and Visual-Target Distance on Toe Trajectory During Swing Phase

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Brady, Rachel; Warren, Liz; Richards, Jason; Mulavara, Ajitkumar; Sung, Hsi-Guang; Bloomberg, Jacob

    2006-01-01

    After spaceflight, astronauts experience disturbances in their ability to walk and maintain postural stability (Bloomberg, et al., 1997). One of the post-flight neurovestibular assessments requires that the astronaut walk on a treadmill at 1.8 m/sec (4.0 mph), while performing a visual acuity test, set at two different distances ( far and near ). For the first few days after landing, some crewmembers can not maintain the required pace, so a lower speed may be used. The slower velocity must be considered in the kinematic analysis, because Andriacchi, et al. (1977) showed that in clinical populations, changes in gait parameters may be attributable more to slower gait speed than pathology. Studying toe trajectory gives a global view of control of the leg, since it involves coordination of muscles and joints in both the swing and stance legs (Karst, et al., 1999). Winter (1992) and Murray, et al. (1984) reported that toe clearance during overground walking increased slightly as speed increased, but not significantly. Also, toe vertical peaks in both early and late swing phase did increase significantly with increasing speed. During conventional testing of overground locomotion, subjects are usually asked to fix their gaze on the end of the walkway a far target. But target (i.e., visual fixation) distance has been shown to affect head and trunk motion during treadmill walking (Bloomberg, et al., 1992; Peters, et al., in review). Since the head and trunk can not maintain stable gaze without proper coordination with the lower body (Mulavara & Bloomberg, 2003), it would stand to reason that lower body kinematics may be altered as well when target distance is modified. The purpose of this study was to determine changes in toe vertical trajectory during treadmill walking due to changes in walking speed and target distance.

  6. Eye Movements of Patients with Tunnel Vision while Walking

    PubMed Central

    Vargas-Martín, Fernando; Peli, Eli

    2006-01-01

    Purpose To determine how severe peripheral field loss (PFL) affects the dispersion of eye movements relative to the head, while walking in real environments. This information should help to better define the visual field and clearance requirements for head-mounted mobility visual aids. Methods Eye positions relative to the head were recorded in five retinitis pigmentosa patients with less than 15° of visual field and three normally-sighted people, each walking in varied environments for more than 30 minutes. The eye position recorder was made portable by modifying a head-mounted ISCAN system. Custom data processing was implemented to reject unreliable data. Sample standard deviations of eye position (dispersion) were compared across subject groups and environments. Results PFL patients exhibited narrower horizontal eye position dispersions than normally-sighted subjects (9.4° vs. 14.2°, p < 0.0001) and PFL patients’ vertical dispersions were smaller when walking indoors than outdoors (8.2° vs. 10.3°, p = 0.048). Conclusions When walking, the PFL patients did not increase their scanning eye movements to compensate for missing peripheral vision information. Their horizontal scanning was actually reduced, possibly because saccadic amplitude is limited by a lack of peripheral stimulation. The results suggest that a field-of-view as wide as 40° may be needed for closed (immersive) head-mounted mobility aids, while a much narrower display, perhaps as narrow as 20°, might be sufficient with an open design. PMID:17122116

  7. Eye movements of patients with tunnel vision while walking.

    PubMed

    Vargas-Martín, Fernando; Peli, Eli

    2006-12-01

    To determine how severe peripheral field loss (PFL) affects the dispersion of eye movements relative to the head in patients walking in real environments. This information should help to define the visual field and clearance requirements for head-mounted mobility visual aids. Eye positions relative to the head were recorded in five patients with retinitis pigmentosa who had less than 15 degrees of visual field and in three normally sighted people, each walking in varied environments for more than 30 minutes. The eye-position recorder was made portable by modifying a head-mounted system (ISCAN, Burlington, MA). Custom data processing was implemented, to reject unreliable data. Sample standard deviations of eye position (dispersion) were compared across subject groups and environments. The patients with PFL exhibited narrower horizontal eye-position dispersions than did the normally sighted subjects (9.4 degrees vs. 14.2 degrees , P < 0.0001), and the vertical dispersions of patients with PFL were smaller when they were walking indoors than when walking outdoors (8.2 degrees vs. 10.3 degrees ; P = 0.048). When walking, the patients with PFL did not increase their scanning eye movements to compensate for missing peripheral vision information. Their horizontal scanning was actually reduced, possibly because of lack of peripheral stimulation. The results suggest that a field of view as wide as 40 degrees may be needed for closed (immersive) head-mounted mobility aids, whereas a much narrower display, perhaps as narrow as 20 degrees , may be sufficient with an open design.

  8. The role of vestibular and support-tactile-proprioceptive inputs in visual-manual tracking

    NASA Astrophysics Data System (ADS)

    Kornilova, Ludmila; Naumov, Ivan; Glukhikh, Dmitriy; Khabarova, Ekaterina; Pavlova, Aleksandra; Ekimovskiy, Georgiy; Sagalovitch, Viktor; Smirnov, Yuriy; Kozlovskaya, Inesa

    Sensorimotor disorders in weightlessness are caused by changes of functioning of gravity-dependent systems, first of all - vestibular and support. The question arises, what’s the role and the specific contribution of the support afferentation in the development of observed disorders. To determine the role and effects of vestibular, support, tactile and proprioceptive afferentation on characteristics of visual-manual tracking (VMT) we conducted a comparative analysis of the data obtained after prolonged spaceflight and in a model of weightlessness - horizontal “dry” immersion. Altogether we examined 16 Russian cosmonauts before and after prolonged spaceflights (129-215 days) and 30 subjects who stayed in immersion bath for 5-7 days to evaluate the state of the vestibular function (VF) using videooculography and characteristics of the visual-manual tracking (VMT) using electrooculography & joystick with biological visual feedback. Evaluation of the VF has shown that both after immersion and after prolonged spaceflight there were significant decrease of the static torsional otolith-cervical-ocular reflex (OCOR) and simultaneous significant increase of the dynamic vestibular-cervical-ocular reactions (VCOR) with a revealed negative correlation between parameters of the otoliths and canals reactions, as well as significant changes in accuracy of perception of the subjective visual vertical which correlated with changes in OCOR. Analyze of the VMT has shown that significant disorders of the visual tracking (VT) occurred from the beginning of the immersion up to 3-4 day after while in cosmonauts similar but much more pronounced oculomotor disorders and significant changes from the baseline were observed up to R+9 day postflight. Significant changes of the manual tracking (MT) were revealed only for gain and occurred on 1 and 3 days in immersion while after spaceflight such changes were observed up to R+5 day postflight. We found correlation between characteristics of the VT and MT, between characteristics of the VF and VT and no correlation between VF and MT. It was found that removal of the support and minimization of the proprioceptive afferentation has a greater impact upon accuracy of the VT then accuracy of the MT. Hand tracking accuracy was higher than the eyes for all subjects. The hand’ motor coordination was more stable to changes in support-proprioceptive afferentation then visual tracking. The observed changes in and after immersion are similar but less pronounced with changes observed on cosmonauts after prolonged spaceflight. Keywords: visual-manual tracking, vestibular function, weightlessness, immersion.

  9. The effect of prism on preferred retinal locus.

    PubMed

    Lewerenz, David; Blanco, Daniel; Ratzlaff, Chase; Zodrow, Ashley

    2018-03-01

    Whether prism, especially base-up prism, affects the area of the retina used for fixation in a patient with central scotoma has been a controversial subject for 35 years. Our pilot study employed microperimetry to evaluate the effect of base-up prism on the fixation locus, or preferred retinal locus (PRL), in subjects with central scotoma. We used a microperimeter to assess the PRL in 13 visually impaired subjects with central scotoma under four conditions: no lens, a lens with no prism (control lens), 6 Δ base-up, and 10 Δ base-up. The PRL was measured in degrees in horizontal and vertical co-ordinates from the centre of the optic disc using graphical analysis. The PRL with the control lens was not significantly different from the PRL with no lens. The preferred retinal loci with the two powers of prism were compared to the control lens and showed a superior shift in 22 of 26 cases (84.6 per cent). The amount of movement was significantly different from zero (p = 0.001 for 6 Δ and p = 0.004 for 10 Δ ). The vertical movement with the 10 Δ prism (1.73 ± 1.73 degrees) was not significantly greater (p = 0.562) than with the 6 Δ prism (1.37 ± 1.08 degrees). The shift was significantly less than the prism powers used (p < 0.001), and the amount of vertical relocation was not significantly different from the amount of horizontal movement. In our study, base-up prism appears to shift the PRL in the direction of the prism base most of the time, but our findings do not support the use of prism as a way of predictably relocating the PRL. More study is indicated to evaluate whether such a small shift is clinically or functionally significant. © 2017 Optometry Australia.

  10. Reading Speed Does Not Benefit from Increased Line Spacing in AMD Patients

    PubMed Central

    CHUNG, SUSANA T. L.; JARVIS, SAMUEL H.; WOO, STANLEY Y.; HANSON, KARA; JOSE, RANDALL T.

    2009-01-01

    Purpose Crowding, the adverse spatial interaction due to the proximity of adjacent targets, has been suggested as an explanation for slow reading in peripheral vision. Previously, we showed that increased line spacing, which presumably reduces crowding between adjacent lines of text, improved reading speed in the normal periphery (Chung, Optom Vis Sci 2004;81:525–35). The purpose of this study was to examine whether or not individuals with age-related macular degeneration (AMD) would benefit from increased line spacing for reading. Methods Experiment 1: Eight subjects with AMD read aloud 100-word passages rendered at five line spacings: the standard single spacing, 1.5×, 2×, 3×, and 4× the standard spacing. Print sizes were 1× and 2× of the critical print size. Reading time and number of reading errors for each passage were measured to compute the reading speed. Experiment 2: Four subjects with AMD read aloud sequences of six 4-letter words, presented on a computer monitor using the rapid serial visual presentation (RSVP) paradigm. Target words were presented singly, or flanked above and below by two other words that changed in synchrony with the target word, at various vertical word separations. Print size was 2× the critical print size. Reading speed was calculated based on the RSVP exposure duration that yielded 80% of the words read correctly. Results Averaged across subjects, reading speeds for passages were virtually constant for the range of line spacings tested. For sequences of unrelated words, reading speeds were also virtually constant for the range of vertical word separations tested, except at the smallest (standard) separation at which reading speed was lower. Conclusions Contrary to the previous finding that reading speed improved in normal peripheral vision, increased line spacing in passages, or increased vertical separation between words in RSVP, did not lead to improved reading speed in people with AMD. PMID:18772718

  11. Sit-to-stand ground reaction force characteristics in blind and sighted female children.

    PubMed

    Faraji Aylar, Mozhgan; Jafarnezhadgero, Amir Ali; Salari Esker, Fatemeh

    2018-03-05

    The association between visual sensory and sit-to-stand ground reaction force characteristics is not clear. Impulse is the amount of force applied over a period of time. Also, free moment represents the vertical moment applied in the center of pressure (COP). How the ground reaction force components, vertical loading rate, impulses and free moment respond to long and short term restricted visual information? Fifteen female children with congenital blindness and 45 healthy girls with no visual impairments participated in this study. The girls with congenital blindness were placed in one group and the 45 girls with no visual impairments were randomly divided into three groups of 15; eyes open, permanently eyes closed, and temporary eyes closed. The participants in the permanently eyes closed group closed their eyes for 20 min before the test, whereas temporary eyes closed group did tests with their eyes closed throughout, and those in the eyes open group kept their eyes open. Congenital blindness was associated with increased vertical loading rate, range of motion of knee and hip in the medio-lateral plane. Also, medio-lateral and vertical ground reaction force impulses. Similar peak negative and positive free moments were observed in three groups. In conclusion, the results reveal that sit-to-stand ground reaction force components in blind children may have clinical importance for improvement of balance control of these individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Compensatory postural adjustments in Parkinson's disease assessed via a virtual reality environment.

    PubMed

    Yelshyna, Darya; Gago, Miguel F; Bicho, Estela; Fernandes, Vítor; Gago, Nuno F; Costa, Luís; Silva, Hélder; Rodrigues, Maria Lurdes; Rocha, Luís; Sousa, Nuno

    2016-01-01

    Postural control is a complex dynamic mechanism, which integrates information from visual, vestibular and somatosensory systems. Idiopathic Parkinson's disease (IPD) patients are unable to produce appropriate reflexive responses to changing environmental conditions. Still, it is controversial what is due to voluntary or involuntary postural control, even less what is the effect of levodopa. We aimed to evaluate compensatory postural adjustments (CPA), with kinematic and time-frequency analyzes, and further understand the role of dopaminergic medication on these processes. 19 healthy subjects (Controls) and 15 idiopathic Parkinson's disease (IPD) patients in the OFF and ON medication states, wearing IMUs, were submitted to a virtual reality scenario with visual downward displacements on a staircase. We also hypothesized if CPA would involve mechanisms occurring in distinct time scales. We subsequently analyzed postural adjustments on two frequency bands: low components between 0.3 and 1.5 Hz (LB), and high components between 1.5 and 3.5 Hz (HB). Vertical acceleration demonstrated a greater power for discriminating IPD patients from healthy subjects. Visual perturbation significantly increased the power of the HB in all groups, being particularly more evident in the OFF state. Levodopa significantly increased their basal power taking place on the LB. However, controls and IPD patients in the ON state revealed a similar trend of the control mechanism. Results indicate an improvement in muscular stiffness provided by levodopa. They also suggest the role of different compensatory postural adjustment patterns, with LB being related to inertial properties of the oscillating mass and HB representing reactions to the ongoing visual input-changing scenario. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Postural and Spatial Orientation Driven by Virtual Reality

    PubMed Central

    Keshner, Emily A.; Kenyon, Robert V.

    2009-01-01

    Orientation in space is a perceptual variable intimately related to postural orientation that relies on visual and vestibular signals to correctly identify our position relative to vertical. We have combined a virtual environment with motion of a posture platform to produce visual-vestibular conditions that allow us to explore how motion of the visual environment may affect perception of vertical and, consequently, affect postural stabilizing responses. In order to involve a higher level perceptual process, we needed to create a visual environment that was immersive. We did this by developing visual scenes that possess contextual information using color, texture, and 3-dimensional structures. Update latency of the visual scene was close to physiological latencies of the vestibulo-ocular reflex. Using this system we found that even when healthy young adults stand and walk on a stable support surface, they are unable to ignore wide field of view visual motion and they adapt their postural orientation to the parameters of the visual motion. Balance training within our environment elicited measurable rehabilitation outcomes. Thus we believe that virtual environments can serve as a clinical tool for evaluation and training of movement in situations that closely reflect conditions found in the physical world. PMID:19592796

  14. Transfer of learned perception of sensorimotor simultaneity.

    PubMed

    Pesavento, Michael J; Schlag, John

    2006-10-01

    Synchronizing a motor response to a predictable sensory stimulus, like a periodic flash or click, relies on feedback (somesthetic, auditory, visual, or other) from the motor response. Practically, this results in a small (<50 ms) asynchrony in which the motor response leads the sensory event. Here we show that the perceived simultaneity in a coincidence-anticipation task (line crossing) is affected by changing the perceived simultaneity in a different task (pacing). In the pace task, human subjects were instructed to press a key in perfect synchrony with a red square flashed every second. In training sessions, feedback was provided by flashing a blue square with each key press, below the red square. There were two types of training pace sessions: one in which the feedback was provided with no delay, the other (adapting), in which the feedback was progressively delayed (up to 100 ms). Subjects' asynchrony was unchanged in the first case, but it was significantly increased in the pace task with delay. In the coincidence-anticipation task, a horizontally moving vertical bar crossed a vertical line in the middle of a screen. Subjects were instructed to press a key exactly when the bar crossed the line. They were given no feedback on their performance. Asynchrony on the line-crossing task was tested after the training pace task with feedback. We found that this asynchrony to be significantly increased even though there never was any feedback on the coincidence-anticipation task itself. Subjects were not aware that their sensorimotor asynchrony had been lengthened (sometimes doubled). We conclude that perception of simultaneity in a sensorimotor task is learned. If this perception is caused by coincidence of signals in the brain, the timing of these signals depends on something-acquired by experience-more adaptable than physiological latencies.

  15. Efficient encoding of motion is mediated by gap junctions in the fly visual system.

    PubMed

    Wang, Siwei; Borst, Alexander; Zaslavsky, Noga; Tishby, Naftali; Segev, Idan

    2017-12-01

    Understanding the computational implications of specific synaptic connectivity patterns is a fundamental goal in neuroscience. In particular, the computational role of ubiquitous electrical synapses operating via gap junctions remains elusive. In the fly visual system, the cells in the vertical-system network, which play a key role in visual processing, primarily connect to each other via axonal gap junctions. This network therefore provides a unique opportunity to explore the functional role of gap junctions in sensory information processing. Our information theoretical analysis of a realistic VS network model shows that within 10 ms following the onset of the visual input, the presence of axonal gap junctions enables the VS system to efficiently encode the axis of rotation, θ, of the fly's ego motion. This encoding efficiency, measured in bits, is near-optimal with respect to the physical limits of performance determined by the statistical structure of the visual input itself. The VS network is known to be connected to downstream pathways via a subset of triplets of the vertical system cells; we found that because of the axonal gap junctions, the efficiency of this subpopulation in encoding θ is superior to that of the whole vertical system network and is robust to a wide range of signal to noise ratios. We further demonstrate that this efficient encoding of motion by this subpopulation is necessary for the fly's visually guided behavior, such as banked turns in evasive maneuvers. Because gap junctions are formed among the axons of the vertical system cells, they only impact the system's readout, while maintaining the dendritic input intact, suggesting that the computational principles implemented by neural circuitries may be much richer than previously appreciated based on point neuron models. Our study provides new insights as to how specific network connectivity leads to efficient encoding of sensory stimuli.

  16. Binocular lens tilt and decentration measurements in healthy subjects with phakic eyes.

    PubMed

    Schaeffel, Frank

    2008-05-01

    Tilt and decentration of the natural crystalline lens affect optical quality of the foveal image. However, little is known about the distributions of these variables in healthy subjects with phakic eyes and about their correlations in both eyes. A simple, portable, easy-to-use, and partially automated device was developed to study lens tilt and decentration in both eyes of 11 healthy subjects with phakic eyes. The first, third, and fourth Purkinje images (P1, P3, P4) were visualized using a single infrared (IR) light-emitting diode (LED), a planar lens (F = 85 mm; f/number of 1.4), and an infrared sensitive analog video camera. Software was developed to mark pupil edges and positions of P1, P4, and P3 with the cursor of the computer mouse, for three different gaze positions, and an automated regression analysis determined the gaze position that superimposed the third and fourth Purkinje images, the gaze direction for which the lens was oriented perpendicularly to the axis of the IR LED. In this position, lens decentration was determined as the linear distance of the superimposed P3/P4 positions from the pupil center. Contrary to previous approaches, a short initial fixation of a green LED with known angular position calibrated the device as a gaze tracker, and no further positional information was necessary on fixation targets. Horizontal and vertical kappa, horizontal and vertical lens tilt, and vertical lens decentration were highly correlated in both eyes of the subjects, whereas horizontal decentration of the lens was not. There was a large variability of kappa (average horizontal kappa -1.63 degrees +/- 1.77 degrees [left eyes] and +2.07 degrees +/- 2.68 degrees [right eyes]; average vertical kappa +2.52 degrees +/- 1.30 degrees [left eyes] and +2.77 degrees +/- 1.65 degrees [right eyes]). Standard deviation from three repeated measurements ranged from 0.28 degrees to 0.51 degrees for kappa, 0.36 degrees to 0.91 degrees for horizontal lens tilt, and 0.36 degrees to 0.48 degrees for vertical lens tilt. Decentration was measured with standard deviations ranging from 0.02 mm to 0.05 mm. All lenses were found tilted to the temporal side with respect to the fixation axis (on average by 4.6 degrees ). They were also decentered downward with respect to the pupil center by approximately 0.3 mm. Lens tilts and positions could be conveniently measured with the described portable device, a video camera with a large lens. That the lenses were tilted to the temporal side in both eyes, even if corrected for kappa, was unexpected. That they were displaced downward with respect to the pupil center could be related to gravity.

  17. Dynamic Visual Acuity and Landing Sickness in Crewmembers Returning from Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.J.F; Peters, B.T.; Reschke, M. F.

    2016-01-01

    Long-term exposure to microgravity causes sensorimotor adaptations that result in functional deficits upon returning to a gravitational environment. At landing the vestibular system and the central nervous system, responsible for coordinating head and eye movements, are adapted to microgravity and must re-adapt to the gravitational environment. This re-adaptation causes decrements in gaze control and dynamic visual acuity, with astronauts reporting oscillopsia and blurred vision. Dynamic visual acuity (DVA) is assessed using an oscillating chair developed in the Neuroscience Laboratory at JSC. This chair is lightweight and easily portable for quick deployment in the field. The base of the chair is spring-loaded and allows for manual oscillation of the subject. Using a metronome, the chair is vertically oscillated plus or minus 2 cm at 2 Hz by an operator, to simulate walking. While the subject is being oscillated, they are asked to discern the direction of Landolt-C optotypes of varying sizes and record their direction using a gamepad. The visual acuity thresholds are determined using an algorithm that alters the size of the optotype based on the previous response of the subject using a forced-choice best parameter estimation that is able to rapidly converge on the threshold value. Visual acuity thresholds were determined both for static (seated) and dynamic (oscillating) conditions. Dynamic visual acuity is defined as the difference between the dynamic and static conditions. Dynamic visual acuity measures will be taken prior to flight (typically L-180, L-90, and L-60) and up to eight times after landing, including up to 3 times on R plus 0. Follow up measurements will be taken at R plus 1 (approximately 36 hours after landing). Long-duration International Space Station crewmembers will be tested once at the refueling stop in Europe and once again upon return to Johnson Space Center. In addition to DVA, subjective ratings of motion sickness will be recorded throughout the testing. Using the chair as a portable and reliable way to test DVA, we aim to test returning astronauts to assess the amount of retinal slip that they experience. By comparing these measurements to their motion sickness scores (using a scale of 1 to 20 where 20 is vomiting), we will correlate the amount of retinal slip to the level of motion sickness experienced. In addition to testing this in returning astronauts, we will perform ground-based studies to determine the effectiveness of stroboscopic goggles in reducing retinal slip and improving DVA. Finally, we will employ stroboscopic goggles in the field to astronauts experiencing high levels of motion sickness to minimize retinal slip and reduce their symptoms.

  18. Vision restoration therapy (VRT) efficacy as assessed by comparative perimetric analysis and subjective questionnaires.

    PubMed

    Sabel, Bernhard A; Kenkel, Sigrid; Kasten, Erich

    2004-01-01

    We wished to evaluate the efficacy of vision restoration therapy (VRT) in patients with post-chiasmatic brain damage using different functional perimetric tests. These were compared with measures of subjective vision and reaction time. An open trial was conducted with hemianopia/scotoma (n=16) patients. Before and after 6 months of VRT results of high resolution (HRP) and Tuebingen automated perimetry (TAP) were evaluated and compared to performance in a Scanning Laser Ophthalmoscope (SLO) as previously reported. Whereas TAP and HRP used above-threshold or near-threshold individual target stimuli on grey background, the SLO used a psychophysical task of detection of three black targets (reverse stimulus) on bright red, patterned background. Subjective testimonials of activities of daily living (ADL) were probed with questionnaires and interviews. Before VRT, the visual field border as assessed by SLO was located significantly closer to the vertical midline than the HRP and TAP border (border mismatch). After VRT the SLO border was still unchanged whereas HRP measurements revealed significant border shifts due to improved stimulus detection (p<0.0001) and improved reaction time (p<0.005) . Fewer misses were also observed in both eyes with TAP (p<0.01) which was primarily due to a significant shift of the absolute borders. Thus, VRT potentiated the mismatch between the SLO borders and the HRP/TAP borders. Fixation performance and the blind spot position remained unchanged after VRT. ADL ratings in the questionnaire improved significantly after VRT which was confirmed by independent patient testimonials. We replicated earlier findings that VRT improves stimulus detection in HRP and TAP perimetry which were accompanied by subjective, visual improvements. These changes are not caused by fixation or eye movement artifacts. Because the SLO border was located significantly closer to the vertical midline before VRT ("border mismatch") and, in contrast to HRP and TAP, did not change after VRT, we interpret this border mismatch to indicate that the SLO task was too difficult to perform and thus insensitive to VRT effects. Significant reaction time improvements indicate that plasticity of temporal processing might play an important role in vision restoration after brain damage. A further description of the precise psychophysical nature of the restored areas of residual vision is now warranted.

  19. Examination of Self-Myofascial Release vs. Instrument-Assisted Soft-Tissue Mobilization Techniques on Vertical and Horizontal Power in Recreational Athletes.

    PubMed

    Stroiney, Debra A; Mokris, Rebecca L; Hanna, Gary R; Ranney, John D

    2018-05-08

    Stroiney, DA, Mokris, RL, Hanna, GR, and Ranney, JD. Examination of self-myofascial release vs. instrument-assisted soft-tissue mobilization techniques on vertical and horizontal power in recreational athletes. J Strength Cond Res XX(X): 000-000, 2018-This study examined whether pre-exercise self-myofascial release (SMR) and instrument-assisted soft-tissue mobilization (IASTM) would improve performance on measures of vertical jump height and 40-yd sprint time. Differences in perceived pain levels were also examined. Forty-nine college students volunteered for the study and were randomly assigned to receive either IASTM via Tècnica Gavilàn PTB or SMR via The Stick before performance assessments. After the massage intervention, subjects rated their level of perceived pain using a visual analog scale. An independent t test was used to analyze differences in perceived pain levels between the 2 massage interventions. A 2 × 2 analyses of covariance analyzed differences between sex and the 2 massage interventions. There was no interaction (p > 0.05) between the massage intervention and sex for both the vertical jump and 40-yd sprint tests. There was a significant main effect for vertical jump and SMR (p = 0.04). Sex also had a significant main effect for both the vertical jump (p = 0.04) and the 40-yd sprint (p = 0.02). There were no significant differences between massage interventions for the 40-yd sprint times (p = 0.73). There were no significant differences in perceived pain (t(49) = -1.60, p > 0.05). The use of SMR before exercise may improve vertical jump height in recreational athletes. Pain should not be a factor when choosing massage interventions for athletes because IASTM was not perceived to be more painful than SMR. Self-myofascial release and IASTM did not enhance sprinting performance in this study.

  20. Visually induced adaptation in three-dimensional organization of primate vestibuloocular reflex

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1998-01-01

    The adaptive plasticity of the spatial organization of the vestibuloocular reflex (VOR) has been investigated in intact and canal-plugged primates using 2-h exposure to conflicting visual (optokinetic, OKN) and vestibular rotational stimuli about mutually orthogonal axes (generating torsional VOR + vertical OKN, torsional VOR + horizontal OKN, vertical VOR + horizontal OKN, and horizontal VOR + vertical OKN). Adaptation protocols with 0.5-Hz (+/-18 degrees ) head movements about either an earth-vertical or an earth-horizontal axis induced orthogonal response components as high as 40-70% of those required for ideal adaptation. Orthogonal response gains were highest at the adapting frequency with phase leads present at lower and phase lags present at higher frequencies. Furthermore, the time course of adaptation, as well as orthogonal response dynamics were similar and relatively independent of the particular visual/vestibular stimulus combination. Low-frequency (0. 05 Hz, vestibular stimulus: +/-60 degrees ; optokinetic stimulus: +/-180 degrees ) adaptation protocols with head movements about an earth-vertical axis induced smaller orthogonal response components that did not exceed 20-40% of the head velocity stimulus (i.e., approximately 10% of that required for ideal adaptation). At the same frequency, adaptation with head movements about an earth-horizontal axis generated large orthogonal responses that reached values as high as 100-120% of head velocity after 2 h of adaptation (i.e., approximately 40% of ideal adaptation gains). The particular spatial and temporal response characteristics after low-frequency, earth-horizontal axis adaptation in both intact and canal-plugged animals strongly suggests that the orienting (and perhaps translational) but not inertial (velocity storage) components of the primate otolith-ocular system exhibit spatial adaptability. Due to the particular nested arrangement of the visual and vestibular stimuli, the optic flow pattern exhibited a significant component about the third spatial axis (i.e., orthogonal to the axes of rotation of the head and visual surround) at twice the oscillation frequency. Accordingly, the adapted VOR was characterized consistently by a third response component (orthogonal to both the axes of head and optokinetic drum rotation) at twice the oscillation frequency after earth-horizontal but not after earth-vertical axis 0.05-Hz adaptation. This suggests that the otolith-ocular (but not the semicircular canal-ocular) system can adaptively change its spatial organization at frequencies different from those of the head movement.

  1. Water-level representation by men and women as a function of rod-and-frame test proficiency and visual and postural information.

    PubMed

    Robert, M; Ohlmann, T

    1994-01-01

    In the water-level task, it has been repeatedly shown that, compared with men, women more often fail to represent the surface of a liquid as horizontal regardless of the tilt of the container. An attempt was made to reduce this robust gender gap through the manipulation of relevant upright references conveyed both by the position of the stimuli and the posture of the subject. It was reasoned that bringing the women to focus on such gravitational references through postural adjustment might help their performance equal that of men, thus shedding some light on the nature of the difficulty they experience in the standard setting. A lesser effect was anticipated among men. However, the results showed that, even after controlling for proficiency in the correlated visuospatial situation of the rod-and-frame test, the performance of men always surpassed that of women. Irrespective of gender, water-level representation on vertical sheets was unaffected by the subject's posture, whereas it improved when horizontal sheets were coupled with the most unstable posture. Whereas the persistence of the yet-unaccounted-for gender difference was underscored, the contributions of visual and postural cues issued at arm and full-body levels were discussed.

  2. Reading speed benefits from increased vertical word spacing in normal peripheral vision.

    PubMed

    Chung, Susana T L

    2004-07-01

    Crowding, the adverse spatial interaction due to proximity of adjacent targets, has been suggested as an explanation for slow reading in peripheral vision. The purposes of this study were to (1) demonstrate that crowding exists at the word level and (2) examine whether or not reading speed in central and peripheral vision can be enhanced with increased vertical word spacing. Five normal observers read aloud sequences of six unrelated four-letter words presented on a computer monitor, one word at a time, using rapid serial visual presentation (RSVP). Reading speeds were calculated based on the RSVP exposure durations yielding 80% correct. Testing was conducted at the fovea and at 5 degrees and 10 degrees in the inferior visual field. Critical print size (CPS) for each observer and at each eccentricity was first determined by measuring reading speeds for four print sizes using unflanked words. We then presented words at 0.8x or 1.4x CPS, with each target word flanked by two other words, one above and one below the target word. Reading speeds were determined for vertical word spacings (baseline-to-baseline separation between two vertically separated words) ranging from 0.8x to 2x the standard single-spacing, as well as the unflanked condition. At the fovea, reading speed increased with vertical word spacing up to about 1.2x to 1.5x the standard spacing and remained constant and similar to the unflanked reading speed at larger vertical word spacings. In the periphery, reading speed also increased with vertical word spacing, but it remained below the unflanked reading speed for all spacings tested. At 2x the standard spacing, peripheral reading speed was still about 25% lower than the unflanked reading speed for both eccentricities and print sizes. Results from a control experiment showed that the greater reliance of peripheral reading speed on vertical word spacing was also found in the right visual field. Increased vertical word spacing, which presumably decreases the adverse effect of crowding between adjacent lines of text, benefits reading speed. This benefit is greater in peripheral than central vision.

  3. Visual Imagery for Letters and Words. Final Report.

    ERIC Educational Resources Information Center

    Weber, Robert J.

    In a series of six experiments, undergraduate college students visually imagined letters or words and then classified as rapidly as possible the imagined letters for some physical property such as vertical height. This procedure allowed for a preliminary assessment of the temporal parameters of visual imagination. The results delineate a number of…

  4. Tactical decisions for changeable cuttlefish camouflage: visual cues for choosing masquerade are relevant from a greater distance than visual cues used for background matching.

    PubMed

    Buresch, Kendra C; Ulmer, Kimberly M; Cramer, Corinne; McAnulty, Sarah; Davison, William; Mäthger, Lydia M; Hanlon, Roger T

    2015-10-01

    Cuttlefish use multiple camouflage tactics to evade their predators. Two common tactics are background matching (resembling the background to hinder detection) and masquerade (resembling an uninteresting or inanimate object to impede detection or recognition). We investigated how the distance and orientation of visual stimuli affected the choice of these two camouflage tactics. In the current experiments, cuttlefish were presented with three visual cues: 2D horizontal floor, 2D vertical wall, and 3D object. Each was placed at several distances: directly beneath (in a circle whose diameter was one body length (BL); at zero BL [(0BL); i.e., directly beside, but not beneath the cuttlefish]; at 1BL; and at 2BL. Cuttlefish continued to respond to 3D visual cues from a greater distance than to a horizontal or vertical stimulus. It appears that background matching is chosen when visual cues are relevant only in the immediate benthic surroundings. However, for masquerade, objects located multiple body lengths away remained relevant for choice of camouflage. © 2015 Marine Biological Laboratory.

  5. Postdictive modulation of visual orientation.

    PubMed

    Kawabe, Takahiro

    2012-01-01

    The present study investigated how visual orientation is modulated by subsequent orientation inputs. Observers were presented a near-vertical Gabor patch as a target, followed by a left- or right-tilted second Gabor patch as a distracter in the spatial vicinity of the target. The task of the observers was to judge whether the target was right- or left-tilted (Experiment 1) or whether the target was vertical or not (Supplementary experiment). The judgment was biased toward the orientation of the distracter (the postdictive modulation of visual orientation). The judgment bias peaked when the target and distracter were temporally separated by 100 ms, indicating a specific temporal mechanism for this phenomenon. However, when the visibility of the distracter was reduced via backward masking, the judgment bias disappeared. On the other hand, the low-visibility distracter could still cause a simultaneous orientation contrast, indicating that the distracter orientation is still processed in the visual system (Experiment 2). Our results suggest that the postdictive modulation of visual orientation stems from spatiotemporal integration of visual orientation on the basis of a slow feature matching process.

  6. A Randomized Trial of Soft Multifocal Contact Lenses for Myopia Control: Baseline Data and Methods.

    PubMed

    Walline, Jeffrey J; Gaume Giannoni, Amber; Sinnott, Loraine T; Chandler, Moriah A; Huang, Juan; Mutti, Donald O; Jones-Jordan, Lisa A; Berntsen, David A

    2017-09-01

    The Bifocal Lenses In Nearsighted Kids (BLINK) study is the first soft multifocal contact lens myopia control study to compare add powers and measure peripheral refractive error in the vertical meridian, so it will provide important information about the potential mechanism of myopia control. The BLINK study is a National Eye Institute-sponsored, double-masked, randomized clinical trial to investigate the effects of soft multifocal contact lenses on myopia progression. This article describes the subjects' baseline characteristics and study methods. Subjects were 7 to 11 years old, had -0.75 to -5.00 spherical component and less than 1.00 diopter (D) astigmatism, and had 20/25 or better logMAR distance visual acuity with manifest refraction in each eye and with +2.50-D add soft bifocal contact lenses on both eyes. Children were randomly assigned to wear Biofinity single-vision, Biofinity Multifocal "D" with a +1.50-D add power, or Biofinity Multifocal "D" with a +2.50-D add power contact lenses. We examined 443 subjects at the baseline visits, and 294 (66.4%) subjects were enrolled. Of the enrolled subjects, 177 (60.2%) were female, and 200 (68%) were white. The mean (± SD) age was 10.3 ± 1.2 years, and 117 (39.8%) of the eligible subjects were younger than 10 years. The mean spherical equivalent refractive error, measured by cycloplegic autorefraction was -2.39 ± 1.00 D. The best-corrected binocular logMAR visual acuity with glasses was +0.01 ± 0.06 (20/21) at distance and -0.03 ± 0.08 (20/18) at near. The BLINK study subjects are similar to patients who would routinely be eligible for myopia control in practice, so the results will provide clinical information about soft bifocal contact lens myopia control as well as information about the mechanism of the treatment effect, if one occurs.

  7. Cross-modal associations between materic painting and classical Spanish music

    PubMed Central

    Albertazzi, Liliana; Canal, Luisa; Micciolo, Rocco

    2015-01-01

    The study analyses the existence of cross-modal associations in the general population between a series of paintings and a series of clips of classical (guitar) music. Because of the complexity of the stimuli, the study differs from previous analyses conducted on the association between visual and auditory stimuli, which predominantly analyzed single tones and colors by means of psychophysical methods and forced choice responses. More recently, the relation between music and shape has been analyzed in terms of music visualization, or relatively to the role played by emotion in the association, and free response paradigms have also been accepted. In our study, in order to investigate what attributes may be responsible for the phenomenon of the association between visual and auditory stimuli, the clip/painting association was tested in two experiments: the first used the semantic differential on a unidimensional rating scale of adjectives; the second employed a specific methodology based on subjective perceptual judgments in first person account. Because of the complexity of the stimuli, it was decided to have the maximum possible uniformity of style, composition and musical color. The results show that multisensory features expressed by adjectives such as “quick,” “agitated,” and “strong,” and their antonyms “slow,” “calm,” and “weak” characterized both the visual and auditory stimuli, and that they may have had a role in the associations. The results also suggest that the main perceptual features responsible for the clip/painting associations were hue, lightness, timbre, and musical tempo. Contrary to what was expected, the musical mode usually related to feelings of happiness (major mode), or to feelings of sadness (minor mode), and spatial orientation (vertical and horizontal) did not play a significant role in the association. The consistency of the associations was shown when evaluated on the whole sample, and after considering the different backgrounds and expertise of the subjects. No substantial difference was found between expert and non-expert subjects. The methods used in the experiment (semantic differential and subjective judgements in first person account) corroborated the interpretation of the results as associations due to patterns of qualitative similarity present in stimuli of different sensory modalities and experienced as such by the subjects. The main result of the study consists in showing the existence of cross-modal associations between highly complex stimuli; furthermore, the second experiment employed a specific methodology based on subjective perceptual judgments. PMID:25954217

  8. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness.

