Protective effects of HemoHIM on immune and hematopoietic systems against γ-irradiation.
Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae; Kim, Sung-Ho
2014-02-01
We examined the effect of HemoHIM on the protective efficacy of hematopoietic stem cells and on the recovery of immune cells against sublethal doses of ionizing radiation. Two-month-old mice were exposed to γ-rays at a dose of 8, 6.5, or 5 Gy for a30-day survival study, endogenous spleen colony formation, or other experiments, respectively. HemoHIM was injected intraperitoneally before and after irradiation. Our results showed that HemoHIM significantly decreased the mortality of sublethally irradiated mice. The HemoHIM administration decreased the apoptosis of bone marrow cells in irradiated mice. On the other hand, HemoHIM increased the formation of endogenous spleen colony in irradiated mice. In irradiated mice, the recovery of total leukocytes in the peripheral blood and lymphocytes in the spleen were enhanced significantly by HemoHIM. Moreover, the function of B cells, T cells, and NK cells regenerated in irradiated mice were significantly improved by the administration of HemoHIM. HemoHIM showed an ideal radioprotector for protecting hematopoietic stem cells and for accelerating the recovery of immune cells. We propose HemoHIM as a beneficial supplement drug during radiotherapy to alleviate adverse radiation-induced effects for cancer patients. Copyright © 2013 John Wiley & Sons, Ltd.
Kim, Eun Jung; Ji, In-Mi; Ahn, Ki-Jung; Choi, Eun Kyung; Park, Heon-Jin; Lim, Byung Uk; Song, Chang W.
2005-01-01
Purpose To reveal the interaction between β-Lapachone (β-lap) and ionizing radiation in causing cell death in RKO human colon adenocarcinoma cells, and to elucidate the potential usefulness of combined β-lap treatment and radiotherapy for cancer treatment. Materials and Methods The cytotoxicities of various treatments were determined in vitro using clonogenic and apoptotic cell death. The changes in cell cycle distribution were studied using flow cytometry and an in vitro kinase assay. The tumor growth was studied using RKO tumors grown s.c. in the hind leg BALB/c- nuslc nude mice. Results β-lap caused clonogenic cell death and rapid apoptosis in RKO cells in vitro, in a dose dependent manner. The repair of sublethal radiation damage was almost completely inhibited when cells were maintained in β-lap during the interval between the two-dose irradiation. Flow cytometry study demonstrated that β-lap induced apoptosis, independent of the cell cycle phase, and completely prohibited the induction of radiation-induced G2 arrest in irradiated cells. The prohibition of radiation-induced G2 arrest is unclear, but may be related to the profound suppression of the p53, p21 and cyclin B1-Cdc2 kinase activities observed in cells treated with β-lap. The combination of β-lap and radiation markedly enhanced the radiation-induced growth suppression of tumors. Conclusion β-lap is cytotoxic against RKO cells, both in vitro and in vivo, and also sensitized cells to ionizing radiation by inhibiting sublethal radiation damage repair. β-lap is potentially useful as a potent anti-cancer chemotherapy drug and potent radiosensitizer against caner cells. PMID:19956501
TUBERCULOSIS AND LETHAL AS WELL AS SUBLETHAL WHOLE-BODY X-RAY IRRADIATION OF GUINEA PIGS (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabler, E.
1964-02-01
Lethally total-body-x-ray-irradiated (550 r) and simultaneously Tb- infected guinea pigs died earlier (1.5 to 3.2 days) than lethally irradiated control animals. A tuberculous focus formation could not be found microscopically or macroscopically in these guinea pigs or in sublethally irradiated and simultaneously infected animals. However, in tubcrculous control animals, which were killed at this time, specific foci could be found in liver, spleen, and lungs. Using sublethal irradiation (300 r) and simultaneous Tb inoculation half of the animals died a radiation death and the rest died of tuberculosis. It was found that 86.4% of the animals die a radiation deathmore » and 13.5% because of tuberculosis when irradiated sublethally 30 days after infection. The greatest tuberculosis foci in these animais appeared in lungs, spleen, and especially in the liver ( destroyed iiver''). Tuberculous giant cells of the Langhans-type were missing in case of irradiation and simultaneous tuberculosis. They appeared again about 20 to 30 days after irradiation. The native resistance to tuberculosis was very reduced in cases of simultaneous exposure; radioinduced cell shortage and cell damage permit tuberculous focus formation only after overcoming the acute radiation syndrome in case of sublethal irradiations. (auth)« less
Sanitation of chicken eggs by ionizing radiation: HACCP and inactivation studies
NASA Astrophysics Data System (ADS)
Verde, S. Cabo; Tenreiro, R.; Botelho, M. L.
2004-09-01
The aim of this study is to develop the application of irradiation technology to chicken eggs in order to get a product free of pathogenic microorganisms. Bioburden values of eggs from chickens of different ages ( n=150) were found to not be significantly different ( p<0.05) and an average value of (2.0±0.3). 10 5 cfu/egg was obtained for the shell. Two major microbial groups were characterized in the egg's natural microbiota, no Salmonella or Campylobacter were detected. HACCP studies indicated the feed as a critical point. Dosimetry studies were carried out in a γ facility to find the best geometry and dose rate for irradiation. Whole eggs were artificially contaminated with reference strains of Salmonella typhimurium, Salmonella enteritidis, Campylobacter coli and Campylobacter jejuni and irradiated in the γ facility at sub-lethal doses (0.2-1 kGy) with a dose rate of 1.0 kGy/h. Dvalue varied between 0.31-0.26 kGy and 0.20-0.19 kGy in S. typhimurium and S. enteritidis, and between 0.21-0.18 kGy and 0.07-0.09 in C. coli and C. jejuni, for shell and yolk+white. Using sub-lethal doses up to 5 kGy, the Dvalue of natural microbiota in whole eggs was 1.29 kGy. Results show that low irradiation doses could guarantee egg sanitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapin, B.A.; Stasilevich, Z.K.
1962-07-01
The influence of sublethal doses of x radiation on the course of measles and the formation of immunity was studned. Experiments were staged on 12 monkeys. The results show that during x irradiation in a dose of 300 r and infection of the animals with the measles virus a reciprocal aggravation of the radiation and infectious processes occurs. As a result there is a sharp reduction of the resistance of the monkey's organism with attending complications, which lead to a lethal outcome in nearly haif of the cases. Experiments with irradiation and infection with measles of immune animals disclosed thatmore » the antimeasles immunity evolved earlier proved to be so stable that even irradiation does not weaken it. (auth)« less
Mareková, M; Vávrová, J; Vokurková, D; Psutka, J
2003-01-01
Acute promyelocytic leukemia is characterized by a block of myeloid differentiation. The incubation of cells with 1 micromol/l all-trans retinoic acid (ATRA) for 72 h induced differentiation of HL-60 cells and increased the number of CD11b positive cells. Morphological and functional changes were accompanied by a loss of proliferative capacity. Differentiation caused by preincubation of leukemic cells HL-60 with ATRA is accompanied by loss of clonogenicity (control cells: 870 colonies/10(3) cells, cells preincubated with ATRA: 150 colonies/10(3) cells). D0 for undifferentiated cells was 2.35 Gy, for ATRA differentiated cells 2.46 Gy. Statistical comparison of clonogenity curves indicated that in the whole range 0.5-10 Gy the curves are not significantly different, however, in the range 0.5-3 Gy ATRA differentiated cells were significantly more radioresistant than non-differentiated cells. When HL-60 cells preincubated with 1 micromol/l ATRA were irradiated by a sublethal dose of 6 Gy, more marked increase of apoptotic cells number was observed 24 h after irradiation and the surviving cells were mainly in the G1 phase of the cell cycle, while only irradiated cells were accumulated in G(2) phase. Our results imply that preincubation of cells with ATRA accelerates apoptosis occurrence (24 h) after irradiation by high sublethal dose of 6 Gy. Forty-eight hours after 6 Gy irradiation, late apoptotic cells were found in the group of ATRA pretreated cells, as determined by APO2.7 positivity. This test showed an increased effect (considering cell death induction) in comparison to ATRA or irradiation itself.
consecutive BALB/c or rat skin tail grafts. One week following the last injection or the rejection of the second, skin graft , the mice either were grafted...resulted in prolonged survival of subsequent allogenic skin grafts in sublethally irradiated mice. The second-set response to a xenogenic skin graft was
Rescue of CD8+ T cell vaccine memory following sublethal γ irradiation.
McFarland, Hugh I; Berkson, Julia D; Lee, Jay P; Elkahloun, Abdel G; Mason, Karen P; Rosenberg, Amy S
2015-07-31
Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (D(d)) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1-3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic "signature of rescue" identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated D(d) skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic D(d) expressing bone marrow cells 1-4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation. Published by Elsevier Ltd.
Resistance of a cultured fish cell line (CAF-MM1) to. gamma. irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitani, H.; Etoh, H.; Egami, N.
1982-02-01
Fish are generally more resistant to whole-body ionizing radiation than mammals. To study the radiosensitivity of fish in vitro, CAF-MM1 cells derived from the fin of the goldfish, Carassius auratus, were used. The survival parameters of CAF-MM1 obtained after ..gamma.. irradiation at 26/sup 0/C were 325 rad for D/sub o/, 975 rad for Dq, and 15 for n. No mammalian cell line with such a low sensitivity in the presence of O/sub 2/ has been reported. It was found that the large initial shoulder of the survival curve was paralleled by substantial repair of sublethal damage as evidenced by split-dosemore » experiments. This low sensitivity to ..gamma.. irradiation did not change upon the administration of caffeine or postirradiation illumination, although these treatments were effective after uv irradiation. The decrease in the mitotic index in CAF-MM1 occurred immediately after irradiation, and it recovered within a very short time. This indicated that the duration of G2 arrest was shorter than that observed in mammalian cells. The data also suggest that the resistance of fish to whole-body irradiation is attributable to resistance at the cellular level.« less
THE EFFECT OF IONIZING RADIATION ON THE ANTITOXIC AND ANTIMICROBIAL IMMUNITY (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emel'yanova, O.V.; Geintse, E.A.
1962-01-01
An attempt was made to clarify the effect of ionizing radiation on the antimlcroblal and the antitoxic immunity of animals after vaccinating them with a still experimental, complex vaccine adsorbed on Al hydroxide. The vaccine contained the antigens of dysentery and typhoid fever bacteria and the anatoxlns of botulin, gas gangrene, and teta nus. The twice vaccinated chinchillas were exposed to a sublethal dose of 600 r of Co/sup 60/ gamma rays during the immunity period, 10 days after the vaccination. It was found that this exposure did not affect the antitoxic immunity. After revaccination, a decrease of the antitoxinmore » content to half of its value was noted in some animals. Irradiation of mice with 450 r of x rays 10 days after the revaccination resulted in a similar reduction of the antimicrobial activity. Thus, previous immunization increased the resistance against harmful radiation effects. (TTT)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallicchio, V.S.; Chen, M.G.; Watts, T.D.
1984-11-01
The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly,more » as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.« less
Han, Jeonghoon; Won, Eun-Ji; Lee, Bo-Young; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Leung, Kenneth Mei Yee; Lee, Yong Sung; Lee, Jae-Seong
2014-07-01
Nuclear radioisotope accidents are potentially ecologically devastating due to their impact on marine organisms. To examine the effects of exposure of a marine organism to radioisotopes, we irradiated the intertidal copepod Tigriopus japonicus with several doses of gamma radiation and analyzed the effects on mortality, fecundity, and molting by assessing antioxidant enzyme activities and gene expression patterns. No mortality was observed at 96h, even in response to exposure to a high dose (800Gy) of radiation, but mortality rate was significantly increased 120h (5 days) after exposure to 600 or 800Gy gamma ray radiation. We observed a dose-dependent reduction in fecundity of ovigerous females; even the group irradiated with 50Gy showed a significant reduction in fecundity, suggesting that gamma rays are likely to have a population level effect. In addition, we observed growth retardation, particularly at the nauplius stage, in individuals after gamma irradiation. In fact, nauplii irradiated with more than 200Gy, though able to molt to copepodite stage 1, did not develop into adults. Upon gamma radiation, T. japonicus showed a dose-dependent increase in reactive oxygen species (ROS) levels, the activities of several antioxidant enzymes, and expression of double-stranded DNA break damage genes (e.g. DNA-PK, Ku70, Ku80). At a low level (sub-lethal dose) of gamma irradiation, we found dose-dependent upregulation of p53, implying cellular damage in T. japonicus in response to sub-lethal doses of gamma irradiation, suggesting that T. japonicus is not susceptible to sub-lethal doses of gamma irradiation. Additionally, antioxidant genes, phase II enzyme (e.g. GSTs), and cellular chaperone genes (e.g. Hsps) that are involved in cellular defense mechanisms also showed the same expression patterns for sublethal doses of gamma irradiation (50-200Gy). These findings indicate that sublethal doses of gamma radiation can induce oxidative stress-mediated DNA damage and increase the expression of antioxidant enzymes and proteins with chaperone-related functions, thereby significantly affecting life history parameters such as fecundity and molting in the copepod T. japonicus. Copyright © 2014 Elsevier B.V. All rights reserved.
Oligodendroglial response to ionizing radiation: Dose and dose-rate response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, R.P.
1991-12-01
An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DICmore » 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.« less
Oligodendroglial response to ionizing radiation: Dose and dose-rate response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Richard P.
1991-12-01
An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute γ-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DICmore » 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.« less
Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swartz, R.P.
1982-01-01
The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytesmore » exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.« less
Hofer, Michal; Pospísil, Milan; Sefc, Ludek; Dusek, Ladislav; Vacek, Antonín; Holá, Jirina; Hoferová, Zuzana; Streitová, Denisa
2010-08-01
Research areas of 'post-exposure treatment' and 'cytokines and growth factors' have top priority among studies aimed at radiological nuclear threat countermeasures. The experiments were aimed at testing the ability of N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA), an adenosine A(3) receptor agonist, to modulate hematopoiesis in sublethally irradiated mice, when administered alone or in a combination with granulocyte colony-stimulating factor (G-CSF) in a two-day post-irradiation treatment regimen. A complete analysis of hematopoiesis including determination of numbers of bone marrow hematopoietic progenitor and precursor cells, as well as of numbers of peripheral blood cells, was performed. The outcomes of the treatment were assessed at days 3 to 22 after irradiation. IB-MECA alone has been found to induce a significant elevation of numbers of bone marrow granulocyte-macrophage progenitor cells (GM-CFC) and peripheral blood neutrophils. IB-MECA given concomitantly with G-CSF increased significantly bone marrow GM-CFC and erythroid progenitor cells (BFU-E) in comparison with the controls and with animals administered each of the drugs alone. The findings suggest the ability of IB-MECA to stimulate hematopoiesis and to support the hematopoiesis-stimulating effects of G-CSF in sublethally irradiated mice.
Oligodendroglial response to ionizing radiation: Dose and dose-rate response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, R.P.
1991-01-01
An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute [gamma]-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DICmore » 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tominz, L.; Andri, L.; Caprotti, M.
1963-03-01
Cholinesterase activity in blood and in liver, kidney, and brain homogenates of rats subjected to sublethal doses of ionizing radiation was studied. Male rats ( approximates 250 g) were divided into groups, of which the control group numbered 12. Another group (13 animals) was sacrificed 3 hr after total irradiation (230 kv; 12 ma; filter 1 mm Cu, 1 mm Al; total dose 600 r); a third group was sacrificed 24 hr after total irradiation. Cholinesterase activity was measured by the method of Salvini and Tominz and of Tominz and Cazzaniga; results, expressed in mu moles NaOH consumed in 1more » min by 1 ml blood or 1 g tissue, were as follows for controls, 3-hr animals, and 24-hr animals: liver, 3.84 plus or minus 0.33, 4.11 plus or minus 0.19,4.13 plus or minus 0.16; kidneys, 2.06 plus or minus 0.27, 1.9 plus or minus 0.20, 1.8 plus or minus 0.09; brain, 8.7 plus or minus 1.5, 9.8 plus or minus 0.56, 9.19 plus or minus 1.2; total blood, 0.882 plus or minus 0.164, 0.884 plus or minus 0.031, 0.715 plus or minus 0.024. Thus, significant variations in tissue cholinesterase do not appear on total irradiation; on the other hand total blood activity drops by 23% at the third hr and 20% at the 24th. (BBB)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trautmann, J.
1961-01-01
S>The effects of small radiation doses are reviewed. Changes in organs of mice and rabbits after irradiation with sublethal doses are studied. Damages in female genital glands and fetuses of mice are investigated. (Gmelin Inst.)
Effects of whole-body x irradiation on the biogenesis of creatine in the rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thyagarajan, P.; Vakil, U.K.; Sreenivasan, A.
1977-06-01
Influences of whole-body x irradiation on various aspects of creatine metabolism have been studied. Exposures to sublethal or lethal doses of x radiation results in excessive urinary excretion as well as higher accumulation of creatine in the skeletal muscle of x-irradiated rats. A sudden fall in CPK activity in muscle with a concomitant rise in serum suggests that changes in serum and tissue CPK activity are of an adaptive nature in rats exposed to sublethal doses of x radiation. In vitro studies on creatine synthesis shows that transaminidase and methyl transferase activities in kidneys and liver, respectively, are decreased onmore » the 5th day in the x-irradiated, are decreased on the 5th day in the x-irradiated rat. However, on the 8th day, the enzyme activities are restored to normal.« less
The radiobiology of laser-driven particle beams: focus on sub-lethal responses of normal human cells
NASA Astrophysics Data System (ADS)
Manti, L.; Perozziello, F. M.; Borghesi, M.; Candiano, G.; Chaudhary, P.; Cirrone, G. A. P.; Doria, D.; Gwynne, D.; Leanza, R.; Prise, K. M.; Romagnani, L.; Romano, F.; Scuderi, V.; Tramontana, A.
2017-03-01
Accelerated proton beams have become increasingly common for treating cancer. The need for cost and size reduction of particle accelerating machines has led to the pioneering investigation of optical ion acceleration techniques based on laser-plasma interactions as a possible alternative. Laser-matter interaction can produce extremely pulsed particle bursts of ultra-high dose rates (>= 109 Gy/s), largely exceeding those currently used in conventional proton therapy. Since biological effects of ionizing radiation are strongly affected by the spatio-temporal distribution of DNA-damaging events, the unprecedented physical features of such beams may modify cellular and tissue radiosensitivity to unexplored extents. Hence, clinical applications of laser-generated particles need thorough assessment of their radiobiological effectiveness. To date, the majority of studies have either used rodent cell lines or have focussed on cancer cell killing being local tumour control the main objective of radiotherapy. Conversely, very little data exist on sub-lethal cellular effects, of relevance to normal tissue integrity and secondary cancers, such as premature cellular senescence. Here, we discuss ultra-high dose rate radiobiology and present preliminary data obtained in normal human cells following irradiation by laser-accelerated protons at the LULI PICO2000 facility at Laser Lab Europe, France.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, M.L.; MacVittie, T.J.
1985-01-01
Hemopoietic effects of the reticuloendothelial agent glucan were assayed in normal mice and in mice hemopoietically depleted by exposure to /sup 60/Co radiation. In normal mice, glucan administration increased the content of bone marrow and splenic transplantable pluripotent hemopoietic stem cells (CFU-2), committed granulocyte-macrophage progenitor cells (GM-CFC), and pure macrophage progenitor cells (M-CFC). Erythroid progenitor cells (CFU-e) were increased only in the spleen. In sublethally irradiated mice (650 rads), glucan increased the number of endogeneous pluripotent hemopoietic stem cells (E-CFU) when administered either before or after irradiation. The most pronounced effects were observed when glucan was administered 1 day before,more » 1 h before, or 1 h after irradiation. In addition, the administration of glucan before lethal irradiation (900 rads) enhanced survival. The most significant results were seen when glucan was administered 1 day prior to irradiation. The possibility of using agents such as glucan to enhance hemopoietic reconstitution and prevent septicemia following chemotherapy and/or radiotherapy is discussed.« less
an allogenic skin graft can be significantly inhibited, in sublethally irrsdiated mice, by specific antisera, while the first-set response to a...xenogenic skin graft remains resistant to similar treatient. Specific antisera had no effect upon a pre-existing second-set response. The significance of these data is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macvittie, T.J.; Monroy, R.L.; Patchen, M.L.
The short biologic half-life of the peripheral neutrophil (PMN) requires an active granulopoietic response to replenish functional PMSs and to remain a competent host defence in irradiated animals. Recombinant human G-CSF (rhG-CSF) was studied for its ability to modulate hemopoiesis in normal dogs as well as to decrease therapeutically the severity and duration of neutropenia in sublethally and lethally irradiated dogs. For the normal dog, subcutaneous administration of rhG-CSF induced neutrophilia within hours after the first injection; total PMSs continued to increase (with plateau phases) to mean peak values of 1000 per cent of baseline at the end of themore » treatment period (12-14 days). Bone-marrow-derived granulocyte-macrophage colony-forming cells (GM-CFC) increased significantly during treatment. For a sublethal 200 cGy dose, treatment with rhG-CSF for 14 consecutive days decreased the severity and shortened the duration of neutropenia and thrombocytopenia. The radiation-induced lethality of 60 per cent after a dose of 350 cGy was associated with marrow-derived GM-CFC survival of 1 per cent.« less
Anorexia in rats after protracted whole-body irradiation with low doses (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schraub, A.; Sattler, E.L.; Doell, G.
1975-07-01
In our experiments, carried out hitherto, concerning the effect of incorporated and radioactive substances, weight behaviour and food uptake have proved to be a sensitive test. With regard to these experiments and the half- life of the radionuclides used, it is reported about trial series in Wistar rats. These rats were applied, with Co-60 gamma irradiation, different whole-body doses protracted over 48 hours. A total of 32 groups of experimental animals (20 animals each) was exposed to irradiation doses of lethal, medium lethal, and sublethal ranges, control and pseudo-irradiation series included. The experiments were carried out under observance of constantmore » irradiation and attitude conditions, night and day changes, as conditioned by the season, included. Even in the inferior sublethal range (12 to 24 R), a significant trend of decreased food uptake is registered. This trend remains for a short period after the end of irradiation, but then it returns to normal conditions. Furthermore, a new decrease with subsequent increase seems to become evident - about ten days after termination of the radiotherapy (especially after several hundred R); report about these items will be made later on. (orig.)« less
Winckler, K; Fidhiany, L
1996-04-01
In a previous study we observed that a constant sublethal UVA (320-400 nm) irradiation had a significant effect on the general metabolism in the Convict-cichlid fish (Cichlasoma nigrofasciatum) [Winckler, K. and Fidhiany, L. (1996) J. Photochem. Photobiol. B. Biol. (In press)]. In the present study we show that sublethal UVA irradiation in combination with elevated environmental temperature has a deleterious effect on the same population. The threshold temperature for a sudden increase in mortality of fish receiving an additional sublethal UVA irradiation was 32 degrees C. Prior to the increased mortality, the fish started to avoid the UV light source when the water temperature increased to 31.5 degrees C. Mortality decreased when the temperature declined below 31.5 degrees C. As soon as the temperature changed to normal (adapted) condition (27-29 degrees C) mortality returned to normal levels. In contrast, no changes of fish behavior or mortality were observed at elevated temperature in the nonirradiated reference population. The percentages of fish surviving the high temperature stress were 21.9% for the UVA population and 96.8% for the reference population. The specific oxygen consumption (SOC, average +/- SD) of the survivors from the UVA population during temperature stress was 0.21 +/- 0.05 mg O2 h-1 g body weight (BW)-1, while it was 0.54 +/- 0.11 mg O2 h-1 g BW-1 in the reference population. After the environmental temperature returned below the apparent upper temperature tolerance limit, the oxygen consumption of the UVA population gradually normalized. The SOC measured at different temperature levels--after after the fish passed the temperature stress--showed no significant differences between the UVA population and its reference at 23, 25, 27 and 29 degrees C. However, the SOC at 31 degrees C was significantly (P < 0.05) lower than reference, while at 33 degrees C it was higher (P < 0.10).
Hooper, Andrea T.; Butler, Jason M.; Nolan, Daniel J; Kranz, Andrea; Iida, Kaoruko; Kobayashi, Mariko; Kopp, Hans-Georg; Shido, Koji; Petit, Isabelle; Yanger, Kilangsungla; James, Daylon; Witte, Larry; Zhu, Zhenping; Wu, Yan; Pytowski, Bronislaw; Rosenwaks, Zev; Mittal, Vivek; Sato, Thomas N.; Rafii, Shahin
2011-01-01
SUMMARY The phenotypic attributes and molecular determinants for the regeneration of bone marrow (BM) sinusoidal endothelial cells (SECs) and their contribution to hematopoiesis are unknown. We show that after myelosuppression VEGFR2 activation promotes reassembly of regressed SECs, reconstituting hematopoietic stem and progenitor cells (HSPCs). VEGFR2 and VEGFR3 expression are restricted to BM vasculature, demarcating a continuous network of VEGFR2+VEGFR3+Sca1− SECs and VEGFR2+VEGFR3−Sca1+ arterioles. While chemotherapy (5FU) and sublethal irradiation (650 rad) induce minor SEC regression, lethal irradiation (950 rad) induces severe regression of SECs requiring BM transplantation (BMT) for regeneration. Conditional deletion of VEGFR2 in adult mice blocks regeneration of SECs in sublethally irradiated animals, preventing hematopoietic reconstitution. Inhibition of VEGFR2 signaling in lethally irradiated wild type mice rescued with BMT severely impairs SEC reconstruction, preventing engraftment and reconstitution of HSPCs. Therefore, activation of VEGFR2 is critical for regeneration of VEGFR3+Sca1− SECs that are essential for engraftment and restoration of HSPCs and hematopoiesis. PMID:19265665
USDA-ARS?s Scientific Manuscript database
The limitations of current fungicides necessitate a search for new approaches. Low-dose or sub-lethal UV-C irradiation (12.36 J/m2) alone is not effective in controlling fungal diseases, especially when the plants are exposed to UV-C irradiation during the day. We found, however, that application ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, R.D.; Lowry, R.P.; Gomersall, M.
1985-07-01
It has been shown that fulminant acute rejection of rat cardiac allografts across a full haplotype disparity may occur as a direct result of adoptive transfer of sensitized W3/25+ MRC OX8- SIg- T helper/DTH syngeneic spleen cells to sublethally irradiated recipients. In order to establish the immunohistologic parameters of this form of rejection, allografts and recipient lymphoid tissue were analyzed using a panel of monoclonal antibodies of known cellular distribution. These data were compared with those obtained following reconstitution of irradiated allograft recipients with unseparated sensitized spleen cells, with unreconstituted irradiated donor recipient pairs, with unmodified first-set rejection, and withmore » induced myocardial infarction of syngeneic heart grafts transplanted to normal and to sublethally irradiated recipients. Rejecting cardiac allografts transplanted to all reconstituted irradiated recipients were characterized by extensive infiltration with MRC OX8+ (T cytotoxic-suppressor, natural killer) cells even when this subset was virtually excluded from the reconstituting inocula. A similar proportional accumulation of MRC OX8+ cells observed at the infarct margins of syngeneic heart grafts transplanted to irradiated unreconstituted recipients greatly exceeded that present in normal nonirradiated controls. These data provide evidence that under conditions of heavy recipient irradiation, MRC OX8+ cells may be sequestered within heart grafts in response to nonspecific injury unrelated to the rejection process.« less
EFFECTS OF X-IRRADIATION ON THE HEXOBARBITAL METABOLIZING ENZYME SYSTEM OF RAT LIVER MICROSOMES.
RADIATION EFFECTS , *ENZYME INHIBITORS, *HYPNOTICS AND SEDATIVES, ENZYMES, BIOSYNTHESIS, METABOLISM, DETOXIFICATION, BARBITURATES, OXIDATION...MICROSOMES, LIVER, REGENERATION(ENGINEERING), EXCISION, SUBLETHAL DOSAGE, TOXICITY , HYPNOSIS, SLEEP, HEAD(ANATOMY), MALES, FEMALES, RATS.
THE METABOLIC RESPONSE TO RADIATION IN THE PRIMATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, C.G.
1959-10-31
At present there is little information available concerning the metabolism of man following exposure to ionizing radiation in the lethal range. Reference is made in vague terms to the maintenance of fluid and electrolytes, the administration of a bland diet, intravenous glucose, salines etc., with little experimental evidence from primate studies to indicate the benefit of these modes of therapy. It is felt, therefore, that results of metabolic studies made in sub-human primates will be of therapeutic interest. Adult monkeys of both sexes were exposed to whole-body irradiation with x and gamma rays. The absorbed doses were in the sub-lethalmore » and lower lethal range for monkeys (400 to 500 r), and were administered at rates varying from 7 to 124 r/min. Observations were made on eleven monkeys that were kept in metabolic cages before and after irradiation. The derangement of metabolism consequent to irradiation was studied. After physioiogical recovery of eight surviving animals, the experiment was repeated using identical dietary intake and experimental technique but omitting irradiation. Comparisons were then raade between the results of the irradiation study and those obtained after physiological recovery. Data are presented on the clinical physiology of representative animals, including data on body weights, food and fluid intakes, urine and faecal outputs, insensible losses, metabolic rates, balances of water, nitrogen and electrolytes, nitrogen utilization, and caloric intakes. It is concluded that the metabolic response to radiation injury in the lethal range does not differ qualitatively in the primate from that of any injury and that the irradiated primate is not at a disadvantage until the time of anabolic response. At that time the tissues responsible for normal reparative processes, themselves injured by the radiation, are no longer able to perform normal restorative functions, the resultant catabolism being in excess of that from equivalent injury from other causes. The implications of these studies on the clinical nutrition of the human exposed to sublethal doses of radiation are considered. (C.H.)« less
Radiosensitizing effects of neem (Azadirachta indica) oil.
Kumar, Ashok; Rao, A R; Kimura, H
2002-02-01
Radiosensitization by neem oil was studied using Balbc/3T3 cells and SCID cells. Neem oil enhanced the radiosensitivity of the cells when applied both during and after x-irradiation under aerobic conditions. Neem oil completely inhibited the repair of sublethal damage and potentially lethal damage repair in Balbc/3T3 cells. The cytofluorimeter data show that neem oil treatment before and after x-irradiation reduced the G(2) + M phase, thus inhibiting the expression of the radiation induced arrest of cells in the G(2) phase of the cell cycle. However, SCIK cells (derived from the SCID mouse), deficient in DSB repair, treated with neem oil did not show any enhancement in the radiosensitivity. There was no effect of neem oil on SLD repair or its inhibition in SCIK cells. These results suggest that neem oil enhanced the radiosensitivity of cells by interacting with residual damage after x-irradiation, thereby converting the sublethal damage or potentially lethal damage into lethal damage, inhibiting the double-strand break repair or reducing the G(2) phase of the cell cycle. Copyright 2002 John Wiley & Sons, Ltd.
Decomposition reaction of the veterinary antibiotic ciprofloxacin using electron ionizing energy.
Cho, Jae Young; Chung, Byung Yeoup; Lee, Kyeong-Bo; Lee, Geon-Hwi; Hwang, Seon Ah
2014-12-01
The application of electron ionizing energy for degrading veterinary antibiotic ciprofloxacin (CFX) in aqueous solution was elucidated. The degradation efficiency of CFX after irradiation with electron ionizing energy was 38% at 1 kGy, 80% at 5kGy, and 97% at 10 kGy. Total organic carbon of CFX in aqueous solution after irradiation with electron ionizing energy decreased 2% at 1 kGy, 18% at 5 kGy, and 53% at 10 kGy. The CFX degradation products after irradiation with electron ionizing energy were CFX1 ([M+H] m/z 330), CFX2 ([M+H] m/z 314), and CFX3 ([M+H] m/z 263). CFX1 had an F atom substituted with OH and CFX2 was expected to originate from CFX via loss of F or H2O. CFX3 was expected to originate from CFX via loss of the piperazynilic ring. Among the several radicals, hydrate electron (eaq(-)) is expected to play an important role in degradation of veterinary antibiotic during irradiation with electron ionizing energy. The toxicity of the degraded products formed during irradiation with electron ionizing energy was evaluated using microbes such as Escherichia coli, Pseudomonas putida, and Bacillus subtilis, and the results revealed that the toxicity decreased with irradiation. These results demonstrate that irradiation technology using electron ionizing energy is an effective was to remove veterinary antibiotics from an aquatic ecosystem. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw
2017-08-18
Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.
Temperature dependency of the repair of sublethal damage in cultured fish cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitani, H.; Egami, N.
1984-01-01
Established culture fish cells, CAF-MMMI, derived form the goldfish, Carassium auratus, were able to grow and form colonies over a temperature range from 20 to 33/sup 0/ C. While the growth rate of these cells was dependent on incubation temperature, colony formation had no effect on cell survival after ..gamma.. irradiation at high dose rates. The lethal effect of ..gamma.. rays was decreased at low dose rates at 20-33/sup 0/ C, but not at 6/sup 0/ C. Similarly, split-dose experiments showed that recovery from sublethal damage occurred at the higher temperatures, but not at 6/sup 0/ C. These data aremore » consistent with the in vivo data on the effect of temperature on the radiosensitivity and repair of sublethal damage reported previously for live fish.« less
Free radical production by high energy shock waves--comparison with ionizing irradiation.
Morgan, T R; Laudone, V P; Heston, W D; Zeitz, L; Fair, W R
1988-01-01
Fricke chemical dosimetry is used as an indirect measure of the free radical production of ionizing irradiation. We adapted the Fricke ferrous sulfate radiation dosimeter to examine the chemical effects of high energy shock waves. Significant free radical production was documented. The reaction was dose dependent, predictably increased by acoustic impedance, but curvilinear. A thousand shocks at 18 kilovolts induced the same free radical oxidation as 1100 rad cobalt-60 gamma ionizing irradiation, increasing to 2900 rad in the presence of an air-fluid zone of acoustic impedance. The biological effect of these free radicals was compared to that of cobalt-60 ionizing irradiation by measuring the affect on Chinese hamster cells by clonogenic assay. While cobalt-60 irradiation produced a marked decrease in clonogenic survivors, little effect was noted with high energy shock waves. This suggested that the chemical effects produced by shock waves were either absent or attenuated in the cells, or were inherently less toxic than those of ionizing irradiation.
In vivo postirradiation protection by a vitamin E analog, alpha-TMG.
Satyamitra, Merriline; Uma Devi, P; Murase, Hironobu; Kagiya, V T
2003-12-01
The water-soluble vitamin E derivative alpha-TMG is an excellent radical scavenger. A dose of 600 mg/kg TMG significantly reduced radiation clastogenicity in mouse bone marrow when administered after irradiation. The present study was aimed at investigating the radioprotective effect of postirradiation treatment with alpha-TMG against a range of whole-body lethal (8.5-12 Gy) and sublethal (1-5 Gy) doses of radiation in adult Swiss albino mice. Protection against lethal irradiation was evaluated from 30-day mouse survival and against sublethal doses was assessed from micronuclei and chromosomal aberrations in the bone marrow 24 h after irradiation. An intraperitoneal injection of 600 mg/kg TMG within 10 min of lethal irradiation increased survival, giving a dose modification factor (DMF) of 1.09. TMG at doses of 400 mg/kg and 600 mg/kg significantly reduced the percentage of aberrant metaphases, the different types of aberrations, and the number of micronucleated erythrocytes. DMFs of 1.22 and 1.48 for percentage aberrant metaphases and 1.6 and 1.98 for micronuclei were obtained for 400 mg/kg and 600 mg/kg TMG, respectively. No drug toxicity was observed at these doses. The effectiveness of TMG when administered postirradiation suggests its possible utility for protection against unplanned radiation exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, V.M.; Adamovicz, J.J.; Madonna, G.S.
Prompt, cytokine-mediated restoration of hematopoiesis is a prerequisite for survival after irradiation. Therapy with biologic response modifiers (BRMs), such as LPS, 3D monophosphoryl lipid A (MPL), and synthetic trehalose dicrynomycolate (S-TDCM) presumably accelerates hematopoietic recovery after irradiation are poorly defined. One hour after sublethal (7.0 Gy) {sup 60}Co gamma irradiation, B6D2F1/J female mice received a single i.p. injection of LPS, MPL, S-TDCM, an extract from Serratia marcescens (Sm-BRM), or Tween 80 in saline (TS). Five hours later, a quantitative reverse transcription-PCR assay demonstrated marked splenic gene expression for IL-1{beta}, IL-3, IL-6, and granulocyte-CSF (G-CSF). Enhanced gene expression for TNF-{alpha}, macrophage-CSFmore » (M-CSF), and stem cell factor (SCF) was not detected. Injection of any BRM further enhanced cytokine gene expression and plasma levels of CSF activity within 24 h after irradiation and hastened bone marrow recovery. Mice injected with S-TDCM or Sm-BRM sustained expression of the IL-6 gene for at least 24 h after irradiation. Sm-BRM-treated mice exhibited greater gene expression for IL-1{beta}, IL-3, TNF-{alpha}, and G-CSF at day 1 than any other BRM. When challenged with 2 LD{sub 50/30} of Klebsiella pneumoniae 4 days after irradiation, 100% of Sm-BRM-treated mice and 70% of S-TDCM-treated mice survived, whereas {le}30% of mice treated with LPS, MPL, or TS survived. Thus, sublethal irradiation induces transient, splenic cytokine gene expression that can be differentially amplified and prolonged by BRMs. BRMs that sustained and/or enhanced irradiation-induced expression of specific cytokine genes improved survival after experimental infection. 67 refs., 7 figs., 1 tab.« less
Bradley, Derek; McNeil, Brian; Laffey, John G; Rowan, Neil J
2012-06-01
The effects of mild conventional food-processing conditions on Listeria monocytogenes survival to pulsed UV (PUV) irradiation and virulence-associated characteristics were investigated. Specifically, this study describes the inability of 10 strains representative of 3 different culture forms or morphotypes of L. monocytogenes to adapt to normally lethal levels of PUV-irradiation after exposure to sub-lethal concentrations of salt (7.5% (w/v) NaCl for 1 h), acid (pH 5.5 for 1 h), heating (48 °C for 1 h) or PUV (UV dose 0.08 μJ/cm(2)). Findings showed that the order of increasing sensitivity of L. monocytogenes of non-adapted and stressed morphotypes to low pH (pH 3.5 for 5 h, adjusted with lactic), high salt (17.5% w/v NaCl for 5 h), heating (60 °C for 1 h) and PUV-irradiation (100 pulses at 7.2 J and 12.8 J, equivalent to UV doses of 2.7 and 8.4 μJ/cm(2) respectively) was typical wild-type smooth (S/WT), atypical filamentous rough (FR) and atypical multiple-cell-chain (MCR) variants. Exposure of L. monocytogenes cells to sub-lethal acid, salt or heating conditions resulted in similar or increased susceptibility to PUV treatments. Only prior exposure to mild heat stressing significantly enhanced invasion of Caco-2 cells, whereas subjection of L. monocytogenes cells to combined sub-lethal salt, acid and heating conditions produced the greatest reduction in invasiveness. Implications of these findings are discussed. This constitutes the first study to show that pre-exposure to mild conventional food-processing stresses enhances sensitivity of different culture morphotypes of L. monocytogenes to PUV, which is growing in popularity as an alternative or complementary approach for decontamination in the food environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Long-term erythropoietic repopulating ability of old, young, and fetal stem cells.
Harrison, D E
1983-05-01
It is possible that erythropoietic stem cells do not age. This would mean that stem cells from old donors can function as well as those from young or fetal donors. The competitive repopulation assay has been used to test long-term stem cell function by directly comparing how well competing stem cells repopulate a recipient and produce differentiated cell types. C57BL/6J (B6) mice were used as donors, while recipients and competitors were WBB6F1 hybrids with genetically distinguishable hemoglobin. Lethally irradiated young WBB6F1 recipients were given a mixture of 2.5 X 10(6) cells from B6 old marrow, young marrow, or fetal liver donors; each recipient also received a standard dose of 1 X 10(6) marrow cells from a pool of young WBB6F1 competitors. Surprisingly, the old marrow cells competed the best in repopulating the recipients. This pattern was maintained even after recovery from sublethal irradiation, a treatment that severely stresses stem cells. This stress was demonstrated when sublethal irradiation caused a 20-fold decline in repopulating ability measured using hemoglobin markers, and a 3- to 7-fold decline using chromosome markers. Stem cells from old marrow competed better than young or fetal cells in similar experiments using immunologically crippled recipients or using unirradiated W/Wv recipients that are immunologically intact. In both types of recipients, the advantage of old marrow cells again persisted after recovery from sublethal irradiation. Other genotypes were tested, and marrow cells from old B6CBAF1 donors competed better than those from young donors of that genotype. However, marrow cells from young CBA donors completed better than those from old CBA donors. These results support the hypothesis that stem cells do not age, and suggest that regulatory changes with age promote rapid stem cell repopulation in B6 and B6CBAF1 mice, but inhibit it in CBA mice.
High doses of ionizing radiation on bone repair: is there effect outside the irradiated site?
Rocha, Flaviana Soares; Dias, Pâmella Coelho; Limirio, Pedro Henrique Justino Oliveira; Lara, Vitor Carvalho; Batista, Jonas Dantas; Dechichi, Paula
2017-03-01
Local ionizing radiation causes damage to bone metabolism, it reduces blood supply and cellularity over time. Recent studies indicate that radiation promotes biological response outside the treatment field. The aim of this study was to investigate the effects of ionizing radiation on bone repair outside the irradiated field. Ten healthy male Wistar rats were used; and five animals were submitted to radiotherapy on the left femur. After 4 weeks, in all animals were created bone defects in the right and left femurs. Seven days after surgery, animals were euthanized. The femurs were removed and randomly divided into 3 groups (n=5): Control (C) (right femur of the non-irradiated animals); Local ionizing radiation (IR) (left femur of the irradiated animals); Contralateral ionizing radiation (CIR) (right femur of the irradiated animals). The femurs were processed and embedded in paraffin; and bone histologic sections were evaluated to quantify the bone neoformation. Histomorphometric analysis showed that there was no significant difference between groups C (24.6±7.04) and CIR (25.3±4.31); and IR group not showed bone neoformation. The results suggest that ionizing radiation affects bone repair, but does not interfere in bone repair distant from the primary irradiated site. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sublethal Total Body Irradiation Leads to Early Cerebellar Damage and Oxidative Stress
2010-01-01
mice: protective effect of alpha - lipoic acid . Behav Brain Res 2007b; 177(1): 7-14. [8] Manda K, Ueno M, Anzai K. Melatonin mitigates oxidative...Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha - lipoic acid . Behav Brain Res 2008b...1977; 171(1): 39-50. [6] Manda K, Ueno M, Moritake T, Anzai K. - Lipoic acid attenuates x-irradiation-induced oxidative stress in mice. Cell Biol
Rohrer, J; Conley, M E
1999-11-15
Gene therapy for inherited disorders is more likely to succeed if gene-corrected cells have a proliferative or survival advantage compared with mutant cells. We used a competitive reconstitution model to evaluate the strength of the selective advantage that Btk normal cells have in Btk-deficient xid mice. Whereas 2,500 normal bone marrow cells when mixed with 497,500 xid cells restored serum IgM and IgG3 levels to near normal concentrations in 3 of 5 lethally irradiated mice, 25,000 normal cells mixed with 475,000 xid cells reliably restored serum IgM and IgG3 concentrations and the thymus-independent antibody response in all transplanted mice. Reconstitution was not dependent on lethal irradiation, because sublethally irradiated mice all had elevated serum IgM and IgG3 by 30 weeks postreconstitution when receiving 25,000 normal cells. Furthermore, the xid defect was corrected with as few as 10% of the splenic B cells expressing a normal Btk. When normal donor cells were sorted into B220(+)/CD19(+) committed B cells and B220(-)/CD19(-) cell populations, only the B220(-)/CD19(-) cells provided long-term B-cell reconstitution in sublethally irradiated mice. These findings suggest that even inefficient gene therapy may provide clinical benefit for patients with XLA.
Lemos, J; Neuparth, T; Trigo, M; Costa, P; Vieira, D; Cunha, L; Ponte, F; Costa, P S; Metello, L F; Carvalho, A P
2017-02-01
This study investigated to what extent a single exposure to low doses of ionizing radiation can induce genotoxic damage in irradiated adult zebrafish (Danio rerio) and its non-irradiated F1 progeny. Four groups of adult zebrafish were irradiated with a single dose of X-rays at 0 (control), 100, 500 and 1000 mGy, respectively, and couples of each group were allowed to reproduce following irradiation. Blood of parental fish and whole-body offspring were analysed by the comet assay for detection of DNA damage. The level of DNA damage in irradiated parental fish increased in a radiation dose-dependent manner at day 1 post-irradiation, but returned to the control level thereafter. The level of DNA damage in the progeny was directly correlated with the parental irradiation dose. Results highlight the genotoxic risk of a single exposure to low-dose ionizing radiation in irradiated individuals and also in its non-irradiated progeny.
Gene expression profiling of breast cancer cell lines treated with proton and electron radiations.
Bravatà, Valentina; Minafra, Luigi; Cammarata, Francesco Paolo; Pisciotta, Pietro; Lamia, Debora; Marchese, Valentina; Manti, Lorenzo; Cirrone, Giuseppe Ap; Gilardi, Maria Carla; Cuttone, Giacomo; Forte, Giusi Irma; Russo, Giorgio
2018-06-11
Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non conventional Linear Energy Transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different Linear Energy Transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non tumorigenic MCF10A), exposed to the same sub-lethal dose of 9 Gy. Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. Here we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.
NASA Astrophysics Data System (ADS)
Mastroleo, Felice; Monsieurs, Pieter; Leys, Natalie
The MELiSSA life support system from the European Space Agency is targeting the produc-tion of oxygen, water and food by recycling organic waste. Among different types of pro-cesses, MELiSSA uses several interconnected bioreactors inhabited by microorganisms and higher plants (Hendrickx et al., 2006; Mergeay et al., 1988). Because this loop is foreseen to be functional in space where it will be exposed to higher doses and different spectra of ionizing radiation, it was decided to screen the radiotolerance of the organisms used. In this study, the radiotolerance (i.e. tolerance to ionizing radiation) of the photosynthetic bacterium Rho-dospirillum rubrum S1H was investigated. In this test, first the effect of low energy Cobalt-60 gamma rays, were tested. To assess the radiotolerance of bacterium S1H, the survival rate after increasing exposure was determined. R. rubrum S1H appeared relatively radiosensitive, as the radiation dose at which 90% of the population was killed (D10 value) was 4 times lower than the model bacterium Escherichia coli. It was demonstrate that the culture medium has an impact on radiation tolerance. This survival curve also permitted to select a number of sub-lethal ionizing radiation doses (¡ D10 ), that were used to analyze the gene expression response of R. rubrum S1H after gamma irradiation. The microarray transcriptome analysis results ob-tained from different doses and different culture medium showed a significant response of the bacterium to sublethal doses. Potential marker genes for ionizing radiation stress in R. rubrum S1H were identified. By quantitative PCR, it was shown that the expression of these marker genes increased with the recovery time after exposure to ionizing radiation. In other words, the radiation tolerance and the response of R. rubrum S1H to low energy Cobalt-60 gamma ionizing radiation was characterized. Therefore to ensure MELiSSA process robustness during extended space exploration mission, it is advised that this particular aspect of R. rubrum S1H metabolism should be carefully monitored and possibly countermeasure could be taken in order to avoid potential malfunctioning of the continuous culture bioreactor. Hendrickx L., De Wever H., Hermans V., Mastroleo F., Morin N., Wilmotte A., Janssen P. and Mergeay M. Microbial ecology of the closed artificial ecosystem MELiSSA (Micro-Ecological Life Sup-port System Alternative): reinventing and compartmentalizing the Earth's food and oxygen regenera-tion system for long-haul space exploration missions. Res Microbiol 2006;157:77-86. Mergeay M., Verstraete W., Dubertret G., Lefort-Tran M., Chipaux C., Binot R.A. `MELiSSA'—A micro-organisms-based model for `CELSS' development. Proceedings at the 3rd European Symposium on Space Thermal Control Life Support Systems Noordwijk, The Netherlands (1988) pp 65-68. The presented work was financially supported by the European Space Agency (ESA-PRODEX), the Belgian Science Policy (Belspo) (PRODEX agreements No C90247 No 90094) and the SCK•CEN PhD AWM grant of F. Mastroleo. We are grateful to C. Lasseur and C. Paillé, both from ESTEC/ESA, for their constant support and advice.
NASA Astrophysics Data System (ADS)
Gruzdev, Vitaly
2014-12-01
Laser-induced ionization is a major process that initiates and drives the initial stages of laser-induced damage (LID) of high-quality transparent solids. The ionization and its contribution to LID are characterized in terms of the time-dependent ionization rate and conduction-band electron density. Considering femtosecond pulses of various durations (from 35 to 706 fs) and variable peak irradiances (from 0.01 to 60 TW/cm2), we use a single-rate equation to simulate time variations of conduction-band electron density and rates of the photoionization and impact ionization. The photoionization rate is evaluated with the Keldysh equation. At low irradiance, the electron density and total ionization rate demonstrate power scaling characteristic of multiphoton ionization. With the increase of irradiance, there is observed a saturation of the photoionization rate due to photoionization suppression by the Keldysh-type singularity during the increase in the number of simultaneously absorbed photons by 1. A striking result is that the saturation is followed by a stepwise transition from the ionization regime which is completely dominated by the photoionization to a regime totally dominated by the impact ionization. The transition results in the increase of the electron density by a few orders of magnitude induced by a variation of peak laser irradiance by about 15% to 20%. The physical effects that are involved are discussed.