    PubMed

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo

    2003-05-01

    Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.

  9. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    PubMed Central

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  10. Development of ride comfort criteria for mass transit systems

    NASA Technical Reports Server (NTRS)

    Kirby, R. H.; Mikulka, P. J.; Coates, G. D.

    1976-01-01

    Two studies were conducted on the effects of simultaneous sinusoidal vibration in the vertical and lateral axes on ratings of discomfort in human subjects in a simulated passenger aircraft. In the first experiment each of 24 subjects experienced each of ten levels of vertical frequency in combination with each of ten levels of lateral frequency vibration and rated the discomfort produced on a nine-point, unipolar scale. In the second experiment 72 subjects experienced one of four levels of vertical frequency at each of four levels of vertical amplitude combined with 16 (or 4 x 4) lateral frequency and amplitude conditions. The results of these two studies strongly suggest that there are effects on discomfort that occur when subjects are vibrated in several axes at once that cannot be assessed with research using vibration in only one axis.

  11. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  12. Effect of a submaximal half-squats warm-up program on vertical jumping ability.

    PubMed

    Gourgoulis, Vassilios; Aggeloussis, Nickos; Kasimatis, Panagiotis; Mavromatis, Giorgos; Garas, Athanasios

    2003-05-01

    The purpose of the current research was to study the effect of a warm-up program including submaximal half-squats on vertical jumping ability. Twenty physically active men participated in the study. Each subject performed 5 sets of half-squats with 2 repetitions at each of the following intensities: 20, 40, 60, 80, and 90% of the 1 repetition maximum (1RM) load. Prior to the first set and immediately after the end of the last set, the subjects performed 2 countermovement jumps on a Kistler force platform; the primary goal was to jump as high as possible. The results showed that mean vertical jumping ability improved by 2.39% after the warm-up period. Subjects were then divided into 2 groups according to their 1RM values for the half-squat. Subjects with greater maximal strength ability improved their vertical jumping ability (4.01%) more than did subjects with lower maximal strength (0.42%). A warm-up protocol including half-squats with submaximal loads and explosive execution can be used for short-term improvements of vertical jumping performance, and this effect is greater in athletes with a relatively high strength ability.

  13. Low-Frequency Otolith Function in Microgravity: A Re-Evaluation of the Otolith Tilt-Translation Reinterpretation (OTTR) Hypothesis

    NASA Technical Reports Server (NTRS)

    Moore, Steven T.; Cohen, Bernard; Clement, Gilles; Raphan, Theodore

    1999-01-01

    On Earth, the low-frequency afferent signal from the otoliths encodes head tilt with respect to the gravitational vertical, and the higher frequency components reflect both tilt and linear acceleration of the head. In microgravity, static tilt of the head does not influence otolith output, and the relationship between sensory input from the vestibular organs, and the visual, proprioceptive and somatosensory systems, would be disrupted. Several researchers have proposed that in 0-g this conflict may induce a reinterpretation of all otolith signals by the brain to encode only linear translation (otolith tilt-translation reinterpretation or OTTR). Ocular counter-rolling (OCR) is a low-frequency otolith-mediated reflex, which generates compensatory torsional eye movements (rotation about the visual axis) towards the spatial vertical during static roll tilt with a gain of approximately 10%. Transient linear acceleration and off-axis centrifugation at a constant angular velocity can also generate OCR. According to the OTTR hypothesis, OCR should be reduced in microgravity, and immediately upon return from a 0-g environment. Results to date have been inconclusive. OCR was reduced following the 10 day Spacelab-1 mission in response to leftward roll tilts (28-56% in 3 subjects and unchanged in one subject), and sinusoidal linear oscillations at 0.4 and 0.8 Hz. OCR gain declined 70% in four monkeys following a 14 day COSMOS mission. Following a 30 day MIR mission OCR gain decreased in one astronaut, but increased in two others following a 180 day mission. We have studied the affect of microgravity on low-frequency otolith function as part of a larger study of the interaction of vision and the vestibular system. This experiment (E-047) involved off-axis centrifugation of payload crewmembers and flew aboard the recent Neurolab mission (STS 90). Presented below are preliminary results focusing on perception and the OCR response during both centrifugation and static tilt.

  14. Web-based visualization of gridded dataset usings OceanBrowser

    NASA Astrophysics Data System (ADS)

    Barth, Alexander; Watelet, Sylvain; Troupin, Charles; Beckers, Jean-Marie

    2015-04-01

    OceanBrowser is a web-based visualization tool for gridded oceanographic data sets. Those data sets are typically four-dimensional (longitude, latitude, depth and time). OceanBrowser allows one to visualize horizontal sections at a given depth and time to examine the horizontal distribution of a given variable. It also offers the possibility to display the results on an arbitrary vertical section. To study the evolution of the variable in time, the horizontal and vertical sections can also be animated. Vertical section can be generated by using a fixed distance from coast or fixed ocean depth. The user can customize the plot by changing the color-map, the range of the color-bar, the type of the plot (linearly interpolated color, simple contours, filled contours) and download the current view as a simple image or as Keyhole Markup Language (KML) file for visualization in applications such as Google Earth. The data products can also be accessed as NetCDF files and through OPeNDAP. Third-party layers from a web map service can also be integrated. OceanBrowser is used in the frame of the SeaDataNet project (http://gher-diva.phys.ulg.ac.be/web-vis/) and EMODNET Chemistry (http://oceanbrowser.net/emodnet/) to distribute gridded data sets interpolated from in situ observation using DIVA (Data-Interpolating Variational Analysis).

  15. Vertical File Subject Headings KWIK List.

    ERIC Educational Resources Information Center

    Knowles, Em Claire; And Others

    A subject heading keyword-in-context (KWIK) list for the vertical files at the University of California, Davis, is presented. It is noted that the KWIK list was prepared to assist library users in locating more subject headings for available materials in the various pamphlet collections and that the list is computerized to enable frequent…

  16. The perception of verticality in lunar and Martian gravity conditions.

    PubMed

    de Winkel, Ksander N; Clément, Gilles; Groen, Eric L; Werkhoven, Peter J

    2012-10-31

    Although the mechanisms of neural adaptation to weightlessness and re-adaptation to Earth-gravity have received a lot of attention since the first human space flight, there is as yet little knowledge about how spatial orientation is affected by partial gravity, such as lunar gravity of 0.16 g or Martian gravity of 0.38 g. Up to now twelve astronauts have spent a cumulated time of approximately 80 h on the lunar surface, but no psychophysical experiments were conducted to investigate their perception of verticality. We investigated how the subjective vertical (SV) was affected by reduced gravity levels during the first European Parabolic Flight Campaign of Partial Gravity. In normal and hypergravity, subjects accurately aligned their SV with the gravitational vertical. However, when gravity was below a certain threshold, subjects aligned their SV with their body longitudinal axis. The value of the threshold varied considerably between subjects, ranging from 0.03 to 0.57 g. Despite the small number of subjects, there was a significant positive correlation of the threshold with subject age, which calls for further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.

    PubMed

    Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C

    1995-01-01

    To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).

  18. Evaluation of g seat augmentation of fixed-base/moving base simulation for transport landings under two visually imposed runway width conditions

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Steinmetz, G. G.

    1983-01-01

    Vertical-motion cues supplied by a g-seat to augment platform motion cues in the other five degrees of freedom were evaluated in terms of their effect on objective performance measures obtained during simulated transport landings under visual conditions. In addition to evaluating the effects of the vertical cueing, runway width and magnification effects were investigated. The g-seat was evaluated during fixed base and moving-base operations. Although performance with the g-seat only improved slightly over that with fixed-base operation, combined g-seat platform operation showed no improvement over improvement over platform-only operation. When one runway width at one magnification factor was compared with another width at a different factor, the visual results indicated that the runway width probably had no effect on pilot-vehicle performance. The new performance differences that were detected may be more readily attributed to the extant (existing throughout) increase in vertical velocity induced by the magnification factor used to change the runway width, rather than to the width itself.

  19. A new mode of fear expression: perceptual bias in height fear.

    PubMed

    Teachman, Bethany A; Stefanucci, Jeanine K; Clerkin, Elise M; Cody, Meghan W; Proffitt, Dennis R

    2008-04-01

    Emotion and psychopathology researchers have described the fear response as consisting of four main components--subjective affect, physiology, cognition, and behavior. The current study provides evidence for an additional component in the domain of height fear (perception) and shows that it is distinct from measures of cognitive processing. Individuals High (N = 35) and Low (N = 36) in acrophobic symptoms looked over a two-story balcony ledge and estimated its vertical extent using a direct height estimation task (visual matching), and an indirect task (size estimation); the latter task seems to exhibit little influence from cognitive factors. In addition, implicit and explicit measures of cognitive processing were obtained. Results indicated that, as expected, the High Fear group showed greater relative, implicit height fear associations and explicit threat cognitions. Of primary interest, the High (compared to Low) Fear group estimated the vertical extent to be higher, and judged target sizes to be greater, even when controlling for the cognitive bias measures. These results suggest that emotional factors such as fear are related to perception. (Copyright) 2008 APA.

  20. Open angle glaucoma effects on preattentive visual search efficiency for flicker, motion displacement and orientation pop-out tasks.

    PubMed

    Loughman, James; Davison, Peter; Flitcroft, Ian

    2007-11-01

    Preattentive visual search (PAVS) describes rapid and efficient retinal and neural processing capable of immediate target detection in the visual field. Damage to the nerve fibre layer or visual pathway might reduce the efficiency with which the visual system performs such analysis. The purpose of this study was to test the hypothesis that patients with glaucoma are impaired on parallel search tasks, and that this would serve to distinguish glaucoma in early cases. Three groups of observers (glaucoma patients, suspect and normal individuals) were examined, using computer-generated flicker, orientation, and vertical motion displacement targets to assess PAVS efficiency. The task required rapid and accurate localisation of a singularity embedded in a field of 119 homogeneous distractors on either the left or right-hand side of a computer monitor. All subjects also completed a choice reaction time (CRT) task. Independent sample T tests revealed PAVS efficiency to be significantly impaired in the glaucoma group compared with both normal and suspect individuals. Performance was impaired in all types of glaucoma tested. Analysis between normal and suspect individuals revealed a significant difference only for motion displacement response times. Similar analysis using a PAVS/CRT index confirmed the glaucoma findings but also showed statistically significant differences between suspect and normal individuals across all target types. A test of PAVS efficiency appears capable of differentiating early glaucoma from both normal and suspect cases. Analysis incorporating a PAVS/CRT index enhances the diagnostic capacity to differentiate normal from suspect cases.

  1. Simulator Study of Helmet-Mounted Symbology System Concepts in Degraded Visual Environments.

    PubMed

    Cheung, Bob; McKinley, Richard A; Steels, Brad; Sceviour, Robert; Cosman, Vaughn; Holst, Peter

    2015-07-01

    A sudden loss of external visual cues during critical phases of flight results in spatial disorientation. This is due to undetected horizontal and vertical drift when there is little tolerance for error and correction delay as the helicopter is close to the ground. Three helmet-mounted symbology system concepts were investigated in the simulator as potential solutions for the legacy Griffon helicopters. Thirteen Royal Canadian Air Force (RCAF) Griffon pilots were exposed to the Helmet Display Tracking System for Degraded Visual Environments (HDTS), the BrownOut Symbology System (BOSS), and the current RCAF AVS7 symbology system. For each symbology system, the pilot performed a two-stage departure and a single-stage approach. The presentation order of the symbology systems was randomized. Objective performance metrics included aircraft speed, altitude, attitude, and distance from the landing point. Subjective measurements included situation awareness, mental effort, perceived performance, perceptual cue rating, and NASA Task Load Index. Repeated measures analysis of variance and subsequent planned comparison for all the objective and subjective measurements were performed between the AVS7, HDTS, and BOSS. Our results demonstrated that HDTS and BOSS showed general improvement over AVS7 in two-stage departure. However, only HDTS performed significantly better in heading error than AVS7. During the single-stage approach, BOSS performed worse than AVS7 in heading root mean square error, and only HDTS performed significantly better in distance to landing point and approach heading than the others. Both the HDTS and BOSS possess their own limitations; however, HDTS is the pilots' preferred flight display.

  2. Relationship between selected orientation rest frame, circular vection and space motion sickness

    NASA Technical Reports Server (NTRS)

    Harm, D. L.; Parker, D. E.; Reschke, M. F.; Skinner, N. C.

    1998-01-01

    Space motion sickness (SMS) and spatial orientation and motion perception disturbances occur in 70-80% of astronauts. People select "rest frames" to create the subjective sense of spatial orientation. In microgravity, the astronaut's rest frame may be based on visual scene polarity cues and on the internal head and body z axis (vertical body axis). The data reported here address the following question: Can an astronaut's orientation rest frame be related and described by other variables including circular vection response latencies and space motion sickness? The astronaut's microgravity spatial orientation rest frames were determined from inflight and postflight verbal reports. Circular vection responses were elicited by rotating a virtual room continuously at 35 degrees/s in pitch, roll and yaw with respect to the astronaut. Latency to the onset of vection was recorded from the time the crew member opened their eyes to the onset of vection. The astronauts who used visual cues exhibited significantly shorter vection latencies than those who used internal z axis cues. A negative binomial regression model was used to represent the observed total SMS symptom scores for each subject for each flight day. Orientation reference type had a significant effect, resulting in an estimated three-fold increase in the expected motion sickness score on flight day 1 for astronauts who used visual cues. The results demonstrate meaningful classification of astronauts' rest frames and their relationships to sensitivity to circular vection and SMS. Thus, it may be possible to use vection latencies to predict SMS severity and duration.

  3. Visual Acuity Using Head-fixed Displays During Passive Self and Surround Motion

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Black, F. Owen; Stallings, Valerie; Peters, Brian

    2007-01-01

    The ability to read head-fixed displays on various motion platforms requires the suppression of vestibulo-ocular reflexes. This study examined dynamic visual acuity while viewing a head-fixed display during different self and surround rotation conditions. Twelve healthy subjects were asked to report the orientation of Landolt C optotypes presented on a micro-display fixed to a rotating chair at 50 cm distance. Acuity thresholds were determined by the lowest size at which the subjects correctly identified 3 of 5 optotype orientations at peak velocity. Visual acuity was compared across four different conditions, each tested at 0.05 and 0.4 Hz (peak amplitude of 57 deg/s). The four conditions included: subject rotated in semi-darkness (i.e., limited to background illumination of the display), subject stationary while visual scene rotated, subject rotated around a stationary visual background, and both subject and visual scene rotated together. Visual acuity performance was greatest when the subject rotated around a stationary visual background; i.e., when both vestibular and visual inputs provided concordant information about the motion. Visual acuity performance was most reduced when the subject and visual scene rotated together; i.e., when the visual scene provided discordant information about the motion. Ranges of 4-5 logMAR step sizes across the conditions indicated the acuity task was sufficient to discriminate visual performance levels. The background visual scene can influence the ability to read head-fixed displays during passive motion disturbances. Dynamic visual acuity using head-fixed displays can provide an operationally relevant screening tool for visual performance during exposure to novel acceleration environments.

  4. Metamorphopsia Score and Central Visual Field Outcomes in Diabetic Cystoid Macular Edema

    PubMed Central

    Brzozowska, Agnieszka; Maciejewski, Ryszard

    2018-01-01

    Aim To detect abnormality of the visual function in naïve patients with cystoid diabetic macular edema (DME) using M-charts, Amsler test, and white on white (W/W) and blue on yellow (B/Y) perimetry. Methods There were 64 eyes included in the study: 30 eyes with DME, 22 eyes with diabetes without DME, and 12 eyes of normal subjects. Conventional W/W perimetry and B/Y perimetry were performed within the central 10° of the visual field. To assess metamorphopsia, Amsler test and M-charts were used. Results The rate of detection of metamorphopsia was 37% with Amsler test examination and 50% with M-charts. Specificity of both tests was 100%. We found a significant difference between vertical scores of M-charts in all groups, but not in horizontal scores (p < 0.0001). Mean defect (MD) was 8.9 dB and 3.6 dB and loss variance (LV) 4.8 dB and 3.3 dB (p < 0.0001). Conclusions M-chart is more sensitive than Amsler test method for detection of metamorphopsia. The MD and LV are higher in b/y in comparison to W/W perimetry. B/Y perimetry and M-charts are more sensitive than conventional methods for detecting the visual function loss in cystoid DME. PMID:29744359

  5. Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.

    PubMed

    Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael

    2006-08-01

    The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.

  6. Imagery and Fear Influence Height Perception

    PubMed Central

    Clerkin, Elise M.; Cody, Meghan W.; Stefanucci, Jeanine K.; Proffitt, Dennis R.; Teachman, Bethany A.

    2008-01-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n = 65) versus low (n = 64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony’s height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling). PMID:19162437

  7. Imagery and fear influence height perception.

    PubMed

    Clerkin, Elise M; Cody, Meghan W; Stefanucci, Jeanine K; Proffitt, Dennis R; Teachman, Bethany A

    2009-04-01

    The current study tested whether height overestimation is related to height fear and influenced by images of falling. To assess perceptual biases, participants high (n=65) versus low (n=64) in height fear estimated the vertical extents of two balconies using a visual matching task. On one of the balconies, participants engaged in an imagery exercise designed to enhance the subjective sense that they were acting in a dangerous environment by picturing themselves falling. As expected, we found that individuals overestimated the balcony's height more after they imagined themselves falling, particularly if they were already afraid of heights. These findings suggest that height fear may serve as a vulnerability factor that leads to perceptual biases when triggered by a stressor (in this case, images of falling).

  8. Extrapolation of vertical target motion through a brief visual occlusion.

    PubMed

    Zago, Myrka; Iosa, Marco; Maffei, Vincenzo; Lacquaniti, Francesco

    2010-03-01

    It is known that arbitrary target accelerations along the horizontal generally are extrapolated much less accurately than target speed through a visual occlusion. The extent to which vertical accelerations can be extrapolated through an occlusion is much less understood. Here, we presented a virtual target rapidly descending on a blank screen with different motion laws. The target accelerated under gravity (1g), decelerated under reversed gravity (-1g), or moved at constant speed (0g). Probability of each type of acceleration differed across experiments: one acceleration at a time, or two to three different accelerations randomly intermingled could be presented. After a given viewing period, the target disappeared for a brief, variable period until arrival (occluded trials) or it remained visible throughout (visible trials). Subjects were asked to press a button when the target arrived at destination. We found that, in visible trials, the average performance with 1g targets could be better or worse than that with 0g targets depending on the acceleration probability, and both were always superior to the performance with -1g targets. By contrast, the average performance with 1g targets was always superior to that with 0g and -1g targets in occluded trials. Moreover, the response times of 1g trials tended to approach the ideal value with practice in occluded protocols. To gain insight into the mechanisms of extrapolation, we modeled the response timing based on different types of threshold models. We found that occlusion was accompanied by an adaptation of model parameters (threshold time and central processing time) in a direction that suggests a strategy oriented to the interception of 1g targets at the expense of the interception of the other types of tested targets. We argue that the prediction of occluded vertical motion may incorporate an expectation of gravity effects.

  9. Effects of visual motion consistent or inconsistent with gravity on postural sway.

    PubMed

    Balestrucci, Priscilla; Daprati, Elena; Lacquaniti, Francesco; Maffei, Vincenzo

    2017-07-01

    Vision plays an important role in postural control, and visual perception of the gravity-defined vertical helps maintaining upright stance. In addition, the influence of the gravity field on objects' motion is known to provide a reference for motor and non-motor behavior. However, the role of dynamic visual cues related to gravity in the control of postural balance has been little investigated. In order to understand whether visual cues about gravitational acceleration are relevant for postural control, we assessed the relation between postural sway and visual motion congruent or incongruent with gravity acceleration. Postural sway of 44 healthy volunteers was recorded by means of force platforms while they watched virtual targets moving in different directions and with different accelerations. Small but significant differences emerged in sway parameters with respect to the characteristics of target motion. Namely, for vertically accelerated targets, gravitational motion (GM) was associated with smaller oscillations of the center of pressure than anti-GM. The present findings support the hypothesis that not only static, but also dynamic visual cues about direction and magnitude of the gravitational field are relevant for balance control during upright stance.

  10. Subjective and objective evaluation of visual fatigue on viewing 3D display continuously

    NASA Astrophysics Data System (ADS)

    Wang, Danli; Xie, Yaohua; Yang, Xinpan; Lu, Yang; Guo, Anxiang

    2015-03-01

    In recent years, three-dimensional (3D) displays become more and more popular in many fields. Although they can provide better viewing experience, they cause extra problems, e.g., visual fatigue. Subjective or objective methods are usually used in discrete viewing processes to evaluate visual fatigue. However, little research combines subjective indicators and objective ones in an entirely continuous viewing process. In this paper, we propose a method to evaluate real-time visual fatigue both subjectively and objectively. Subjects watch stereo contents on a polarized 3D display continuously. Visual Reaction Time (VRT), Critical Flicker Frequency (CFF), Punctum Maximum Accommodation (PMA) and subjective scores of visual fatigue are collected before and after viewing. During the viewing process, the subjects rate the visual fatigue whenever it changes, without breaking the viewing process. At the same time, the blink frequency (BF) and percentage of eye closure (PERCLOS) of each subject is recorded for comparison to a previous research. The results show that the subjective visual fatigue and PERCLOS increase with time and they are greater in a continuous process than a discrete one. The BF increased with time during the continuous viewing process. Besides, the visual fatigue also induced significant changes of VRT, CFF and PMA.

  11. Inspection of Pole-Like Structures Using a Visual-Inertial Aided VTOL Platform with Shared Autonomy

    PubMed Central

    Sa, Inkyu; Hrabar, Stefan; Corke, Peter

    2015-01-01

    This paper presents an algorithm and a system for vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structures such as light and power distribution poles is a difficult task that is time-consuming, dangerous and expensive. Recently, micro VTOL platforms (i.e., quad-, hexa- and octa-rotors) have been rapidly gaining interest in research, military and even public domains. The unmanned, low-cost and VTOL properties of these platforms make them ideal for situations where inspection would otherwise be time-consuming and/or hazardous to humans. There are, however, challenges involved with developing such an inspection system, for example flying in close proximity to a target while maintaining a fixed stand-off distance from it, being immune to wind gusts and exchanging useful information with the remote user. To overcome these challenges, we require accurate and high-update rate state estimation and high performance controllers to be implemented onboard the vehicle. Ease of control and a live video feed are required for the human operator. We demonstrate a VTOL platform that can operate at close-quarters, whilst maintaining a safe stand-off distance and rejecting environmental disturbances. Two approaches are presented: Position-Based Visual Servoing (PBVS) using an Extended Kalman Filter (EKF) and estimator-free Image-Based Visual Servoing (IBVS). Both use monocular visual, inertia, and sonar data, allowing the approaches to be applied for indoor or GPS-impaired environments. We extensively compare the performances of PBVS and IBVS in terms of accuracy, robustness and computational costs. Results from simulations and indoor/outdoor (day and night) flight experiments demonstrate the system is able to successfully inspect and circumnavigate a vertical pole. PMID:26340631

  12. Edge-assignment and figure-ground segmentation in short-term visual matching.

    PubMed

    Driver, J; Baylis, G C

    1996-12-01

    Eight experiments examined the role of edge-assignment in a contour matching task. Subjects judged whether the jagged vertical edge of a probe shape matched the jagged edge that divided two adjoining shapes in an immediately preceding figure-ground display. Segmentation factors biased assignment of this dividing edge toward a figural shape on just one of its sides. Subjects were faster and more accurate at matching when the probe edge had a corresponding assignment. The rapid emergence of this effect provides an on-line analog of the long-term memory advantage for figures over grounds which Rubin (1915/1958) reported. The present on-line advantage was found when figures were defined by relative contrast and size, or by symmetry, and could not be explained solely by the automatic drawing of attention toward the location of the figural region. However, deliberate attention to one region of an otherwise ambiguous figure-ground display did produce the advantage. We propose that one-sided assignment of dividing edges may be obligatory in vision.

  13. Measuring Effects Of Lightning On Power And Telephone Lines

    NASA Technical Reports Server (NTRS)

    Jafferis, William; Thompson, E. M.; Medelius, P.; Rubinstein, M.; Tzeng, A.

    1992-01-01

    Spherical antenna senses both horizontal and vertical fields simultaneously. Measures "fast" components of electric field used in conjunction with other equipment, including antenna measuring "slow" vertical component of electric field; microphone that senses thunder; cameras making visual records, which locate lightning; magnetic-field sensor; optical sensors; and instruments measuring speed and direction of wind.

  14. Visual Image Sensor Organ Replacement: Implementation

    NASA Technical Reports Server (NTRS)

    Maluf, A. David (Inventor)

    2011-01-01

    Method and system for enhancing or extending visual representation of a selected region of a visual image, where visual representation is interfered with or distorted, by supplementing a visual signal with at least one audio signal having one or more audio signal parameters that represent one or more visual image parameters, such as vertical and/or horizontal location of the region; region brightness; dominant wavelength range of the region; change in a parameter value that characterizes the visual image, with respect to a reference parameter value; and time rate of change in a parameter value that characterizes the visual image. Region dimensions can be changed to emphasize change with time of a visual image parameter.

  15. Developmental Eye Movement (DEM) Test Norms for Mandarin Chinese-Speaking Chinese Children.

    PubMed

    Xie, Yachun; Shi, Chunmei; Tong, Meiling; Zhang, Min; Li, Tingting; Xu, Yaqin; Guo, Xirong; Hong, Qin; Chi, Xia

    2016-01-01

    The Developmental Eye Movement (DEM) test is commonly used as a clinical visual-verbal ocular motor assessment tool to screen and diagnose reading problems at the onset. No established norm exists for using the DEM test with Mandarin Chinese-speaking Chinese children. This study aims to establish the normative values of the DEM test for the Mandarin Chinese-speaking population in China; it also aims to compare the values with three other published norms for English-, Spanish-, and Cantonese-speaking Chinese children. A random stratified sampling method was used to recruit children from eight kindergartens and eight primary schools in the main urban and suburban areas of Nanjing. A total of 1,425 Mandarin Chinese-speaking children aged 5 to 12 years took the DEM test in Mandarin Chinese. A digital recorder was used to record the process. All of the subjects completed a symptomatology survey, and their DEM scores were determined by a trained tester. The scores were computed using the formula in the DEM manual, except that the "vertical scores" were adjusted by taking the vertical errors into consideration. The results were compared with the three other published norms. In our subjects, a general decrease with age was observed for the four eye movement indexes: vertical score, adjusted horizontal score, ratio, and total error. For both the vertical and adjusted horizontal scores, the Mandarin Chinese-speaking children completed the tests much more quickly than the norms for English- and Spanish-speaking children. However, the same group completed the test slightly more slowly than the norms for Cantonese-speaking children. The differences in the means were significant (P<0.001) in all age groups. For several ages, the scores obtained in this study were significantly different from the reported scores of Cantonese-speaking Chinese children (P<0.005). Compared with English-speaking children, only the vertical score of the 6-year-old group, the vertical-horizontal time ratio of the 8-year-old group and the errors of 9-year-old group had no significant difference (P>0.05); compared with Spanish-speaking children, the scores were statistically significant (P<0.001) for the total error scores of the age groups, except the 6-, 9-, 10-, and 11-year-old age groups (P>0.05). DEM norms may be affected by differences in language, cultural, and educational systems among various ethnicities. The norms of the DEM test are proposed for use with Mandarin Chinese-speaking children in Nanjing and will be proposed for children throughout China.

  16. Developmental Eye Movement (DEM) Test Norms for Mandarin Chinese-Speaking Chinese Children

    PubMed Central

    Tong, Meiling; Zhang, Min; Li, Tingting; Xu, Yaqin; Guo, Xirong; Hong, Qin; Chi, Xia

    2016-01-01

    The Developmental Eye Movement (DEM) test is commonly used as a clinical visual-verbal ocular motor assessment tool to screen and diagnose reading problems at the onset. No established norm exists for using the DEM test with Mandarin Chinese-speaking Chinese children. This study aims to establish the normative values of the DEM test for the Mandarin Chinese-speaking population in China; it also aims to compare the values with three other published norms for English-, Spanish-, and Cantonese-speaking Chinese children. A random stratified sampling method was used to recruit children from eight kindergartens and eight primary schools in the main urban and suburban areas of Nanjing. A total of 1,425 Mandarin Chinese-speaking children aged 5 to 12 years took the DEM test in Mandarin Chinese. A digital recorder was used to record the process. All of the subjects completed a symptomatology survey, and their DEM scores were determined by a trained tester. The scores were computed using the formula in the DEM manual, except that the “vertical scores” were adjusted by taking the vertical errors into consideration. The results were compared with the three other published norms. In our subjects, a general decrease with age was observed for the four eye movement indexes: vertical score, adjusted horizontal score, ratio, and total error. For both the vertical and adjusted horizontal scores, the Mandarin Chinese-speaking children completed the tests much more quickly than the norms for English- and Spanish-speaking children. However, the same group completed the test slightly more slowly than the norms for Cantonese-speaking children. The differences in the means were significant (P<0.001) in all age groups. For several ages, the scores obtained in this study were significantly different from the reported scores of Cantonese-speaking Chinese children (P<0.005). Compared with English-speaking children, only the vertical score of the 6-year-old group, the vertical-horizontal time ratio of the 8-year-old group and the errors of 9-year-old group had no significant difference (P>0.05); compared with Spanish-speaking children, the scores were statistically significant (P<0.001) for the total error scores of the age groups, except the 6-, 9-, 10-, and 11-year-old age groups (P>0.05). DEM norms may be affected by differences in language, cultural, and educational systems among various ethnicities. The norms of the DEM test are proposed for use with Mandarin Chinese-speaking children in Nanjing and will be proposed for children throughout China. PMID:26881754

  17. Kinesthetic perceptions of earth- and body-fixed axes.

    PubMed

    Darling, W G; Hondzinski, J M

    1999-06-01

    The major purpose of this research was to determine whether kinesthetic/proprioceptive perceptions of the earth-fixed vertical axis are more accurate than perceptions of intrinsic axes. In one experiment, accuracy of alignment of the forearm to earth-fixed vertical and head- and trunk-longitudinal axes by seven blindfolded subjects was compared in four tasks: (1) Earth-Arm--arm (humerus) orientation was manipulated by the experimenter; subjects aligned the forearm parallel to the vertical axis, which was also aligned with the head and trunk longitudinal axis; (2) Head--head, trunk, and upper-limb orientations were manipulated by the experimenter, subjects aligned the forearm parallel to the longitudinal axis of the head using only elbow flexion/extension and shoulder internal/external rotation; (3) Trunk--same as (2), except that subjects aligned the forearm parallel to the trunk-longitudinal axis; (4) Earth--same as (2), except that subjects aligned the forearm parallel to the earth-fixed vertical. Head, trunk, and gravitational axes were never parallel in tasks 2, 3, and 4 so that subjects could not simultaneously match their forearm to all three axes. The results showed that the errors for alignment of the forearm with the earth-fixed vertical were lower than for the trunk- and head-longitudinal axes. Furthermore, errors in the Earth condition were less dependent on alterations of the head and trunk orientation than in the Head and Trunk conditions. These data strongly suggest that the earth-fixed vertical is used as one axis for the kinesthetic sensory coordinate system that specifies upper-limb orientation at the perceptual level. We also examined the effects of varying gravitational torques at the elbow and shoulder on the accuracy of forearm alignment to earth-fixed axes. Adding a 450 g load to the forearm to increase gravitational torques when the forearm is not vertical did not improve the accuracy of forearm alignment with the vertical. Furthermore, adding small, variably sized loads (between which the subjects could not distinguish at the perceptual level) to the forearm just proximal to the wrist produced similar errors in aligning the forearm with the vertical and horizontal. Forearm-positioning errors were not correlated with the size of the load, as would be expected if gravitational torques affected forearm-position sense. We conclude that gravitational torques exerted about the shoulder and elbow do not make significant contributions to sensing forearm-orientation relative to earth-fixed axes when the upper-limb segments are not constrained by external supports.

  18. Perceptual similarity and the neural correlates of geometrical illusions in human brain structure.

    PubMed

    Axelrod, Vadim; Schwarzkopf, D Samuel; Gilaie-Dotan, Sharon; Rees, Geraint

    2017-01-09

    Geometrical visual illusions are an intriguing phenomenon, in which subjective perception consistently misjudges the objective, physical properties of the visual stimulus. Prominent theoretical proposals have been advanced attempting to find common mechanisms across illusions. But empirically testing the similarity between illusions has been notoriously difficult because illusions have very different visual appearances. Here we overcome this difficulty by capitalizing on the variability of the illusory magnitude across participants. Fifty-nine healthy volunteers participated in the study that included measurement of individual illusion magnitude and structural MRI scanning. We tested the Muller-Lyer, Ebbinghaus, Ponzo, and vertical-horizontal geometrical illusions as well as a non-geometrical, contrast illusion. We found some degree of similarity in behavioral judgments of all tested geometrical illusions, but not between geometrical illusions and non-geometrical, contrast illusion. The highest similarity was found between Ebbinghaus and Muller-Lyer geometrical illusions. Furthermore, the magnitude of all geometrical illusions, and particularly the Ebbinghaus and Muller-Lyer illusions, correlated with local gray matter density in the parahippocampal cortex, but not in other brain areas. Our findings suggest that visuospatial integration and scene construction processes might partly mediate individual differences in geometric illusory perception. Overall, these findings contribute to a better understanding of the mechanisms behind geometrical illusions.

  19. Visualizing Dispersion Interactions

    ERIC Educational Resources Information Center

    Gottschalk, Elinor; Venkataraman, Bhawani

    2014-01-01

    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  20. Sounds Exaggerate Visual Shape

    ERIC Educational Resources Information Center

    Sweeny, Timothy D.; Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    While perceiving speech, people see mouth shapes that are systematically associated with sounds. In particular, a vertically stretched mouth produces a /woo/ sound, whereas a horizontally stretched mouth produces a /wee/ sound. We demonstrate that hearing these speech sounds alters how we see aspect ratio, a basic visual feature that contributes…

  1. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    PubMed

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  2. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  3. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sensory substitution in bilateral vestibular a-reflexic patients

    PubMed Central

    Alberts, Bart B G T; Selen, Luc P J; Verhagen, Wim I M; Medendorp, W Pieter

    2015-01-01

    Patients with bilateral vestibular loss have balance problems in darkness, but maintain spatial orientation rather effectively in the light. It has been suggested that these patients compensate for vestibular cues by relying on extravestibular signals, including visual and somatosensory cues, and integrating them with internal beliefs. How this integration comes about is unknown, but recent literature suggests the healthy brain remaps the various signals into a task-dependent reference frame, thereby weighting them according to their reliability. In this paper, we examined this account in six patients with bilateral vestibular a-reflexia, and compared them to six age-matched healthy controls. Subjects had to report the orientation of their body relative to a reference orientation or the orientation of a flashed luminous line relative to the gravitational vertical, by means of a two-alternative-forced-choice response. We tested both groups psychometrically in upright position (0°) and 90° sideways roll tilt. Perception of body tilt was unbiased in both patients and controls. Response variability, which was larger for 90° tilt, did not differ between groups, indicating that body somatosensory cues have tilt-dependent uncertainty. Perception of the visual vertical was unbiased when upright, but showed systematic undercompensation at 90° tilt. Variability, which was larger for 90° tilt than upright, did not differ between patients and controls. Our results suggest that extravestibular signals substitute for vestibular input in patients’ perception of spatial orientation. This is in line with the current status of rehabilitation programs in acute vestibular patients, targeting at recognizing body somatosensory signals as a reliable replacement for vestibular loss. PMID:25975644

  5. Soft tissue thin-plate spline analysis of pre-pubertal Korean and European-Americans with untreated Angle's Class III malocclusions.

    PubMed

    Singh, G D; McNamara, J A; Lozanoff, S

    1999-01-01

    The purpose of this study was to assess soft tissue facial matrices in subjects of diverse ethnic origins with underlying dentoskeletal malocclusions. Pre-treatment lateral cephalographs of 71 Korean and 70 European-American children aged between 5 and 11 years with Angle's Class III malocclusions were traced, and 12 homologous, soft tissue landmarks digitized. Comparing mean Korean and European-American Class III soft tissue profiles, Procrustes analysis established statistical difference (P < 0.001) between the configurations, and this difference was also true at all seven age groups tested (P < 0.001). Comparing the overall European-American and Korean transformation, thin-plate spline analysis indicated that both affine and non-affine transformations contribute towards the total spline (deformation) of the averaged Class III soft tissue configurations. For non-affine transformations, partial warp (PW) 8 had the highest magnitude, indicating large-scale deformations visualized as labio-mental protrusion, predominantly. In addition, PW9, PW4, and PW5 also had high magnitudes, demonstrating labio-mental vertical compression and antero-posterior compression of the lower labio-mental soft tissues. Thus, Korean children with Class III malocclusions demonstrate antero-posterior and vertical deformations of the labio-mental soft tissue complex with respect to their European-American counterparts. Morphological heterogeneity of the soft tissue integument in subjects of diverse ethnic origin may obscure the underlying skeletal morphology, but the soft tissue integument appears to have minimal ontogenetic association with Class III malocclusions.

  6. Stereoscopic displays for virtual reality in the car manufacturing industry: application to design review and ergonomic studies

    NASA Astrophysics Data System (ADS)

    Moreau, Guillaume; Fuchs, Philippe

    2002-05-01

    In the car manufacturing industry the trend is to drastically reduce the time-to-market by increasing the use of the Digital Mock-up instead of physical prototypes. Design review and ergonomic studies are specific tasks because they involve qualitative or even subjective judgements. In this paper, we present IMAVE (IMmersion Adapted to a VEhicle) designed for immersive styling review, gaps visualization and simple ergonomic studies. We show that stereoscopic displays are necessary and must fulfill several constraints due to the proximity and size of the car dashboard. The duration fo the work sessions forces us to eliminate all vertical parallax, and 1:1 scale is obviously required for a valid immersion. Two demonstrators were realized allowing us to have a large set of testers (over 100). More than 80% of the testers saw an immediate use of the IMAVE system. We discuss the good and bad marks awarded to the system. Future work include being able to use several rear-projected stereo screens for doors and central console visualization, but without the parallax presently visible in some CAVE-like environments.