Knotigová, Pavlína Turánek; Zyka, Daniel; Mašek, Josef; Kovalová, Anna; Křupka, Michal; Bartheldyová, Eliška; Kulich, Pavel; Koudelka, Štěpán; Lukáč, Róbert; Kauerová, Zuzana; Vacek, Antonín; Horynová, Milada Stuchlová; Kozubík, Alois; Miller, Andrew D; Fekete, Ladislav; Kratochvílová, Irena; Ježek, Jan; Ledvina, Miroslav; Raška, Milan; Turánek, Jaroslav
2015-04-01
The aim of this work was to demonstrate an immunostimulatory and adjuvant effect of new apyrogenic lipophilic derivatives of norAbuMDP and norAbuGMDP formulated in nanoliposomes. Nanoliposomes and metallochelating nanoliposomes were prepared by lipid film hydration and extrusion methods. The structure of the liposomal formulation was studied by electron microscopy, AF microscopy, and dynamic light scattering. Sublethal and lethal γ-irradiation mice models were used to demonstrate stimulation of innate immune system. Recombinant Hsp90 antigen (Candida albicans) bound onto metallochelating nanoliposomes was used for immunisation of mice to demonstrate adjuvant activities of tested compounds. Safety and stimulation of innate and adaptive immunity were demonstrated on rabbits and mice. The liposomal formulation of norAbuMDP/GMDP was apyrogenic in rabbit test and lacking any side effect in vivo. Recovery of bone marrow after sublethal γ-irradiation as well as increased survival of mice after lethal irradiation was demonstrated. Enhancement of specific immune response was demonstrated for some derivatives incorporated in metallochelating nanoliposomes with recombinant Hsp90 protein antigen. Liposomal formulations of new lipophilic derivatives of norAbuMDP/GMDP proved themselves as promising adjuvants for recombinant vaccines as well as immunomodulators for stimulation of innate immunity and bone-marrow recovery after chemo/radio therapy of cancer.
Dadachova, Ekaterina; Bryan, Ruth A; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo
2007-05-23
Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piontkovskii, I.A.
1958-09-01
Irradiation of pregnant female aniamals and women with ionizing radiation may cause the appearance of a variety of congenital deformities in the offspring and may interfere with their postnatal development. L. Hicks points out the particular sensitivity of the nervous system of the embryo to ionizing radiation. Thus irradiation of rats on the 9th, 11th, 12th, and 13th days of prenatal development may cause, in addition to somatic deformities, anencephaly (on the 9th day), hydrocephaly (on the 11th day), microcephaly (on the 12th13th day), failure of development of the subcortical structures, the corpora callosa and so on. The influence ofmore » ionizing radiation on the nervous system during antenatal irradiation has been studied mainly morphologically. There are no indications in the literature of the state of the higher nervous activity of fully grown animals exposed at various periods of their antenatal development to the action of ionizing radiation. The effect of ionizing radiation, applied in various doses and at different stages of embryonic development, on the state of the higher nervous activity of animals was studied. (auth)« less
Dadachova, Ekaterina; Bryan, Ruth A.; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D.; Aisen, Philip; Nosanchuk, Joshua D.; Casadevall, Arturo
2007-01-01
Background Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Methodology/Principal Findings Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of 14C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Conclusions/Significance Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization. PMID:17520016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, R.; Collignon, Y.; Vincent, F.
1975-05-01
A method of simultaneous observation of several physiological functions was developed in the unanaesthetized rabbit. Arterial blood pressure, local brain circulation, internal body temperature and arterial blodd acido-basic balance were thus followed before, during and after $gamma$-irradiation. There appeared two periods in the development of this early syndrome: they were related to two processes, a central one, mainly of sympathetic origin was hardly sensitive to the dose, the other is dose-dependent. (FR)
Radiation effects on the resting and proliferating cells in normal tissue of mouse (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, S.
1972-10-01
The investigation was planned to compare the radiosensitivity of callus- forming cells in resting phase with that in proliferating phase and to compare the recovery of sublethal damage of callusforming cells in resting phase with that in proliferating phase. Experimental animals were 8-week-old female I.C.R./ J.C.L. mice. The maximum sizes of callus were nearly constant among control mice without irradiation after fracture. They, however, were inhibited with administered doses and seemed to be reflected by the Proliferating ability of callus-forming cells after irradiation. The analysis was performed by C.I.D. 50 (callus inhibition dose 50) or dose that produced a specifiedmore » inhibition of callus size in half of the subjects. The callus-forming cells in adult mice were in resting phase without any stimulations, but they extensively entered into proliferating phase after fracture. The labeling index rose around 6 hrs after fracture and reached 9% of the maximum value at 72 are after fracture. Mice were followed by x-ray projection until 60 days after irradiation to observe the callus sizes, and the maximum sizes of callus for each mouse were examined by planimetry to calculate the C.I.D. 50. The callus-forming cell was more radioresistant in resting phase by a factor of 1.5 to 2.0 than in proliferating phase. The cell in resting phase demonstrated a marked recovery of sublethal damage in 4 hrs after administration of 1.000 rads, and it showed essentially no more changes in recovery with the increased time interval to 24 hrs, while the cell in proliferating phase demonstrated almost full recovery of sublethal damage is 2 hrs after administration of 300 rads and showed a fluctuated pattern of recovery with a dip at 4 hrs of the time interval in two fractions. (auth)« less
Annual Research Report, 1 October 1977-30 September 1978.
1978-09-30
and other lipid components. Collaboratihe studies with the National Cancer Institute and other medical centers include research on the immunological...copolymer, or glucan were administered intraperitoneally within 2 hours after sublethal X irradiation (600 rads), the adjuvant- induced cytotoxic...concentrations of inducer. When BCG, pyran, or glucan was administered intraperitoneally concurrently with subcutaneous cyclophosphamide, only the ability
Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M
2012-10-01
Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.
THE EFFECTS OF IONIZING RADIATIONS ON THE BIOCHEMISTRY OF MAMMALIAN TISSUES.
Contents: The effects of Ionizing Radiations on the Biochemistry of Mammalian Tissues: (1) Studies on the Effect of X-irradiation on Coenzyme A ... Levels of the Livers of Mice; (2) Influence of X-irradiation on the Development of a Detoxification System for Phosphorothioates in the Livers of Rats
The biobehavioral and neuroimmune impact of low-dose ionizing radiation.
York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G
2012-02-01
In the clinical setting, repeated exposures (10-30) to low-doses of ionizing radiation (≤200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice. Copyright © 2011 Elsevier Inc. All rights reserved.
The biobehavioral and neuroimmune impact of low-dose ionizing radiation
York, Jason M; Blevins, Neil A; Meling, Daryl D; Peterlin, Molly B; Gridley, Daila S; Cengel, Keith A; Freund, Gregory G
2011-01-01
In the clinical setting, repeated exposures (10–30) to low-doses of ionizing radiation (≤ 200 cGy), as seen in radiotherapy for cancer, causes fatigue. Almost nothing is known, however, about the fatigue inducing effects of a single exposure to environmental low-dose ionizing radiation that might occur during high-altitude commercial air flight, a nuclear reactor accident or a solar particle event (SPE). To investigate the short-term impact of low-dose ionizing radiation on mouse biobehaviors and neuroimmunity, male CD-1 mice were whole body irradiated with 50 cGy or 200 cGy of gamma or proton radiation. Gamma radiation was found to reduce spontaneous locomotor activity by 35% and 36%, respectively, 6 h post irradiation. In contrast, the motivated behavior of social exploration was un-impacted by gamma radiation. Examination of pro-inflammatory cytokine gene transcripts in the brain demonstrated that gamma radiation increased hippocampal TNF-α expression as early as 4 h post-irradiation. This was coupled to subsequent increases in IL-1RA (8 h and 12 h post irradiation) in the cortex and hippocampus and reductions in activity-regulated cytoskeleton-associated protein (Arc) (24 h post irradiation) in the cortex. Finally, restraint stress was a significant modulator of the neuroimmune response to radiation blocking the ability of 200 cGy gamma radiation from impairing locomotor activity and altering the brain-based inflammatory response to irradiation. Taken together, these findings indicate that low-dose ionizing radiation rapidly activates the neuroimmune system potentially causing early onset fatigue-like symptoms in mice. PMID:21958477
Fu, Ling; Hamzeh, Mahsa; Dodard, Sabine; Zhao, Yuan H; Sunahara, Geoffrey I
2015-05-01
This study investigated the possibility that titanium dioxide nanoparticles (nano-TiO2) toxicity in Pseudokirchneriella subcapitata involves reactive oxygen species (ROS) production, using the dichlorodihydrofluorescein (DCF) assay. Algae were exposed to nano-TiO2 under laboratory fluorescent lamps supplemented with UV irradiation for 3h, with or without a UV filter. Results showed that nano-TiO2 increased ROS production in UV-exposed cells, with or without a UV filter (LOEC values were 250 and 10mg/L, respectively). Sublethal effects of nano-TiO2 on UV pre-exposed algae were also examined. Toxicity studies indicated that exposure to nano-TiO2 agglomerates decreased algal growth following 3h pre-exposure to UV, with or without a UV filter (EC50s were 8.7 and 6.3mg/L, respectively). The present study suggests that the growth inhibitory effects of nano-TiO2 in algae occurred at concentrations lower than those that can elevate DCF fluorescence, and that ROS generation is not directly involved with the sublethal effects of nano-TiO2 in algae. Copyright © 2015 Elsevier B.V. All rights reserved.
STUDIES ON MECHANISM OF BACTERICIDAL ACTION BY IRRADIATION WITH RADIOISOTOPE COBALT-60 (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimoto, T.
1960-04-01
E.Coli, YC-1 strain, were subjected to 40-C irradiation under various conditions and the survival ratios measured. The following results were obtained: With radiation dosage held constant, prolonged irradiation produced less bactericidal effect. Temperature and environment before irradiation had little influence on the bactericidal effect. Preirradiation washing had little effect. In the earlier stage metabolism continued but gradually decreased later. The more densely the suspension is populated, the higher the survival ratio. This ratio is decreased when a large number of bacteria is treated with a sublethal dose of streptomycin before irradiation. Treatment with chloramphenicol showed no effect in a smallmore » population, but the survival ratio decreased in a large population. Penicillin caused a decrease in a large population also, but in a small population the ratio became markedly high. It is presumed that the activity of bacterial metabolism is closely related to the bacterial action of irradiation. (P.C.H.)« less
Le, Wei; Qi, Lixin; Li, Jiaxuan; Wu, DengIong; Xu, Jun; Zhang, Jinfu
2016-01-01
The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.
Meng, Xiangpeng; Chan, Wan
2017-02-15
Previous studies have established that 2-alkylcyclobutanones (2-ACBs) are unique radiolytic products in lipid-containing foods that could only be formed through exposure to ionizing radiation, but not by any other means of physical/heat treatment methods. Therefore, 2-ACBs are currently the marker molecules required by the European Committee for Standardization to be used to identify foods irradiated with ionizing irradiation. Using a spectrum of state-of-the-art analytical instruments, we present in this study for the first time that the generation of 2-ACBs was also possible when fatty acids and triglycerides are exposed to a non-ionizing, short-wavelength ultraviolet (UV-C) light source. An irradiation dosage-dependent formation of 2-ACBs was also observed in UV-C irradiated fatty acids, triglycerides, corn oil, and pork samples. With UV-C irradiation becoming an increasingly common food treatment procedure, it is anticipated that the results from this study will alert food scientists and regulatory officials to a potential new source for 2-ACBs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of ionizing radiation on some quality attributes of nutraceutically valued lotus seeds.
Bhat, Rajeev; Karim, A A
2009-01-01
Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
Enhanced Biodegradability of Pharmaceuticals and Personal Care Products by Ionizing Radiation.
Kim, Hyun Young; Lee, O-Mi; Kim, Tae-Hun; Yu, Seungho
2015-04-01
The radiolytic degradation of antibiotic compounds, including lincomycin (LMC), sulfamethoxazole (SMX), and tetracycline (TCN), and the change of biodegradability of the radiation-treated target compounds were evaluated. As a result, the degradation of target antibiotics by hydrolysis, biodegradation, and gamma irradiation showed a compound-dependent manner. However, the biodegradability of all target compounds was enhanced by the gamma irradiation. The enhanced biodegradability after gamma irradiation (2 kGy) followed the trend of LMC (18.89%)
The creation of radiation dominated plasmas using laboratory extreme ultra-violet lasers
NASA Astrophysics Data System (ADS)
Tallents, G. J.; Wilson, S.; West, A.; Aslanyan, V.; Lolley, J.; Rossall, A. K.
2017-06-01
Ionization in experiments where solid targets are irradiated by high irradiance extreme ultra-violet (EUV) lasers is examined. Free electron degeneracy effects on ionization in the presence of a high EUV flux of radiation is shown to be important. Overlap of the physics of such plasmas with plasma material under compression in indirect inertial fusion is explored. The design of the focusing optics needed to achieve high irradiance (up to 1014 Wcm-2) using an EUV capillary laser is presented.
2017-03-01
Overall, the devices with IrO2 top electrode were less impacted by the irradiation compared to the Pt top electrode devices. Keywords: lead...displacement and ionization events. However, prior research has primarily concentrated only on the effects of irradiation as polarization degradation...thin films deposited on platinized silicon wafers, with IrO2 or Pt top electrodes. All samples were irradiated with 0.2, 0.5, 1, 2, 5, and 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stasilevich, Z.K.
1963-04-01
The influence of sublethal x irradiation on the susceptibility of monkeys to acute intestinal infections (paratyphoid B fever, Heidelberg's salmonellosis and colienteritis) was studied. Experiments were carried out on 46 macaque monkeys, aged 2 1/2 to 3 yr. In monkeys subjected to a dose of 300 r there was an elevated susceptibility to paratyphoid B fever; however, the infectious process was not aggravated. Irradiation of animals with a similar dose aggravated the infectious process in Heidelberg's salmonellosis. In monkeys with colienteritis the above dose did not influence the natural immunity of animals to this disease. A clinically marked disease (colienteritis),more » with a lethal outcome was induced in monkeys irradiated with a dose of 445 r. (auth)« less
Yoo, J C; Pae, H O; Choi, B M; Kim, W I; Kim, J D; Kim, Y M; Chung, H T
2000-02-01
The effects of ionizing irradiation on the nitric oxide (NO) production in murine embryonic liver cell line, BNL CL.2 cells, were investigated. Various doses (5-40 Gy) of radiation made BNL CL.2 cells responsive to interferon-gamma alone for the production of NO in a dose-dependent manner. Small amounts of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) synergized with IFN-gamma in the production of NO from irradiated BNL CL.2 cells, even though LPS or TNF-alpha alone did not induce NO production from the same cells. Immunoblots showed parallel induction of inducible nitric oxide synthase (iNOS). NO production in irradiated BNL CL.2 cells by IFN-gamma or IFN-gamma plus LPS was decreased by the addition of catalase, suggesting that H(2)O(2) produced by ionizing irradiation primed the cells to trigger NO production in response to IFN-gamma or IFN-gamma plus LPS. Furthermore, the treatment of nongamma-irradiated BNL CL.2 cells with H(2)O(2) made the cells responsive to IFN-gamma or IFN-gamma plus LPS for the production of NO. This study shows that ionizing irradiation has the ability to induce iNOS gene expression in responsive to IFN-gamma via the formation of H(2)O(2) in BNL CL.2 murine embryonic liver cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamo, S.; Nakashima-Tanaka, E.; Megumi, T.
1985-02-25
Accumulating evidence suggests that the extent of acute damage by ionizing irradiation is closely related to the state of membrane orderliness. Decreased orderliness apparently protects organisms from ionizing irradiation. Because anesthetics decrease membrane orderliness, anesthesia is expected to affect damages caused by ionizing irradiation. The present study compared the effects of /sup 60/Co irradiation on Drosophila melanogaster between an anesthetic-resistant spontaneous mutant and an anesthetic-sensitive strain. An anesthetic-resistant mutant strain, Eth-29, of Drosophila melanogaster has previously been established. Eth-29 is resistant to diethyl-ether, chloroform and halothane. The anesthetic-resistant strain was found to be radiosensitive when evaluated by survival at themore » eighth day after irradiation or by dyskinesia (knock-down) at the second day. The results indicate that anesthetic resistance may be related to an increase in orderliness. The findings in reciprocal crosses between Eth-29 and the control strain indicate that the mechanism of survival is different from that of knock-down. Presumably, knock-down is the direct sequela of irradiation, and the present result suggests that membrane damage may be involved in inducing knock-down. 18 references, 3 figures.« less
Thomas, Brian C; Neale, Patrick J; Snyder, Brock R
2015-03-01
Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.
Li, Shuyi; Shu, Feng-Jue; Li, Zhentian; Jaafar, Lahcen; Zhao, Shourong; Dynan, William S
2017-03-01
The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono gt ). In wild-type mice, NONO protein was present in Sertoli, peritubular myoid, and interstitial cells, with an increase in expression following induction of DNA damage. As expected for the product of an X-linked gene, NONO was not detected in germ cells. The Nono gt/0 mice had at most a mild testis developmental phenotype in the absence of genotoxic stress. However, following irradiation at sublethal, 2-4 Gy doses, Nono gt/0 mice displayed a number of indicators of radiosensitivity as compared to their wild-type counterparts. These included higher levels of persistent DSB repair foci, increased numbers of apoptotic cells in the seminiferous tubules, and partial degeneration of the blood-testis barrier. There was also an almost complete loss of germ cells at later times following irradiation, evidently arising as an indirect effect reflecting loss of stromal support. Results demonstrate a role for NONO protein in protection against direct and indirect biological effects of ionizing radiation in the whole animal. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degowin, R.L.; Lass, S.L.
Our studies show that the induction of a chronic inflammatory lesion in the left hind legs of mice by administration of 5000 rad produced distinct abnormalities of the hematopoietic system. A peripheral neutrophilia accompanied reduced numbers of total nucleated cells, stem cells, stromal cells, erythroblasts, and lymphocytes in the unirradiated femoral marrow, and the spleen was enlarged. Mice with these hematopoietic abnormalities promptly succumbed with bone marrow failure to a sublethal dose of total body irradiation (600 rad TB). Acute inflammation associated with a sterile abscess also impaired survival after 600 rad TB. Hematopoietic abnormalities resembling those in mice withmore » inflammation had been reported in mice bearing a solid extramedullary tumor of sarcoma-180. Concomitant studies showed that bone marrow failure and impaired survival after 600 rad TB administered to mice bearing sarcoma-180 occurred at the same time as that in mice with chronic inflammation. We concluded that chronic inflammation or tumor produced similar abnormalities in the bone marrow and spleen that led to markedly impaired survival and death from bone marrow failure after a sublethal dose of total body irradiation. Although the extramedullary hematopoiesis in the enlarged spleen indicated that its microenvironment supported hematopoiesis, whereas that in marrow was reduced, it was insufficient to compensate for a total body deficit of functional stem cells.« less
ASEPTIC INFLAMMATION IN THE LUNGS IN ACUTE RADIATION SICKNESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, A.E.
1963-09-01
Inflammation in the lungs of irradiated rabbits at the site of turpentine injection has much in common with the inflammatory changes arising in other tissues and organs during local irradiation or acute radiation sickness. The fact that the inflammatory changes under different conditions of irradiation are similar in type regardless of the character of the inflammatory agent suggests that the phenomenon has a common mechanism. The absence of polymorphonuclear (eosinophtlic) leukocytes from inflammatory foci in irradiated rabbits is due not only to the developing leukopenia, but also to a disturbance of the leukocyte emigration process into the inflammatory focus. Inmore » irradiated rabbits in cortrast to the controls, the normal arrangement of the fibrous structures is preserved in the necrotic lung tissue at the site of turpentine injection. In animals with severe acute radiation sickness induced by external irradiation in sublethal doses, the ability of the organism to respond to introduction of an inflammatory agent by an increase in the number of leukocytes in the blood and by a rise of the body temperature is to some extent preserved. (auth)« less
Proteomic Analysis of Trypanosoma cruzi Response to Ionizing Radiation Stress
Vieira, Helaine Graziele Santos; Grynberg, Priscila; Bitar, Mainá; Pires, Simone da Fonseca; Hilário, Heron Oliveira; Macedo, Andrea Mara; Machado, Carlos Renato; de Andrade, Hélida Monteiro; Franco, Glória Regina
2014-01-01
Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress. PMID:24842666
NASA Astrophysics Data System (ADS)
Wang, Jianlong; Chu, Libing
2016-08-01
Pharmaceutical and personal care products (PPCPs), especially the pharmaceutically active compounds (PhACs) such as antibiotics and hormones have attracted great concerns worldwide for their persistence and potential threat to ecosystem and public health. This paper presents an overview on the ionizing irradiation-induced degradation of PPCPs in aqueous solution. Parameters that affect PPCPs degradation, such as the absorbed dose, solution pH, dose rate, water matrices and the presence of some inorganic ions and humic acid are evaluated. The mechanism and pathways of radiolytic degradation of PPCPs are reviewed. In many cases, PPCPs such as antibiotics and X-ray contrast agent could be removed completely by radiation, but a higher absorbed dose was needed for their mineralization and toxicity reduction. The combination of ionizing irradiation with other methods such as H2O2, ozonation and TiO2 nanoparticles could improve the degradation efficacy and reduce the cost. Ionizing irradiation is a promising alternative for degradation of PPCPs in aqueous solution.
Gage measures total radiation, including vacuum UV, from ionized high-temperature gases
NASA Technical Reports Server (NTRS)
Wood, A. D.
1969-01-01
Transient-heat transfer gage measures the total radiation intensity from vacuum ultraviolet and ionized high temperature gases. The gage includes a sensitive piezoelectric crystal that is completely isolated from any ionized flow and vacuum ultraviolet irradiation.
Acute systemic DNA damage in youth does not impair immune defense with aging.
Pugh, Jason L; Foster, Sarah A; Sukhina, Alona S; Petravic, Janka; Uhrlaub, Jennifer L; Padilla-Torres, Jose; Hayashi, Tomonori; Nakachi, Kei; Smithey, Megan J; Nikolich-Žugich, Janko
2016-08-01
Aging-related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age-related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole-body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5-4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock-irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T- and B-cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolters, H.; Kelholt, D.; Konings, A.W.
1987-02-01
The interaction of heat and X irradiation was studied in normal and polyunsaturated fatty acid (PUFA) substituted mouse fibroblast LM cells. As a result of the substitution the membranes of the PUFA cells were more fluid than the membranes of the normal cells. Three different heat doses were applied (60 min 42 degrees C, 20 min 43 degrees C, and 10 min 44 degrees C) in combination with single or split doses of X rays. Heat radiosensitization was the largest for the 60 min 42 degrees C treatment. Heat radiosensitization and the heat-induced inhibition of the rate of sublethal damagemore » repair were the same for the normal and the PUFA cells. It is concluded from the experiments reported that the processes of hyperthermic inhibition of SLD repair and hyperthermic radiosensitization are independent of membrane fluidity and membrane fatty acid composition.« less
Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng
2012-01-01
Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes regulated by radiation. PMID:23139812
Factors modifying the response of large animals to low-intensity radiation exposure
NASA Technical Reports Server (NTRS)
Page, N. P.; Still, E. T.
1972-01-01
In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.
NASA Astrophysics Data System (ADS)
Thomas, Brian; Neale, Patrick
2016-01-01
Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.
Ionizing Radiation Impacts on Cardiac Differentiation of Mouse Embryonic Stem Cells
Helm, Alexander; Arrizabalaga, Onetsine; Pignalosa, Diana; Schroeder, Insa S.; Durante, Marco
2016-01-01
Little is known about the effects of ionizing radiation on the earliest stages of embryonic development although it is well recognized that ionizing radiation is a natural part of our environment and further exposure may occur due to medical applications. The current study addresses this issue using D3 mouse embryonic stem cells as a model system. Cells were irradiated with either X-rays or carbon ions representing sparsely and densely ionizing radiation and their effect on the differentiation of D3 cells into spontaneously contracting cardiomyocytes through embryoid body (EB) formation was measured. This study is the first to demonstrate that ionizing radiation impairs the formation of beating cardiomyocytes with carbon ions being more detrimental than X-rays. However, after prolonged culture time, the number of beating EBs derived from carbon ion irradiated cells almost reached control levels indicating that the surviving cells are still capable of developing along the cardiac lineage although with considerable delay. Reduced EB size, failure to downregulate pluripotency markers, and impaired expression of cardiac markers were identified as the cause of compromised cardiomyocyte formation. Dysregulation of cardiac differentiation was accompanied by alterations in the expression of endodermal and ectodermal markers that were more severe after carbon ion irradiation than after exposure to X-rays. In conclusion, our data show that carbon ion irradiation profoundly affects differentiation and thus may pose a higher risk to the early embryo than X-rays. PMID:26506910
Long-Term Effects of Stem Cells on Total-Body Irradiated Mice
NASA Astrophysics Data System (ADS)
Vyalkina, M. V.; Alchinova, I. B.; Yakovenko, E. N.; Medvedeva, Yu S.; Saburina, I. N.; Karganov, M. Yu
2017-01-01
C57Bl/6 mice were exposed to γ-radiation in a sublethal dose of 7.5 Gy. In 3 hours injection 106/mouse of bone marrow multipotent mesenchymal stromal cells stem cells intravenously to experimental group was done. Methods used: body weight measurement, open field behavior, subfraction composition of blood serum (laser correlation spectroscopy, LCS), histological examination of the spleen, liver, and pancreas, count of T and B cells, white blood formula. After 1.5 and 3 months the general trend towards intermediate position of the parameters observed in the experimental between those in intact and irradiated controls attests to partial protective/restorative effects of the injected cells.
Purification of sulfide-alkali effluent with the aid of ionizing radiation. [Gamma radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petryaev, E.P.; Gerasimovich, O.A.; Kovalevskaya, A.M.
1984-03-01
The treatment of sulfide-alkali effluent under the effect of ionizing radiation was investigated. The source was an LMB-..gamma..-1M ..gamma..-apparatus with /sup 137/Cs source. The dose rate was 52 rad/s. Irradiation was done in glass ampules and in vessels allowing bubbling with air and irradiation to be carried out at the same time. 7 references, 1 figure, 1 table.
What Aircrews Should Know About Their Occupational Exposure to Ionizing Radiation
2003-10-01
aircrews, and their children irradiated in utero , the principal health concern is a small increase in the lifetime risk of fatal cancer . For both of...from cancer : adults, p.301; all ages, p.303. — Risks from irradiation in utero , p.302. — Inherited genetic defects from parental...Aircrews, Ionizing Radiation, Galactic Cosmic Radiation, Cancer Risk, Hereditary Risks, Radiation Exposure Limits Springfield, Virginia 22161 19
Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra
2011-11-01
In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.
Pourhajibagher, Maryam; Chiniforush, Nasim; Ghorbanzadeh, Roghayeh; Bahador, Abbas
2017-03-01
Photo-activated disinfection (PAD) is a novel treatment approach, in which bacteria in the root canal system may be exposed to sub-lethal doses of PAD. Such exposure can affect bacterial survival and virulence features, such as biofilm formation ability. The aim of this study was to evaluate the effects of sub-lethal doses of PAD (sPAD) using indocyanine green (ICG) on load and biofilm formation ability of Porphyromonas gingivalis as an anaerobic bacterium associated with endodontic infection. The anti-bacterial and anti-biofilm potential of sPAD against P. gingivalis at sub-lethal doses of ICG as a photosensitizer and using 810nm wavelength of diode laser light via colony forming unit and crystal violet assays, respectively, was determined. High concentrations of ICG and light irradiation time significantly reduced bacteria. High doses of sPAD markedly reduced the number of bacteria and the formation of biofilm, up to 30.4% and 25.1%, respectively. High doses of sPAD affected cell viability and the biofilm formation ability of P. gingivalis; lower doses did not. Thus, selection of appropriate PAD dosage should be considered for the successful treatment of endodontic in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Whole-body γ-irradiation decelerates rat hepatocyte polyploidization.
Ikhtiar, Adnan M
2015-07-01
To characterize hepatocyte polyploidization induced by intermediate dose of γ-ray. Male Wistar strain rats were whole-body irradiated (WBI) with 2 Gy of γ-ray at the age of 1 month, and 5-6 rats were sacrificed monthly at 0-25 months after irradiation. The nuclear DNA content of individual hepatocytes was measured by flow cytometry, then hepatocytes were classified into various ploidy classes. Survival percentage, after exposure up to the end of the study, did not indicate any differences between the irradiated groups and controls. The degree of polyploidization in hepatocytes of irradiated rats, was significantly lower than that for the control after 1 month of exposure, and it continued to be lower after up to 8 months. Thereafter, the degree of polyploidization in the irradiated group slowly returned to the control level when the irradiated rats reached the age of 10 months. Intermediate dose of ionizing radiation, in contrast to high doses, decelerate hepatocyte polyploidization, which may coincides with the hypothesis of the beneficial effects of low doses of ionizing radiation.
Detection of irradiated chicken by ESR spectroscopy of bone
NASA Astrophysics Data System (ADS)
Duarte, C. L.; Villavicencio, A. L. C. H.; Del Mastro, N. L.; Wiendl, F. M.
1995-02-01
Ionizing radiation has been used to treat poultry to remove harmful microorganisms, mainly Salmonella, which contaminates chicken, goose and other fresh and frozen poultry. This microorganism is sensitive to low dose radiation. Thus, irradiating these foods with doses between 1 to 7 kGy results in a large reduction of bacteria. Since it is necessary to determine whether irradiation has occurred and to what extend, this work studied the signal produced by ionizing radiation within the hard crystalline matrix of chicken's bone to establish a control method. Chicken's drumsticks were irradiated and bones separated from flesh were lyophilized and milled. ESR spectrum was then obtained. The ESR signal increased linearly with dose over the range 0.25 to 8.0 kGy. Free radicals evaluated during 30 days after irradiation showed stable in this period.
Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartson-Eaton, M.; Malcolm, A.W.; Hahn, G.M.
1984-07-01
CHO cells subline HA-1 were made thermotolerant by a priming heat treatment(43/sup 0/C, 30 min). Later, 4, 16, or 24 hr, they were either irradiated or heated (43/sup 0/C, 30 min) and irradiated. Thermotolerance had no effect on the radiation sensitivity of the cells as measured by the D/sub 0/ value of the clonogenic survival curve. However the N value of the curve (width of shoulder) showed a significant increase at 24 hr, indicating an increased capacity to accumulate sublethal damage. The same priming treatment was given to RIF-1 tumors growing in C3H mice. Later, 24 hr, when the tumorsmore » were either irradiated or heated (43/sup 0/C, 30 min) and irradiated, it was found that thermotolerance had no effect on the radiosensitivity of the cells as measured by in vitro assay. However, thermal radiosensitization was not apparent 24 hr after the priming treatment.« less
Study of Super- and Subsonic Ionization Fronts in Low-Density, Soft X-Ray-Irradiated Foam Targets
NASA Astrophysics Data System (ADS)
Willi, O.; Barringer, L.; Vickers, C.; Hoarty, D.
2000-04-01
The transition from super- to subsonic propagation of an ionization front has been studied in X-ray irradiated, low-density foam targets using soft X-ray imaging and point projection absorption spectroscopy. The foams were doped with chlorine and irradiated with an intense pulse of soft X-ray radiation with a temperature up to 120 eV produced by laser heating a burnthrough converter foil. The cylindrical foam targets were radiographed side-on allowing the change in the chlorine ionization and hence the front to be observed. From the absolute target transmission the density profile was obtained. Comparison of experimental absorption spectra with simulated ones allowed the temperature of the heated material to be inferred for the first time without reliance on detailed hydrodynamic simulations to interpret the data. The experimental observations were compared to radiation hydrodynamic simulations.
Sadetzki, Siegal; Chetrit, Angela; Sgan-Cohen, Harold D.; Mann, Jonathan; Amitai, Tova; Even-Nir, Hadas; Vered, Yuval
2015-01-01
Studies among long-term survivors of childhood cancer who had received high-dose irradiation therapy of 4–60 Gy, demonstrated acute and chronic dental effects, including periodontal diseases. However, the possible effects of low to moderate doses of radiation on dental health are sparse. The aim of this study is to investigate the association between childhood exposure to low–moderate doses of ionizing radiation and periodontal health following 50 years since exposure. The study population included 253 irradiated subjects (treated for Tinea capitis in the 1950s) and, 162 non-irradiated subjects. The estimated dose to the teeth was 0.2–0.4 Gy. Dental examination was performed according to the community periodontal index (CPI). Socioeconomic and health behavior variables were obtained through a personal questionnaire. Periodontal disease was operationally defined as “deep periodontal pockets.” A multivariate logistic regression model was used for the association of irradiation status and other independent variables with periodontal status. The results showed that among the irradiated subjects, 23%, (95% CI 18–28%) demonstrated complete edentulousness or insufficient teeth for CPI scoring as compared to 13% (95% CI 8–19%) among the non-irradiated subjects (p = 0.01). Periodontal disease was detected among 54% of the irradiated subjects as compared to 40% of the non-irradiated (p = 0.008). Controlling for education and smoking, the ORs for the association between radiation and periodontal disease were 1.61 (95% CI 1.01–2.57) and 1.95 (95% CI 1.1–3.5) for ever never and per 1 Gy absorbed in the salivary gland, respectively. In line with other studies, a protective effect for periodontal diseases among those with high education and an increased risk for ever smokers were observed. In conclusion, childhood exposure to low-moderate doses of ionizing radiation might be associated with later outcomes of dental health. The results add valuable data on the long-term health effects of exposure to ionizing radiation and support the implementation of the ALARA principle in childhood exposure to diagnostic procedure involving radiation. PMID:26539423
Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture
Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.; ...
2012-01-01
Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evident atmore » longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less
Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.
Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evident atmore » longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less
NASA Technical Reports Server (NTRS)
Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)
1996-01-01
High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.
Pohanka, Miroslav; Koch, Miroslav
2009-01-01
A cholinesterase based biosensor was constructed in order to assess the effects of ionizing radiation on exposed AChE. Although the primary objective of the experiment was to investigate the effect of ionizing radiation on the activity of the biosensor, no changes in cholinesterase activity were observed. Current provided by oxidation of thiocholine previously created from acetylthiocholine by enzyme catalyzed reaction was in a range 395–455 nA. No significant influence of radiation on AChE activity was found, despite the current variation. However, a surprising phenomenon was observed when a model organophosphate paraoxon was assayed. Irradiated biosensors seem to be more susceptible to the inhibitory effects of paraoxon. Control biosensors provided a 94 ± 5 nA current after exposure to 1 ppm paraoxon. The biosensors irradiated by a 5 kGy radiation dose and exposed to paraoxon provided a current of 49 ± 6 nA. Irradiation by doses ranging from 5 mGy to 100 kGy were investigated and the mentioned effect was confirmed at doses above 50 Gy. After the first promising experiments, biosensors irradiated by 5 kGy were used for calibration on paraoxon and compared with the control biosensors. Limits of detection 2.5 and 3.8 ppb were achieved for irradiated and non-irradiated biosensors respectively. The overall impact of this effect is discussed. PMID:22346715
Optical field ionization of atoms and ions using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fittinghoff, D. N.
1993-12-01
This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He(+2), Ne(+2), and Ar(+2). The ion yields for He(+1), Ne(sup +1) and Ar(sup +1) agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved the following: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using ion yields. (3) Measuring the ion yields for three noble gases using linear, circular and elliptical polarizations of laser pulses at 614-nm and 800-nm. The measurements are some of the first measurements for pulse widths as low as 120-fs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brizzee, K.R.; Ordy, J.M.; Kaack, M.B.
1980-09-01
Five squirrel monkeys were exposed to 200 rads whole-body ionizing irradiation (/sup 60/Co) at 0.4 rads per second on approximately the seventy-fifth day of gestation, and six squirrel monkeys were sham-irradiated. The mean cortical depth and the mean number of neurons per mm/sup 3/ in the visual cortex was less in irradiated animals than in controls, but the differences were not statistically significant. The mean number of glial cells in this cortical region was significantly lower in the irradiated animals. In the hippocampus, the depth of the stratum oriens and the combined depth of the strata radiatum, lacunosum, and molecularemore » were significantly less in irradiated than in control animals. Canonical correlations provided statistical evidence for greater radiation vulnerability of the hippocampus compared to motor and visual areas of the cerebral cortex.« less
Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon
2009-01-01
Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.
NASA Technical Reports Server (NTRS)
Georgiev, G. T.; Butler, J. J.; Kowalewski, M. G.; Ding, L.
2012-01-01
Assessment of the effect of Vacuum Ultra Violet (VUV) irradiation on the Bidirectional Reflectance Distribution Function (BRDF) of Spectralon is presented in this paper. The sample was a 99% white Spectralon calibration standard irradiated with VUV source positioned at 60o off the irradiation direction for a total of 20 hours. The BRDF before and after VUV irradiation was measured and compared at number of wavelengths in the UV, VIS and IR. Non-isotropic directional degradation of Spectralon diffuser under ionizing radiation was detected at different BRDF measurement geometries primarily at UV spectral range. The 8o directional/hemispherical reflectance of the same sample was also measured and compared from 200nm to 2500nm. Index Terms BRDF, Reflectance, Multiangular, Spectralon, Remote Sensing
Cao, Yi; Tong, Jian
2014-04-22
During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed.
Cao, Yi; Tong, Jian
2014-01-01
During the last few years, our research group has been investigating the phenomenon of adaptive response in animals exposed to non-ionizing radiofrequency fields. The results from several separate studies indicated a significant increase in survival, decreases in genetic damage as well as oxidative damage and, alterations in several cellular processes in mice pre-exposed to radiofrequency fields and subsequently subjected to sub-lethal or lethal doses of γ-radiation or injected with bleomycin, a radiomimetic chemical mutagen. These observations indicated the induction of adaptive response providing the animals the ability to resist subsequent damage. Similar studies conducted by independent researchers in mice and rats have supported our observation on increased survival. In this paper, we have presented a brief review of all of our own and other independent investigations on radiofrequency fields-induced adaptive response and some underlying mechanisms discussed. PMID:24758897
Wambi, Chris; Sanzari, Jenine; Wan, X. Steven; Nuth, Manunya; Davis, James; Ko, Ying-Hui; Sayers, Carly M.; Baran, Matthew; Ware, Jeffrey H.; Kennedy, Ann R.
2009-01-01
The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants. PMID:18363433
Jung, In Jung; Hwang, Jung Eun; Han, Sung Min; Kim, Dong Sub; Ahn, Joon-Woo; Choi, Hong-Il; Kwon, Soon-Jae; Kang, Si-Yong; Kim, Jin-Baek
2017-07-01
Exposure to ionizing radiation induces plant defenses by regulating the expression of response genes. The systemic acquired resistance deficient 1 (SARD1) is a key gene in plant defense response. In this study, the function of Oryza sativa SARD1 (OsSARD1) was investigated after exposure of seeds/plants to ionizing radiation, jasmonic acid (JA) or salicylic acid (SA). Rice seeds exposed to two types of ionizing radiations (gamma ray [GR] and ion beam [IB]) were analyzed by quantitative reverse transcription PCR (qRT-PCR) to identify the genes that are altered in response to ionizing radiation. Then, OsSARD1-overexpressing homozygous Arabidopsis plants were generated to assess the effects of OsSARD1 in the response to irradiation. The phenotypes of these transgenic plants, as well as control plants, were monitored after GR irradiation at doses of 200 and 300 Gray (Gy). The OsSARD1 transcript was strongly downregulated after exposure to GR and IB irradiation. Previous phylogenetic analysis showed that the Arabidopsis SARD1 (AtSARD1) protein is closely related to Arabidopsis calmodulin-binding protein 60g (AtCBP60g), which is known to be required for activation of SA biosynthesis. In this study, phylogenetic analysis showed that OsSARD1 was grouped with AtSARD1. The OsSARD1 gene was induced after exposure to SA and JA. The biological phenotype of OsSARD1-overexpressing Arabidopsis plants was examined. OsSARD1-overexpressing plants displayed resistance to GR; in comparison with wild-type plants, the height and weight of OsSARD1-overexpressing plants were significantly greater after GR irradiation. In addition, OsSARD1 protein was abundantly accumulated in the nucleus. The results indicate that OsSARD1 plays an important role in the regulation of the defense responses to GR and IB irradiation and exhibits phytohormone induced expression.
The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs
NASA Astrophysics Data System (ADS)
Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John
1994-03-01
The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.
The growth and development of Schistosoma mansoni in mice exposed to sublethal doses of radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitken, R.; Wilson, R.A.
1989-12-01
The maturation of Schistosoma mansoni was studied in mice exposed to various sublethal doses of radiation. Although the treatment of mice with 500 rads of radiation prior to infection did not alter parasite maturation, doses in excess of 500 rads led to a reduction in worm burden. This could not be attributed to a delay in the arrival of parasites in the hepatic portal system. Worms developing in mice treated with 800 rads commenced egg-laying about 1 wk later than worms in intact mice, and the rate of egg deposition appeared to be lower in irradiated hosts. The data demonstratemore » that exposure of C57BL/6 mice to doses of radiation in excess of 500 rads impairs their ability to carry infections of S. mansoni. The findings do not support the hypothesis that primary worm burdens in the mouse are controlled by a host immune response.« less
21 CFR 179.26 - Ionizing radiation for the treatment of food.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND... “Treated by irradiation” in addition to information required by other regulations. The logo shall be placed... statement that discloses that a food has been intentionally subject to irradiation. (2) For irradiated foods...
21 CFR 579.22 - Ionizing radiation for treatment of animal diets.
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN THE PRODUCTION, PROCESSING... radiation is used or intended for use in single treatment as follows: Food for irradiation Limitations Use... dose: Not to exceed 50 kiloGrays. Feeds and feed ingredients treated by irradiation should be...
21 CFR 179.26 - Ionizing radiation for the treatment of food.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND... “Treated by irradiation” in addition to information required by other regulations. The logo shall be placed... statement that discloses that a food has been intentionally subject to irradiation. (2) For irradiated foods...
21 CFR 179.26 - Ionizing radiation for the treatment of food.
Code of Federal Regulations, 2011 CFR
2011-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND... “Treated by irradiation” in addition to information required by other regulations. The logo shall be placed... statement that discloses that a food has been intentionally subject to irradiation. (2) For irradiated foods...
21 CFR 579.22 - Ionizing radiation for treatment of animal diets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN THE PRODUCTION, PROCESSING... radiation is used or intended for use in single treatment as follows: Food for irradiation Limitations Use... dose: Not to exceed 50 kiloGrays. Feeds and feed ingredients treated by irradiation should be...
21 CFR 179.26 - Ionizing radiation for the treatment of food.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND... “Treated by irradiation” in addition to information required by other regulations. The logo shall be placed... statement that discloses that a food has been intentionally subject to irradiation. (2) For irradiated foods...
21 CFR 579.22 - Ionizing radiation for treatment of animal diets.
Code of Federal Regulations, 2011 CFR
2011-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN THE PRODUCTION, PROCESSING... radiation is used or intended for use in single treatment as follows: Food for irradiation Limitations Use... dose: Not to exceed 50 kiloGrays. Feeds and feed ingredients treated by irradiation should be...
21 CFR 579.22 - Ionizing radiation for treatment of animal diets.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN THE PRODUCTION, PROCESSING... radiation is used or intended for use in single treatment as follows: Food for irradiation Limitations Use... dose: Not to exceed 50 kiloGrays. Feeds and feed ingredients treated by irradiation should be...
21 CFR 579.22 - Ionizing radiation for treatment of animal diets.
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN THE PRODUCTION, PROCESSING... radiation is used or intended for use in single treatment as follows: Food for irradiation Limitations Use... dose: Not to exceed 50 kiloGrays. Feeds and feed ingredients treated by irradiation should be...
21 CFR 179.26 - Ionizing radiation for the treatment of food.
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) IRRADIATION IN THE PRODUCTION, PROCESSING AND HANDLING OF FOOD Radiation and Radiation... irradiation” in addition to information required by other regulations. The logo shall be placed prominently... that discloses that a food has been intentionally subject to irradiation. (2) For irradiated foods not...
NASA Astrophysics Data System (ADS)
LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB
2015-10-01
Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450-500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation.
Study of ionizing radiation on the properties of polyamide 6 with fiberglass reinforcement
NASA Astrophysics Data System (ADS)
Pinto, Clovis; Silva, Leonardo G. Andrade e.
2007-11-01
The use of polymers reinforced with fiberglass is becoming more and more common in the switches for household industries. These compounds perform a good tension resistance to the impact and the humidity absorption being used at the present time and also are in the automobile industry in parts underneath the hood, especially in the radiator frames. The aim of this work is to study the effect of ionizing radiation on the properties of polyamide 6 with fiberglass reinforcement and undergone to different irradiation doses. Samples were prepared and irradiated on JOB 188 accelerator with an electron beam energy of 1.5 MeV in air with different doses and a dose rate of 27.99 kGy/h. Afterward, the properties of the non-irradiated and irradiated polyamide 6 with fiberglass reinforcement were evaluated.
E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2
NASA Astrophysics Data System (ADS)
Pavelková, Tereza; Vaněček, Vojtěch; Jakubec, Ivo; Čuba, Václav
2016-07-01
CeO2, Eu2O3 and mixed oxides of CeO2-UO2, Eu2O3-UO2 were fabricated. The preparative method was based on the irradiation of aqueous solutions containing cerium/europium (and uranyl) nitrates and ammonium formate. In the course of irradiation, the solid phase (precursor) was precipitated. The composition of irradiated solutions significantly affected the properties of precursor formed in the course of the irradiation. However, subsequent heat treatment of (amorphous) precursors at temperatures ≤650 °C invariably resulted in the formation of powder oxides with well-developed nanocrystals with linear crystallite size 13-27 nm and specific surface area 10-46 m2 g-1. The applicability of both ionizing (e-beam) and non-ionizing (UV) radiation was studied.
NASA Astrophysics Data System (ADS)
Sidereas, P.; Patil, D. S.; Garcia, R.; Tracy, R. P.; Holzman, J. M.
2007-11-01
In the industrial setting it is not uncommon for a process interruption to occur during irradiation. In this event, dosimeters may be exposed to prolonged periods of elevated temperature without exposure to ionizing radiation. Once the process is restarted, the same dosimeters are exposed to ionizing radiation in order to achieve target dose. The goal of this experiment was to simulate a process interruption within limits and quantify the effects of a combination of factors (heat, time, and fractionation) on dosimeter response. We present an in-depth experimental study on the response of dosimeters that have been irradiated, stored for a fixed period of time at several temperatures, and then re-irradiated. This study was performed using Harwell Red 4034 polymethylmethacrylate (PMMA) and Kodak BioMax alanine film dosimeters.
Circadian periodicity of resistance to ionizing radiation in the pocket mouse.
NASA Technical Reports Server (NTRS)
Lindberg, R. G.; Hayden, P.; Gambino, J. J.
1971-01-01
Investigation of the response of pocket mice to Co 60 irradiation delivered at two times of day - namely, the predicted high and low points of the metabolic rate. The validity of torpor as an assay of the circadian period of body temperature in pocket mice and as a basis for selecting irradiation times is examined. A study is made of the mitotic activity in the pocket mouse intestinal epithelium as an example of a physiological rhythm which might influence radiation sensitivity. The results of tests in which pocket mice were exposed to ionizing radiation at two different times of day are cited. It is found that under the investigated conditions pocket mice irradiated during their metabolically active period (2330 hr) live significantly longer than those irradiated while their metabolic rate is low (0900 hr).
Influence of ionizing radiation on the stability of clarithromycin antibiotics
NASA Astrophysics Data System (ADS)
Salem, Issam Ben; Mezni, Mohamed; Khamassi, Mohamed Amine; Lagha, Afef; Hosni, Fawzi; Saidi, Mouldi
2018-04-01
The growing interest centered on treatment of pharmaceuticals by ionizing radiation arises from the clear advantages this process offers compared to other methods of sterilization. In this study, the effect of ionizing radiation on clarithromycin (CLA) powder commercially named Zeclar® was investigated. The analysis by HPLC confirms the stability of Zeclar® potency at 2, 5 and 25 kGy and no degradation products were observed. The anti-microbial assays revealed that the activity of irradiated clarithromycin at 2 and 5 kGy did not reduce against Staphylococus aureus ATCC 6538, Streptocoque B (Streptococcus agalactiae) Enterococcus feacium ATCC 19434 and Helicobacter pylori ATCC 43504 and stable during 30 days storage period. However, at 25 kGy, the antimicrobial activity of CLA was significantly reduced. The analysis of impurities by HPLC after irradiation at 5 kGy showed an acceptable impurity level as the content limit described by the European and United States Pharmacopeia. On the contrary, an unacceptable increase of single impurity was evidenced after irradiation at 25 kGy. Therefore, CLA is radiosensitive. After gamma irradiation, complex EPR lines were recorded confirming the presence of a large number of free radicals formed during the irradiation. Approximately 61 days after the irradiation of Zeclar®, the radical concentration decreased by 85% % and 95% respectively for 5 and 2 kGy. Numerical analysis of the time dependence of the integral amplitude of the measured EPR lines demonstrated good agreements between the experimental points and the properly fitted exponential first order function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J.
An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and themore » impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)« less
Modification of graphene oxide by laser irradiation: a new route to enhance antibacterial activity
NASA Astrophysics Data System (ADS)
Buccheri, Maria A.; D'Angelo, Daniele; Scalese, Silvia; Spanò, Simon F.; Filice, Simona; Fazio, Enza; Compagnini, Giuseppe; Zimbone, Massimo; Brundo, Maria V.; Pecoraro, Roberta; Alba, Anna; Sinatra, Fulvia; Rappazzo, Giancarlo; Privitera, Vittorio
2016-06-01
The antibacterial activity and possible toxicity of graphene oxide and laser-irradiated graphene oxide (iGO) were investigated. Antibacterial activity was tested on Escherichia coli and shown to be higher for GO irradiated for at least three hours, which seems to be correlated to the resulting morphology of laser-treated GO and independent of the kind and amount of oxygen functionalities. X-ray photoelectron spectroscopy, Raman spectroscopy, dynamic light scattering and scanning electron microscopy (SEM) show a reduction of the GO flakes size after visible laser irradiation, preserving considerable oxygen content and degree of hydrophilicity. SEM images of the bacteria after the exposure to the iGO flakes confirm membrane damage after interaction with the laser-modified morphology of GO. In addition, a fish embryo toxicity test on zebrafish displayed that neither mortality nor sublethal effects were caused by the different iGO solutions, even when the concentration was increased up to four times higher than the one effective in reducing the bacteria survival. The antibacterial properties and the absence of toxicity make the visible laser irradiation of GO a promising option for water purification applications.
Evaluation of low-dose irradiation on microbiological quality of white carrots and string beans
NASA Astrophysics Data System (ADS)
Koike, Amanda C. R.; Santillo, Amanda G.; Rodrigues, Flávio T.; Duarte, Renato C.; Villavicencio, Anna Lucia C. H.
2012-08-01
The minimally processed food provided the consumer with a product quality, safety and practicality. However, minimal processing of food does not reduce pathogenic population of microorganisms to safe levels. Ionizing radiation used in low doses is effective to maintain the quality of food, reducing the microbiological load but rather compromising the nutritional values and sensory property. The association of minimal processing with irradiation could improve the quality and safety of product. The purpose of this study was to evaluate the effectiveness of low-doses of ionizing radiation on the reduction of microorganisms in minimally processed foods. The results show that the ionizing radiation of minimally processed vegetables could decontaminate them without several changes in its properties.
Efficient thermoelectric device
NASA Technical Reports Server (NTRS)
Ila, Daryush (Inventor)
2010-01-01
A high efficiency thermo electric device comprising a multi nanolayer structure of alternating insulator and insulator/metal material that is irradiated across the plane of the layer structure with ionizing radiation. The ionizing radiation produces nanocrystals in the layered structure that increase the electrical conductivity and decrease the thermal conductivity thereby increasing the thermoelectric figure of merit. Figures of merit as high as 2.5 have been achieved using layers of co-deposited gold and silicon dioxide interspersed with layers of silicon dioxide. The gold to silicon dioxide ratio was 0.04. 5 MeV silicon ions were used to irradiate the structure. Other metals and insulators may be substituted. Other ionizing radiation sources may be used. The structure tolerates a wide range of metal to insulator ratio.
Radiation tolerance in the tardigrade Milnesium tardigradum.
Horikawa, Daiki D; Sakashita, Tetsuya; Katagiri, Chihiro; Watanabe, Masahiko; Kikawada, Takahiro; Nakahara, Yuichi; Hamada, Nobuyuki; Wada, Seiichi; Funayama, Tomoo; Higashi, Seigo; Kobayashi, Yasuhiko; Okuda, Takashi; Kuwabara, Mikinori
2006-12-01
Tardigrades are known to survive high doses of ionizing radiation. However, there have been no reports about radiation effects in tardigrades under culture conditions. In this study, we investigated tolerance of the tardigrade, Milnesium tardigradum, against gamma-rays and heavy ions by determining short-term or long-term survival, and reproductive ability after irradiation. Hydrated and anhydrobiotic animals were exposed to gamma-rays (1000 - 7000 Gy) or heavy ions (1000 - 8000 Gy) to evaluate short-term survival at 2, 24 and 48 h post-irradiation. Long-term survival and reproduction were observed up to 31 days after irradiation with gamma-rays (1000 - 4000 Gy). At 48 h after irradiation, median lethal doses were 5000 Gy (gamma-rays) and 6200 Gy (heavy ions) in hydrated animals, and 4400 Gy (gamma-rays) and 5200 Gy (heavy ions) in anhydrobiotic ones. Gamma-irradiation shortened average life span in a dose-dependent manner both in hydrated and anhydrobiotic groups. No irradiated animals laid eggs with one exception in which a hydrated animal irradiated with 2000 Gy of gamma-rays laid 3 eggs, and those eggs failed to hatch, whereas eggs produced by non-irradiated animals hatched successfully. M. tardigradum survives high doses of ionizing radiation in both hydrated and anhydrobiotic states, but irradiation with >1000 Gy makes them sterile.
Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.
Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie
2012-09-21
Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN...Gy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on initial concentration of... (one decimal reduction). (2) Feeds treated by irradiation should be formulated to account for...
THE EFFECT OF IONIZING RADIATION ON PREGNANCY AND FETAL DEVELOPMENT (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pobedinskii, N.M.
1961-01-01
A review is presented on the reactions of pregnant animais to radiation, the effect of ionizing radiation on the fetus and offspring of man and animal, the mechanism of the action of ionizing radiation on the fetus, and the protective action of agents such as mercamine and heroin. It is stressed that the effect of a dose of ionizing radiation varies with the stage of pregnancy at the time of irradiation (80 references). (TTT)
Lee, O-Mi; Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun; Yu, Seungho
2015-09-15
Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of ionizing radiation on the enzyme activities and ultrastructural changes of poultry
NASA Astrophysics Data System (ADS)
Hwang, H.-I.; Hau, L.-B.
1995-02-01
Enzyme-catalyzed changes are generally recognized as one of the major reasons for fresh meat deterioration after irradiation. In this study, the effects of ionizing radiation and storage on the enzyme activities of poultry as well as the ultrastructural change of muscle were evaluated. When chicken breasts were irradiated at 4°C and -20°C, both Ca 2+-dependent protease and cathepsin D showed some degree of resistance to irradiation. The activities of those two enzymes decreased with the increase of irradiation doses. During storage, Ca 2+-dependent proteases showed a marked decrease in activity. On the other hand, the cathepsin D activity was not significantly changed at either 4°C or -20°C after 20 days. Transmission electron microscope examination showed no structural changes of the myofibrils with a radiation dose of up to 10 kGy at either 4°C or -20°C. Freezing protected the irradiated chicken breasts from autolytic enzymes damage during storage. In contrast, considerable sarcomere degradation occurred in Z-line for irradiated samples when stored at 4°C for 20 days. The action of the proteolytic enzymes may have been responsible for the sarcomere degradation in irradiated chicken breasts.
Irradiation of wastewater with electron beam is a key to sustainable smart/green cities: a review
NASA Astrophysics Data System (ADS)
Hossain, Kaizar; Maruthi, Y. Avasn; Das, N. Lakshmana; Rawat, K. P.; Sarma, K. S. S.
2018-03-01
Remediation of wastewater, sludge and removal of objectionable substances from our environment using radiation technology is neglected. Hardly, a couple of decades ago, application of electron beam (EB) technology has gained attention for waste management. When wastewater is irradiated with electron beam, the beam can alter the physico-chemical properties of irradiated aqueous material and also transform wastewater chemicals due to the excitation or ionization of chemical molecules. Thus, chemical reactions may be capable of producing new compounds. The beam of electrons initiates primary reactions to induce the excitation or ionization of molecules at varied rates. This review paper will help to a budding researcher how to optimize the irradiation process to achieve high efficiency with low electron beam energy which is economically viable/feasible. Application of E-beam radiation for wastewater treatment may ensure future smart cities with sustainable water resources management.
NASA Astrophysics Data System (ADS)
Fan, Wenhui; Li, Qing; Hu, Liang; Yan, Siqi; Wen, Wanxin; Chai, Zhifang; Liu, Hanzhou
2017-01-01
To simply and multitudinously synthesize hollow microspheres in a pure system is important for relevant research and application. Here, a simple and novel one-pot synthetic strategy to prepare polystyrene (PS) hollow microspheres via irradiation-assisted free-radical polymerizing and self-assembly (IFPS) approach under γ-ray irradiation with no additives introduced into the system is presented. And PS/2,5-Diphenyloxazole (PPO) fluorescent microspheres have been prepared successfully by IFPS reaction, which can be used as scintillators for the detection of ionizing radiation. A linear relationship between emitted luminescence and dose-activity in water is obtained, which suggests that composite microspheres could be used as liquid scintillation in specific environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuBois, K. P.; Mazur, M.; Cochran, K. W.
In recent studies on the effects of ionizing radiations on enzymatic reactions we observed that the rate of hydrolysis of certain phosphate esters by alkaline phosphates was increased after exposure of mice to lethal doses of gamma radiation and X-rays. In our experiments no change in the adenosine triphosphatase activity of several tissues was noted after irradiation but the hydrolysis of {beta}-glycerophosphate and 5-adenylic acid was significantly increased in some tissues. To obtain further information on the nature and extent of the increase in phosphatase activity of tissues after irradiation we have continued investigations on alkaline phosphatases. 13 refs., 1more » fig., 7 tabs.« less
Wang, Liang; Zhang, En Xia; Schrimpf, Ronald D.; ...
2015-12-17
Here, the total ionizing dose response of Ge channel pFETs with raised Si 0.55Ge 0.45 source/drain is investigated under different radiation bias conditions. Threshold-voltage shifts and transconductance degradation are noticeable only for negative-bias (on state) irradiation, and are mainly due to negative bias-temperature instability (NBTI). Nonmonotonic leakage changes during irradiation are observed, which are attributed to the competition of radiation-induced field transistor leakage and S/D junction leakage.
The effect of vitamin E on acute skin reaction caused by radiotherapy.
Dirier, A; Akmansu, M; Bora, H; Gurer, M
2007-09-01
Ionizing radiation affects healthy organs and tissues as well as diseased tissues during radiation therapy. Skin reactions varying from acute erythema to necrosis can be seen. It has been found that vitamin E can prevent mutagenic and/or carcinogenic effects of ionizing radiation in both animals and cell cultures. This study investigated the preventative effect of antioxidant vitamin E on irradiation-induced acute skin reactions. No protective effect of vitamin E was demonstrated. It is possible that the vehicle induced free radical exposure in the irradiated skin.
Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.
Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D
2016-05-01
Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. Copyright © 2016 Elsevier Inc. All rights reserved.
Observation of ionization enhancement in two-color circularly polarized laser fields
NASA Astrophysics Data System (ADS)
Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.
2017-08-01
When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.
X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.
Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki
2018-04-01
The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Interleukin-12 Preserves the Cutaneous Physical and Immunological Barrier after Radiation Exposure
Gerber, Scott A.; Cummings, Ryan J.; Judge, Jennifer L.; Barlow, Margaret L.; Nanduri, Julee; Milano Johnson, Doug E.; Palis, James; Pentland, Alice P.; Lord, Edith M.; Ryan, Julie L.
2015-01-01
The United States continues to be a prime target for attack by terrorist organizations in which nuclear detonation and dispersal of radiological material are legitimate threats. Such attacks could have devastating consequences to large populations, in the form of radiation injury to various human organ systems. One of these at risk organs is the cutaneous system, which forms both a physical and immunological barrier to the surrounding environment and is particularly sensitive to ionizing radiation. Therefore, increased efforts to develop medical countermeasures for treatment of the deleterious effects of cutaneous radiation exposure are essential. Interleukin-12 (IL-12) was shown to elicit protective effects against radiation injury on radiosensitive systems such as the bone marrow and gastrointestinal tract. In this article, we examined if IL-12 could protect the cutaneous system from a combined radiation injury in the form of sublethal total body irradiation and beta-radiation burn (β-burn) directly to the skin. Combined radiation injury resulted in a breakdown in skin integrity as measured by transepidermal water loss, size of β-burn lesion and an exacerbated loss of surveillant cutaneous dendritic cells. Interestingly, intradermal administration of IL-12 48 h postirradiation reduced transepidermal water loss and burn size, as well as retention of cutaneous dendritic cells. Our data identify IL-12 as a potential mitigator of radiation-induced skin injury and argue for the further development of this cytokine as a radiation countermeasure. PMID:25564716
Whole-Body Imaging of High-Dose Ionizing Irradiation-Induced Tissue Injuries Using 99mTc-Duramycin
Johnson, Steven E.; Li, Zhixin; Liu, Yu; Moulder, John E.; Zhao, Ming
2013-01-01
High-dose ionizing irradiation can cause extensive injuries in susceptible tissues. A noninvasive imaging technique that detects a surrogate marker of apoptosis may help characterize the dynamics of radiation-induced tissue damage. The goal of this study was to prove the concept of imaging the temporal and spatial distribution of damage in susceptible tissues after high-dose radiation exposure, using 99mTc-duramycin as a phosphatidylethanolamine-binding radiopharmaceutical. Methods Rats were subjected to 15 Gy of total-body irradiation with x-rays. Planar whole-body 99mTc-duramycin scanning (n = 4 per time point) was conducted at 24, 48, and 72 h using a clinical γ-camera. On the basis of findings from planar imaging, preclinical SPECT data were acquired on control rats and on irradiated rats at 6 and 24 h after irradiation (n = 4 per time point). Imaging data were validated by γ-counting and histology, using harvested tissues in parallel groups of animals (n = 4). Results Prominent focal uptake was detected in the thymus as early as 6 h after irradiation, followed by a gradual decline in 99mTc-duramycin binding accompanied by extensive thymic atrophy. Early (6–24 h) radioactivity uptake in the gastrointestinal region was detected. Significant signal was seen in major bones in a slightly delayed fashion, at 24 h, which persisted for at least 2 d. This finding was paralleled by an elevation in signal intensity in the kidneys, spleen, and liver. The imaging results were consistent with ex vivo γ-counting results and histology. Relatively high levels of apoptosis were detected from histology in the thymus, guts, and bones, with the thymus undergoing substantial atrophy. Conclusion As a proof of principle, this study demonstrated a noninvasive imaging technique that allows characterization of the temporal and spatial dynamics of injuries in susceptible tissues during the acute phase after high-dose ionizing irradiation. Such an imaging capability will potentially be useful for global, whole-body, assessment of tissue damage after radiation exposure. These data, in turn, will contribute to our general knowledge of tissue susceptibility to ionizing irradiation, as well as the onset and progression of tissue injuries. PMID:23804327
EPR study of the effect of ionizing radiation on chromium centers in Mg2SiO4: Cr,Li laser crystals
NASA Astrophysics Data System (ADS)
Akhmetzyanov, D. A.; Dudnikova, V. B.; Zharikov, E. V.; Zhiteitsev, E. R.; Konovalov, A. A.; Tarasov, V. F.
2013-09-01
Forsterite single crystals doped with chromium and lithium and exposed to ionizing radiation have been studied using multifrequency electron paramagnetic resonance (EPR) spectroscopy. It has been found that ionizing irradiation up to a dose of 108 rad does not lead to a significant change in the concentration of single chromium impurity centers. At the same time, γ-ray irradiation of the crystal leads to a decrease in the concentration of active laser centers, which form an associate of trivalent chromium and monovalent lithium in the crystallographic positions M2 and M1, respectively, and to the formation of new centers of divalent chromium. The structure and magnetic properties of the new centers have been discussed.
Laser stripping of hydrogen atoms by direct ionization
Brunetti, E.; Becker, W.; Bryant, H. C.; ...
2015-05-08
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
Laser stripping of hydrogen atoms by direct ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetti, E.; Becker, W.; Bryant, H. C.
Direct ionization of hydrogen atoms by laser irradiation is investigated as a potential new scheme to generate proton beams without stripping foils. The time-dependent Schrödinger equation describing the atom-radiation interaction is numerically solved obtaining accurate ionization cross-sections for a broad range of laser wavelengths, durations and energies. Parameters are identified where the Doppler frequency up-shift of radiation colliding with relativistic particles can lead to efficient ionization over large volumes and broad bandwidths using currently available lasers.
NASA Astrophysics Data System (ADS)
Ali, Nisar; Bashir, Shazia; Umm-i-Kalsoom; Begum, Narjis; Hussain, Tousif
2017-07-01
Variation in surface morphology, chemical composition, crystallinity and hardness of laser irradiated silver in dry and wet ambient environments has been investigated. For this purpose, the silver targets were exposed for various number of laser pulses in ambient environment of air, ethanol and de-ionized water for various number of laser pulses i.e. 500, 1000, 1500 and 2000. Scanning Electron Microscope (SEM) was employed to investigate the surface morphology of irradiated silver. SEM analysis reveals significant surface variations for both dry and wet ambient environments. For lower number of pulses, in air environment significant mass removal is observed but in case of ethanol no significant change in surface morphology is observed. In case of de-ionized water small sized cavities are observed with formation of protrusions with spherical top ends. For higher number of laser pulses, refilling of cavities by shock liquefied material, globules and protrusions are observed in case of dry ablation. For ablation in ethanol porous and coarse periodic ripples are observed whereas, for de-ionized water increasing density of protrusions is observed for higher number of pulses. EDS analysis exhibits the variation in chemical composition along with an enhanced diffusion of oxygen under both ambient conditions. The crystal structure of the exposed targets were explored by X-ray Diffraction (XRD) technique. XRD results support the EDS results. Formation of Ag2O in case of air and ethanol whereas, Ag2O and Ag3O in case of de-ionized water confirms the diffusion of oxygen into the silver surface after irradiation. Vickers Hardness tester was employed to measure the hardness of laser treated targets. Enhanced hardness is observed after irradiation in both dry and wet ambient environments. Initial decrease and then increase in hardness is observed with increase in number of laser pulses in air environment. In case of ethanol, increase in number of laser pulses results in continuous decrease in hardness. Whereas, in case of de-ionized water hardness increases with increase in number of laser pulses.
The Effect of High-Dose Ionizing Radiation on the Astrobiological Model Lichen Circinaria gyrosa
NASA Astrophysics Data System (ADS)
de la Torre, Rosa; Zélia Miller, Ana; Cubero, Beatriz; Martín-Cerezo, M. Luisa; Raguse, Marina; Meeßen, Joachim
2017-02-01
The lichen Circinaria gyrosa is an astrobiological model defined by its high capacity of resistance to space conditions and to a simulated martian environment. Therefore, it became part of the currently operated BIOMEX experiment on board the International Space Station and the recent STARLIFE campaign to study the effects of four types of space-relevant ionizing radiation. The samples were irradiated with helium and iron ions at doses up to 2 kGy, with X-rays at doses up to 5 kGy and with γ rays at doses from 6 to 113 kGy. Results on C. gyrosa's resistance to simulated space ionizing radiation and its post-irradiation viability were obtained by (i) chlorophyll a fluorescence of photosystem II (PSII), (ii) epifluorescence microscopy, (iii) confocal laser scanning microscopy (CLSM), and (iv) field emission scanning electron microscopy (FESEM). Results of photosynthetic activity and epifluorescence show no significant changes up to a dose of 1 kGy (helium ions), 2 kGy (iron ions), 5 kGy (X-rays) - the maximum doses applied for those radiation qualities - as well as a dose of 6 kGy of γ irradiation, which was the lowest dose applied for this low linear energy transfer (LET) radiation. Significant damage in a dose-related manner was observed only at much higher doses of γ irradiation (up to 113 kGy). These data corroborate the findings of the parallel STARLIFE studies on the effects of ionizing radiation on the lichen Circinaria gyrosa, its isolated photobiont, and the lichen Xanthoria elegans.
NASA Astrophysics Data System (ADS)
Todoriki, Setsuko; Bari, Latiful; Kitta, Kazumi; Ohba, Mika; Ito, Yasuhiro; Tsujimoto, Yuka; Kanamori, Norihito; Yano, Erika; Moriyama, Tatsuya; Kawamura, Yukio; Kawamoto, Shinichi
2009-07-01
The presence of Listeria monocytogenes in fresh produce is a growing concern because of the possibility of food-borne illness. Ionizing radiation is an effective non-thermal means of eliminating pathogenic bacteria in fresh produce; however, the effect of ionizing irradiation on the allergenic properties of the host commodities remains unknown. This study aimed (i) to determine the effective dose of gamma-irradiation in eliminating L. monocytogenes on whole cherry tomatoes and (ii) to evaluate the effect of gamma-irradiation on the allergenic properties of tomato proteins. Cherry tomatoes that were inoculated with a mixture of five L. monocytogenes strains were treated with gamma-rays from a 60Co source. A 1.25 kGy dose of gamma-irradiation was found to be sufficient to eliminate L. monocytogenes on whole cherry tomatoes. The immunoblot profile of serum samples obtained from two patients with tomato allergy revealed that gamma-irradiation did not affect the allergenicity of tomato proteins for up to 7 days after irradiation when the tomatoes were stored at 20 °C. Additionally, the m-RNA levels of β-fructofuranosidase, polygalacturonase, pectin esterase, and superoxide dismutase, the main allergenic proteins in tomato, were not affected by the applied irradiation dose. Thus, this study demonstrated that a 1.25 kGy dose of gamma-irradiation effectively eliminates L. monocytogenes on cherry tomatoes without affecting the expression of allergenic proteins in the fruits.
Effect of ionizing radiation on human skeletal muscle precursor cells
Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz
2013-01-01
Background Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Materials and methods Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Results Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Conclusions Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions. PMID:24294183
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troitskii, V.L.; Tumanyan, M.A. et al.
1959-10-31
Experiments are reported which give encouraging results for applications of ionizing radiations in the sterilization of vaccines, antitoxins, and serums for use in medical prophylaxis and treatment. A cobalt-60 gamma source was used. A dose of 1.5 Mr had a sterilizing effect, killing not only vegetative bacteria but sporeformers as well. Irradiation with sterilizing doses did not reduce the nutrient properties of meat media used for growth of bacteria of the intestinal group. The formation of diphtheria toxin proceeded on irradiated media the same as on nonirradiated. Irradiation did not reduce the antigenic or immunological properties of typhoid vaccines ormore » diphtheria and tetanus antitoxins. Serum products deteriorated after exposure to sterilizing doses but showed good tolerances to doses which killed vegetative forms of bacteria. It was concluded that ionizing radiation will prove practical for the preparation of many pharmaceutical products, the cold sterilization of nutrient broth, and the cold sterilization of the wastes from the manufacture of bacterial preparations. (C.H.)« less
Ushakov, I B; Tsetlin, V V; Moisa, S S
2013-01-01
The authors review the findings of researches into the effects of low-dose ionizing irradiation on diverse biological objects (embryonic Japanese quails, Aspergillus niger, Spirostomum ambiguum Ehrbg., mesenchymal stem cells from mouse marrow, dry higher plants seeds, blood lymphocytes from pilots and cosmonauts). Model experiments with chronic exposure to ionizing radiation doses comparable with the measurements inside orbital vehicles and estimations for trips through the interplanetary space resulted in morphological disorders (embryonic Japanese quails, Aspergillus niger), radiation hormesis (Aspergillus niger, MSCs from mouse marrow), increase in the seed germination rate, inhibition of Spirostomum spontaneous activity, DNA damages, chromosomal aberrations, and increase of the blood lymphocytes reactivity to additional radiation loading. These facts give grounds to assume that the crucial factor in the radiation outcomes is changes in liquid medium. In other words, during extended orbiting within the magnetosphere region and interplanetary missions ionizing radiation affects primarily liquids of organism and, secondarily, its morphofunctional structures.
Progressive behavioral changes in rats after exposure to low levels of ionizing radiation in utero
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, S.; Kimler, B.F.; Mullenix, P.J.
1991-03-01
The deleterious effects of ionizing radiation on the developing brain may be not only prolonged but progressive. Fetuses were exposed to 0.75 Gy of ionizing radiation on gestational day 15 through whole body exposure of the pregnant rat. Three behavioral tests (gait analysis, continuous corridor activity and photographic analysis of sequences of behavioral acts) were performed at 1 and 3 months, postnatally. Body weight and thickness of the cerebral cortex of irradiated rats were 10-15 percent below controls throughout the period of study. Behavior in all tests was more affected at 3 months than at 1 month of age. Gaitmore » of control rats, as measured by the angle of advanced of hind feet, widened about 20 percent for males and 40 percent for females from 1 to 3 months, as expected, while, in irradiated rats, the angle widened only about 10 percent. Continuous corridor activity increased less than 10 percent in controls and about 35 percent in irradiated rats over the same period. In photographic analysis of behavior, controls increased their time spent standing by about 50 percent in males and 20 percent in females from 1 to 3 months of age. Irradiated males increased time standing only about 10 percent and irradiated females decreased about 30 percent over the same period. The data obtained in these experiments support other evidence that some behavioral alterations from perinatal exposure to radiation become more marked with maturation.« less
Generation of strongly coupled Xe cluster nanoplasmas by low intensive soft x-ray laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Namba, S.; Hasegawa, N.; Kishimoto, M.
A seeding gas jet including Xe clusters was irradiated with a laser-driven plasma soft x-ray laser pulse ({lambda}=13.9 nm, {approx}7 ps, {<=}5 Multiplication-Sign 10{sup 9} W/cm{sup 2}), where the laser photon energy is high enough to ionize 4d core electrons. In order to clarify how the innershell ionization followed by the Auger electron emission is affected under the intense laser irradiation, the electron energy distribution was measured. Photoelectron spectra showed that the peak position attributed to 4d hole shifted to lower energy and the spectral width was broadened with increasing cluster size. Moreover, the energy distribution exhibited that a stronglymore » coupled cluster nanoplasma with several eV was generated.« less
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
21 CFR 579.40 - Ionizing radiation for the treatment of poultry feed and poultry feed ingredients.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IRRADIATION IN... (Mrad)); maximum dose 25 kGy (2.5 megarads Mrad). The absorbed dose of irradiation is to be based on... concentration by one log cycle (one decimal reduction). (2) Feeds treated by irradiation should be formulated to...
Inter-Individual Variability in Human Response to Low-Dose Ionizing Radiation, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocke, David
2016-08-01
In order to investigate inter-individual variability in response to low-dose ionizing radiation, we are working with three models, 1) in-vivo irradiated human skin, for which we have a realistic model, but with few subjects, all from a previous project, 2) ex-vivo irradiated human skin, for which we also have a realistic model, though with the limitations involved in keeping skin pieces alive in media, and 3) MatTek EpiDermFT skin plugs, which provides a more realistic model than cell lines, which is more controllable than human samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogaerts, W.J.C.; Durville-vanderoord, B.J.
1975-01-01
The relationships governing host resistance to viral infection were evaluated in mice following respiratory or peritoneal infection with three strains of encephalomyocarditis (EMC) virus, which were antigenically similar but differed in virulence. Host resistance to each strain was evaluated by determining the mean lethal dose LD50, and the mean infectious dose ID50. The contribution of non-specific resistance to the overall defense of the host was assessed in mice that had received 450 R of x irradiation prior to viral infection. Experimental results indicate that host capacity to resist respiratory infection exceeds that for peritoneal infection for the three EMC strains.more » It is concluded that respiratory inoculation of virus affords better immunization against EMC virus infection than does peritoneal infection. (Author) (GRA)« less
Brodin, N Patrik; Velcich, Anna; Guha, Chandan; Tomé, Wolfgang A
2017-01-01
Currently, no readily available mitigators exist for acute abdominal radiation injury. Here, we present an animal model for precise and homogenous limb-sparing abdominal irradiation (LSAIR) to study the radiation-induced gastrointestinal syndrome (RIGS). The LSAIR technique was developed using the small animal radiation research platform (SARRP) with image guidance capabilities. We delivered LSAIR at doses between 14 and 18 Gy on 8- to 10-week-old male C57BL/6 mice. Histological analysis was performed to confirm that the observed mortality was due to acute abdominal radiation injury. A steep dose-response relationship was found for survival, with no deaths seen at doses below 16 Gy and 100% mortality at above 17 Gy. All deaths occurred between 6 and 10 days after irradiation, consistent with the onset of RIGS. This was further confirmed by histological analysis showing clear differences in the number of regenerative intestinal crypts between animals receiving sublethal (14 Gy) and 100% lethal (18 Gy) radiation. The developed LSAIR technique provides uniform dose delivery with a clear dose response, consistent with acute abdominal radiation injury on histological examination. This model can provide a useful tool for researchers investigating the development of mitigators for accidental or clinical high-dose abdominal irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, N.; Sakaguchi, S.; Miyai, K.
1992-11-01
Ionizing radiation can functionally alter the immune system and break self-tolerance. High dose (42.5 Gy), fractionated (2.5 Gy 17 times) total lymphoid irradiation (TLI) on mice caused various organ-specific autoimmune diseases, such as gastritis, thyroiditis, and orchitis, depending on the radiation dosages, the extent of lymphoid irradiation, and the genetic background of the mouse strains. Radiation-induced tissue damage is not the primary cause of the autoimmune disease because irradiation of the target organs alone failed to elicit the autoimmunity and shielding of the organs from irradiation was unable to prevent it. In contrast, irradiation of both the thymus and themore » peripheral lymphoid organs/tissues was required for efficient induction of autoimmune disease by TLI. TLI eliminated the majority of mature thymocytes and the peripheral T cells for 1 mo, and inoculation of spleen cell, thymocyte, or bone marrow cell suspensions (prepared from syngeneic nonirradiated mice) within 2 wk after TLI effectively prevented the autoimmune development. Depletion of T cells from the inocula abrogated the preventive activity. CD4[sup +] T cells mediated the autoimmune prevention but CD8[sup +] T cells did not. CD4[sup +] T cells also appeared to mediate the TLI-induced autoimmune disease because CD4[sup +] T cells from disease-bearing TLI mice adoptively transferred the autoimmune disease to syngeneic naive mice. Taken together, these results indicate that high dose, fractionated ionizing radiation on the lymphoid organs/tissues can cause autoimmune disease by affecting the T cell immune system, rather than the target self-Ags, presumably by altering T cell-dependent control of self-reactive T cells. 62 refs., 9 figs., 2 tabs.« less
Zhu, Wei; Xu, Jing; Ge, Yangyang; Cao, Han; Ge, Xin; Luo, Judong; Xue, Jiao; Yang, Hongying; Zhang, Shuyu; Cao, Jianping
2014-11-01
Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant and free radical scavenger that may have therapeutic applications for the treatment of many disorders. Radiation therapy is widely used for the treatment of various types of cancers; however, radiation-induced skin injury remains a serious concern. EGCG has not yet been reported as protecting skin cells against ionizing radiation. In the present study, we investigated whether EGCG confers cytoprotection against ionizing radiation. We found that, compared with the control, pretreatment with EGCG significantly enhanced the viability of human skin cells that were irradiated with X-rays, and decreased apoptosis induced by X-ray irradiation. Mito-Tracker assay showed that EGCG suppressed the damage to mitochondria induced by ionizing radiation via upregulation of SOD2. Reactive oxygen species (ROS) in HaCaT cells were significantly reduced when pretreated with EGCG before irradiation. Radiation-induced γH2AX foci, which are representative of DNA double-strand breaks, were decreased by pretreatment with EGCG. Furthermore, EGCG induced the expression of the cytoprotective molecule heme oxygenase-1 (HO-1) in a dose-dependent manner via transcriptional activation. HO-1 knockdown or treatment with the HO-1 inhibitor tin protoporphyrin (SnPPIX) reversed the protective role of EGCG, indicating an important role for HO-1. These results suggest that EGCG offers a new strategy for protecting skin against ionizing radiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación
2011-01-01
The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single-OTU level. Therefore, biofilm communities growing in sunlight exposed substrates are capable of coping with increased mutation rates and appear pre-adapted to levels of ionizing radiation in Chernobyl due to their natural adaptation to periodical desiccation and ambient UV radiation.
Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice
Vares, Guillaume; Wang, Bing; Ishii-Ohba, Hiroko; Nenoi, Mitsuru; Nakajima, Tetsuo
2014-01-01
Both exposure to ionizing radiation and obesity have been associated with various pathologies including cancer. There is a crucial need in better understanding the interactions between ionizing radiation effects (especially at low doses) and other risk factors, such as obesity. In order to evaluate radiation responses in obese animals, C3H and C57BL/6J mice fed a control normal fat or a high fat (HF) diet were exposed to fractionated doses of X-rays (0.75 Gy ×4). Bone marrow micronucleus assays did not suggest a modulation of radiation-induced genotoxicity by HF diet. Using MSP, we observed that the promoters of p16 and Dapk genes were methylated in the livers of C57BL/6J mice fed a HF diet (irradiated and non-irradiated); Mgmt promoter was methylated in irradiated and/or HF diet-fed mice. In addition, methylation PCR arrays identified Ep300 and Socs1 (whose promoters exhibited higher methylation levels in non-irradiated HF diet-fed mice) as potential targets for further studies. We then compared microRNA regulations after radiation exposure in the livers of C57BL/6J mice fed a normal or an HF diet, using microRNA arrays. Interestingly, radiation-triggered microRNA regulations observed in normal mice were not observed in obese mice. miR-466e was upregulated in non-irradiated obese mice. In vitro free fatty acid (palmitic acid, oleic acid) administration sensitized AML12 mouse liver cells to ionizing radiation, but the inhibition of miR-466e counteracted this radio-sensitization, suggesting that the modulation of radiation responses by diet-induced obesity might involve miR-466e expression. All together, our results suggested the existence of dietary effects on radiation responses (especially epigenetic regulations) in mice, possibly in relationship with obesity-induced chronic oxidative stress. PMID:25171162
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storb, R.; Raff, R.F.; Graham, T.
1993-03-20
The authors explored in dogs the marrow toxicity of single dose total body irradiation delivered from two opposing [sup 60]Co sources at a rate of 10 cGy/min and compared results to those seen with total body irradiation administered in 100 cGy fractions with minimum interfraction intervals of 6 hr. Dogs were not given marrow transplants. They found that 200 cGy single dose total body irradiation was sublethal, with 12 of 13 dogs showing hematopoietic recovery and survival. Seven of 21 dogs given 300 cGy single dose total body irradiation survived compared to 6 of 10 dogs given 300 cGy fractionatedmore » total body irradiation. One of 28 dogs given 400 cGy single dose total body irradiation survived compared to none of six given fractionated radiation. With granulocyte colony stimulating factor (GCSF) administered from day 0-21 after 400 cGy total body irradiation, most dogs survived with hematological recovery. Because of the almost uniform success with GCSF after 400 cGy single dose total body irradiation, a study of GCSF after 400 cGy fractionated total body irradiation was deemed not to be informative and, thus, not carried out. Additional comparisons between single dose and fractionated total body irradiation were carried out with GCSF administered after 500 and 600 cGy of total body irradiation. As with lower doses of total body irradiation, no significant survival differences were seen between the two modes of total body irradiation, and only 3 of 26 dogs studied survived with complete hematological recovery. Overall, therefore, survival among dogs given single dose total body irradiation was not different from that of dogs given fractionated total body irradiation (p = .67). Similarly, the slopes of the postirradiation declines of granulocyte and platelet counts and the rates of their recovery in surviving dogs given equal total doses of single versus fractionated total body irradiation were indistinguishable. 24 refs., 3 figs., 2 tabs.« less
Total Ionizing Dose Effects in Bipolar and BiCMOS Devices
NASA Technical Reports Server (NTRS)
Chavez, Rosa M.; Rax, Bernard G.; Scheick, Leif Z.; Johnston, Allan H.
2005-01-01
This paper describes total ionizing dose (TID) test results performed at JPL. Bipolar and BiCMOS device samples were tested exhibiting significant degradation and failures at different irradiation levels. Linear technology which is susceptible to low-dose dependency (ELDRS) exhibited greater damage for devices tested under zero bias condition.
X-RAY IRRADIATION OF H{sub 2}O + CO ICE MIXTURES WITH SYNCHROTRON LIGHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiménez-Escobar, A.; Ciaravella, A.; Micela, G.
2016-03-20
We irradiated a (4:1) mixture of water and carbon monoxide with soft X-rays of energies up to 1.2 keV. The experiments were performed using the spherical grating monochromator beamline at National Synchrotron Radiation Research Center in Taiwan. Both monochromatic (300 and 900 eV) and broader energy fluxes (250–1200 eV) were employed. During the irradiation, the H{sub 2}O + CO mixture was ionized, excited, and fragmented, producing a number of reactive species. The composition of the ice has been monitored throughout both the irradiation and warm-up phases. We identified several products, which can be related through a plausible chemical reaction scheme. Such chemistrymore » is initiated by the injection of energetic photoelectrons that produce multiple ionization events generating a secondary electron cascade. The results have been discussed in light of a model for protoplanetary disks around young solar-type stars.« less
Extreme ultraviolet interferometry of warm dense matter in laser plasmas.
Gartside, L M R; Tallents, G J; Rossall, A K; Wagenaars, E; Whittaker, D S; Kozlová, M; Nejdl, J; Sawicka, M; Polan, J; Kalal, M; Rus, B
2010-11-15
We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).
NASA Astrophysics Data System (ADS)
Buchalla, Rainer; Begley, Timothy H.
2006-01-01
Low-molecular-weight (low-MW) constituents of polyethylene terephthalate (PET), irradiated with 60Co gamma rays at 25 and 50 kGy, were analyzed by HPLC-MS with atmospheric-pressure chemical ionization (APCI). Consistent with earlier results, the concentrations of the major compounds that are present in the non-irradiated PET do not change perceptibly. However, we find a small but significant increase in terephthalic acid ethylester, from less than 1 mg/kg in the non-irradiated control to ca. 2 mg/kg after 50 kGy, which has not been described before. The finding is important because it gives an impression of the sensitivity of the analytical method. Additionally, it shows that even very radiation-resistant polymers can form measurable amounts of low-MW radiolysis products. The potential and limitations of LC-MS for the analysis of radiolysis products and unidentified migrants are briefly discussed in the context of the question: How can we validate our analytical methods for unknown analytes?
Some Radiation Techniques Used in the GU-3 Gamma Irradiator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodbiba, Andon; Ylli, Ariana; Stamo, Iliriana
2007-04-23
Different radiation techniques, measurement of dose and its distibution throughout the irradiated materials are the main problems treated in this paper. The oscillometry method combined with the ionization chamber, as an absolute dosimeter, is used for calibration of routine ECB dosimeters. The dose uniformity, for the used radiation techniques in our GU-3 Gamma Irradiator with Cs-137, is from 93% up to 99%.
The Response of High Energy Photoelectrons in The Mars Atmosphere to Variable Solar Input
NASA Astrophysics Data System (ADS)
Mills, I. F.; Eparvier, F. G.; Thiemann, E.; Mitchell, D. L.
2016-12-01
The Mars Atmosphere and Volatile Evolution (MAVEN) mission aims to understand the processes by which Mars has been losing atmosphere over time by analyzing data taken from different levels of the Martian atmosphere as well as solar drivers. In this project, we isolate data taken from the ionosphere to study high-energy electrons created by a particular ionization process called the Auger effect. This process occurs when soft x-rays ionize atmospheric gases. In particular, we focus on Auger electrons that are ionized from CO2 molecules and atomic O via solar irradiance in the 0.1-6 nm wavelength range. Thus far, the portion of the solar spectrum that produces Auger electrons has been sparsely measured and its spectral distribution is poorly understood, especially as a function of solar activity. To make up for this, models of spectral irradiance are used in studies of atmospheric effects. In an effort to validate solar irradiance models from 0.1- 6 nm, we utilize data from two instruments on board the MAVEN spacecraft, EUVM (the Extreme Ultraviolet Monitor), which measures the broadband solar irradiance from 0.1-6 nm and SWEA (the Solar Wind Electron Analyzer), which measures the photoelectron energy spectrum in the Mars atmosphere. We then compare these observed data sets to two different spectral irradiance models: MAVEN SynRef, and FISM-M (the Flare Irradiance Spectral Model for Mars). SynRef is a version of the SORCE XPS model modified to be used by MAVEN/EUVM, and FISM-M is a version of the FISM proxy model previously developed for Earth irradiance and modified to be used by MAVEN/EUVM. Our method of comparison is to find the Pearson correlation between the data and the models over October 2015, a month that had a strong solar rotational variability in the solar irradiance. By filtering the SWEA data for different altitudes and solar zenith angles, we are able to analyze how Auger electrons react under different solar activity levels. Both irradiance models correlate well with the electron data, specifically when comparing them with electrons in the bin containing the Auger peak, and when integrating over multiple energy bins surrounding this peak.
NASA Technical Reports Server (NTRS)
Morgan, William F.
2003-01-01
The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.
NASA Astrophysics Data System (ADS)
Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena
2007-12-01
Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.
Effect of radiation on red cell membrane and intracellular oxidative defense systems.
Katz, D; Mazor, D; Dvilansky, A; Meyerstein, N
1996-03-01
Ionizing radiation is currently used for prevention of transfusion associated graft versus host disease (TAGVHD). As radiation damage is associated with the production of activated oxygen species, the aim of this study was to observe the immediate effect of ionizing radiation on red cell membrane and intracellular oxidative defense systems. Neonatal and iron deficiency (IDA) cells, known for their increased sensitivity to oxidative stress, were chosen and compared with normal cells. Irradiation was performed in doses of 1500 cGy, 3000 cGy and 5000 cGy. GSH and methemoglobin levels and the activity of different antioxidant enzymes, measured under optimal in vitro conditions, were preserved in all cells after irradiation. Only radiation at the highest does of 5000 cGy, caused significant potassium leakage in neonatal cells and insignificant increase in IDA cells. Thus, cells with increased sensitivity to oxidative stress are more susceptible to damage by ionizing radiation than normal cells.
NASA Astrophysics Data System (ADS)
Wen, Lin; Li, Yu-dong; Guo, Qi; Wang, Chao-min
2018-02-01
Total ionizing dose effect is a major threat to space applications of CCD, which leads to the decrease of CCD saturation output voltage and the increase of dark signal. This paper investigated CCD and its readout circuit for experimental samples of different channel width to length ratio of MOSFET, and readout circuit amplifier, and CCD. The irradiation source was 60Co- gamma ray. through testing the parameters degradation of MOSFET and amplifier degradation, the generation and annealing law of irradiation induced defects in MOS single tube are analyzed. Combined with the radiation effect of amplifier and CCD, The correlation of radiation damage of the MOSFET and the readout circuit amplifier and CCD parameter degradation is established. Finally, this paper reveals the physical mechanism of ionizing radiation damage of the readout circuit. The research results provide a scientific basis for the selection of anti-radiation technology and structure optimization of domestic CCD.
The role of non-ionizing radiation pressure in star formation: the stability of cores and filaments
NASA Astrophysics Data System (ADS)
Seo, Young Min; Youdin, Andrew N.
2016-09-01
Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (I.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, ˜103 cm-3, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of stability thresholds requires stronger irradiation, as can be found closer to the Galactic centre or near stellar associations. Even when strong sources of ionizing radiation are absent or extincted, our study shows that interstellar irradiation can significantly influence the star formation process.
Radiation Preservation of Foods and Its Effect on Nutrients
ERIC Educational Resources Information Center
Josephson, Edward S.; Thomas, Miriam H.
1970-01-01
Presents a discussion of (1) some possible applications of ionizing radiation to the treatment and preservation of food and (2) the effects of irradiation on nutrients such as proteins, fats, oils, carbohydrates and vitamins. The authors suggest that the irradiation process has great potential in food technology. Bibliography. (LC)
USDA-ARS?s Scientific Manuscript database
Ionizing radiation is phytosanitary treatment to mitigate risks associated with trade of fresh fruits and vegetables. Commodity producers wish to irradiate fresh product stored in modified atmosphere packaging that increases shelf life and delays ripening. However, irradiating insects in anoxia incr...
Signaling pathways underpinning the manifestations of ionizing radiation-induced bystander effects.
Hamada, Nobuyuki; Maeda, Munetoshi; Otsuka, Kensuke; Tomita, Masanori
2011-06-01
For nearly a century, ionizing radiation has been indispensable to medical diagnosis. Furthermore, various types of electromagnetic and particulate radiation have also been used in cancer therapy. However, the biological mechanism of radiation action remains incompletely understood. In this regard, a rapidly growing body of experimental evidence indicates that radiation exposure induces biological effects in cells whose nucleus has not been irradiated. This phenomenon termed the 'non-targeted effects' challenges the long-held tenet that radiation traversal through the cell nucleus is a prerequisite to elicit genetic damage and biological responses. The non-targeted effects include biological effects in cytoplasm-irradiated cells, bystander effects that arise in non-irradiated cells having received signals from irradiated cells, and genomic instability occurring in the progeny of irradiated cells. Such non-targeted responses are interrelated, and the bystander effect is further related with an adaptive response that manifests itself as the attenuated stressful biological effects of acute high-dose irradiation in cells that have been pre-exposed to low-dose or low-dose-rate radiation. This paper reviews the current body of knowledge about the bystander effect with emphasis on experimental approaches, in vitro and in vivo manifestations, radiation quality dependence, temporal and spatial dependence, proposed mechanisms, and clinical implications. Relations of bystander responses with the effects in cytoplasm-irradiated cells, genomic instability and adaptive response will also be briefly discussed.
NASA Technical Reports Server (NTRS)
Costes, S.; Streuli, C. H.; Barcellos-Hoff, M. H.
2000-01-01
We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.
Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams.
Poppinga, D; Halbur, J; Lemmer, S; Delfs, B; Harder, D; Looe, H K; Poppe, B
2017-09-05
The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm -3 ) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm × 10 cm field size agreed with the results of ionization chamber measurements within ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.
Test study of boron nitride as a new detector material for dosimetry in high-energy photon beams
NASA Astrophysics Data System (ADS)
Poppinga, D.; Halbur, J.; Lemmer, S.; Delfs, B.; Harder, D.; Looe, H. K.; Poppe, B.
2017-09-01
The aim of this test study is to check whether boron nitride (BN) might be applied as a detector material in high-energy photon-beam dosimetry. Boron nitride exists in various crystalline forms. Hexagonal boron nitride (h-BN) possesses high mobility of the electrons and holes as well as a high volume resistivity, so that ionizing radiation in the clinical range of the dose rate can be expected to produce a measurable electrical current at low background current. Due to the low atomic numbers of its constituents, its density (2.0 g cm-3) similar to silicon and its commercial availability, h-BN appears as possibly suitable for the dosimetry of ionizing radiation. Five h-BN plates were contacted to triaxial cables, and the detector current was measured in a solid-state ionization chamber circuit at an applied voltage of 50 V. Basic dosimetric properties such as formation by pre-irradiation, sensitivity, reproducibility, linearity and temporal resolution were measured with 6 MV photon irradiation. Depth dose curves at quadratic field sizes of 10 cm and 40 cm were measured and compared to ionization chamber measurements. After a pre-irradiation with 6 Gy, the devices show a stable current signal at a given dose rate. The current-voltage characteristic up to 400 V shows an increase in the collection efficiency with the voltage. The time-resolved detector current behavior during beam interrupts is comparable to diamond material, and the background current is negligible. The measured percentage depth dose curves at 10 cm × 10 cm field size agreed with the results of ionization chamber measurements within ±2%. This is a first study of boron nitride as a detector material for high-energy photon radiation. By current measurements on solid ionization chambers made from boron nitride chips we could demonstrate that boron nitride is in principle suitable as a detector material for high-energy photon-beam dosimetry.
Del Lama, Lucas Sacchini; de Góes, Evamberto Garcia; Petchevist, Paulo César Dias; Moretto, Edson Lara; Borges, José Carlos; Covas, Dimas Tadeu; de Almeida, Adelaide
2013-01-01
Irradiation of whole blood and blood components before transfusion is currently the only accepted method to prevent Transfusion-Associated Graft-Versus-Host-Disease (TA-GVHD). However, choosing the appropriate technique to determine the dosimetric parameters associated with blood irradiation remains an issue. We propose a dosimetric system based on the standard Fricke Xylenol Gel (FXG) dosimeter and an appropriate phantom. The modified dosimeter was previously calibrated using a 60Co teletherapy unit and its validation was accomplished with a 137Cs blood irradiator. An ionization chamber, standard FXG, radiochromic film and thermoluminescent dosimeters (TLDs) were used as reference dosimeters to determine the dose response and dose rate of the 60Co unit. The dose distributions in a blood irradiator were determined with the modified FXG, the radiochromic film, and measurements by TLD dosimeters. A linear response for absorbed doses up to 54 Gy was obtained with our system. Additionally, the dose rate uncertainties carried out with gel dosimetry were lower than 5% and differences lower than 4% were noted when the absorbed dose responses were compared with ionization chamber, film and TLDs. PMID:23762345
Kim, J H; Hyun, S J; Yoon, M Y; Ji, Y H; Cho, C K; Yoo, S Y
1997-06-01
Induction of an adaptive response to ionizing radiation in mouse lymphoma (EL4) cells was studied by using cell survival fraction and apoptotic nucleosomal DNA fragmentation as biological end points. Cells in early log phase were pre-exposed to low dose of gamma-rays (0.01 Gy) 4 or 20 hrs prior to high dose gamma-ray (4, 8 and 12 Gy for cell survival fraction analysis; 8 Gy for DNA fragmentation analysis) irradiation. Then cell survival fractions and the extent of DNA fragmentation were measured. Significant adaptive response, increase in cell survival fraction and decrease in the extent of DNA fragmentation were induced when low and high dose gamma-ray irradiation time interval was 4 hr. Addition of protein or RNA synthesis inhibitor, cycloheximide or 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRFB), respectively during adaptation period, the period from low dose gamma-ray irradiation to high dose gamma-ray irradiation, was able to inhibit the induction of adaptive response, which is the reduction of the extent DNA fragmentation in irradiated EL4 cells. These data suggest that the induction of adaptive response to ionizing radiation in EL4 cells required both protein and RNA synthesis.
Linking loss of sodium-iodide symporter expression to DNA damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyckesvärd, Madeleine Nordén; Department of Medical Chemistry and Cell Biology, University of Gothenburg, Göteborg; Kapoor, Nirmal
Radiotherapy of thyroid cancer with I-131 is abrogated by inherent loss of radioiodine uptake due to loss of sodium iodide symporter (NIS) expression in poorly differentiated tumor cells. It is also known that ionizing radiation per se down-regulates NIS (the stunning effect), but the mechanism is unknown. Here we investigated whether loss of NIS-mediated iodide transport may be elicited by DNA damage. Calicheamicin, a fungal toxin that specifically cleaves double-stranded DNA, induced a full scale DNA damage response mediated by the ataxia-telangiectasia mutated (ATM) kinase in quiescent normal thyrocytes. At sublethal concentrations (<1 nM) calicheamicin blocked NIS mRNA expression andmore » transepithelial iodide transport as stimulated by thyrotropin; loss of function occurred at a much faster rate than after I-131 irradiation. KU-55933, a selective ATM kinase inhibitor, partly rescued NIS expression and iodide transport in DNA-damaged cells. Prolonged ATM inhibition in healthy cells also repressed NIS-mediated iodide transport. ATM-dependent loss of iodide transport was counteracted by IGF-1. Together, these findings indicate that NIS, the major iodide transporter of the thyroid gland, is susceptible to DNA damage involving ATM-mediated mechanisms. This uncovers novel means of poor radioiodine uptake in thyroid cells subjected to extrinsic or intrinsic genotoxic stress. - Highlights: • DNA damage inhibits polarized iodide transport in normal thyroid cells. • Down-regulation of NIS expression is mediated by activation of the ATM kinase. • Long-term ATM inhibition also represses NIS-mediated iodide transport. • IGF-1 rescues NIS expression and iodide transport in DNA-damaged cells.« less
Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi
2010-04-20
Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios <5 mol %. This Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.
Bari, M L; Nakauma, M; Todoriki, S; Juneja, Vijay K; Isshiki, K; Kawamoto, S
2005-02-01
Ionizing radiation can be effective in controlling the growth of food spoilage and foodborne pathogenic bacteria. This study reports on an investigation of the effectiveness of irradiation treatment to eliminate Listeria monocytogenes on laboratory-inoculated broccoli, cabbage, tomatoes, and mung bean sprouts. Irradiation of broccoli and mung bean sprouts at 1.0 kGy resulted in reductions of approximately 4.88 and 4.57 log CFU/g, respectively, of a five-strain cocktail of L. monocytogenes. Reductions of approximately 5.25 and 4.14 log CFU/g were found with cabbage and tomato, respectively, at a similar dose. The appearance, color, texture, taste, and overall acceptability did not undergo significant changes after 7 days of postirradiation storage at 4 degrees C, in comparison with control samples. Therefore, low-dose ionizing radiation treatment could be an effective method for eliminating L. monocytogenes on fresh and fresh-cut produce.