  7. Eccentric correction for off-axis vision in central visual field loss.

    PubMed

    Gustafsson, Jörgen; Unsbo, Peter

    2003-07-01

    Subjects with absolute central visual field loss use eccentric fixation and magnifying devices to utilize their residual vision. This preliminary study investigated the importance of an accurate eccentric correction of off-axis refractive errors to optimize the residual visual function for these subjects. Photorefraction using the PowerRefractor instrument was used to evaluate the ametropia in eccentric fixation angles. Methods were adapted for measuring visual acuity outside the macula using filtered optotypes from high-pass resolution perimetry. Optical corrections were implemented, and the visual function of subjects with central visual field loss was measured with and without eccentric correction. Of the seven cases reported, five experienced an improvement in visual function in their preferred retinal locus with eccentric refraction. The main result was that optical correction for better image quality on the peripheral retina is important for the vision of subjects with central visual field loss, objectively as well as subjectively.

  8. L-alanyl-L-glutamine ingestion maintains performance during a competitive basketball game.

    PubMed

    Hoffman, Jay R; Williams, David R; Emerson, Nadia S; Hoffman, Mattan W; Wells, Adam J; McVeigh, Daniele M; McCormack, William P; Mangine, Gerald T; Gonzalez, Adam M; Fragala, Maren S

    2012-03-07

    The purpose of this study was to examine the efficacy of L-alanyl-L-glutamine (AG) ingestion on basketball performance, including jump power, reaction time, shooting accuracy and fatigue. Ten women (21.2 ± 1.6 years; height: 177.8 ± 8.7 cm; body mass: 73.5 ± 8.0 kg), all scholarship NCAA Division I basketball players, volunteered for this study. Subjects participated in four trials, each consisting of a 40-min basketball game with controlled time-outs for rehydration. During the first trial (DHY) subjects were not allowed to rehydrate, and the total weight lost during the contest was used to determine fluid replenishment during the subsequent three trials. During one trial subjects consumed only water (W), while during the other two trials subjects consumed the AG supplement mixed in water using either a low dose (1 g per 500 ml) (AG1) or high dose (2 g per 500 ml) (AG2) concentration. All data assessed prior to and following each game were converted into a Δ score (Post results - Pre results). All performance data were then analyzed using a one-way repeated measures analysis of variance. During DHY subjects lost 1.72 ± 0.42 kg (2.3%) of their body mass. No differences in fluid intake (1.55 ± 0.43 L) were seen between rehydration trials. A 12.5% (p = 0.016) difference in basketball shooting performance was noted between DHY and AG1 and an 11.1% (p = 0.029) difference was seen between AG1 and W. Visual reaction time was significantly greater following AG1 (p = 0.014) compared to DHY. Differences (p = 0.045) in fatigue, as determined by player loads, were seen only between AG2 and DHY. No differences were seen in peak or mean vertical jump power during any trial. Rehydration with AG appears to maintain basketball skill performance and visual reaction time to a greater extent than water only.

  9. Subjective visual vertical before and after treatment of a BPPV episode.

    PubMed

    Faralli, Mario; Manzari, Leonardo; Panichi, Roberto; Botti, Fabio; Ricci, Giampietro; Longari, Fabrizio; Pettorossi, Vito Enrico

    2011-06-01

    The study analyses the behavior of subjective visual vertical (SVV) in benign paroxysmal positional vertigo (BPPV) before and after treatment, and offers a clinical-pathogenic interpretation. We studied 30 consecutive patients with BPPV of the posterior semicircular canal treated with the Epley repositioning maneuver. SVV was determined at three different stages: at the time of diagnosis (1st test), after the repositioning maneuver (2nd test), and then 7 days after the resolution of the clinical picture (3rd test). The main study parameter was represented by the mean of 6 consecutive measurements (SVV(0)) for each patient. SVV was also examined in 20 healthy subjects, who represented the control group. The comparison between mean values and standard deviations showed a statistical significance of p<0.05. During the first test, the degree of deviation of SVV was significantly higher in the patient group than in the control group. Tilting towards the affected side was observed in all cases. The 2nd test showed an inversion in the orientation of SVV in 16 patients, and as a result of the Epley maneuver there was a statistically significant variation in SVV(0) values in 20 patients with respect to the previous test (2nd test vs. 1st test). This involved 87% (23 patients) of those who then had a negative Dix-Hallpike test, and none of the ones in whom paroxysmal positional nystagmus persisted. Lastly, no differences emerged in the behavior of the patient group vs. the control group during the third test. SVV is often altered during active BPPV. The degree of otolithic dysfunction is never high and, in all cases, it is brief in duration. Tilting towards the dysfunctional side is essentially a constant in untreated BPPV. This could be due to a substantial loss of otoconia, with a decrease in the density and specific weight of the macula, and thus hypofunction of the receptor. The observation of a significant variation in SVV after therapeutic maneuvers has a favorable predictive value, as it probably reflects the migration of otoliths to the utricle, where saturation mechanisms can often have irritative effects leading to the inversion of SVV. Copyright © 2010. Published by Elsevier Ireland Ltd.

  10. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360

  11. Fluctuation in visual acuity during soft toric contact lens wear.

    PubMed

    Chamberlain, Paul; Morgan, Philip B; Moody, Kurt J; Maldonado-Codina, Carole

    2011-04-01

    To quantify changes in visual acuity (VA) with soft toric contact lenses as a result of lens movement and/or rotational instability caused by versional eye movements. A novel chart for vision assessment at near (40 cm) for soft toric contact lenses (VANT chart),consisting of a central, color-coded logMAR panel and eight peripheral letter targets set on a white background measuring 60 × 40 cm was constructed. In the developmental phase of the work, 10 subjects (20 eyes) wore 2 toric lenses in random order, and the impact of rapid and delayed eye versions in 8 directions of gaze on VANT acuity was investigated. In phase 2, 35 subjects (68 eyes) wore 4 toric lenses in random order, and a streamlined clinical protocol using the VANT chart was implemented. Standard assessments of toric lens fit and distance VA were also performed. Testing in the first phase showed no difference for change in VA for rapid vs. delayed version movements, (p = 0.17) but acuity reduction was greater for diagonal compared with horizontal/vertical versions (p = 0.06). As such, testing in phase 2 proceeded using rapid, diagonal versions only. In this second phase, there were differences for low-contrast distance VA measures between lens types (p = 0.02) and for both VANT baseline acuity (p = 0.03) and postversion acuity (p = 0.04), but no differences were found between lenses for magnitude of vision loss (p = 0.91), which was about one line. No relationship was established between the magnitude of vision loss and measured rotational stability (p = 0.75). This work has demonstrated that conventional approaches to measuring VA do not fully replicate the "real world" experience of soft toric lens wearers. The VANT chart has shown that VA is reduced immediately after versional eye movements and suggests that more dynamic methods of assessing visual performance should be considered for soft toric contact lens wearers, especially given the apparent inability of lens stability measurements to predict visual performance.

  12. Enhanced Access to Early Visual Processing of Perceptual Simultaneity in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Falter, Christine M.; Braeutigam, Sven; Nathan, Roger; Carrington, Sarah; Bailey, Anthony J.

    2013-01-01

    We compared judgements of the simultaneity or asynchrony of visual stimuli in individuals with autism spectrum disorders (ASD) and typically-developing controls using Magnetoencephalography (MEG). Two vertical bars were presented simultaneously or non-simultaneously with two different stimulus onset delays. Participants with ASD distinguished…

  13. 47 CFR 73.6026 - Broadcast regulations applicable to Class A television stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Service on the Vertical Blanking Interval and in the Visual Signal. § 73.653Operation of TV aural and visual transmitters. § 73.658Affiliation agreements and network program practice; territorial exclusivity... informational programming for children. § 73.673Public information initiatives regarding educational and...

  14. 47 CFR 73.6026 - Broadcast regulations applicable to Class A television stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Service on the Vertical Blanking Interval and in the Visual Signal. § 73.653Operation of TV aural and visual transmitters. § 73.658Affiliation agreements and network program practice; territorial exclusivity... informational programming for children. § 73.673Public information initiatives regarding educational and...

  15. Accurate Visual Heading Estimation at High Rotation Rate Without Oculomotor or Static-Depth Cues

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Perrone, John A.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    It has been claimed that either oculomotor or static depth cues provide the signals about self-rotation necessary approx.-1 deg/s. We tested this hypothesis by simulating self-motion along a curved path with the eyes fixed in the head (plus or minus 16 deg/s of rotation). Curvilinear motion offers two advantages: 1) heading remains constant in retinotopic coordinates, and 2) there is no visual-oculomotor conflict (both actual and simulated eye position remain stationary). We simulated 400 ms of rotation combined with 16 m/s of translation at fixed angles with respect to gaze towards two vertical planes of random dots initially 12 and 24 m away, with a field of view of 45 degrees. Four subjects were asked to fixate a central cross and to respond whether they were translating to the left or right of straight-ahead gaze. From the psychometric curves, heading bias (mean) and precision (semi-interquartile) were derived. The mean bias over 2-5 runs was 3.0, 4.0, -2.0, -0.4 deg for the first author and three naive subjects, respectively (positive indicating towards the rotation direction). The mean precision was 2.0, 1.9, 3.1, 1.6 deg. respectively. The ability of observers to make relatively accurate and precise heading judgments, despite the large rotational flow component, refutes the view that extra-flow-field information is necessary for human visual heading estimation at high rotation rates. Our results support models that process combined translational/rotational flow to estimate heading, but should not be construed to suggest that other cues do not play an important role when they are available to the observer.

  16. The Vestibular System and Human Dynamic Space Orientation

    NASA Technical Reports Server (NTRS)

    Meiry, J. L.

    1966-01-01

    The motion sensors of the vestibular system are studied to determine their role in human dynamic space orientation and manual vehicle control. The investigation yielded control models for the sensors, descriptions of the subsystems for eye stabilization, and demonstrations of the effects of motion cues on closed loop manual control. Experiments on the abilities of subjects to perceive a variety of linear motions provided data on the dynamic characteristics of the otoliths, the linear motion sensors. Angular acceleration threshold measurements supplemented knowledge of the semicircular canals, the angular motion sensors. Mathematical models are presented to describe the known control characteristics of the vestibular sensors, relating subjective perception of motion to objective motion of a vehicle. The vestibular system, the neck rotation proprioceptors and the visual system form part of the control system which maintains the eye stationary relative to a target or a reference. The contribution of each of these systems was identified through experiments involving head and body rotations about a vertical axis. Compensatory eye movements in response to neck rotation were demonstrated and their dynamic characteristics described by a lag-lead model. The eye motions attributable to neck rotations and vestibular stimulation obey superposition when both systems are active. Human operator compensatory tracking is investigated in simple vehicle orientation control system with stable and unstable controlled elements. Control of vehicle orientation to a reference is simulated in three modes: visual, motion and combined. Motion cues sensed by the vestibular system through tactile sensation enable the operator to generate more lead compensation than in fixed base simulation with only visual input. The tracking performance of the human in an unstable control system near the limits of controllability is shown to depend heavily upon the rate information provided by the vestibular sensors.

  17. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Benolken, M. S.

    1995-01-01

    The purpose of this study was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full-field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena were observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal subjects and subjects experiencing vestibular loss were nearly identical, implying (1) that normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) that subjects with vestibular loss did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system "gain" was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost 3 times greater than the amplitude of the visual stimulus in normal subjects and subjects with vestibular loss. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about 4 in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied (1) that the subjects experiencing vestibular loss did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system "gain" were not used to compensate for a vestibular deficit, and (2) that the threshold for the use of vestibular cues in normal subjects was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.

  18. Terrain Classification Using Multi-Wavelength Lidar Data

    DTIC Science & Technology

    2015-09-01

    Figure 9. Pseudo- NDVI of three layers within the vertical structure of the forest. (Top) First return from the LiDAR instrument, including the ground...in NDVI throughout the vertical canopy. ........................................................17 Figure 10. Optech Titan operating wavelengths...and Ranging LMS LiDAR Mapping Suite ML Maximum Likelihood NIR Near Infrared N-D VIS n-Dimensional Visualizer NDVI Normalized Difference

  19. Variations of pupil centration and their effects on video eye tracking.

    PubMed

    Wildenmann, Ulrich; Schaeffel, Frank

    2013-11-01

    To evaluate measurement errors that are introduced in video eye tracking when pupil centration changes with pupil size. Software was developed under Visual C++ to track both pupil centre and corneal centre at 87 Hz sampling rate at baseline pupil sizes of 4.75 mm (800 lux room illuminance) and while pupil constrictions were elicited by a flashlight. Corneal centres were determined by a circle fit through the pixels detected at the corneal margin by an edge detection algorithm. Standard deviations for repeated measurements were ± 0.04 mm for horizontal pupil centre position and ± 0.04 mm for horizontal corneal centre positions and ±0.03 mm for vertical pupil centre position and ± 0.05 mm for vertical corneal centre position. Ten subjects were tested (five female, five male, age 25-58 years). At 4 mm pupil sizes, the pupils were nasally decentred relative to the corneal centre by 0.18 ± 0.19 mm in the right eyes and -0.14 ± 0.22 mm in the left eyes. Vertical decentrations were 0.30 ± 0.30 mm and 0.27 ± 0.29 mm, respectively, always in a superior direction. At baseline pupil sizes (the natural pupil sizes at 800 lux) of 4.75 ± 0.52 mm, the decentrations became less (right and left eyes: horizontal 0.17 ± 0.20 mm and -0.12 ± 0.22 mm, and vertical 0.26 ± 0.28 mm and 0.20 ± 0.25 mm). While pupil decentration changed minimally in eight of the subjects, it shifted considerably in two others. Averaged over all subjects, the shift of the pupil centre position per millimetre pupil constriction was not significant (right and left eyes: -0.03 ± 0.07 mm and 0.03 ± 0.04 mm nasally per mm pupil size change, respectively, and -0.04 ± 0.06 mm and -0.05 ± 0.12 mm superiorly). Direction and magnitude of the changes in pupil centration could not be predicted from the initial decentration at baseline pupil sizes. In line with data in the literature, the pupil centre was significantly decentred relative to the corneal centre in the nasal and superior direction. Pupil decentration changed significantly with pupil size by 0.05 mm on average for 1 mm of constriction. Assuming a Hirschberg ratio of 12° mm(-1) , a shift of 0.05 mm is equivalent to a measurement error in a Purkinje image-based eye tracker of 0.6°. However, the induced measurement error could also exceed 1.5° in some subjects for only a 1 mm change in pupil size. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  20. Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradel, Lauren; Endert, Alexander; Koch, Kristen

    2013-08-01

    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next,more » we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.« less

  1. Perception of the upright and susceptibility to motion sickness as functions of angle of tilt and angular velocity in off-vertical rotation. [human tolerance to angular accelerations

    NASA Technical Reports Server (NTRS)

    Miller, E. F., II; Graybiel, A.

    1973-01-01

    Motion sickness susceptibility of four normal subjects was measured in terms of duration of exposure necessary to evoke moderate malaise (MIIA) as a function of velocity in a chair rotated about a central axis tilted 10 deg with respect to gravitational upright. The subjects had little or no susceptibility to this type of rotation at 2.5 and 5.0 rpm, but with further increases in rate, the MIIA endpoint was always reached and with ever shorter test durations. Minimal provocative periods for all subjects were found at 15 or 20 rpm. Higher rotational rates dramatically reversed the vestibular stressor effect, and the subjects as a group tended to reach a plateau of relatively low susceptibility at 40 and 45 rpm. At these higher velocities, furthermore, the subjects essentially lost their sensation of being tilted off vertical. In the second half of the study, the effect of tilt angle was varied while the rotation rate was maintained at a constant 17.5 rpm. Two subjects were completely resistant to symptoms of motion sickness when rotated at 2.5 deg off vertical; with greater off-vertical angles, the susceptibility of all subjects increased sharply at first, then tapered off in a manner reflecting a Fechnerian function.

  2. The mere exposure effect for visual image.

    PubMed

    Inoue, Kazuya; Yagi, Yoshihiko; Sato, Nobuya

    2018-02-01

    Mere exposure effect refers to a phenomenon in which repeated stimuli are evaluated more positively than novel stimuli. We investigated whether this effect occurs for internally generated visual representations (i.e., visual images). In an exposure phase, a 5 × 5 dot array was presented, and a pair of dots corresponding to the neighboring vertices of an invisible polygon was sequentially flashed (in red), creating an invisible polygon. In Experiments 1, 2, and 4, participants visualized and memorized the shapes of invisible polygons based on different sequences of flashed dots, whereas in Experiment 3, participants only memorized positions of these dots. In a subsequent rating phase, participants visualized the shape of the invisible polygon from allocations of numerical characters on its vertices, and then rated their preference for invisible polygons (Experiments 1, 2, and 3). In contrast, in Experiment 4, participants rated the preference for visible polygons. Results showed that the mere exposure effect appeared only when participants visualized the shape of invisible polygons in both the exposure and rating phases (Experiments 1 and 2), suggesting that the mere exposure effect occurred for internalized visual images. This implies that the sensory inputs from repeated stimuli play a minor role in the mere exposure effect. Absence of the mere exposure effect in Experiment 4 suggests that the consistency of processing between exposure and rating phases plays an important role in the mere exposure effect.

  3. Visual impairment and amblyopia in Malaysian pre-school children - The SEGPAEDS study.

    PubMed

    Chew, F L M; Thavaratnam, L K; Shukor, I N C; Ramasamy, S; Rahmat, J; Reidpath, D D; Allotey, P; Alagaratnam, J

    2018-02-01

    Little is known regarding the extent of visual impairment amongst pre-school children in Malaysia. To determine the prevalence of visual impairment and amblyopia in Malaysian preschool children. A cross-sectional, population-based study was conducted on children aged four to six years from 51 participating kindergartens in the district of Segamat, Johor, Malaysia from 20 March 2016 to 6 April 2016. All subjects had initial eye screening consisting of LogMar visual acuity, orthoptics examination and Spot vision screener assessment. Subjects who failed the initial eye screening were invited for a formal eye assessment consisting of cycloplegic refraction and a comprehensive ocular examination. Definitions of visual impairment and amblyopia were based on the Multi-Ethnic Pediatric Eye Disease Study criteria. A total of 1287 children were recruited. Mean subject age was 5.03 (SD:0.77) and males represented 52.3% of subjects. Subjects by ethnicity were Malay (54.8%), Chinese (27.7%), Indian (15.6%) and Orang Asli (1.9%). Formal eye assessment was required for 221 subjects and 88.8% required ophthalmic intervention. Refractive error, representing 95.4% of diagnosed ocular disorders, comprised of astigmatism (84%), myopia (9%) and hypermetropia (6.9%). With-the-rule astigmatism was present in 93.4% of the subjects with astigmatism. Visual impairment was present in 12.5% of our subjects, with 61% having bilateral visual impairment. Of the subjects with visual impairment, 59.1% had moderate visual impairment. The prevalence of amblyopia was 7.53%, and 66% of the amblyopic subjects had bilateral amblyopia. Our study highlights an urgent need for initiation of preschool vision screening in Malaysia.

  4. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?

    PubMed Central

    Hastings, Gareth D.; Marsack, Jason D.; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A.

    2017-01-01

    Purpose To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Methods Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. Results For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ±SD was −0.06 ±0.04 with both refractions; dilated was −0.05 ±0.04 with the objective, and −0.05 ±0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. Conclusions A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred over subjective refraction. Subjective refraction was preferred by habitually undercorrected hyperopic eyes. PMID:28370389

  5. Prevalence and risk factors of measles seronegativity in a cohort of HIV-positive subjects: a retrospective study.

    PubMed

    Dauby, N; Martin, C; Hainaut, M; Grammens, T; Van den Wijngaert, S; Delforge, M; De Wit, S

    2018-03-24

    Measles infection is a vaccine-preventable disease currently resurging in Europe. HIV-infected subjects are at higher risk of complications following measles infection. We investigated the risk factors associated with being seronegative in a cohort of HIV-infected subjects. All HIV-infected subjects in our cohort who had a measles serological test performed between December 2005 and May 2017 were retrospectively identified. A measles immunoglobulin G (IgG) titre > 275 mIU/mL was considered protective. Risk factors were analysed using logistic regression. Measles serology was available in 273 of 3124 subjects in active follow-up (8.7%). The prevalence of measles seronegativity was 21.6% (59 of 273). In the univariate analysis, being born after 1970 and HIV infection by vertical transmission were both associated with a higher risk of measles seronegativity, while a nadir CD4 T-cell count < 200 cells/μL was associated with a lower risk of measles seronegativity. In the multivariate analysis, only being born after 1970 [odds ratio (OR) 4.9; 95% confidence interval (CI) 1.3-18.7] and vertical transmission (OR 7.7; 95% CI 3.3-18.3) were significantly associated with seronegativity. Among the vertically infected subjects with measles-mumps-rubella (MMR) immunization documentation, the median number of doses of vaccine received before testing was 2 (range 1-3). HIV-infected subjects born after 1970 and vertically infected subjects should be screened for measles seropositivity. © 2018 British HIV Association.

  6. Role of somatosensory and vestibular cues in attenuating visually induced human postural sway

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.; Benolken, Martha S.

    1993-01-01

    The purpose was to determine the contribution of visual, vestibular, and somatosensory cues to the maintenance of stance in humans. Postural sway was induced by full field, sinusoidal visual surround rotations about an axis at the level of the ankle joints. The influences of vestibular and somatosensory cues were characterized by comparing postural sway in normal and bilateral vestibular absent subjects in conditions that provided either accurate or inaccurate somatosensory orientation information. In normal subjects, the amplitude of visually induced sway reached a saturation level as stimulus amplitude increased. The saturation amplitude decreased with increasing stimulus frequency. No saturation phenomena was observed in subjects with vestibular loss, implying that vestibular cues were responsible for the saturation phenomenon. For visually induced sways below the saturation level, the stimulus-response curves for both normal and vestibular loss subjects were nearly identical implying that (1) normal subjects were not using vestibular information to attenuate their visually induced sway, possibly because sway was below a vestibular-related threshold level, and (2) vestibular loss subjects did not utilize visual cues to a greater extent than normal subjects; that is, a fundamental change in visual system 'gain' was not used to compensate for a vestibular deficit. An unexpected finding was that the amplitude of body sway induced by visual surround motion could be almost three times greater than the amplitude of the visual stimulus in normals and vestibular loss subjects. This occurred in conditions where somatosensory cues were inaccurate and at low stimulus amplitudes. A control system model of visually induced postural sway was developed to explain this finding. For both subject groups, the amplitude of visually induced sway was smaller by a factor of about four in tests where somatosensory cues provided accurate versus inaccurate orientation information. This implied that (1) the vestibular loss subjects did not utilize somatosensory cues to a greater extent than normal subjects; that is, changes in somatosensory system 'gain' were not used to compensate for a vestibular deficit, and (2) the threshold for the use of vestibular cues in normals was apparently lower in test conditions where somatosensory cues were providing accurate orientation information.

  7. Vestibular thalamus: Two distinct graviceptive pathways.

    PubMed

    Baier, Bernhard; Conrad, Julian; Stephan, Thomas; Kirsch, Valerie; Vogt, Thomas; Wilting, Janine; Müller-Forell, Wibke; Dieterich, Marianne

    2016-01-12

    To determine whether there are distinct thalamic regions statistically associated with either contraversive or ipsiversive disturbance of verticality perception measured by subjective visual vertical (SVV). We used modern statistical lesion behavior mapping on a sample of 37 stroke patients with isolated thalamic lesions to clarify which thalamic regions are involved in graviceptive otolith processing and whether there are distinct regions associated with contraversive or ipsiversive SVV deviation. We found 2 distinct systems of graviceptive processing within the thalamus. Contraversive tilt of SVV was associated with lesions to the nuclei dorsomedialis, intralamellaris, centrales thalami, posterior thalami, ventrooralis internus, ventrointermedii, ventrocaudales and superior parts of the nuclei parafascicularis thalami. The regions associated with ipsiversive tilt of SVV were located in more inferior regions, involving structures such as the nuclei endymalis thalami, inferior parts of the nuclei parafascicularis thalami, and also small parts of the junction zone of the nuclei ruber tegmenti and brachium conjunctivum. Our data indicate that there are 2 anatomically distinct graviceptive signal processing mechanisms within the vestibular network in humans that lead, when damaged, to a vestibular tone imbalance either to the contraversive or to the ipsiversive side. © 2015 American Academy of Neurology.

  8. The organization of the cone photoreceptor mosaic measured in the living human retina

    PubMed Central

    Sawides, Lucie; de Castro, Alberto; Burns, Stephen A.

    2016-01-01

    The cone photoreceptors represent the initial fundamental sampling step in the acquisition of visual information. While recent advances in adaptive optics have provided increasingly precise estimates of the packing density and spacing of the cone photoreceptors in the living human retina, little is known about the local cone arrangement beyond a tendency towards hexagonal packing. We analyzed the cone mosaic in data from 10 normal subjects. A technique was applied to calculate the local average cone mosaic structure which allowed us to determine the hexagonality, spacing and orientation of local regions. Using cone spacing estimates, we find the expected decrease in cone density with retinal eccentricity and higher densities along the horizontal meridians as opposed to the vertical meridians. Orientation analysis reveals an asymmetry in the local cone spacing of the hexagonal packing, with cones having a larger local spacing along the horizontal direction. This horizontal/vertical asymmetry is altered at eccentricities larger than 2 degrees in the superior meridian and 2.5 degrees in the inferior meridian. Analysis of hexagon orientations in the central 1.4° of the retina show a tendency for orientation to be locally coherent, with orientation patches consisting of between 35 and 240 cones. PMID:27353225

  9. Fidelity assessment of a UH-60A simulation on the NASA Ames vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Atencio, Adolph, Jr.

    1993-01-01

    Helicopter handling qualities research requires that a ground-based simulation be a high-fidelity representation of the actual helicopter, especially over the frequency range of the investigation. This experiment was performed to assess the current capability to simulate the UH-60A Black Hawk helicopter on the Vertical Motion Simulator (VMS) at NASA Ames, to develop a methodology for assessing the fidelity of a simulation, and to find the causes for lack of fidelity. The approach used was to compare the simulation to the flight vehicle for a series of tasks performed in flight and in the simulator. The results show that subjective handling qualities ratings from flight to simulator overlap, and the mathematical model matches the UH-60A helicopter very well over the range of frequencies critical to handling qualities evaluation. Pilot comments, however, indicate a need for improvement in the perceptual fidelity of the simulation in the areas of motion and visual cuing. The methodology used to make the fidelity assessment proved useful in showing differences in pilot work load and strategy, but additional work is needed to refine objective methods for determining causes of lack of fidelity.

  10. The Prevalence and Causes of Visual Impairment and Blindness Among Older Adults in the City of Lodz, Poland

    PubMed Central

    Nowak, Michal S.; Smigielski, Janusz

    2015-01-01

    Abstract To investigate the prevalence and causes of visual impairment and blindness in a sample of Polish older adults. The study was designed in a cross-sectional and observational manner. Data concerning the vision status were assessed in 2214 eyes from 1107 subjects of European Caucasian origin; most of whom live in the city of Lodz, in central Poland. Visual impairment was defined as distance visual acuity <20/40 in the worse-seeing eye. Low vision was defined as best-corrected visual acuity (BCVA) <20/40 but >20/200 in better-seeing eye, and blindness was defined as BCVA ≤20/200 in both eyes (United States criteria). Visual impairment was found in 27.5% subjects in the worse-seeing eye. Multiple regression analysis showed that increasing age (OR 0.98, 95% CI 0.97–0.99) and female gender (OR 1.47, 95% CI 1.11–1.93) were independent risk factors. No association was found between visual impairment and socioeconomic status of subjects. Noncorrectable visual impairment was found in 7.0% of subjects, including 5.2% of subjects with unilateral and 1.8% of subjects with bilateral visual impairment. Low vision and blindness accounted for 1.3% and 0.5%, respectively, and were only associated with older age (OR 1.05, 95% CI 1.02–1.10). Retinal diseases represented the major cause of noncorrectable visual impairment and accounted for more than half of causes of blindness. Provision of appropriate refractive correction improves visual acuity in 75% subjects presenting with visual impairment. Retinal diseases are a major cause of noncorrectable visual impairment and blindness in this older population. PMID:25654398

  11. The prevalence and causes of visual impairment and blindness among older adults in the city of Lodz, Poland.

    PubMed

    Nowak, Michal S; Smigielski, Janusz

    2015-02-01

    To investigate the prevalence and causes of visual impairment and blindness in a sample of Polish older adults. The study was designed in a cross-sectional and observational manner. Data concerning the vision status were assessed in 2214 eyes from 1107 subjects of European Caucasian origin; most of whom live in the city of Lodz, in central Poland. Visual impairment was defined as distance visual acuity <20/40 in the worse-seeing eye. Low vision was defined as best-corrected visual acuity (BCVA) <20/40 but >20/200 in better-seeing eye, and blindness was defined as BCVA ≤20/200 in both eyes (United States criteria). Visual impairment was found in 27.5% subjects in the worse-seeing eye. Multiple regression analysis showed that increasing age (OR 0.98, 95% CI 0.97-0.99) and female gender (OR 1.47, 95% CI 1.11-1.93) were independent risk factors. No association was found between visual impairment and socioeconomic status of subjects. Noncorrectable visual impairment was found in 7.0% of subjects, including 5.2% of subjects with unilateral and 1.8% of subjects with bilateral visual impairment. Low vision and blindness accounted for 1.3% and 0.5%, respectively, and were only associated with older age (OR 1.05, 95% CI 1.02-1.10). Retinal diseases represented the major cause of noncorrectable visual impairment and accounted for more than half of causes of blindness. Provision of appropriate refractive correction improves visual acuity in 75% subjects presenting with visual impairment. Retinal diseases are a major cause of noncorrectable visual impairment and blindness in this older population.

  12. Visual functions and disability in diabetic retinopathy patients

    PubMed Central

    Shrestha, Gauri Shankar; Kaiti, Raju

    2013-01-01

    Purpose This study was undertaken to find correlations between visual functions and visual disabilities in patients with diabetic retinopathy. Method A cross-sectional study was carried out among 38 visually impaired diabetic retinopathy subjects at the Low Vision Clinic of B.P. Koirala Lions Centre for Ophthalmic Studies, Kathmandu. The subjects underwent assessment of distance and near visual acuity, objective and subjective refraction, contrast sensitivity, color vision, and central and peripheral visual fields. The visual disabilities of each subject in their daily lives were evaluated using a standard questionnaire. Multiple regression analysis between visual functions and visual disabilities index was assessed. Result The majority of subjects (42.1%) were of the age group 60–70 years. Best corrected visual acuity was found to be 0.73 ± 0.2 in the better eye and 0.93 ± 0.27 in the worse eye, which was significantly different at p = 0.002. Visual disability scores were significantly higher for legibility of letters (1.2 ± 0.3) and sentences (1.4 ± 0.4), and least for clothing (0.7 ± 0.3). Visual disability index for legibility of letters and sentences was significantly correlated with near visual acuity and peripheral visual field. Contrast sensitivity was also significantly correlated with the visual disability index, and total scores. Conclusion Impairment of near visual acuity, contrast sensitivity, and peripheral visual field correlated significantly with different types of visual disability. Hence, these clinical tests should be an integral part of the visual assessment of diabetic eyes. PMID:24646899

  13. Visual functions and disability in diabetic retinopathy patients.

    PubMed

    Shrestha, Gauri Shankar; Kaiti, Raju

    2014-01-01

    This study was undertaken to find correlations between visual functions and visual disabilities in patients with diabetic retinopathy. A cross-sectional study was carried out among 38 visually impaired diabetic retinopathy subjects at the Low Vision Clinic of B.P. Koirala Lions Centre for Ophthalmic Studies, Kathmandu. The subjects underwent assessment of distance and near visual acuity, objective and subjective refraction, contrast sensitivity, color vision, and central and peripheral visual fields. The visual disabilities of each subject in their daily lives were evaluated using a standard questionnaire. Multiple regression analysis between visual functions and visual disabilities index was assessed. The majority of subjects (42.1%) were of the age group 60-70 years. Best corrected visual acuity was found to be 0.73±0.2 in the better eye and 0.93±0.27 in the worse eye, which was significantly different at p=0.002. Visual disability scores were significantly higher for legibility of letters (1.2±0.3) and sentences (1.4±0.4), and least for clothing (0.7±0.3). Visual disability index for legibility of letters and sentences was significantly correlated with near visual acuity and peripheral visual field. Contrast sensitivity was also significantly correlated with the visual disability index, and total scores. Impairment of near visual acuity, contrast sensitivity, and peripheral visual field correlated significantly with different types of visual disability. Hence, these clinical tests should be an integral part of the visual assessment of diabetic eyes. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  14. Early Development of Object Unity: Evidence for Perceptual Completion in Newborns

    ERIC Educational Resources Information Center

    Valenza, Eloisa; Bulf, Hermann

    2011-01-01

    The present study aimed to investigate whether perceptual completion is available at birth, in the absence of any visual experience. An extremely underspecified kinetic visual display composed of four spatially separated fragments arranged to give rise to an illusory rectangle that occluded a vertical rod (illusory condition) or rotated so as not…

  15. Visual Search for Object Orientation Can Be Modulated by Canonical Orientation

    ERIC Educational Resources Information Center

    Ballaz, Cecile; Boutsen, Luc; Peyrin, Carole; Humphreys, Glyn W.; Marendaz, Christian

    2005-01-01

    The authors studied the influence of canonical orientation on visual search for object orientation. Displays consisted of pictures of animals whose axis of elongation was either vertical or tilted in their canonical orientation. Target orientation could be either congruent or incongruent with the object's canonical orientation. In Experiment 1,…

  16. Aviation spatial orientation in relationship to head position and attitude interpretation.

    PubMed

    Patterson, F R; Cacioppo, A J; Gallimore, J J; Hinman, G E; Nalepka, J P

    1997-06-01

    Conventional wisdom describing aviation spatial awareness assumes that pilots view a moving horizon through the windscreen. This assumption presupposes head alignment with the cockpit "Z" axis during both visual (VMC) and instrument (IMC) maneuvers. Even though this visual paradigm is widely accepted, its accuracy has not been verified. The purpose of this research was to determine if a visually induced neck reflex causes pilots to align their heads toward the horizon, rather than the cockpit vertical axis. Based on literature describing reflexive head orientation in terrestrial environments it was hypothesized that during simulated VMC aircraft maneuvers, pilots would align their heads toward the horizon. Some 14 military pilots completed two simulated flights in a stationary dome simulator. The flight profile consisted of five separate tasks, four of which evaluated head tilt during exposure to unique visual conditions and one examined occurrences of disorientation during unusual attitude recovery. During simulated visual flight maneuvers, pilots tilted their heads toward the horizon (p < 0.0001). Under IMC, pilots maintained head alignment with the vertical axis of the aircraft. During VMC maneuvers pilots reflexively tilt their heads toward the horizon, away from the Gz axis of the cockpit. Presumably, this behavior stabilizes the retinal image of the horizon (1 degree visual-spatial cue), against which peripheral images of the cockpit (2 degrees visual-spatial cue) appear to move. Spatial disorientation, airsickness, and control reversal error may be related to shifts in visual-vestibular sensory alignment during visual transitions between VMC (head tilt) and IMC (Gz head stabilized) conditions.

  17. Orientation of selective effects of body tilt on visually induced perception of self-motion.

    PubMed

    Nakamura, S; Shimojo, S

    1998-10-01

    We examined the effect of body posture upon visually induced perception of self-motion (vection) with various angles of observer's tilt. The experiment indicated that the tilted body of observer could enhance perceived strength of vertical vection, while there was no effect of body tilt on horizontal vection. This result suggests that there is an interaction between the effects of visual and vestibular information on perception of self-motion.

  18. Adenocarcinoma of the pouch after silastic ring vertical gastroplasty.

    PubMed

    Zirak, Christophe; Lemaitre, Jean; Lebrun, Eric; Journé, Stephane; Carlier, Patrick

    2002-10-01

    A 52-year-old woman was admitted because of epigastralgia, anorexia and recently increased vomiting, 2 years after silastic ring vertical gastroplasty. On gastroscopy, a tumor mass was visualized in the pouch near the "neo-pylorus". Biopsies confirmed adenocarcinoma. She underwent total gastrectomy, and has no evidence of recurrence at 1 year. The literature on gastric carcinoma after gastroplasty is reviewed.

  19. Thermal convection currents in NMR: flow profiles and implications for coherence pathway selection

    PubMed

    Jerschow

    2000-07-01

    Rayleigh-Benard convection currents are visualized in a vertical cylindrical tube by means of magnetic resonance imaging. Axially antisymmetric flow, multiple vertical rolls, and twisted node planes are observed. The flow can also be induced by strong RF irradiation. Its effects on the coherence pathways in NMR experiments employing field gradients are discussed. Copyright 2000 Academic Press.

  20. User Guide for HUFPrint, A Tabulation and Visualization Utility for the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW

    USGS Publications Warehouse

    Banta, Edward R.; Provost, Alden M.

    2008-01-01

    This report documents HUFPrint, a computer program that extracts and displays information about model structure and hydraulic properties from the input data for a model built using the Hydrogeologic-Unit Flow (HUF) Package of the U.S. Geological Survey's MODFLOW program for modeling ground-water flow. HUFPrint reads the HUF Package and other MODFLOW input files, processes the data by hydrogeologic unit and by model layer, and generates text and graphics files useful for visualizing the data or for further processing. For hydrogeologic units, HUFPrint outputs such hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, vertical hydraulic conductivity or anisotropy, specific storage, specific yield, and hydraulic-conductivity depth-dependence coefficient. For model layers, HUFPrint outputs such effective hydraulic properties as horizontal hydraulic conductivity along rows, horizontal hydraulic conductivity along columns, horizontal anisotropy, specific storage, primary direction of anisotropy, and vertical conductance. Text files tabulating hydraulic properties by hydrogeologic unit, by model layer, or in a specified vertical section may be generated. Graphics showing two-dimensional cross sections and one-dimensional vertical sections at specified locations also may be generated. HUFPrint reads input files designed for MODFLOW-2000 or MODFLOW-2005.

  1. Exclusion of pituitary homeobox 2 gene polymorphism in vertical mandibular asymmetry patients: a preliminary study

    NASA Astrophysics Data System (ADS)

    Sofyanti, Ervina; Boel, Trelia; Soegiharto, Benny; Ilyas, Syafruddin; Irani Nainggolan, Lidya; Auerkari, Elza Ibrahim

    2018-03-01

    Pituitary Homeobox 2 (PITX2), is an active gene as a paired-related homeobox gene that encodes multiple isoforms. Its Nodal pathway in determination of left-right patterning during embryogenesis has been reported in satellite cells and expressed in adult human skeletal muscle. PITX2A and PITX2B are produced by alternative splicing and used of different promoters. PITX2C uses an alternative promoter located upstream of exon 4. PITX2D is produced by PITX2C alternative promoter and differential splicing. The 5’-primers and 3’- antisense primer were unique for each isoforms. Variability measurement in vertical dimension showed stronger genetic component than sagittal. This study aims to obtain the genotype marker of vertical mandibular asymmetry related to PITX2A and PITX2D isoform by visualization of the amplified product on stained gel to allele specific oligonucleotide between the case and control with Restriction Fragment Length Polymorphism (RFLP). Determination of vertical mandibular asymmetry based on condylar height asymmetry index of pre-treatment panoramic radiograph using Kjellberg’s technique whilst vertical mandibular growth pattern using lateral cephalogram. The differences of condylar height asymmetry in case-control based on vertical growth pattern was compared using Pearson’s chi-squared test. DNA extraction of 129 out-coming orthodontic patients in Universitas Sumatera Utara Dental Hospital were obtained from Buccal swab. Then DNA samples were amplified by Polymerase chain reaction (PCR) and digested with NciI restriction enzyme prior to electrophoresis visualization. There was no significant statistical difference in vertical mandibular asymmetry compared to vertical mandibular growth pattern. The RFLP analysis did not show any polymorphism for PITX2A and PITX2D isoform. All of the samples showed wild type homozygote. Further analysis method, except RFLP, were required to understand the genetic factor in the variance of vertical mandibular asymmetry.

  2. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  3. The Influence of Different OK Lens Designs on Peripheral Refraction.

    PubMed

    Kang, Pauline; Swarbrick, Helen

    2016-09-01

    To compare peripheral refraction changes along the horizontal and vertical meridians induced by three different orthokeratology (OK) lens designs: BE, Paragon CRT, and Contex lenses. Nineteen subjects (6M, 13F, mean age 28 ± 7 years) were initially fitted with BE OK lenses in both eyes which were worn overnight for 14 days. Central and peripheral refraction and corneal topography were measured at baseline and after 14 nights of lens wear. After a minimum 2-week washout period, one randomly selected eye was re-fitted with a Paragon CRT lens and the other eye with a Contex OK lens. Measurements were repeated before and after 14 nights of lens wear. The three different OK lenses caused significant changes in peripheral refraction along both the horizontal and vertical visual fields (VFs). BE and Paragon CRT lenses induced a significant hyperopic shift within the central ±20° along the horizontal VF and at all positions along the vertical meridian except at 30° in the superior VF. There were no significant differences in peripheral refraction changes induced between BE and Paragon CRT lenses. When comparing BE and Contex OK lens designs, BE caused greater hyperopic shifts at 10° and 30° in the temporal VF and at center, 10°, and 20° in the superior VF along the vertical meridian. Furthermore, BE lenses caused greater reduction in Flat and Steep K values compared to Contex OK. OK lenses induced significant changes in peripheral refraction along the horizontal and vertical meridians. Despite the clinically significant difference in central corneal flattening induced by BE and Contex OK lenses, relative peripheral refraction changes differed minimally between the three OK lens designs. If the peripheral retina influences refractive error development, these results suggest that myopia control effects are likely to be similar between different OK lens designs.

  4. Visual observations of the vertical distribution of plankton throughout the water column above Broken Spur vent field, Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Vereshchaka, A. L.; Vinogradov, G. M.

    1999-09-01

    Visual observations were made in September 1997 during the 39 cruise of R/V "Akademik Mstislav Keldysh" with 2 deep-sea manned submersibles "Mir" aboard. During 4 dives the following plankton countings were made: 3 vertical throughout the water column during the day, 2 vertical in the upper 1000 m at night, and 1 oblique in the plume area during the day. Biomass profiles are represented for each dive for all abundant animal groups: copepods, euphausiids+decapods+mysids, chaetognaths, medusae, ctenophores, siphonophores, cyclothones, myctophides, radiolarians, and the total zooplankton. Plankton distribution shows 2 aggregations, one within the main pycnocline and the other near the plume; Gelatinous animals and radiolarians dominate in both aggregations by biomass and make a significant contribution to the plankton biomass throughout the water column. Oblique counting indicates the presence of aggregations of animals near the upper and lower borders of the plume and biomass depletion within the plume core.

  5. Combining recessions (nystagmus and strabismus) with tenotomy improved visual function and decreased oscillopsia and diplopia in acquired downbeat nystagmus and in horizontal infantile nystagmus syndrome.

    PubMed

    Wang, Zhong I; Dell'Osso, Louis F; Tomsak, Robert L; Jacobs, Jonathan B

    2007-04-01

    To investigate the effects of combined tenotomy and recession procedures on both acquired downbeat nystagmus and horizontal infantile nystagmus. Patient 1 had downbeat nystagmus with a chin-down (upgaze) position, oscillopsia, strabismus, and diplopia. Asymmetric superior rectus recessions and inferior rectus tenotomies reduced right hypertropia and rotated both eyes downward. Patient 2 had horizontal infantile nystagmus, a 20 degrees left-eye exotropia, and alternating (abducting-eye) fixation. Lateral rectus recessions and medial rectus tenotomies were performed. Horizontal and vertical eye movements were recorded pre- and postsurgically using high-speed digital video. The eXpanded Nystagmus Acuity Function (NAFX) and nystagmus amplitudes and frequencies were measured. Patient 1: The NAFX peak moved from 10 degrees up to primary position where NAFX values improved 17% and visual acuity increased 25%. Vertical NAFX increased across the -10 degrees to +5 degrees vertical range. Primary-position right hypertropia decreased approximately 50%; foveation time per cycle increased 102%; vertical amplitude, oscillopsia, and diplopia were reduced, and frequency was unchanged. Patient 2: Two lateral, narrow high-NAFX regions (due to alternating fixation) became one broad region with a 43% increase in primary position (acuity increased approximately 92.3%). Diplopia amplitude decreased; convergence and gaze holding were improved. Primary-position right exotropia was reduced; foveation time per cycle increased 257%; horizontal-component amplitude decreased 45.7%, and frequency remained unchanged. Combining tenotomy with nystagmus or strabismus recession procedures increased NAFX and visual acuities and reduced diplopia and oscillopsia in downbeat nystagmus and infantile nystagmus.

  6. Is an objective refraction optimised using the visual Strehl ratio better than a subjective refraction?

    PubMed

    Hastings, Gareth D; Marsack, Jason D; Nguyen, Lan Chi; Cheng, Han; Applegate, Raymond A

    2017-05-01

    To prospectively examine whether using the visual image quality metric, visual Strehl (VSX), to optimise objective refraction from wavefront error measurements can provide equivalent or better visual performance than subjective refraction and which refraction is preferred in free viewing. Subjective refractions and wavefront aberrations were measured on 40 visually-normal eyes of 20 subjects, through natural and dilated pupils. For each eye a sphere, cylinder, and axis prescription was also objectively determined that optimised visual image quality (VSX) for the measured wavefront error. High contrast (HC) and low contrast (LC) logMAR visual acuity (VA) and short-term monocular distance vision preference were recorded and compared between the VSX-objective and subjective prescriptions both undilated and dilated. For 36 myopic eyes, clinically equivalent (and not statistically different) HC VA was provided with both the objective and subjective refractions (undilated mean ± S.D. was -0.06 ± 0.04 with both refractions; dilated was -0.05 ± 0.04 with the objective, and -0.05 ± 0.05 with the subjective refraction). LC logMAR VA provided by the objective refraction was also clinically equivalent and not statistically different to that provided by the subjective refraction through both natural and dilated pupils for myopic eyes. In free viewing the objective prescription was preferred over the subjective by 72% of myopic eyes when not dilated. For four habitually undercorrected high hyperopic eyes, the VSX-objective refraction was more positive in spherical power and VA poorer than with the subjective refraction. A method of simultaneously optimising sphere, cylinder, and axis from wavefront error measurements, using the visual image quality metric VSX, is described. In myopic subjects, visual performance, as measured by HC and LC VA, with this VSX-objective refraction was found equivalent to that provided by subjective refraction, and was typically preferred over subjective refraction. Subjective refraction was preferred by habitually undercorrected hyperopic eyes. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  7. A novel apparatus for testing binocular function using the 'CyberDome' three-dimensional hemispherical visual display system.

    PubMed

    Handa, T; Ishikawa, H; Shimizu, K; Kawamura, R; Nakayama, H; Sawada, K

    2009-11-01

    Virtual reality has recently been highlighted as a promising medium for visual presentation and entertainment. A novel apparatus for testing binocular visual function using a hemispherical visual display system, 'CyberDome', has been developed and tested. Subjects comprised 40 volunteers (mean age, 21.63 years) with corrected visual acuity of -0.08 (LogMAR) or better, and stereoacuity better than 100 s of arc on the Titmus stereo test. Subjects were able to experience visual perception like being surrounded by visual images, a feature of the 'CyberDome' hemispherical visual display system. Visual images to the right and left eyes were projected and superimposed on the dome screen, allowing test images to be seen independently by each eye using polarizing glasses. The hemispherical visual display was 1.4 m in diameter. Three test parameters were evaluated: simultaneous perception (subjective angle of strabismus), motor fusion amplitude (convergence and divergence), and stereopsis (binocular disparity at 1260, 840, and 420 s of arc). Testing was performed in volunteer subjects with normal binocular vision, and results were compared with those using a major amblyoscope. Subjective angle of strabismus and motor fusion amplitude showed a significant correlation between our test and the major amblyoscope. All subjects could perceive the stereoscopic target with a binocular disparity of 480 s of arc. Our novel apparatus using the CyberDome, a hemispherical visual display system, was able to quantitatively evaluate binocular function. This apparatus offers clinical promise in the evaluation of binocular function.

  8. Knee biomechanics during a jump-cut maneuver: Effects of gender & ACL surgery

    PubMed Central

    Miranda, Daniel L.; Fadale, Paul D.; Hulstyn, Michael J.; Shalvoy, Robert M.; Machan, Jason T.; Fleming, Braden C.

    2012-01-01

    Purpose The purpose of this study was to compare kinetic and knee kinematic measurements from male and female ACL-intact (ACLINT) and ACL-reconstructed (ACLREC) subjects during a jump-cut maneuver using biplanar videoradiography. Methods Twenty subjects were recruited; 10 ACLINT (5 males, 5 females) and 10 ACLREC (4 males, 6 females; five years post surgery). Each subject performed a jump-cut maneuver by landing on a single leg and performing a 45° side-step cut. Ground reaction force was measured by a force plate and expressed relative to body weight. Six-degree-of-freedom knee kinematics were determined from a biplanar videoradiography system and an optical motion capture system. Results ACLINT female subjects landed with a larger peak vertical GRF (p<0.001) compared to ACLINT male subjects. ACLINT subjects landed with a larger peak vertical GRF (p≤0.036) compared to ACLREC subjects. Regardless of ACL reconstruction status, female subjects underwent less knee flexion angle excursion (p=0.002) and had an increased average rate of anterior tibial translation (0.05±0.01%/millisecond; p=0.037) after contact compared to male subjects. Furthermore, ACLREC subjects had a lower rate of anterior tibial translation compared to ACLINT subjects (0.05±0.01%/millisecond; p=0.035). Finally, no striking differences were observed in other knee motion parameters. Conclusion Women permit a smaller amount of knee flexion angle excursion during a jump-cut maneuver, resulting in a larger peak vertical GRF and increased rate of anterior tibial translation. Notably, ACLREC subjects also perform the jump cut maneuver with lower GRF than ACLINT subjects five years post surgery. This study proposes a causal sequence whereby increased landing stiffness (larger peak vertical GRF combined with less knee flexion angle excursion) leads to an increased rate of anterior tibial translation while performing a jump-cut maneuver. PMID:23190595

  9. Minimizing center of mass vertical movement increases metabolic cost in walking.

    PubMed

    Ortega, Justus D; Farley, Claire T

    2005-12-01

    A human walker vaults up and over each stance limb like an inverted pendulum. This similarity suggests that the vertical motion of a walker's center of mass reduces metabolic cost by providing a mechanism for pendulum-like mechanical energy exchange. Alternatively, some researchers have hypothesized that minimizing vertical movements of the center of mass during walking minimizes the metabolic cost, and this view remains prevalent in clinical gait analysis. We examined the relationship between vertical movement and metabolic cost by having human subjects walk normally and with minimal center of mass vertical movement ("flat-trajectory walking"). In flat-trajectory walking, subjects reduced center of mass vertical displacement by an average of 69% (P = 0.0001) but consumed approximately twice as much metabolic energy over a range of speeds (0.7-1.8 m/s) (P = 0.0001). In flat-trajectory walking, passive pendulum-like mechanical energy exchange provided only a small portion of the energy required to accelerate the center of mass because gravitational potential energy fluctuated minimally. Thus, despite the smaller vertical movements in flat-trajectory walking, the net external mechanical work needed to move the center of mass was similar in both types of walking (P = 0.73). Subjects walked with more flexed stance limbs in flat-trajectory walking (P < 0.001), and the resultant increase in stance limb force generation likely helped cause the doubling in metabolic cost compared with normal walking. Regardless of the cause, these findings clearly demonstrate that human walkers consume substantially more metabolic energy when they minimize vertical motion.

  10. Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats.

    PubMed

    Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela

    2013-01-01

    The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.

  11. Flight investigation of a vertical-velocity command system for VTOL aircraft

    NASA Technical Reports Server (NTRS)

    Kelly, J. R.; Niessen, F. R.; Yenni, K. R.; Person, L. H., Jr.

    1977-01-01

    A flight investigation was undertaken to assess the potential benefits afforded by a vertical-velocity command system (VVCS) for VTOL (vertical take-off and landing) aircraft. This augmentation system was conceived primarily as a means of lowering pilot workload during decelerating approaches to a hover and/or landing under category III instrument meteorological conditions. The scope of the investigation included a determination of acceptable system parameters, a visual flight evaluation, and an instrument flight evaluation which employed a 10 deg, decelerating, simulated instrument approach task. The results indicated that the VVCS, which decouples the pitch and vertical degrees of freedom, provides more accurate glide-path tracking and a lower pilot workload than does the unaugmented system.

  12. Visual words for lip-reading

    NASA Astrophysics Data System (ADS)

    Hassanat, Ahmad B. A.; Jassim, Sabah

    2010-04-01

    In this paper, the automatic lip reading problem is investigated, and an innovative approach to providing solutions to this problem has been proposed. This new VSR approach is dependent on the signature of the word itself, which is obtained from a hybrid feature extraction method dependent on geometric, appearance, and image transform features. The proposed VSR approach is termed "visual words". The visual words approach consists of two main parts, 1) Feature extraction/selection, and 2) Visual speech feature recognition. After localizing face and lips, several visual features for the lips where extracted. Such as the height and width of the mouth, mutual information and the quality measurement between the DWT of the current ROI and the DWT of the previous ROI, the ratio of vertical to horizontal features taken from DWT of ROI, The ratio of vertical edges to horizontal edges of ROI, the appearance of the tongue and the appearance of teeth. Each spoken word is represented by 8 signals, one of each feature. Those signals maintain the dynamic of the spoken word, which contains a good portion of information. The system is then trained on these features using the KNN and DTW. This approach has been evaluated using a large database for different people, and large experiment sets. The evaluation has proved the visual words efficiency, and shown that the VSR is a speaker dependent problem.

  13. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  14. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  15. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... transmission of data, processed information, or any other communication in either a digital or analog mode. (b... kinds of service that may be provided include, but are not limited to, teletext, paging, computer...

  16. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... transmission of data, processed information, or any other communication in either a digital or analog mode. (b... kinds of service that may be provided include, but are not limited to, teletext, paging, computer...

  17. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... transmission of data, processed information, or any other communication in either a digital or analog mode. (b... kinds of service that may be provided include, but are not limited to, teletext, paging, computer...

  18. 47 CFR 73.646 - Telecommunications Service on the Vertical Blanking Interval and in the Visual Signal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Blanking Interval and in the Visual Signal. 73.646 Section 73.646 Telecommunication FEDERAL COMMUNICATIONS... transmission of data, processed information, or any other communication in either a digital or analog mode. (b... kinds of service that may be provided include, but are not limited to, teletext, paging, computer...

  19. Vertical Launch System Loadout Planner

    DTIC Science & Technology

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this

  20. Practical Application of Polarization and Light Control for Reduction of Reflected Glare.

    ERIC Educational Resources Information Center

    Crouch, C. L.; Kaufman, J. E.

    1963-01-01

    The role of reflected glare and visual viewing angles in near task performance is discussed, and following statements are reported--(1) a worker at a desk normally assumes a position in which his eyes traverse an area of work extending from a point approximately vertically below his eyes to a point not more than 40 degrees from the vertical, (2) a…

  1. Is lower peripheral information weighted differently as a function of step number during step climbing?

    PubMed

    Graci, Valentina; Rabuffetti, Marco; Frigo, Carlo; Ferrarin, Maurizio

    2017-02-01

    The importance of peripheral visual information during stair climbing and how peripheral visual information is weighted as a function of step number during step climbing is unclear. Previous authors postulated that the knowledge of predictable characteristics of the steps may decrease reliance on foveal vision and transfer the online visual guidance of stair climbing to peripheral vision. Hence the aim of this study was to investigate if and how the occlusion of the lower peripheral visual field influenced stair climbing and if peripheral visual information was weighted differently between steps. Ten young adult male participants ascended a 5-step staircase under 2 visual conditions: full vision (FV) and lower visual occlusion (LO). Kinematic data (100Hz) were collected. The effect of Vision and Step condition on vertical forefoot clearance was examined with a Repeated Measures 2-way ANOVA. Tukey's HSD test was used for post-hoc comparisons. A significant interaction Vision x Step and main effect of Step were found (p<=0.04): vertical forefoot clearance was greater in LO compared to FV condition only on the 1st and the 2nd steps (p<0.013) and on the last step compared to the other steps (p<0.01). These findings suggest that online peripheral visual information is more relevant when negotiating the first two steps, rather than the end of a staircase and that the steps subsequent the first few ones may require different information likely based on proprioception or working memory of the step height. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Differential patterns of 2D location versus depth decoding along the visual hierarchy.

    PubMed

    Finlayson, Nonie J; Zhang, Xiaoli; Golomb, Julie D

    2017-02-15

    Visual information is initially represented as 2D images on the retina, but our brains are able to transform this input to perceive our rich 3D environment. While many studies have explored 2D spatial representations or depth perception in isolation, it remains unknown if or how these processes interact in human visual cortex. Here we used functional MRI and multi-voxel pattern analysis to investigate the relationship between 2D location and position-in-depth information. We stimulated different 3D locations in a blocked design: each location was defined by horizontal, vertical, and depth position. Participants remained fixated at the center of the screen while passively viewing the peripheral stimuli with red/green anaglyph glasses. Our results revealed a widespread, systematic transition throughout visual cortex. As expected, 2D location information (horizontal and vertical) could be strongly decoded in early visual areas, with reduced decoding higher along the visual hierarchy, consistent with known changes in receptive field sizes. Critically, we found that the decoding of position-in-depth information tracked inversely with the 2D location pattern, with the magnitude of depth decoding gradually increasing from intermediate to higher visual and category regions. Representations of 2D location information became increasingly location-tolerant in later areas, where depth information was also tolerant to changes in 2D location. We propose that spatial representations gradually transition from 2D-dominant to balanced 3D (2D and depth) along the visual hierarchy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The reliability and clinical correlates of figure-ground perception in schizophrenia.

    PubMed

    Malaspina, Dolores; Simon, Naomi; Goetz, Raymond R; Corcoran, Cheryl; Coleman, Eliza; Printz, David; Mujica-Parodi, Lilianne; Wolitzky, Rachel

    2004-01-01

    Schizophrenia subjects are impaired in a number of visual attention paradigms. However, their performance on tests of figure-ground visual perception (FGP), which requires subjects to visually discriminate figures embedded in a rival background, is relatively unstudied. We examined FGP in 63 schizophrenia patients and 27 control subjects and found that the patients performed the FGP test reliably and had significantly lower FGP scores than the control subjects. Figure-ground visual perception was significantly correlated with other neuropsychological test scores and was inversely related to negative symptoms. It was unrelated to antipsychotic medication treatment. Figure-ground visual perception depends on "top down" processing of visual stimuli, and thus this data suggests that dysfunction in the higher-level pathways that modulate visual perceptual processes may also be related to a core defect in schizophrenia.

  4. SIGNIFICANCE OF PREOPERATIVE EXTERNAL LIMITING MEMBRANE HEIGHT ON VISUAL PROGNOSIS IN PATIENTS UNDERGOING MACULAR HOLE SURGERY.

    PubMed

    Geenen, Caspar; Murphy, Declan C; Sandinha, Maria T; Rees, Jon; Steel, David H W

    2018-03-05

    To investigate the association between the vertical elevation of the external limiting membrane (ELM) and visual outcome in patients undergoing surgery for idiopathic full-thickness macular hole. Retrospective observational study of a consecutive cohort of patients undergoing vitrectomy to treat macular hole. The greatest vertical height of the central ELM above the retinal pigment epithelium (ELM height) was measured on spectral domain optical coherence tomography preoperatively. The relationship of ELM height to other preoperative and postoperative variables, including macular hole width and height, and visual acuity was analyzed. Data from 91 eyes of 91 patients who had undergone successful hole closure were included. The mean ELM height was 220 μm (range 100-394). There were significant correlations between the ELM height and the diameter of the hole, hole height, and worsening preoperative visual acuity. For holes less than 400 μm in width, better postoperative visual acuity was significantly predicted by a lower ELM height. The ELM height varies widely in idiopathic macular hole. It is higher in eyes where the hole is wider and also when the hole itself is higher. For holes of less than 400 μm in width, a lower ELM height is a strong independent predictor of a good postoperative outcome.

  5. Incidence of vertical phoria on postural control during binocular vision: what perspective for prevention to nonspecific chronic pain management?

    PubMed

    Matheron, Eric; Kapoula, Zoï

    2015-01-01

    Vertical heterophoria (VH) is the latent vertical misalignment of the eyes when the retinal images are dissociated, vertical orthophoria (VO) when there is no misalignment. Studies on postural control, during binocular vision in upright stance, reported that healthy subjects with small VH vs. VO are less stable, but the experimental cancellation of VH with an appropriate prism improves postural stability. The same behavior was recorded in nonspecific chronic back pain subjects, all with VH. It was hypothesized that, without refraction problems, VH indicates a perturbation of the somaesthetic cues required in the sensorimotor loops involved in postural control and the capacity of the CNS to optimally integrate these cues, suggesting prevention possibilities. Sensorimotor conflict can induce pain and modify sensory perception in some healthy subjects; some nonspecific pain or chronic pain could result from such prolonged conflict in which VH could be a sign, with new theoretical and clinical implications.

  6. Facial aesthetics: babies prefer attractiveness to symmetry.

    PubMed

    Samuels, Curtis A; Butterworth, George; Roberts, Tony; Graupner, Lida; Hole, Graham

    2013-01-01

    The visual preferences of human infants for faces that varied in their attractiveness and in their symmetry about the midline were explored. The aim was to establish whether infants' visual preference for attractive faces may be mediated by the vertical symmetry of the face. Chimeric faces, made from photographs of attractive and unattractive female faces, were produced by computer graphics. Babies looked longer at normal and at chimeric attractive faces than at normal and at chimeric unattractive faces. There were no developmental differences between the younger and older infants: all preferred to look at the attractive faces. Infants as young as 4 months showed similarity with adults in the 'aesthetic perception' of attractiveness and this preference was not based on the vertical symmetry of the face.

  7. Three-dimensional organization of vestibular related eye movements to rotational motion in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.; Beyer, M.; Hess, B. J.

    2000-01-01

    During rotational motions, compensatory eye movement adjustments must continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined. Rotations about different head axes produced horizontal, vertical, and torsional eye movements, whose component magnitude was dependent upon the cosine of the stimulus axis relative to the animal's visual axis. Thus, the three-dimensional organization of the VOR in pigeons appears to be compensatory for any direction of head rotation. Frequency responses of the horizontal, vertical, and torsional slow phase components exhibited high pass filter properties with dominant time constants of approximately 3 s.

  8. Changes in compensatory eye movements associated with simulated stimulus conditions of spaceflight

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Zografos, Linda M.; Skinner, Noel C.; Parker, Donald E.

    1993-01-01

    Compensatory vertical eye movement gain (CVEMG) was recorded during pitch oscillation in darkness before, during, and immediately after exposures to the stimulus rearrangement produced by the Preflight Adaptation Trainer (PAT) Tilt-Translation Device (TTD). The TTD is designed to elicit adaptive responses that are similar to those observed in microgravity-adapted astronauts. The data from Experiment 1 yielded a statistically significant CVEMG decrease following 15 min of exposure to a stimulus rearrangement condition where the phase angle between subject pitch tilt and visual scene translation was 270 deg; statistically significant gain decreases were not observed following exposures either to a condition where the phase angle between subject pitch and scene translation was 90 deg or to a no-stimulus-rearrangement condition. Experiment 2 replicated the 270-deg-phase condition from Experiment 1 and extended the exposure duration from 30 to 45 min. Statistically significant additional changes in CVEMG associated with the increased exposure duration were not observed. The adaptation time constant estimated fram the combined data from Experiments 1 and 2 was 29 min.

  9. Changes in Compensatory Eye Movements Associated with Simulated Stimulus Conditions of Spaceflight

    NASA Technical Reports Server (NTRS)

    Harm, Deborah L.; Zografos, Linda M.; Skinner, Noel C.; Parker, Donald E.

    1993-01-01

    Compensatory vertical eye movement gain (CVEMG) was recorded during pitch oscillation in darkness before, during and immediately after exposures to the stimulus rearrangement produced by the Preflight Adaptation Trainer (PAT) Tilt-Translation Device (TTD). The TTD is designed to elicit adaptive responses that are similar to those observed in microgravity-adapted astronauts. The data from Experiment 1 yielded a statistically significant CVEMG decrease following 15 minutes of exposure to a stimulus rearrangement condition where the phase angle between subject pitch tilt and visual scene translation was 270 degrees; statistically significant gain decreases were not observed following exposures either to a condition where the phase angle between subject pitch and scene translation was 90 degrees or to a no-stimulus-rearrangement condition. Experiment 2 replicated the 270 degree phase condition from Experiment 1 and extended the exposure duration from 30 to 45 minutes. Statistically significant additional changes in CVEMG associated with the increased exposure duration were not observed. The adaptation time constant estimated from the combined data from Experiments 1 and 2 was 29 minutes.

  10. Peripheral vision and perceptual asymmetries in young and older martial arts athletes and nonathletes.

    PubMed

    Muiños, Mónica; Ballesteros, Soledad

    2014-11-01

    The present study investigated peripheral vision (PV) and perceptual asymmetries in young and older martial arts athletes (judo and karate athletes) and compared their performance with that of young and older nonathletes. Stimuli were dots presented at three different eccentricities along the horizontal, oblique, and vertical diameters and three interstimulus intervals. Experiment 1 showed that although the two athlete groups were faster in almost all conditions, karate athletes performed significantly better than nonathlete participants when stimuli were presented in the peripheral visual field. Experiment 2 showed that older participants who had practiced a martial art at a competitive level when they were young were significantly faster than sedentary older adults of the same age. The practiced sport (judo or karate) did not affect performance differentially, suggesting that it is the practice of martial arts that is the crucial factor, rather than the type of martial art. Importantly, older athletes lose their PV advantage, as compared with young athletes. Finally, we found that physical activity (young and older athletes) and age (young and older adults) did not alter the visual asymmetries that vary as a function of spatial location; all participants were faster for stimuli presented along the horizontal than for those presented along the vertical meridian and for those presented at the lower rather than at the upper locations within the vertical meridian. These results indicate that the practice of these martial arts is an effective way of counteracting the processing speed decline of visual stimuli appearing at any visual location and speed.

  11. Optical coherence tomography detects characteristic retinal nerve fiber layer thickness corresponding to band atrophy of the optic discs.

    PubMed

    Kanamori, Akiyasu; Nakamura, Makoto; Matsui, Noriko; Nagai, Azusa; Nakanishi, Yoriko; Kusuhara, Sentaro; Yamada, Yuko; Negi, Akira

    2004-12-01

    To analyze retinal nerve fiber layer (RNFL) thickness in eyes with band atrophy by use of optical coherence tomography (OCT) and to evaluate the ability of OCT to detect this characteristic pattern of RNFL loss. Cross-sectional, retrospective study. Thirty-four eyes of 18 patients with bitemporal hemianopia caused by optic chiasm compression by chiasmal tumors were studied. All eyes were divided into 3 groups according to visual field loss grading after Goldmann perimetry. Retinal nerve fiber layer thickness measurements with OCT. Retinal nerve fiber layer thickness around the optic disc was measured by OCT (3.4-mm diameter circle). Calculation of the changes in OCT parameters, including the horizontal (nasal + temporal quadrant RNFL thickness) and vertical values (superior + inferior quadrant RNFL thickness) was based on data from 160 normal eyes. Comparison between the 3 visual field grading groups was done with the analysis of variance test. The receiver operating characteristic (ROC) curve for the horizontal and vertical value were calculated, and the areas under the curve (AUC) were compared. Retinal nerve fiber layer thickness in eyes with band atrophy decreased in all OCT parameters. The reduction rate in average and temporal RNFL thickness and horizontal value was correlated with visual field grading. The AUC of horizontal value was 0.970+/-0.011, which was significantly different from AUC of vertical value (0.903+/-0.022). The degree of RNFL thickness reduction correlated with that of visual field defects. Optical coherence tomography was able to identify the characteristic pattern of RNFL loss in these eyes.

  12. Study of EEG during Sternberg Tasks with Different Direction of Arrangement for Letters

    NASA Astrophysics Data System (ADS)

    Kamihoriuchi, Kenji; Nuruki, Atsuo; Matae, Tadashi; Kurono, Asutsugu; Yunokuchi, Kazutomo

    In previous study, we recorded electroencephalogram (EEG) of patients with dementia and healthy subjects during Sternberg task. But, only one presentation method of Sternberg task was considered in previous study. Therefore, we examined whether the EEG was different in two different presentation methods wrote letters horizontally and wrote letters vertically in this study. We recorded EEG of six healthy subjects during Sternberg task using two different presentation methods. The result was not different in EEG topography of all subjects. In all subjects, correct rate increased in case of vertically arranged letters.

  13. Effects of aging on pointing movements under restricted visual feedback conditions.

    PubMed

    Zhang, Liancun; Yang, Jiajia; Inai, Yoshinobu; Huang, Qiang; Wu, Jinglong

    2015-04-01

    The goal of this study was to investigate the effects of aging on pointing movements under restricted visual feedback of hand movement and target location. Fifteen young subjects and fifteen elderly subjects performed pointing movements under four restricted visual feedback conditions that included full visual feedback of hand movement and target location (FV), no visual feedback of hand movement and target location condition (NV), no visual feedback of hand movement (NM) and no visual feedback of target location (NT). This study suggested that Fitts' law applied for pointing movements of the elderly adults under different visual restriction conditions. Moreover, significant main effect of aging on movement times has been found in all four tasks. The peripheral and central changes may be the key factors for these different characteristics. Furthermore, no significant main effects of age on the mean accuracy rate under condition of restricted visual feedback were found. The present study suggested that the elderly subjects made a very similar use of the available sensory information as young subjects under restricted visual feedback conditions. In addition, during the pointing movement, information about the hand's movement was more useful than information about the target location for young and elderly subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Asymmetric twins in rhombohedral boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Takeshi, E-mail: tfujita@wpi-aimr.tohoku.ac.jp; Guan, Pengfei; Madhav Reddy, K.

    2014-01-13

    Superhard materials consisting of light elements have recently received considerable attention because of their ultrahigh specific strength for a wide range of applications as structural and functional materials. However, the failure mechanisms of these materials subjected to high stresses and dynamic loading remain to be poorly known. We report asymmetric twins in a complex compound, boron carbide (B{sub 4}C), characterized by spherical-aberration-corrected transmission electron microscopy. The atomic structure of boron-rich icosahedra at rhombohedral vertices and cross-linked carbon-rich atomic chains can be clearly visualized, which reveals unusual asymmetric twins with detectable strains along the twin interfaces. This study offers atomic insightsmore » into the structure of twins in a complex material and has important implications in understanding the planar defect-related failure of superhard materials under high stresses and shock loading.« less

  15. Correctable and non-correctable visual impairment among young males: a 12-year prevalence study of the Military Service in Poland.

    PubMed

    Nowak, Michal S; Gos, Roman; Jurowski, Piotr; Smigielski, Janusz

    2009-07-01

    To evaluate the prevalence of correctable and non-correctable visual impairment in a representative sample of young males commissioned for Military Service in Poland. Data concerning vision status was retrospectively reviewed in 969 subjects of European Caucasian origin, most of whom live and have lived in Poland. They were selected from the original database comprising 105017 subjects examined in the period 1993-2004. Based on the age of subjects they were divided into two groups; group I aged 18-24 and group II aged 25-34 years. Visual impairment was defined as distance visual acuity of <20/40 in one or both eyes. Non-correctable impairment was defined as that which was not eliminated by refractive correction. A total of 1938 eyes of 969 white males were examined. There was statistically significant association between rates of visual impairment and increasing age (p < 0.001). Visual impairment was found in 128 (13.2%) subjects in at least one eye. Non-correctable visual impairment was found in 12 (1.2%) subjects. Amblyopia was the main cause, accounting for eight cases (66.67%). Correctable visual impairment was found in the remaining 116 (12.0%) patients. Among them myopia was the most common refractive error and accounted for 75.8%. Differences between age-specific rates of refractive errors were statistically significant (p = 0.003). Appropriate refractive correction improves visual acuity in most subjects presenting with visual impairment. There was a relatively low prevalence of non-correctable visual impairment in a population of young adults in Poland, and this was mainly due to amblyopia.

  16. Effective signaling of surface boundaries by L-vertices reflect the consistency of their contrast in natural images.

    PubMed

    Vessel, Edward A; Biederman, Irving; Subramaniam, Suresh; Greene, Michelle R

    2016-07-01

    An L-vertex, the point at which two contours coterminate, provides highly reliable evidence that a surface terminates at that vertex, thus providing the strongest constraint on the extraction of shape from images (Guzman, 1968). Such vertices are pervasive in our visual world but the importance of a statistical regularity about them has been underappreciated: The contours defining the vertex are (almost) always of the same direction of contrast with respect to the background (i.e., both darker or both lighter). Here we show that when the two contours are of different directions of contrast, the capacity of the L-vertex to signal the termination of a surface, as reflected in object recognition, is markedly reduced. Although image statistics have been implicated in determining the connectivity in the earliest cortical visual stage (V1) and in grouping during visual search, this finding provides evidence that such statistics are involved in later stages where object representations are derived from two-dimensional images.

  17. Acrophobia impairs visual exploration and balance during standing and walking.

    PubMed

    Brandt, Thomas; Kugler, Günter; Schniepp, Roman; Wuehr, Max; Huppert, Doreen

    2015-04-01

    This review shows that persons with visual height intolerance or acrophobia exhibit typical restrictions of visual exploration and imbalance during stance and locomotion when exposed to heights. Eye and head movements are reduced, and gaze freezes to the horizon. Eye movements tend to be horizontal saccades during stance and vertical saccades during locomotion. Body posture is characterized by a stiffening of the musculoskeletal system with increased open-loop diffusion activity of body sway, a lowered sensory feedback threshold for closed-loop balance control, and increased co-contraction of antigravity leg and neck muscles. Walking is slow and cautious, broad-based, consisting of small, flat-footed steps with less dynamic vertical oscillation of the body and head. Anxiety appears to be the critical symptom that causes the typical but not specific eye and body motor behavior, which can be described as tonic immobility. Guidelines for preventing acrophobia, which could be an add-on to behavioral therapy, are provided. © 2015 New York Academy of Sciences.

  18. How Prevalent Is Object-Based Attention?

    PubMed Central

    Pilz, Karin S.; Roggeveen, Alexa B.; Creighton, Sarah E.; Bennett, Patrick J.; Sekuler, Allison B.

    2012-01-01

    Previous research suggests that visual attention can be allocated to locations in space (space-based attention) and to objects (object-based attention). The cueing effects associated with space-based attention tend to be large and are found consistently across experiments. Object-based attention effects, however, are small and found less consistently across experiments. In three experiments we address the possibility that variability in object-based attention effects across studies reflects low incidence of such effects at the level of individual subjects. Experiment 1 measured space-based and object-based cueing effects for horizontal and vertical rectangles in 60 subjects comparing commonly used target detection and discrimination tasks. In Experiment 2 we ran another 120 subjects in a target discrimination task in which rectangle orientation varied between subjects. Using parametric statistical methods, we found object-based effects only for horizontal rectangles. Bootstrapping methods were used to measure effects in individual subjects. Significant space-based cueing effects were found in nearly all subjects in both experiments, across tasks and rectangle orientations. However, only a small number of subjects exhibited significant object-based cueing effects. Experiment 3 measured only object-based attention effects using another common paradigm and again, using bootstrapping, we found only a small number of subjects that exhibited significant object-based cueing effects. Our results show that object-based effects are more prevalent for horizontal rectangles, which is in accordance with the theory that attention may be allocated more easily along the horizontal meridian. The fact that so few individuals exhibit a significant object-based cueing effect presumably is why previous studies of this effect might have yielded inconsistent results. The results from the current study highlight the importance of considering individual subject data in addition to commonly used statistical methods. PMID:22348018

  19. Multi-segment foot landing kinematics in subjects with chronic ankle instability.

    PubMed

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip

    2015-07-01

    Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Are normally sighted, visually impaired, and blind pedestrians accurate and reliable at making street crossing decisions?