Leirós, Gustavo J; Kusinsky, Ana Gabriela; Balañá, María Eugenia; Hagelin, Karin
2017-02-01
Cytokine production and oxidative stress generated by ultraviolet radiation B (UVB) skin exposure are main factors of skin photoaging. Interleukin-6 (IL-6) produced by irradiated keratinocytes is proposed to have a role in metalloproteinases (MMPs) expression activation in dermal fibroblasts. We examined the effect of triolein treatment of UVB-irradiated keratinocytes on MMP1 (interstitial collagenase) expression response of dermal fibroblasts. We assayed UVB-irradiated keratinocytes soluble signals, mainly IL-6 and reactive oxygen species (ROS). IL-6 expression and ROS generation were assayed in UVB-irradiated keratinocytes. MMP1 mRNA expression response was assayed in fibroblasts grown in keratinocytes conditioned medium. We evaluated the effect of treating keratinocytes with triolein on IL-6 expression and ROS generation in keratinocytes, and MMP1 expression in fibroblasts. The irradiation of epidermal cells with sublethal UVB doses increased IL-6 expression and ROS generation. Conditioned culture medium collected from keratinocytes was used to culture dermal fibroblasts. MMP1 mRNA expression increase was observed in fibroblasts cultured in medium collected from UVB-irradiated keratinocytes. Triolein treatment reduced the IL-6 expression and ROS generation in keratinocytes and this effect was reflected in downregulation of MMP1 expression in fibroblasts. Triolein reduces both the expression of IL-6 and ROS generation in irradiated keratinocytes. It seems to exert an anti-inflammatory and anti-oxidative stress effect on irradiated keratinocytes that in turn reduces MMP1 expression in dermal fibroblasts. Collectively, these results indicate that triolein could act as a photoprotective agent. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brower, J.H.
1974-03-01
The reproductive capacity and resistance to an acute dose of gamma irradiation were determined for populations of Callosobruchus maculatus treated with substerilizing doses of irradiation each generation for 30 generations. Reproductive capacity was decreased by an ancestral history of irradiation, the reduction being positively correlated with both the size of dose per generation and the number of ancestral generations treated. Irradiation of the selected populations with an acute dose revealed no increase in tolerance, even after 30 generations. In general, the greater the amount of accumulated ancestral exposure to irradiation, the greater the sensitivity to further irradiation. The ability tomore » develop a tolerance to ionizing irradiation may not be a general phenomenon in insects. (auth)« less
Abdul-Aziz, Karolin Kamel; Tuorkey, M J
2010-04-02
The ionizing radiations could be taken in considerate as an integral part in our life, since, living organisms are actually exposed to a constant shower of ionizing radiations whether from the natural or artificial resources. The radio-protective efficiency of several chemicals has been confirmed in animal trails, whereas, due to their accumulative toxicity, their clinical utility is limited. Therefore, we aimed in the present work to investigate the possibility of using argon laser to recuperate the damaged tissues due to exposing to the ionizing radiation. The rabbits were used in this study, and they were designed as control, gamma irradiated, laser, and gamma plus laser groups. Lipid peroxidation, reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and glucose-6-phosphate dehydrogenase (G-6-PD) in blood and liver were evaluated. As well as, the level of protein thiol was evaluated in the plasma among each group. Results of this study revealed the potential therapeutic performance of the treatment by laser argon to decline the damaging effect of the ionized radiation whether at systematic or local levels. In conclusion, argon laser therapy appears propitious protective effect against the hazard effects of gamma radiation. Copyright 2010 Elsevier B.V. All rights reserved.
Polymers Used as Fuel for Laser Plasma Thrusters in Small Satellites
2006-09-12
irradiation fluences 100 ns after the laser pulse . The velocity of the maximum intensity versus the irradiation fluence is plotted in Fig. 61. The...The first region can be assigned to ionized elements that have been accelerated by a fs laser pulse induced coulomb explosion on the sample surface...acquired for ns laser pulses , plasma studies for fs laser pulse irradiation were performed. This data allowed a comparison of thrust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, F.L.; Rice, D.W. Jr.; Moore, D.H.
Traditional bioassays are unsuitable for assessing sublethal effects of low levels of radioactivity because mortality and phenotypic responses are not anticipated. We compared the usefulness of chromosomal aberration (CA) and sister chromatid exchange (SCE) induction as measures of low-level radiation effects in a sediment-dwelling marine worm, Neanthes arenaceodentata. Newly hatched larvae were exposed to two radiation exposure regimes. Groups of 100 larvae were exposed to either x rays delivered at high dose rates (0.7 Gy min/sup -1/) or to /sup 60/Co gamma rays delivered at low dose rates (4.8 X 10/sup -5/ to 1.2 X 10/sup -1/ Gy h/sup -1/).more » After irradiation, the larvae were exposed to 3 X 10/sup -5/M bromodeoxyuridine (BrdUrd) for 28 h (x-ray-irradiated larvae) or for 54 h (/sup 60/Co-irradiated larvae). Slides of larval cells were prepared for observation of CAs and SCEs. Frequencies of CAs were determined in first division cells; frequencies of SCEs were determined in second division cells. Results from x-ray irradiation indicated that dose-related increases occur in chromosome and chromatid deletions, but an x-ray dose greater than or equal to 2 Gy was required to observe a significant increase. Worm larvae receiving /sup 60/Co irradiation showed elevated SCE frequencies; a significant increase in SCE frequency was observed at 0.6 Gy. 49 references, 2 figures.« less
NASA Astrophysics Data System (ADS)
Jolivet, E.; L'Haridon, S.; Corre, E.; Gérard, E.; Myllykallio, H.; Forterre, P.; Prieur, D.
2001-08-01
In this paper we present many results on radioresistance of hyperthermophilic archaeon isolated from deep-sea hydrothermal vents. Effects of gamma (γ) irradiation was first tested with Pyrococcus abyssi and showed that this micro-organism did not show any loss of viability until 2 kGy of γ-irradiation. Pulse Field Gel Electrophoresis (PFGE) analysis conducted with different species belonging to Archaea and Bacteria suggest that no specific DNA protection system exist that could explain the radioresistance of P. abyssi. Moreover, the genomic DNA completely fragmented after 2 kGy is fully restored in vivo under optimal growth conditions. The DNA replication or irradiated cells at 2,5 kGy is delayed by a lag phase which could coincide to this DNA repair. An associated mechanism of DNA repair by excision could act with the recombinational DNA repair. In parallel to these studies three hyperthermophilic archaeons highly resistant to ionizing radiation were isolated from deep-sea hydrothermal vents after the enrichment cultures were submitted to elevated irradiation doses (up to 20 and 30 kGy). All these novel species were more radioresistant than P. abyssi.
The pharmacological activity of medical herbs after microbiological decontamination by irradiation
NASA Astrophysics Data System (ADS)
Owczarczyk, H. B.; Migdał, W.; K ȩdzia, B.
2000-03-01
In the Institute of Nuclear Chemistry and Technology research on microbiological decontamination of medicinal herbs by irradiation has been carried out since 1996. It was shown that using ionizing radiation (a dose of 10 kGy) can obtain satisfactory results of microbiological decontamination of these products. The content of essential biologically active substances such as essential oils, flavonoids, glycosides, anthocyans, antra-compounds, poliphenoloacids, triterpene saponins, oleanosides and plants mucus did not change significantly after irradiation. Pharmacological activity of medicinal herbs has been found satisfactory after microbiological decontamination by irradiation.
Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation
NASA Astrophysics Data System (ADS)
Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.
2014-12-01
Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the aerosol particle density due to the ion density increase was confirmed. From this result, the ion-induced nucleation due to heavy ion irradiation could be verified. From the results of this study, ion-induced nucleation due to β-rays and heavy ion irradiation was confirmed.
Imaging radiation pneumonitis in a rat model of a radiological terrorism incident
NASA Astrophysics Data System (ADS)
Molthen, Robert; Wu, QingPing; Krenz, Gary; Medhora, Meetha; Jacobs, Elizabeth; Moulder, John E.
2009-02-01
We have developed a rat model of single, sub-lethal thoracic irradiation. Our irradiation protocol is considered representative of exposures near the detonation site of a dirty bomb or small nuclear device. The model is being used to investigate techniques for identifying, triaging and treating possible victims. In addition to physiological markers of right ventricular hypertrophy, pulmonary vascular resistance, and arterial distensibility, we present two methods for quantifying microvascular density. We used methods including microfocal X-ray imaging to investigate changes in lung structure/function resulting from radiation exposure. Radiation pneumonitis is a complication in subjects receiving thoracic irradiation. A radiographic hallmark of acute radiation pneumonitis is a diffuse infiltrate corresponding to the radiation treatment field. We describe two methods for quantifying small artery dropout that occurs in the model at the same time-period. Rats were examined 3-days, 2-weeks, 1-month (m), 2-m, 5-m, and 12-m post-irradiation and compared with aged-matched controls. Right ventricular hypertrophy and increases in pulmonary vascular resistance were present during the pneumonitis phase. Vascular injury was dependent on dose and post-irradiation duration. Rats irradiated with 5 Gy had few detectable changes, whereas 10 Gy resulted in a significant decrease in both microvascular density and arterial distensibility around 2- m, the decrease in each lessening, but extending through 12-m. In conclusion, rats irradiated with a 10 Gy dose had changes in vascular structure concurrent with the onset of radiation pneumonitis that were detectable with our imaging techniques and these structural changes persist after resolution of the pneumonitis.
NASA Technical Reports Server (NTRS)
Stanley, A. G.; Gauthier, M. K.
1977-01-01
A successful diagnostic technique was developed using a scanning electron microscope (SEM) as a precision tool to determine ionization effects in integrated circuits. Previous SEM methods radiated the entire semiconductor chip or major areas. The large area exposure methods do not reveal the exact components which are sensitive to radiation. To locate these sensitive components a new method was developed, which consisted in successively irradiating selected components on the device chip with equal doses of electrons /10 to the 6th rad (Si)/, while the whole device was subjected to representative bias conditions. A suitable device parameter was measured in situ after each successive irradiation with the beam off.
Ragon, Marie; Restoux, Gwendal; Moreira, David; Møller, Anders Pape; López-García, Purificación
2011-01-01
Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single-OTU level. Therefore, biofilm communities growing in sunlight exposed substrates are capable of coping with increased mutation rates and appear pre-adapted to levels of ionizing radiation in Chernobyl due to their natural adaptation to periodical desiccation and ambient UV radiation. PMID:21765911
Vered, Yuval; Chetrit, Angela; Sgan-Cohen, Harold D; Amitai, Tova; Mann, Jonathan; Even-Nir, Hadas; Sadetzki, Siegal
2016-01-01
While the impact of therapeutic levels of ionizing radiation during childhood on dental defects has been documented, the possible effect of low doses on dental health is unknown. The study aim was to assess the association between childhood exposure to low-moderate doses of therapeutic radiation and caries experience among a cohort of adults 50 years following the exposure. The analysis was based on a sample of 253 irradiated (in the treatment of tinea capitis) and 162 non-irradiated subjects. The decayed, missing, and filled teeth (DMFT) index was assessed during a clinical dental examination and questions regarding dental care services utilization, oral hygiene behavior, current self-perceived mouth dryness, socio-demographic parameters, and health behavior variables were obtained through a face-to-face interview. An ordered multivariate logistic regression model was used to assess the association of the main independent variable (irradiation status) and other relevant independent variables on the increase in DMFT. Mean caries experience levels (DMFT) were 18.6 ± 7.5 for irradiated subjects compared to 16.4 ± 7.2 for the non-irradiated (p = 0.002). Controlling for gender, age, education, income, smoking, dental visit in the last year, and brushing teeth behavior, irradiation was associated with a 72% increased risk for higher DMFT level (95% CI: 1.19-2.50). A quantification of the risk by dose absorbed in the salivary gland and in the thyroid gland showed adjusted ORs of 2.21 per 1 Gy (95% CI: 1.40-3.50) and 1.05 per 1 cGy (95% CI: 1.01-1.09), respectively. Childhood exposure to ionizing radiation (0.2-0.4 Gy) might be associated with late outcomes of dental health. In line with the guidelines of the American Dental Association, these results call for caution when using dental radiographs.
Vered, Yuval; Chetrit, Angela; Sgan-Cohen, Harold D.; Amitai, Tova; Mann, Jonathan; Even-Nir, Hadas; Sadetzki, Siegal
2016-01-01
While the impact of therapeutic levels of ionizing radiation during childhood on dental defects has been documented, the possible effect of low doses on dental health is unknown. The study aim was to assess the association between childhood exposure to low–moderate doses of therapeutic radiation and caries experience among a cohort of adults 50 years following the exposure. The analysis was based on a sample of 253 irradiated (in the treatment of tinea capitis) and 162 non-irradiated subjects. The decayed, missing, and filled teeth (DMFT) index was assessed during a clinical dental examination and questions regarding dental care services utilization, oral hygiene behavior, current self-perceived mouth dryness, socio-demographic parameters, and health behavior variables were obtained through a face-to-face interview. An ordered multivariate logistic regression model was used to assess the association of the main independent variable (irradiation status) and other relevant independent variables on the increase in DMFT. Mean caries experience levels (DMFT) were 18.6 ± 7.5 for irradiated subjects compared to 16.4 ± 7.2 for the non-irradiated (p = 0.002). Controlling for gender, age, education, income, smoking, dental visit in the last year, and brushing teeth behavior, irradiation was associated with a 72% increased risk for higher DMFT level (95% CI: 1.19–2.50). A quantification of the risk by dose absorbed in the salivary gland and in the thyroid gland showed adjusted ORs of 2.21 per 1 Gy (95% CI: 1.40–3.50) and 1.05 per 1 cGy (95% CI: 1.01–1.09), respectively. Childhood exposure to ionizing radiation (0.2–0.4 Gy) might be associated with late outcomes of dental health. In line with the guidelines of the American Dental Association, these results call for caution when using dental radiographs. PMID:26942172
Galal, Shereen Mohamed; Abdel-Rafei, Mohamed Khairy; Hasan, Hesham Farouk
2018-05-01
The present investigation aimed to evaluate the radiomitigative efficacy of the recombinant human erythropoietin (EPO) against acute radiation syndrome (ARS) in a rat model. Rats were irradiated with a single sublethal dose of γ-radiation (7 Gy; total body irradiation; TBI) on the 1st day of experimental course, then received EPO (5000 IU/kg; i.p.) 24 h after irradiation, and rats were observed for 30 days of survival analysis. Administration of EPO improved 30-day survival, alleviated TBI-induced myelosuppression and pancytopenia, by augmenting lymphocytes and other white blood cells in the peripheral blood of rats, while bone marrow and spleen cellularity were restored. EPO post-exposure treatment alleviated hepatotoxicity biomarkers and restored splenic function. EPO abrogated radiation-induced oxidative stress through the upregulation of the cholinergic anti-inflammatory nicotinic acetylcholine receptor (α-7-nAChR) and the pro-survival Janus kinase-2 and signal transducers and activators of transcription JAK-2/STAT-3 signaling mediated via enhancing nuclear factor erythroid-2 related factor-2 (Nrf-2) cytoprotective machinery in liver and spleen of irradiated rats. Moreover, EPO treatment prevented hepatic and splenic apoptosis. The present study establishes the implication of α-7-nAChR-JAK-2/STAT-3-Nrf-2 signaling cascade in the radiomitigative potential of EPO against ARS.
Dadachova, Ekaterina; Bryan, Ruth A; Howell, Robertha C; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo
2008-04-01
Melanized microorganisms are often found in environments with very high background radiation levels such as in nuclear reactor cooling pools and the destroyed reactor in Chernobyl. These findings and the laboratory observations of the resistance of melanized fungi to ionizing radiation suggest a role for this pigment in radioprotection. We hypothesized that the radioprotective properties of melanin in microorganisms result from a combination of physical shielding and quenching of cytotoxic free radicals. We have investigated the radioprotective properties of melanin by subjecting the human pathogenic fungi Cryptococcus neoformans and Histoplasma capsulatum in their melanized and non-melanized forms to sublethal and lethal doses of radiation of up to 8 kGy. The contribution of chemical composition, free radical presence, spatial arrangement, and Compton scattering to the radioprotective properties of melanin was investigated by high-performance liquid chromatography, electron spin resonance, transmission electron microscopy, and autoradiographic techniques. Melanin protected fungi against ionizing radiation and its radioprotective properties were a function of its chemical composition, free radical quenching, and spherical spatial arrangement.
Role of Interleukin-6 in the Radiation Response of Liver Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Miao-Fen, E-mail: miaofen@adm.cgmh.org.tw; College of Medicine, Chang Gung University, Taiwan; Hsieh, Ching-Chuan
2012-12-01
Purpose: To investigate the role of interleukin (IL)-6 in biological sequelae and tumor regrowth after irradiation for hepatic malignancy, which are critical for the clinical radiation response of liver tumors. Methods and Materials: The Hepa 1-6 murine hepatocellular cancer cell line was used to examine the radiation response by clonogenic assays and tumor growth delay in vivo. After irradiation in a single dose of 6 Gy in vitro or 15 Gy in vivo, biological changes including cell death and tumor regrowth were examined by experimental manipulation of IL-6 signaling. The effects of blocking IL-6 were assessed by cells preincubated inmore » the presence of IL-6-neutralizing antibody for 24 hours or stably transfected with IL-6-silencing vectors. The correlations among tumor responses, IL-6 levels, and myeloid-derived suppressor cells (MDSC) recruitment were examined using animal experiments. Results: Interleukin-6 expression was positively linked to irradiation and radiation resistance, as demonstrated by in vitro and in vivo experiments. Interleukin-6-silencing vectors induced more tumor inhibition and DNA damage after irradiation. When subjects were irradiated with a sublethal dose, the regrowth of irradiated tumors significantly correlated with IL-6 levels and MDSC recruitment in vivo. Furthermore, blocking of IL-6 could overcome irradiation-induced MDSC recruitment and tumor regrowth after treatment. Conclusion: These data demonstrate that IL-6 is important in determining the radiation response of liver tumor cells. Irradiation-induced IL-6 and the subsequent recruitment of MDSC could be responsible for tumor regrowth. Therefore, treatment with concurrent IL-6 inhibition could be a potential therapeutic strategy for increasing the radiation response of tumors.« less
Effects of gamma radiation and azathioprine on Brucella abortus infection in BALB/c mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzer, P.H.; Rowe, G.E.; Enright, F.M.
Sublethal irradiation of BALB/c mice 4 hours prior to inoculation with 5 {times} 10(4) virulent Brucella abortus, caused significant (P less than 0.01) reductions in bacterial numbers in comparison with numbers in unirradiated controls. Numbers of brucellae in the spleen were significantly lower by 5 days after inoculation and decreased thereafter, so that at 2 and 3 weeks after inoculation, there were up to 1,000-fold fewer organisms in the spleen of irradiated mice. The number of brucellae in the spleen increased in irradiated mice thereafter. The course of events in the liver was similar, but developed more slowly, and peakmore » differences in bacterial numbers were about 1 log less. These phenomena were not attributable to differences in implantation of brucellae in the liver or spleen, nor to an abnormal distribution of organisms in other organs of irradiated mice. Irradiation of mice during the plateau phase of infection also resulted in significant (P less than 0.05) reductions in bacterial counts in the spleen during the succeeding 4 weeks. Macrophage activation in the spleen, measured by a Listeria monocytogenes-killing assay, was significantly (P less than 0.01) increased by irradiation alone at 1 week after inoculation and at that time was significantly (P less than 0.01) greater in B abortus-infected, irradiated mice than in B abortus-infected controls. Histologic, cytologic, and immunologic studies revealed that the decrease in numbers of organisms between 1 and 2 weeks after inoculation in irradiated mice occurred at a time when their immune response to B abortus was suppressed and when numbers of neutrophils and monocytes infiltrating the spleen were significantly (P less than 0.01) diminished.« less
NASA Technical Reports Server (NTRS)
Bahadur, H.; Parshad, R.
1981-01-01
The frequency behavior of AT-cut quartz crystals irradiated by X -, gamma rays and fast neutrons. Initial instability in frequency for gamma and neutron irradiated crystals was found. All the different radiations first give a negative frequency shift at lower doses which are followed by positive frequency shift for increased doses. Results are explained in terms of the fundamental crystal structure. Applications of the frequency results for radiation hardening are proposed.
Effects of Ionizing Radiation on Arylesterase and Cholinesterase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustinsson, Klas-Bertil; Jonsson, Gunnel; Sparrman, Berndt
1961-01-01
The effects of Co 60 gamma radiation on arylesterase and cholinesterase of human blood plasma were compared using solid preparations of purified enzymes containing various amounts of water. In the case of cholinesterase a water content of 12% exerted maximum protection against irradiation. Such a protection by water was not observed with arylesterase. Finally, in aqueous solutions cholinesterase was more resistant to irradiation by gamma rays than was arylesterase when irradiation was performed in an atmosphere of nitrogen.
Effect of irradiation and storage on the antioxidative activity of cashew nuts
NASA Astrophysics Data System (ADS)
Sajilata, M. G.; Singhal, R. S.
2006-02-01
Food irradiation, a cold process employed for preservation of food has been studied extensively for its beneficial and undesirable effects on food constituents. Since nuts have been shown to contain several antioxidants, and ionizing irradiation is known to result in the formation of free radicals, investigation on the antioxidative potential of cashew nuts after irradiation and subsequent storage was undertaken by assessing their ability to inhibit lipid peroxidation using the 1,3-diethyl-2-thiobarbituric acid (DETBA) assay. Irradiation at 0.25-1.00 kGy and subsequent storage was found to considerably reduce antioxidative activity in the cashew nuts.
Buonanno, Manuela; de Toledo, Sonia M; Azzam, Edouard I
2011-01-01
An increased risk of carcinogenesis caused by exposure to space radiation during prolonged space travel is a limiting factor for human space exploration. Typically, astronauts are exposed to low fluences of ionizing particles that target only a few cells in a tissue at any one time. The propagation of stressful effects from irradiated to neighboring bystander cells and their transmission to progeny cells would be of importance in estimates of the health risks of exposure to space radiation. With relevance to the risk of carcinogenesis, we investigated, in model C3H 10T½ mouse embryo fibroblasts (MEFs), modulation of the spontaneous frequency of neoplastic transformation in the progeny of bystander MEFs that had been in co-culture 10 population doublings earlier with MEFs exposed to moderate doses of densely ionizing iron ions (1 GeV/nucleon) or sparsely ionizing protons (1 GeV). An increase (P<0.05) in neoplastic transformation frequency, likely mediated by intercellular communication through gap junctions, was observed in the progeny of bystander cells that had been in co-culture with cells irradiated with iron ions, but not with protons.
Sommers, Christopher H; Fan, Xuetong
2002-11-01
Ionizing radiation can be used to pasteurize ready-to-eat (RTE) meat products. Thermal processing of RTE meats that contain dextrose results in the production of antioxidants that may interfere with ionizing radiation pasteurization of RTE meat products. Beef bologna was manufactured with dextrose concentrations of 0, 2, 4, 6, and 8%. Antioxidant activity, as measured by the Ferric Reducing Antioxidant Power assay, increased with dextrose concentration but was unaffected by ionizing radiation. Lipid oxidation increased significantly in irradiated bologna (4 kGy) that contained dextrose. Hunter color analysis indicated that the addition of dextrose reduced the ionizing radiation-induced loss of redness (a-value) but promoted the loss of brightness (L-value). The radiation resistance, D10-value, of Listeria monocytogenes that was surface-inoculated onto bologna slices was not affected by dextrose concentration. L. monocytogenes strains isolated from RTE meats after listeriosis outbreaks were utilized. Increased antioxidant activity generated by thermal processing of dextrose in fine emulsion sausages does not present a barrier to radiation pasteurization of RTE meats. However, a high dextrose concentration in combination with gamma irradiation increases lipid oxidation significantly.
USDA-ARS?s Scientific Manuscript database
Ionization (gamma) irradiation is a sustainable and important non-thermal treatment that has been very effective in controlling microorganisms and improving the safety and shelf life of foods. In the design of the food irradiation process, the knowledge of the radiation resistance of the target orga...
Miniature sources of irradiation for intracavitary thermo radiotherapy
NASA Astrophysics Data System (ADS)
Taubin, M.; Chesnokov, D.; Simonov, A.
2018-02-01
This report presents the development of a miniature ionizing and thermal radiation source for oncological diseases treatment namely the inward parts of the body. This source can be placed next to the tumor inside of the body. This report is only about methods and devices for the intracavitary therapy. Irradiation by external sources wasn’t considered in our investigation.
Dried plum diet protects from bone loss caused by ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.
Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss.more » Dried plum was most effective in reducing the expression of genes related to bone resorption ( Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.« less
CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation*
Miller, Thomas W.; Soto-Pantoja, David R.; Schwartz, Anthony L.; Sipes, John M.; DeGraff, William G.; Ridnour, Lisa A.; Wink, David A.; Roberts, David D.
2015-01-01
Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury. PMID:26311851
Dried plum diet protects from bone loss caused by ionizing radiation
Schreurs, A. -S.; Shirazi-Fard, Y.; Shahnazari, M.; ...
2016-02-11
Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or antiinflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss.more » Dried plum was most effective in reducing the expression of genes related to bone resorption ( Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Furthermore, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth.« less
Dried plum diet protects from bone loss caused by ionizing radiation
Schreurs, A.-S.; Shirazi-Fard, Y.; Shahnazari, M.; Alwood, J. S.; Truong, T. A.; Tahimic, C. G. T.; Limoli, C. L.; Turner, N. D.; Halloran, B.; Globus, R. K.
2016-01-01
Bone loss caused by ionizing radiation is a potential health concern for radiotherapy patients, radiation workers and astronauts. In animal studies, exposure to ionizing radiation increases oxidative damage in skeletal tissues, and results in an imbalance in bone remodeling initiated by increased bone-resorbing osteoclasts. Therefore, we evaluated various candidate interventions with antioxidant or anti-inflammatory activities (antioxidant cocktail, dihydrolipoic acid, ibuprofen, dried plum) both for their ability to blunt the expression of resorption-related genes in marrow cells after irradiation with either gamma rays (photons, 2 Gy) or simulated space radiation (protons and heavy ions, 1 Gy) and to prevent bone loss. Dried plum was most effective in reducing the expression of genes related to bone resorption (Nfe2l2, Rankl, Mcp1, Opg, TNF-α) and also preventing later cancellous bone decrements caused by irradiation with either photons or heavy ions. Thus, dietary supplementation with DP may prevent the skeletal effects of radiation exposures either in space or on Earth. PMID:26867002
Effect of metal surfaces on matrix-assisted laser desorption/ionization analyte peak intensities.
Kancharla, Vidhyullatha; Bashir, Sajid; Liu, Jingbo L; Ramirez, Oscar M; Derrick, Peter J; Beran, Kyle A
2017-10-01
Different metal surfaces in the form of transmission electron microscope grids were examined as support surfaces in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with a view towards enhancement of peptide signal intensity. The observed enhancement between 5-fold and 20-fold relative to the normal stainless steel slide was investigated by applying the thermal desorption model for matrix-assisted laser desorption/ionization. A simple model evaluates the impact that the thermal properties of the metals have on the ion yield of the analyte. It was observed that there was not a direct, or strong, correlation between the thermal properties of the metals and the corresponding ion yield of the peptides. The effects of both fixed and variable laser irradiances versus ion yield were also examined for the respective metals studied. In all cases the use of transmission electron microscope grids required much lower laser irradiances in order to generate similar peak intensities as those observed with a stainless steel surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhangyi; Qi, Jianqi, E-mail: qijianqi@scu.edu.cn; Zhou, Li
2015-12-07
We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd{sub 2}Zr{sub 2}O{sub 7} synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd{sub 2}Zr{sub 2}O{sub 7} and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm{sup 2}). The crystallization occurred on the nanoscale upon ionizationmore » irradiation at 400 °C after a dose of less than 10{sup 17} electrons/cm{sup 2}. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.« less
Grinde, Maria Tunset; Vik, Jørg; Camilio, Ketil André; Martinez-Zubiaurre, Inigo; Hellevik, Turid
2017-04-25
Cancer-associated fibroblasts (CAFs) are abundantly present in solid tumors and affect tumorigenesis and therapeutic responses. In the context of clinical radiotherapy, the impact of irradiated CAFs to treatment outcomes is largely unexplored. Aiming at improving radiotherapy efficacy, we have here explored the effect of radiation on the inherent pro-tumorigenic capacity of CAFs in animals. Ionizing radiation was delivered to cultured CAFs as single-high or fractionated doses. Tumor development was compared in mice receiving A549 lung tumor cells admixed with irradiated or control CAFs. Biological mechanisms behind tumor growth regulation were investigated by quantitative histology and immunohistochemistry. Viability assessments confirmed that irradiated CAFs are fully functional prior to implantation. However, the enhanced tumorigenic effect observed in tumors co-implanted with control CAFs was abrogated in tumors established with irradiated CAFs. Experiments to ascertain fate of implanted fibroblasts showed that exogenously administered CAFs reside at the implantation site for few days, suggesting that tumor growth regulation from admixed CAFs take place during initial tumor formation. Our work demonstrate that irradiated CAFs lose their pro-tumorigenic potential in vivo, affecting angiogenesis and tumor engraftment. This finding propose a previously unknown advantageous effect induced by radiotherapy, adding to the direct cytotoxic effects on transformed epithelial cells.
NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system.
Li, Chengcheng; Luo, Yi; Shao, Lijian; Meng, Aimin; Zhou, Daohong
2018-01-01
Previous studies have shown that inhibition of inducible NO synthase (NOS2 or iNOS) with an inhibitor can selectively protect several normal tissues against radiation during radiotherapy. However, the role of NOS2 in ionizing radiation (IR)-induced bone marrow (BM) suppression is unknown and thus was investigated in the present study using NOS2 - / - and wild-type mice 14 days after they were exposed to a sublethal dose of total body irradiation (TBI). The effects of different doses of IR (1, 2 and 4 Gy) on the apoptosis and colony-forming ability of bone marrow cells from wild-type (WT) and NOS2 - / - mice were investigated in vitro. In addition, we exposed NOS2 - / - mice and WT mice to 6-Gy TBI or sham irradiation. They were euthanized 14 days after TBI for analysis of peripheral blood cell counts and bone marrow cellularity. Colony-forming unit-granulocyte and macrophage, burst-forming unit-erythroid and CFU-granulocyte, erythroid, macrophage in bone marrow cells from the mice were determined to evaluate the function of hematopoietic progenitor cells (HPCs), and the ability of hematopoietic stem cells (HSCs) to self-renew was analysed by the cobblestone area forming cell assay. The cell cycling of HPCs and HSCs were measured by flow cytometry. Exposure to 2 and 4 Gy IR induced bone marrow cell apoptosis and inhibited the proliferation of HPCs in vitro. However, there was no difference between the cells from WT mice and NOS2 - / - mice in response to IR exposure in vitro. Exposure of WT mice and NOS2 - / - mice to 6 Gy TBI decreased the white blood cell, red blood cell, and platelet counts in the peripheral blood and bone marrow mononuclear cells, and reduced the colony-forming ability of HPCs (P < 0.05), damaged the clonogenic function of HSCs. However, these changes were not significantly different in WT and NOS2 - / - mice. These data suggest that IR induces BM suppression in a NOS2-independent manner.
Packaging food for radiation processing
NASA Astrophysics Data System (ADS)
Komolprasert, Vanee
2016-12-01
Irradiation can play an important role in reducing pathogens that cause food borne illness. Food processors and food safety experts prefer that food be irradiated after packaging to prevent post-irradiation contamination. Food irradiation has been studied for the last century. However, the implementation of irradiation on prepackaged food still faces challenges on how to assess the suitability and safety of these packaging materials used during irradiation. Irradiation is known to induce chemical changes to the food packaging materials resulting in the formation of breakdown products, so called radiolysis products (RP), which may migrate into foods and affect the safety of the irradiated foods. Therefore, the safety of the food packaging material (both polymers and adjuvants) must be determined to ensure safety of irradiated packaged food. Evaluating the safety of food packaging materials presents technical challenges because of the range of possible chemicals generated by ionizing radiation. These challenges and the U.S. regulations on food irradiation are discussed in this article.
CMOS sensor as charged particles and ionizing radiation detector
NASA Astrophysics Data System (ADS)
Cruz-Zaragoza, E.; Piña López, I.
2015-01-01
This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained.
NASA Astrophysics Data System (ADS)
Zúñiga, G. E.; Junqueira-Gonçalves, M. P.; Pizarro, M.; Contreras, R.; Tapia, A.; Silva, S.
2012-01-01
Incorporating antimicrobial compounds into edible films or coatings provides a novel way to improve the safety and shelf life of ready-to-eat foods. Diverse studies with Quillaja saponaria Mol. (popularly named quillay) extracts have demonstrated their potential as antifungal agents against phytopathogenic fungi. Crosslinking induced by ionizing radiation is an effective method for the improvement of both barrier and mechanical properties of the edible films and coatings based on milk proteins. However there are few reports about the effects of γ-radiation on plant extracts. The aim of this work was to evaluate the effect of ionizing radiation (0, 5, 10, 15, 20, 25 and 35 kGy) on extracts prepared from in vitro plants of Q. saponaria to be used as antimicrobial agent in irradiated edible coating based on calcium caseinate and whey protein isolated, and also to establish the concentration of Q. saponaria extract to be added as an antifungal agent in the coating. Gamma irradiation since 15 kGy affects negatively the antimicrobial activity and metabolites composition of extract of Q. saponaria by reducing compounds of phenolic nature. Otherwise no effect on saponins profile was observed even at higher doses. It was possible to conclude that the antifungal activity of Q. saponaria extract is mainly related to phenolic compounds content. In addition, our work also shows that to obtain an efficient antifungal protection is necessary to add a minimum concentration of 6% of the extract after the coating irradiation.
Proton Irradiation as a Screen for Displacement-Damage Sensitivity in Bipolar Junction Transistors
NASA Astrophysics Data System (ADS)
Arutt, Charles N.; Warren, Kevin M.; Schrimpf, Ronald D.; Weller, Robert A.; Kauppila, Jeffrey S.; Rowe, Jason D.; Sternberg, Andrew L.; Reed, Robert A.; Ball, Dennis R.; Fleetwood, Daniel M.
2015-12-01
NPN and PNP bipolar junction transistors of varying sizes are irradiated with 4-MeV protons and 10-keV X-rays to determine the amount of ionization-related degradation caused by protons and calculate an improved estimate of displacement-related degradation due to protons. While different ratios of degradation produced by displacement damage and ionization effects will occur for different device technologies, this general approach, with suitable margin, can be used as a screen for sensitivity to neutron-induced displacement damage. Further calculations are performed to estimate the amount of degradation produced by 1-MeV equivalent neutron displacement damage compared to that produced by the displacement damage due to protons. The results are compared to previous work.
Identification of irradiated pepper with the level of hydrogen gas as a probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohmaru, T.; Furuta, M.; Katayama, T.
1989-12-01
A novel method to detect whether or not a particular pepper has been irradiated has been developed which is based on the fact that H2 is formed in organic substances irradiated with ionizing radiation. Following gamma irradiation, black and white peppers were ground to powder in a gastight ceramic mill. By gas-chromatographic analysis of the gas in the mill, we observed that H2 had been released from the irradiated pepper grains. Curves plotting the H2 content vs storage time at storage temperatures of 7, 22, and 30 degrees C showed that the higher the temperatures, the smaller the H2 content,more » and that identification of irradiated pepper was possible for 2-4 months after 10 kGy irradiation.« less
Effect of Gender on the Radiation Sensitivity of Murine Blood Cells
Billings, Paul C; Romero-Weaver, Ana L; Kennedy, Ann R
2014-01-01
Space travel beyond the Earth’s protective magnetosphere risks exposing astronauts to ionizing radiation, such as that generated during a solar particle event (SPE). Ionizing radiation has well documented effects on blood cells and it is generally assumed that these effects contribute to the hematopoietic syndrome (HS), observed in animals and humans, following exposure to total body irradiation (TBI). The purpose of the current study was to assess the role of gender on the effects of gamma radiation on blood cells. C3H/HeN mice were irradiated with a 137Cs gamma source. Radiation had similar effects on white blood cells (WBCs), lymphocytes, and granulocytes in male and female C3H/HeN mice, while red blood cell (RBC) counts and hematocrit values remained stable following radiation exposure. Non-irradiated male mice had 13% higher platelet counts, compared with their female counterparts, and showed enhanced recovery of platelets on day 16 following radiation exposure. Hence, gender differences influence the response of platelets to TBI exposure. PMID:25221782
Alekseeva, N P; Alekseev, A O; Vakhtin, Iu B; Kravtsov, V Iu; Kuzovatov, S N; Skorikova, T I
2008-01-01
Distributions of nuclear morphology anomalies in transplantable rabdomiosarcoma RA-23 cell populations were investigated under effect of ionizing radiation from 0 to 45 Gy. Internuclear bridges, nuclear protrusions and dumbbell-shaped nuclei were accepted for morphological anomalies. Empirical distributions of the number of anomalies per 100 nuclei were used. The adequate model of reentrant binomial distribution has been found. The sum of binomial random variables with binomial number of summands has such distribution. Averages of these random variables were named, accordingly, internal and external average reentrant components. Their maximum likelihood estimations were received. Statistical properties of these estimations were investigated by means of statistical modeling. It has been received that at equally significant correlation between the radiation dose and the average of nuclear anomalies in cell populations after two-three cellular cycles from the moment of irradiation in vivo the irradiation doze significantly correlates with internal average reentrant component, and in remote descendants of cell transplants irradiated in vitro - with external one.
Food irradiation—US regulatory considerations
NASA Astrophysics Data System (ADS)
Morehouse, Kim M.
2002-03-01
The use of ionizing radiation in food processing has received increased interest as a means of reducing the level of foodborne pathogens. This overview discusses the regulatory issues connected with the use of this technology in the United States. Several recent changes in the FDA's review process are discussed. These include the current policy that utilizes an expedited review process for petitions seeking approval of additives and technologies intended to reduce pathogen levels in food, and the recent USDA rule that eliminates the need for a separate rulemaking process by USDA for irradiation of meat and poultry. Recently promulgated rules and pending petitions before the FDA associated with the use of ionizing radiation for the treatment of foods are also discussed along with the current FDA labeling requirements for irradiated foods and the 1999 advanced notice of proposed rule on labeling. Another issue that is presented is the current status of the approval of packaging materials intended for food contact during irradiation treatment of foods.
RESPONSE LATENCIES OF NORMAL AND FOCAL-HEAD IRRADIATED MONKEYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, A.A.; Brown, W.L.
1963-12-01
This study was designed to determine whether focal-head irradiated rhesus monkeys differ from normal monkeys in a manner analogous to that previously found in whole-body irradiated monkeys with respect to response latencies under both familiar and novel stimulus conditions. Five control and four focal-head irradiated rhesus monkeys with nearly identical training histories were used; the latter were survivors of a focal-head irradiation study conducted four years earlier. They had received 3000 r x radiation to the inferior parietal lobule and posterior aspect of the temporal lobe of the brain, and 30 days later the same dosage to the same areamore » of the brain. The testing was conducted in a modified version of the Wisconsin General Test Apparatus, with 24 trials per day for two days, on response latency to a single food-rewarded wooden block placed randomly over either of the two extreme food-well positions. Then, 24 trials were conducted per day for two days on response latency to either the same food-rewarded wooden block or to a novel nonrewarded wooden block presented simultaneously. On the single-block condition, median response latencies of the two groups were comparable and the groups improved in a similar manner with practice. Optimal performance latencies were also comparable for the two groups. When the novel nonrewarded stimulus block was introduced, both groups manifested comparable disruption of median response latencies, but disruption of optimal response latencies was shown only by the focalhead irradiated group. The findings show that monkeys with previous focal-head irradiation of the posterior association areas, unlike relatively high-dose whole-body irradiated monkeys, manifest median response latencies comparable to those of controls. These data indicate the lasting effects of focal-head irradiation with x rays, and suggest that the sites of permanent damage for monkeys given sublethal whole-body radiation exposure differ from the sites irradiated in the present subjects. (BBB)« less
Population kinetics on K alpha lines of partially ionized Cl atoms.
Kawamura, Tohru; Nishimura, Hiroaki; Koike, Fumihiro; Ochi, Yoshihiro; Matsui, Ryoji; Miao, Wen Yong; Okihara, Shinichiro; Sakabe, Shuji; Uschmann, Ingo; Förster, Eckhart; Mima, Kunioki
2002-07-01
A population kinetics code was developed to analyze K alpha emission from partially ionized chlorine atoms in hydrocarbon plasmas. Atomic processes are solved under collisional-radiative equilibrium for two-temperature plasmas. It is shown that the fast electrons dominantly contribute to ionize the K-shell bound electrons (i.e., inner-shell ionization) and the cold electrons to the outer-shell bound ones. Ratios of K alpha lines of partially ionized atoms are presented as a function of cold-electron temperature. The model was validated by observation of the K alpha lines from a chlorinated plastic target irradiated with 1 TW Ti:sapphire laser pulses at 1.5 x 10(17) W/cm(2), inferring a plasma temperature of about 100 eV on the target surface.
Ionizing radiation, ion transports, and radioresistance of cancer cells
Huber, Stephan M.; Butz, Lena; Stegen, Benjamin; Klumpp, Dominik; Braun, Norbert; Ruth, Peter; Eckert, Franziska
2013-01-01
The standard treatment of many tumor entities comprises fractionated radiation therapy which applies ionizing radiation to the tumor-bearing target volume. Ionizing radiation causes double-strand breaks in the DNA backbone that result in cell death if the number of DNA double-strand breaks exceeds the DNA repair capacity of the tumor cell. Ionizing radiation reportedly does not only act on the DNA in the nucleus but also on the plasma membrane. In particular, ionizing radiation-induced modifications of ion channels and transporters have been reported. Importantly, these altered transports seem to contribute to the survival of the irradiated tumor cells. The present review article summarizes our current knowledge on the underlying mechanisms and introduces strategies to radiosensitize tumor cells by targeting plasma membrane ion transports. PMID:23966948
Wambi, Chris O; Sanzari, Jenine K; Sayers, Carly M; Nuth, Manunya; Zhou, Zhaozong; Davis, James; Finnberg, Niklas; Lewis-Wambi, Joan S; Ware, Jeffrey H; El-Deiry, Wafik S; Kennedy, Ann R
2009-08-01
Abstract Dietary antioxidants have radioprotective effects after gamma-radiation exposure that limit hematopoietic cell depletion and improve animal survival. The purpose of this study was to determine whether a dietary supplement consisting of l-selenomethionine, vitamin C, vitamin E succinate, alpha-lipoic acid and N-acetyl cysteine could improve survival of mice after proton total-body irradiation (TBI). Antioxidants significantly increased 30-day survival of mice only when given after irradiation at a dose less than the calculated LD(50/30); for these data, the dose-modifying factor (DMF) was 1.6. Pretreatment of animals with antioxidants resulted in significantly higher serum total white blood cell, polymorphonuclear cell and lymphocyte cell counts at 4 h after 1 Gy but not 7.2 Gy proton TBI. Antioxidants significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGFbeta1 and increased bone marrow cell counts and spleen mass after TBI. Maintenance of the antioxidant diet resulted in improved recovery of peripheral leukocytes and platelets after sublethal and potentially lethal TBI. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival after proton TBI.
1951-12-15
be irradiated. ?A liquid filter consisting of a 1 cm layer of 5% CUSO4 was used to remove most of the infrared. F. Cell Counts n f. The...Protein sulfhydryl groups and the reversible inactivation of the enzyme „our ease. The reducing groups of egg albumin and of urease . Jt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walters, R.A.; Gurley, L.R.; Tobby, R.A.
1974-02-01
Caffeine induced a state of G/sub 1/ arrest when added to an exponentially growing culture of Chinese hamster cells (line CHO). In addition to its effect on cell-cycle traverse, caffeine ameliorated a number of the responses of cells to ionizing radiation. The duration of the division delay period following x-irradiation of caffeine-treated cells was reduced, and the magnitude of reduction was dependent on caffeine concentration. Cells irradiated during the DNA synthetic phase in the presence of caffeine were delayed less in their exit from S, measured autoradiographically, and the radiation-induced reduction of radioactive thymidine incorporation into DNA was lessened. Cellsmore » synchronized by isoleucine deprivation, while being generally less sensitive to the effects of ionizing radiation than mitotically synchronized cells, were equally responsive to the effects of caffeine. The x-rayinduced reduction of phosphorylation of lysine-rich histone F1 was less in caffeine-treated cells than in untreated cells. Finally, survival after irradiation was only slightly reduced in caffeinetreated cells. A possible role of cyclic AMP in cell-cycle traverse of irradiated cells is discussed. (auth)« less
Action of ionizing radiation on epoxy resins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Voorde, M. E.
1970-12-01
The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship betweenmore » chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)« less
Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite
NASA Astrophysics Data System (ADS)
Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Larsen, L. Scott
The focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces.
Sakina, N L; Dontsov, A E; Afanas'ev, G G; Ostrovski, M A; Pelevina, I I
1990-01-01
In studying the effect of whole-body X-irradiation on the accumulation of lipid peroxidation products (conjugated dienes, TBA-active products, and Schiff bases) in retina and retinal pigmented epithelium of pigmented and nonpigmented mice it was shown that irradiation of dark-pigmented mice does not cause even a slight accumulation of lipid peroxidation products as compared to that in the controls. Albino mice exhibited a marked increase in the level of lipid peroxidation products which was manifested soon after irradiation and persisted for at least 3 months after irradiation. Melanine is suggested to participate in protecting eye structures against pro-oxidizing action of ionizing radiation.
NASA Astrophysics Data System (ADS)
Ambesi-Impiombato, Francesco Saverio; Belov, Oleg; Bulinina, Taisia; Ivanov, Alexander; Mancini, Aldo; Borrelli, Antonella; Krasavin, Eugene A.
Protons represent the largest component of space radiation. In this regard screening of radioprotective drugs capable of increasing radioresistance of astronauts obligatory includes studying these compounds using proton radiation injury models. The recombinant human manganese superoxide dismutase (rMnSOD) had previously demonstrated its efficacy on an in vivo X-ray induced injury model, when multiple intraperitoneal treatments allowed the survival of mice irradiated with doses which were lethal for the control animals (Borrelli A et al. “A recombinant MnSOD is radioprotective for normal cells and radiosensitizing for tumor cells”. Free Radic Biol Med. 2009, 46, 110-6). Using the model of sublethal whole-body irradiation with protons available at Phasotron of Joint Institute for Nuclear Research (Dubna, Russia), we reconstruct the bone-marrow form of the acute radiation sickness to test the radioprotective effect of rMnSOD. Male (CBAxC57Bl6) F1 hybrid SPF mice weighting approximately 24 g were exposed to 171 MeV protons at the dose of 4 Gy. After irradiation, the sixfold daily subcutaneous treatment with rMnSOD has provided a statistically significant acceleration of the recovery of thymus and spleen mass and of the number of leukocytes in mice peripheral blood. In the control, untreated and irradiated mice, these positive effects were not observed even on day 7 after exposure. The number of karyocytes in bone marrow of irradiated mice has even exceeded its basal level in the control group 7 days after irradiation. The rMnSOD-treated group has thus demonstrated a significant hyper-restoration of this characteristic. In the presentation, several possibilities of using of rMnSOD in space medicine will be discussed, taking into account various biomedically relevant effects of this enzyme.
Induction of acute brain injury in mice by irradiation with high-LET charged particles
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Hong
The present study was performed to evaluate the induction of acute brain injury in mice after 235 Mev/u carbon ion irradiation. In our study, young outbred Kunming mice were divided into four treatment groups according to the penetration depth of carbon ions. Animals were irradiated with a sublethal dose of carbon ion beams prior to the Bragg curve. An experiment was performed to evaluate the acute alterations in histology, DNA double-strand breaks (DNA DSBs) as well as p53and Bax expression in the brain 96 h post-irradiation. The results demonstrated that various histopathological changes, a significant number of DNA DSBs and elevated p53 and Bax protein expression were induced in the brain following exposure to carbon ions. This was particularly true for mice irradiated with ions having a 9.1 cm-pentration depth, indicating that carbon ions can led to deleterious lesions in the brain of young animals within 96 h. Moreover, there was a remarkable increase in DNA DSBs and in the severity of histopathological changes as the penetration depths of ions increased, which may be associated with the complex track structure of heavy ions. These data reveal that carbon ions can promote serious neuropathological degeneration in the cerebral cortex of young mice. Given that damaged neurons cannot regenerate, these findings warrant further investigation of the adverse effects of the space radiation and the passage of a therapeutic heavy ion beam in the plateau region of the Bragg curve through healthy brain tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehioba, R.M.
1987-01-01
The effects of low-dose (1 kGy) gamma radiation and selected phosphates on the microbiology of refrigerated, vacuum-packaged ground pork were studied. Low-dose gamma radiation reduced the numbers of naturally occurring mesophiles, psychrotrophs, and anaerobes. The effect of low-dose radiation on the populations of lactic acid bacteria was minimal. On storage of the irradiated vacuum-packaged ground pork at 5/sup 0/C, there was a partial bacterial recovery, suggesting sublethal bacterial injury due to irradiation. When 10/sup 7/ CFU/g of meat is taken to be the level beyond which the meat would be considered spoiled, uninoculated, vacuum-packaged ground pork treated with 1 kGymore » (100 krad) of gamma radiation had 3.5 more days of shelf-life in terms of psychrotrophic total counts. In relation to anaerobic bacterial numbers, meat shelf-life was extended 2.5 days, while the shelf-life of meat was extended 1 day in terms of aerobic mesophilic bacteria. Irradiation prolonged shelf-life in inoculated (10/sup 5/CFU/g) meat for 1.0-1.5 days. Addition of 0.4% sodium acid pyrophosphate (SAPP) contributed 2 additional days to inoculated, irradiated vacuum-packaged ground pork shelf-life. However, SAPP had no added effect on naturally occurring microflora. Irradiation greatly decreased the numbers of gram-negative microorganisms, resulting in predominance of the gram-positive, nonsporeforming Lactobacillus and coryneform bacteria.« less
Electron beam irradiation of gemstone for color enhancement
NASA Astrophysics Data System (ADS)
Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi
2012-09-01
Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.