    PubMed

    Hassan, Shirin E

    2012-05-04

    The purpose of this study is to measure the accuracy and reliability of normally sighted, visually impaired, and blind pedestrians at making street crossing decisions using visual and/or auditory information. Using a 5-point rating scale, safety ratings for vehicular gaps of different durations were measured along a two-lane street of one-way traffic without a traffic signal. Safety ratings were collected from 12 normally sighted, 10 visually impaired, and 10 blind subjects for eight different gap times under three sensory conditions: (1) visual plus auditory information, (2) visual information only, and (3) auditory information only. Accuracy and reliability in street crossing decision-making were calculated for each subject under each sensory condition. We found that normally sighted and visually impaired pedestrians were accurate and reliable in their street crossing decision-making ability when using either vision plus hearing or vision only (P > 0.05). Under the hearing only condition, all subjects were reliable (P > 0.05) but inaccurate with their street crossing decisions (P < 0.05). Compared to either the normally sighted (P = 0.018) or visually impaired subjects (P = 0.019), blind subjects were the least accurate with their street crossing decisions under the hearing only condition. Our data suggested that visually impaired pedestrians can make accurate and reliable street crossing decisions like those of normally sighted pedestrians. When using auditory information only, all subjects significantly overestimated the vehicular gap time. Our finding that blind pedestrians performed significantly worse than either the normally sighted or visually impaired subjects under the hearing only condition suggested that they may benefit from training to improve their detection ability and/or interpretation of vehicular gap times.

  1. Are Normally Sighted, Visually Impaired, and Blind Pedestrians Accurate and Reliable at Making Street Crossing Decisions?

    PubMed Central

    Hassan, Shirin E.

    2012-01-01

    Purpose. The purpose of this study is to measure the accuracy and reliability of normally sighted, visually impaired, and blind pedestrians at making street crossing decisions using visual and/or auditory information. Methods. Using a 5-point rating scale, safety ratings for vehicular gaps of different durations were measured along a two-lane street of one-way traffic without a traffic signal. Safety ratings were collected from 12 normally sighted, 10 visually impaired, and 10 blind subjects for eight different gap times under three sensory conditions: (1) visual plus auditory information, (2) visual information only, and (3) auditory information only. Accuracy and reliability in street crossing decision-making were calculated for each subject under each sensory condition. Results. We found that normally sighted and visually impaired pedestrians were accurate and reliable in their street crossing decision-making ability when using either vision plus hearing or vision only (P > 0.05). Under the hearing only condition, all subjects were reliable (P > 0.05) but inaccurate with their street crossing decisions (P < 0.05). Compared to either the normally sighted (P = 0.018) or visually impaired subjects (P = 0.019), blind subjects were the least accurate with their street crossing decisions under the hearing only condition. Conclusions. Our data suggested that visually impaired pedestrians can make accurate and reliable street crossing decisions like those of normally sighted pedestrians. When using auditory information only, all subjects significantly overestimated the vehicular gap time. Our finding that blind pedestrians performed significantly worse than either the normally sighted or visually impaired subjects under the hearing only condition suggested that they may benefit from training to improve their detection ability and/or interpretation of vehicular gap times. PMID:22427593

  2. Simulator certification methods and the vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.

    1981-01-01

    The vertical motion simulator (VMS) is designed to simulate a variety of experimental helicopter and STOL/VTOL aircraft as well as other kinds of aircraft with special pitch and Z axis characteristics. The VMS includes a large motion base with extensive vertical and lateral travel capabilities, a computer generated image visual system, and a high speed CDC 7600 computer system, which performs aero model calculations. Guidelines on how to measure and evaluate VMS performance were developed. A survey of simulation users was conducted to ascertain they evaluated and certified simulators for use. The results are presented.

  3. Seeing big things: overestimation of heights is greater for real objects than for objects in pictures

    NASA Technical Reports Server (NTRS)

    Yang, T. L.; Dixon, M. W.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1999-01-01

    In six experiments we demonstrate that the vertical-horizontal illusion that is evoked when viewing photographs and line drawings is relatively small, whereas the magnitude of this illusion when large objects are viewed is at least twice as great. Furthermore, we show that the illusion is due more to vertical overestimation than horizontal underestimation. The lack of a difference in vertical overestimation between pictures and line drawings suggests that vertical overestimation in pictures depends solely on the perceived physical size of the projection on the picture surface, rather than on what is apparent about an object's represented size. The vertical-horizontal illusion is influenced by perceived physical size. It is greater when viewing large objects than small pictures of these same objects, even when visual angles are equated.

  4. The role of retinal versus perceived size in the effects of pitched displays on visually perceived eye level

    NASA Technical Reports Server (NTRS)

    Post, R. B.; Welch, R. B.

    1996-01-01

    Visually perceived eye level (VPEL) was measured while subjects viewed two vertical lines which were either upright or pitched about the horizontal axis. In separate conditions, the display consisted of a relatively large pair of lines viewed at a distance of 1 m, or a display scaled to one third the dimensions and viewed at a distance of either 1 m or 33.3 cm. The small display viewed at 33.3 cm produced a retinal image the same size as that of the large display at 1 m. Pitch of all three displays top-toward and top-away from the observer caused upward and downward VPEL shifts, respectively. These effects were highly similar for the large display and the small display viewed at 33.3 cm (ie equal retinal size), but were significantly smaller for the small display viewed at 1 m. In a second experiment, perceived size of the three displays was measured and found to be highly accurate. The results of the two experiments indicate that the effect of optical pitch on VPEL depends on the retinal image size of stimuli rather than on perceived size.

  5. Response time to colored stimuli in the full visual field

    NASA Technical Reports Server (NTRS)

    Haines, R. F.; Dawson, L. M.; Galvan, T.; Reid, L. M.

    1975-01-01

    Peripheral visual response time was measured in seven dark adapted subjects to the onset of small (45' arc diam), brief (50 msec), colored (blue, yellow, green, red) and white stimuli imaged at 72 locations within their binocular field of view. The blue, yellow, and green stimuli were matched for brightness at about 2.6 sub log 10 units above their absolute light threshold, and they appeared at an unexpected time and location. These data were obtained to provide response time and no-response data for use in various design disciplines involving instrument panel layout. The results indicated that the retina possesses relatively concentric regions within each of which mean response time can be expected to be of approximately the same duration. These regions are centered near the fovea and extend farther horizontally than vertically. Mean foveal response time was fastest for yellow and slowest for blue. Three and one-half percent of the total 56,410 trials presented resulted in no-responses. Regardless of stimulus color, the lowest percentage of no-responses occurred within 30 deg arc from the fovea and the highest within 40 deg to 80 deg arc below the fovea.

  6. Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect.

    PubMed

    Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne

    2015-01-01

    Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields.

  7. Acute Unilateral Vestibular Failure Does Not Cause Spatial Hemineglect

    PubMed Central

    Conrad, Julian; Habs, Maximilian; Brandt, Thomas; Dieterich, Marianne

    2015-01-01

    Objectives Visuo-spatial neglect and vestibular disorders have common clinical findings and involve the same cortical areas. We questioned (1) whether visuo-spatial hemineglect is not only a disorder of spatial attention but may also reflect a disorder of higher cortical vestibular function and (2) whether a vestibular tone imbalance due to an acute peripheral dysfunction can also cause symptoms of neglect or extinction. Therefore, patients with an acute unilateral peripheral vestibular failure (VF) were tested for symptoms of hemineglect. Methods Twenty-eight patients with acute VF were assessed for signs of vestibular deficits and spatial neglect using clinical measures and various common standardized paper-pencil tests. Neglect severity was evaluated further with the Center of Cancellation method. Pathological neglect test scores were correlated with the degree of vestibular dysfunction determined by the subjective visual vertical and caloric testing. Results Three patients showed isolated pathological scores in one or the other neglect test, either ipsilesionally or contralesionally to the VF. None of the patients fulfilled the diagnostic criteria of spatial hemineglect or extinction. Conclusions A vestibular tone imbalance due to unilateral failure of the vestibular endorgan does not cause spatial hemineglect, but evidence indicates it causes mild attentional deficits in both visual hemifields. PMID:26247469

  8. Acute effects of unilateral whole body vibration training on single leg vertical jump height and symmetry in healthy men.

    PubMed

    Shin, Seungho; Lee, Kyeongjin; Song, Changho

    2015-12-01

    [Purpose] The aim of the present study was to investigate the acute effects of unilateral whole body vibration training on height and symmetry of the single leg vertical jump in healthy men. [Subjects] Thirty males with no history of lower limb dysfunction participated in this study. [Methods] The participants were randomly allocated to one of three groups: the unilateral vibratory stimulation group (n=10), bilateral vibratory stimulation group (n=10), and, no vibratory stimulation group (n=10). The subjects in the unilateral and bilateral stimulation groups participated in one session of whole body vibration training at 26 Hz for 3 min. The no vibratory stimulation group subjects underwent the same training for 3 min without whole body vibration. All participants performed the single leg vertical jump for each lower limb, to account for the strong and weak sides. The single leg vertical jump height and symmetry were measured before and after the intervention. [Results] The single leg vertical jump height of the weak lower limb significantly improved in the unilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump height of the strong lower limb significantly improved in the bilateral vibratory stimulation group, but not in the other groups. The single leg vertical jump symmetry significantly improved in the unilateral vibratory stimulation group, but not in the other groups. [Conclusion] Therefore, the present study found that the effects of whole body vibration training were different depending on the type of application. To improve the single leg vertical jump height in the weak lower limbs as well as limb symmetry, unilateral vibratory stimulation might be more desirable.

  9. Using Cascading Style Sheets to Design a Fly-Out Menu with Microsoft Visual Studio

    ERIC Educational Resources Information Center

    Liu, Chang; Downing, Charles

    2010-01-01

    The menu has become an integrated component within nearly all professionally designed websites. This teaching tip presents a no-code way to design either a vertical or a horizontal fly-out menu by using Cascading Style Sheets (CSS) within Microsoft Visual Studio 2008. The approach described in this tip helps students fully understand how to…

  10. Reduced Oblique Effect in Children with Autism Spectrum Disorders (ASD)

    PubMed Central

    Sysoeva, Olga V.; Davletshina, Maria A.; Orekhova, Elena V.; Galuta, Ilia A.; Stroganova, Tatiana A.

    2016-01-01

    People are very precise in the discrimination of a line orientation relative to the cardinal (vertical and horizontal) axes, while their orientation discrimination sensitivity along the oblique axes is less refined. This difference in discrimination sensitivity along cardinal and oblique axes is called the “oblique effect.” Given that the oblique effect is a basic feature of visual processing with an early developmental origin, its investigation in children with Autism Spectrum Disorder (ASD) may shed light on the nature of visual sensory abnormalities frequently reported in this population. We examined line orientation sensitivity along oblique and vertical axes in a sample of 26 boys with ASD (IQ > 68) and 38 typically developing (TD) boys aged 7–15 years, as well as in a subsample of carefully IQ-matched ASD and TD participants. Children were asked to detect the direction of tilt of a high-contrast black-and-white grating relative to vertical (90°) or oblique (45°) templates. The oblique effect was reduced in children with ASD as compared to TD participants, irrespective of their IQ. This reduction was due to poor orientation sensitivity along the vertical axis in ASD children, while their ability to discriminate line orientation along the oblique axis was unaffected. We speculate that this deficit in sensitivity to vertical orientation may reflect disrupted mechanisms of early experience-dependent learning that takes place during the critical period for orientation selectivity. PMID:26834540

  11. Top-down influence on the visual cortex of the blind during sensory substitution

    PubMed Central

    Murphy, Matthew C.; Nau, Amy C.; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S.; Chan, Kevin C.

    2017-01-01

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. PMID:26584776

  12. Global topological dominance in the left hemisphere.

    PubMed

    Wang, Bo; Zhou, Tian Gang; Zhuo, Yan; Chen, Lin

    2007-12-26

    A series of experiments with right-handers demonstrated that the left hemisphere (LH) is reliably and consistently superior to the right hemisphere (RH) for global topological perception. These experiments generalized the topological account of lateralization to different kinds of topological properties (including holes, inside/outside relation, and "presence vs. absence") in comparison with a broad spectrum of geometric properties, including orientation, distance, size, mirror-symmetry, parallelism, collinearity, etc. The stimuli and paradigms used were also designed to prevent subjects from using various nontopological properties in performing the tasks of topological discrimination. Furthermore, task factors commonly considered in the study of hemispheric asymmetry, such as response latency vs. accuracy, vertical vs. horizontal presentation, detection vs. recognition, and simultaneous vs. sequential judgment, were manipulated to not be confounding factors. Moreover, left-handed subjects were tested and showed the right lateralization of topological perception, in the opposite direction of lateralization compared with right-handers. In addition, the functional magnetic resonance imaging measure revealed that only a region in the left temporal gyrus was consistently more activated across subjects in the task of topological discrimination, consistent with the behavioral results. In summary, the global topological dominance in the LH is well supported by the converging evidence from the variety of paradigms and techniques, and it suggests a unified solution to the current major controversies on visual lateralization.

  13. Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue.

    PubMed

    Booth, Ashley J; Elliott, Mark T

    2015-01-01

    The ease of synchronizing movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronizing with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory). Similarly, when synchronizing with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals' ability to synchronize movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centered on a large projection screen. The target dot was surrounded by 2, 8, or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100, or 200 ms. We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14). This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronize movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

  14. Circadian timed episodic-like memory - a bee knows what to do when, and also where.

    PubMed

    Pahl, Mario; Zhu, Hong; Pix, Waltraud; Tautz, Juergen; Zhang, Shaowu

    2007-10-01

    This study investigates how the colour, shape and location of patterns could be memorized within a time frame. Bees were trained to visit two Y-mazes, one of which presented yellow vertical (rewarded) versus horizontal (non-rewarded) gratings at one site in the morning, while another presented blue horizontal (rewarded) versus vertical (non-rewarded) gratings at another site in the afternoon. The bees could perform well in the learning tests and various transfer tests, in which (i) all contextual cues from the learning test were present; (ii) the colour cues of the visual patterns were removed, but the location cue, the orientation of the visual patterns and the temporal cue still existed; (iii) the location cue was removed, but other contextual cues, i.e. the colour and orientation of the visual patterns and the temporal cue still existed; (iv) the location cue and the orientation cue of the visual patterns were removed, but the colour cue and temporal cue still existed; (v) the location cue, and the colour cue of the visual patterns were removed, but the orientation cue and the temporal cue still existed. The results reveal that the honeybee can recall the memory of the correct visual patterns by using spatial and/or temporal information. The relative importance of different contextual cues is compared and discussed. The bees' ability to integrate elements of circadian time, place and visual stimuli is akin to episodic-like memory; we have therefore named this kind of memory circadian timed episodic-like memory.

  15. Longterm visual prognosis in Usher syndrome types 1 and 2.

    PubMed

    Sadeghi, André M; Eriksson, Kristina; Kimberling, William J; Sjöström, Anders; Möller, Claes

    2006-08-01

    To estimate the age at diagnosis of retinitis pigmentosa and to determine visual acuity deterioration, visual field impairment and the frequency of cataracts in Usher syndrome types 1 and 2. We carried out a retrospective study of 328 affected subjects with Usher syndrome types 1 and 2. Study subjects were divided into seven different age groups by decade. Data were analysed using descriptive statistics, general linear model anova and survival analysis. Retinitis pigmentosa was diagnosed significantly earlier in subjects with Usher syndrome type 1 than in those with type 2. Visual acuity was significantly more impaired in affected subjects with Usher syndrome type 1 than in those with type 2 from 50 years of age onwards. Survival analysis revealed a significant difference in visual field loss (

  16. Latitude and longitude vertical disparity

    PubMed Central

    Read, Jenny C. A.; Phillipson, Graeme P.; Glennerster, Andrew

    2010-01-01

    The literature on vertical disparity is complicated by the fact that several different definitions of the term “vertical disparity” are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-longitude disparity. Near the fixation point, these definitions become equivalent, but in general, they have quite different dependences on object distance and binocular eye posture, which have not previously been spelt out. We present analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for non-zero torsion, cyclovergence and vertical misalignments of the eyes. We use these expressions to derive estimates of the latitude and longitude vertical disparity expected at each point in the visual field, averaged over all natural viewing. Finally, we present analytical expressions showing how binocular eye position – gaze direction, convergence, torsion, cyclovergence, and vertical misalignment – can be derived from the vertical disparity field and its derivatives at the fovea. PMID:20055544

  17. Runway Texture and Grid Pattern Effects on Rate-of-Descent Perception

    NASA Technical Reports Server (NTRS)

    Schroeder, J. A.; Dearing, M. G.; Sweet, B. T.; Kaiser, M. K.; Rutkowski, Mike (Technical Monitor)

    2001-01-01

    To date, perceptual errors occur in determining descent rate from a computer-generated image in flight simulation. Pilots tend to touch down twice as hard in simulation than in flight, and more training time is needed in simulation before reaching steady-state performance. Barnes suggested that recognition of range may be the culprit, and he cited that problems such as collimated objects, binocular vision, and poor resolution lead to poor estimation of the velocity vector. Brown's study essentially ruled out that the lack of binocular vision is the problem. Dorfel added specificity to the problem by showing that pilots underestimated range in simulated scenes by 50% when 800 ft from the runway threshold. Palmer and Petitt showed that pilots are able to distinguish between a 1.7 ft/sec and 2.9 ft/sec sink rate when passively observing sink rates in a night scene. Platform motion also plays a role, as previous research has shown that the addition of substantial platform motion improves pilot estimates of vertical velocity and results in simulated touchdown rates more closely resembling flight. This experiment examined how some specific variations in the visual scene properties affect a pilot's perception of sink rate. It extended another experiment that focused on the visual and motion cues necessary for helicopter autorotations. In that experiment, pilots performed steep approaches to a runway. The visual content of the runway and its surroundings varied in two ways: texture and rectangular grid spacing. Four textures, included a no-texture case, were evaluated. Three grid spacings, including a no-grid case, were evaluated. The results showed that pilot better controlled their vertical descent rates when good texture cues were present. No significant differences were found for the grid manipulation. Using those visual scenes a simple psychophysics, experiment was performed. The purpose was to determine if the variations in the visual scenes allowed pilots to better perceive vertical velocity. To determine that answer, pilots passively viewed a particular visual scene in which the vehicle was descending at two different rates. Pilots had to select which of the two rates they thought was the fastest rate. The difference between the two rates changed using a staircase method, depending on whether or not the pilot was correct, until a minimum threshold between the two descent rates was reached. This process was repeated for all of the visual scenes to decide whether or not the visual scenes did allow pilots to perceive vertical velocity better among them. All of the data have yet to be analyzed; however, neither the effects of grid nor texture revealed any statistically significant trends. On further examination of the staircase method employed, a possibility exists that the lack of an evident trend may be due to the exit criterion used during the study. As such, the experiment will be repeated with an improved exit criterion in February. Results of this study will be presented in the submitted paper.

  18. A cross-priming amplification assay coupled with vertical flow visualization for detection of Vibrio parahaemolyticus.

    PubMed

    Xu, Deshun; Wu, Xiaofang; Han, Jiankang; Chen, Liping; Ji, Lei; Yan, Wei; Shen, Yuehua

    2015-12-01

    Vibrio parahaemolyticus is a marine seafood-borne pathogen that causes gastrointestinal disorders in humans. In this study, we developed a cross-priming amplification (CPA) assay coupled with vertical flow (VF) visualization for rapid and sensitive detection of V. parahaemolyticus. This assay correctly detected all target strains (n = 13) and none of the non-target strains (n = 27). Small concentrations of V. parahaemolyticus (1.8 CFU/mL for pure cultures and 18 CFU/g for reconstituted samples) were detected within 1 h. CPA-VF can be applied at a large scale and can be used to detect V. parahaemolyticus strains rapidly in seafood and environmental samples, being especially useful in the field. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The effects of vertical motion on the performance of current meters

    USGS Publications Warehouse

    Thibodeaux, K.G.; Futrell, J. C.

    1987-01-01

    A series of tests to determine the correction coefficients for Price type AA and Price type OAA current meters, when subjected to vertical motion in a towing tank, have been conducted. During these tests, the meters were subjected to vertical travel that ranged from 1.0 to 4.0 ft and vertical rates of travel that ranged from 0.33 to 1.20 ft/sec while being towed through the water at speeds ranging from 0 to 8 ft/sec. The tests show that type AA and type OAA current meters are affected adversely by the rate of vertical motion and the distance of vertical travel. In addition, the tests indicate that when current meters are moved vertically, correction coefficients must be applied to the observed meter velocities to correct for the registration errors that are induced by the vertical motion. The type OAA current meter under-registers and the type AA current meter over-registers in observed meter velocity. These coefficients for the type OAA current meter range from 0.99 to 1.49 and for the type AA current meter range from 0.33 to 1.07. When making current meter measurements from a boat or a cableway, errors in observed current meter velocity will occur when the bobbing of a boat or cableway places the current meter into vertical motion. These errors will be significant when flowing water is < 2 ft/sec and the rate of vertical motion is > 0.3 ft/sec. (Author 's abstract)

  20. Measuring pictorial balance perception at first glance using Japanese calligraphy

    PubMed Central

    Gershoni, Sharon; Hochstein, Shaul

    2011-01-01

    According to art theory, pictorial balance acts to unify picture elements into a cohesive composition. For asymmetrical compositions, balancing elements is thought to be similar to balancing mechanical weights in a framework of symmetry axes. Assessment of preference for balance (APB), based on the symmetry-axes framework suggested in Arnheim R, 1974 Art and Visual Perception: A Psychology of the Creative Eye (Berkeley, CA: University of California Press), successfully matched subject balance ratings of images of geometrical shapes over unlimited viewing time. We now examine pictorial balance perception of Japanese calligraphy during first fixation, isolated from later cognitive processes, comparing APB measures with results from balance-rating and comparison tasks. Results show high between-task correlation, but low correlation with APB. We repeated the rating task, expanding the image set to include five rotations of each image, comparing balance perception of artist and novice participant groups. Rotation has no effect on APB balance computation but dramatically affects balance rating, especially for art experts. We analyze the variety of rotation effects and suggest that, rather than depending on element size and position relative to symmetry axes, first fixation balance processing derives from global processes such as grouping of lines and shapes, object recognition, preference for horizontal and vertical elements, closure, and completion, enhanced by vertical symmetry. PMID:23145242

  1. Vertical T-maze Choice Assay for Arthropod Response to Odorants

    PubMed Central

    Stelinski, Lukasz; Tiwari, Siddharth

    2013-01-01

    Given the economic importance of insects and arachnids as pests of agricultural crops, urban environments or as vectors of plant and human diseases, various technologies are being developed as control tools. A subset of these tools focuses on modifying the behavior of arthropods by attraction or repulsion. Therefore, arthropods are often the focus of behavioral investigations. Various tools have been developed to measure arthropod behavior, including wind tunnels, flight mills, servospheres, and various types of olfactometers. The purpose of these tools is to measure insect or arachnid response to visual or more often olfactory cues. The vertical T-maze oflactometer described here measures choices performed by insects in response to attractants or repellents. It is a high throughput assay device that takes advantage of the positive phototaxis (attraction to light) and negative geotaxis (tendency to walk or fly upward) exhibited by many arthropods. The olfactometer consists of a 30 cm glass tube that is divided in half with a Teflon strip forming a T-maze. Each half serves as an arm of the olfactometer enabling the test subjects to make a choice between two potential odor fields in assays involving attractants. In assays involving repellents, lack of normal response to known attractants can also be measured as a third variable. PMID:23439130

  2. Contrasting vertical and horizontal representations of affect in emotional visual search.

    PubMed

    Damjanovic, Ljubica; Santiago, Julio

    2016-02-01

    Independent lines of evidence suggest that the representation of emotional evaluation recruits both vertical and horizontal spatial mappings. These two spatial mappings differ in their experiential origins and their productivity, and available data suggest that they differ in their saliency. Yet, no study has so far compared their relative strength in an attentional orienting reaction time task that affords the simultaneous manifestation of both types of mapping. Here, we investigated this question using a visual search task with emotional faces. We presented angry and happy face targets and neutral distracter faces in top, bottom, left, and right locations on the computer screen. Conceptual congruency effects were observed along the vertical dimension supporting the 'up = good' metaphor, but not along the horizontal dimension. This asymmetrical processing pattern was observed when faces were presented in a cropped (Experiment 1) and whole (Experiment 2) format. These findings suggest that the 'up = good' metaphor is more salient and readily activated than the 'right = good' metaphor, and that the former outcompetes the latter when the task context affords the simultaneous activation of both mappings.

  3. The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans.

    PubMed

    Nishiike, Suetaka; Okazaki, Suzuyo; Watanabe, Hiroshi; Akizuki, Hironori; Imai, Takao; Uno, Atsuhiko; Kitahara, Tadashi; Horii, Arata; Takeda, Noriaki; Inohara, Hidenori

    2013-01-01

    In this study, we examined the effects of sensory inputs of visual-vestibulosomatosensory conflict induced by virtual reality (VR) on subjective dizziness, posture stability and visual dependency on postural control in humans. Eleven healthy young volunteers were immersed in two different VR conditions. In the control condition, subjects walked voluntarily with the background images of interactive computer graphics proportionally synchronized to their walking pace. In the visual-vestibulosomatosensory conflict condition, subjects kept still, but the background images that subjects experienced in the control condition were presented. The scores of both Graybiel's and Hamilton's criteria, postural instability and Romberg ratio were measured before and after the two conditions. After immersion in the conflict condition, both subjective dizziness and objective postural instability were significantly increased, and Romberg ratio, an index of the visual dependency on postural control, was slightly decreased. These findings suggest that sensory inputs of visual-vestibulosomatosensory conflict induced by VR induced motion sickness, resulting in subjective dizziness and postural instability. They also suggest that adaptation to the conflict condition decreases the contribution of visual inputs to postural control with re-weighing of vestibulosomatosensory inputs. VR may be used as a rehabilitation tool for dizzy patients by its ability to induce sensory re-weighing of postural control.

  4. Visual Orientation in Unfamiliar Gravito-Inertial Environments

    NASA Technical Reports Server (NTRS)

    Oman, Charles M.

    1999-01-01

    The goal of this project is to better understand the process of spatial orientation and navigation in unfamiliar gravito-inertial environments, and ultimately to use this new information to develop effective countermeasures against the orientation and navigation problems experienced by astronauts. How do we know our location, orientation, and motion of our body with respect to the external environment ? On earth, gravity provides a convenient "down" cue. Large body rotations normally occur only in a horizontal plane. In space, the gravitational down cue is absent. When astronauts roll or pitch upside down, they must recognize where things are around them by a process of mental rotation which involves three dimensions, rather than just one. While working in unfamiliar situations they occasionally misinterpret visual cues and experience striking "visual reorientation illusions" (VRIs), in which the walls, ceiling, and floors of the spacecraft exchange subjective identities. VRIs cause disorientation, reaching errors, trigger attacks of space motion sickness, and potentially complicate emergency escape. MIR crewmembers report that 3D relationships between modules - particularly those with different visual verticals - are difficult to visualize, and so navigating through the node that connects them is not instinctive. Crew members learn routes, but their apparent lack of survey knowledge is a concern should fire, power loss, or depressurization limit visibility. Anecdotally, experience in mockups, parabolic flight, neutral buoyancy and virtual reality (VR) simulators helps. However, no techniques have been developed to quantify individual differences in orientation and navigation abilities, or the effectiveness of preflight visual. orientation training. Our understanding of the underlying physiology - for example how our sense of place and orientation is neurally coded in three dimensions in the limbic system of the brain - is incomplete. During the 16 months that this human and animal research project has been underway, we have obtained several results that are not only of basic research interest, but which have practical implications for the architecture and layout of spacecraft interiors and for the development of astronaut spatial orientation training countermeasures.

  5. Recruitment of Occipital Cortex during Sensory Substitution Training Linked to Subjective Experience of Seeing in People with Blindness

    PubMed Central

    Ortiz, Tomás; Poch, Joaquín; Santos, Juan M.; Requena, Carmen; Martínez, Ana M.; Ortiz-Terán, Laura; Turrero, Agustín; Barcia, Juan; Nogales, Ramón; Calvo, Agustín; Martínez, José M.; Córdoba, José L.; Pascual-Leone, Alvaro

    2011-01-01

    Over three months of intensive training with a tactile stimulation device, 18 blind and 10 blindfolded seeing subjects improved in their ability to identify geometric figures by touch. Seven blind subjects spontaneously reported ‘visual qualia’, the subjective sensation of seeing flashes of light congruent with tactile stimuli. In the latter subjects tactile stimulation evoked activation of occipital cortex on electroencephalography (EEG). None of the blind subjects who failed to experience visual qualia, despite identical tactile stimulation training, showed EEG recruitment of occipital cortex. None of the blindfolded seeing humans reported visual-like sensations during tactile stimulation. These findings support the notion that the conscious experience of seeing is linked to the activation of occipital brain regions in people with blindness. Moreover, the findings indicate that provision of visual information can be achieved through non-visual sensory modalities which may help to minimize the disability of blind individuals, affording them some degree of object recognition and navigation aid. PMID:21853098

  6. Duane's retraction syndrome: a retrospective review from Kathmandu, Nepal.

    PubMed

    Shrestha, Gauri Shankar; Sharma, Ananda Kumar

    2012-01-01

      The aim was to study the clinical characteristics of Duane's retraction syndrome (DRS) in Nepalese patients.   Medical records from 52 cases of DRS from May 2003 to April 2010 were retrospectively reviewed for age, gender, laterality and clinical characteristics. Forty-one case records (78.8 per cent) that had complete clinical findings were considered for further evaluation. Examination included visual acuity by Snellen chart, refraction, associated horizontal and vertical strabismus in primary gaze, upshoot and downshoot on attempted adduction, binocular vision assessed with the Worth four-dot test on adopted gaze and stereopsis examined with the Titmus stereo test.   DRS type I was the most common type observed in 73.2 per cent of cases, followed by DRS type II (14.6 per cent) and DRS type III (12.2 per cent). It was more common in female patients (58.5 per cent) than male patients (χ(2) = 4.6, df = 1, p = 0.03). DRS was more common in the left eye (68.3 per cent) than the right eye and unilaterally present in 95.1 per cent of subjects. In primary gaze, orthotropia (41.5 per cent) was more common than exotropia (34.1 per cent) and esotropia (24.4 per cent) and vertical strabismus was present in 24.4 per cent of subjects. Upshoot and downshoot on attempted adduction was seen in 14.6 and 9.8 per cent, respectively. Binocular single vision was present in 68.3 per cent of subjects by Worth four-dot test at near. Stereopsis of 3,000 seconds of arc was present in 9.8 per cent, 100 to 200 seconds of arc in 14.6 per cent and 40 to 60 seconds of arc in 43.9 per cent with the Titmus stereo test.   DRS is more common in female patients and the left eye. DRS type I is the most common type. © 2011 The Authors. Clinical and Experimental Optometry © 2011 Optometrists Association Australia.

  7. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    NASA Astrophysics Data System (ADS)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input analysis shows pilot-induced oscillations on a straight-in approach are less prevalent compared to the optimal algorithm. The augmented turbulence cues increased workload on an offset approach that the pilots deemed more realistic compared to the NASA adaptive algorithm. The takeoff with engine failure showed the least roll activity for the nonlinear algorithm, with the least rudder pedal activity for the optimal algorithm.

  8. More irregular eye shape in low myopia than in emmetropia.

    PubMed

    Tabernero, Juan; Schaeffel, Frank

    2009-09-01

    To improve the description of the peripheral eye shape in myopia and emmetropia by using a new method for continuous measurement of the peripheral refractive state. A scanning photorefractor was designed to record refractive errors in the vertical pupil meridian across the horizontal visual field (up to +/-45 degrees ). The setup consists of a hot mirror that continuously projects the infrared light from a photoretinoscope under different angles of eccentricity into the eye. The movement of the mirror is controlled by using two stepping motors. Refraction in a group of 17 emmetropic subjects and 11 myopic subjects (mean, -4.3 D; SD, 1.7) was measured without spectacle correction. For the analysis of eye shape, the refractive error versus the eccentricity angles was fitted with different polynomials (from second to tenth order). The new setup presents some important advantages over previous techniques: The subject does not have to change gaze during the measurements, and a continuous profile is obtained rather than discrete points. There was a significant difference in the fitting errors between the subjects with myopia and those with emmetropia. Tenth-order polynomials were required in myopic subjects to achieve a quality of fit similar to that in emmetropic subjects fitted with only sixth-order polynomials. Apparently, the peripheral shape of the myopic eye is more "bumpy." A new setup is presented for obtaining continuous peripheral refraction profiles. It was found that the peripheral retinal shape is more irregular even in only moderately myopic eyes, perhaps because the sclera lost some rigidity even at the early stage of myopia.

  9. The dependence of binocular contrast sensitivities on binocular single vision in normal and amblyopic human subjects

    PubMed Central

    Hood, A S; Morrison, J D

    2002-01-01

    We have measured monocular and binocular contrast sensitivities in response to medium to high spatial frequencies of vertical sinusoidal grating patterns in normal subjects, anisometropic amblyopes, strabismic amblyopes and non-amblyopic esotropes. On binocular viewing, contrast sensitivities were slightly but significantly increased in normal subjects, markedly increased in anisometropes and esotropes with anomalous binocular single vision (BSV) and significantly reduced in esotropes and exotropes without BSV. Application of a prismatic correction to the strabismic eye in order to achieve bifoveal stimulation resulted in a significant reduction in contrast sensitivity in esotropes with and without anomalous BSV, in exotropes and in non-amblyopic esotropes. Control experiments in normal subjects with monocular viewing showed that degradative effects of the prism occurred only with high prism powers and at high spatial frequencies, thus establishing that the reduced contrast sensitivities were the consequence of bifoveal stimulation rather than optical degradation. Displacement of the image of the grating pattern by 2 deg in normal subjects and anisometropes by a dichoptic method to simulate a small angle esotropia had no effect on the contrast sensitivities recorded through the companion eye. By contrast, esotropes showed similar reductions in contrast sensitivity to those obtained with the prism experiments, confirming a fundamental difference between subjects with normal and abnormal ocular alignments. The results have thus established a suppressive action of the fovea of the amblyopic eye acting on the companion, non-amblyopic eye and indicate that correction of ocular misalignments in adult esotropes may be disadvantageous to binocular visual performance. PMID:11956347

  10. Analysis of an Irregular RC Multi-storeyed Building Subjected to Dynamic Loading

    NASA Astrophysics Data System (ADS)

    AkashRaut; Pachpor, Prabodh; Dautkhani, Sanket

    2018-03-01

    Many buildings in the present scenario have irregular configurations both in plan and elevation. This in future may subject to devastating earthquakes. So it is necessary to analyze the structure. The present paper is made to study three type of irregularity wiz vertical, mass and plan irregularity as per clause 7.1 of IS 1893 (part1)2002 code. The paper discusses the analysis of RC (Reinforced Concrete) Buildings with vertical irregularity. The study as a whole makes an effort to evaluate the effect of vertical irregularity on RC buildings for which comparison of three parameters namely shear force, bending moment and deflection are taken into account.

  11. Wind tunnel investigation of vortex flows on F/A-18 configuration at subsonic through transonic speed

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    1991-01-01

    A wind tunnel experiment was conducted in the David Taylor Research Center 7- by 10-Foot Transonic Tunnel of the wing leading-edge extension (LEX) and forebody vortex flows at subsonic and transonic speeds about a 0.06-scale model of the F/A-18. The primary goal was to improve the understanding and control of the vortical flows, including the phenomena of vortex breakdown and vortex interactions with the vertical tails. Laser vapor screen flow visualizations, LEX, and forebody surface static pressures, and six-component forces and moments were obtained at angles of attack of 10 to 50 degrees, free-stream Mach numbers of 0.20 to 0.90, and Reynolds numbers based on the wing mean aerodynamic chord of 0.96 x 10(exp 6) to 1.75 x 10(exp 6). The wind tunnel results were correlated with in-flight flow visualizations and handling qualities trends obtained by NASA using an F-18 High-Alpha Research Vehicle (HARV) and by the Navy and McDonnell Douglas on F-18 aircraft with LEX fences added to improve the vertical tail buffet environment. Key issues that were addressed include the sensitivity of the vortical flows to the Reynolds number and Mach number; the reduced vertical tail excitation, and the corresponding flow mechanism, in the presence of the LEX fence; the repeatability of data obtained during high angle-of-attack wind tunnel testing of F-18 models; the effects of particle seeding for flow visualization on the quantitative model measurements; and the interpretation of off-body flow visualizations obtained using different illumination and particle seeding techniques.

  12. Age-related changes in human posture control: Sensory organization tests

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1989-01-01

    Postural control was measured in 214 human subjects ranging in age from 7 to 81 years. Sensory organization tests measured the magnitude of anterior-posterior body sway during six 21 s trials in which visual and somatosensory orientation cues were altered (by rotating the visual surround and support surface in proportion to the subject's sway) or vision eliminated (eyes closed) in various combinations. No age-related increase in postural sway was found for subjects standing on a fixed support surface with eyes open or closed. However, age-related increases in sway were found for conditions involving altered visual or somatosensory cues. Subjects older than about 55 years showed the largest sway increases. Subjects younger than about 15 years were also sensitive to alteration of sensory cues. On average, the older subjects were more affected by altered visual cues whereas younger subjects had more difficulty with altered somatosensory cues.

  13. Kinetic analysis of downward step posture according to the foothold heights and visual information blockage in cargo truck

    PubMed Central

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2018-01-01

    The study was undertaken to compare and analyze kinetic variables during downward foot-on according to the foothold heights under interrupted-visual information on 25-t cargo truck. Skilled adult male drivers (n=10) engaged in cargo truck driving over 1 year participated in the experiment. The results obtained from cinematographic and ground reaction force data during downward foot-on as follows; First, leg stiffness, peak vertical force (PVF) and loading rate showed significant difference as an increase of foothold heights, that is, interrupted-visual information showed greater impulse force than as was not. Second, variables of center of pressure (COP) with interrupted-visual information did not showed difference, but anterior-posterior COP and COP area showed an increasing tendency as an increase of foothold heights. Third, dynamic posture stability index (overall, medial-lateral, anterior-posterior, and vertical) showed significant difference as an increase of foothold height, that is, interrupted-visual information showed lower index than as was not. Therefore it will be possible to control successfully the leg stiffness, loading rate, and PVF when preparing an estimate for air phase time and impulse force through habitual cognition and confirmation at landing during downward foot-on from cargo truck. Identifying these potential differences may enable clinicians to assess type of injury and design exercise rehabilitation protocols specific. PMID:29740569

  14. The impact of modality and working memory capacity on achievement in a multimedia environment

    NASA Astrophysics Data System (ADS)

    Stromfors, Charlotte M.

    This study explored the impact of working memory capacity and student learning in a dual modality, multimedia environment titled Visualizing Topography. This computer-based instructional program focused on the basic skills in reading and interpreting topographic maps. Two versions of the program presented the same instructional content but varied the modality of verbal information: the audio-visual condition coordinated topographic maps and narration; the visual-visual condition provided the same topographic maps with readable text. An analysis of covariance procedure was conducted to evaluate the effects due to the two conditions in relation to working memory capacity, controlling for individual differences in spatial visualization and prior knowledge. The scores on the Figural Intersection Test were used to separate subjects into three levels in terms of their measured working memory capacity: low, medium, and high. Subjects accessed Visualizing Topography by way of the Internet and proceeded independently through the program. The program architecture was linear in format. Subjects had a minimum amount of flexibility within each of five segments, but not between segments. One hundred and fifty-one subjects were randomly assigned to either the audio-visual or the visual-visual condition. The average time spent in the program was thirty-one minutes. The results of the ANCOVA revealed a small to moderate modality effect favoring an audio-visual condition. The results also showed that subjects with low and medium working capacity benefited more from the audio-visual condition than the visual-visual condition, while subjects with a high working memory capacity did not benefit from either condition. Although splitting the data reduced group sizes, ANCOVA results by gender suggested that the audio-visual condition favored females with low working memory capacities. The results have implications for designers of educational software, the teachers who select software, and the students themselves. Splitting information into two, non-redundant sources, one audio and one visual, may effectively extend working memory capacity. This is especially significant for the student population encountering difficult science concepts that require the formation and manipulation of mental representations. It is recommended that multimedia environments be designed or selected with attention to modality conditions that facilitate student learning.

  15. Effects of VDT workstation lighting conditions on operator visual workload.

    PubMed

    Lin, Chiuhsiang Joe; Feng, Wen-Yang; Chao, Chin-Jung; Tseng, Feng-Yi

    2008-04-01

    Industrial lighting covers a wide range of different characteristics of working interiors and work tasks. This study investigated the effects of illumination on visual workload in visual display terminal (VDT) workstation. Ten college students (5 males and 5 females) were recruited as participants to perform VDT signal detection tasks. A randomized block design was utilized with four light colors (red, blue, green and white), two ambient illumination levels (20 lux and 340 lux), with the subject as the block. The dependent variables were the change of critical fusion frequency (CFF), visual acuity, reaction time of targets detection, error rates, and rating scores in a subjective questionnaire. The study results showed that both visual acuity and the subjective visual fatigue were significantly affected by the color of light. The illumination had significant effect on CFF threshold change and reaction time. Subjects prefer to perform VDT task under blue and white lights than green and red. Based on these findings, the study discusses and suggests ways of color lighting and ambient illumination to promote operators' visual performance and prevent visual fatigue effectively.

  16. Left Gastric Vein Visualization with Hepatopetal Flow Information in Healthy Subjects Using Non-Contrast-Enhanced Magnetic Resonance Angiography with Balanced Steady-State Free-Precession Sequence and Time-Spatial Labeling Inversion Pulse.

    PubMed

    Furuta, Akihiro; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Ono, Ayako; Yamashita, Rikiya; Arizono, Shigeki; Kido, Aki; Sakashita, Naotaka; Togashi, Kaori

    2018-01-01

    To selectively visualize the left gastric vein (LGV) with hepatopetal flow information by non-contrast-enhanced magnetic resonance angiography under a hypothesis that change in the LGV flow direction can predict the development of esophageal varices; and to optimize the acquisition protocol in healthy subjects. Respiratory-gated three-dimensional balanced steady-state free-precession scans were conducted on 31 healthy subjects using two methods (A and B) for visualizing the LGV with hepatopetal flow. In method A, two time-spatial labeling inversion pulses (Time-SLIP) were placed on the whole abdomen and the area from the gastric fornix to the upper body, excluding the LGV area. In method B, nonselective inversion recovery pulse was used and one Time-SLIP was placed on the esophagogastric junction. The detectability and consistency of LGV were evaluated using the two methods and ultrasonography (US). Left gastric veins by method A, B, and US were detected in 30 (97%), 24 (77%), and 23 (74%) subjects, respectively. LGV flow by US was hepatopetal in 22 subjects and stagnant in one subject. All hepatopetal LGVs by US coincided with the visualized vessels in both methods. One subject with non-visualized LGV in method A showed stagnant LGV by US. Hepatopetal LGV could be selectively visualized by method A in healthy subjects.

  17. Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.

    PubMed

    Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian

    2016-02-06

    It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.

  18. A Comparative Study of Autistic Subjects' Performance at Two Levels of Visual and Cognitive Perspective Taking.

    ERIC Educational Resources Information Center

    Reed, Taffy; Peterson, Candida

    1990-01-01

    This study found that 13 autistic subjects performed less well on cognitive than on visual perspective-taking tasks at two levels of difficulty. Autistic subjects performed as well as 13 intellectually handicapped controls and 13 normal controls on visual perspective-taking tasks but more poorly than controls on cognitive perspective-taking tasks.…

  19. Visual flow scene effects on the somatogravic illusion in non-pilots.

    PubMed

    Eriksson, Lars; von Hofsten, Claes; Tribukait, Arne; Eiken, Ola; Andersson, Peter; Hedström, Johan

    2008-09-01

    The somatogravic illusion (SGI) is easily broken when the pilot looks out the aircraft window during daylight flight, but it has proven difficult to break or even reduce the SGI in non-pilots in simulators using synthetic visual scenes. Could visual-flow scenes that accommodate compensatory head movement reduce the SGI in naive subjects? We investigated the effects of visual cues on the SGI induced by a human centrifuge. The subject was equipped with a head-tracked, head-mounted display (HMD) and was seated in a fixed gondola facing the center of rotation. The angular velocity of the centrifuge increased from near zero until a 0.57-G centripetal acceleration was attained, resulting in a tilt of the gravitoinertial force vector, corresponding to a pitch-up of 30 degrees. The subject indicated perceived horizontal continuously by means of a manual adjustable-plate system. We performed two experiments with within-subjects designs. In Experiment 1, the subjects (N = 13) viewed a darkened HMD and a presentation of simple visual flow beneath a horizon. In Experiment 2, the subjects (N = 12) viewed a darkened HMD, a scene including symbology superimposed on simple visual flow and horizon, and this scene without visual flow (static). In Experiment 1, visual flow reduced the SGI from 12.4 +/- 1.4 degrees (mean +/- SE) to 8.7 +/- 1.5 degrees. In Experiment 2, the SGI was smaller in the visual flow condition (9.3 +/- 1.8 degrees) than with the static scene (13.3 +/- 1.7 degrees) and without HMD presentation (14.5 +/- 2.3 degrees), respectively. It is possible to reduce the SGI in non-pilots by means of a synthetic horizon and simple visual flow conveyed by a head-tracked HMD. This may reflect the power of a more intuitive display for reducing the SGI.

  20. Task-specific reorganization of the auditory cortex in deaf humans

    PubMed Central

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-01

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior–lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain. PMID:28069964

  1. Top-down influence on the visual cortex of the blind during sensory substitution.

    PubMed

    Murphy, Matthew C; Nau, Amy C; Fisher, Christopher; Kim, Seong-Gi; Schuman, Joel S; Chan, Kevin C

    2016-01-15

    Visual sensory substitution devices provide a non-surgical and flexible approach to vision rehabilitation in the blind. These devices convert images taken by a camera into cross-modal sensory signals that are presented as a surrogate for direct visual input. While previous work has demonstrated that the visual cortex of blind subjects is recruited during sensory substitution, the cognitive basis of this activation remains incompletely understood. To test the hypothesis that top-down input provides a significant contribution to this activation, we performed functional MRI scanning in 11 blind (7 acquired and 4 congenital) and 11 sighted subjects under two conditions: passive listening of image-encoded soundscapes before sensory substitution training and active interpretation of the same auditory sensory substitution signals after a 10-minute training session. We found that the modulation of visual cortex activity due to active interpretation was significantly stronger in the blind over sighted subjects. In addition, congenitally blind subjects showed stronger task-induced modulation in the visual cortex than acquired blind subjects. In a parallel experiment, we scanned 18 blind (11 acquired and 7 congenital) and 18 sighted subjects at rest to investigate alterations in functional connectivity due to visual deprivation. The results demonstrated that visual cortex connectivity of the blind shifted away from sensory networks and toward known areas of top-down input. Taken together, our data support the model of the brain, including the visual system, as a highly flexible task-based and not sensory-based machine. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Task-specific reorganization of the auditory cortex in deaf humans.

    PubMed

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  3. The schemes and methods for producing of the visual security features used in the color hologram stereography

    NASA Astrophysics Data System (ADS)

    Lushnikov, D. S.; Zherdev, A. Y.; Odinokov, S. B.; Markin, V. V.; Smirnov, A. V.

    2017-05-01

    Visual security elements used in color holographic stereograms - three-dimensional colored security holograms - and methods their production is describes in this article. These visual security elements include color micro text, color-hidden image, the horizontal and vertical flip - flop effects by change color and image. The article also presents variants of optical systems that allow record the visual security elements as part of the holographic stereograms. The methods for solving of the optical problems arising in the recording visual security elements are presented. Also noted perception features of visual security elements for verification of security holograms by using these elements. The work was partially funded under the Agreement with the RF Ministry of Education and Science № 14.577.21.0197, grant RFMEFI57715X0197.

  4. Mathematical visualization process of junior high school students in solving a contextual problem based on cognitive style

    NASA Astrophysics Data System (ADS)

    Utomo, Edy Setiyo; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    The aim of this research was to describe the mathematical visualization process of Junior High School students in solving contextual problems based on cognitive style. Mathematical visualization process in this research was seen from aspects of image generation, image inspection, image scanning, and image transformation. The research subject was the students in the eighth grade based on GEFT test (Group Embedded Figures Test) adopted from Within to determining the category of cognitive style owned by the students namely field independent or field dependent and communicative. The data collection was through visualization test in contextual problem and interview. The validity was seen through time triangulation. The data analysis referred to the aspect of mathematical visualization through steps of categorization, reduction, discussion, and conclusion. The results showed that field-independent and field-dependent subjects were difference in responding to contextual problems. The field-independent subject presented in the form of 2D and 3D, while the field-dependent subject presented in the form of 3D. Both of the subjects had different perception to see the swimming pool. The field-independent subject saw from the top, while the field-dependent subject from the side. The field-independent subject chose to use partition-object strategy, while the field-dependent subject chose to use general-object strategy. Both the subjects did transformation in an object rotation to get the solution. This research is reference to mathematical curriculum developers of Junior High School in Indonesia. Besides, teacher could develop the students' mathematical visualization by using technology media or software, such as geogebra, portable cabri in learning.

  5. Predicting individual contrast sensitivity functions from acuity and letter contrast sensitivity measurements

    PubMed Central

    Thurman, Steven M.; Davey, Pinakin Gunvant; McCray, Kaydee Lynn; Paronian, Violeta; Seitz, Aaron R.

    2016-01-01

    Contrast sensitivity (CS) is widely used as a measure of visual function in both basic research and clinical evaluation. There is conflicting evidence on the extent to which measuring the full contrast sensitivity function (CSF) offers more functionally relevant information than a single measurement from an optotype CS test, such as the Pelli–Robson chart. Here we examine the relationship between functional CSF parameters and other measures of visual function, and establish a framework for predicting individual CSFs with effectively a zero-parameter model that shifts a standard-shaped template CSF horizontally and vertically according to independent measurements of high contrast acuity and letter CS, respectively. This method was evaluated for three different CSF tests: a chart test (CSV-1000), a computerized sine-wave test (M&S Sine Test), and a recently developed adaptive test (quick CSF). Subjects were 43 individuals with healthy vision or impairment too mild to be considered low vision (acuity range of −0.3 to 0.34 logMAR). While each test demands a slightly different normative template, results show that individual subject CSFs can be predicted with roughly the same precision as test–retest repeatability, confirming that individuals predominantly differ in terms of peak CS and peak spatial frequency. In fact, these parameters were sufficiently related to empirical measurements of acuity and letter CS to permit accurate estimation of the entire CSF of any individual with a deterministic model (zero free parameters). These results demonstrate that in many cases, measuring the full CSF may provide little additional information beyond letter acuity and contrast sensitivity. PMID:28006065

  6. Computer animations of color markings reveal the function of visual threat signals in Neolamprologus pulcher

    PubMed Central

    Taborsky, Michael; Villa, Fabienne; Frommen, Joachim G.

    2017-01-01

    Abstract Visual signals, including changes in coloration and color patterns, are frequently used by animals to convey information. During contests, body coloration and its changes can be used to assess an opponent’s state or motivation. Communication of aggressive propensity is particularly important in group‐living animals with a stable dominance hierarchy, as the outcome of aggressive interactions determines the social rank of group members. Neolamprologus pulcher is a cooperatively breeding cichlid showing frequent within-group aggression. Both sexes exhibit two vertical black stripes on the operculum that vary naturally in shape and darkness. During frontal threat displays these patterns are actively exposed to the opponent, suggesting a signaling function. To investigate the role of operculum stripes during contests we manipulated their darkness in computer animated pictures of the fish. We recorded the responses in behavior and stripe darkness of test subjects to which these animated pictures were presented. Individuals with initially darker stripes were more aggressive against the animations and showed more operculum threat displays. Operculum stripes of test subjects became darker after exposure to an animation exhibiting a pale operculum than after exposure to a dark operculum animation, highlighting the role of the darkness of this color pattern in opponent assessment. We conclude that (i) the black stripes on the operculum of N. pulcher are a reliable signal of aggression and dominance, (ii) these markings play an important role in opponent assessment, and (iii) 2D computer animations are well suited to elicit biologically meaningful short-term aggressive responses in this widely used model system of social evolution. PMID:29491962

  7. In-Flight Study of Helmet-Mounted Symbology System Concepts in Degraded Visual Environments.

    PubMed

    Cheung, Bob; Craig, Gregory; Steels, Brad; Sceviour, Robert; Cosman, Vaughn; Jennings, Sion; Holst, Peter

    2015-08-01

    During approach and departure in rotary wing aircraft, a sudden loss of external visual reference precipitates spatial disorientation. There were 10 Royal Canadian Air Force (RCAF) Griffon pilots who participated in an in-flight investigation of a 3-dimensional conformal Helmet Display Tracking System (HDTS) and the BrownOut Symbology System (BOSS) aboard an Advanced System Research Aircraft. For each symbology system, pilots performed a two-stage departure followed by a single-stage approach. The presentation order of the two symbology systems was randomized across the pilots. Subjective measurements included situation awareness, mental effort, perceived performance, perceptual cue rating, NASA Task Load Index, and physiological response. Objective performance included aircraft speed, altitude, attitude, and distance from the landing point, control position, and control activity. Repeated measures analysis of variance and planned comparison tests for the subjective and objective responses were performed. For both maneuvers, the HDTS system afforded better situation awareness, lower workload, better perceptual cueing in attitude, horizontal and vertical translation, and lower overall workload index. During the two-stage departure, HDTS achieved less lateral drift from initial takeoff and hover, lower root mean square error (RMSE) in altitude during hover, and lower track error during the acceleration to forward flight. During the single-stage approach, HDTS achieved less error in lateral and longitudinal position offset from the landing point and lower RMSE in heading. In both maneuvers, pilots exhibited higher control activity when using HDTS, which suggested that more pertinent information was available to the pilots. Pilots preferred the HDTS system.

  8. Computer animations of color markings reveal the function of visual threat signals in Neolamprologus pulcher.

    PubMed

    Balzarini, Valentina; Taborsky, Michael; Villa, Fabienne; Frommen, Joachim G

    2017-02-01

    Visual signals, including changes in coloration and color patterns, are frequently used by animals to convey information. During contests, body coloration and its changes can be used to assess an opponent's state or motivation. Communication of aggressive propensity is particularly important in group-living animals with a stable dominance hierarchy, as the outcome of aggressive interactions determines the social rank of group members. Neolamprologus pulcher is a cooperatively breeding cichlid showing frequent within-group aggression. Both sexes exhibit two vertical black stripes on the operculum that vary naturally in shape and darkness. During frontal threat displays these patterns are actively exposed to the opponent, suggesting a signaling function. To investigate the role of operculum stripes during contests we manipulated their darkness in computer animated pictures of the fish. We recorded the responses in behavior and stripe darkness of test subjects to which these animated pictures were presented. Individuals with initially darker stripes were more aggressive against the animations and showed more operculum threat displays. Operculum stripes of test subjects became darker after exposure to an animation exhibiting a pale operculum than after exposure to a dark operculum animation, highlighting the role of the darkness of this color pattern in opponent assessment. We conclude that (i) the black stripes on the operculum of N. pulcher are a reliable signal of aggression and dominance, (ii) these markings play an important role in opponent assessment, and (iii) 2D computer animations are well suited to elicit biologically meaningful short-term aggressive responses in this widely used model system of social evolution.

  9. Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction.

    PubMed

    Tabernero, Juan; Vazquez, Daniel; Seidemann, Anne; Uttenweiler, Dietmar; Schaeffel, Frank

    2009-08-01

    The recent observation that central refractive development might be controlled by the refractive errors in the periphery, also in primates, revived the interest in the peripheral optics of the eye. We optimized an eccentric photorefractor to measure the peripheral refractive error in the vertical pupil meridian over the horizontal visual field (from -45 degrees to 45 degrees ), with and without myopic spectacle correction. Furthermore, a newly designed radial refractive gradient lens (RRG lens) that induces increasing myopia in all radial directions from the center was tested. We found that for the geometry of our measurement setup conventional spectacles induced significant relative hyperopia in the periphery, although its magnitude varied greatly among different spectacle designs and subjects. In contrast, the newly designed RRG lens induced relative peripheral myopia. These results are of interest to analyze the effect that different optical corrections might have on the emmetropization process.

  10. Angular relation of axes in perceptual space

    NASA Technical Reports Server (NTRS)

    Bucher, Urs

    1992-01-01

    The geometry of perceptual space needs to be known to model spatial orientation constancy or to create virtual environments. To examine one main aspect of this geometry, the angular relation between the three spatial axes was measured. Experiments were performed consisting of a perceptual task in which subjects were asked to set independently their apparent vertical and horizontal plane. The visual background provided no other stimuli to serve as optical direction cues. The task was performed in a number of different body tilt positions with pitches and rolls varied in steps of 30 degs. The results clearly show the distortion of orthogonality of the perceptual space for nonupright body positions. Large interindividual differences were found. Deviations from orthogonality up to 25 deg were detected in the pitch as well as in the roll direction. Implications of this nonorthogonality on further studies of spatial perception and on the construction of virtual environments for human interaction is also discussed.

  11. ARC-2008-ACD08-0157-005

    NASA Image and Video Library

    2008-07-28

    NASA AA - Associate Administrator for Aeronautics Jai Shin visits Ames Research Center and tours the Vertical Motion Simulator (VMS, T-cab) Jaiwon Shin, Moffett Field Hangar 1 shows in the VMS visual scene.

  12. Effects of Visual Feedback Distortion on Gait Adaptation: Comparison of Implicit Visual Distortion Versus Conscious Modulation on Retention of Motor Learning.

    PubMed

    Kim, Seung-Jae; Ogilvie, Mitchell; Shimabukuro, Nathan; Stewart, Trevor; Shin, Joon-Ho

    2015-09-01

    Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects' spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.

  13. Comparison of Congruence Judgment and Auditory Localization Tasks for Assessing the Spatial Limits of Visual Capture

    PubMed Central

    Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.

    2016-01-01

    Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630

  14. Wind Tunnel Investigation of the Effects of Surface Porosity and Vertical Tail Placement on Slender Wing Vortex Flow Aerodynamics at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2007-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity and vertical tail placement on vortex flow development and interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used that featured pressure sensitive paint (PSP), laser vapor screen (LVS), and schlieren, These techniques were combined with conventional electronically-scanned pressure (ESP) and six-component force and moment measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading edge extension (LEX) and the placement of centerline and twin vertical tails on the vortex-dominated flow field of a 65 cropped delta wing model. Test results were obtained at free-stream Mach numbers of 1.6, 1.8, and 2.1 and a Reynolds number per foot of 2.0 million. LEX porosity promoted a wing vortex-dominated flow field as a result of a diffusion and weakening of the LEX vortex. The redistribution of the vortex-induced suction pressures contributed to large nose-down pitching moment increments but did not significantly affect the vortex-induced lift. The trends associated with LEX porosity were unaffected by vertical tail placement. The centerline tail configuration generally provided more stable rolling moments and yawing moments compared to the twin wing-mounted vertical tails. The strength of a complex system of shock waves between the twin tails was reduced by LEX porosity.

  15. Cross-orientation suppression in human visual cortex

    PubMed Central

    Heeger, David J.

    2011-01-01

    Cross-orientation suppression was measured in human primary visual cortex (V1) to test the normalization model. Subjects viewed vertical target gratings (of varying contrasts) with or without a superimposed horizontal mask grating (fixed contrast). We used functional magnetic resonance imaging (fMRI) to measure the activity in each of several hypothetical channels (corresponding to subpopulations of neurons) with different orientation tunings and fit these orientation-selective responses with the normalization model. For the V1 channel maximally tuned to the target orientation, responses increased with target contrast but were suppressed when the horizontal mask was added, evident as a shift in the contrast gain of this channel's responses. For the channel maximally tuned to the mask orientation, a constant baseline response was evoked for all target contrasts when the mask was absent; responses decreased with increasing target contrast when the mask was present. The normalization model provided a good fit to the contrast-response functions with and without the mask. In a control experiment, the target and mask presentations were temporally interleaved, and we found no shift in contrast gain, i.e., no evidence for suppression. We conclude that the normalization model can explain cross-orientation suppression in human visual cortex. The approach adopted here can be applied broadly to infer, simultaneously, the responses of several subpopulations of neurons in the human brain that span particular stimulus or feature spaces, and characterize their interactions. In addition, it allows us to investigate how stimuli are represented by the inferred activity of entire neural populations. PMID:21775720

  16. UAS Well Clear Recovery Against Non-Cooperative Intruders Using Vertical Maneuvers

    NASA Technical Reports Server (NTRS)

    Cone, Andrew C.; Thipphavong, David; Lee, Seung Man; Santiago, Confesor

    2017-01-01

    This paper documents a study that drove the development of a mathematical expression in the detect-and-avoid (DAA) minimum operational performance standards (MOPS) for unmanned aircraft systems (UAS). This equation describes the conditions under which vertical maneuver guidance should be provided during recovery of DAA well clear separation with a non-cooperative VFR aircraft. Although the original hypothesis was that vertical maneuvers for DAA well clear recovery should only be offered when sensor vertical rate errors are small, this paper suggests that UAS climb and descent performance should be considered-in addition to sensor errors for vertical position and vertical rate-when determining whether to offer vertical guidance. A fast-time simulation study involving 108,000 encounters between a UAS and a non-cooperative visual-flight-rules aircraft was conducted. Results are presented showing that, when vertical maneuver guidance for DAA well clear recovery was suppressed, the minimum vertical separation increased by roughly 50 feet (or horizontal separation by 500 to 800 feet). However, the percentage of encounters that had a risk of collision when performing vertical well clear recovery maneuvers was reduced as UAS vertical rate performance increased and sensor vertical rate errors decreased. A class of encounter is identified for which vertical-rate error had a large effect on the efficacy of horizontal maneuvers due to the difficulty of making the correct left/right turn decision: crossing conflict with intruder changing altitude. Overall, these results support logic that would allow vertical maneuvers when UAS vertical performance is sufficient to avoid the intruder, based on the intruder's estimated vertical position and vertical rate, as well as the vertical rate error of the UAS' sensor.

  17. Effects of Retinal Eccentricity on Human Manual Control

    NASA Technical Reports Server (NTRS)

    Popovici, Alexandru; Zaal, Peter M. T.

    2017-01-01

    This study investigated the effects of viewing a primary flight display at different retinal eccentricities on human manual control behavior and performance. Ten participants performed a pitch tracking task while looking at a simplified primary flight display at different horizontal and vertical retinal eccentricities, and with two different controlled dynamics. Tracking performance declined at higher eccentricity angles and participants behaved more nonlinearly. The visual error rate gain increased with eccentricity for single-integrator-like controlled dynamics, but decreased for double-integrator-like dynamics. Participants' visual time delay was up to 100 ms higher at the highest horizontal eccentricity compared to foveal viewing. Overall, vertical eccentricity had a larger impact than horizontal eccentricity on most of the human manual control parameters and performance. Results might be useful in the design of displays and procedures for critical flight conditions such as in an aerodynamic stall.

  18. Flow visualization studies of VTOL aircraft models during Hover in ground effect

    NASA Technical Reports Server (NTRS)

    Mourtos, Nikos J.; Couillaud, Stephane; Carter, Dale; Hange, Craig; Wardwell, Doug; Margason, Richard J.

    1995-01-01

    A flow visualization study of several configurations of a jet-powered vertical takeoff and landing (VTOL) aircraft model during hover in ground effect was conducted. A surface oil flow technique was used to observe the flow patterns on the lower surfaces of the model. There were significant configuration effects. Wing height with respect to fuselage, the presence of an engine inlet duct beside the fuselage, and nozzle pressure ratio are seen to have strong effects on the surface flow angles on the lower surface of the wing. This test was part of a program to improve the methods for predicting the hot gas ingestion (HGI) for jet-powered vertical/short takeoff and landing (V/STOL) aircraft. The tests were performed at the Jet Calibration and Hover Test (JCAHT) Facility at Ames Research Center.

  19. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  20. Cue-induced brain activity in pathological gamblers.

    PubMed

    Crockford, David N; Goodyear, Bradley; Edwards, Jodi; Quickfall, Jeremy; el-Guebaly, Nady

    2005-11-15

    Previous studies using functional magnetic resonance imaging (fMRI) have identified differential brain activity in healthy subjects performing gambling tasks and in pathological gambling (PG) subjects when exposed to motivational and emotional predecessors for gambling as well as during gambling or response inhibition tasks. The goal of the present study was to determine if PG subjects exhibit differential brain activity when exposed to visual gambling cues. Ten male DSM-IV-TR PG subjects and 10 matched healthy control subjects underwent fMRI during visual presentations of gambling-related video alternating with video of nature scenes. Pathological gambling subjects and control subjects exhibited overlap in areas of brain activity in response to the visual gambling cues; however, compared with control subjects, PG subjects exhibited significantly greater activity in the right dorsolateral prefrontal cortex (DLPFC), including the inferior and medial frontal gyri, the right parahippocampal gyrus, and left occipital cortex, including the fusiform gyrus. Pathological gambling subjects also reported a significant increase in mean craving for gambling after the study. Post hoc analyses revealed a dissociation in visual processing stream (dorsal vs. ventral) activation by subject group and cue type. These findings may represent a component of cue-induced craving for gambling or conditioned behavior that could underlie pathological gambling.

  1. Accuracy aspects of stereo side-looking radar. [analysis of its visual perception and binocular vision

    NASA Technical Reports Server (NTRS)

    Leberl, F. W.

    1979-01-01

    The geometry of the radar stereo model and factors affecting visual radar stereo perception are reviewed. Limits to the vertical exaggeration factor of stereo radar are defined. Radar stereo model accuracies are analyzed with respect to coordinate errors caused by errors of radar sensor position and of range, and with respect to errors of coordinate differences, i.e., cross-track distances and height differences.

  2. The influence of visual feedback and register changes on sign language production: A kinematic study with deaf signers

    PubMed Central

    EMMOREY, KAREN; GERTSBERG, NELLY; KORPICS, FRANCO; WRIGHT, CHARLES E.

    2009-01-01

    Speakers monitor their speech output by listening to their own voice. However, signers do not look directly at their hands and cannot see their own face. We investigated the importance of a visual perceptual loop for sign language monitoring by examining whether changes in visual input alter sign production. Deaf signers produced American Sign Language (ASL) signs within a carrier phrase under five conditions: blindfolded, wearing tunnel-vision goggles, normal (citation) signing, shouting, and informal signing. Three-dimensional movement trajectories were obtained using an Optotrak Certus system. Informally produced signs were shorter with less vertical movement. Shouted signs were displaced forward and to the right and were produced within a larger volume of signing space, with greater velocity, greater distance traveled, and a longer duration. Tunnel vision caused signers to produce less movement within the vertical dimension of signing space, but blind and citation signing did not differ significantly on any measure, except duration. Thus, signers do not “sign louder” when they cannot see themselves, but they do alter their sign production when vision is restricted. We hypothesize that visual feedback serves primarily to fine-tune the size of signing space rather than as input to a comprehension-based monitor. PMID:20046943

  3. The influence of visual feedback and register changes on sign language production: A kinematic study with deaf signers.

    PubMed

    Emmorey, Karen; Gertsberg, Nelly; Korpics, Franco; Wright, Charles E

    2009-01-01

    Speakers monitor their speech output by listening to their own voice. However, signers do not look directly at their hands and cannot see their own face. We investigated the importance of a visual perceptual loop for sign language monitoring by examining whether changes in visual input alter sign production. Deaf signers produced American Sign Language (ASL) signs within a carrier phrase under five conditions: blindfolded, wearing tunnel-vision goggles, normal (citation) signing, shouting, and informal signing. Three-dimensional movement trajectories were obtained using an Optotrak Certus system. Informally produced signs were shorter with less vertical movement. Shouted signs were displaced forward and to the right and were produced within a larger volume of signing space, with greater velocity, greater distance traveled, and a longer duration. Tunnel vision caused signers to produce less movement within the vertical dimension of signing space, but blind and citation signing did not differ significantly on any measure, except duration. Thus, signers do not "sign louder" when they cannot see themselves, but they do alter their sign production when vision is restricted. We hypothesize that visual feedback serves primarily to fine-tune the size of signing space rather than as input to a comprehension-based monitor.

  4. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip.

    PubMed

    Cao, Zengguo; Wang, Hualei; Wang, Lina; Li, Ling; Jin, Hongli; Xu, Changping; Feng, Na; Wang, Jianzhong; Li, Qian; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-01-01

    West Nile virus (WNV) causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification method for WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF) was developed to detect the envelope (E) gene of WNV. The RT-LAMP-VF assay could detect 10(2) copies/μl of an WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubation of the amplification product on the visualization strip, and no cross-reaction with other closely related members of the Flavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV. The assay produced sensitivities of 10(1.5) TCID50/ml and 10(1.33) TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.

  5. Visual acuity and refractive errors in a suburban Danish population: Inter99 Eye Study.

    PubMed

    Kessel, Line; Hougaard, Jesper Leth; Mortensen, Claus; Jørgensen, Torben; Lund-Andersen, Henrik; Larsen, Michael

    2004-02-01

    The present study was performed as part of an epidemiological study, the Inter99 Eye Study. The aim of the study was to describe refractive errors and visual acuity (VA) in a suburban Danish population. The Inter99 Eye Study comprised 970 subjects aged 30-60 years and included a random control group as well as groups at high risk for ischaemic heart disease and diabetes mellitus. The present study presents VAs and refractive data from the control group (n = 502). All subjects completed a detailed questionnaire and underwent a standardized general physical and ophthalmic examination including determination of best corrected VA and subjective refractioning. Visual acuity

  6. Characterization of vertical mixing in oscillatory vegetated flows

    NASA Astrophysics Data System (ADS)

    Abdolahpour, M.; Ghisalberti, M.; Lavery, P.; McMahon, K.

    2016-02-01

    Seagrass meadows are primary producers that provide important ecosystem services, such as improved water quality, sediment stabilisation and trapping and recycling of nutrients. Most of these ecological services are strongly influenced by the vertical exchange of water across the canopy-water interface. That is, vertical mixing is the main hydrodynamic process governing the large-scale ecological and environmental impact of seagrass meadows. The majority of studies into mixing in vegetated flows have focused on steady flow environments whereas many coastal canopies are subjected to oscillatory flows driven by surface waves. It is known that the rate of mass transfer will vary greatly between unidirectional and oscillatory flows, necessitating a specific investigation of mixing in oscillatory canopy flows. In this study, we conducted an extensive laboratory investigation to characterise the rate of vertical mixing through a vertical turbulent diffusivity (Dt,z). This has been done through gauging the evolution of vertical profiles of concentration (C) of a dye sheet injected into a wave-canopy flow. Instantaneous measurement of the variance of the vertical concentration distribution ( allowed the estimation of a vertical turbulent diffusivity (). Two types of model canopies, rigid and flexible, with identical heights and frontal areas, were subjected to a wide and realistic range of wave height and period. The results showed two important mechanisms that dominate vertical mixing under different conditions: a shear layer that forms at the top of the canopy and wake turbulence generated by the stems. By allowing a coupled contribution of wake and shear layer mixing, we present a relationship that can be used to predict the rate of vertical mixing in coastal canopies. The results further showed that the rate of vertical mixing within flexible vegetation was always lower than the corresponding rigid canopy, confirming the impact of plant flexibility on canopy-flow interactions.

  7. Integrated evaluation of visually induced motion sickness in terms of autonomic nervous regulation.

    PubMed

    Kiryu, Tohru; Tada, Gen; Toyama, Hiroshi; Iijima, Atsuhiko

    2008-01-01

    To evaluate visually-induced motion sickness, we integrated subjective and objective responses in terms of autonomic nervous regulation. Twenty-seven subjects viewed a 2-min-long first-person-view video section five times (total 10 min) continuously. Measured biosignals, the RR interval, respiration, and blood pressure, were used to estimate the indices related to autonomic nervous activity (ANA). Then we determined the trigger points and some sensation sections based on the time-varying behavior of ANA-related indices. We found that there was a suitable combination of biosignals to present the symptoms of visually-induced motion sickness. Based on the suitable combination, integrating trigger points and subjective scores allowed us to represent the time-distribution of subjective responses during visual exposure, and helps us to understand what types of camera motions will cause visually-induced motion sickness.

  8. Influence of orbital eye position on vertical saccades in progressive supranuclear palsy

    PubMed Central

    Schneider, Rosalyn; Chen, Athena L.; King, Susan A.; Riley, David E.; Gunzler, Steven A.; Devereaux, Michael. W.; Leigh, R. John

    2011-01-01

    Disturbance of vertical saccadesis a cardinal feature of progressive supranuclear palsy (PSP). We investigated whether the amplitude and peak velocity of saccades is affected by the orbital position fromwhich movements start in PSP patients and age-matched control subjects. Subjects made vertical saccades in response to ± 5 degree vertical target jumps with their heads in one of three positions: head “center,” head pitched forward ~15 degrees, and head pitched back ~ 15 degrees.All patients showed some effect of starting eye position, whether beginning in the upward or downward field of gaze, on saccade amplitude, peak velocity (PV), and net range of movement. Generally, reduction of amplitude and PV were commensurate and bidirectional in the affected hemifield of gaze. Such findings are unlikelyto be due to orbital factors and could be explained by varying degrees of involvement of rostral midbrain nucleiin the pathological process. PMID:21950977

  9. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration.

    PubMed

    Akuffo, Kwadwo Owusu; Nolan, John M; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen

    2017-02-01

    To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disability (GD), photostress recovery time (PRT), reading performance and subjective visual function, using the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). MP was measured using customised heterochromatic flicker photometry. Letter CS, mesopic and photopic CS, photopic GD and mean reading speed were each significantly (p<0.05) associated with MP across a range of retinal eccentricities, and these statistically significant relationships persisted after controlling for age, sex and cataract grade. BCVA, NEI VFQ-25 score, PRT and mesopic GD were unrelated to MP after controlling for age, sex and cataract grade (p>0.05, for all). MP relates positively to many measures of visual function in unsupplemented subjects with early AMD. The CREST trial will investigate whether enrichment of MP influences visual function among those afflicted with this condition. ISRCTN13894787. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Stereoscopic visual fatigue assessment and modeling

    NASA Astrophysics Data System (ADS)

    Wang, Danli; Wang, Tingting; Gong, Yue

    2014-03-01

    Evaluation of stereoscopic visual fatigue is one of the focuses in the user experience research. It is measured in either subjective or objective methods. Objective measures are more preferred for their capability to quantify the degree of human visual fatigue without being affected by individual variation. However, little research has been conducted on the integration of objective indicators, or the sensibility of each objective indicator in reflecting subjective fatigue. The paper proposes a simply effective method to evaluate visual fatigue more objectively. The stereoscopic viewing process is divided into series of sessions, after each of which viewers rate their visual fatigue with subjective scores (SS) according to a five-grading scale, followed by tests of the punctum maximum accommodation (PMA) and visual reaction time (VRT). Throughout the entire viewing process, their eye movements are recorded by an infrared camera. The pupil size (PS) and percentage of eyelid closure over the pupil over time (PERCLOS) are extracted from the videos processed by the algorithm. Based on the method, an experiment with 14 subjects was conducted to assess visual fatigue induced by 3D images on polarized 3D display. The experiment consisted of 10 sessions (5min per session), each containing the same 75 images displayed randomly. The results show that PMA, VRT and PERCLOS are the most efficient indicators of subjective visual fatigue and finally a predictive model is derived from the stepwise multiple regressions.