Electron beam irradiation of gemstone for color enhancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah
2012-09-26
Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors.more » The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.« less
Intestinal radiation syndrome: sepsis and endotoxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geraci, J.P.; Jackson, K.L.; Mariano, M.S.
Rats were whole-body irradiated with 8-MeV cyclotron-produced neutrons and /sup 137/Cs ..gamma.. rays to study the role of enteric bacteria and endotoxin in the intestinal radiation syndrome. Decrease in intestinal weight was used as an index of radiation-induced breakdown of the mucosa. Neutron and ..gamma..-ray doses that were sublethal for intestinal death resulted in a dose-dependent decrease in intestinal weight, reaching minimal values 2 to 3 days after exposure, followed by recovery within 5 days after irradiation. Neutron and photon doses that caused intestinal death resulted in greater mucosal breakdown with little or no evidence of mucosal recovery. The presencemore » of fluid in the intestine and diarrhea, but not bacteremia or endotoxemia, were related to mucosal breakdown and recovery. Neither sepsis nor endotoxin could be detected in liver samples taken at autopsy from animals which died a short time earlier from intestinal injury. These results suggest that overt sepsis and endotoxemia do not play a significant role in the intestinal radiation syndrome.« less
DELETERIOUS EFFECTS OF HIGH FAT DIETS ON SURVIVAL TIME OF X-IRRADIATED MICE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ershoff, B.H.
1961-02-01
The effects of multiple sublethal doses of total body x-irradiation were determined on survival time of male mice fed either a purified fat-free ration or a similar diet supplemented with 2, 10, 20, or 30% cottonseed oil, marganine fat, or butter fat. The effects obtnined were dependent on the amount and source of dietary fat. At levels of 2 or 10% of the diet, cottonseed oil and margarine fat increased survival time over that on the fat-free ration. When these fats were fed at higher levels (i.e., 20 or 30% of the diet), however, survival time was decreased below thatmore » obtained at the lower levels of supplementation. In contrast to the results obtained with the cottonseed oil or margarine fat supplements, butter fat at levels of 2 or 10% of the diet did not prolong survival over that on the fat-free ration; nor did it decrease survival time when fed at higher levels in the diet. (auth)« less
Photolysis of oxyfluorfen in aqueous methanol.
Chakraborty, Subhasish K; Chakraborty, Savitri; Bhattacharyya, Anjan; Chowdhury, Ashim
2013-01-01
Photolysis of oxyfluorfen, an herbicide of the nitrodiphenyl ether class, was studied in aqueous methanol under UV and sunlight. UV irradiation was carried out in a borosilicate glass photoreactor (containing 250 ppm oxyfluorfen in 50% aqueous methanol) equipped with a quartz filter and 125 watt mercury lamp (maximum output 254 nm) at 25 ± 1°C. Sunlight irradiation was conducted at 28 ± 1°C in borosilicate Erlenmeyer flasks containing 250 ppm oxyfluorfen in 50% aqueous methanol. The samples from both the irradiated conditions were withdrawn at a definite time interval and extracted to measure oxyfluorfen content by gas chromatography-flame ionization detector for rate study. The half-life values were 20 hours and 2.7 days under UV and sunlight exposure, respectively. Photolysis of oxyfluorfen yielded 13 photoproducts of which three were characterized by infrared spectrophotometer and (1)H NMR and (13)C NMR spectroscopy. The rest of the photoproducts were identified by gas chromatography-mass spectrometry (GC-MS) and thin layer chromatography (TLC). An ionization potential 70 eV was used for electron impact-mass spectrometry (EI-MS) and methane was used as reagent gas for chemical ionization-mass spectrometry (CI-MS). Two of the photoproducts were also synthesized for comparison. The main phototransformation pathways of oxyfluorfen involved nitro reduction, dechlorination, and hydrolysis as well as nucleophiles displacement reaction.
Understanding and simulating the material behavior during multi-particle irradiations
Mir, Anamul H.; Toulemonde, M.; Jegou, C.; Miro, S.; Serruys, Y.; Bouffard, S.; Peuget, S.
2016-01-01
A number of studies have suggested that the irradiation behavior and damage processes occurring during sequential and simultaneous particle irradiations can significantly differ. Currently, there is no definite answer as to why and when such differences are seen. Additionally, the conventional multi-particle irradiation facilities cannot correctly reproduce the complex irradiation scenarios experienced in a number of environments like space and nuclear reactors. Therefore, a better understanding of multi-particle irradiation problems and possible alternatives are needed. This study shows ionization induced thermal spike and defect recovery during sequential and simultaneous ion irradiation of amorphous silica. The simultaneous irradiation scenario is shown to be equivalent to multiple small sequential irradiation scenarios containing latent damage formation and recovery mechanisms. The results highlight the absence of any new damage mechanism and time-space correlation between various damage events during simultaneous irradiation of amorphous silica. This offers a new and convenient way to simulate and understand complex multi-particle irradiation problems. PMID:27466040
König, Anke; Zöller, Nadja; Kippenberger, Stefan; Bernd, August; Kaufmann, Roland; Layer, Paul G; Heselich, Anja
2018-01-01
Ionizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g. for pain reduction or impairment of wound healing. Furthermore, near-infrared is part of the solar wavelength spectrum. A combined exposure of these two irradiation qualities - either intentionally during medical treatment or unintentionally due to solar exposure - is therefore presumable for cancer patients. Several studies in different model organisms and cell cultures show a strong impact of near-infrared pretreatment on ionizing radiation-induced stress response. To investigate the risks of non-thermal near-infrared (NIR) pretreatment in patients, a human in vitro full thickness skin models (FTSM) was evaluated for radiation research. FTSM were pretreated with therapy-relevant doses of NIR followed by X-radiation, and then examined for DNA-double-strand break (DSB) repair, cell proliferation and apoptosis. Double-treated FTSM revealed a clear influence of NIR on X-radiation-induced stress responses in cells in their typical tissue environment. Furthermore, over a 24h time period, double-treated FTSM presented a significant persistence of DSBs, as compared to samples exclusively irradiated by X-rays. In addition, NIR pretreatment inhibited apoptosis induction of integrated fibroblasts, and counteracted the radiation-induced proliferation inhibition of basal keratinocytes. Our work suggests that cancer patients treated with X-rays should be prevented from uncontrolled NIR irradiation. On the other hand, controlled double-treatment could provide an alternative therapy approach, exposing the patient to less radiation. Copyright © 2017. Published by Elsevier B.V.
Identification of gamma-irradiated papaya, melon and watermelon
NASA Astrophysics Data System (ADS)
Marín-Huachaca, Nélida S.; Mancini-Filho, Jorge; Delincée, Henry; Villavicencio, Anna Lúcia C. H.
2004-09-01
Ionizing radiation can be used to control spoilage microorganisms and to increase the shelf life of fresh fruits and vegetables in replacement for the treatment with chemical fumigants. In order to enforce labelling regulations, methods for detecting the irradiation treatment directly in the produce are required. Recently, a number of detection methods for irradiated food have been adopted by the Codex Comission. A rapid screening method for qualitative detection of irradiation is the DNA Comet Assay. The applicability of the DNA Comet Assay for distinguishing irradiated papaya, melon, and watermelon was evaluated. The samples were treated in a 60Co facility at dose levels of 0.0, 0.5, 0.75, and 1.0kGy. The irradiated samples showed typical DNA fragmentation whereas cells from non-irradiated ones appeared intact. In addition to the DNA Comet Assay also the half-embryo test was applied in melon and watermelon to detect the irradiation treatment.
NASA Technical Reports Server (NTRS)
Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.
2006-01-01
The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Haizhou; Zhang, Yanwen; Weber, William J.
Understanding how energy deposited in electronic and atomic subsystems may affect defect dynamics is a long-standing fundamental challenge in materials research. The coupling of displacement cascades and in-cascade ionization-induced annealing are investigated in silicon carbide (SiC). A delayed damage accumulation under ion irradiation is revealed with a linear dependence as a function of both increasing ionization and increasing ratio of electronic to nuclear energy deposition. An in-cascade healing mechanism is suggested with a low threshold value of electronic energy loss (~1.0 keV nm-1). The in-cascade ionization effects must be considered in predicting radiation performance of SiC.
Liang, Ying; Yang, Gen; Liu, Feng; Wang, Yugang
2016-01-07
Ionizing radiation threatens genome integrity by causing DNA damage. Monte Carlo simulation of the interaction of a radiation track structure with DNA provides a powerful tool for investigating the mechanisms of the biological effects. However, the more or less oversimplification of the indirect effect and the inadequate consideration of high-order chromatin structures in current models usually results in discrepancies between simulations and experiments, which undermine the predictive role of the models. Here we present a biophysical model taking into consideration factors that influence indirect effect to simulate radiation-induced DNA strand breaks in eukaryotic cells with high-order chromatin structures. The calculated yields of single-strand breaks and double-strand breaks (DSBs) for photons are in good agreement with the experimental measurements. The calculated yields of DSB for protons and α particles are consistent with simulations by the PARTRAC code, whereas an overestimation is seen compared with the experimental results. The simulated fragment size distributions for (60)Co γ irradiation and α particle irradiation are compared with the measurements accordingly. The excellent agreement with (60)Co irradiation validates our model in simulating photon irradiation. The general agreement found in α particle irradiation encourages model applicability in the high linear energy transfer range. Moreover, we demonstrate the importance of chromatin high-order structures in shaping the spectrum of initial damage.
Physico-Chemical Evaluation of Rationally Designed Melanins as Novel Nature-Inspired Radioprotectors
Schweitzer, Andrew D.; Howell, Robertha C.; Jiang, Zewei; Bryan, Ruth A.; Gerfen, Gary; Chen, Chin-Cheng; Mah, Dennis; Cahill, Sean
2009-01-01
Background Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown. Methodology/Principal Findings We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14·1018, 7.09·1018, and 9.05·1017 spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy (137Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies. Conclusions/Significance We propose that due to melanin's numerous aromatic oligomers containing multiple π-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species. PMID:19789711
Schweitzer, Andrew D; Howell, Robertha C; Jiang, Zewei; Bryan, Ruth A; Gerfen, Gary; Chen, Chin-Cheng; Mah, Dennis; Cahill, Sean; Casadevall, Arturo; Dadachova, Ekaterina
2009-09-30
Melanin, a high-molecular weight pigment that is ubiquitous in nature, protects melanized microorganisms against high doses of ionizing radiation. However, the physics of melanin interaction with ionizing radiation is unknown. We rationally designed melanins from either 5-S-cysteinyl-DOPA, L-cysteine/L-DOPA, or L-DOPA with diverse structures as shown by elemental analysis and HPLC. Sulfur-containing melanins had higher predicted attenuation coefficients than non-sulfur-containing melanins. All synthetic melanins displayed strong electron paramagnetic resonance (2.14.10(18), 7.09.10(18), and 9.05.10(17) spins/g, respectively), with sulfur-containing melanins demonstrating more complex spectra and higher numbers of stable free radicals. There was no change in the quality or quantity of the stable free radicals after high-dose (30,000 cGy), high-energy ((137)Cs, 661.6 keV) irradiation, indicating a high degree of radical stability as well as a robust resistance to the ionizing effects of gamma irradiation. The rationally designed melanins protected mammalian cells against ionizing radiation of different energies. We propose that due to melanin's numerous aromatic oligomers containing multiple pi-electron system, a generated Compton recoil electron gradually loses energy while passing through the pigment, until its energy is sufficiently low that it can be trapped by stable free radicals present in the pigment. Controlled dissipation of high-energy recoil electrons by melanin prevents secondary ionizations and the generation of damaging free radical species.
Han, J; Castell-Perez, M E; Moreira, R G
2008-03-01
We investigated the effect of electron beam irradiation, storage conditions, and model food pH on the release characteristics of trans-cinnamaldehyde incorporated into polyamide-coated low-density polyethylene (LDPE) films. Active agent release rate on irradiated films (up to 20.0 kGy) decreased by 69% compared with the nonirradiated controls, from 0.252 to 0.086 microg/mL/h. Storage temperature (4, 21, and 35 degrees C) and pH (4, 7, and 10) of the food simulant solutions (10% aqueous ethanol) affected the release rate of trans-cinnamaldehyde. As expected, antimicrobial release rate decreased to 0.013 microg/mL/h at the refrigerated temperature (4 degrees C) compared to the higher temperatures (0.029 and 0.035 microg/mL/h at 21 and 35 degrees C). The fastest release rate occurred when exposed to the acidic food simulant solution (pH 4). In aqueous solution, trans-cinnamaldehyde was highly unstable to ionizing radiation, with loss in concentration from 24.50 to 1.36 microg/mL after exposure to 2.0 kGy. Fourier transform infrared (FTIR) analysis revealed that exposure to ionizing radiation up to 10.0 kGy did not affect the structural conformation of LDPE/polyamide films and the trans-cinnamaldehyde in the films, though it induced changes in the functional group of trans-cinnamaldehyde when dose increased up to 20.0 kGy. Studies with a radiation-stable compound (naphthalene) showed that ionizing radiation induced the crosslinking in polymer networks of LDPE/polyamide film and caused slow and gradual release of the compound. This study demonstrated that irradiation serves as a controlling factor for release of active compounds, with potential applications in the development of antimicrobial packaging systems.
p21 is Responsible for Ionizing Radiation-induced Bypass of Mitosis.
Zhang, Xu Rui; Liu, Yong Ai; Sun, Fang; Li, He; Lei, Su Wen; Wang, Ju Fang
2016-07-01
To explore the role of p21 in ionizing radiation-induced changes in protein levels during the G2/M transition and long-term G2 arrest. Protein expression levels were assessed by western blot in the human uveal melanoma 92-1 cells after treatment with ionizing radiation. Depletion of p21 was carried out by employing the siRNA technique. Cell cycle distribution was determined by flow cytometry combined with histone H3 phosphorylation at Ser28, an M-phase marker. Senescence was assessed by senescence- associated-β-galactosidase (SA-β-gal) staining combined with Ki67 staining, a cell proliferation marker. Accompanying increased p21, the protein levels of G2/M transition genes declined significantly in 92-1 cells irradiated with 5 Gy of X-rays. Furthermore, these irradiated cells were blocked at the G2 phase followed by cellular senescence. Depletion of p21 rescued radiation-induced G2 arrest as demonstrated by the upregulation of G2/M transition kinases, as well as the high expression of histone H3 phosphorylated at Ser28. Knockdown of p21 resulted in entry into mitosis of irradiated 92-1 cells. However, cells with serious DNA damage failed to undergo cytokinesis, leading to the accumulation of multinucleated cells. Our results indicated that p21 was responsible for the downregulation of G2/M transition regulatory proteins and the bypass of mitosis induced by irradiation. Downregulation of p21 by siRNA resulted in G2-arrested cells entering into mitosis with serious DNA damage. This is the first report on elucidating the role of p21 in the bypass of mitosis. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
NASA Astrophysics Data System (ADS)
Prymak, M. V.; Azhniuk, Yu. M.; Solomon, A. M.; Krasilinets, V. M.; Lopushansky, V. V.; Bodnar, I. V.; Gomonnai, A. V.; Zahn, D. R. T.
2012-07-01
The effect of X-ray irradiation on the optical absorption spectra of CdSe1-xTex nanocrystals embedded in a borosilicate matrix is studied. The observed blue shift of the absorption edge and bleaching of the confinement-related features in the spectra are related to X-ray induced negative ionization of the nanocrystals with charge transfer across the nanocrystal/matrix interface. The radiation-induced changes are observed to recover after longer post-irradiation storage at room temperature.
Kalash, Ronny; Epperly, Michael W; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S
2013-11-01
A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.
Expression of P53 protein after exposure to ionizing radiation
NASA Astrophysics Data System (ADS)
Salazar, A. M.; Salvador, C.; Ruiz-Trejo, C.; Ostrosky, P.; Brandan, M. E.
2001-10-01
One of the most important tumor suppressor genes is p53 gene, which is involved in apoptotic cell death, cell differentiation and cell cycle arrest. The expression of p53 gene can be evaluated by determining the presence of P53 protein in cells using Western Blot assay with a chemiluminescent method. This technique has shown variabilities that are due to biological factors. Film developing process can influence the quality of the p53 bands obtained. We irradiated tumor cell lines and human peripheral lymphocytes with 137Cs and 60Co gamma rays to standardize irradiation conditions, to compare ionizing radiation with actinomycin D and to reduce the observed variability of P53 protein induction levels. We found that increasing radiation doses increase P53 protein induction while it decreases viability. We also conclude that ionizing radiation could serve as a positive control for Western Blot analysis of protein P53. In addition, our results show that the developing process may play an important role in the quality of P53 protein bands and data interpretation.
Irradiation of ready-to-eat foods at USDA'S Eastern Regional Reasearch Center-2003 update
NASA Astrophysics Data System (ADS)
Sommers, Christopher; Fan, Xuetong; Niemira, Brendan; Rajkowski, Kathleen
2004-09-01
Ionizing radiation is a safe and effective method for eliminating bacterial pathogens from food products and disinfestation of fruits and vegetables. Since 1980 research has been conducted at USDA's Eastern Regional Research Center pertaining to the elimination of food-borne pathogens from meat, poultry, fruit and vegetable products. Recent work has focused on elimination of pathogens such as Escherichia coli O157:H7, Salmonella spp., and Listeria monocytogenes from ready-to-eat (RTE) food products including hot dogs, bologna, lettuce, cilantro, sprouts and seeds, and frozen vegetables. The ionizing radiation dose required to eliminate those pathogens from RTE foods has been found to be commodity, formulation and temperature dependent. The need to eliminate bacterial pathogens from RTE food products must always be balanced with the maintenance of product quality. In addition to determining the effective ionizing radiation doses required for pathogen elimination the effects of irradiation on product chemistry, nutritional value and organoleptic quality have also been determined. A review of the studies conducted at USDA's Eastern Regional Research Center in 2002 and 2003 is presented in this article.
Kalash, Ronny; Epperly, Michael W.; Goff, Julie; Dixon, Tracy; Sprachman, Melissa M.; Zhang, Xichen; Shields, Donna; Cao, Shaonan; Franicola, Darcy; Wipf, Peter; Berhane, Hebist; Wang, Hong; Au, Jeremiah; Greenberger, Joel S.
2014-01-01
A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P =0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation. PMID:24125487
Mutational influences of low-dose and high let ionizing radiation in drosophila melanogaster
NASA Astrophysics Data System (ADS)
Lei, Huang; Fanjun, Kong; Sun, Yeqing
For cosmic environment consists of a varying kinds of radiation particles including high Z and energy ions which was charactered with low-dose and high RBE, it is important to determine the possible biofuctions of high LET radiation on human beings. To analyse the possible effectes of mutational influences of low-dose and high-LET ionizing radiation, wild fruit flies drosophila melanogaster were irradiated by 12C6+ ions in two LET levels (63.3 and 30 keV/µum) with different low doses from 2mGy to 2000mGy (2, 20, 200, 2000mGy) in HIRFL (Heavy ion radiation facility laboratory, lanzhou, China).In the same LET value group, the average polymorphic frequency was elevated along with adding doses of irradation, the frequency in 2000 mGy dose samples was significantly higher than other samples (p<0.01).These results suggest that genomic DNA sequence could be effected by low-dose and high-LET ionizing radiation, the irradiation dose is an important element in genomic mutation frequency origination.
A RADIOBIOLOGICAL ANALOGY BETWEEN MEASLES VIRUS AND TEMPERATE PHAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackerman, P.H.; Black, F.L.
1961-02-01
Measles virus was found to be more resistant to ultraviolet (uv) than to ionizing radiations. The capacity of monkey kidney cells to grow unirradiated measles virus or measles virus irradiated with gamma rays was not affected appreciably by uv irradiation of the cells. However, the capacity of cells to grow uv irradiated virus was reduced by uv irradiation of the cells. In contrast, uv irradiation of cells did not affect their capacity to grow uv- treated polio virus. These effects of radiation on the measles virus system are analogous to effects on the phage P22 system and are compatible withmore » the hypothesis of cellular repair of damaged virus previously suggested for the temperate phage. (auth)« less
Impact of total ionizing dose irradiation on Pt/SrBi2Ta2O9/HfTaO/Si memory capacitors
NASA Astrophysics Data System (ADS)
Yan, S. A.; Zhao, W.; Guo, H. X.; Xiong, Y.; Tang, M. H.; Li, Z.; Xiao, Y. G.; Zhang, W. L.; Ding, H.; Chen, J. W.; Zhou, Y. C.
2015-01-01
In this work, metal-ferroelectric-insulator-semiconductor (MFIS) structure capacitors with SrBi2Ta2O9 (300 nm) as ferroelectric thin film and HfTaO (6 nm, 8 nm, 10 nm, and 12 nm) as insulating buffer layer were proposed and investigated. The prepared capacitors were fabricated and characterized before radiation and then subjected to 60Co gamma irradiation in steps of two dose levels. Significant irradiation-induced degradation of the electrical characteristics was observed. The radiation experimental results indicated that stability and reliability of as-fabricated MFIS capacitors for nonvolatile memory applications could become uncontrollable under strong irradiation dose and/or long irradiation time.
Wideł, Maria; Przybyszewski, Waldemar; Rzeszowska-Wolny, Joanna
2009-08-18
It has long been a central radiobiological dogma that the damaging effects of ionizing radiation, such as cell death, cytogenetic changes, apoptosis, mutagenesis, and carcinogenesis, are the results of the direct ionization of cell structures, particularly DNA, or indirect damage via water radiolysis products. However, several years ago attention turned to a third mechanism of radiation, termed the "bystander effect" or "radiation-induced bystander effect" (RIBE). This is induced by agents and signals emitted by directly irradiated cells and manifests as a lowering of survival, cytogenetic damage, apoptosis enhancement, and biochemical changes in neighboring non-irradiated cells. The bystander effect is mainly observed in in vitro experiments using very low doses of alpha particles (range; mGy, cGy), but also after conventional irradiation (X-rays, gamma rays) at low as well as conventional doses. The mechanisms responsible for the bystander effect are complex and still poorly understood. It is believed that molecular signals released from irradiated cells induce different signaling ways in non-irradiated neighboring cells, leading to the observed events. The molecular signals may be transmitted through gap junction intercellular communication and through a medium transfer mechanism. The nature of these transmitted factors are diverse, and still not definitely established. It seems that RIBE may have important clinical implications for health risk associated with radiation exposure. Potentially, this effect may have important implications in the creation of whole-body or localized side effects in tissues beyond the irradiation field and also in low-dose radiological and radioisotope diagnostics. Factors emitted by irradiated cells may result in the risk of genetic instability, mutations, and second primary cancer induction. They might also have their own part in inducing and extending post-radiation side effects in normal tissue. The bystander effect may be a potentially harmful or a useful event in radiotherapy. The elevation of damage to tumor cells not directly hit by radiation or the initiation of tumor cell differentiation may increase the therapeutic ratio. If, however, molecular species secreted by irradiated tumor cells in vivo damage neighboring normal cells (epithelial and endothelial cells, fibroblasts, or lymphocytes), the bystander effect would be harmful and could lead to increased side effects in normal tissue. This is especially important in modern radiotherapy, as 3D conformal radiation therapy (3D-CRT) and intensity-modulated radiation therapy (IMRT) are aimed at diminishing the radiation dose in normal tissues. Recent in vivo studies on animals indicate that bystander effects may appear in organs and tissues remote from the irradiated field and the extension of tissue damage seems to be tissue-type dependent. However, recent experimental results indicate that non-irradiated cells that are neighbors of irradiated cells may diminish radiation damage in the radiation-focused cells. Less is known about the bystander effect during fractionated irradiation. Thus the clinical implications of the bystander effect and its possible modification for radiotherapeutic usefulness is still under debate.
Secondary ion formation during electronic and nuclear sputtering of germanium
NASA Astrophysics Data System (ADS)
Breuer, L.; Ernst, P.; Herder, M.; Meinerzhagen, F.; Bender, M.; Severin, D.; Wucher, A.
2018-06-01
Using a time-of-flight mass spectrometer attached to the UNILAC beamline located at the GSI Helmholtz Centre for Heavy Ion Research, we investigate the formation of secondary ions sputtered from a germanium surface under irradiation by swift heavy ions (SHI) such as 5 MeV/u Au by simultaneously recording the mass spectra of the ejected secondary ions and their neutral counterparts. In these experiments, the sputtered neutral material is post-ionized via single photon absorption from a pulsed, intensive VUV laser. After post-ionization, the instrument cannot distinguish between secondary ions and post-ionized neutrals, so that both signals can be directly compared in order to investigate the ionization probability of different sputtered species. In order to facilitate an in-situ comparison with typical nuclear sputtering conditions, the system is also equipped with a conventional rare gas ion source delivering a 5 keV argon ion beam. For a dynamically sputter cleaned surface, it is found that the ionization probability of Ge atoms and Gen clusters ejected under electronic sputtering conditions is by more than an order of magnitude higher than that measured for keV sputtered particles. In addition, the mass spectra obtained under SHI irradiation show prominent signals of GenOm clusters, which are predominantly detected as positive or negative secondary ions. From the m-distribution for a given Ge nuclearity n, one can deduce that the sputtered material must originate from a germanium oxide matrix with approximate GeO stoichiometry, probably due to residual native oxide patches even at the dynamically cleaned surface. The results clearly demonstrate a fundamental difference between the ejection and ionization mechanisms in both cases, which is interpreted in terms of corresponding model calculations.
Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation
Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah; ...
2014-10-22
Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less
Determination of non-volatile radiolytic compounds in ethylene co-vinyl alcohol
NASA Astrophysics Data System (ADS)
Kothapalli, A.; Sadler, G.
2003-08-01
The use of ionizing radiation on food contact polymers is increasing due to the critical role of the package in holding or containing the irradiated foods [Food Add. Contam. 18(6) (2001) 475]. Irradiation benefits the food if properly applied and the food is pre-packaged prior to irradiation to protect it from subsequent recontamination. The United States Food and Drug Administration (USFDA) has approved the use of ionizing radiation within the dosage range of 0-60 kGy on limited films since the 1960s [USFDA 21CFR 179.45]. The obstacle in the way of approval of additional polymers is that FDA fears that these materials may undergo changes during irradiation producing toxic radiolytic fragments. Ethylene co-vinyl alcohol (EVOH), which is often used in food applications, is not approved by the FDA for pre-packaged irradiated foods. The present work examines the non-volatile radiolytic compounds, which may be formed due to exposure to gamma irradiation at the dosage levels of 3 and 10 kGy versus a non-radiated control. Irradiated EVOH is subjected to extraction with 95:5 ethanol and water (by volume) as the food simulating solvent (FSS) for a period of 10 days at 40 °C, which models the amount of radiolytic compound a food would extract in 1 year [USFDA Chemistry Requirement for Food Contact Notification]. The FSS is then analyzed for the presence of non-volatile compounds using advanced liquid chromatographic techniques. The chromatograms obtained from different dosages show that non-volatile radiolytic compounds are not formed in EVOH and it would, therefore be in compliance with safety demands of USFDA [Available at: http://www.cfsan.fda.gov/~dms/opa-guid.html#ref and http://www.access.gpo.gov/nara/cfr/cfr-table-search.html#page1].
Cardiovascular Risks Associated with Low Dose Ionizing Particle Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xinhua; Sasi, Sharath P.; Gee, Hannah
Previous epidemiologic data demonstrate that cardiovascular (CV) morbidity and mortality may occur decades after ionizing radiation exposure. With increased use of proton and carbon ion radiotherapy and concerns about space radiation exposures to astronauts on future long-duration exploration-type missions, the long-term effects and risks of low-dose charged particle irradiation on the CV system must be better appreciated. Here we report on the long-term effects of whole-body proton ( 1H; 0.5 Gy, 1 GeV) and iron ion ( 56Fe; 0.15 Gy, 1GeV/nucleon) irradiation with and without an acute myocardial ischemia (AMI) event in mice. We show that cardiac function of proton-irradiatedmore » mice initially improves at 1 month but declines by 10 months post-irradiation. In AMI-induced mice, prior proton irradiation improved cardiac function restoration and enhanced cardiac remodeling. This was associated with increased pro-survival gene expression in cardiac tissues. In contrast, cardiac function was significantly declined in 56Fe ion-irradiated mice at 1 and 3 months but recovered at 10 months. In addition, 56Fe ion-irradiation led to poorer cardiac function and more adverse remodeling in AMI-induced mice, and was associated with decreased angiogenesis and pro-survival factors in cardiac tissues at any time point examined up to 10 months. This is the first study reporting CV effects following low dose proton and iron ion irradiation during normal aging and post-AMI. Finally, understanding the biological effects of charged particle radiation qualities on the CV system is necessary both for the mitigation of space exploration CV risks and for understanding of long-term CV effects following charged particle radiotherapy.« less
Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki
2015-05-01
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Observation of ionization fronts in low density foam targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Willi, O.; Barringer, L.; Vickers, C.; Watt, R.; Nazarov, W.
1999-05-01
Ionization fronts have been observed in low density chlorinated foam targets and low density foams confined in gold tubes using time resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x-rays produced by high power laser irradiation. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Shatrov, G N; Bagriantseva, O V
2012-01-01
The international and European legislation in the field of ionizing irradiation (gamma rays, electrons or X-rays) using for food treatment for improving food safety, for disinfestation of plants or plant products and improving of technological characteristics of food are discussed in this article. Obtained data can be used for foundation of Russian legislation and normative documents in the field of radiation methods using in the food industry.
Histamine prevents radiation-induced mesenchymal changes in breast cancer cells.
Galarza, Tamara E; Mohamad, Nora A; Táquez Delgado, Mónica A; Vedoya, Guadalupe M; Crescenti, Ernesto J; Bergoc, Rosa M; Martín, Gabriela A; Cricco, Graciela P
2016-09-01
Radiotherapy is a prime option for treatment of solid tumors including breast cancer though side effects are usually present. Experimental evidence shows an increase in invasiveness of several neoplastic cell types through conventional tumor irradiation. The induction of epithelial to mesenchymal transition is proposed as an underlying cause of metastasis triggered by gamma irradiation. Experiments were conducted to investigate the role of histamine on the ionizing radiation-induced epithelial to mesenchymal transition events in breast cancer cells with different invasive phenotype. We also evaluated the potential involvement of Src phosphorylation in the migratory capability of irradiated cells upon histamine treatment. MCF-7 and MDA-MB-231 mammary tumor cells were exposed to a single dose of 2Gy of gamma radiation and five days after irradiation mesenchymal-like phenotypic changes were observed by optical microscope. The expression and subcellular localization of E-cadherin, β-catenin, vimentin and Slug were determined by immunoblot and indirect immunofluorescence. There was a decrease in the epithelial marker E-cadherin expression and an increase in the mesenchymal marker vimentin after irradiation. E-cadherin and β-catenin were mainly localized in cytoplasm. Slug positive nuclei, matrix metalloproteinase-2 activity and cell migration and invasion were significantly increased. In addition, a significant enhancement in Src phosphorylation/activation could be determined by immunoblot in irradiated cells. MCF-7 and MDA-MB-231 cells also received 1 or 20μM histamine during 24h previous to be irradiated. Notably, pre-treatment of breast cancer cells with 20μM histamine prevented the mesenchymal changes induced by ionizing radiation and also reduced the migratory behavior of irradiated cells decreasing phospho-Src levels. Collectively, our results suggest that histamine may block events related to epithelial to mesenchymal transition in irradiated mammary cancer cells and open a perspective for the potential use of histamine to improve radiotherapy efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of age on the sensitivity of the rat thyroid gland to ionizing radiation
Matsuu-Matsuyama, Mutsumi; Shichijo, Kazuko; Okaichi, Kumio; Kurashige, Tomomi; Kondo, Hisayoshi; Miura, Shiro; Nakashima, Masahiro
2015-01-01
Exposure to ionizing radiation during childhood is a well-known risk factor for thyroid cancer. Our study evaluated the effect of age on the radiosensitivity of rat thyroid glands. Four-week-old (4W), 7 -week-old (7W), and 8-month-old (8M) male Wistar rats were exposed to 8 Gy of whole-body X-ray irradiation. Thyroids were removed 3–72 h after irradiation, and non-irradiated thyroids served as controls. Ki67-positivity and p53 binding protein 1 (53BP1) focus formation (a DNA damage response) were evaluated via immunohistochemistry. Amounts of proteins involved in DNA damage response (p53, p53 phosphorylated at serine 15, p21), apoptosis (cleaved caspase-3), and autophagy (LC3, p62) were determined via western blotting. mRNA levels of 84 key autophagy-related genes were quantified using polymerase chain reaction arrays. Ki67-positive cells in 4W (with high proliferative activity) and 7W thyroids significantly decreased in number post-irradiation. The number of 53BP1 foci and amount of p53 phosphorylated at serine 15 increased 3 h after irradiation, regardless of age. No increase in apoptosis or in the levels of p53, p21 or cleaved caspase-3 was detected for any ages. Levels of LC3-II and p62 increased in irradiated 4W but not 8M thyroids, whereas expression of several autophagy-related genes was higher in 4W than 8M irradiated thyroids. Irradiation increased the expression of genes encoding pro-apoptotic proteins in both 4W and 8M thyroids. In summary, no apoptosis or p53 accumulation was noted, despite the expression of some pro-apoptotic genes in immature and adult thyroids. Irradiation induced autophagy in immature, but not in adult, rat thyroids. PMID:25691451
Surface study of irradiated sapphires from Phrae Province, Thailand using AFM
NASA Astrophysics Data System (ADS)
Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.
2017-09-01
The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.
SECONDARY TETANUS ANTITOXIN RESPONSES IN MICE ELICITED PRIOR TO IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, W.M.; Stoner, R.D.
1963-02-01
Secondary tetanus antitoxin responses were abolished in mice when sublethal radiation doses of 650 rads were delivered by short-term exposure 3 hr before the second injection of antigen. Nearly normal secondary responses were observed when the same radiation doses were delivered 4 days after antigenic stimulation, and sera were obtained 8 days later. Radiosensitivity of the seemingly radioresistart secondary antibody responses was demonstrated by ultimate repression of antitoxin titers when radiation was delivered 4 days after antigenic stimulation and sera were obtained 4 weeks after irradiation (32 days after the second injection of toxoid). It was possible to differentiate clearlymore » between the capacity of these irradiated animals to produce nearly normal secondary responses and failure of the same animals to respond to a third antigenic stimulus when radiation was delivered 4 days after the second stimulus, and a third injection of antigen was given 30 min after the single exposure to 650 rads. A marked incorporation of tritium activity appeared in antitoxin produced during secondary responses of irradiated and nonirradiated mice when tritium-labeled /sub L/-histidine was injected on days 4 and 5 and on days 6 and 7 after the second stimulus of tetanus toxoid. The data indicate that the antibody produced during secondary responses in irradiated and nonirradiated mice was not performed during the induction phase and merely released on days 4 or 5, following the second stimulus of antigen. These findings indicate the presence of antibodyproducing cells or their precursors that have proliferated in response to the second antigenic stimulus and survived long enough after irradiation to produce nearly normal secondary tetanus antitoxin responses. (auth)« less
Recolonization of laser-ablated bacterial biofilm.
Nandakumar, Kanavillil; Obika, Hideki; Utsumi, Akihiro; Toshihiko, Ooie; Yano, Tetsuo
2004-01-20
The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems. Copyright 2003 Wiley Periodicals, Inc.
1991-07-01
These investigators suggest that ionizing radiation affects the functional capability of the central nervous system, which would explain the - pid ...development of sepsis . The consolidation of gunshot fractures in irradiated rabbits started much later than in unirradiated animals. The consolidation...irradiation, increased concentrations of prostaglan- dins may result in death associated with sepsis (Ref. 135). As soon as the devastating results of
Application of irradiation in bait production to the control of crawling insects in urban areas
NASA Astrophysics Data System (ADS)
Migdał, W.; Owczarczyk, H. B.; Świ ȩtosławski, J.; Świ ȩtosławski, J.
2000-03-01
The efficiency and palatability of two baits were studied to the control of crawling insects in urban areas: "Cockroach Kill Gel" for control of cockroaches and Faratox B for control of ants. Ionizing energy was used in producing the baits. It was concluded, that after irradiation the palatability of Faratox B improved and palatability of Cockroach Kill Gel did not change.
1997 Technical Digest Series. Volume 7: Applications of High Field and Short Wavelength Sources VII
1997-03-01
clusters irradiated with ultrashort , high intensity laser pulses can exhibit "ionization ig- nition" which leads...8, 9]. 25-atom Ne clusters and 25-atom Ar clusters are modelled as irradiated by a 800 nm, 15 fs (fwhm) laser pulse with peak intensities ranging...Measurements of the spatial and spectral properties of ultrashort , intense laser pulses propagating in underdense plasmas demonstrate
NASA Astrophysics Data System (ADS)
Bargsten, Clayton; Hollinger, Reed; Shlyaptsev, Vyacheslav; Pukhov, Alexander; Keiss, David; Townsend, Amanda; Wang, Yong; Wang, Shoujun; Prieto, Amy; Rocca, Jorge
2014-10-01
We have demonstrated the volumetric heating of near-solid density plasmas to keV temperatures by ultra-high contrast femtosecond laser irradiation of arrays of vertically aligned nanowires with an average density up to 30% solid density. X-ray spectra show that irradiation of Ni and Au nanowire arrays with laser pulses of relativistic intensities ionizes plasma volumes several micrometers in depth to the He-like and Co-like (Au 52 +) stages respectively. The penetration depth of the heat into the nanowire array was measured monitoring He-like Co lines from irradiated arrays in which the nanowires are composed of a Co segment buried under a selected length of Ni. The measurement shows the ionization reaches He-like Co for depth of up to 5 μm within the target. This volumetric plasma heating approach creates a new laboratory plasma regime in which extreme plasma parameters can be accessed with table-top lasers. Scaling to higher laser intensities promises to create plasmas with temperatures and pressures approaching those in the center of the sun. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.
De-contamination of pesticide residues in food by ionizing radiation
NASA Astrophysics Data System (ADS)
Basfar, Ahmed A.; Mohamed, Khaled A.; Al-Saqer, Omar A.
2012-04-01
The role of gamma irradiation on removal of pesticides in aqueous solutions or in vegetables and fruits was investigated. Radiation - induced decontamination of pesticides is generally greater in aqueous solutions than in selected vegetables and fruits. Residues of malathion (0.5 ppm in potatoes, 8 ppm in onions and dates), pirimiphos-methyl (1 ppm in onions and grapes) and cypermethrin (0.05 ppm in potatoes and 0.1 ppm in onions) were not reduced to below maximum residue limits (MRLs) for irradiation doses up to 1 kGy. The same trend was observed when irradiation was performed for grapes fortified with malathion (8 ppm) and cypermethrin (2 ppm) for absorbed doses up to 2 kGy. Ionizing radiation reduced the residues of pirimiphos-methyl (0.05 ppm in potatoes at1 kGy, 1 ppm in grapes at 2 kGy and 0.1 ppm in dates at1 kGy), malathion (8 ppm in grapes at 7 kGy) and cypermethrin (2 ppm in grapes at 7 kGy) to below maximum residue limits (MRLs).
Temperature Dependent Resistivity and Hall Effect in Proton Irradiated CdS Thin Films
NASA Astrophysics Data System (ADS)
Guster, B.; Ghenescu, V.; Ion, L.; Radu, A.; Porumb, O.; Antohe, S.
2011-10-01
Cadmium sulphide finds extensive applications in a variety of optoelectronic devices. In particular, CdS thin films are suitable for use as windows in heterojunction solar cells that employ CdTe, Cu2S or CuInSe2 as an absorber. Such thin film based solar cells are well suited for use in space technology. For that specific application, it is important to know how ionizing radiations alter their performance. We have investigated the effects of irradiation with high energy protons (3 MeV), at 1014 fluency, on electrical properties of polycrystalline CdS thin layers. The samples were prepared by thermal vacuum deposition from single source onto optical glass substrate. Temperature dependent electrical resistivity and Hall effect, before and after irradiation, were recorded from 300 K down to 4 K. The experimental results can be explained in the frame of a two-band model. Above 100 K electrical properties are controlled by a defect level of donor type, with an ionization energy of about 0.060 eV. The possible origin of this defect is discussed.
X-ray irradiation activates K+ channels via H2O2 signaling.
Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard
2015-09-09
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.
X-ray irradiation activates K+ channels via H2O2 signaling
Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard
2015-01-01
Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345
Life stage sensitivity of the marine mussel Mytilus edulis to ammonia.
Kennedy, Alan J; Lindsay, James H; Biedenbach, James M; Harmon, Ashley R
2017-01-01
Ammonia is an important contaminant to consider in all toxicity tests. It is especially important to consider the impacts of ammonia in test methods that use sensitive water column organisms exposed to sediments or sediment extracts, such as porewater and elutriate toxicity tests. Embryo-larval development toxicity tests, such as the 48-h method using Mytilus mussel species, are particularly sensitive to ammonia. To better understand the effect thresholds across different life stages of these mussels, 6 short-term (48-h) development toxicity tests and 3 21-d toxicity tests with different-sized juvenile mussels were conducted. Two of the juvenile mussel tests involved 21-d continuous chronic exposure to ammonia, whereas the third involved an acute 2-d ammonia exposure, followed by a 19-d recovery period. The embryo-larval development test method (50% effect concentration [EC50] = 0.14-0.18 mg/L un-ionized ammonia) was 2.5 times more sensitive than the juvenile mussel 21-d survival endpoint (50% lethal concentration = 0.39 mg/L un-ionized ammonia) and 2 times more sensitive than the most sensitive sublethal juvenile mussel endpoint (EC50 = 0.26 mg/L un-ionized ammonia). Further, it was found that the juveniles recovered from a 48-h exposure to un-ionized ammonia of up to 1.1 mg/L. The data generated suggest that the embryo development endpoint was sufficiently sensitive to un-ionized ammonia to protect the chronically exposed (21 d) juvenile mussels. Environ Toxicol Chem 2017;36:89-95. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Absolute measurement of the extreme UV solar flux
NASA Technical Reports Server (NTRS)
Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.
1984-01-01
A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.
Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.
Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree
2015-10-22
Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krutmann, J.K.; Kammer, G.M.; Toossi, Z.
Purified T lymphocytes fail to proliferate in response to antigenic and mitogenic stimuli when cultured in the presence of accessory cells that have been exposed in vitro to sublethal doses of UVB radiation. Because proliferation represents a final stage in the T-cell activation process, the present study was conducted to determine whether T cells were able to progress through any of the pre-mitotic stages when UVB-irradiated monocytes were used as model accessory cells. In these experiments, monoclonal anti-CD3 antibodies were employed as the mitogenic stimulus. Culture of T cells with UVB-irradiated monocytes did allow the T cells to undergo anmore » increase in intracellular free calcium, which is one of the first steps in the activation sequence. The T cells expressed interleukin-2 receptors, although at a reduced level. However, T cells failed to produce interleukin-2 above background levels when they were placed in culture with monocytes exposed to UVB doses as low as 50 J/m2. Incubation of T cells with UVB-irradiated monocytes did not affect the subsequent capacity of T cells to proliferate, since they developed a normal proliferative response in secondary culture when restimulated with anti-CD3 antibodies and unirradiated monocytes. These studies indicate that T lymphocytes become partially activated when cultured with UVB-irradiated monocytes and mitogenic anti-CD3 monoclonal antibodies. In addition, they suggest that interleukin-2 production is the T-cell activation step most sensitive to inhibition when UVB-irradiated monocytes are employed as accessory cells.« less
Electron irradiation induced phase separation in a sodium borosilicate glass
NASA Astrophysics Data System (ADS)
Sun, K.; Wang, L. M.; Ewing, R. C.; Weber, W. J.
2004-06-01
Electron irradiation induced phase separation in a sodium borosilicate glass was studied in situ by analytical electron microscopy. Distinctly separate phases that are rich in boron and silicon formed at electron doses higher than 4.0 × 10 11 Gy during irradiation. The separated phases are still in amorphous states even at a much high dose (2.1 × 10 12 Gy). It indicates that most silicon atoms remain tetrahedrally coordinated in the glass during the entire irradiation period, except some possible reduction to amorphous silicon. The particulate B-rich phase that formed at high dose was identified as amorphous boron that may contain some oxygen. Both ballistic and ionization processes may contribute to the phase separation.
Luminosity limits for liquid argon calorimetry
NASA Astrophysics Data System (ADS)
J, Rutherfoord; B, Walker R.
2012-12-01
We have irradiated liquid argon ionization chambers with betas using high-activity Strontium-90 sources. The radiation environment is comparable to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider. We measure the ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. We can operate these chambers either in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. From the transition point we indirectly extract the positive argon ion mobility.
NASA Astrophysics Data System (ADS)
Kodama, Yasko; Rodrigues, Orlando, Jr.; Garcia, Rafael Henrique Lazzari; Santos, Paulo de Souza; Vasquez, Pablo A. S.
2016-07-01
Main subject of this article was to study room temperature stable radicals in Co-60 gamma irradiated contemporary paper using Electron Paramagnetic Resonance spectrometer (EPR). XRD was used to study the effect of ionizing radiation on the morphology of book paper. SEM images presented regions with cellulose fibers and regions with particles agglomeration on the cellulose fibers. Those agglomerations were rich in calcium, observed by EDS. XRD analysis confirmed presence of calcium carbonate diffraction peaks. The main objective of this study was to propose a method using conventional kinetics chemical reactions for the observed radical formed by ionizing radiation. Therefore, further analyses were made to study the half-life and the kinetics of the free radical created. This method can be suitably applied to study radicals on cultural heritage objects.
Radiation hardening of low condensation products containing amino group (in Japanese)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, S.; Hayashi, K.; Kaetsu, I.
1967-11-01
An initial condensation product is prepared by condensing a monomer selected from the group of urea, thiourea, melanine, aniline and acidamide with formalin. 0ne or more of the initial condensation product is then mixed with a substance which forms an acid or base by irradiation with an ionizing radiation in the presence or absence of the initial condensation product, except for halogenated hydrocarbon. The mixture is hardened by irradiation of the ionizing radiation to form a resinous substance. Formamide, acetamide, oxalic diamide, succinic diamide, acrylamide, etc. can be used as the acidamide monomer. Phosphonitrile chloride, cyanuric chloride, chloral hydrate, trichloroaceticmore » acid, monochloroacetic acid, ammonium chloride, aluminium chloride, gaseous chlorine, sullurous acid gas, sodium sulfite, aluminium sulfate, potassium hydrogensulfate, sodium pyrophosphate, potassium pyrophosphate, potassium phosphate, ammonia, bromine, bromal, bromal hydrate, dibromoacetic acid, sulfonated benzene, sulfonated toluene, etc. can be used as the acid- or base- forming substance. To the initial condensation product may be added 0.5-20%, in certain cases 20-50%, by weight of the said substances. The ionizing radiation can be electron beams. In an example, 2% chloral hydrate was homogeneously dissolved in the initial urea-formalin condensation product having a degree of condensation of 3--5. The solution was then irradiated by gamma rays at the dose rate of 4 x 10/sup 4/ r/hour from a /sup 60/Co source with a dose 5.0 x 10/sup 6/ roentgens. A white resinous composition was obtained. (JA)« less
A Novel Approach for Predicting Sublethal Effects of Toxicants to Aquatic Organisms
1984-11-30
sublethal levels of copper. Overall, WSF P JP-4 appears to affect osmoregulation and liver function. These effects were much more pronounced in fish...i "-’p WOSR.TR. .0 8 Lfl SA NOVEL APPROACH FOR PREDICTING SUBLETHAL EFFECTS OF SI TOXICANTS TO AQUATIC ORGANISMS FINAL SCIENTIFIC REPORT GRANT AFOSR...alan A Novel Approach for F 2312 AS JPredicting Sublethal Effects of Tbxicants to Aymtic- 12. PERIISONAL AUTHORIS) OrganISMS -Cairns, J.,-Jr
NASA Astrophysics Data System (ADS)
Visbal, Heidy; Hirano, Minami; Omura, Takuya; Shimizu, Masahiro; Takaishi, Taigo; Hirao, Kazuyuki
2017-07-01
Mayenite (12CaO·7Al2O3) is a highly interesting functional material due to the wide variety of its possible future applications. In this study, we used femtosecond laser irradiation in several solvents with varying polarities to increase the specific surface area of 12CaO·7Al2O3 ceramics and reduce their particle size without any structural degradation or loss of crystallinity. We observed that when femtosecond laser irradiation was applied to solvents bearing hydroxyl groups, a smaller particle size was obtained with the particle size decreasing as the polarity of the solvent increased. Using infrared spectroscopy, we confirmed the presence of hydroxyl and carbonyl surface functional groups at the surface of 12CaO·7Al2O3 ceramics after femtosecond laser irradiation. This is attributed to the direct chemical bonds breaking of the solvent via multiphoton ionization and/or tunneling ionization, followed by the Coulomb explosion and the subsequent production of ions that are adsorbed on the surfaces of 12CaO·7Al2O3 ceramics. Femtosecond laser irradiation in polar solvents with hydroxyl groups can reduce the particle size and increase the specific surface area without degradation or loss of crystallinity of 12CaO·7Al2O3 ceramics. Additionally, this method can be used for the surface modification and introduction of functional groups on the 12CaO·7Al2O3 ceramics surface.
Observation of Transonic Ionization Fronts in Low-Density Foam Targets
NASA Astrophysics Data System (ADS)
Hoarty, D.; Barringer, L.; Vickers, C.; Willi, O.; Nazarov, W.
1999-04-01
Transonic ionization fronts have been observed in low-density chlorinated foam targets using time-resolved K-shell absorption spectroscopy. The front was driven by an intense pulse of soft x rays produced by high-power laser irradiation of a thin foil. The density and temperature profiles inferred from the radiographs provided detailed measurement of the conditions at a number of times. The experimental data were compared to radiation hydrodynamics simulations and reasonable agreement was obtained.