  11. Origins of strabismus and loss of binocular vision

    PubMed Central

    Bui Quoc, Emmanuel; Milleret, Chantal

    2014-01-01

    Strabismus is a frequent ocular disorder that develops early in life in humans. As a general rule, it is characterized by a misalignment of the visual axes which most often appears during the critical period of visual development. However other characteristics of strabismus may vary greatly among subjects, for example, being convergent or divergent, horizontal or vertical, with variable angles of deviation. Binocular vision may also vary greatly. Our main goal here is to develop the idea that such “polymorphy” reflects a wide variety in the possible origins of strabismus. We propose that strabismus must be considered as possibly resulting from abnormal genetic and/or acquired factors, anatomical and/or functional abnormalities, in the sensory and/or the motor systems, both peripherally and/or in the brain itself. We shall particularly develop the possible “central” origins of strabismus. Indeed, we are convinced that it is time now to open this “black box” in order to move forward. All of this will be developed on the basis of both presently available data in literature (including most recent data) and our own experience. Both data in biology and medicine will be referred to. Our conclusions will hopefully help ophthalmologists to better understand strabismus and to develop new therapeutic strategies in the future. Presently, physicians eliminate or limit the negative effects of such pathology both on the development of the visual system and visual perception through the use of optical correction and, in some cases, extraocular muscle surgery. To better circumscribe the problem of the origins of strabismus, including at a cerebral level, may improve its management, in particular with respect to binocular vision, through innovating tools by treating the pathology at the source. PMID:25309358

  12. Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia

    PubMed Central

    Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi

    2013-01-01

    Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297

  13. A noninvasive brain computer interface using visually-induced near-infrared spectroscopy responses.

    PubMed

    Chen, Cheng-Hsuan; Ho, Ming-Shan; Shyu, Kuo-Kai; Hsu, Kou-Cheng; Wang, Kuo-Wei; Lee, Po-Lei

    2014-09-19

    Visually-induced near-infrared spectroscopy (NIRS) response was utilized to design a brain computer interface (BCI) system. Four circular checkerboards driven by distinct flickering sequences were displayed on a LCD screen as visual stimuli to induce subjects' NIRS responses. Each flickering sequence was a concatenated sequence of alternative flickering segments and resting segments. The flickering segment was designed with fixed duration of 3s whereas the resting segment was chosen randomly within 15-20s to create the mutual independencies among different flickering sequences. Six subjects were recruited in this study and subjects were requested to gaze at the four visual stimuli one-after-one in a random order. Since visual responses in human brain are time-locked to the onsets of visual stimuli and the flicker sequences of distinct visual stimuli were designed mutually independent, the NIRS responses induced by user's gazed targets can be discerned from non-gazed targets by applying a simple averaging process. The accuracies for the six subjects were higher than 90% after 10 or more epochs being averaged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Retinal constraints on orientation specificity in cat visual cortex.

    PubMed

    Schall, J D; Vitek, D J; Leventhal, A G

    1986-03-01

    Most retinal ganglion cells (Levick and Thibos, 1982) and cortical cells (Leventhal, 1983; Leventhal et al., 1984) subserving peripheral vision respond best to stimuli that are oriented radially, i.e., like the spokes of a wheel with the area centralis at the hub. We have extended this work by comparing directly the distributions of orientations represented in topographically corresponding regions of retina and visual cortex. Both central and peripheral regions were studied. The relations between the orientations of neighboring ganglion cells and the manner in which the overrepresentation of radial orientations is accommodated in the functional architecture of visual cortex were also studied. Our results are based on an analysis of the orientations of the dendritic fields of 1296 ganglion cells throughout the retina and the preferred orientations of 1389 cells located in retinotopically corresponding regions of cortical areas 17, 18, and 19 in the cat. We find that horizontal and vertical orientations are overrepresented in regions of both retina and visual cortex subserving the central 5 degrees of vision. The distributions of the orientations of retinal ganglion cells and cortical cells subserving the horizontal, vertical, and diagonal meridians outside the area centralis differ significantly. The distribution of the preferred orientations of the S (simple) cells in areas 17, 18 and 19 subserving a given part of the retina corresponds to the distribution of the dendritic field orientations of the ganglion cells in that part of retina. The distribution of the preferred orientations of C (complex) cells with narrow receptive fields in area 17 but not C cells with wide receptive fields in areas 17, 18, or 19 subserving a given part of the retina matches the distribution of the orientations of the ganglion cells in that part of retina. The orientations of all of the alpha-cells in 5-9 mm2 patches of retina along the horizontal, vertical, and oblique meridians were determined. A comparison of the orientations of neighboring cells indicates that other than a mutual tendency to be oriented radially, ganglion cells with similar orientations are not clustered in the retina. Reconstructions of electrode penetrations into regions of visual cortex representing peripheral retina indicate that columns subserving radial orientations are wider than those subserving nonradial orientations. Our results provide evidence that the distribution of the preferred orientations of simple cells in visual cortex subserving any region of the visual field matches the distribution of the orientations of the ganglion cells subserving the same region of the visual field.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Gait adaptability training is affected by visual dependency.

    PubMed

    Brady, Rachel A; Peters, Brian T; Batson, Crystal D; Ploutz-Snyder, Robert; Mulavara, Ajitkumar P; Bloomberg, Jacob J

    2012-07-01

    As part of a larger gait adaptability training study, we designed a program that presented combinations of visual flow and support-surface manipulations to investigate the response of healthy adults to walking on a treadmill in novel discordant sensorimotor conditions. A visual dependence score was determined for each subject, and this score was used to explore how visual dependency was linked to locomotor performance (1) during three training sessions and (2) in a new discordant environment presented at the conclusion of training. Performance measures included reaction time (RT), stride frequency (SF), and heart rate (HR), which respectively served as indicators of cognitive load, postural stability, and anxiety. We hypothesized that training would affect performance measures differently for highly visually dependent individuals than for their less visually dependent counterparts. A seemingly unrelated estimation analysis of RT, SF, and HR revealed a significant omnibus interaction of visual dependency by session (p < 0.001), suggesting that the magnitude of differences in these measures across training day 1 (TD1), training day 3 (TD3), and exposure to a novel test is dependent on subjects' levels of visual dependency. The RT result, in particular, suggested that highly visually dependent subjects successfully trained to one set of sensory discordant conditions but were unable to apply their adapted skills when introduced to a new sensory discordant environment. This finding augments rationale for developing customized gait training programs that are tailored to an individual. It highlights one factor--personal level of visual dependency--to consider when designing training conditions for a subject or patient. Finally, the link between visual dependency and locomotor performance may offer predictive insight regarding which subjects in a normal population will require more training when preparing for specific novel locomotor conditions.

  16. Comparison of optical coherence tomography and fundus photography for measuring the optic disc size.

    PubMed

    Neubauer, Aljoscha S; Krieglstein, Tina R; Chryssafis, Christos; Thiel, Martin; Kampik, Anselm

    2006-01-01

    To assess the agreement and repeatability of optic nerve head (ONH) size measurements by optical coherence tomography (OCT) as compared to conventional planimetry of fundus photographs in normal eyes. For comparison with planimetry the absolute size of the ONH of 25 eyes from 25 normal subjects were measured by both OCT and digital fundus photography (Zeiss FF camera 450). Repeatability of automated Stratus OCT measurements were investigated by repeatedly measuring the optic disc in five normal subjects. Mean disc size was 1763 +/- 186 vertically and 1632 +/- 160 microm horizontally on planimetry. On OCT, values of 1772 +/- 317 microm vertically (p = 0.82) and a significantly smaller horizontal diameter of 1492 +/- 302 microm (p = 0.04) were obtained. The 95% limits of agreement were (-546 microm; +527 microm) for vertical and (-502 microm; +782 microm) for horizontal planimetric compared to OCT measurements. In some cases large discrepancies existed. Repeatability of automatic measurements of the optic disc by OCT was moderately good with intra-class correlation coefficients (ICC) of 0.78 horizontally and 0.83 vertically. The coefficient of repeatability indicating instrument precision was 80 microm for horizontal and 168 microm for vertical measurements. OCT can be used to determine optic disc margins in moderate agreement with planimetry in normal subjects. However, in some cases significant disagreement with photographic assessment may occur making manual inspection advisable. Automatic disc detection by OCT is moderately repeatable.

  17. Influence of hypoglycaemia, with or without caffeine ingestion, on visual sensation and performance.

    PubMed

    Owen, G; Watson, J; McGown, A; Sharma, S; Deary, I; Kerr, D; Barrett, G

    2001-06-01

    Full-field visual evoked potentials and visual information processing were measured in 16 normal, healthy subjects during a hyperinsulinaemic clamp. A randomized cross-over design was used across three conditions: hypoglycaemia and caffeine; hypoglycaemia and placebo; and euglycaemia and caffeine. The latency of the P100 component of the pattern-reversal visual evoked potential increased significantly from rest to hypoglycaemia, but no effect of caffeine was found. Subjects were subsequently divided into two median groups based on the increase in P100 latency in the placebo condition (Group 1, +0.5 ms; Group 2, +5.6 ms). In the absence of caffeine, an inverse correlation between the increase in P100 latency from rest and a deterioration in visual movement detection was found for Group 2, but not for Group 1. Caffeine ingestion resulted in a further increase in P100 latency, from rest to hypoglycaemia, for subjects in Group 2. Hypoglycaemia in the absence of caffeine produces changes in visual sensation from rest to hypoglycaemia. In those subjects most sensitive to the effects of hypoglycaemia (Group 2), the increase in P100 latency was associated with poorer performance in tests of visual information processing. Caffeine ingestion produced further increases in P100 latency in these subjects.

  18. Using auditory-visual speech to probe the basis of noise-impaired consonant-vowel perception in dyslexia and auditory neuropathy

    NASA Astrophysics Data System (ADS)

    Ramirez, Joshua; Mann, Virginia

    2005-08-01

    Both dyslexics and auditory neuropathy (AN) subjects show inferior consonant-vowel (CV) perception in noise, relative to controls. To better understand these impairments, natural acoustic speech stimuli that were masked in speech-shaped noise at various intensities were presented to dyslexic, AN, and control subjects either in isolation or accompanied by visual articulatory cues. AN subjects were expected to benefit from the pairing of visual articulatory cues and auditory CV stimuli, provided that their speech perception impairment reflects a relatively peripheral auditory disorder. Assuming that dyslexia reflects a general impairment of speech processing rather than a disorder of audition, dyslexics were not expected to similarly benefit from an introduction of visual articulatory cues. The results revealed an increased effect of noise masking on the perception of isolated acoustic stimuli by both dyslexic and AN subjects. More importantly, dyslexics showed less effective use of visual articulatory cues in identifying masked speech stimuli and lower visual baseline performance relative to AN subjects and controls. Last, a significant positive correlation was found between reading ability and the ameliorating effect of visual articulatory cues on speech perception in noise. These results suggest that some reading impairments may stem from a central deficit of speech processing.

  19. Secondary visual workload capability with primary visual and kinesthetic-tactual displays

    NASA Technical Reports Server (NTRS)

    Gilson, R. D.; Burke, M. W.; Jagacinski, R. J.

    1978-01-01

    Subjects performed a cross-adaptive tracking task with a visual secondary display and either a visual or a quickened kinesthetic-tactual (K-T) primary display. The quickened K-T display resulted in superior secondary task performance. Comparisons of secondary workload capability with integrated and separated visual displays indicated that the superiority of the quickened K-T display was not simply due to the elimination of visual scanning. When subjects did not have to perform a secondary task, there was no significant difference between visual and quickened K-T displays in performing a critical tracking task.

  20. Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance.

    PubMed

    Telford, L; Seidman, S H; Paige, G D

    1997-10-01

    Horizontal, vertical, and torsional eye movements were recorded using the magnetic search-coil technique during linear accelerations along the interaural (IA) and dorsoventral (DV) head axes. Four squirrel monkeys were translated sinusoidally over a range of frequencies (0.5-4.0 Hz) and amplitudes (0.1-0.7 g peak acceleration). The linear vestibuloocular reflex (LVOR) was recorded in darkness after brief presentations of visual targets at various distances from the subject. With subjects positioned upright or nose-up relative to gravity, IA translations generated conjugate horizontal (IA horizontal) eye movements, whereas DV translations with the head nose-up or right-side down generated conjugate vertical (DV vertical) responses. Both were compensatory for linear head motion and are thus translational LVOR responses. In concert with geometric requirements, both IA-horizontal and DV-vertical response sensitivities (in deg eye rotation/cm head translation) were related linearly to reciprocal fixation distance as measured by vergence (in m-1, or meter-angles, MA). The relationship was characterized by linear regressions, yielding sensitivity slopes (in deg.cm-1.MA-1) and intercepts (sensitivity at 0 vergence). Sensitivity slopes were greatest at 4.0 Hz, but were only slightly more than half the ideal required to maintain fixation. Slopes declined with decreasing frequency, becoming negligible at 0.5 Hz. Small responses were observed when vergence was zero (intercept), although no response is required. Like sensitivity slope, the intercept was largest at 4.0 Hz and declined with decreasing frequency. Phase lead was near zero (compensatory) at 4.0 Hz, but increased as frequency declined. Changes in head orientation, motion axis (IA vs. DV), and acceleration amplitude produced slight and sporadic changes in LVOR parameters. Translational LVOR response characteristics are consistent with high-pass filtering within LVOR pathways. Along with horizontal eye movements, IA translation generated small torsional responses. In contrast to the translational LVORs, IA-torsional responses were not systematically modulated by vergence angle. The IA-torsional LVOR is not compensatory for translation because it cannot maintain image stability. Rather, it likely compensates for the effective head tilt simulated by translation. When analyzed in terms of effective head tilt, torsional responses were greatest at the lowest frequency and declined as frequency increased, consistent with low-pass filtering of otolith input. It is unlikely that IA-torsional responses compensate for actual head tilt, however, because they were similar for both upright and nose-up head orientations. The IA-torsional and -horizontal LVORs seem to respond only to linear acceleration along the IA head axis, and the DV-vertical LVOR to acceleration along the head's DV axis, regardless of gravity.

  1. Detection of Glaucoma and Its Association With Diabetic Retinopathy in a Diabetic Retinopathy Screening Program.

    PubMed

    Gangwani, Rita A; McGhee, Sarah M; Lai, Jimmy S M; Chan, Christina K W; Wong, David

    2016-01-01

    To determine the type of glaucoma in subjects with diabetes mellitus detected during a diabetic retinopathy screening program and to determine any association between diabetic retinopathy (DR) and glaucoma. This is a population-based prospective cross-sectional study, in which subjects with diabetes mellitus underwent screening for DR in a primary care outpatient clinic. Digital fundus photographs were taken and graded for presence/absence and severity of DR. During this grading, those fundus photographs showing increased cup-to-disc ratio (CDR) (≥0.6) were identified and these patients were referred to the specialist ophthalmology clinic for detailed examination. The presence of glaucoma was established based on CDR and abnormal visual field (VF) defects according to Hodapp-Parrish-Anderson's criteria. An elevation of intraocular pressure was not required for the diagnosis of glaucoma. The patients said to have definite glaucoma were those with vertical CDR>/=0.6, glaucomatous defects on VF examination, or retinal nerve fiber thinning if VF was unreliable. Of the 2182 subjects who underwent screening, 81 subjects (3.7%) had increased CDR and 40 subjects (1.8%) had confirmed glaucoma. Normal-tension variant of primary open-angle glaucoma was the most prevalent type (1.2%) We did not find any evidence that DR is a risk factor for glaucoma [odds ratio for DR vs. no DR=1.22 (95% confidence interval, 0.59-2.51)]. The overall prevalence of glaucoma in this diabetic population, based on finding increased cupping of optic disc in a teleretinal screening program was 1.8% (95% confidence interval, 1.0-3.0).

  2. A novel visualization model for web search results.

    PubMed

    Nguyen, Tien N; Zhang, Jin

    2006-01-01

    This paper presents an interactive visualization system, named WebSearchViz, for visualizing the Web search results and acilitating users' navigation and exploration. The metaphor in our model is the solar system with its planets and asteroids revolving around the sun. Location, color, movement, and spatial distance of objects in the visual space are used to represent the semantic relationships between a query and relevant Web pages. Especially, the movement of objects and their speeds add a new dimension to the visual space, illustrating the degree of relevance among a query and Web search results in the context of users' subjects of interest. By interacting with the visual space, users are able to observe the semantic relevance between a query and a resulting Web page with respect to their subjects of interest, context information, or concern. Users' subjects of interest can be dynamically changed, redefined, added, or deleted from the visual space.

  3. Ship Tracks

    Atmospheric Science Data Center

    2013-04-19

    ... into a moist layer of atmosphere. The particles become cloud condensation nuclei (CCN), which may either produce new cloud particles where ... visualization of the vertical structure of the condensation trails. It was created using a combination of red band data from ...

  4. Depth indicator and stop aid machining to precise tolerances

    NASA Technical Reports Server (NTRS)

    Laverty, J. L.

    1966-01-01

    Attachment for machine tools provides a visual indication of the depth of cut and a positive stop to prevent overcutting. This attachment is used with drill presses, vertical milling machines, and jig borers.

  5. Effect of microgravity on several visual functions during STS shuttle missions

    NASA Technical Reports Server (NTRS)

    Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.

    1992-01-01

    Changes in the acuity of astronaut vision during flight are discussed. Parameters such as critical flicker vision, stereopsis to 10 seconds of arc, visual acuity in small steps to 20/7.7, cyclophoria, lateral and vertical phoria and retinal rivalry were tested using a visual function tester. Twenty-three Space Transportation System (STS) astronauts participated in the experiments. Their vision was assessed twice before launch and after landing, and three to four times while on-orbit and landing. No significant differences during space flight were observed for any of the visual parameters tested. In some cases, slight changes in acuity and stereopsis were observed with a subsequent return to normal vision after flight.

  6. Semantic bifurcated importance field visualization

    NASA Astrophysics Data System (ADS)

    Lindahl, Eric; Petrov, Plamen

    2007-04-01

    While there are many good ways to map sensual reality to two dimensional displays, mapping non-physical and possibilistic information can be challenging. The advent of faster-than-real-time systems allow the predictive and possibilistic exploration of important factors that can affect the decision maker. Visualizing a compressed picture of the past and possible factors can assist the decision maker summarizing information in a cognitive based model thereby reducing clutter and perhaps related decision times. Our proposed semantic bifurcated importance field visualization uses saccadic eye motion models to partition the display into a possibilistic and sensed data vertically and spatial and semantic data horizontally. Saccadic eye movement precedes and prepares decision makers before nearly every directed action. Cognitive models for saccadic eye movement show that people prefer lateral to vertical saccadic movement. Studies have suggested that saccades may be coupled to momentary problem solving strategies. Also, the central 1.5 degrees of the visual field represents 100 times greater resolution that then peripheral field so concentrating factors can reduce unnecessary saccades. By packing information according to saccadic models, we can relate important decision factors reduce factor dimensionality and present the dense summary dimensions of semantic and importance. Inter and intra ballistics of the SBIFV provide important clues on how semantic packing assists in decision making. Future directions of SBIFV are to make the visualization reactive and conformal to saccades specializing targets to ballistics, such as dynamically filtering and highlighting verbal targets for left saccades and spatial targets for right saccades.

  7. Seeing music: The perception of melodic 'ups and downs' modulates the spatial processing of visual stimuli.

    PubMed

    Romero-Rivas, Carlos; Vera-Constán, Fátima; Rodríguez-Cuadrado, Sara; Puigcerver, Laura; Fernández-Prieto, Irune; Navarra, Jordi

    2018-05-10

    Musical melodies have "peaks" and "valleys". Although the vertical component of pitch and music is well-known, the mechanisms underlying its mental representation still remain elusive. We show evidence regarding the importance of previous experience with melodies for crossmodal interactions to emerge. The impact of these crossmodal interactions on other perceptual and attentional processes was also studied. Melodies including two tones with different frequency (e.g., E4 and D3) were repeatedly presented during the study. These melodies could either generate strong predictions (e.g., E4-D3-E4-D3-E4-[D3]) or not (e.g., E4-D3-E4-E4-D3-[?]). After the presentation of each melody, the participants had to judge the colour of a visual stimulus that appeared in a position that was, according to the traditional vertical connotations of pitch, either congruent (e.g., high-low-high-low-[up]), incongruent (high-low-high-low-[down]) or unpredicted with respect to the melody. Behavioural and electroencephalographic responses to the visual stimuli were obtained. Congruent visual stimuli elicited faster responses at the end of the experiment than at the beginning. Additionally, incongruent visual stimuli that broke the spatial prediction generated by the melody elicited larger P3b amplitudes (reflecting 'surprise' responses). Our results suggest that the passive (but repeated) exposure to melodies elicits spatial predictions that modulate the processing of other sensory events. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Visuotopic organization of the cebus pulvinar: a double representation the contralateral hemifield.

    PubMed

    Gattass, R; Oswaldo-Cruz, E; Sousa, A P

    1978-08-18

    The projection of the visual field in the pulvinar nucleus was studied in 17 Cebus monkeys using electrophysiological techniques. Visual space is represented in two regions of the pulvinar; (1) the ventrolateral group, Pvlg, comprising nuclei P delta, P delta, P gamma, P eta and P mu 1; and (2) P mu. In the first group, which corresponds to the pulvinar inferior and ventral part of the pulvinar lateralis, we observed a greater respresentation of the central part of the visual field. Approximately 58% of the volume of the ventrolateral group is concerned with the visual space within 10 degrees of the fovea. This portion of the visual field is represented at its lateral aspects, mainly close to the level of the caudal pole of the lateral geniculate nucleus (LGN). Projection of the vertical meridian runs along its lateral border while that of the horizontal one is found running from the dorsal third of the LGN's hilus to the medial border of the ventro-lateral group. The lower quadrant is represented at its dorsal portion while the upper quadrant is represented at the ventral one. In Pmu the representation is rotated 90 degrees clockwise around the rostrocaudal axis: the vertical meridian is found at the ventromedial border of this nucleus. Thus, the lower quadrant is represented at the later portion of Pmu and the upper at its medial portion. Both projections are restricted to the contralateral hemifield.

  9. Optoelectronic aid for patients with severely restricted visual fields in daylight conditions

    NASA Astrophysics Data System (ADS)

    Peláez-Coca, María Dolores; Sobrado-Calvo, Paloma; Vargas-Martín, Fernando

    2011-11-01

    In this study we evaluated the immediate effectiveness of an optoelectronic visual field expander in a sample of subjects with retinitis pigmentosa suffering from a severe peripheral visual field restriction. The aid uses the augmented view concept and provides subjects with visual information from outside their visual field. The tests were carried out in daylight conditions. The optoelectronic aid comprises a FPGA (real-time video processor), a wide-angle mini camera and a transparent see-through head-mounted display. This optoelectronic aid is called SERBA (Sistema Electro-óptico Reconfigurable de Ayuda para Baja Visión). We previously showed that, without compromising residual vision, the SERBA system provides information about objects within an area about three times greater on average than the remaining visual field of the subjects [1]. In this paper we address the effects of the device on mobility under daylight conditions with and without SERBA. The participants were six subjects with retinitis pigmentosa. In this mobility test, better results were obtained when subjects were wearing the SERBA system; specifically, both the number of contacts with low-level obstacles and mobility errors decreased significantly. A longer training period with the device might improve its usefulness.

  10. Protein expression in Arabidopsis thaliana after chronic clinorotation

    NASA Technical Reports Server (NTRS)

    Piastuch, W. C.; Brown, C. S.

    1995-01-01

    Soluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation. Seeds of Arabidopsis were germinated and plants grown to maturity on horizontal or vertical slow-rotating clinostats (1 rpm) or in stationary vertical control units. Total soluble proteins and in vivo-labeled soluble proteins isolated from these plants were analyzed by two-dimensional SDS PAGE and subsequent fluorography. Visual and computer analysis of the resulting protein patterns showed no significant differences in either total protein expression or in active protein synthesis between horizontal clinorotation and vertical controls in the Arabidopsis leaf and stem tissue. These results show chronic clinorotation does not cause gross changes in protein expression in Arabidopsis.

  11. Effects of Peripheral Visual Field Loss on Eye Movements During Visual Search

    PubMed Central

    Wiecek, Emily; Pasquale, Louis R.; Fiser, Jozsef; Dakin, Steven; Bex, Peter J.

    2012-01-01

    Natural vision involves sequential eye movements that bring the fovea to locations selected by peripheral vision. How peripheral visual field loss (PVFL) affects this process is not well understood. We examine how the location and extent of PVFL affects eye movement behavior in a naturalistic visual search task. Ten patients with PVFL and 13 normally sighted subjects with full visual fields (FVF) completed 30 visual searches monocularly. Subjects located a 4° × 4° target, pseudo-randomly selected within a 26° × 11° natural image. Eye positions were recorded at 50 Hz. Search duration, fixation duration, saccade size, and number of saccades per trial were not significantly different between PVFL and FVF groups (p > 0.1). A χ2 test showed that the distributions of saccade directions for PVFL and FVL subjects were significantly different in 8 out of 10 cases (p < 0.01). Humphrey Visual Field pattern deviations for each subject were compared with the spatial distribution of eye movement directions. There were no significant correlations between saccade directional bias and visual field sensitivity across the 10 patients. Visual search performance was not significantly affected by PVFL. An analysis of eye movement directions revealed patients with PVFL show a biased directional distribution that was not directly related to the locus of vision loss, challenging feed-forward models of eye movement control. Consequently, many patients do not optimally compensate for visual field loss during visual search. PMID:23162511

  12. Face perception is tuned to horizontal orientation in the N170 time window.

    PubMed

    Jacques, Corentin; Schiltz, Christine; Goffaux, Valerie

    2014-02-07

    The specificity of face perception is thought to reside both in its dramatic vulnerability to picture-plane inversion and its strong reliance on horizontally oriented image content. Here we asked when in the visual processing stream face-specific perception is tuned to horizontal information. We measured the behavioral performance and scalp event-related potentials (ERP) when participants viewed upright and inverted images of faces and cars (and natural scenes) that were phase-randomized in a narrow orientation band centered either on vertical or horizontal orientation. For faces, the magnitude of the inversion effect (IE) on behavioral discrimination performance was significantly reduced for horizontally randomized compared to vertically or nonrandomized images, confirming the importance of horizontal information for the recruitment of face-specific processing. Inversion affected the processing of nonrandomized and vertically randomized faces early, in the N170 time window. In contrast, the magnitude of the N170 IE was much smaller for horizontally randomized faces. The present research indicates that the early face-specific neural representations are preferentially tuned to horizontal information and offers new perspectives for a description of the visual information feeding face-specific perception.

  13. Thin-plate spline graphical analysis of the mandible in mandibular prognathism.

    PubMed

    Chang, Hsin-Fu; Chang, Hong-Po; Liu, Pao-Hsin; Chang, Chih-Han

    2002-11-01

    The chin cup has been used to treat skeletal mandibular prognathism in growing patients for 200 years. The pull on the orthopedic-force chin cup is oriented along a line from the mandibular symphysis to the mandibular condyle. Various levels of success have been reported with this restraining device. The vertical chin cup produces strong vertical compression stress on the maxillary molar regions when the direction of traction is 20 degrees more vertical than the chin-condyle line. This treatment strategy may prevent relapse due to counter-clockwise rotation of the mandible. In this report, we describe a new strategy for using chin-cup therapy involving thin-plate spline (TPS) analysis of lateral cephalometric roentgenograms to visualize transformation of the mandible. The actual sites of mandibular skeletal change are not detectable with conventional cephalometric analysis. A case of mandibular prognathism treated with a chin cup and a case of dental Class III malocclusion without orthodontic treatment are described. The case analysis illustrates that specific patterns of mandibular transformation are associated with Class III malocclusion with or without orthopedic therapy, and that visualization of these deformations is feasible using TPS graphical analysis.

  14. Empirical comparison of a fixed-base and a moving-base simulation of a helicopter engaged in visually conducted slalom runs

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Houck, J. A.; Martin, D. J., Jr.

    1977-01-01

    Combined visual, motion, and aural cues for a helicopter engaged in visually conducted slalom runs at low altitude were studied. The evaluation of the visual and aural cues was subjective, whereas the motion cues were evaluated both subjectively and objectively. Subjective and objective results coincided in the area of control activity. Generally, less control activity is present under motion conditions than under fixed-base conditions, a fact attributed subjectively to the feeling of realistic limitations of a machine (helicopter) given by the addition of motion cues. The objective data also revealed that the slalom runs were conducted at significantly higher altitudes under motion conditions than under fixed-base conditions.

  15. MPI CyberMotion Simulator: implementation of a novel motion simulator to investigate multisensory path integration in three dimensions.

    PubMed

    Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H

    2012-05-10

    Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to overestimate angle size while there was no such bias in the sagittal plane. Finally, observers responded slower when answering based on vestibular-kinaesthetic information alone. Human path integration based on vestibular-kinaesthetic information alone thus takes longer than when visual information is present. That pointing is consistent with underestimating and overestimating the angle one has moved through in the horizontal and vertical planes respectively, suggests that the neural representation of self-motion through space is non-symmetrical which may relate to the fact that humans experience movement mostly within the horizontal plane.

  16. Effects of Stereoscopic 3D Digital Radar Displays on Air Traffic Controller Performance

    DTIC Science & Technology

    2013-03-01

    between men and women , but no significant influence was found. Experience in ATC was considered as a potential covariate that would be presumed to have...depicts altitude through the use of stereoscopic disparity, permitting vertical separation to be visually represented as differences in disparity...handling information via different sources (e.g., radar screen with a series of automated visual cues, paper or electronic flight progress strips, radio

  17. Figural Aftereffects: An Explanation in Terms of Multiple Mechanisms in the Human Visual System,

    DTIC Science & Technology

    1983-04-19

    increments. The width of the four TFs was held constant at 30 min (the width of the smallest IF) while tae height varied from 15 ( TF1 ) to 60 (TF4...in width from 15 ( TF1 ) to 30 (TF4) Min. of arc in 5 min. increments and were oriented at 00, or vertical. A range of 900 to 1800 min 2 of visual angle

  18. Why the long face? The importance of vertical image structure for biological "barcodes" underlying face recognition.

    PubMed

    Spence, Morgan L; Storrs, Katherine R; Arnold, Derek H

    2014-07-29

    Humans are experts at face recognition. The mechanisms underlying this complex capacity are not fully understood. Recently, it has been proposed that face recognition is supported by a coarse-scale analysis of visual information contained in horizontal bands of contrast distributed along the vertical image axis-a biological facial "barcode" (Dakin & Watt, 2009). A critical prediction of the facial barcode hypothesis is that the distribution of image contrast along the vertical axis will be more important for face recognition than image distributions along the horizontal axis. Using a novel paradigm involving dynamic image distortions, a series of experiments are presented examining famous face recognition impairments from selectively disrupting image distributions along the vertical or horizontal image axes. Results show that disrupting the image distribution along the vertical image axis is more disruptive for recognition than matched distortions along the horizontal axis. Consistent with the facial barcode hypothesis, these results suggest that human face recognition relies disproportionately on appropriately scaled distributions of image contrast along the vertical image axis. © 2014 ARVO.

  19. Visual-Motor Control of Drop Landing After Anterior Cruciate Ligament Reconstruction.

    PubMed

    Grooms, Dustin R; Chaudhari, Ajit; Page, Stephen J; Nichols-Larsen, Deborah S; Onate, James A

    2018-05-11

      Visual feedback is crucial in the control of human movement. When vision is obstructed, alterations in landing neuromuscular control may increase movements that place individuals at risk for injury. Anterior cruciate ligament (ACL) injury may further alter the motor-control response to alterations in visual feedback. The development of stroboscopic glasses that disrupt visual feedback without fully obscuring it has enabled researchers to assess visual-motor control during movements that simulate the dynamic demands of athletic activity.   To investigate the effect of stroboscopic visual-feedback disruption (SVFD) on drop vertical-jump landing mechanics and to determine whether injury history influenced the effect.   Cohort study.   Movement-analysis laboratory.   A total of 15 participants with ACL reconstruction (ACLR; 7 men, 8 women; age = 21.41 ± 2.60 years, height = 1.72 ± 0.09 m, mass = 69.24 ± 15.24 kg, Tegner Activity Scale score = 7.30 ± 1.30, time since surgery = 36.18 ± 26.50 months, hamstrings grafts = 13, patellar tendon grafts = 2) and 15 matched healthy control participants (7 men, 8 women; age = 23.15 ± 3.48 years, height = 1.73 ± 0.09 m, mass = 69.98 ± 14.83 kg, Tegner Activity Scale score = 6.77 ± 1.48).   Drop vertical-jump landings under normal and SVFD conditions.   The SVFD effect for knee sagittal- and frontal-plane excursion, peak moments, and vertical ground reaction force were calculated during landing and compared with previously established measurement error and between groups.   The SVFD altered knee sagittal-plane excursion (4.04° ± 2.20°, P = .048) and frontal-plane excursion (1.98° ± 1.53°, P = .001) during landing above within-session measurement error. Joint-moment difference scores from full vision to the SVFD condition were not greater than within-session error. We observed an effect of ACLR history only for knee flexion (ACLR group = 3.12° ± 3.76°, control group = -0.84° ± 4.45°; P = .001). We did not observe an effect of side or sex.   The SVFD altered sagittal- and frontal-plane landing knee kinematics but did not alter moments. Anterior cruciate ligament reconstruction may induce alterations in sagittal-plane visual-motor control of the knee. The group SVFD effect was on a level similar to that of an in-flight perturbation, motor-learning intervention, or plyometric-training program, indicating that visual-motor ability may contribute to knee neuromuscular control on a clinically important level. The individual effects of the SVFD indicated possible unique sensorimotor versus visual-motor movement strategies during landing.

  20. Morphometric analysis of the developing pediatric cervical spine.

    PubMed

    Johnson, Kyle T; Al-Holou, Wajd N; Anderson, Richard C E; Wilson, Thomas J; Karnati, Tejas; Ibrahim, Mohannad; Garton, Hugh J L; Maher, Cormac O

    2016-09-01

    OBJECTIVE Our understanding of pediatric cervical spine development remains incomplete. The purpose of this analysis was to quantitatively define cervical spine growth in a population of children with normal CT scans. METHODS A total of 1458 children older than 1 year and younger than 18 years of age who had undergone a cervical spine CT scan at the authors' institution were identified. Subjects were separated by sex and age (in years) into 34 groups. Following this assignment, subjects within each group were randomly selected for inclusion until a target of 15 subjects in each group had been measured. Linear measurements were performed on the midsagittal image of the cervical spine. Twenty-three unique measurements were obtained for each subject. RESULTS Data showed that normal vertical growth of the pediatric cervical spine continues up to 18 years of age in boys and 14 years of age in girls. Approximately 75% of the vertical growth occurs throughout the subaxial spine and 25% occurs across the craniovertebral region. The C-2 body is the largest single-segment contributor to vertical growth, but the subaxial vertebral bodies and disc spaces also contribute. Overall vertical growth of the cervical spine throughout childhood is dependent on individual vertebral body growth as well as vertical growth of the disc spaces. The majority of spinal canal diameter growth occurs by 4 years of age. CONCLUSIONS The authors' morphometric analyses establish parameters for normal pediatric cervical spine growth up to 18 years of age. These data should be considered when evaluating children for potential surgical intervention and provide a basis of comparison for studies investigating the effects of cervical spine instrumentation and fusion on subsequent growth.

  1. Muscle activity adapts to anti-gravity posture during pedalling in persons with post-stroke hemiplegia.

    PubMed

    Brown, D A; Kautz, S A; Dairaghi, C A

    1997-05-01

    With hemiplegia following stroke, a person's movement response to anti-gravity posture often appears rigid and inflexible, exacerbating the motor dysfunction. A major determinant of pathological movement in anti-gravity postures is the failure to adapt muscle-activity patterns automatically to changes in posture. The aim of the present study was to determine whether the impaired motor performance observed when persons with hemiplegia pedal in a horizontal position is exacerbated at more vertical anti-gravity body orientations. Twelve healthy elderly subjects and 17 subjects with chronic (> 6 months) post-stroke hemiplegia participated in the study. Subjects pedalled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload, cadence, and hip and knee kinematics. Pedal reaction forces, and crank and pedal kinematics, were measured and then used to calculate the work done by each leg and their net positive and negative components. The EMG was recorded from four leg muscles (tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris). The main result from this study was that impaired plegic leg performance, as measured by net negative work done by the plegic leg and abnormal early rectus femoris activity, was exacerbated at the most vertical body orientations. However, contrary to the belief that muscle activity cannot adapt to anti-gravity postures, net positive work increased appropriately and EMG activity in all muscles showed modulated levels of activity similar to those in elderly control subjects. These results support the hypothesis that increased verticality exacerbates the already impaired movement performance. Yet, much of the motor response to verticality was flexible and appropriate, given the mechanics of the task.