Yang, Shi-feng; Xue, Wu-jun; Lu, Wan-hong; Xie, Li-yi; Yin, Ai-ping; Zheng, Jin; Sun, Ji-ping; Li, Yang
2015-10-01
Syngeneic or autologous hematopoietic stem cells transplantation (HSCT) has been proposed to treat autoimmune diseases because of its immunosuppressive and immunomodulatory effects, which can also contribute to posttransplant antirejection therapy. In this study, we explored the tolerogenic effect of syngeneic HSCT on prolonging islet allograft survival. C57BL/6 mice received syngeneic HSCT plus preconditioning with sublethal irradiation. Then islets of BALB/c mice were transplanted into the renal subcapsular of C57BL/6 mice after chemically induced into diabetes. HSCT mice exhibited improved islet allograft survival and increased serum insulin compared to control mice. Islet allografts of HSCT mice displayed lower level lymphocyte infiltration and stronger insulin staining than control mice. T cells of HSCT mice proliferated poorly in response to allogeneic splenocytes compared to control mice. Mice appeared reversed interferon-γ (IFN-γ)/interleukin-4 (IL-4) ratio to a Th2 immune deviation after syngeneic HSCT. The percentage of CD8(+) T cells was lower, while percentage of CD4(+)CD25(+)Foxp3(+) T regulatory cells (Tregs) was higher in HSCT mice than control mice. HSCT mice showed higher percentage of CTLA-4(+) T cells and expression of CTLA-4 mRNA than control mice. Targeting of CTLA-4 by intraperitoneal injection of anti-CTLA-4 mAb abrogated the effect of syngeneic HSCT on prolonging islet allograft survival, inhibiting activity of T cells in response to alloantigen, promoting Th1 to Th2 immune deviation and up regulating CD4(+)CD25(+)Foxp3(+) Tregs. Syngeneic HSCT plus preconditioning of sublethal irradiation induces tolerance and improves islet allograft survival in fully mismatched mice model. Th1 to Th2 immune deviation, increased CD4(+)CD25(+)Foxp3(+) Tregs and up-regulation of CTLA-4 maybe contribute to the tolerogenic effect induced by syngeneic HSCT. Copyright © 2015 Elsevier B.V. All rights reserved.
Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan
2016-02-01
To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.
Fetal progenitor cell transplantation treats methylmalonic aciduria in a mouse model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, Nicole E., E-mail: nicole.buck@mcri.edu.au; Pennell, Samuel D.; Wood, Leonie R.
Highlights: Black-Right-Pointing-Pointer Fetal cells were transplanted into a methylmalonic acid mouse model. Black-Right-Pointing-Pointer Cell engraftment was detected in liver, spleen and bone marrow. Black-Right-Pointing-Pointer Biochemical disease correction was measured in blood samples. Black-Right-Pointing-Pointer A double dose of 5 million cells (1 week apart) proved more effective. Black-Right-Pointing-Pointer Higher levels of engraftment may be required for greater disease correction. -- Abstract: Methylmalonic aciduria is a rare disorder caused by an inborn error of organic acid metabolism. Current treatment options are limited and generally focus on disease management. We aimed to investigate the use of fetal progenitor cells to treat this disordermore » using a mouse model with an intermediate form of methylmalonic aciduria. Fetal liver cells were isolated from healthy fetuses at embryonic day 15-17 and intravenously transplanted into sub-lethally irradiated mice. Liver donor cell engraftment was determined by PCR. Disease correction was monitored by urine and blood methylmalonic acid concentration and weight change. Initial studies indicated that pre-transplantation sub-lethal irradiation followed by transplantation with 5 million cells were suitable. We found that a double dose of 5 million cells (1 week apart) provided a more effective treatment. Donor cell liver engraftment of up to 5% was measured. Disease correction, as defined by a decrease in blood methylmalonic acid concentration, was effected in methylmalonic acid mice transplanted with a double dose of cells and who showed donor cell liver engraftment. Mean plasma methylmalonic acid concentration decreased from 810 {+-} 156 (sham transplanted) to 338 {+-} 157 {mu}mol/L (double dose of 5 million cells) while mean blood C3 carnitine concentration decreased from 20.5 {+-} 4 (sham transplanted) to 5.3 {+-} 1.9 {mu}mol/L (double dose of 5 million cells). In conclusion, higher levels of engraftment may be required for greater disease correction; however these studies show promising results for cell transplantation biochemical correction of a metabolic disorder.« less
Liquid egg white pasteurization using a centrifugal UV irradiator.
Geveke, David J; Torres, Daniel
2013-03-01
Studies are limited on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximately 8 log cfu/ml and was processed at the following conditions: UV intensity 1.5 to 9.0 mW/cm²; cylinder rotational speed 450 to 750 RPM, cylinder inclination angle 15° to 45°, and flow rate 300 to 900 ml/min, and treatment time 1.1 to 3.2s. Appropriate dilutions of the samples were pourplated with tryptic soy agar (TSA). Sublethal injury was determined using TSA+4% NaCl. The regrowth of surviving E. coli during refrigerated storage for 28 days was investigated. The electrical energy of the UV process was also determined. The results demonstrated that UV processing of LEW at a dose of 29 mJ/cm² at 10°C reduced E. coli by 5 log cfu/ml. Inactivation significantly increased with increasing UV dose and decreasing flow rate. The results at cylinder inclination angles of 30° and 45° were similar and were significantly better than those at 15°. The cylinder rotational speed had no significant effect on inactivation. The occurrence of sublethal injury was detected. Storage of UV processed LEW at 4° and 10°C for 21 days further reduced the population of E. coli to approximately 1 log cfu/ml where it remained for an additional 7 days. The UV energy applied to the LEW to obtain a 5 log reduction of E. coli was 3.9 J/ml. These results suggest that LEW may be efficiently pasteurized, albeit at low flow rates, using a nonthermal UV device that centrifugally forms a thin film. Published by Elsevier B.V.
2012-01-01
Background Controlling fish disease is one of the major concerns in contemporary aquaculture. The use of antibiotics or chemical disinfection cannot provide a healthy aquaculture system without residual effects. Water quality is also important in determining the success or failure of fish production. Several solar photocatalytic reactors have been used to treat drinking water or waste water without leaving chemical residues. This study has investigated the impact of several key aspects of water quality on the inactivation of the pathogenic bacterium Aeromonas hydrophila using a pilot-scale thin-film fixed-bed reactor (TFFBR) system. Results The level of inactivation of Aeromonas hydrophila ATCC 35654 was determined using a TFFBR with a photocatalytic area of 0.47 m2 under the influence of various water quality variables (pH, conductivity, turbidity and colour) under high solar irradiance conditions (980–1100 W m-2), at a flow rate of 4.8 L h-1 through the reactor. Bacterial enumeration were obtained through conventional plate count using trypticase soy agar media, cultured in conventional aerobic conditions to detect healthy cells and under ROS-neutralised conditions to detect both healthy and sub-lethally injured (oxygen-sensitive) cells. The results showed that turbidity has a major influence on solar photocatalytic inactivation of A. hydrophila. Humic acids appear to decrease TiO2 effectiveness under full sunlight and reduce microbial inactivation. pH in the range 7–9 and salinity both have no major effect on the extent of photoinactivation or sub-lethal injury. Conclusions This study demonstrates the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila under the influence of several water quality variables at high solar irradiance, providing an opportunity for the application of solar photocatalysis in aquaculture systems, as long as turbidity remains low. PMID:23194331
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung Youl; Yoo, Young Hyun; Park, Jeen-Woo, E-mail: parkjw@knu.ac.kr
Highlights: •Silencing of the IDPm gene enhances IR-induced autophagy in glioma cells. •Autophagy inhibition augmented apoptosis of irradiated glioma cells. •Results offer a redox-active therapeutic strategy for the treatment of cancer. -- Abstract: Reactive oxygen species (ROS) levels are elevated in organisms that have been exposed to ionizing radiation and are protagonists in the induction of cell death. Recently, we demonstrated that the control of mitochondrial redox balance and the cellular defense against oxidative damage are primary functions of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDPm) via the supply of NADPH for antioxidant systems. In the present study, we report anmore » autophagic response to ionizing radiation in A172 glioma cells transfected with small interfering RNA (siRNA) targeting the IDPm gene. Autophagy in A172 transfectant cells was associated with enhanced autophagolysosome formation and GFP–LC3 punctuation/aggregation. Furthermore, we found that the inhibition of autophagy by chloroquine augmented apoptotic cell death of irradiated A172 cells transfected with IDPm siRNA. Taken together, our data suggest that autophagy functions as a survival mechanism in A172 cells against ionizing radiation-induced apoptosis and the sensitizing effect of IDPm siRNA and autophagy inhibitor on the ionizing radiation-induced apoptotic cell death of glioma cells offers a novel redox-active therapeutic strategy for the treatment of cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi
2011-11-04
Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less
Current concepts for the combined treatment modality of ionizing radiation with anticancer agents.
Oehler, Christoph; Dickinson, Daniel J; Broggini-Tenzer, Angela; Hofstetter, Barbara; Hollenstein, Andreas; Riesterer, Oliver; Vuong, Van; Pruschy, Martin
2007-01-01
In current applied radiobiology, there exists a tremendous effort in basic and translational research to identify novel treatment modalities combining ionizing radiation with anticancer agents. This is mainly due to the highly improved molecular understanding of intrinsic radioresistance and the profiling of cellular stress responses to irradiation during recent years. Ionizing radiation not only damages DNA but also affects multiple cellular components that induce a multi-layered stress response. The treatment responses can be restricted to the individual cell level but might also be part of an intercellular stress communication network. Both DNA damage-induced signaling (which results in cell cycle arrest and induction of the DNA-repair machinery) and also ionizing radiation-induced signal transduction cascades, which are generated at cellular sites distant from and independent of DNA-damage, represent interesting targets for anticancer treatment modalities to sensitize for ionizing radiation. Due to the lack of molecular knowledge classic radiobiology assembled the cellular and tissue responses into four groups (4 R's of radiotherapy) which describe biological factors influencing the treatment response to fractionated radiotherapy. These classic 4 R's are Repair, Reassortment, Repopulation and Reoxygenation. With the tremendous progress in molecular oncology we now begin to understand theses factors on the molecular level. At the same time this classification may guide modern molecular radiobiologists to identify novel pharmaceuticals and antisignaling agents which can modulate the treatment response to irradiation. In this review we describe current approaches to sensitize tumor cells with novel anticancer agents along the lines of these 4 R's.
A PERSISTENT BONE GROWTH DEFICIT IN THE X-IRRADIATED RAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, R.D.; Kimeldorf, D.J.
1964-02-10
ABS>A critical assessment of the roentgenographic technique was made for a quantitative determination of bone and tail length in the rat. The method was found to be very reliable if error sources were controlled and minimized. The early and long term effects of x irradiation on skeletal growth were investigated with respect to the age at exposure. Rats exposed at a juvenile age (37 days) to a sublethal dose (430 rad) exhibited a retardation in femur, tibia, and tail growth within 14 days after exposure. The maximum deficit was attained within 30 days after exposure and remained approximately constant formore » the next 300 days. Femur and tibia length of animals which were exposed to x rays as young adults (101 days of age) did not differ from those of controls for the first two months after exposure. However, there was a deficit in femur and tibia length in these animals at the end of life span. The magnitude of the bone length reduction at the end of life span was dose dependent. The two major differences in response between the two age groups were the time course of the radiation effect on growth and the magnitude of the deficit. The reduction in bone length occurred faster and was greater in the younger irradiated group. (auth)« less
Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert
2015-01-01
The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc′) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. PMID:25256247
Gong, Youhui; Xu, Baoyun; Zhang, Youjun; Gao, Xiwu; Wu, Qingjun
2015-07-01
Sublethal doses of some insecticides have been reported to either stimulate or reduce the survival and fecundity of insects. Many sublethal-effect studies have been conducted after exposure of only one generation to sublethal insecticides, and there is little information about the sublethal effects on insects after long-term exposure to sublethal insecticides. In this study, changes in biological characteristics were investigated in spinosad-susceptible (Spin-S) and sublethal-spinosad-treated (Spin-Sub) strains of Frankliniella occidentalis (Pergande) after exposure to their corresponding sublethal concentrations of spinosad. The results showed that for the Spin-S strain, the LC10 concentration of spinosad slightly affected the biotic fitness both in parents and offspring of F. occidentalis. The LC25 concentration of spinosad prolonged the development time, reduced the fecundity, and significantly reduced the intrinsic rate of increase, the net reproductive rate and the finite rate of increase in the Spin-S strain. However, the negative effects were not as pronounced in the offspring (F1 generation) as in the parent generation. For the Spin-Sub strain, the LC10 and LC25 concentrations of spinosad had little negative effect on the development and fecundity, and no significant difference was found between the effects of the LC10 and LC25 treatments on the Spin-Sub strain. The Spin-Sub strain exhibited a shorter developmental time, and larger intrinsic rates of increase and net reproductive rates, compared with the corresponding treatments of the Spin-S strain. These findings combined with our previous studies suggest that the biotic fitness increased in the Spin-Sub strain and the strain became more adaptable to sublethal doses of spinosad, compared with the Spin-S strain. Physiological and biochemical adaptation may contribute to these changes after long treatment times at sublethal doses.
1994-04-01
Operations Program Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes) arenaceodentata; Effect of Storage Time on Sediment...Dredging Miscellaneous Paper D-94-2 Operations Program April 1994 Chronic Sublethal Effects of San Francisco Bay Sediments on Nereis (Neanthes...tWatelrway EnD A2AIM a MI F~YRA • rI~WATIMA. •7 WATCH Moore, David W. Chronic sublethal effects of San Francisco Bay sediments on Nerels (Neanthes
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Mokhovikov, A. A.
2017-12-01
Exemplified by metal-ceramic composite TiC-(Ni-Cr) with the ratio of components 50:50, the paper presents findings of the study on patterns of nanoscale structural-phase state formation in the surface layer of the composite under pulsed electron irradiation in inert gas plasmas with different ionization energies and atomic weights and their influence on tribological and strength properties of the surface layer.
Filip, S; Mokrý, J; Karbanová, J; Vávrová, J; Vokurková, J; Bláha, M; English, D
2005-04-01
A number of surprising observations have shown that stem cells, in suitable conditions, have the ability to produce a whole spectrum of cell types, regardless, whether these tissues are derived from the same germ layer or not. This phenomenon is called stem cell plasticity, which means that tissue-specific stem cells are mutually interchangeable. In our experiments, as a model, we used neural stem cells (NSCs) harvested from fetal (E14-15) neocortex and beta-galactosidase positive. In the first experiment we found that on days 12 and 30 after sub-lethal irradiation (LD 8.5 Gy) and (beta-galactosidase(+)) NSCs transplantation all mice survived, just as the group with bone marrow transplantation. Moreover, the bone marrow of mice transplanted NSCs contained the number of CFU-GM colonies with beta-galactosidase(+) cells which was as much as 50% higher. These differences were statistically significant, p<0.001. In the second experiment, we studied kinetics of (beta-galactosidase(+)) NSCs after their transplantation to sub-lethally irradiated mice. Histochemistry of tissues was performed on days 12 and 30 post-transplantation, and beta-galactosidase(+) cells were detected with the help of histochemical examination of removed tissues (lung, liver, spleen, thymus, and skeletal muscle). In tissues removed on day 12 post-transplantation, we found a significantly higher number of beta-galactosidase(+) cells in the spleen and thymus on day 30. While we presumed the presence beta-galactosidase(+) cells in the spleen, as spleen and reticuloendothelial system represent an important retaining system for different cell types, the presence of beta-galactosidase(+) cells in the thymus was rather surprising but very interesting. This indicates a certain mutual and close interconnection of transplanted stem cells and immune system in an adult organism. In the third experiment, we verified the mutual interchange of Sca-1 surface antigen in the bone marrow cells and NSCs before transplantation. Analysis of this antigen showed 24.8% Sca-1 positive cells among the bone marrow cells, while NSCs were Sca-1 negative. Our experiments show that NSCs share hemopoietic identity and may significantly influence the recovery of damaged hematopoiesis but do not have typical superficial markers as HSCs. This result is important for the determination of predictive factors for hemopoiesis recovery, for stem cell plasticity and for their use in the cell therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourkal, E; Hossain, M; Veltchev, I
2014-06-01
Purpose: The linear-quadratic model is the most prevalent model for planning dose fractionation in radiation therapy in the low dose per fraction regimens. However for high-dose fractions, used in SRS/SBRT/HDR treatments the LQ model does not yield accurate predictions, due to neglecting the reduction in the number of sublethal lesions as a result of their conversion to lethal lesions with subsequent irradiation. Proper accounting for this reduction in the number of sublethally damaged lesions leads to the dependence of the survival fraction on the temporal structure of the dose. The main objective of this work is to show that themore » functional dependence of the dose rate on time in each voxel is an important additional factor that can significantly influence the TCP. Methods: Two SBRT lung plans have been used to calculate the TCPs for the same patient. One plan is a 3D conformal plan and the other is an IMRT plan. Both plans are normalized so that 99.5% of PTV volume receives the same prescription dose of 50 Gy in 5 fractions. The dose rate in each individual voxel is calculated as a function of treatment time and subsequently used in the calculation of TCP. Results: The calculated TCPs show that shorter delivery times lead to greater TCP, despite all delivery times being short compared to the repair half-time for sublethal lesions. Furthermore, calculated TCP(IMRT) =0.308 for the IMRT plan is smaller than TCP(3D) =0.425 for 3D conformal, even though it shows greater tumor hot spots and equal PTV coverage. The calculated TCPs are considerably lower compared to those based on the LQ model for which TCP=1 for both plans. Conclusion: The functional dependence of the voxel-by-voxel dose rate on time may be an important factor in predicting the treatment outcome and cannot be neglected in radiobiological modeling.« less
NASA Astrophysics Data System (ADS)
Prakash, A.; Lim, F. T.; Duong, C.; Caporaso, F.; Foley, D.
2010-04-01
The goal of this study was to test the efficacy of irradiation on destroying Salmonella on raw almonds and evaluating the resultant sensory changes in the almonds. Raw almonds inoculated with various strains of Salmonella were irradiated at 5 dose levels up to 3 kGy and the D value was determined. The strain SEPT30 was the most resistant strain with a D value of 1.25 kGy indicating that a 4 log CFU/g reduction would require a dose of 5.0 kGy. Irradiation at 2.98 and 5.25 kGy induced significant sensory changes in almond nuts as manifested by intensity of chemical/metallic/rancid flavor ranked by a trained panel. A consumer panel found that samples treated with 5.25 kGy irradiation rendered the almonds unacceptable. Thus, irradiation by itself is unlikely to be a feasible method to eliminate Salmonella from raw almonds.
NOTE: Blood irradiation with accelerator produced electron beams
NASA Astrophysics Data System (ADS)
Butson, M. J.; Cheung, T.; Yu, P. K. N.; Stokes, M. J.
2000-11-01
Blood and blood products are irradiated with gamma rays to reduce the risk of graft versus host disease (GVHD). A simple technique using electron beams produced by a medical linear accelerator has been studied to evaluate irradiation of blood and blood products. Variations in applied doses for a single field 20 MeV electron beam are measured in a phantom study. Doses have been verified with ionization chambers and commercial diode detectors. Results show that the blood product volume can be given a relatively homogeneous dose to within 6% using 20 MeV electrons without the need to rotate the blood bags or the beam entry point. The irradiation process takes approximately 6.5 minutes for 30 Gy applied dose to complete as opposed to 12 minutes for a dual field x-ray field irradiation at our centre. Electron beams can be used to satisfactorily irradiate blood and blood products in a minimal amount of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liew, F.Y.; Howard, J.G.; Hale, C.
1984-01-01
Protective immunity against fatal L. tropica infection in genetically vulnerable BALB/c mice can be induced by prophylactic immunization with irradiated promastigotes even when heat-killed. Such immunity is adoptively transferable transiently into intact or durably into sub-lethally irradiated (200 or 550 rad) syngeneic recipients by splenic T but not B cells. The effector T cells are of the Lyt-1/sup +/2/sup -/ phenotype, devoid of demonstrable cytotoxic activity. The immune splenic T cell population expresses specific helper activity for antibody synthesis. A causal role for helper T cells in this capacity, however, seems unlikely, because it was shown that antibody does notmore » determine the protective immunity against L. tropica. The immunized donors show no detectable cutaneous DTH or its early memory recall in response to live or killed promastigotes or a soluble L. tropica antigen preparation. Spleen, lymph node, and peritoneal exudate cells from protectively immunized donors similarly fail to transfer DTH locally or systemically. These cells also lack demonstrable suppressive activity against the expression or induction of DTH to L. tropica. Thus, protection against L. tropica induced by prophylactic i.v. immunization with irradiated promastigotes appears to be conferred by Lyt-1/sup +/2/sup -/ T cells that are distinguishable from T cells mediating either both DTH and T help, or cytotoxicity.« less
Recovery of Sublethally Injured Bacteria Using Selective Agar Overlays.
ERIC Educational Resources Information Center
McKillip, John L.
2001-01-01
This experiment subjects bacteria in a food sample and an environmental sample to conditions of sublethal stress in order to assess the effectiveness of the agar overlay method to recover sublethally injured cells compared to direct plating onto the appropriate selective medium. (SAH)
Lethal and sublethal effects of aniline and chlorinated anilines on zebrafish embryos and larvae.
Horie, Yoshifumi; Yamagishi, Takahiro; Koshio, Masaaki; Iguchi, Taisen; Tatarazako, Norihisa
2017-07-01
Environmental risk assessments show increased attention to the sublethal effects of chemicals on aquatic organisms. The Organization for Economic Cooperation and Development (OECD) established the "Fish, Short-term Toxicity Test on Embryo and Sac-fry Stages" (OECD test 212) to predict lethal effects. It is still unclear, however, whether this test can predict sublethal effects. Although their sublethal effects are still unknown, chlorinated anilines are widely used in various fields. The purpose of this study, therefore, is to investigate sublethal effects of chlorinated anilines using OECD test 212 with zebrafish, and to examine the correlation of several sublethal effects between embryo and larval stages. Embryos were exposed to aniline and nine chlorinated anilines until 8 days post-fertilization. A delayed lethal effect was observed from three of the 10 anilines tested. In the control group, the swim bladder inflated after hatching, but there was no swim-bladder inflation after exposure to the chlorinated anilines. Fertilized eggs exposed to lower concentrations of test chemicals showed effects during embryogenesis that did not affect mortality rates, such as changes in body curvature and edema. Our results show that chlorinated anilines induce not only lethal effects but also a variety of sublethal effects. Moreover, a detailed estimate of these effects requires study during both embryonic and larval stages. OECD test 212 may therefore prove useful as a method for screening chemicals for lethal and sublethal effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Pavlov, Julius; Braida, Washington; Ogundipe, Adebayo; O'Connor, Gregory; Attygalle, Athula B
2009-10-01
The presence of a peak centered near m/z 2862, observed for the first time for the caged dodecatungstate radical-anion, [W12O41]-*, enables distinguishing WO2 from WO3 by Laser Desorption Ionization mass spectrometry (LDI-MS). In addition to WO2, laser irradiation of dry deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate also produce the [W12O41]-. In contrast, spectra recorded from deposits made from aqueous Na2WO4, sodium metatungstate, and WO3, or non-aqueous calcium and lead orthotungstate, and ammonium paratungstate, failed to show the m/z 2862 peak cluster. These observations support the hypothesis that polycondensation reactions to form [W12O41]-* occur solely in the presence of water. Although dry spots are irradiated for ionization, the solvent used for sample preparation plays an important role on the chemical composition endowed to ions detected. For example, the m/z 2862 peak seen from deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate, is absent in the spectra recorded either from pristine deposits or those derived from solutions made with organic solvents such as acetonitrile or ethanol.
A Study of Gamma-Ray Exposure of Cu-SiO2 Programmable Metallization Cells
NASA Astrophysics Data System (ADS)
Chen, W.; Barnaby, H. J.; Kozicki, M. N.; Edwards, A. H.; Gonzalez-Velo, Y.; Fang, R.; Holbert, K. E.; Yu, S.; Yu, W.
2015-12-01
The Cu-SiO2 based programmable metallization cell (PMC) is a promising alternative to the Ag-chalcogenide glass PMC because of its low power consumption and CMOS-compatibility. Understanding its total ionizing dose (TID) response helps in assessing the reliability of this technology in ionizing radiation environments and benefits its expansion in the space electronics market. In this paper, the impacts of TID on the switching characteristics of Cu-SiO2 PMC are investigated for the first time. The devices were step irradiated with 60Co gamma-rays to a maximum dose of 7.1 Mrad ( SiO2). The results show that gamma-ray irradiation has a negligible impact on the virgin-state and on-state resistance of Cu-SiO2 PMCs. The off-state resistance slightly decreases after the first 1.5 Mrad( SiO2) of exposure, but this reduction saturates after higher levels of TID. Other switching characteristics such as the set voltage, multilevel switching capability and endurance were also studied, all of which did not show observable changes after gamma-ray radiation. The immunity to ionizing radiation is attributed to the suppression of the photo-doping process.
RADIATION EFFECTS ON IMMUNE MECHANISMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.D.; Hale, W.M.
1963-03-01
Experiments were performed on pathogen-free Swiss albino mice to determine the repressive effect of ionizing radiation on immune mechanisms. In animals given sublethal doses of Co/sup 60/ gamma radiation by acute short-term exposure or by chronic long-term exposure at a low dose rate, ability to produce antibody was inhibited or abolished, and natural resistance and active and passive immunity to pneumococcal and Trichinella infections were severely depressed. It appears that the repression resulted from damage to the cellular defensive mechanisms of the host. Active immunity and natural resistance to influenza virus infections were not altered significantly by radiation. Exposure tomore » radiation enhanced the severity of anaphylactic shock markedly in mice previously sensitized to tetanus toxoid and challenged with tetanus toxoid after radiation. Chronic exposure to radiation caused immediate increased sensitivity to fatal anaphylaxis. (auth)« less
Landry, Yannick; Lê, Oanh; Mace, Kimberly A; Restivo, Terry E; Beauséjour, Christian M
2010-01-01
Abstract Patients treated for cancer therapy using ionizing radiation (IR) have delayed tissue repair and regeneration. The mechanisms mediating these defects remain largely unknown at present, thus limiting the development of therapeutic approaches. Using a wound healing model, we here investigate the mechanisms by which IR exposure limits skin regeneration. Our data show that induction of the stromal cell-derived growth factor 1α (SDF-1α) is severely impaired in the wounded skin of irradiated, compared to non-irradiated, mice. Hence, we evaluated the potential of bone marrow-derived multipotent stromal cells (MSCs), which secrete high levels of SDF-1α, to improve skin regeneration in irradiated mice. Injection of MSCs into the wound margin led to remarkable enhancement of skin healing in mice exposed to IR. Injection of irradiated MSCs into the wound periphery of non-irradiated mice delayed wound closure, also suggesting an important role for the stromal microenvironment in skin repair. The beneficial actions of MSCs were mainly paracrine, as the cells did not differentiate into keratinocytes. Specific knockdown of SDF-1α expression led to drastically reduced efficiency of MSCs in improving wound closure, indicating that SDF-1α secretion by MSCs is largely responsible for their beneficial action. We also found that one mechanism by which SDF-1α enhances wound closure likely involves increased skin vascularization. Our findings collectively indicate that SDF-1α is an important deregulated cytokine in irradiated wounded skin, and that the decline in tissue regeneration potential following IR can be reversed, given adequate microenvironmental support PMID:19725920
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carotenuto, Rosa; Tussellino, Margherita; Mettivier, Giovanni
To determine the radiosensitivity of Xenopus laevis embryos, aquatic organism model, for toxicity studies utilizing X-rays at acute high dose levels, by analysing its survival fraction and phenotype alterations under one-exposure integral dose. We used the standard Frog Embryo Teratogenesis Assay Xenopus test during the early stages of X. laevis development. The embryos were harvested until st. 46 when they were irradiated. The radiation effects were checked daily for a week and the survival, malformations and growth inhibition were assessed. Sibling tadpoles as control organisms were used. Statistical analysis was performed to assess the extent of any damage. Irradiation was performedmore » with an X-ray tube operated at 150 kV. The tube containing the tadpoles was exposed to an air kerma of 3 Gy as measured in air with an in-beam ionization chamber. After one week, survival fraction of irradiated embryos was 58%, while for control embryos it was 81%. Hence, irradiation with 150 kV, 3 Gy X-rays produced a 23% decrease of survival in regard to unirradiated embryos. The 70% of the irradiated embryos showed an altered distribution of the skin pigmentation, in particular on the dorsal area and in the olfactory pits, where the pigment concentration increased by a factor 2. In conclusion exposure of X. laevis to 3 Gy, 150 kV X-rays induced a reduction of embryos survival and a significant modification of pigmentation. The authors think that X. laevis embryos, at st 46, is a suitable biological model for large scale investigations on the effects of ionizing radiation.« less
Total Ionizing Dose Test of Microsemi's Silicon Switching Transistors JANTXV2N2222AUB and 2N2907AUB
NASA Technical Reports Server (NTRS)
Campola, M.; Freeman, B.; Yau, K.
2017-01-01
Microsemi's silicon switching transistors, JANTXV2N2222AUB and 2N2907AUB, were tested for total ionizing dose (TID) response beginning on July 11, 2016. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) could be determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Ruiz, María E., E-mail: mrruiz@unav.es; Radiation Oncology, University Clinic, University of Navarra, Pamplona; Garasa, Saray
Purpose/Objectives: The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Materials/Methods: Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using amore » Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. Results: We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Conclusion: Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy.« less
The skin: its structure and response to ionizing radiation.
Hopewell, J W
1990-04-01
The response of the skin to ionizing radiation has important implications both for the treatment of malignant disease by radiation and for radiological protection. The structural organization of human skin is described and compared with that of the pig, with which it shows many similarities, in order that the response of the skin to ionizing radiation may be more fully understood. Acute radiation damage to the skin is primarily a consequence of changes in the epidermis; the timing of the peak of the reaction is related to the kinetic organization of this layer. The rate of development of damage is independent of the radiation dose, since this is related to the natural rate of loss of cells from the basal layer of the epidermis. Recovery of the epidermis occurs as a result of the proliferation of surviving clonogenic basal cells from within the irradiated area. The presence of clonogenic cells in the canal of the hair follicle is important, particularly after non-uniform irradiation from intermediate energy beta-emitters. The migration of viable cells from the edges of the irradiated site is also significant when small areas of skin are irradiated. Late damage to the skin is primarily a function of radiation effects on the vasculature; this produces a wave of dermal atrophy after 16-26 weeks. Dermal necrosis develops at this time after high doses. A second phase of dermal thinning is seen to develop after greater than 52 weeks, and this later phase of damage is associated with the appearance of telangiectasia. Highly localized irradiation of the skin, either to a specific layer (as may result from exposure to very low energy beta-emitters) or after exposure to small highly radioactive particles, 'hot particles', produces gross effects that become visibly manifest within 2 weeks of exposure. These changes result from the direct killing of the cells of the skin in interphase after doses greater than 100 Gy. Dose-effect curves have been established for the majority of these deterministic endpoints in the skin from the results of both experimental and clinical studies. These are of value in the establishment of safe radiation dose limits for the skin.
Rodriguez-Ruiz, María E; Garasa, Saray; Rodriguez, Inmaculada; Solorzano, Jose Luis; Barbes, Benigno; Yanguas, Alba; Teijeira, Alvaro; Etxeberria, Iñaki; Aristu, José Javier; Halin, Cornelia; Melero, Ignacio; Rouzaut, Ana
2017-02-01
The goal of this study was to assess the effects of ionizing radiation on the expression of the integrin ligands ICAM-1 and VCAM that control leucocyte transit by lymphatic endothelial cells. Confluent monolayers of primary human lymphatic endothelial cells (LEC) were irradiated with single dose of 2, 5, 10 or 20 Gy, with 6 MeV-x-rays using a Linear-Accelerator. ICAM-1 and VCAM expression was determined by flow cytometry. Human tissue specimens received a single dose of 20 Gy with 15 MeV-x-rays. MC38, B16-OVA or B16-VEGF-C tumors grown in C57BL/6 mice were irradiated with single dose of 20Gy using a Linear-Accelerator fitted with a 10mm Radiosurgery collimator. Clinical samples were obtained from patients previous and 4 weeks after complete standard radiotherapy. ICAM-1 and VCAM expression was detected in all tissue specimens by confocal microscopy. To understand the role of TGFβ in this process anti-TGFβ blocking mAb were injected i.p. 30min before radiotherapy. Cell adhesion to irradiated LEC was analyzed in adhesion experiments performed in the presence or in the absence of anti- TGFβ and /or anti-ICAM1 blocking mAb. We demonstrate that lymphatic endothelial cells in tumor samples experience induction of surface ICAM-1 and VCAM when exposed to ionizing radiation in a dose- and time-dependent manner. These effects can be recapitulated in cultured LEC, and are in part mediated by TGFβ. These data are consistent with increases in ICAM-1 and VCAM expression on LYVE-1+ endothelial cells in freshly explanted human tumor tissue and in mouse transplanted tumors after radiotherapy. Finally, ICAM-1 and VCAM expression accounts for enhanced adherence of human T lymphocytes to irradiated LEC. Our results show induction of ICAM-1 and VCAM on LVs in irradiated lesions and offer a starting point for elucidating the biological and therapeutic implications of targeting leukocyte traffic in combination to immunotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Ionizing Radiation Stimulates Expression of Pro-Osteoclastogenic Genes in Marrow and Skeletal Tissue
NASA Technical Reports Server (NTRS)
Alwood, J. S.; Shahnazari, M.; Chicana, B.; Schreurs, A. S.; Kumar, A.; Bartolini, A.; Shirazi-Fard, Y.; Globus, R. K.
2015-01-01
Exposure to ionizing radiation can cause rapid mineral loss and increase bone-resorbing osteoclasts within metabolically-active, cancellous-bone tissue leading to structural deficits. To better understand mechanisms involved in rapid, radiation-induced bone loss, we determined the influence of total-body irradiation on expression of select cytokines known both to stimulate osteoclastogenesis and contribute to inflammatory bone disease. Adult (16wk), male C57BL/6J mice were exposed to either 2Gy gamma rays (137Cs, 0.8Gy/min) or heavy ions (56Fe, 600MeV, 0.50-1.1Gy/min); this dose corresponds to either a single fraction of radiotherapy (typical total dose is =10Gy) or accumulates over long-duration, interplanetary missions. Serum, marrow, and mineralized tissue were harvested 4hrs-7d later. Gamma irradiation caused a prompt (2.6-fold within 4hrs) and persistent (peaking at 4.1-fold within 1d) rise in the expression of the obligate osteoclastogenic cytokine, receptor activator of nuclear factor kappaB-ligand (Rankl) within marrow cells over controls. Similarly, Rankl expression peaked in marrow cells within 3d of iron exposure (9.2-fold). Changes in Rankl expression induced by gamma irradiation preceded and overlapped with a rise in expression of other pro-osteoclastic cytokines in marrow (e.g., monocyte chemotactic protein-1 increased 11.9-fold, tumor necrosis factor-alpha increased 1.7- fold over controls). Marrow expression of the RANKL decoy receptor, osteoprotegerin (Opg), also rose after irradiation (11.3-fold). The ratio Rankl/Opg in marrow was increased 1.8-fold, a net pro-resorption balance. As expected, radiation increased a serum marker of resorption (tartrate resistant acid phosphatase) and led to cancellous bone loss (16% decrease in bone volume/total volume) through reduced trabecular struts. We conclude that total-body irradiation (gamma or heavy-ion) caused temporal, concerted regulation of gene expression within marrow and mineralized tissue for select cytokines which are responsible for osteoclastogenesis and elevated resorption; this is likely to account for rapid and progressive 52 deterioration of cancellous microarchitecture following exposure to ionizing radiation.
THE INFLUENCE OF IONIZING RADIATION ON IMMUNITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troitskii, V.L.
1958-01-01
The effects of radiation on the natural resistance of an organism to certain infectious diseases, largely as observed in laboratory experiments on animals, are discussed. Although the mechanism of this process is only partially understood, many particulars, such as a decrease in the number of leucocytes in the blood, or depression of the fagocyte activity in the reticulo-endothelial system, under the influencc of radiation, are known. Other effects of radiation reflected in changes in tissue perviousness, and disturbance of the barrier characteristics are discussed. The influence of total irradiation on the perviousness of the gastric-intestinal tract to toxins of dysenterymore » bacteria was studied. Such irradiation increases the perviousness of the intestine wall to dysentery toxins. The influence of radiation in lowering the bactericide characteristics of the skin, and in suppressing development of the Schwarzmann phenomenon are cited as factors which may have signiflcance in lowering the natural resistance of the organism. Radiation effects on the bactericide characteristics of rabbit serum are also discussed. Appearance of bacteria in the blood of irradiated animals, believed to originate in the digestive tract, is also discussed. Autointection is a very significant factor in radiation sickness, and it is concluded that even small doses of ionizing radiation can turn latent infection into clinically pronounced infection. The influence of ionizing radiation on the production of antibodies is also treated. Experiments showed that the introduction of antigens to rabbits following irradiation produces only minute quantities of agglutinins, while the ability to produce antibodies is re-established after 3-4 weeks. Reproduction of antitoxic immunity is also dealt with briefly. Experiments also showed that the first phase of antibody formation is radiation-sensitive, while the later phase is radiation- resistant, i.e., radiation applied shortly after immunization tends to slow the process of antibody formation. Thus, once this process is started, it is harmed little even by large doses of radiation. Repeated small doses of radiation, over a long period of time, tend to decrease the harmful effect of a large dose on the formation of antibodies, when immunization follows irradiation. (TCO)« less
X-Ray Photoelectron Spectroscopy and the Role of Relaxation Energy in Understanding Chemical Shifts
ERIC Educational Resources Information Center
Ellison, Frank O.; White, Michael G.
1976-01-01
Discusses the measurement of electrons ejected from a system which is being irradiated with X-rays or ultraviolet photons, and a theoretical model for calculating core-electron ionization energies. (MLH)
NASA Astrophysics Data System (ADS)
Szilagyi, John; Parchamy, Homaira; Masnavi, Majid; Richardson, Martin
2017-01-01
The absolute spectral irradiances of laser-plasmas produced from planar zinc targets are determined over a wavelength region of 150 to 250 nm. Strong spectral radiation is generated using 60 ns full-width-at-half-maximum, 1.0 μm wavelength laser pulses with incident laser intensities as low as ˜5 × 108 W cm-2. A typical radiation conversion efficiency of ˜2%/2πsr is measured. Numerical calculations using a comprehensive radiation-hydrodynamics model reveal the strong experimental spectra to originate mainly from 3d94s4p-3d94s2, 3d94s4d-3d94s4p, and 3d94p-3d94s, 3d94d-3d94p unresolved-transition arrays in singly and doubly ionized zinc, respectively.
Optical measurements and analytical modeling of magnetic field generated in a dieletric target
NASA Astrophysics Data System (ADS)
Yafeng, BAI; Shiyi, ZHOU; Yushan, ZENG; Yihan, LIANG; Rong, QI; Wentao, LI; Ye, TIAN; Xiaoya, LI; Jiansheng, LIU
2018-01-01
Polarization rotation of a probe pulse by the target is observed with the Faraday rotation method in the interaction of an intense laser pulse with a solid target. The rotation of the polarization plane of the probe pulse may result from a combined action of fused silica and diffused electrons. After the irradiation of the main pulse, the rotation angle changed significantly and lasted ∼2 ps. These phenomena may imply a persistent magnetic field inside the target. An analytical model is developed to explain the experimental observation. The model indicates that a strong toroidal magnetic field is induced by an energetic electron beam. Meanwhile, an ionization channel is observed in the shadowgraph and extends at the speed of light after the irradiation of the main beam. The formation of this ionization channel is complex, and a simple explanation is given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
Total ionizing dose effect in an input/output device for flash memory
NASA Astrophysics Data System (ADS)
Liu, Zhang-Li; Hu, Zhi-Yuan; Zhang, Zheng-Xuan; Shao, Hua; Chen, Ming; Bi, Da-Wei; Ning, Bing-Xu; Zou, Shi-Chang
2011-12-01
Input/output devices for flash memory are exposed to gamma ray irradiation. Total ionizing dose has been shown great influence on characteristic degradation of transistors with different sizes. In this paper, we observed a larger increase of off-state leakage in the short channel device than in long one. However, a larger threshold voltage shift is observed for the narrow width device than for the wide one, which is well known as the radiation induced narrow channel effect. The radiation induced charge in the shallow trench isolation oxide influences the electric field of the narrow channel device. Also, the drain bias dependence of the off-state leakage after irradiation is observed, which is called the radiation enhanced drain induced barrier lowing effect. Finally, we found that substrate bias voltage can suppress the off-state leakage, while leading to more obvious hump effect.
NASA Astrophysics Data System (ADS)
Chambonneau, Maxime; Souiki-Figuigui, Sarra; Chiquet, Philippe; Della Marca, Vincenzo; Postel-Pellerin, Jérémy; Canet, Pierre; Portal, Jean-Michel; Grojo, David
2017-04-01
We demonstrate that infrared femtosecond laser pulses with intensity above the two-photon ionization threshold of crystalline silicon induce charge transport through the tunnel oxide in floating gate Metal-Oxide-Semiconductor transistor devices. With repeated irradiations of Flash memory cells, we show how the laser-produced free-electrons naturally redistribute on both sides of the tunnel oxide until the electric field of the transistor is suppressed. This ability enables us to determine in a nondestructive, rapid and contactless way the flat band and the neutral threshold voltages of the tested device. The physical mechanisms including nonlinear ionization, quantum tunneling of free-carriers, and flattening of the band diagram are discussed for interpreting the experiments. The possibility to control the carriers in memory transistors with ultrashort pulses holds promises for fast and remote device analyses (reliability, security, and defectivity) and for considerable developments in the growing field of ultrafast microelectronics.
NASA Astrophysics Data System (ADS)
Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain
2018-04-01
In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.; ...
2017-11-16
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
Total Ionizing Dose Effects on Strained Ge pMOS FinFETs on Bulk Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, En Xia; Fleetwood, Daniel M.; Hachtel, Jordan A.
2016-12-02
In this paper, we have characterized the total ionizing dose response of strained Ge p MOS FinFETs built on bulk Si using a fin replacement process. Devices irradiated to 1.0 Mrad(SiO 2) show minimal transconductance degradation (less than 5%), very small V th shifts (less than 40 mV in magnitude) and very little ON/OFF current ratio degradation (<5%), and only modest variation in radiation response with transistor geometry (typically less than normal part-to-part variation). Both before and after irradiation, the performance of these strained Ge p MOS FinFETs is far superior to that of past generations of planar Ge pmore » MOS devices. Finally, these improved properties result from significant improvements in processing technology, as well as the enhanced gate control provided by the strained Ge FinFET technology.« less
Melo-Bernal, W; Chernov, V; Chernov, G; Barboza-Flores, M
2018-08-01
In this study, an analytical model for the assessment of the modification of cell culture survival under ionizing radiation assisted with nanoparticles (NPs) is presented. The model starts from the radial dose deposition around a single NP, which is used to describe the dose deposition in a cell structure with embedded NPs and, in turn, to evaluate the number of lesions formed by ionizing radiation. The model is applied to the calculation of relative biological effectiveness values for cells exposed to 0.5mg/g of uniformly dispersed NPs with a radius of 10nm made of Fe, I, Gd, Hf, Pt and Au and irradiated with X-rays of energies 20keV higher than the element K-shell binding energy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study the Characterization of Spectral Absorbance on Irradiated Milk Protein
NASA Astrophysics Data System (ADS)
Fohely, F.; Suardi, N.
2018-04-01
The milk has been adopted as a structural nature food for a long era since it is containing most of the growth factors, protective agents, and enzymes needed for the body. a few attempts have been conducted to treat the dairy products especially raw milk by the means of ionizing radiation. as its production has been an expanding industry for many years due to the high demands from the consumers worldwide, there is still some doubt about preserving these products by irradiation. In this work, a preliminary effort to describe the influences of ionizing radiation on raw milk’s protein will be devoted to measuring the spectral absorbance of the total protein (after subjected to varied radiation doses) by UV-VIS-NIR spectroscopy analysis. The absorbance spectrum then analyzed based on absorbance spectra of organic compounds. A comparison is made between the effects of different radiation doses to estimate the influence in milk’s structure.
Main principles of developing exploitation models of semiconductor devices
NASA Astrophysics Data System (ADS)
Gradoboev, A. V.; Simonova, A. V.
2018-05-01
The paper represents primary tasks, solutions of which allow to develop the exploitation modes of semiconductor devices taking into account complex and combined influence of ionizing irradiation and operation factors. The structure of the exploitation model of the semiconductor device is presented, which is based on radiation and reliability models. Furthermore, it was shown that the exploitation model should take into account complex and combine influence of various ionizing irradiation types and operation factors. The algorithm of developing the exploitation model of the semiconductor devices is proposed. The possibility of creating the radiation model of Schottky barrier diode, Schottky field-effect transistor and Gunn diode is shown based on the available experimental data. The basic exploitation model of IR-LEDs based upon double AlGaAs heterostructures is represented. The practical application of the exploitation models will allow to output the electronic products with guaranteed operational properties.
NASA Astrophysics Data System (ADS)
Drzewicz, Przemyslaw; Trojanowicz, Marek; Zona, Robert; Solar, Sonja; Gehringer, Peter
2004-03-01
Electron beam (EB), ozone (O 3) and the combination EB/O 3 were used to study the oxidative decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) in local tap water. Using an EB treatment, a dose of 10 kGy was required for complete 2,4-D degradation, and a 90% conversion of organic chlorine into chloride ions. Using additionally 1.33 mmol dm -3 O 3 during irradiation, the same result was achieved with a dose of 2.7 kGy. The yields of products acetate and formate were almost doubled by the combined EB/O 3 treatment, compared to those obtained with the same dose by EB irradiation. Gamma radiolysis showed that the degradation dose was proportional to the initial concentration of 2,4-D in the range of 50-2260 μmol dm -3.
Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages.
Mulinacci, Nadia; Valletta, Alessio; Pasqualetti, Valentina; Innocenti, Marzia; Giuliani, Camilla; Bellumori, Maria; De Angelis, Giulia; Carnevale, Alessia; Locato, Vittoria; Di Venanzio, Cristina; De Gara, Laura; Pasqua, Gabriella
2018-04-02
Humans are exposed to ionizing radiations in medical radiodiagnosis and radiotherapy that cause oxidative damages and degenerative diseases. Airplane pilots, and even more astronauts, are exposed to a variety of potentially harmful factors, including cosmic radiations. Among the phytochemicals, phenols are particularly efficient in countering the oxidative stress. In the present study, different extracts obtained from plant food, plant by-products and dietary supplements, have been compared for their antioxidant properties before and after irradiation of 140 cGy, a dose absorbed during a hypothetical stay of three years in the space. All the dry extracts, characterized in terms of vitamin C and phenolic content, remained chemically unaltered and maintained their antioxidant capability after irradiation. Our results suggest the potential use of these extracts as nutraceuticals to protect humans from oxidative damages, even when these extracts must be stored in an environment exposed to cosmic radiations as in a space station.
Effect of irradiation on the patulin content and chemical composition of apple juice concentrate.
Zegota, H; Zegota, A; Bachman, S
1988-09-01
The influence of ionizing radiation on the patulin content of apple juice concentrate was investigated. The results indicated that patulin, at an initial concentration of about 2 mg/kg, disappeared after irradiation of the concentrate with doses as low as 2.5 kGy. For lower doses, the extent of patulin degradation was proportional to the absorbed dose. Irradiation of the concentrate with doses sufficient for patulin disappearance did not change the titratable acidity, the content of reducing sugars and carbonyl compounds or the amino acid composition. The content of ascorbic acid slightly decreased and the colour of the concentrate brightened. The intensity of the patulin absorption spectra after irradiation of mycotoxin in aqueous solutions decreased.
NASA Astrophysics Data System (ADS)
Väyrynen, S.; Pusa, P.; Sane, P.; Tikkanen, P.; Räisänen, J.; Kuitunen, K.; Tuomisto, F.; Härkönen, J.; Kassamakov, I.; Tuominen, E.; Tuovinen, E.
2007-03-01
A novel facility for proton irradiation with sample cryocooling has been developed at the Accelerator Laboratory of Helsinki University (equipped with a 5 MV tandem accelerator). The setup enables unique experiments to be carried out within the temperature range of 10-300 K. The setup has been constructed for "on-line" studies of vacancies with positron annihilation spectroscopy (PAS) including the option for optical ionization of the vacancies, and for current-voltage ( IV) measurements of irradiated silicon particle detectors. The setup is described in detail and typical performance characteristics are provided. The facility functionality was tested by performing PAS experiments with high-resistivity silicon and by IV measurements for two types of irradiated silicon particle detectors.
Inhibition and recovery of the replication of depurinated parvovirus DNA in mouse fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vos, J.M.; Avalosse, B.; Su, Z.Z.
Apurinic sites were introduced in the single-stranded DNA of parvovirus minute-virus-of-mice (MVM) and their effect on viral DNA synthesis was measured in mouse fibroblasts. Approximately one apurinic site per viral genome, is sufficient to block its replication in untreated cells. The exposure of host cells to a sublethal dose of UV-light 15 hours prior to virus infection, enhances their ability to support the replication of depurinated MVM. Cell preirradiation induces the apparent overcome of 10-15% of viral DNA replication blocks. These results indicate that apurinic sites prevent mammalian cells from replicating single-stranded DNA unless a recovery process is activated bymore » cell UV-irradiation.« less
Adoptive cell transfer of resistance to Mycobacterium leprae infections in mice.
Lowe, C; Brett, S J; Rees, R J
1985-01-01
Cells were transferred from mice intradermally vaccinated with killed Mycobacterium leprae to sublethally irradiated recipients. Unseparated cells from lymph nodes or spleens of M. leprae vaccinated mice were found to cause significant inhibition of the growth of a subsequent M. leprae challenge in mouse footpads for up to 26 weeks after vaccination. Vaccination with live BCG and cells transferred from BCG-vaccinated mice caused no significant inhibition of M. leprae growth in mouse footpads. Cell separation into fractions containing predominantly B and T lymphocytes showed that the inhibition of growth was due to M. leprae-sensitized T lymphocytes. M. leprae vaccinated mice were also skin tested with soluble M. leprae antigen and showed maximum delayed hypersensitivity responses 4 weeks after vaccination. PMID:3876183
Role for Lyt-2+ T cells in resistance to cutaneous leishmaniasis in immunized mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, J.P.; Muller, I.; Louis, J.A.
1989-03-15
The role of Lyt-2+ T cells in immunologic resistance to cutaneous leishmaniasis was analyzed by comparing infection patterns in resistant C57BL/6 mice and susceptible BALB/c mice induced to heal their infections after sub-lethal irradiation or i.v. immunization, with similar mice treated in vivo with anti-Lyt-2 antibodies. Administration of anti-Lyt-2 mAb resulted in a dramatic reduction in the number of lymphoid cells expressing the Lyt-2+ phenotype. Such treatment led to enhanced disease in both resistant C57BL/6 and irradiated BALB/c mice, as assessed by lesion size, but did not affect the capacity of these mice to ultimately resolve their infections. In contrast,more » anti-Lyt-2 treatment totally blocked the induction of resistance in i.v. immunized mice. These results suggest, that Lyt-2+ T cells may play a role in immunity to a Leishmania major infection and that their relative importance to resistance may depend on how resistance is induced.« less
Bond strength of dental adhesive systems irradiated with ionizing radiation.
Dibo da Cruz, Adriana; Goncalves, Luciano de Souza; Rastelli, Alessandra Nara de Souza; Correr-Sobrinho, Lorenco; Bagnato, Vanderlei Salvador; Boscolo, Frab Norberto
2010-04-01
The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.
Radiation-induced Epstein-Barr virus reactivation in gastric cancer cells with latent EBV infection.
Nandakumar, Athira; Uwatoko, Futoshi; Yamamoto, Megumi; Tomita, Kazuo; Majima, Hideyuki J; Akiba, Suminori; Koriyama, Chihaya
2017-07-01
Epstein-Barr virus, a ubiquitous human herpes virus with oncogenic activity, can be found in 6%-16% of gastric carcinomas worldwide. In Epstein-Barr virus-associated gastric carcinoma, only a few latent genes of the virus are expressed. Ionizing irradiation was shown to induce lytic Epstein-Barr virus infection in lymphoblastoid cell lines with latent Epstein-Barr virus infection. In this study, we examined the effect of ionizing radiation on the Epstein-Barr virus reactivation in a gastric epithelial cancer cell line (SNU-719, an Epstein-Barr virus-associated gastric carcinoma cell line). Irradiation with X-ray (dose = 5 and 10 Gy; dose rate = 0.5398 Gy/min) killed approximately 25% and 50% of cultured SNU-719 cells, respectively, in 48 h. Ionizing radiation increased the messenger RNA expression of immediate early Epstein-Barr virus lytic genes (BZLF1 and BRLF1), determined by real-time reverse transcription polymerase chain reaction, in a dose-dependent manner at 48 h and, to a slightly lesser extent, at 72 h after irradiation. Similar findings were observed for other Epstein-Barr virus lytic genes (BMRF1, BLLF1, and BcLF1). After radiation, the expression of transforming growth factor beta 1 messenger RNA increased and reached a peak in 12-24 h, and the high-level expression of the Epstein-Barr virus immediate early genes can convert latent Epstein-Barr virus infection into the lytic form and result in the release of infectious Epstein-Barr virus. To conclude, Ionizing radiation activates lytic Epstein-Barr virus gene expression in the SNU-719 cell line mainly through nuclear factor kappaB activation. We made a brief review of literature to explore underlying mechanism involved in transforming growth factor beta-induced Epstein-Barr virus reactivation. A possible involvement of nuclear factor kappaB was hypothesized.
NASA Astrophysics Data System (ADS)
Azzam, Edouard
Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial body irradiation, 20 months earlier, from low mean doses of HZE particles. These effects were associated with disruption of mitochondrial function in the non-irradiated tissues and in modulation of immune cell populations. Collectively, our data support the concept that the response of the organism to high LET radiations involves irradiated and non-irradiated cells/tissues and is associated with changes in several physiological functions. Supported by the US National Aeronautics and Space Administration
USDA-ARS?s Scientific Manuscript database
There is increasing evidence that exposure to neonicotinoid insecticides at sublethal levels impairs colonies of honeybee and other pollinators. Recently, it was found that sublethal contamination with neonicotinoids also affect growth and behavior of ants. In this study, we exposed red imported fi...
ON THE MECHANISM OF INJURY OF FETUSES IN GRAVID ANIMALS WITH RADIATION SICKNESS (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinina, N.A.
1960-10-01
An assessment is made of the importance of the maternal organism in the mechanism of injury of the fetus during x-ray irradiation of gravid animals. A confrontation of the severity of radiation sickness in pregnant rats with the severity of injury of the fetuses divulged that in irradiation during the period before implantation in the mechanism of fetus injury of great importance are changes occurring in the irradiated organism of the mother; irradiation at the time of completed placentation produces a lesser deleterious effect on the state of the fetus than in earlier periods of gestation. Disturbance of lactation andmore » of the maternal instinct in the animals subjected to the action of ionizing radiation is one of the causes of postnatal death of the progeny of the irradiated rats. (auth)« less
Gamma radiation-induced thermoluminescence emission of minerals adhered to Mexican sesame seeds
NASA Astrophysics Data System (ADS)
Rodríguez-Lazcano, Y.; Correcher, V.; Garcia-Guinea, J.; Cruz-Zaragoza, E.
2013-02-01
The thermoluminescence (TL) emission of minerals isolated from Mexican sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) data, the adhered dust in both samples is mainly composed of different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good TL intensity, (ii) high stability of the TL signal during the storage of the material, i.e. low fading, and (iii) are thermally and chemically stable. Blind tests were performed under laboratory conditions, but simulating industrial preservation processes, allow us to distinguish between 1 kGy gamma-irradiated and non-irradiated samples even 15 months after irradiation processing followed the EN 1788 European Standard protocol in sesame samples.
Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per; Zhu, Changlian; Blomgren, Klas
2017-05-23
Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation.
Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M.; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per
2017-01-01
Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation. PMID:28415806
Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse
NASA Astrophysics Data System (ADS)
Li, M.; Yuan, T.; Xu, Y. X.; Wang, J. X.; Luo, S. N.
2018-05-01
The dynamics of plasma grating contrast enhancement (PGCE) irradiated by an infrared laser pulse is investigated with one dimensional particle-in-cell simulation where field ionization and impact ionization are simultaneously considered for the first time. The numeric results show that the impact ionization dominates the PGCE process. Upon the interaction with the laser pulse, abundant free electrons are efficiently accelerated and subsequently triggered massive impact ionizations in the density ridges of the plasma grating for the higher local plasma energy density, which efficiently enhances the grating contrast. Besides the dynamic analysis of PGCE, we explore the parameter space of the incident infrared laser pulse to optimize the PGCE effect, which can provide useful guidance to experiments related to laser-plasma-grating interactions and may find applications in prolonging the duration of the plasma grating.
Study of Electron Ionization and Fragmentation of Non-hydrated and Hydrated Tetrahydrofuran Clusters
NASA Astrophysics Data System (ADS)
Neustetter, Michael; Mahmoodi-Darian, Masoomeh; Denifl, Stephan
2017-05-01
Mass spectroscopic investigations on tetrahydrofuran (THF, C4H8O), a common model molecule of the DNA-backbone, have been carried out. We irradiated isolated THF and (hydrated) THF clusters with low energy electrons (electron energy 70 eV) in order to study electron ionization and ionic fragmentation. For elucidation of fragmentation pathways, deuterated TDF (C4D8O) was investigated as well. One major observation is that the cluster environment shows overall a protective behavior on THF. However, also new fragmentation channels open in the cluster. In this context, we were able to solve a discrepancy in the literature about the fragment ion peak at mass 55 u in the electron ionization mass spectrum of THF. We ascribe this ion yield to the fragmentation of ionized THF clusters.
The EPR detection of foods preserved with the use of ionizing radiation
NASA Astrophysics Data System (ADS)
Stachowicz, W.; Burlińska, G.; Michalik, J.; Dziedzic-Gocławska, A.; Ostrowski, K.
1995-02-01
Solid constituents extracted from irradiated foods have been examined by the epr (esr) spectroscopy. It has been proved that some epr active species produced by radiation in foods are specific and stable enough to be used for the detection of irradiation treatment. The most promising results have been obtained with bones extracted from frozen raw meat (beef, pork, poultry and fish), with seeds of fruits (dates and figs), with dried mushrooms, gelatin and macaroni.
Development and characterization of acrylated palm oil nanoparticles using ionizing radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajau, Rida; Yunus, Wan Md Zin Wan; Dahlan, Khairul Zaman Mohd
2012-11-27
In this study, the utilization of radiation crosslinking methods which are known as intermolecular and intramolecular crosslinking for the formation of nanoparticles of Acrylated Palm Oil (APO) in the microemulsion system that also consists of Pluronic F-127 (PF-127) surfactant was demonstrated. This microemulsion system was subjected to the ionizing radiation i.e. gamma irradiation at different doses to form the crosslinked APO nanoparticles. The effects of radiation doses on the size of APO nanoparticles were investigated using the Dynamic Light Scattering (DLS) method and their images were viewed using the Transmission Electron Microcrospy (TEM). The Fourier Transform Infra-Red (FTIR) spectroscopy wasmore » used to characterize the chemical structure and the crosslinking conversion of carbon-carbon double bond (-C = C-) of the APO nanoparticles after irradiation. As a result, the size of the APO nanoparticle decreased when the irradiation dose increased. Reduce in size might be due to the effect of intramolecular crosslinking reaction of the APO nanoparticles during irradiation process. Meanwhile, the intramolecular -C C- crosslinking conversion percentage was increased at doses below 1kGy before decreasing at the higher dose that might due to the intermolecular crosslinking of the macromolecules. This study showed that radiation crosslinking methods of polymerization and crosslinking in the microemulsion were found to be promising for the synthesis of nanoparticles.« less
EFFECT OF IONIZING RADIATION OF THE HEMOLYSIS OF ERYTHROCYTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belousov, A.P.
1957-05-01
The saponin hemolysis method is a very effective way of determining the resistance of erythrocytes to radiolysis. The irradiation of rabbits with a dose of 700 r induces the formation of erythrocytes resistant to chemical hemolysis and the rapid disappearance from the blood stream of non-resistant ones. In the case of burns produced by boiling water, blood cell hemolysis is temporarily increased during a period of acute toxicosis. In rabbits irradiated with a dose of 1000 to 1300 r, intensive hemolysis of erythrocytes starts immediately and continues for up to 30 days. The appearance of resistant erythrocytes in the bloodmore » is preceded by a period of active hemopoiesis and the restoration of hemoglobin. Increased resistance of erythrocytes to saponin hemolysis has been observed in rabbits who suffered loss of blood and were subsequently irradiated. Irradiation of the blood in vitro in large doses, as contrasted to small doses, lowers the resistance of erythrocytes to chemical hemolysis. Changes in the resistance of erythrocytes to saponin hemolysis are conditioned by the direct action of radiation on the blood cells and the secondary effect of hemolysins. Thus, knowing the mechanism of the hemolysis of erythrocytes under the influence of ionizing radiation allows a better insight into the pathogenesis of radiation sickness and helps the development of protective means to prevent the onset of hemolysis. (auth)« less
Ionizing radiation and cell cycle progression in ataxia telangiectasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beamish, H.; Khanna, K.K.; Lavin, M.F.
1994-04-01
Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompaniedmore » by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.« less
NASA Technical Reports Server (NTRS)
Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.
2006-01-01
Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.
NASA Astrophysics Data System (ADS)
Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.
Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.
NASA Technical Reports Server (NTRS)
Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.
2007-01-01
Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.
Vitamin D protects keratinocytes from deleterious effects of ionizing radiation.
Langberg, M; Rotem, C; Fenig, E; Koren, R; Ravid, A
2009-01-01
Radiotherapy can induce severe skin responses that may limit the clinically acceptable radiation dose. The responses include erythema, dry and moist desquamation, erosions and dermal-epidermal blister formation. These effects reflect injury to, and reproductive failure of, epidermal cells and may also be due to dysregulation of the tissue remodelling process caused by excessive proteolytic activity. Calcitriol, the hormonally active vitamin D metabolite, protects keratinocytes from programmed cell death induced by various noxious stimuli. To examine whether calcitriol protects proliferating keratinocytes from the damage inflicted by ionizing radiation under conditions similar to those employed during radiotherapy. Autonomously proliferating HaCaT keratinocytes, used as a model for basal layer keratinocytes, were irradiated using a linear accelerator. Cell death was monitored by vital staining, executioner caspase activation, lactic dehydrogenase release and colony formation assay. Induction of matrix metalloproteinase-9 was assessed by gelatinase activity assay and mRNA determination. Levels of specific proteins were determined by immunoblotting. Treatment with calcitriol inhibited both caspase-dependent and -independent programmed cell death occurring within 48 h of irradiation and increased the colony formation capacity of irradiated cells. These effects may be attributable to inhibition of the c-Jun NH(2)-terminal kinase cascade and to upregulation of the truncated antiapoptotic isoform of p63. Treatment with the hormone also attenuated radiation-induced increase in matrix metalloproteinase-9 protein and mRNA levels. The results of this study suggest that active vitamin D derivatives may attenuate cell death and excessive proteolytic activity in the epidermis due to exposure to ionizing radiation in the course of radiotherapy.
Optimal control of multiphoton ionization dynamics of small alkali aggregates
NASA Astrophysics Data System (ADS)
Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger
2003-11-01
We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.
Kokhan, V S; Matveeva, M I; Bazyan, A S; Kudrin, V S; Mukhametov, A; Shtemberg, A S
2017-03-01
Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. In contrast to an orbital flight, leaving the Earth's magnetic field is fraught with the dangers of exposure to ionizing radiation and more specifically, the high-energy nuclei component of galactic cosmic rays. Microgravity, just another critical non-radiation factor, significantly affects the normal functioning of the CNS. Some morphological structures of the brain, such as the prefrontal cortex and the hippocampus, that are rich in monoaminergic and acetylcholinergic neurones, are the most sensitive to the effects of ionizing radiation and non-radiation spaceflight factors (SFF). In this work we have studied the combined effects of microgravity (in antiorthostatic suspension model, AS) and irradiation (γ-ray and protons in spread-out Bragg peak) on the behaviour, cognitive abilities, and metabolism of monoamines and acetylcholine in the key structures of the rat's brain. Irradiation (as independently as combined with AS) resulted in the decrease of thigmotaxis in rats. Learning problems, caused by the malfunctioning of the working memory but not the spatial memory, were observed in response to AS as well as to the SFF in combination. Analysis of monoamines metabolism showed that the serotoninergic system was the most affected by the SFF. Concentration of acetylcholine in the hippocampus significantly increased in the groups of irradiated rats, and in the groups which were exposed to the SFF in combination, compared to the rats exposed only to AS. Copyright © 2016 Elsevier B.V. All rights reserved.
Acceleration of skin wound healing by low-dose indirect ionizing radiation in male rats.
Jabbari, Nasrollah; Farjah, Gholam Hossein; Ghadimi, Behnam; Zanjani, Hajar; Heshmatian, Behnam
2017-08-01
A recent hypothesis has revealed that low-dose irradiation (LDI) with ionizing radiation might have a promoting effect on fracture healing. The aim of this study was to investigate the influence of direct (electron beam) and indirect (gamma-ray) low-dose ionizing irradiations on the wound healing process in male rats. In 72 male rats, a full-thickness wound was incised. The animals were randomly assigned to three groups, each with 24 rats. The first two groups were named IG-I and IG-II and respectively exposed to electron and gamma-radiations (75 cGy) immediately after the surgical procedure. The third group was considered as the control (CG) and remained untreated. Skin biopsies from the subgroups were collected on days 3, 7, 15, and 21 after the operation and evaluated using histological and biomechanical methods. Data were analyzed by one-way ANOVA, followed by Tukey's post hoc test using SPSS 20 software. Histological studies of tissues showed that the mean number of fibroblasts, macrophages, blood vessel sections, and neutrophils on the third and seventh days after the surgery in the gamma-treated group was higher than that in both other groups. In contrast, on day 21, the mean number of mentioned cells in the gamma-treated group was lower than in the other two groups. In addition, the mean maximum stress value was significantly greater in the gamma-treated group. Results of this study showed that gamma-ray irradiation is effective in the acceleration of wound healing. Copyright © 2017. Published by Elsevier Taiwan.
Ionizing radiation induces heritable disruption of epithelial cell interactions
NASA Technical Reports Server (NTRS)
Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)
2003-01-01
Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.
The use of ebselen for radioprotection in cultured cells and mice.
Tak, Jean Kyoung; Park, Jeen-Woo
2009-04-15
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in cell death. Therefore, compounds that control the level of ROS may confer radioprotective effects. Ebselen, a seleno-organic compound, has been shown to protect against cell injury caused by ROS. The objective of this study was to examine the effects of ebselen on radiation-dependent toxicity. We investigated the protective role of ebselen against ionizing radiation in U937 cells and mice. Upon exposure to 20 Gy of gamma-irradiation, there was a distinct difference between untreated cells and the cells pretreated with 5 microM ebselen for 2 h with respect to viability, cellular redox status, and oxidative damage to cells. When cells were exposed to 2 Gy of gamma-irradiation, there was a distinct difference between the untreated cells and the cells pretreated with ebselen with respect to apoptotic features and mitochondrial function. Ebselen administration for 14 days at a daily dosage of 10 mg/kg provided substantial protection against killing and oxidative damage to mice exposed to whole-body irradiation. These data indicate that ebselen may have great potential as a new class of in vivo, non-sulfur-containing radiation protector.
Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R
2012-03-01
Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.
Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors
NASA Astrophysics Data System (ADS)
Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.
2017-05-01
CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.
Headley, John V; Du, Jing-Long; Peru, Kerry M; McMartin, Dena W
2009-05-01
Electrospray ionization mass spectrometry was used to study the photodegradation of an oil sands naphthenic acid (NA) mixture, a commercial Fluka NA mixture and a candidate NA, 4-Methyl-cyclohexaneaceticic acid (4-MCHAA) irradiated with TiO(2) (P25) suspension under both fluorescent and natural sunlight. Under natural sunlight irradiation over the TiO(2) suspension, approximately 75% of compounds in the NA mixtures and 100% of 4-MCHAA were degraded in 8 h. No degradation was observed under dark conditions, regardless of the presence or absence of TiO(2). The structural formula of the NAs is given by C(n)H(2n + z)O(2), where n represents the carbon number and z specifies a homologous family with 0-6 rings (z = 0 to -12). The degree of degradation was noted to vary among the NA mixtures and the candidate NA compound with more efficient degradation achieved for molecules with -z values from 0 to 6. The difference in the efficacy of the photocatalysis was likely due to the structure and size of the compounds. In the case of -z = 6 to 12, steric constraints are a key factor what hinders photocatalysis.
Michelin, Severino; Gallegos, Cristina E; Dubner, Diana; Favier, Benoit; Carosella, Edgardo D
2009-12-01
Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of gamma-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of downregulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that gamma-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule.
Facile Generation and Storage of Polycyclic Aromatic Hydrocarbon Ions in Astrophysical Ices
NASA Technical Reports Server (NTRS)
Gudipati, Murthy S.; Allamandola, Louis J.
2003-01-01
In situ ultraviolet-visible absorption and emission studies of vacuum ultraviolet (VUV) irradiated water-rich, cosmic ice analogs containing polycyclic aromatic hydrocarbons (PAHs) are described. W V irradiation of 12 K water ices containing the PAHs naphthalene (H2O/C10H8 = 200) and 4-methylpyrene (H2O/C17H12 > 500) readily converts the PAHs into their cation form (PAH(+)). Under these conditions, PAH photoionization is the predominant reaction. These ions are trapped and stored in the ices at temperatures between 10 and 50 K, a temperature domain common to ices throughout interstellar clouds and the solar system. Unlike the approx.15% ionization typical after W V irradiation of PAHs isolated in rare-gas matrices, in water ice, PAH photoionization and storage proceed efficiently and almost quantitatively with a greater than 70% ionization yield. As the temperature is increased from 50 to 150 K, the PAH ion bands slowly diminish as the PAH ions ultimately react to form more complex organic species involving the water host. The chemical, spectroscopic, and physical properties of these ion-rich ices can be important in icy objects such as molecular clouds, comets, and planets. Several astrophysical applications are presented.
Han, Xiaodan; Xue, Xiaolei; Zhao, Yu; Li, Yuan; Liu, Weili; Zhang, Junling; Fan, Saijun
2017-01-01
Hematopoietic injury is a major cause of mortality in radiation accidents and a primary side effect in patients undergoing radiotherapy. Ionizing radiation (IR)-induced myelosuppression is largely attributed to the injury of hematopoietic stem and progenitor cells (HSPCs). Coriander is a culinary herb with multiple pharmacological effects and has been widely used in traditional medicine. In this study, flavonoids were identified as the main component of coriander extract with rutin being the leading compound (rutin-enriched coriander extract; RE-CE). We evaluated the radioprotective effect of RE-CE against IR-induced HSPCs injury. Results showed that RE-CE treatment markedly improved survival, ameliorated organ injuries and myelosuppression, elevated HSPCs frequency, and promoted differentiation and proliferation of HSPCs in irradiated mice. The protective role of RE-CE in hematopoietic injury is probably attributed to its anti-apoptotic and anti-DNA damage effect in irradiated HSPCs. Moreover, these changes were associated with reduced reactive oxygen species (ROS) and enhanced antioxidant enzymatic activities in irradiated HSPCs. Collectively, these findings demonstrate that RE-CE is able to ameliorate IR-induced hematopoietic injury partly by reducing IR-induced oxidative stress. PMID:28468251
Radiochromic film calibration for the RQT9 quality beam
NASA Astrophysics Data System (ADS)
Costa, K. C.; Gomez, A. M. L.; Alonso, T. C.; Mourao, A. P.
2017-11-01
When ionizing radiation interacts with matter it generates energy deposition. Radiation dosimetry is important for medical applications of ionizing radiation due to the increasing demand for diagnostic radiology and radiotherapy. Different dosimetry methods are used and each one has its advantages and disadvantages. The film is a dose measurement method that records the energy deposition by the darkening of its emulsion. Radiochromic films have a little visible light sensitivity and respond better to ionizing radiation exposure. The aim of this study is to obtain the resulting calibration curve by the irradiation of radiochromic film strips, making it possible to relate the darkening of the film with the absorbed dose, in order to measure doses in experiments with X-ray beam of 120 kV, in computed tomography (CT). Film strips of GAFCHROMIC XR-QA2 were exposed according to RQT9 reference radiation, which defines an X-ray beam generated from a voltage of 120 kV. Strips were irradiated in "Laboratório de Calibração de Dosímetros do Centro de Desenvolvimento da Tecnologia Nuclear" (LCD / CDTN) at a dose range of 5-30 mGy, corresponding to the range values commonly used in CT scans. Digital images of the irradiated films were analyzed by using the ImageJ software. The darkening responses on film strips according to the doses were observed and they allowed obtaining the corresponding numeric values to the darkening for each specific dose value. From the numerical values of darkening, a calibration curve was obtained, which correlates the darkening of the film strip with dose values in mGy. The calibration curve equation is a simplified method for obtaining absorbed dose values using digital images of radiochromic films irradiated. With the calibration curve, radiochromic films may be applied on dosimetry in experiments on CT scans using X-ray beam of 120 kV, in order to improve CT acquisition image processes.
NASA Astrophysics Data System (ADS)
Schmidtke, G.; Nikutowski, B.; Jacobi, C.; Brunner, R.; Erhardt, C.; Knecht, S.; Scherle, J.; Schlagenhauf, J.
2014-05-01
SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to > 8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.
Ionizing radiation induces O6-alkylguanine-DNA-alkyltransferase mRNA and activity in mouse tissues.
Wilson, R E; Hoey, B; Margison, G P
1993-04-01
The effect of exposure to whole-body gamma-irradiation or fast electrons on O6-alkylguanine-DNA-alkyltransferase (ATase) activity and mRNA abundance has been examined in mice. In response to gamma-radiation, hepatic ATase activity was significantly raised in BDF1 mice 24 h post-irradiation, reaching a maximum of 2- to 3-fold at 36 h and beginning to decrease by 48-60 h. A small but consistently higher level of induction was achieved when mice were exposed using a low dose rate (0.015 Gy/min) compared to a high dose rate (0.5 Gy/min). ATase activity was also induced approximately 2-fold 48 h post-irradiation in brain, kidney, lung and spleen, with a greater induction again observed in response to the lower dose rate. In response to fast electrons from a linear accelerator hepatic ATase activity was also induced 2- to 3-fold 48 h post-irradiation in BDF1, BALB/c, C57Bl and DBA2 strains. Induction of ATase activity in livers of BDF1 mice was observed 48 h after a total single dose of 5 Gy gamma-radiation (2-fold), increasing to a slightly higher level at 15 Gy, but no induction was observed at doses of 2 Gy and below. Although a maximum 2- to 3-fold induction of ATase activity was observed, mRNA levels were induced 3- to 4-fold by 48 h after a dose of 15 Gy. Furthermore, significant increases in mRNA levels were detected at low doses (1-2 Gy) at which there was no apparent increase in ATase activity. This suggests that ionizing radiation increases ATase levels by a process involving transcriptional upregulation but that strong post-transcriptional and/or translational controls operate to limit induction of enzyme activity to 2- to 3-fold. This is the first report of an in vivo induction of ATase by ionizing radiation in a species other than the rat.
Correlation of electron and proton irradiation-induced damage in InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.
1995-01-01
When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.
Photochemical behavior of the quadruply metal-metal bonded [Tc 2Cl 8] 2– anion in acetonitrile
Burton-Pye, Benjamin P.; Poineau, Frederic; Bertoia, Julie; ...
2016-09-23
Here, the photochemical behavior of [Tc 2Cl 8] 2– was investigated in acetonitrile. The speciation of Tc before and after irradiation at 254 nm was performed by UV-visible spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Upon irradiation at 254 nm, [Tc 2Cl 8] 2– was unstable, the scission of the Tc ≡ Tc unit occurred and the complex [TcCl 4(CH 3CN) 2] was identified. The disappearance rate of [M 2Cl 8] 2– (M = Tc, Re) under irradiation has been measured and was ~7.5 time faster for Tc than for Re.
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi
2006-01-01
Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.
Irradiation of fish fillets: Relation of vapor phase reactions to storage quality
Spinelli, J.; Dollar, A.M.; Wedemeyer, G.A.; Gallagher, E.C.
1969-01-01
Fish fillets irradiated under air, nitrogen, oxygen, or carbon dioxide atmospheres developed rancidlike flavors when they were stored at refrigerated temperatures. Packing and irradiating under vacuum or helium prevented development of off-flavors during storage.Significant quantities of nitrate and oxidizing substances were formed when oxygen, nitrogen, or air were present in the vapor or liquid phases contained in a Pyrex glass model system exposed to ionizing radiation supplied by a 60Co source. It was demonstrated that the delayed flavor changes that occur in stored fish fillets result from the reaction of vapor phase radiolysis products and the fish tissue substrates.
Phytosanitary irradiation of Liriomyza trifolii (Diptera: Agromyzidae)
USDA-ARS?s Scientific Manuscript database
Agromyzid leafminers are economic and quarantine pests of a variety of vegetables, flowers and ornamental foliage. Methyl bromide fumigation is often used as a phytosanitary treatment when quarantined agromyzids are found in shipped commodities; alternative treatments are sought. Ionizing radiation...
Design and performance of daily quality assurance system for carbon ion therapy at NIRS
NASA Astrophysics Data System (ADS)
Saotome, N.; Furukawa, T.; Hara, Y.; Mizushima, K.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.
2017-09-01
At National Institute of Radiological Sciences (NIRS), we have been commissioning a rotating-gantry system for carbon-ion radiotherapy. This rotating gantry can transport heavy ions at 430 MeV/u to an isocenter with irradiation angles of ±180° that can rotate around the patient so that the tumor can be irradiated from any direction. A three-dimensional pencil-beam scanning irradiation system equipped with the rotating gantry enables the optimal use of physical characteristics of carbon ions to provide accurate treatment. To ensure the treatment quality using such a complex system, the calibration of the primary dose monitor, output check, range check, dose rate check, machine safety check, and some mechanical tests should be performed efficiently. For this purpose, we have developed a measurement system dedicated for quality assurance (QA) of this gantry system: the Daily QA system. The system consists of an ionization chamber system and a scintillator system. The ionization chamber system is used for the calibration of the primary dose monitor, output check, and dose rate check, and the scintillator system is used for the range check, isocenter, and gantry angle. The performance of the Daily QA system was verified by a beam test. The stability of the output was within 0.5%, and the range was within 0.5 mm. The coincidence of the coordinates between the patient-positioning system and the irradiation system was verified using the Daily QA system. Our present findings verified that the new Daily QA system for a rotating gantry is capable of verifying the irradiation system with sufficient accuracy.
Cho, Jinhee; Bing, So Jin; Kim, Areum; Lee, Nam Ho; Byeon, Sang-Hee; Kim, Gi-Ok; Jee, Youngheun
2017-12-01
Beetroot [Beta vulgaris Linné (Chenopodiaceae)], a vegetable usually consumed as a food or a medicinal plant in Europe, has been reported to have antioxidant and anti-inflammatory properties. Since the lymphohematopoietic system is the most sensitive tissue to ionizing radiation, protecting it from radiation damage is one of the best ways to decrease detrimental effects from radiation exposure. In this study, we evaluated the radio-protective effects of beetroot in hematopoietic stem cells (HSCs) and progenitor cells. Beetroot extract was administered at a dose of 400 mg/mouse per os (p.o.) three times into C57BL/6 mice and, at day 10 after γ-ray irradiation, diverse molecular presentations were measured and compared against non-irradiated and irradiated mice with PBS treatments. Survival of beetroot-fed and unfed irradiated animal was also compared. Beetroot not only stimulated cell proliferation, but also minimized DNA damage of splenocytes. Beetroot also repopulated S-phase cells and increased Ki-67 or c-Kit positive cells in bone marrow. Moreover, beetroot-treated mice showed notable boosting of differentiation of HSCs into burst-forming units-erythroid along with increased production of IL-3. Also, beetroot-treated mice displayed enhancement in the level of hematocrit and hemoglobin as well as the number of red blood cell in peripheral blood. Beetroot diet improved survival rate of lethally exposed mice with a dose reduction factor (DRF) of 1.1. These results suggest that beetroot has the potency to preserve bone marrow integrity and stimulate the differentiation of HSCs against ionizing radiation.
Englert, Dominic; Zubrod, Jochen P; Neubauer, Christoph; Schulz, Ralf; Bundschuh, Mirco
2018-05-01
Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder Gammarus fossarum was fed (over 7 d; n = 30) with imidacloprid-contaminated black alder (Alnus glutinosa) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, F.L.; Rice, D.W. Jr., Moore, D.H.
Traditional bioassays are unsuitable for assessing sublethal effects from ocean disposal of low-level radioactive waste because mortality and phenotypic responses are not anticipated. We compared the usefulness of chromosomal aberration and sister chromatid exchange (SCE) induction as measures of low-level radiation effects in a sediment-dwelling marine worm, Neanthes arenaceodentata. The SCEs, in contrast to chromosomal aberrations, do not alter the overall chromosome morphology and in mammalian cells appear to be a more sensitive indicator of DNA alterations caused by environmental mutagens. Newly hatched larvae were exposed to two radiation-exposure regimes of either x rays at a high dose rate ofmore » 0.7 Gy (70 rad)/min for as long as 5.5 min or to /sup 60/Co gamma rays at a low dose rate of from 4.8 x 10/sup -5/ to 1.2 x 10/sup -1/ Gy (0.0048 to 12 rad)/h for 24 h. After irradiation, the larvae were exposed to 3 x 10/sup -5/M bromodeoxyuridine (BrdUrd) for 28 h (x-ray-irradiated larvae) or for 54 h (/sup 60/Co-irradiated larvae). Larval cells were examined for the proportion of cells in first, second, and third or greater division. Frequencies of chromosomal aberrations and SCEs were determined in first and second division cells, respectively. Results from x-ray irradiation indicated that dose-related increases occur in chromosome and chromatid deletions, but a dose of equal or greater 2 Gy (equal to or greater than 200 rad) was required to observe a significant increase. Worm larvae receiving /sup 60/Co irradiation showed elevated SCE frequencies with a significant increase of 0.6 Gy (60 rad). We suggest that both SCEs and chromosomal aberrations may be useful for measuring effects on genetic material induced by radiation. 56 references, 7 figures, 9 tables.« less
NASA Astrophysics Data System (ADS)
Dehghany, Mohammad; Zhang, Haohui; Naghdabadi, Reza; Hu, Yuhang
2018-07-01
Gels are composed of crosslinked polymer network and solvent molecules. When the main chain network is incorporated with functional groups that can undergo photo-chemical reaction upon light irradiation, the gel becomes light-responsive. Under irradiation, the photosensitive groups may undergo photo-ionization process and generate charges that are attached to the main chain or diffuse into the solvent. The newly generated ions disturb the osmotic balance of the gel medium. As a result, water molecules and mobile ions are driven into or out of the network to compensate the osmotic imbalance, which eventually leads to macroscopic swelling or shrinking of the gel. In this work, we develop a rigorous nonequilibrium thermodynamic framework to study the coupled photo-chemo-electro-mechanical responses of the photo-ionizable gels. We first discuss the mathematical descriptions of the light propagation and photo-induced chemical reactions inside the gel, as well as the equations governing the kinetics of the photo-chemical reactions. We then explore the consequences of the fundamental laws of thermodynamics in deriving the governing equations of the photo-ionizable gels. The continuous light irradiation drives the gel system towards a new thermodynamic stationary state that is away from equilibrium and is accompanied by energy dissipation. Next, we focus on the photo stationary state of the gel and explore the consequences of the continuous irradiation on the mechanical response of the gel in both optically thin and optically thick configurations. In the optically thin cases, we quantitatively compare the theoretical prediction with experimental data available in the literature. In one example, we show that the model can quantitatively capture the photo-tunable volume-phase transition of the Poly(N-isopropylacrylamide) (PNIPAM) gel grafted with photo-responsive triphenylmethane leucocyanide groups. In another example, we show that the model can quantitatively study the effect of salt concentration and pH value of the external solution on the photo-induced swelling of the polyacrylamide gels incorporated with triphenylmethane leucohydroxide groups. Finally, for the optically thick gels, we develop a finite element code to study their inhomogeneous deformations due to the light attenuation. This work will be of great importance for precise control and optimal design of photo-ionizable gels in future applications.
Silina, Yuliya E; Volmer, Dietrich A
2013-12-07
Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.
Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation
NASA Astrophysics Data System (ADS)
Hallahan, Dennis E.; Virudachalam, Subbulakshmi
1997-06-01
Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration into the irradiated lung.
NASA Astrophysics Data System (ADS)
Schreiber, G. A.; Hoffmann, A.; Helle, N.; Bögl, K. W.
1994-06-01
In some countries, clearance has been given for treating certain types of shellfish by ionizing radiation in order to increase the shelf-life and to reduce health hazards which might be caused by contaminating microorganisms. In the present study, thermoluminescence (TL) analysis was used to examine the irradiation status of shellfish products purchased from local suppliers. For analysis minerals were isolated from the guts of the animals. Although on none of the examined products an irradiation treatment prior to analysis could be shown, the results obtained on non-irradiated and irradiated products have revealed that irradiation within the commercially used dose range can clearly be detected. Already first glow TL intensities of minerald indicated irradiation treatments. Normalized TL signals of non-irradiated and irradiated samples were clearly separated. By calculation of differences of TL intensities and TL signals between non-irradiated and irradiated samples in dependency of integration temperature an optimized integration area for glow curves was determined. The result of this study agree well with results obtained by two large-scale intercomparisons between food control laboratories to detect irradiation treatment of spices and herbal products as well as of fruit and vegetables by TL analysis of contaminating minerals.
Measures of fish behavior as indicators of sublethal toxicosis during standard toxicity tests
Little, E.E.; DeLonay, A.J.
1996-01-01
Behavioral functions essential for growth and survival can be dramatically altered by sublethal exposure to toxicants. Measures of these behavioral responses are effective in detecting adverse effects of sublethal contaminant exposure. Behavioral responses of fishes can be qualitatively and quantitatively evaluated during routine toxicity tests. At selected intervals of exposure, qualitative evaluations are accomplished through direct observations, whereas video recordings are used for quantitative evaluations. Standardized procedures for behavioral evaluation are readily applicable to different fish species and provide rapid, sensitive, and ecologically relevant assessments of sublethal exposure. The methods are readily applied to standardized test protocols.
Identification of irradiated refrigerated poultry with the DNA comet assay
NASA Astrophysics Data System (ADS)
Villavicencio, A. L. C. H.; Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.
2004-09-01
Food irradiation could make a significant contribution to the reduction of food-borne diseases caused by harmful bacteria such as Salmonella and parasites. In fact these organisms cause an increasing number of diseases and eventually deaths all over the world, also in industrialized countries. Radiation processing has the advantage that in addition to eliminating pathogens, thereby enhancing food safety, it also extends shelf life through destruction of spoilage organisms. The DNA molecule because of its big size is an easy target for ionizing radiation, therefore, changes in DNA offer potential to be used as a detection method for the irradiation treatment. In our study, poultry has been irradiated and changes in DNA analyzed by the Comet Assay. Samples were packed in plastic bags and irradiated. Doses were 0, 1.5, 3.0 and 4.5kGy. Immediately after irradiation the samples were returned to the refrigerator (4°C). Samples were analyzed 1 and 10 days after irradiation. This method proved to be an inexpensive and rapid screening technique for qualitative detection of irradiation treatment.
Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR
NASA Astrophysics Data System (ADS)
Lim, Sangyong; Jung, Jinwoo; Kim, Minjeong; Ryu, Sangryeol; Kim, Dongho
2008-09-01
Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold ( CT) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared CT values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.
Phytosanitary irradiation - Development and application
NASA Astrophysics Data System (ADS)
Hallman, Guy J.; Loaharanu, Paisan
2016-12-01
Phytosanitary irradiation, the use of ionizing radiation to disinfest traded agricultural commodities of regulated pests, is a growing use of food irradiation that has great continued potential for increase in commercial application. In 2015 approximately 25,000 t of fresh fruits and vegetables were irradiated globally for phytosanitary purposes. Phytosanitary irradiation has resulted in a paradigm shift in phytosanitation in that the final burden of proof of efficacy of the treatment has shifted from no live pests upon inspection at a port of entry (as for all previous phytosanitary treatments) to total dependence on certification that the treatment for target pests is based on adequate science and is commercially conducted and protected from post-treatment infestation. In this regard phytosanitary irradiation is managed more like a hazard analysis and critical control point (HACCP) approach more consistent with food safety than phytosanitation. Thus, phytosanitary irradiation offers a more complete and rigorous methodology for safeguarding than other phytosanitary measures. The role of different organizations in achieving commercial application of phytosanitary irradiation is discussed as well as future issues and applications, including new generic doses.
GONAD DOSES IN THE X IRRADIATION OF SOME SO-CALLED MILD ILLNESSES (in German)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glauner, R.; Messner, D.; Thelen, P.O.
1958-10-01
Measurements of gonad doses were carried out on men and women using ionization chambers. In women the measurements were made in the vagina. Gonad doses were measured in patients who received x-ray therapy for puerperal mastitis, sweat gland abscesses in the axilla, and furunculi of the face. The conditions of irradiation, as well as the single and total doses, are briefiy discussed. Various means of reducing gonad dose are discussed in detail. (auth)
An investigation of the energy balance of solar active regions using the ACRIM irradiance data
NASA Technical Reports Server (NTRS)
Petro, L. D.
1986-01-01
The detection of a significant correlation between the solar irradiance, corrected for flux deficit due to sunspots, and both the 205 nm flux and a photometric facular index were examined. A detailed analysis supports facular emission as the more likely source of correlation with the corrected radiance, rather then the error in sunspot correction. A computer program which simulates two dimensional convection in a compressible, stratified medium was investigated. Subroutines to calculate ionization and other thermodynamic variables were also completed.
C60 and U ion irradiation of Gd 2Ti xZr 2-xO 7 pyrochlore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiaming; Toulemonde, Marcel; Lang, Maik
2015-08-01
Gd 2Ti xZr 2-xO 7 (x = 0 to 2) pyrochlore was irradiated by 30 MeV C 60 clusters, which provide an extremely high ionizing energy density. Here, high-resolution transmission electron microscopy revealed a complex ion-track structure in Gd 2Ti 2O 7 and Gd 2TiZrO 7, consisting of an amorphous core and a shell of a disordered, defect-fluorite structure.
Irradiation in the production, processing and handling of food. Final rule.
2012-11-30
The Food and Drug Administration (FDA) is amending the food additive regulations to increase the maximum dose of ionizing radiation permitted in the treatment of poultry products, to include specific language intended to clarify the poultry products covered by the regulations, and to remove the limitation that any packaging used during irradiation of poultry shall not exclude oxygen. This action is in response to a petition filed by the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA/FSIS).
CROSS-RESISTANCE OF ESCHERICHIA COLI B TO PENICILLIN AND IONIZING RADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutas-Mannhardt, V.
The radiosensitivity of cultures resistant to 1500 IU/ml, 2000 IU/ml, 2500 IU/ml of penicillin, produced from strain E. coli B was examined. Cultures in the log-phase were streaked in monocellular layers on the agar surface and exposed to x irradiation. As a result of penicillin treatment cell-filaments consisting of several segments were formed. Measurement of viability of x- irradiated cultures proved that penicillin resistant cultures are considerably more radioresistant than the parent strain B, non-treated with penicillin. (auth)
Supercrystallization of KCl from solution irradiated by soft X-rays
NASA Astrophysics Data System (ADS)
Janavičius, A. J.; Rinkūnas, R.; Purlys, R.
2016-10-01
The X-rays influence on KCl crystallization in a saturated water solution has been investigated for the aim of comparing it with previously considered NaCl crystallization. The rate of crystallization has been measured in the drying drop in the solution activated by the irradiation. We have measured the influence of the irradiation time of the solution on the rates of KCl crystallization as well as the beginning of the crystallization processes on drying drops. For a longer irradiation time of the solution early crystallization in the drops occurs. A saturated water solution of KCl was irradiated with the diffractometer DRON-3M (Russian device) and this had a great influence on the two-step processes of crystallization. The ionization of the solution by soft X-rays can produce ions, metastable radicals in water, excited crystals' seeds and vacancies in growing crystals by Auger's effect. The X-rays generate a very fast crystallization in the drying drop.
[Research on cells ablation characters by laser plasma].
Han, Jing-hua; Zhang, Xin-gang; Cai, Xiao-tang; Duan, Tao; Feng, Guo-ying; Yang, Li-ming; Zhang, Ya-jun; Wang, Shao-peng; Li, Shi-wen
2012-08-01
The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction.
Fan, Xuetong; Sokorai, Kimberly J B
2007-08-01
The effects of irradiation (0, 1.8, and 4.5 kGy) on the quality of frozen corn and peas were investigated during a 12month period of postirradiation storage at -18 degrees C. Irradiation of frozen corn and peas caused a reduction in ascorbic acid content of both vegetables and a loss of texture in peas but had no significant effects on instrumental color parameters (L*, a*, and b*), carotenoid and chlorophyll content, or antioxidant capacity of corn and peas. Irradiation reduced microbial loads of frozen peas and increased display life at 23 degrees C of thawed peas by preserving the green color, apparently because of slower increases in the population of acid-producing microorganisms in the irradiated samples. Overall, irradiation significantly reduced the microbial load and increased the display life of peas and had minimal detrimental effects on the quality of frozen corn and peas.
Induction of metallothionein synthesis in transplanted murine tumors by X irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyoshi, Shibuya; Masahiko Satoh; Yuzo, Watanabe
1995-07-01
Although recent studies have shown that radiation can induce metallothionein (MT) synthesis in normal tissues, the induction of tumor MT synthesis by irradiation has not been reported. We examined the accumulation of MT in the Meth-A tumor (mouse fibrosarcoma cells) transplanted into mice exposed to whole-body X irradiation. In the present study, the MT content in the tumor cells was increased by X irradiation in a dose-dependent manner. The MT level induced in the tumor cells by X irradiation was elevated not only after a single exposure but also after repeated exposures. Several studies have shown that MT is onemore » of the important cellular factors in resistance to various anti-cancer drugs and ionizing radiation. Thus our results suggest that the radiation-induced MT in the tumor cells may have to be taken into consideration when designing protocols for radio-and chemotherapy. 29 refs., 3 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulman, M.
1975-03-01
A report is given of the activities of the USA in the field of food irradiation. The existing facilities and the dosimetric procedures are described including several new dosimeter systems. Chemical changes due to irradiation were studied in a lot of foodstuffs such as soybeans, shrimps, meat, and chicken- based pet food products as well as in model systems. Effects of irradiation on the content of Clostridium botulinum in foodstuffs were investigated. Studies in radicidation, radurization and the combination of ionizing radiation with UV, heat, or microwave treatment were performed. Radiopreservation was studied in a lot of foodstuffs. Extensive feedingmore » studies were performed in rats, mice and dogs to assess the wholesomeness of irradiated beef, strawberries and papayas. Furthermore, a short review is given of the present legislation and clearances and the economics. (MG)« less
Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.
Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi
2012-03-28
Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.
Measurements of ionization states in warm dense aluminum with betatron radiation
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.-C.; Tsui, Y.; Ng, A.; Fedosejevs, R.
2017-05-01
Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ˜20 -25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al4 + and Al5 + ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyatt model and an alternative modified Ecker-Kröll model. The observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.
Carlo, Michael A; Riddell, Eric A; Levy, Ofir; Sears, Michael W
2018-01-01
The capacity to tolerate climate change often varies across ontogeny in organisms with complex life cycles. Recently developed species distribution models incorporate traits across life stages; however, these life-cycle models primarily evaluate effects of lethal change. Here, we examine impacts of recurrent sublethal warming on development and survival in ecological projections of climate change. We reared lizard embryos in the laboratory under temperature cycles that simulated contemporary conditions and warming scenarios. We also artificially warmed natural nests to mimic laboratory treatments. In both cases, recurrent sublethal warming decreased embryonic survival and hatchling sizes. Incorporating survivorship results into a mechanistic species distribution model reduced annual survival by up to 24% compared to models that did not incorporate sublethal warming. Contrary to models without sublethal effects, our model suggests that modest increases in developmental temperatures influence species ranges due to effects on survivorship. © 2017 John Wiley & Sons Ltd/CNRS.
Chronic sublethal stress causes bee colony failure.
Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A
2013-12-01
Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Chronic sublethal stress causes bee colony failure
Bryden, John; Gill, Richard J; Mitton, Robert A A; Raine, Nigel E; Jansen, Vincent A A; Hodgson, David
2013-01-01
Current bee population declines and colony failures are well documented yet poorly understood and no single factor has been identified as a leading cause. The evidence is equivocal and puzzling: for instance, many pathogens and parasites can be found in both failing and surviving colonies and field pesticide exposure is typically sublethal. Here, we investigate how these results can be due to sublethal stress impairing colony function. We mathematically modelled stress on individual bees which impairs colony function and found how positive density dependence can cause multiple dynamic outcomes: some colonies fail while others thrive. We then exposed bumblebee colonies to sublethal levels of a neonicotinoid pesticide. The dynamics of colony failure, which we observed, were most accurately described by our model. We argue that our model can explain the enigmatic aspects of bee colony failures, highlighting an important role for sublethal stress in colony declines. PMID:24112478
Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert
2015-04-01
The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.
Miao, Weimin; XuFeng, Richard; Park, Moo-Rim; Gu, Haihui; Hu, Linping; Kang, Jin Wook; Ma, Shihui; Liang, Paulina H; Li, Yanxin; Cheng, Haizi; Yu, Hui; Epperly, Michael; Greenberger, Joel; Cheng, Tao
2013-01-01
High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo. PMID:23295952
Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields
NASA Astrophysics Data System (ADS)
Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George
2007-04-01
A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.
Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.
Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George
2007-04-16
A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nariyama, Nobuteru
2012-01-15
Current saturation characteristics of free-air ionization chambers with electrode gaps of 4.2 and 8.4 mm were investigated using pulsed photon beam obtained by periodically interrupting synchrotron radiation beams with a chopper. Pulsed photon beams of 10 and 15 keV with pulse duration of 2.5 {mu}s and a frequency of 230 Hz were produced by chopping the beam. The measured recombination rate was found to be proportional to the intensity and inversely proportional to the applied voltage.
The study of changes in structural properties of Cu films under ionizing radiation
NASA Astrophysics Data System (ADS)
Kaliekperov, M.; Kozlovskiy, A.; Shlimas, D.; Kenzhina, I.; Ivanov, I.; Kozin, S.; Aleksandrenko, V.; Kurakhmedov, A.; Sambaev, E.; Seitbaev, A.; Zdorovets, M.; Kadyrzhanov, K.
2018-05-01
In this paper, we present the results of studies of the irradiation effect with low-energy He+2 ions with an energy of 30 keV (15 keV per charge) on the structural properties of Cu films. Using SEM, EDS, and x-ray diffraction analysis, the surface morphology and structural properties of samples before and after irradiation were studied. As a result of irradiation of initial samples with He+2 ions with a dose of 1·1016 ion cm‑2, a change in the Cu surface morphology of films is observed, and the formation of nanoscale inclusions of hexagonal shape is observed. An increase in the irradiation dose to 1·1017 ion cm‑2 and higher leads to the formation of cracks and amorphous oxide inclusions on the sample surface. It is established that an increase in the irradiation dose leads to a decrease in the degree of crystallinity and a change in the basic crystallographic characteristics. The effect of irradiation on the strength characteristics was estimated.
Local structure and defects in ion irradiated KTaO3
NASA Astrophysics Data System (ADS)
Zhang, F. X.; Xi, J.; Zhang, Y.; Tong, Yang; Xue, H.; Huang, R.; Trautmann, C.; Weber, W. J.
2018-04-01
The modification of the local structure in cubic perovskite KTaO3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta-O bonds in the TaO6 octahedra splits, which is attributed to the formation of TaK antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFT calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled TaK-V O defects under subsequent irradiation with 1.1 GeV Au ions.