  2. Control of moth flight posture is mediated by wing mechanosensory feedback.

    PubMed

    Dickerson, Bradley H; Aldworth, Zane N; Daniel, Thomas L

    2014-07-01

    Flying insects rapidly stabilize after perturbations using both visual and mechanosensory inputs for active control. Insect halteres are mechanosensory organs that encode inertial forces to aid rapid course correction during flight but serve no aerodynamic role and are specific to two orders of insects (Diptera and Strepsiptera). Aside from the literature on halteres and recent work on the antennae of the hawkmoth Manduca sexta, it is unclear how other flying insects use mechanosensory information to control body dynamics. The mechanosensory structures found on the halteres, campaniform sensilla, are also present on wings, suggesting that the wings can encode information about flight dynamics. We show that the neurons innervating these sensilla on the forewings of M. sexta exhibit spike-timing precision comparable to that seen in previous reports of campaniform sensilla, including haltere neurons. In addition, by attaching magnets to the wings of moths and subjecting these animals to a simulated pitch stimulus via a rotating magnetic field during tethered flight, we elicited the same vertical abdominal flexion reflex these animals exhibit in response to visual or inertial pitch stimuli. Our results indicate that, in addition to their role as actuators during locomotion, insect wings serve as sensors that initiate reflexes that control body dynamics. © 2014. Published by The Company of Biologists Ltd.

  3. TMD symptoms and vertical mandibular symmetry in young adult orthodontic patients in North Sumatra, Indonesia: a cross-sectional study

    PubMed Central

    Sofyanti, Ervina; Boel, Trelia; Soegiharto, Benny; Auerkari, Elza I.

    2018-01-01

    Background: Temporomandibular joint disorder (TMD) includes symptoms of pain and dysfunction in the muscles of mastication and the temporomandibular joint. Differences in vertical condylar height, observed in the assessment of mandibular asymmetry, is a structural alteration that represents a risk factor for TMD. The study aimed to evaluate the association between TMD symptoms and vertical mandibular symmetry in young adult orthodontic patients in North Sumatra, Indonesia.  Methods: The cross-sectional study included 18-25-year-old (mean ± SD, 21.9 ± 2.0 years) old orthodontic patients admitted to the Dental Hospital of Universitas Sumatera Utara, Medan, between June 2016 and March 2017. Vertical mandibular asymmetry was assessed from all 106 subjects using Kjellberg’s technique from pre-treatment panoramic radiographs. The TMD symptoms were assessed by structural interviews using modified questionnaires based on Temporomandibular Disorder Diagnostic Index and Fonseca’s Anamnestic Index. Results: Of the 106 subjects, 26 (24.5% of the total) with vertical mandibular symmetry and 39 (36.8%) with vertical mandibular asymmetry were positive for TMD symptoms. By contrast, 17 patients (16.0% of the total) with vertical condylar symmetry and 24 patients (22.6%) with vertical mandibular asymmetry were regarded negative for TMD symptoms. There was no significant difference (p=0.520) in TMD symptoms based on vertical mandibular symmetry. Conclusion: The results from this studied Sumatran population indicate that there are common TMD symptoms in young adult orthodontic patients, but there is no significant association between vertical mandibular asymmetry and TMD symptoms. Further study on the development of TMD, mandibular asymmetry and treatment planning for growing patients is suggested, using longitudinal and transitional approaches.

  4. THE VERTICAL

    NASA Technical Reports Server (NTRS)

    Albert, Stephen L.; Spencer, Jeffrey B.

    1994-01-01

    'THE VERTICAL' computer keyboard is designed to address critical factors which contribute to Repetitive Motion Injuries (RMI) (including Carpal Tunnel Syndrome) in association with computer keyboard usage. This keyboard splits the standard QWERTY design into two halves and positions each half 90 degrees from the desk. In order to access a computer correctly. 'THE VERTICAL' requires users to position their bodies in optimal alignment with the keyboard. The orthopaedically neutral forearm position (with hands palms-in and thumbs-up) reduces nerve compression in the forearm. The vertically arranged keypad halves ameliorate onset occurrence of keyboard-associated RMI. By utilizing visually-reference mirrored mylar surfaces adjustable to the user's eye, the user is able to readily reference any key indicia (reversed) just as they would on a conventional keyboard. Transverse adjustability substantially reduces cumulative musculoskeletal discomfort in the shoulders. 'THE VERTICAL' eliminates the need for an exterior mouse by offering a convenient finger-accessible curser control while the hands remain in the vertically neutral position. The potential commercial application for 'THE VERTICAL' is enormous since the product can effect every person who uses a computer anywhere in the world. Employers and their insurance carriers are spending hundreds of millions of dollars per year as a result of RMI. This keyboard will reduce the risk.

  5. Visual acuity testing in diabetic subjects: the decimal progression chart versus the Freiburg visual acuity test.

    PubMed

    Loumann Knudsen, Lars

    2003-08-01

    To study reproducibility and biological variation of visual acuity in diabetic maculopathy, using two different visual acuity tests, the decimal progression chart and the Freiburg visual acuity test. Twenty-two eyes in 11 diabetic subjects were examined several times within a 12-month period using both visual acuity tests. The most commonly used visual acuity test in Denmark (the decimal progression chart) was compared to the Freiburg visual acuity test (automated testing) in a paired study. Correlation analysis revealed agreement between the two methods (r(2)=0.79; slope=0.82; y-axis intercept=0.01). The mean visual acuity was found to be 15% higher (P<0.0001) with the decimal progression chart than with the Freiburg visual acuity test. The reproducibility was the same in both tests (coefficient of variation: 12% for each test); however, the variation within the 12-month examination period differed significantly. The coefficient of variation was 17% using the decimal progression chart, 35% with the Freiburg visual acuity test. The reproducibility of the two visual acuity tests is comparable under optimal testing conditions in diabetic subjects with macular oedema. However, it appears that the Freiburg visual acuity test is significantly better for detection of biological variation.

  6. Fast visual prediction and slow optimization of preferred walking speed.

    PubMed

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting <2 s) and in a direction opposite to the perturbation and consistent with returning the visually presented speed toward their preferred walking speed, when visual speed was suddenly twice (one-half) the walking speed, subjects decreased (increased) their speed. Subjects did not maintain the new speed but instead gradually returned toward the speed preferred before the perturbation (lasting >300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  7. Influence of combined visual and vestibular cues on human perception and control of horizontal rotation

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.; Young, L. R.

    1981-01-01

    Measurements are made of manual control performance in the closed-loop task of nulling perceived self-rotation velocity about an earth-vertical axis. Self-velocity estimation is modeled as a function of the simultaneous presentation of vestibular and peripheral visual field motion cues. Based on measured low-frequency operator behavior in three visual field environments, a parallel channel linear model is proposed which has separate visual and vestibular pathways summing in a complementary manner. A dual-input describing function analysis supports the complementary model; vestibular cues dominate sensation at higher frequencies. The describing function model is extended by the proposal of a nonlinear cue conflict model, in which cue weighting depends on the level of agreement between visual and vestibular cues.

  8. Experimental investigation of the visual field dependency in the erect and supine positions

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.; Saucer, R. T.

    1972-01-01

    The increasing utilization of simulators in many fields, in addition to aeronautics and space, requires the efficient use of these devices. It seemed that personnel highly influenced by the visual scene would make desirable subjects, particularly for those simulators without sufficient motion cues. In order to evaluate this concept, some measure of the degree of influence of the visual field on the subject in necessary. As part of this undertaking, 37 male and female subjects, including eight test pilots, were tested for their visual field dependency or independency. A version of Witkin's rod and frame apparatus was used for the tests. The results showed that nearly all the test subjects exhibited some degree of field dependency, the degree varying from very high field dependency to nearly zero field dependency in a normal distribution. The results for the test pilots were scattered throughout a range similar to the results for the bulk of male subjects. The few female subjects exhibited a higher field dependency than the male subjects. The male subjects exhibited a greater field dependency in the supine position than in the erect position, whereas the field dependency of the female subjects changed only slightly.

  9. Vertical Heterophoria and Postural Control in Nonspecific Chronic Low Back Pain

    PubMed Central

    Matheron, Eric; Kapoula, Zoï

    2011-01-01

    The purpose of this study was to test postural control during quiet standing in nonspecific chronic low back pain (LBP) subjects with vertical heterophoria (VH) before and after cancellation of VH; also to compare with healthy subjects with, and without VH. Fourteen subjects with LBP took part in this study. The postural performance was measured through the center of pressure displacements with a force platform while the subjects fixated on a target placed at either 40 or 200 cm, before and after VH cancellation with an appropriate prism. Their postural performance was compared to that of 14 healthy subjects with VH and 12 without VH (i.e. vertical orthophoria) studied previously in similar conditions. For LBP subjects, cancellation of VH with a prism improved postural performance. With respect to control subjects (with or without VH), the variance of speed of the center of pressure was higher, suggesting more energy was needed to stabilize their posture in quiet upright stance. Similarly to controls, LBP subjects showed higher postural sway when they were looking at a target at a far distance than at a close distance. The most important finding is that LBP subjects with VH can improve their performance after prism-cancellation of their VH. We suggest that VH reflects mild conflict between sensory and motor inputs involved in postural control i.e. a non optimal integration of the various signals. This could affect the performance of postural control and perhaps lead to pain. Nonspecific chronic back pain may results from such prolonged conflict. PMID:21479210

  10. Auditory, visual, and bimodal data link displays and how they support pilot performance.

    PubMed

    Steelman, Kelly S; Talleur, Donald; Carbonari, Ronald; Yamani, Yusuke; Nunes, Ashley; McCarley, Jason S

    2013-06-01

    The design of data link messaging systems to ensure optimal pilot performance requires empirical guidance. The current study examined the effects of display format (auditory, visual, or bimodal) and visual display position (adjacent to instrument panel or mounted on console) on pilot performance. Subjects performed five 20-min simulated single-pilot flights. During each flight, subjects received messages from a simulated air traffic controller. Messages were delivered visually, auditorily, or bimodally. Subjects were asked to read back each message aloud and then perform the instructed maneuver. Visual and bimodal displays engendered lower subjective workload and better altitude tracking than auditory displays. Readback times were shorter with the two unimodal visual formats than with any of the other three formats. Advantages for the unimodal visual format ranged in size from 2.8 s to 3.8 s relative to the bimodal upper left and auditory formats, respectively. Auditory displays allowed slightly more head-up time (3 to 3.5 seconds per minute) than either visual or bimodal displays. Position of the visual display had only modest effects on any measure. Combined with the results from previous studies by Helleberg and Wickens and Lancaster and Casali the current data favor visual and bimodal displays over auditory displays; unimodal auditory displays were favored by only one measure, head-up time, and only very modestly. Data evinced no statistically significant effects of visual display position on performance, suggesting that, contrary to expectations, the placement of a visual data link display may be of relatively little consequence to performance.

  11. Measurements of fluid transport by controllable vertical migrations of plankton

    NASA Astrophysics Data System (ADS)

    Houghton, Isabel A.; Dabiri, John O.

    2016-11-01

    Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.

  12. Pilot investigation - Nominal crew induced forces in zero-g

    NASA Technical Reports Server (NTRS)

    Klute, Glenn K.

    1992-01-01

    This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation. Three orthogonal force axes were measured in the NASA KC-135 research aircraft's 'zero-g' environment. The largest forces were induced during vertical foot push-offs, including one of 534 newtons (120 lbs). The mean vertical foot push-off was 311 newtons (70 lbs). The vertical hand push-off forces were also relatively large, including one of 267 newtons (60 lbs) with a mean of 151 newtons (34 lbs). These force magnitudes of these forces would result in a Shuttle gravity environment of about 1 x exp 10 -4 g's.

  13. Computerized visual feedback: an adjunct to robotic-assisted gait training.

    PubMed

    Banz, Raphael; Bolliger, Marc; Colombo, Gery; Dietz, Volker; Lünenburger, Lars

    2008-10-01

    Robotic devices for walking rehabilitation allow new possibilities for providing performance-related information to patients during gait training. Based on motor learning principles, augmented feedback during robotic-assisted gait training might improve the rehabilitation process used to regain walking function. This report presents a method to provide visual feedback implemented in a driven gait orthosis (DGO). The purpose of the study was to compare the immediate effect on motor output in subjects during robotic-assisted gait training when they used computerized visual feedback and when they followed verbal instructions of a physical therapist. Twelve people with neurological gait disorders due to incomplete spinal cord injury participated. Subjects were instructed to walk within the DGO in 2 different conditions. They were asked to increase their motor output by following the instructions of a therapist and by observing visual feedback. In addition, the subjects' opinions about using visual feedback were investigated by a questionnaire. Computerized visual feedback and verbal instructions by the therapist were observed to result in a similar change in motor output in subjects when walking within the DGO. Subjects reported that they were more motivated and concentrated on their movements when using computerized visual feedback compared with when no form of feedback was provided. Computerized visual feedback is a valuable adjunct to robotic-assisted gait training. It represents a relevant tool to increase patients' motor output, involvement, and motivation during gait training, similar to verbal instructions by a therapist.

  14. Subconscious Visual Cues during Movement Execution Allow Correct Online Choice Reactions

    PubMed Central

    Leukel, Christian; Lundbye-Jensen, Jesper; Christensen, Mark Schram; Gollhofer, Albert; Nielsen, Jens Bo; Taube, Wolfgang

    2012-01-01

    Part of the sensory information is processed by our central nervous system without conscious perception. Subconscious processing has been shown to be capable of triggering motor reactions. In the present study, we asked the question whether visual information, which is not consciously perceived, could influence decision-making in a choice reaction task. Ten healthy subjects (28±5 years) executed two different experimental protocols. In the Motor reaction protocol, a visual target cue was shown on a computer screen. Depending on the displayed cue, subjects had to either complete a reaching movement (go-condition) or had to abort the movement (stop-condition). The cue was presented with different display durations (20–160 ms). In the second Verbalization protocol, subjects verbalized what they experienced on the screen. Again, the cue was presented with different display durations. This second protocol tested for conscious perception of the visual cue. The results of this study show that subjects achieved significantly more correct responses in the Motor reaction protocol than in the Verbalization protocol. This difference was only observed at the very short display durations of the visual cue. Since correct responses in the Verbalization protocol required conscious perception of the visual information, our findings imply that the subjects performed correct motor responses to visual cues, which they were not conscious about. It is therefore concluded that humans may reach decisions based on subconscious visual information in a choice reaction task. PMID:23049749

  15. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task.

    PubMed

    Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.

  16. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task

    PubMed Central

    Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.

    2018-01-01

    Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536

  17. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.

    PubMed

    Hoppe, Christian; Splittstößer, Christoph; Fliessbach, Klaus; Trautner, Peter; Elger, Christian E; Weber, Bernd

    2014-11-01

    In daily life, responses are often facilitated by anticipatory imagery of expected targets which are announced by associated stimuli from different sensory modalities. Silent music reading represents an intriguing case of visuotonal modality transfer in working memory as it induces highly defined auditory imagery on the basis of presented visuospatial information (i.e. musical notes). Using functional MRI and a delayed sequence matching-to-sample paradigm, we compared brain activations during retention intervals (10s) of visual (VV) or tonal (TT) unimodal maintenance versus visuospatial-to-tonal modality transfer (VT) tasks. Visual or tonal sequences were comprised of six elements, white squares or tones, which were low, middle, or high regarding vertical screen position or pitch, respectively (presentation duration: 1.5s). For the cross-modal condition (VT, session 3), the visuospatial elements from condition VV (session 1) were re-defined as low, middle or high "notes" indicating low, middle or high tones from condition TT (session 2), respectively, and subjects had to match tonal sequences (probe) to previously presented note sequences. Tasks alternately had low or high cognitive load. To evaluate possible effects of music reading expertise, 15 singers and 15 non-musicians were included. Scanner task performance was excellent in both groups. Despite identity of applied visuospatial stimuli, visuotonal modality transfer versus visual maintenance (VT>VV) induced "inhibition" of visual brain areas and activation of primary and higher auditory brain areas which exceeded auditory activation elicited by tonal stimulation (VT>TT). This transfer-related visual-to-auditory activation shift occurred in both groups but was more pronounced in experts. Frontoparietal areas were activated by higher cognitive load but not by modality transfer. The auditory brain showed a potential to anticipate expected auditory target stimuli on the basis of non-auditory information and sensory brain activation rather mirrored expectation than stimulation. Silent music reading probably relies on these basic neurocognitive mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 49 CFR 172.446 - CLASS 9 label.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... top half. The black vertical stripes must be spaced, so that, visually, they appear equal in width to...” underlined and centered at the bottom. The solid horizontal line dividing the lower and upper half of the...

  19. 49 CFR 172.446 - CLASS 9 label.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... top half. The black vertical stripes must be spaced, so that, visually, they appear equal in width to...” underlined and centered at the bottom. The solid horizontal line dividing the lower and upper half of the...

  20. 49 CFR 172.446 - CLASS 9 label.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... top half. The black vertical stripes must be spaced, so that, visually, they appear equal in width to...” underlined and centered at the bottom. The solid horizontal line dividing the lower and upper half of the...

  1. 49 CFR 172.446 - CLASS 9 label.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... top half. The black vertical stripes must be spaced, so that, visually, they appear equal in width to...” underlined and centered at the bottom. The solid horizontal line dividing the lower and upper half of the...

  2. The effect of the configuration and the interior design of a virtual weightless space station on human spatial orientation.

    PubMed

    Aoki, Hirofumi; Ohno, Ryuzo; Yamaguchi, Takao

    2005-01-01

    In a virtual weightless environment, subjects' orientation skills were studied to examine what kind of cognitive errors people make when they moved through the interior space of virtual space stations and what kind of visual information effectively decreases those errors. Subjects wearing a head-mounted display moved from one end to the other end in space station-like routes constructed of rectangular and cubical modules, and did Pointing and Modeling tasks. In Experiment 1, configurations of the routes were changed with such variables as the number of bends, the number of embedding planes, and the number of planes with respect to the body posture. The results indicated that spatial orientation ability was relevant to the variables and that orientational errors were explained by two causes. One of these was that the place, the direction, and the sequence of turns were incorrect. The other was that subjects did not recognize the rotation of the frame of reference, especially when they turned in pitch direction rather than in yaw. In Experiment 2, the effect of the interior design was examined by testing three design settings. Wall colors that showed the allocentric frame of reference and the different interior design of vertical and horizontal modules were effective; however, there was a limit to the effectiveness in complicated configurations. c2005 Published by Elsevier Ltd.

  3. The effect of visual context on manual localization of remembered targets

    NASA Technical Reports Server (NTRS)

    Barry, S. R.; Bloomberg, J. J.; Huebner, W. P.

    1997-01-01

    This paper examines the contribution of egocentric cues and visual context to manual localization of remembered targets. Subjects pointed in the dark to the remembered position of a target previously viewed without or within a structured visual scene. Without a remembered visual context, subjects pointed to within 2 degrees of the target. The presence of a visual context with cues of straight ahead enhanced pointing performance to the remembered location of central but not off-center targets. Thus, visual context provides strong visual cues of target position and the relationship of body position to target location. Without a visual context, egocentric cues provide sufficient input for accurate pointing to remembered targets.

  4. Does apparent size capture attention in visual search? Evidence from the Muller-Lyer illusion.

    PubMed

    Proulx, Michael J; Green, Monique

    2011-11-23

    Is perceived size a crucial factor for the bottom-up guidance of attention? Here, a visual search experiment was used to examine whether an irrelevantly longer object can capture attention when participants were to detect a vertical target item. The longer object was created by an apparent size manipulation, the Müller-Lyer illusion; however, all objects contained the same number of pixels. The vertical target was detected more efficiently when it was also perceived as the longer item that was defined by apparent size. Further analysis revealed that the longer Müller-Lyer object received a greater degree of attentional priority than published results for other features such as retinal size, luminance contrast, and the abrupt onset of a new object. The present experiment has demonstrated for the first time that apparent size can capture attention and, thus, provide bottom-up guidance on the basis of perceived salience.

  5. Human spatial orientation in the pitch dimension

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Larson, C. A.

    1974-01-01

    Two experiments were conducted. In Experiment I, each of eight Ss attempted to place himself at 13 different goal orientations between prone and supine. Deviations of achieved body pitch angles from goal orientations were determined. In Experiment II, each of eight Ss attempted to align a visual target with his morphological horizon while he was placed at each of the 13 goal orientations. Changes in settings of the target were examined. Results indicate that Ss underestimate body pitch when they are tilted less than 60 deg backward or forward from the vertical, overestimate body pitch when they are nearly prone, and accurately estimate body pitch when they are nearly supine. In contrast, Ss set the visual target maximally above the morphological horizon when they are tilted 30 deg forward from the vertical. The findings are discussed in terms of common and different physiological mechanism that may underlie judgments of these types.

  6. [Mental images: towards a media history of the psyche around 1900].

    PubMed

    Rall, Veronika

    2014-12-01

    Presupposing that visual practices are inherent to the social constitution of knowledge, this article suggests juxtaposing photographs and films produced in a psychiatric environment to popular films run in theaters around 1900, thus identifying cinema's particular "Denkstil" (Fleck). Rejecting science's dominating paradigm of visual objectivity (Daston/Galison), the visual apparatus [dispositif] of early cinema facilitates subjective experience of unreason and irrationality and thus initiates a different epistemological approach to knowledge as self-knowledge of a modern, self-reflexive subject. This is particularly evident in early cinema's depiction of the psyche, which does not solely focus on the physical manifestation of the 'mad', 'insane' body, but also visualizes the subject's inner life: technical means like montage, multiple exposure or stop motion can be employed to illustrate subjective visions, fantasies or dreams. Thus, the invisible mind becomes visible as the "unthinkable within thinking" (Deleuze), while the subject is invited to participate in cinema's "gay science" (Nietzsche).

  7. Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance.

    PubMed

    Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto; Fujikado, Takashi

    2018-03-01

    In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack-Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. BFM was significantly reduced after the visual task ( P < 0.001) and was negatively correlated with the total subjective eye symptom score (adjusted R 2 = 0.752, P < 0.001). Furthermore, the diagnostic accuracy for visual fatigue was significantly higher in BFM than in the conventional test results (aggregated fusional vergence range, near point of convergence, and the high-frequency component of accommodative microfluctuations; P = 0.007). These results suggest that BFM can be used as an indicator for evaluating visual fatigue. BFM can be used to evaluate the visual fatigue caused by the new visual devices, such as head-mount display, objectively.

  8. Regional Neural Response Differences in the Determination of Faces or Houses Positioned in a Wide Visual Field

    PubMed Central

    Wu, Jinglong; Chen, Kewei; Imajyo, Satoshi; Ohno, Seiichiro; Kanazawa, Susumu

    2013-01-01

    In human visual cortex, the primary visual cortex (V1) is considered to be essential for visual information processing; the fusiform face area (FFA) and parahippocampal place area (PPA) are considered as face-selective region and places-selective region, respectively. Recently, a functional magnetic resonance imaging (fMRI) study showed that the neural activity ratios between V1 and FFA were constant as eccentricities increasing in central visual field. However, in wide visual field, the neural activity relationships between V1 and FFA or V1 and PPA are still unclear. In this work, using fMRI and wide-view present system, we tried to address this issue by measuring neural activities in V1, FFA and PPA for the images of faces and houses aligning in 4 eccentricities and 4 meridians. Then, we further calculated ratio relative to V1 (RRV1) as comparing the neural responses amplitudes in FFA or PPA with those in V1. We found V1, FFA, and PPA showed significant different neural activities to faces and houses in 3 dimensions of eccentricity, meridian, and region. Most importantly, the RRV1s in FFA and PPA also exhibited significant differences in 3 dimensions. In the dimension of eccentricity, both FFA and PPA showed smaller RRV1s at central position than those at peripheral positions. In meridian dimension, both FFA and PPA showed larger RRV1s at upper vertical positions than those at lower vertical positions. In the dimension of region, FFA had larger RRV1s than PPA. We proposed that these differential RRV1s indicated FFA and PPA might have different processing strategies for encoding the wide field visual information from V1. These different processing strategies might depend on the retinal position at which faces or houses are typically observed in daily life. We posited a role of experience in shaping the information processing strategies in the ventral visual cortex. PMID:23991147

  9. Error amplification to promote motor learning and motivation in therapy robotics.

    PubMed

    Shirzad, Navid; Van der Loos, H F Machiel

    2012-01-01

    To study the effects of different feedback error amplification methods on a subject's upper-limb motor learning and affect during a point-to-point reaching exercise, we developed a real-time controller for a robotic manipulandum. The reaching environment was visually distorted by implementing a thirty degrees rotation between the coordinate systems of the robot's end-effector and the visual display. Feedback error amplification was provided to subjects as they trained to learn reaching within the visually rotated environment. Error amplification was provided either visually or through both haptic and visual means, each method with two different amplification gains. Subjects' performance (i.e., trajectory error) and self-reports to a questionnaire were used to study the speed and amount of adaptation promoted by each error amplification method and subjects' emotional changes. We found that providing haptic and visual feedback promotes faster adaptation to the distortion and increases subjects' satisfaction with the task, leading to a higher level of attentiveness during the exercise. This finding can be used to design a novel exercise regimen, where alternating between error amplification methods is used to both increase a subject's motor learning and maintain a minimum level of motivational engagement in the exercise. In future experiments, we will test whether such exercise methods will lead to a faster learning time and greater motivation to pursue a therapy exercise regimen.

  10. The use of head/eye-centered, hand-centered and allocentric representations for visually guided hand movements and perceptual judgments.

    PubMed

    Thaler, Lore; Todd, James T

    2009-04-01

    Two experiments are reported that were designed to measure the accuracy and reliability of both visually guided hand movements (Exp. 1) and perceptual matching judgments (Exp. 2). The specific procedure for informing subjects of the required response on each trial was manipulated so that some tasks could only be performed using an allocentric representation of the visual target; others could be performed using either an allocentric or hand-centered representation; still others could be performed based on an allocentric, hand-centered or head/eye-centered representation. Both head/eye and hand centered representations are egocentric because they specify visual coordinates with respect to the subject. The results reveal that accuracy and reliability of both motor and perceptual responses are highest when subjects direct their response towards a visible target location, which allows them to rely on a representation of the target in head/eye-centered coordinates. Systematic changes in averages and standard deviations of responses are observed when subjects cannot direct their response towards a visible target location, but have to represent target distance and direction in either hand-centered or allocentric visual coordinates instead. Subjects' motor and perceptual performance agree quantitatively well. These results strongly suggest that subjects process head/eye-centered representations differently from hand-centered or allocentric representations, but that they process visual information for motor actions and perceptual judgments together.

  11. The effect of neurofeedback on a brain wave and visual perception in stroke: a randomized control trial.

    PubMed

    Cho, Hwi-Young; Kim, Kitae; Lee, Byounghee; Jung, Jinhwa

    2015-03-01

    [Purpose] This study investigated a brain wave and visual perception changes in stroke subjects using neurofeedback (NFB) training. [Subjects] Twenty-seven stroke subjects were randomly allocated to the NFB (n = 13) group and the control group (n=14). [Methods] Two expert therapists provided the NFB and CON groups with traditional rehabilitation therapy in 30 thirst-minute sessions over the course of 6 weeks. NFB training was provided only to the NFB group. The CON group received traditional rehabilitation therapy only. Before and after the 6-week intervention, a brain wave test and motor free visual perception test (MVPT) were performed. [Results] Both groups showed significant differences in their relative beta wave values and attention concentration quotients. Moreover, the NFB group showed a significant difference in MVPT visual discrimination, form constancy, visual memory, visual closure, spatial relation, raw score, and processing time. [Conclusion] This study demonstrated that NFB training is more effective for increasing concentration and visual perception changes than traditional rehabilitation. In further studies, detailed and diverse investigations should be performed considering the number and characteristics of subjects, and the NFB training period.

  12. Learning to Recognize Patterns: Changes in the Visual Field with Familiarity

    NASA Astrophysics Data System (ADS)

    Bebko, James M.; Uchikawa, Keiji; Saida, Shinya; Ikeda, Mitsuo

    1995-01-01

    Two studies were conducted to investigate changes which take place in the visual information processing of novel stimuli as they become familiar. Japanese writing characters (Hiragana and Kanji) which were unfamiliar to two native English speaking subjects were presented using a moving window technique to restrict their visual fields. Study time for visual recognition was recorded across repeated sessions, and with varying visual field restrictions. The critical visual field was defined as the size of the visual field beyond which further increases did not improve the speed of recognition performance. In the first study, when the Hiragana patterns were novel, subjects needed to see about half of the entire pattern simultaneously to maintain optimal performance. However, the critical visual field size decreased as familiarity with the patterns increased. These results were replicated in the second study with more complex Kanji characters. In addition, the critical field size decreased as pattern complexity decreased. We propose a three component model of pattern perception. In the first stage a representation of the stimulus must be constructed by the subject, and restricting of the visual field interferes dramatically with this component when stimuli are unfamiliar. With increased familiarity, subjects become able to reconstruct a previous representation from very small, unique segments of the pattern, analogous to the informativeness areas hypothesized by Loftus and Mackworth [J. Exp. Psychol., 4 (1978) 565].

  13. Infantile nystagmus adapts to visual demand.

    PubMed

    Wiggins, Debbie; Woodhouse, J Margaret; Margrain, Tom H; Harris, Christopher M; Erichsen, Jonathan T

    2007-05-01

    To determine the effect of visual demand on the nystagmus waveform. Individuals with infantile nystagmus syndrome (INS) commonly report that making an effort to see can intensify their nystagmus and adversely affect vision. However, such an effect has never been confirmed experimentally. The eye movement behavior of 11 subjects with INS were recorded at different gaze angles while the subjects viewed visual targets under two conditions: above and then at resolution threshold. Eye movements were recorded by infrared oculography and visual acuity (VA) was measured using Landolt C targets and a two-alternative, forced-choice (2AFC) staircase procedure. Eye movement data were analyzed at the null zone for changes in amplitude, frequency, intensity, and foveation characteristics. Waveform type was also noted under the two conditions. Data from 11 subjects revealed a significant reduction in nystagmus amplitude (P < 0.05), frequency (P < 0.05), and intensity (P < 0.01) when target size was at visual threshold. The percentage of time the eye spent within the low-velocity window (i.e., foveation) significantly increased when target size was at visual threshold (P < 0.05). Furthermore, a change in waveform type with increased visual demand was exhibited by two subjects. The results indicate that increased visual demand modifies the nystagmus waveform favorably (and possibly adaptively), producing a significant reduction in nystagmus intensity and prolonged foveation. These findings contradict previous anecdotal reports that visual effort intensifies the nystagmus eye movement at the cost of visual performance. This discrepancy may be attributable to the lack of psychological stress involved in the visual task reported here. This is consistent with the suggestion that it is the visual importance of the task to the individual rather than visual demand per se which exacerbates INS. Further studies are needed to investigate quantitatively the effects of stress and psychological factors on INS waveforms.

  14. Visual search for feature and conjunction targets with an attention deficit.

    PubMed

    Arguin, M; Joanette, Y; Cavanagh, P

    1993-01-01

    Abstract Brain-damaged subjects who had previously been identified as suffering from a visual attention deficit for contralesional stimulation were tested on a series of visual search tasks. The experiments examined the hypothesis that the processing of single features is preattentive but that feature integration, necessary for the correct perception of conjunctions of features, requires attention (Treisman & Gelade, 1980 Treisman & Sato, 1990). Subjects searched for a feature target (orientation or color) or for a conjunction target (orientation and color) in unilateral displays in which the number of items presented was variable. Ocular fixation was controlled so that trials on which eye movements occurred were cancelled. While brain-damaged subjects with a visual attention disorder (VAD subjects) performed similarly to normal controls in feature search tasks, they showed a marked deficit in conjunction search. Specifically, VAD subjects exhibited an important reduction of their serial search rates for a conjunction target with contralesional displays. In support of Treisman's feature integration theory, a visual attention deficit leads to a marked impairment in feature integration whereas it does not appear to affect feature encoding.

  15. Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells.

    PubMed

    Hirata, Y; Highstein, S M

    2001-05-01

    The gain of the vertical vestibuloocular reflex (VVOR), defined as eye velocity/head velocity was adapted in squirrel monkeys by employing visual-vestibular mismatch stimuli. VVOR gain, measured in the dark, could be trained to values between 0.4 and 1.5. Single-unit activity of vertical zone Purkinje cells was recorded from the flocculus and ventral paraflocculus in alert squirrel monkeys before and during the gain change training. Our goal was to evaluate the site(s) of learning of the gain change. To aid in the evaluation, a model of the vertical optokinetic reflex (VOKR) and VVOR was constructed consisting of floccular and nonfloccular systems divided into subsystems based on the known anatomy and input and output parameters. Three kinds of input to floccular Purkinje cells via mossy fibers were explicitly described, namely vestibular, visual (retinal slip), and efference copy of eye movement. The characteristics of each subsystem (gain and phase) were identified at different VOR gains by reconstructing single-unit activity of Purkinje cells during VOKR and VVOR with multiple linear regression models consisting of sensory input and motor output signals. Model adequacy was checked by evaluating the residual following the regressions and by predicting Purkinje cells' activity during visual-vestibular mismatch paradigms. As a result, parallel changes in identified characteristics with VVOR adaptation were found in the prefloccular/floccular subsystem that conveys vestibular signals and in the nonfloccular subsystem that conveys vestibular signals, while no change was found in other subsystems, namely prefloccular/floccular subsystems conveying efference copy or visual signals, nonfloccular subsystem conveying visual signals, and postfloccular subsystem transforming Purkinje cell activity to eye movements. The result suggests multiple sites for VVOR motor learning including both flocculus and nonflocculus pathways. The gain change in the nonfloccular vestibular subsystem was in the correct direction to cause VOR gain adaptation while the change in the prefloccular/floccular vestibular subsystem was incorrect (anti-compensatory). This apparent incorrect directional change might serve to prevent instability of the VOR caused by positive feedback via the efference copy pathway.

  16. Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis

    PubMed Central

    Castaldi, E.; Cicchini, G. M.; Cinelli, L.; Rizzo, S.; Morrone, M. C.

    2016-01-01

    Retinal prosthesis technologies require that the visual system downstream of the retinal circuitry be capable of transmitting and elaborating visual signals. We studied the capability of plastic remodeling in late blind subjects implanted with the Argus II Retinal Prosthesis with psychophysics and functional MRI (fMRI). After surgery, six out of seven retinitis pigmentosa (RP) blind subjects were able to detect high-contrast stimuli using the prosthetic implant. However, direction discrimination to contrast modulated stimuli remained at chance level in all of them. No subject showed any improvement of contrast sensitivity in either eye when not using the Argus II. Before the implant, the Blood Oxygenation Level Dependent (BOLD) activity in V1 and the lateral geniculate nucleus (LGN) was very weak or absent. Surprisingly, after prolonged use of Argus II, BOLD responses to visual input were enhanced. This is, to our knowledge, the first study tracking the neural changes of visual areas in patients after retinal implant, revealing a capacity to respond to restored visual input even after years of deprivation. PMID:27780207

  17. Vertical Gradients in Regional Alveolar Oxygen Tension in Supine Human Lung Imaged by Hyperpolarized 3He MRI

    PubMed Central

    Hamedani, Hooman; Shaghaghi, Hoora; Kadlecek, Stephen J.; Xin, Yi; Han, Biao; Siddiqui, Sarmad; Rajaei, Jennia; Ishii, Masaru; Rossman, Milton; Rizi, Rahim R.

    2015-01-01

    Purpose To evaluate whether regional alveolar oxygen tension (PAO2) vertical gradients imaged with hyperpolarized 3He can identify smoking-induced pulmonary alterations. To compare these gradients with common clinical measurements including pulmonary function tests, the six minute walk test, and the St. George’s Respiratory Questionnaire. Materials and Methods 8 healthy nonsmokers, 12 asymptomatic smokers, and 7 symptomatic subjects with chronic obstructive pulmonary disease (COPD) underwent two sets of back-to-back PAO2 imaging acquisitions in supine position with two opposite directions (top to bottom and bottom to top), followed by clinically standard pulmonary tests. The whole-lung mean, standard deviation (DPAO2) and vertical gradients of PAO2 along the slices were extracted, and the results were compared with clinically derived metrics. Statistical tests were performed to analyze the differences between cohorts. Results The anterior-posterior vertical gradients and DPAO2 effectively differentiated all three cohorts (p<0.05). The average vertical gradient PAO2 in healthy subjects was −1.03 ± 0.51 Torr/cm toward lower values in the posterior/dependent regions. The directional gradient was absent in smokers (0.36 ± 1.22 Torr/cm) and was in the opposite direction in COPD subjects (2.18 ± 1.54 Torr/cm). The vertical gradients correlated with Smoking History (p=0.004); BMI (p=0.037), PFT metrics (FEV1, p=0.025; and %RV/TLC, p=0.033) and with distance walked in six minutes (p=0.009). Discussion Regional PAO2 data indicate that cigarette smoke induces physiological alterations that are not being detected by the most widely used physiologic tests. PMID:25395184

  18. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects.

    PubMed

    Giraud, Anne Lise; Truy, Eric

    2002-01-01

    Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.

  19. Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects.

    PubMed

    Keshner, E A; Dhaher, Y

    2008-07-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (p<0.003) head motion in yaw than when on a translating platform. However, when the platform was translated in the dark or with a visual scene rotating in roll, head motion orthogonal to the plane of platform motion significantly increased (p<0.02). Visually sensitive subjects having no history of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (p<0.05) and with a stationary scene (p<0.01). We concluded that motion of the visual field could modify compensatory response kinematics of a freely moving head in planes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.

  20. Microsoft C#.NET program and electromagnetic depth sounding for large loop source

    NASA Astrophysics Data System (ADS)

    Prabhakar Rao, K.; Ashok Babu, G.

    2009-07-01

    A program, in the C# (C Sharp) language with Microsoft.NET Framework, is developed to compute the normalized vertical magnetic field of a horizontal rectangular loop source placed on the surface of an n-layered earth. The field can be calculated either inside or outside the loop. Five C# classes with member functions in each class are, designed to compute the kernel, Hankel transform integral, coefficients for cubic spline interpolation between computed values and the normalized vertical magnetic field. The program computes the vertical magnetic field in the frequency domain using the integral expressions evaluated by a combination of straightforward numerical integration and the digital filter technique. The code utilizes different object-oriented programming (OOP) features. It finally computes the amplitude and phase of the normalized vertical magnetic field. The computed results are presented for geometric and parametric soundings. The code is developed in Microsoft.NET visual studio 2003 and uses various system class libraries.

Top