Somolinos, M; García, D; Condón, S; Mañas, P; Pagán, R
2008-07-01
The aim was to evaluate the biosynthetic requirements for the repair of sublethal membrane damages in Saccharomyces cerevisiae cells after exposure to pulsed electric fields (PEF). The partial loss of the integrity and functionality of the cytoplasmic membrane was assessed by adding sodium chloride to the recovery medium. More than 2 log(10) cycles of survivors were sublethally injured after PEF. Repair of sublethal membrane damages occurred when survivors to PEF were incubated in Sabouraud Broth for 4 h at room temperature. The addition of inhibitors, such as chloramphenicol, rifampicin, 5-fluorocytosine, nalidixic acid, cycloheximide, cerulenin, miconazol and sodium azide to the liquid repair medium showed that the repair of PEF-injured cells required energy and protein synthesis. The extent of the sublethal damages was greater in PEF-treated cells at pH 4.0 than at pH 7.0. This work confirms that membrane damage is an important event in the PEF-inactivation of yeast. The mechanism of yeast inactivation by PEF seems to differ from that of bacteria, as the repair of sublethal damages requires protein synthesis. Knowledge about the damages inflicted by PEF leads to a better description of the mechanism of yeast inactivation.
Caspase 3 promotes genetic instability and carcinogenesis
Liu, Xinjian; He, Yujun; Li, Fang; Huang, Qian; Kato, Takamitsu A.; Hall, Russell P; Li, Chuan-Yuan
2015-01-01
Summary Apoptosis is typically considered an anti-oncogenic process since caspase activation can promote the elimination of genetically unstable or damaged cells. We report that a central effector of apoptosis, caspase 3, facilitates, rather than suppresses, chemical and radiation-induced genetic instability and carcinogenesis. We found that a significant fraction of mammalian cells treated with ionizing radiation can survive, despite caspase 3 activation. Moreover, this sublethal activation of caspase 3 promoted persistent DNA damage and oncogenic transformation. In addition, chemically-induced skin carcinogenesis was significantly reduced in mice genetically deficient in caspase 3. Furthermore, attenuation of Endo G activity significantly reduced radiation-induced DNA damage and oncogenic transformation, identifying Endo G as a downstream effector of caspase 3 in this pathway. Our findings suggest that rather than acting as a broad inhibitor of carcinogenesis, caspase 3 activation may contribute to genome instability and play a pivotal role in tumor formation following damage. PMID:25866249
Astrophysical and biological constraints on radiopanspermia.
Secker, J; Wesson, P S; Lepock, J R
1996-08-01
We have carried out a series of calculations involving bacteria and viruses embedded in dust grains, which are ejected from our solar system by radiation pressure and travel through space to other star systems. Under many conditions this type of panspermia is impractical, primarily because the ultraviolet (UV) radiation of the present Sun inactivates the micro-organisms. However, if the organisms are shielded by an absorbing material like carbon and if ejection takes place in the red-giant phase of a one solar mass star like our Sun, there is a significant probability that the micro-organisms can reach another star system alive (i.e. with only sub-lethal damage from UV and ionizing radiation). In addition to panspermia with viable micro-organisms, it is possible to seed the Galaxy with inactivated ones whose DNA and RNA fragments may provide the initial information necessary to start biological evolution in favourable environments.
Ducasse, Eric; Cosset, Jean-Marc; Eschwege, François; Creusy, Colette; Chevalier, Jacques; Puppinck, Paul; Lartigau, Eric
2004-01-01
In recent years there has been intensive research on the use of ionizing radiation for inhibition of intimal hyperplasia (IH). Results have clearly established that beta ionizing radiation delivered from an endoluminal source after angioplasty inhibits intimal restenosis. This effect has been confirmed by recent multicenter clinical trials in patients undergoing coronary dilatation. The purpose of this study was to determine if gamma radiation therapy delivered superficially from an external source also reduced smooth muscle cell proliferation in two animals models-the first involving experimentally induced restenosis and the second involving anastomosis between a prosthesis and artery. Ultimately we hope to develop a therapeutic application for patients undergoing peripheral anastomoses, especially in the lower extremities. Two different animal models were used in this two-stage study. The first-stage rabbit model (model 1) involved balloon injury of the aorta to validate the dose effect of external beam irradiation. The second-stage porcine model (model 2) involved aortic bypass followed by external beam irradiation of the distal anastomosis site. In model 1 a total of 56 rabbits were studied. They were divided into five groups including one control group in which external radiation was not applied after balloon injury and four test groups in which external radiation was applied in a single fraction on day 0 at four different doses: 10 grays, 15 grays, 20 grays, and 25 grays. In model 2, a total of 24 pigs underwent aortic bypass with a 6-mm PTFE graft followed by irradiation of the distal end-to-side anastomosis at a dose of 20 grays on day 0. In both models specimens were harvested after 6 weeks and studied histologically after staining with HES and orcein, histomorphometrically by measuring intimal hyperplasia, and immunohistochemically using actin and factor VIII/von Willebrand factor (F VIII/vWF). The zones of study on the anastomosis were separated into base of the artery to the tip and heel of the anastomosis and the edge of the arteriotomy. Measurements were compared using the Mann Whitney test. In the first-stage model designed to study IH in rabbits, mean intimal and medial thickness values and the intima-to-media ratio showed no difference between the control group and the groups irradiated at doses of 10 grays and 15 grays (p = 0.111, p = 0.405, and p = 0.14); (p = 0.301, p = 0.206, and p = 0.199). Conversely, there was a significant difference between the control group and the groups irradiated at 20 grays and 25 grays (p < 0.0001, p = 0.107 and p = 0.008; p = 0.008, p = 0.155, and p = 0.008). Histological examination demonstrated extensive changes in the wall with high-grade fibrosis after application of ionizing radiation. In the second-stage swine model, irradiation significantly inhibited development of IH at the level of anastomosis both at the base of the artery (p < 0.01) (tip 0.06 vs. 0.27 mm and heel 0.04 vs. 0.36) and at the level of the arteriotomy at the suture site (p < 0.001) (0.13 vs. 0.86 mm). Immunochemical analysis of the thickened zones showed a positive reaction of endothelial cells to smooth muscle actin and F VII/vWF. Like irradiation applied using an endoluminal source, superficial gamma ionizing radiation from an external source inhibits IH. Analysis of the dose effect showed that the overall dose must be between 15 and 20 grays. External radiation also reduces overall IH at the anastomosis between a prosthesis and artery. Although these experimental data are promising, further study will probably be necessary before attempting to undertake clinical trials using external beam radiation therapy for patients undergoing peripheral anastomoses.
Halimi, Mohammad; Parsian, Hadi; Asghari, S Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Yeganeh, Farshid; Zabihi, Ebrahim
2014-06-01
This study investigated to what extent the serum microRNA 21 (miR-21) level alters in response to ionizing radiation (IR). Initially, we evaluated the appropriateness of our RNA extraction efficiency and microRNA assay in serum, and then investigated the serum miR-21 level in 4 patients with breast cancer in 4 stages: pre- and postoperation, at the beginning radiotherapy, and after 25 sessions of radiotherapy with a total of 50 Gy irradiation, as well as in 20 healthy volunteers. The initial analysis showed the appropriateness of our RNA extraction efficiency and microRNA assay in serum for identifying people exposed to IR. We then analyzed the serum miR-21 level in another group of 40 patients with breast cancer before and after radiotherapy. During our large-scale analysis, the miR-21 level before radiotherapy was comparable with healthy volunteers (P = 0.10) and increased significantly after radiotherapy (P < 0.001)-an indication that this could discriminate irradiated patients from nonirradiated ones with high specificity (75%) and sensitivity (80%). According to this study, serum miR-21 has the potential to be used as a biomarker for the identification of people exposed to ionizing radiation. Copyright © 2014 Mosby, Inc. All rights reserved.
H+, O2+, O3+ and high resolution PIXE spectra of Yb2O3
NASA Astrophysics Data System (ADS)
Chaves, P. C.; Reis, M. A.
2017-11-01
The number of X-ray spectrometry systems having energy resolution of the order of 10 eV, or less, has increasing recently, included already energy dispersive systems (EDS). Access to previous unseen spectra details and enhanced information including speciation, becomes more common and available. Analysis of high resolution EDS PIXE spectra is, nevertheless a complex task due to the need to carefully account for contributions from minor and satellite transitions. In this work, a pure Yb2O3 sample was irradiated at the HRHE-PIXE setup of C2TN, and simultaneous CdTe and X-ray Microcalorimeter Spectrometer (XMS) spectra were collected. The L-shell spectrum of Yb emitted during irradiations using H+ , O2+ and O3+ ions in the energy range from 1.0 to 6.5 MeV was studied. Measured L X-ray spectra were analysed taking into account the effects of the multiple ionization in the L and M shells. All spectra were analysed using the DT2 code, which allows to include in the fitting model diagram lines as well as multi-ionization satellites and any other contributions. In this communication we present the results and discuss details and problems related to the transition energies, intensity, line width data, and multiple ionization satellites.
Nishimoto, Takuto; Furuta, Masakazu; Kataoka, Michihiko; Kishida, Masao
2015-03-01
Ionizing radiation indirectly causes oxidative stress in cells via reactive oxygen species (ROS), such as hydroxyl radicals (OH(-)) generated by the radiolysis of water. We investigated how the catalase function was affected by ionizing radiation and analyzed the phenotype of mutants with a disrupted catalase gene in Saccharomyces cerevisiae exposed to radiation. The wild-type yeast strain and isogenic mutants with disrupted catalase genes were exposed to various doses of (60)Co gamma-rays. There was no difference between the wild-type strain and the cta1 disruption mutant following exposure to gamma-ray irradiation. In contrast, there was a significant decrease in the ctt1 disruption mutant, suggesting that this strain exhibited decreased survival on gamma-ray exposure compared with other strains. In all three strains, stationary phase cells were more tolerant to the exposure of gamma-rays than exponential phase cells, whereas the catalase activity in the wild-type strain and cta1 disruption mutant was higher in the stationary phase than in the exponential phase. These data suggest a correlation between catalase activity and survival following gamma-ray exposure. However, this correlation was not clear in the ctt1 disruption mutant, suggesting that other factors are involved in the tolerance to ROS induced by irradiation.
EXPERIMENTS ON THE PRESERVATION OF FRESH FRUIT BY IRRADIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Zeeuw, D.
1961-01-01
Soft fruits, such as strawberries, raspberries and plums, were irradiated by means of an electron accelerator. The fruits were placed in small plastic boxes and irradiated on both sides with 1 Mev-electrons. The irradiation dosages varied from 0 to 700 kilorads. The storage temperature was usually 15 deg C. In general the consistency of soft fruits, irradiated with dosages of 300 to 700 kilorads, was superior to that of the non-irradiated fruits. It seems that a medium dose treatment affects both the shelf-life time and the ripening of fruit. In order to investigate the effect of ionizing radiation on themore » ripening process of fruit, experiments were carried out with tomatoes in different stages of maturity. In these investigations tomatoes were used because they do not get mouldy during a long storage period. Consequently, there is no interference of the metabolism of the micro-organisms with that of the tomato. In measuring the CO/sub 2/ production, it appeared that with mature green tomatoes this was considerably increased immediately after irradiation. However, there was no difference between the CO/sub 2/ production of irradiated and non-irradiated tomatoes of the turning mature stage. (auth)« less
NASA Astrophysics Data System (ADS)
Zirour, H.; Izerrouken, M.; Sari, A.
2016-06-01
The present investigation reports the effect of 90 MeV Xe ion irradiation on neutron irradiated Al2O3 single crystals. Three irradiation experiments were performed, with neutrons only, 90 MeV Xe ions only and with neutrons followed by 90 MeV Xe ions. Neutron and 90 MeV Xe ion irradiations were performed at NUR research reactor, Algiers, Algeria and at GANIL accelerator, Caen, France respectively. After irradiation, the radiation damage was investigated by Raman spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), optical absorption measurements, and X-ray diffraction (XRD) techniques. Raman technique revealed that the concentration of the defects formed in Al2O3 samples subsequently irradiated with neutrons and 90 MeV Xe ions is lower than that formed in Al2O3 samples which were irradiated only with neutrons. This reveals the occurrence of ionization-induced recovery of the neutron damage. Furthermore, as revealed by XRD analysis, a new peak is appeared at about 2θ = 38.03° after irradiation at high fluence (>3 × 1013 Xe/cm2). It can be assigned to the formation of new lattice plane.
NASA Astrophysics Data System (ADS)
Riganakos, K. A.; Koller, W. D.; Ehlermann, D. A. E.; Bauer, B.; Kontominas, M. G.
1999-05-01
Volatile compounds produced in flexible food packaging materials (LDPE, EVAc, PET/PE/EVOH/PE) during electron beam irradiation were isolated by purge and trap technique and identified by combined gas chromatography-mass spectrometry (GC/MS), after thermal desorption and concentration. For comparison purposes non-irradiated films were also studied. Film samples were irradiated at low (5 kGy, corresponding to cold pasteurization), intermediate (20 kGy, corresponding to cold sterilization) and high (100 kGy) doses. It was observed that a number of volatile compounds are produced after irradiation in all cases. Furthermore the amounts of all volatile compounds increase with increasing irradiation dose. Both primary (methyl-derivatives etc.) as well as secondary i.e. oxidation products (ketones, aldehydes, alcohols, carboxylic acids etc.) are produced upon irradiation. These products may affect organoleptic properties and thus shelf-life of prepackaged irradiated foods. No significant changes were observed in the structure of polymer matrices as exhibited by IR spectra after irradiation of the materials at doses tested. Likewise, no significant changes were observed in O 2, H 2O and CO 2 permeability values of plastic packaging materials after irradiation.
THE FEATURES OF THE COURSE OF CERTAIN VIRUS INFECTIONS AGAINST A BACKGROUND OF RADIATION AFFLICTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remezov, P.I.
1960-01-01
Since the combination of radiation sickness with virus infections complicates diagnosis of the etiology of the infectious process, the course of various infections (lymphocytic choriomeningitis, acute multiple encephalomyelitis influenza, tick-borne encephalitis, etc.) was studied in white mice subjected to a single daily 500, 400, 300, 200, 100, 50, or 10 r dose (or 0.33 r twice weekly) of x-radiation for more than 6 months. Six hours before or 6 hours, 7, 21, and 90 days after irradiation the mice were infected cerebrally, per nos, per os, or subcutaneously with virus in a dose of LD/sub 50/ or more. A studymore » was also made of the course of virus infection as affected by a combination of unfavorable factors, such as irradiation plus chilling and exhaustion. After infection, the clinical symptoms and virological characteristics of the disease were studied. The resultant data are of practical value in diagnosing virus infections complicated by the action of ionizing radiation on the body. A detailed description of the results is given. It was found that ionizing radiation greatly altered the clinical and virological picture of virus infections. Even comparatively small doses (300, 200, 100 r, and less) reduced the mice's resistance to many viruses. The course of the virus infection in an irradiated animal depended both on the radiation dose and the time that had elapsed between irradiation and infection. The greatest drop in the animals' resistance to virus was noted during maximum development of their reaction to radiation. Within 3 to 3.5 months after irradiation their resistance returns to normal. Chronic irradiation, even in such small doses as 10 r, also reduced resistance to viruses. In this case the degree of the drop in resistance was directly proportional to the total radiation dose. Prolonged irradiation of mice twice weekly in doses of 0.33 r revealed no deviations in the clinical or virologn-cal characteristics of the virus infections, but the mortality rate was always higher than in non-irradiated animals. (OTS)« less
Radiation damage studies of soft magnetic metallic glasses irradiated with high-energy heavy ions
NASA Astrophysics Data System (ADS)
Pavlovič, Márius; Miglierini, Marcel; Mustafin, Edil; Ensinger, Wolfgang; Šagátová, Andrea; Šoka, Martin
2015-01-01
Some soft magnetic metallic glasses are considered for use in magnetic cores of accelerator radio frequency cavities. Due to losses of the circulating ion beam, they may be exposed to irradiation by different ions at different energies. This paper presents data and review results of irradiation experiments concerning the influence of high-energy heavy ions on magnetic susceptibility of VITROPERM®-type metallic glasses. Samples of the VITROPERM® magnetic ribbons were irradiated by Au, Xe and U ions at 11.1 MeV/A (per nucleon) and 5.9 MeV/A, respectively. Irradiation fluences from 1 × 1011 up to 1 × 1013 ions/cm2 were applied. In case of the Au and U ions, the total fluence was accumulated in one beamtime, whereas two separate beamtimes were used to accumulate the final fluence in case of the Xe ions. Relative change in the samples' magnetic susceptibility after and before irradiation was evaluated as a function of the irradiation fluence. The irradiation experiments were performed with the UNILAC accelerator at GSI Helmholtzzentrum für Schwerionenforschung GmbH. They were simulated in SRIM2010 in order to obtain ionization densities (electronic stopping, dE/dx) and dpa (displacements per atom) caused by the ion beams in the sample material. This paper focuses mainly on the results collected in experiments with the Xe ions and compares them with data obtained in earlier experiments using Au and U ions. Radiation hardness of VITROPERM® is compared with radiation hardness of VITROVAC® that was studied in previous experiments. The VITROPERM® samples showed less drop in magnetic susceptibility in comparison with the VITROVAC® ones, and this drop occurred at higher fluences. This indicates higher radiation hardness of VITROPERM® compared with VITROVAC®. In addition, heavier ions cause bigger change in magnetic susceptibility than the lighter ones. The effect can be roughly scaled with electronic stopping, which suggests that the main mechanism of radiation damage is associated with swift electrons generated in the material via ionization by primary heavy ions.
Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.
Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D
2011-12-01
In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.
Crawley, Sydney E; Gordon, Jennifer R; Kowles, Katelyn A; Potter, Michael F; Haynes, Kenneth F
2017-01-01
Sublethal exposure to an insecticide may alter insect feeding, mating, oviposition, fecundity, development, and many other life history parameters. Such effects may have population-level consequences that are not apparent in traditional dose-mortality evaluations. Earlier, we found that a routinely used combination insecticide that includes a pyrethroid and a neonicotinoid (Temprid® SC) had deleterious effects on multiple bed bug (Cimex lectularius, L.) behaviors. Here, we demonstrate that sublethal exposure impacts physiology and reproduction as well. We report that sublethal exposure to Temprid SC has variable aberrant effects on bed bugs depending on the strain, including: a reduction in male mating success and delayed oviposition by females. However, after sublethal exposure, egg hatch rate consistently declined in every strain tested, anywhere from 34%-73%. Conversely, impact on fifth instar eclosion time was not significant. While the strains that we tested varied in their respective magnitude of sublethal effects, taken together, these effects could reduce bed bug population growth. These changes in bed bug behavior and fecundity could lead to improved efficacy of Temprid SC in the field, but recovery of impacted bugs must be considered in future studies. Sublethal effects should not be overlooked when evaluating insecticide efficacy, as it is likely that other products may also have indirect effects on population dynamics that could either aid or inhibit successful management of pest populations.
2014-01-01
Background Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. Results Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. Conclusions These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate. PMID:24655547
Londo, Jason Paul; McKinney, John; Schwartz, Matthew; Bollman, Mike; Sagers, Cynthia; Watrud, Lidia
2014-03-21
Herbicide resistance in weedy plant populations can develop through different mechanisms such as gene flow of herbicide resistance transgenes from crop species into compatible weedy species or by natural evolution of herbicide resistance or tolerance following selection pressure. Results from our previous studies suggest that sub-lethal levels of the herbicide glyphosate can alter the pattern of gene flow between glyphosate resistant Canola®, Brassica napus, and glyphosate sensitive varieties of B. napus and B. rapa. The objectives of this study were to examine the phenological and developmental changes that occur in Brassica crop and weed species following sub-lethal doses of the herbicides glyphosate and glufosinate. We examined several vegetative and reproductive traits of potted plants under greenhouse conditions, treated with sub-lethal herbicide sprays. Our results indicate that exposure of Brassica spp. to a sub-lethal dose of glyphosate results in altering flowering phenology and reproductive function. Flowering of all sensitive species was significantly delayed and reproductive function, specifically male fertility, was suppressed. Higher dosage levels typically contributed to an increase in the magnitude of phenotypic changes. These results demonstrate that Brassica spp. plants that are exposed to sub-lethal doses of glyphosate could be subject to very different pollination patterns and an altered pattern of gene flow that would result from changes in the overlap of flowering phenology between species. Implications include the potential for increased glyphosate resistance evolution and spread in weedy communities exposed to sub-lethal glyphosate.
NASA Technical Reports Server (NTRS)
Martins, B. I.
1971-01-01
The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.
Pravastatin reduces radiation-induced damage in normal tissues.
Doi, Hiroshi; Matsumoto, Seiji; Odawara, Soichi; Shikata, Toshiyuki; Kitajima, Kazuhiro; Tanooka, Masao; Takada, Yasuhiro; Tsujimura, Tohru; Kamikonya, Norihiko; Hirota, Shozo
2017-05-01
Pravastatin is an inhibitor of 3-hydroxy-3-methyl- glutaryl-coenzyme A reductase that has been reported to have therapeutic applications in a range of inflammatory conditions. The aim of the present study was to assess the radioprotective effects of pravastatin in an experimental animal model. Mice were divided into two groups: The control group received ionizing radiation with no prior medication, while the pravastatin group received pravastatin prior to ionizing radiation. Pravastatin was administered orally at 30 mg/kg body weight in drinking water at 24 and 4 h before irradiation. Intestinal crypt epithelial cell survival and the incidence of apoptosis in the intestine and lung were measured post-irradiation. The effect of pravastatin on intestinal DNA damage was determined by immunohistochemistry. Finally, the effect of pravastatin on tumor response to radiotherapy was examined in a mouse mesothelioma xenograft model. Pravastatin increased the number of viable intestinal crypts and this effect was statistically significant in the ileum (P<0.0001). The pravastatin group showed significantly lower apoptotic indices in all examined parts of the intestine (P<0.0001) and tended to show reduced apoptosis in the lung. Pravastatin reduced the intestinal expression of ataxia-telangiectasia mutated and gamma-H2AX after irradiation. No apparent pravastatin-related differences were observed in the response of xenograft tumors to irradiation. In conclusion, pravastatin had radioprotective effects on the intestine and lung and reduced radiation-induced DNA double-strand breaks. Pravastatin may increase the therapeutic index of radiotherapy.
Radiation-induced impairment in lung lymphatic vasculature.
Cui, Ye; Wilder, Julie; Rietz, Cecilia; Gigliotti, Andrew; Tang, Xiaomeng; Shi, Yuanyuan; Guilmette, Raymond; Wang, Hao; George, Gautam; Nilo de Magaldi, Eduarda; Chu, Sarah G; Doyle-Eisele, Melanie; McDonald, Jacob D; Rosas, Ivan O; El-Chemaly, Souheil
2014-12-01
The lymphatic vasculature has been shown to play important roles in lung injury and repair, particularly in lung fibrosis. The effects of ionizing radiation on lung lymphatic vasculature have not been previously reported. C57Bl/6 mice were immobilized in a lead shield exposing only the thoracic cavity, and were irradiated with a single dose of 14 Gy. Animals were sacrificed and lungs collected at different time points (1, 4, 8, and 16 weeks) following radiation. To identify lymphatic vessels in lung tissue sections, we used antibodies that are specific for lymphatic vessel endothelial receptor 1 (LYVE-1), a marker of lymphatic endothelial cells (LEC). To evaluate LEC cell death and oxidative damage, lung tissue sections were stained for LYVE-1 and with TUNEL staining, or 8-oxo-dG respectively. Images were imported into ImageJ v1.36b and analyzed. Compared to a non-irradiated control group, we observed a durable and progressive decrease in the density, perimeter, and area of lymphatic vessels over the study period. The decline in the density of lymphatic vessels was observed in both subpleural and interstitial lymphatics. Histopathologically discernible pulmonary fibrosis was not apparent until 16 weeks after irradiation. Furthermore, there was significantly increased LEC apoptosis and oxidative damage at one week post-irradiation that persisted at 16 weeks. There is impairment of lymphatic vasculature after a single dose of ionizing radiation that precedes architectural distortion and fibrosis, suggesting important roles for the lymphatic circulation in the pathogenesis of the radiation-induced lung injury.
Musilova, Michaela; Wright, Gary; Ward, John M; Dartnell, Lewis R
2015-12-01
Extreme radiation-resistant microorganisms can survive doses of ionizing radiation far greater than are present in the natural environment. Radiation resistance is believed to be an incidental adaptation to desiccation resistance, as both hazards cause similar cellular damage. Desert soils are, therefore, promising targets to prospect for new radiation-resistant strains. This is the first study to isolate radiation-resistant microbes by using gamma-ray exposure preselection from the extreme cold desert of the Antarctic Dry Valleys (a martian surface analogue). Halomonads, identified by 16S rRNA gene sequencing, were the most numerous survivors of the highest irradiation exposures. They were studied here for the first time for both their desiccation and irradiation survival characteristics. In addition, the association between desiccation and radiation resistance has not been investigated quantitatively before for a broad diversity of microorganisms. Thus, a meta-analysis of scientific literature was conducted to gather a larger data set. A strong correlation was found between desiccation and radiation resistance, indicating that an increase in the desiccation resistance of 5 days corresponds to an increase in the room-temperature irradiation survival of 1 kGy. Irradiation at -79°C (representative of average martian surface temperatures) increases the microbial radiation resistance 9-fold. Consequently, the survival of the cold-, desiccation-, and radiation-resistant organisms isolated here has implications for the potential habitability of dormant or cryopreserved life on Mars. Extremophiles-Halomonas sp.-Antarctica-Mars-Ionizing radiation-Cosmic rays.
Differential response of two cell lines sequentially irradiated with low X-ray doses.
Güerci, A M; Dulout, F N; Grillo, C A; Seoane, A I
2005-05-01
An experiment was designed to compare the effect of repeated low doses of X-rays in two different cell lines: one transformed, epithelial like and aneuploid Chinese hamster ovary K-1 (CHO-K1); the other originated from a human primary culture, fibroblast, diploid and non-transformed, MRC-5. CHO and MRC-5 cells were cultured for 14 or eight passages, respectively. Irradiation was performed once per passage when cells were in the quiescent state (90 - 95% in G1/G0). Cells were exposed to 10.0 mSv X-ray doses. Ionizing radiation did not induce apoptosis or necrosis in the exposed CHO cell population. Significant increases of low-level damaged cells (degrees 1 and 2) were found for the 14 cycles of radiation when compared with controls, except for the first irradiation cycle. No significant increases in the frequency of cells with severe damage were observed. The frequency of MRC-5 cells with low-level damage increased significantly when compared with controls for radiation cycles seven and eight. Significant increases of apoptosis, necrosis and severe damage were found only for the highest dose. Transformed and non-transformed cell types responded differently to direct and indirect damage using low-dose repeat exposures to ionizing radiation. Though more investigation is needed to understand the mechanisms of radiation effects in chronic low-dose-exposed cell populations, cellular type should be taken into account in the design of in vitro experiments for understanding low-dose-irradiation effects.
Effect of irradiated pork on physicochemical properties of meat emulsions
NASA Astrophysics Data System (ADS)
Choi, Yun-Sang; Sung, Jung-Min; Jeong, Tae-Jun; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Kim, Hyun-Wook; Kim, Young-Boong; Kim, Cheon-Jei
2016-02-01
The effect of pork irradiated with doses up to 10 kGy on meat emulsions formulated with carboxy methyl cellulose (CMC) was investigated. Raw pork was vacuums packaged at a thickness of 2.0 cm and irradiated by X-ray linear accelerator (15 kW, 5 MeV). The emulsion had higher lightness, myofibrillar protein solubility, total protein solubility, and apparent viscosity with increasing doses, whereas cooking loss, total expressible fluid separation, and hardness decreased. There were no significant differences in fat separation, sarcoplasmic protein solubility, springiness, and cohesiveness. Our results indicated that it is treatment by ionizing radiation which causes the effects the physicochemical properties of the final raw meat product.
Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions
NASA Technical Reports Server (NTRS)
Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.
1976-01-01
Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.
Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V
2011-06-01
In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suman, Shubhankar; Johnson, Michael D.; Fornace, Albert J.
Purpose: Exposure to ionizing radiation is an established risk factor for breast cancer. Radiation exposure during infancy, childhood, and adolescence confers the highest risk. Although radiation is a proven mammary carcinogen, it remains unclear where it acts in the complex multistage process of breast cancer development. In this study, we investigated the long-term pathophysiologic effects of ionizing radiation at a dose (2 Gy) relevant to fractionated radiotherapy. Methods and Materials: Adolescent (6-8 weeks old; n = 10) female C57BL/6J mice were exposed to 2 Gy total body {gamma}-radiation, the mammary glands were surgically removed, and serum and urine samples weremore » collected 2 and 12 months after exposure. Molecular pathways involving estrogen receptor-{alpha} (ER{alpha}) and phosphatidylinositol-3-OH kinase (PI3K)-Akt signaling were investigated by immunohistochemistry and Western blot. Results: Serum estrogen and urinary levels of the oncogenic estrogen metabolite (16{alpha}OHE1) were significantly increased in irradiated animals. Immunostaining for the cellular proliferative marker Ki-67 and cyclin-D1 showed increased nuclear accumulation in sections of mammary glands from irradiated vs. control mice. Marked increase in p85{alpha}, a regulatory sub-unit of the PI3K was associated with increase in Akt, phospho-Akt, phospho-BAD, phospho-mTOR, and c-Myc in irradiated samples. Persistent increase in nuclear ER{alpha} in mammary tissues 2 and 12 months after radiation exposure was also observed. Conclusions: Taken together, our data not only support epidemiologic observations associating radiation and breast cancer but also, specify molecular events that could be involved in radiation-induced breast cancer.« less
Diegeler, Sebastian; Hellweg, Christine E
2017-01-01
Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.
Gas chromatographic/mass spectrometric and microbiological analyses on irradiated chicken
NASA Astrophysics Data System (ADS)
Parlato, A.; Calderaro, E.; Bartolotta, A.; D'Oca, M. C.; Giuffrida, S. A.; Brai, M.; Tranchina, L.; Agozzino, P.; Avellone, G.; Ferrugia, M.; Di Noto, A. M.; Caracappa, S.
2007-08-01
Ionizing radiation is widely used as treatment technique for food preservation. It involves among others reduction of microbial contamination, disinfestations, sprout inhibition and extension of shelf life of food. However, the commercialization of irradiated food requires the availability of reliable methods to identify irradiated foodstuffs. In this paper, we present results on the application to irradiated chicken of this method, based on the detection, in muscle and skin samples, of the peaks of ions 98 Da and 112 Da, in a ratio approximately 4:1, typical of radiation induced 2-dodecylcyclobutanones (2-DCB). Aim of the work was also to study the time stability of the measured parameters in samples irradiated at 3 and 5 kGy, and to verify the efficacy of the treatment from a microbiological point of view. Our results show that, one month after irradiation at 3 kGy, the method is suitable using the skin but not the muscle, while the measured parameters are detectable in both samples irradiated at 5 kGy. The microbial population was substantially reduced even at 3 kGy.
Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction
Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev
2016-01-01
Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered purine metabolism and astrogliosis, thereby linking the importance of adenosine homeostasis in the brain to radiation injury. PMID:27375429
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.
2018-01-01
Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.
Epperly, Michael W.; Wang, Hong; Jones, Jeffrey A.; Dixon, Tracy; Montesinos, Carlos A.; Greenberger, Joel S.
2011-01-01
Many acute and chronic effects of ionizing radiation are mediated by reactive oxygen species and reactive nitrogen species, which deplete antioxidant stores, leading to cellular apoptosis, stem cell depletion and accelerated aging. C57BL/6NHsd mice receiving intravenous MnSOD-PL prior to 9.5 Gy total-body irradiation (TBI) show increased survival from the acute hematopoietic syndrome, and males demonstrated improved long-term survival (Epperly et al., Radiat. Res. 170, 437–444, 2008). We evaluated the effect of an antioxidant-chemopreventive diet compared to a regular diet on long-term survival in female mice. Twenty-four hours before the LD50/30 dose of 9.5 Gy TBI, subgroups of mice were injected intravenously with MnSOD-PL (100 μg plasmid DNA in 100 μl of liposomes). Mice on either diet treated with MnSOD-PL showed decreased death after irradiation compared to irradiated mice on the house diet alone (P = 0.031 for the house diet plus MnSOD-PL or 0.015 for antioxidant diet plus MnSOD-PL). The mice on the antioxidant-chemoprevention diet alone or with MnSOD-PL that survived 30 days after irradiation had a significant increase in survival compared to mice on the regular diet (P = 0.04 or 0.01, respectively). In addition, mice treated with MnSOD-PL only and surviving 30 days after radiation also had increased survival compared to those on the regular diet alone (P = 0.02). Survivors of acute ionizing radiation damage have ameliorated life shortening if they are fed an antioxidant-chemopreventive diet. PMID:21466381
Analysis of the response of PVA-GTA Fricke-gel dosimeters with clinical magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Collura, Giorgio; Gallo, Salvatore; Tranchina, Luigi; Abbate, Boris Federico; Bartolotta, Antonio; d'Errico, Francesco; Marrale, Maurizio
2018-01-01
Fricke gel dosimeters produced with a matrix of Poly-vinyl alcohol (PVA) cross-linked with glutaraldehyde (GTA) were analyzed with magnetic resonance imaging (MRI). Previous studies based on spectrophotometry showed valuable dosimetric features of these gels in terms of X-ray sensitivity and diffusion of the ferric ions produced after irradiation. In this study, MRI was performed on the gels at 1.5 T with a clinical scanner in order to optimize the acquisition parameters and obtain high contrast between irradiated and non-irradiated samples. The PVA gels were found to offer good linearity in the range of 0-10 Gy and a stable signal for several hours after irradiation. The sensitivity was about 40% higher compared to gels produced with agarose as gelling agent. The effect of xylenol orange (XO) on the MRI signal was also investigated: gel dosimeters made without XO show higher sensitivity to x-rays than those made with XO. The dosimetric accuracy of the 3D gels was investigated by comparing their MRI response to percentage depth dose and transversal dose profile measurements made with an ionization chamber in a water phantom. The comparison of PVA-GTA gels with and without XO showed that the chelating agent reduces the MRI sensitivity of the gels. Depth-dose and transversal dose profiles acquired by PVA-GTA gels without XO are more accurate and consistent with the ionization chamber data. However, diffusion effects hinder accurate measurements in the steep dose gradient regions and they should be further reduced by modifying the gel matrix and/or by minimizing the delay between irradiation and imaging.
Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure
2000-09-30
Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure Principal Investigator: Roger M. Nisbet Department of Ecology, Evolution...DATES COVERED 00-00-2000 to 00-00-2000 4. TITLE AND SUBTITLE Modeling Population and Ecosystem Response to Sublethal Toxicant Exposure 5a...those of real populations. We have also investigated how toxicants may affect the stability of the system. If the toxicant effect is primarily an
Nanosecond laser-cluster interactions at 109-1012 W/cm 2
NASA Astrophysics Data System (ADS)
Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.
2017-08-01
An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.
EPR-dosimetry of ionizing radiation
NASA Astrophysics Data System (ADS)
Popova, Mariia; Vakhnin, Dmitrii; Tyshchenko, Igor
2017-09-01
This article discusses the problems that arise during the radiation sterilization of medical products. It is propose the solution based on alanine EPR-dosimetry. The parameters of spectrometer and methods of absorbed dose calculation are given. In addition, the problems that arise during heavy particles irradiation are investigated.
HIGH SPEED PARTICLE BEAM GENERATION: SIMPLE FOCUSING MECHANISMS. (R823980)
Modern chemical characterization instruments employ an aerosol inlet that transmits atmospheric aerosols to the low pressure source region of a time-of-flight mass spectrometer, where particles are ablated and ionized using high energy irradiation. The ions when analyzed in the m...
Sakanoue, Hideyo; Yasugi, Mayo; Miyake, Masami
2018-05-04
Sublethal heating of spores has long been known to stimulate or activate germination, but the underlying mechanisms are not yet fully understood. In this study, we visualized the entire germination-to-outgrowth process of spores from an anaerobic sporeformer, C. perfringens, at single-cell resolution. Quantitative analysis revealed that sublethal heating significantly reduced the time from completion of germination to the beginning of the first cell division. The results indicate that sublethal heating of C. perfringens spores not only sensitizes the responsiveness of germinant receptors but also directly or indirectly facilitates multiple steps during the bacterial regrowth process. © 2018 The Societies and John Wiley & Sons Australia, Ltd.
Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.
Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra
2005-01-01
Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.
Ziaja, Beata; Saxena, Vikrant; Son, Sang-Kil; Medvedev, Nikita; Barbrel, Benjamin; Woloncewicz, Bianca; Stransky, Michal
2016-05-01
We report on the kinetic Boltzmann approach adapted for simulations of highly ionized matter created from a solid by its x-ray irradiation. X rays can excite inner-shell electrons, which leads to the creation of deeply lying core holes. Their relaxation, especially in heavier elements, can take complicated paths, leading to a large number of active configurations. Their number can be so large that solving the set of respective evolution equations becomes computationally inefficient and another modeling approach should be used instead. To circumvent this complexity, the commonly used continuum models employ a superconfiguration scheme. Here, we propose an alternative approach which still uses "true" atomic configurations but limits their number by restricting the sample relaxation to the predominant relaxation paths. We test its reliability, performing respective calculations for a bulk material consisting of light atoms and comparing the results with a full calculation including all relaxation paths. Prospective application for heavy elements is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernheim, F.; Wilbur, K.M.
1962-03-26
Results are summarized from a series of studies on the effects of ultraviolet and ionizing radiation on the oxidation of cell lipids. It was shown that both in vitro and in vivo radiation produced oxidation products of lipids that inhibited the activity of certain oxidative enzymes, depolymerized desoxyribonucleoprotein, inhibited the division of marine eggs, and retarded bacterial growth. The presence of antioxidant activity was also demonstrated in tissues. The significant feature of antioxidant compounds with respect to the biological effects of radiation was shown to be the inhibition of the oxidation of lipids. In irradiated animals the antioxidant activity ofmore » the intestinal mucosa and the activity of phospholipase decreased. Experiments showed that radiation had not destroyed the enzyme but had inactivated the activator. Results are also summarized from a study on the effects of ionizing radiation on cell growth and protein synthesis in yeast. (C.H.)« less
Oyama, Tomoko Gowa; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi
2012-12-14
The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.
Short Telomeres Result in Organismal Hypersensitivity to Ionizing Radiation in Mammals
Goytisolo, Fermín A.; Samper, Enrique; Martín-Caballero, Juan; Finnon, Paul; Herrera, Eloísa; Flores, Juana M.; Bouffler, Simon D.; Blasco, María A.
2000-01-01
Here we show a correlation between telomere length and organismal sensitivity to ionizing radiation (IR) in mammals. In particular, fifth generation (G5) mouse telomerase RNA (mTR)−/− mice, with telomeres 40% shorter than in wild-type mice, are hypersensitive to cumulative doses of gamma rays. 60% of the irradiated G5 mTR−/− mice die of acute radiation toxicity in the gastrointestinal tract, lymphoid organs, and kidney. The affected G5 mTR−/− mice show higher chromosomal damage and greater apoptosis than similarly irradiated wild-type controls. Furthermore, we show that G5 mTR−/− mice show normal frequencies of sister chromatid exchange and normal V(D)J recombination, suggesting that short telomeres do not significantly affect the efficiency of DNA double strand break repair in mammals. The IR-sensitive phenotype of G5 mTR−/− mice suggests that telomere function is one of the determinants of radiation sensitivity of whole animals. PMID:11104804
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derewonko, H.; Bosella, A.; Pataut, G.
1996-06-01
An evaluation program of Thomson CSF-TCS GaAs low noise and power MMIC technologies to 1 MeV equivalent neutron fluence levels, up to 1 {times} 10{sup 15} n/cm{sup 2}, ionizing 1.17--1.33 MeV CO{sup 60} dose levels in excess of 200 Mrad(GaAs) and dose rate levels reaching 1.89 {times} 10{sup 11} rad(GaAs)/s is presented in terms of proper components and parameter choices, DC/RF electrical measurements and test methods under irradiation. Experimental results are explained together with drift analyses of electrical parameters that have determined threshold limits of component degradations. Modelling the effects of radiation on GaAs components relies on degradation analysis ofmore » active layer which appears to be the most sensitive factor. MMICs degradation under neutron fluence was simulated from irradiated FET data. Finally, based on sensitivity of technological parameters, rad-hard design including material, technology and MMIC design enhancement is discussed.« less
NASA Astrophysics Data System (ADS)
Goiffon, Vincent; Rolando, Sébastien; Corbière, Franck; Rizzolo, Serena; Chabane, Aziouz; Girard, Sylvain; Baer, Jérémy; Estribeau, Magali; Magnan, Pierre; Paillet, Philippe; Van Uffelen, Marco; Mont Casellas, Laura; Scott, Robin; Gaillardin, Marc; Marcandella, Claude; Marcelot, Olivier; Allanche, Timothé
2017-01-01
The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed.
Effects of sub-bandgap illumination on electrical properties and detector performances of CdZnTe:In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lingyan; Jie, Wanqi, E-mail: jwq@nwpu.edu.cn; Zha, Gangqiang, E-mail: zha-gq@hotmail.com
2014-06-09
The effects of sub-bandgap illumination on electrical properties of CdZnTe:In crystals and spectroscopic performances of the fabricated detectors were discussed. The excitation process of charge carriers through thermal and optical transitions at the deep trap could be described by the modified Shockley-Read-Hall model. The ionization probability of the deep donor shows an increase under illumination, which should be responsible for the variation of electrical properties within CdZnTe bulk materials with infrared (IR) irradiation. By applying Ohm's law, diffusion model and interfacial layer-thermionic-diffusion theory, we obtain the decrease of bulk resistivity and the increase of space charge density in the illuminatedmore » crystals. Moreover, the illumination induced ionization will further contribute to improving carrier transport property and charge collection efficiency. Consequently, the application of IR irradiation in the standard working environment is of great significance to improve the spectroscopic characteristics of CdZnTe radiation detectors.« less
Influence of oxygen on the chemical stage of radiobiological mechanism
NASA Astrophysics Data System (ADS)
Barilla, Jiří; Lokajíček, Miloš V.; Pisaková, Hana; Simr, Pavel
2016-07-01
The simulation of the chemical stage of radiobiological mechanism may be very helpful in studying the radiobiological effect of ionizing radiation when the water radical clusters formed by the densely ionizing ends of primary or secondary charged particle may form DSBs damaging DNA molecules in living cells. It is possible to study not only the efficiency of individual radicals but also the influence of other species or radiomodifiers (mainly oxygen) being present in water medium during irradiation. The mathematical model based on Continuous Petri nets (proposed by us recently) will be described. It makes it possible to analyze two main processes running at the same time: chemical radical reactions and the diffusion of radical clusters formed during energy transfer. One may study the time change of radical concentrations due to the chemical reactions running during diffusion process. Some orientation results concerning the efficiency of individual radicals in DSB formation (in the case of Co60 radiation) will be presented; the influence of oxygen present in water medium during irradiation will be shown, too.
Ristova, Mimoza M; Radiceska, Pavlina; Bozinov, Igorco; Barandovski, Lambe
2016-05-01
One of the crucial factors determining the cyanoacrylate deposit quality over latent fingerprints appeared to be the extent of the humidity. This work focuses on the enhancement/refreshment of age-degraded latent fingerprints by irradiating the samples with UV, X-ray, or thermal neutrons prior to the cyanoacrylate (CA) fuming. Age degradation of latent fingerprints deposited on glass surfaces was examined through the decrease in the number of characteristic minutiae counts over time. A term "critical day" was introduced for the time at which the average number of identifiable minutiae definitions drops to one-half. Fingerprints older than their "critical day" were exposed to either UV, X-ray, or thermal neutrons. Identical reference samples were kept unexposed. All samples, both reference and irradiated, were developed during a single CA fuming procedure. Comparative latent fingerprint analysis showed that exposure to ionizing radiation enhances the CA fuming, yielding a 20-30% increase in average minutiae count. © 2015 American Academy of Forensic Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguirre, B. A.; Bielejec, E.; Fleming, R. M.
Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Barbara; Benzina, Sami; Jeannequin, Pierre
We have previously shown that ionizing radiation-induced apoptosis in human lymphoblastoid cells differs according to their p53 status, and that caspase 8-mediated cleavage of BID is involved in the p53-dependent pathway. In the present study, we investigated the role of Fas signaling in caspase 8 activation induced by fast neutrons irradiation in these cells. Fas and FasL expression was assessed by flow cytometry and by immunoblot. We also measured Fas aggregation after irradiation by fluorescence microscopy. We found a decrease of Fas expression after irradiation, but no change in Fas ligand expression. We also showed that, in contrast to themore » stimulation of Fas by an agonistic antibody, Fas aggregation did not occur after irradiation. Altogether, our data strongly suggest that fast neutrons induced-apoptosis is Fas-independent, even in p53-dependent apoptosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuikova, E.A.; Chaikovskaya, M.Ya.; Petrosian, S.L.
1959-09-01
The result of investigations demonstrated that a total single irradiation of dogs in a dose of 500 r during the last days of pregnancy leads to the development of acute radiation sickness in newborn puppies and causes their death soon after birth. Radiation sickness in newborn puppies as distinct from adult animals in a number of cases was associated with necrotic lesions of the urinary bladder, atelectasis of the lungs, and cerebral edema. Hemodynamic disturbances of the central nervous system play an important role in the appearance of atelectasis and of the cerebral edema. The course of radiation sickness inmore » dogs irradiated during the last days of pregnancy was comparatively mild. Reaction of peripheral blood to irradiation was short and of peculiar nature. (auth)« less
Radiation sterilization of enzyme hybrids with biodegradable polymers
NASA Astrophysics Data System (ADS)
Furuta, Masakazu; Oka, Masahito; Hayashi, Toshio
2002-03-01
Ionizing radiations, which have already been utilized for the sterilization of medical supplies as well as gas fumigation, should be the final candidate to decontaminate "hybrid" biomaterials containing bio-active materials including enzymes because irradiation induces neither heat nor substances affecting the quality of the materials and our health. In order to check the feasibility of 60Co-gamma rays on these materials, we selected commercial proteases including papain and bromelain hybridized with commercial activated chitosan beads and demonstrated that these enzyme-hybrids suspended in water showed the significant radiation durability of more than twice as much as free enzyme solution at 25-kGy irradiation. Enhanced thermal and storage stability of the enzyme hybrids were not affected by the same dose level of irradiation, either, indicating that commercial irradiation sterilization method is applicable to enzyme hybrids without modification.
Computational model of gamma irradiation room at ININ
NASA Astrophysics Data System (ADS)
Rodríguez-Romo, Suemi; Patlan-Cardoso, Fernando; Ibáñez-Orozco, Oscar; Vergara Martínez, Francisco Javier
2018-03-01
In this paper, we present a model of the gamma irradiation room at the National Institute of Nuclear Research (ININ is its acronym in Spanish) in Mexico to improve the use of physics in dosimetry for human protection. We deal with air-filled ionization chambers and scientific computing made in house and framed in both the GEANT4 scheme and our analytical approach to characterize the irradiation room. This room is the only secondary dosimetry facility in Mexico. Our aim is to optimize its experimental designs, facilities, and industrial applications of physical radiation. The computational results provided by our model are supported by all the known experimental data regarding the performance of the ININ gamma irradiation room and allow us to predict the values of the main variables related to this fully enclosed space to within an acceptable margin of error.
Aguirre, B. A.; Bielejec, E.; Fleming, R. M.; ...
2016-12-09
Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less
Efficient mass-selective three-photon ionization of zirconium atoms
Page, Ralph H.
1994-01-01
In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
Ionizing radiation induces senescence and differentiation of human dental pulp stem cells.
Havelek, R; Soukup, T; Ćmielová, J; Seifrtová, M; Suchánek, J; Vávrová, J; Mokrý, J; Muthná, D; Řezáčová, M
2013-01-01
Head and neck cancer is one of the most common cancers in Europe. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells, including adult stem cells. One of the fundamental properties of an adult stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. However, under certain stimuli, unspecialized adult stem cells can give rise to specialized cells to generate replacements for cells that are lost during one's life or due to injury or disease. Nevertheless, specialization of stem cells must be controlled by specific milieu and also initiated at the proper time, making the entire process beneficial for tissue recovery and maintaining it for a long time. In this paper we assess whether irradiated dental pulp stem cells have maintained open their options to mature into specialized cells, or whether they have lost their unspecialized (immature) state following irradiation. Our findings showed radiation-induced premature differentiation of dental pulp stem cells towards odonto-/osteoblast lineages in vitro. Matrix calcification was visualized from Day 6 or Day 9 following irradiation of cells expressing low or high levels of CD146, respectively.
Immunofluorescent Detection of DNA Double Strand Breaks induced by High-LET Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wu, Honglu; Desai, Nirav
2004-01-01
Within cell nuclei, traversing charged heavy ion particles lead to the accumulation of proteins related to DNA lesions and repair along the ion trajectories. Irradiation using a standard geometric setup with the beam path perpendicular to the cell monolayer generates discrete foci of several proteins known to localize at sites of DNA double strand breaks (DSBs). One such molecule is the histone protein H2AX (gamma-H2AX), which gets rapidly phosphorylated in response to ionizing radiation. Here we present data obtained with a modified irradiation geometry characterized by a beam path parallel to a monolayer of human fibroblast cells. This new irradiation geometry leads to the formation of gamma-H2AX aggregates in the shape of streaks stretching over several micrometers in the x/y plane, thus enabling the analysis of the fluorescence distributions along the particle trajectories. Qualitative analysis of these distributions presented insights into the DNA repair kinetics along the primary track structure and visualization of possible chromatin movement. We also present evidence of colocalization of gamma-H2AX with several other proteins in responses to ionizing radiation exposure. Analysis of gamma-H2AX has the potential to provide useful information on human cell responses to high LET radiation after exposure to space-like radiation.
Modeling marrow damage from response data: Evolution from radiation biology to benzene toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, T.D.; Morris, M.D.; Hasan, J.S.
1996-12-01
Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between 5 and 30 days. Mortality data from 27 experiments with 851 dose-response groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals: 12,827more » mice, 2925 rats, 1676 sheep, 829 swine, 479 dogs, and 204 burros. Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is critical to hematopoietic recovery does not resemble stemlike cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD50 and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in the fitting of model coefficients. 29 refs., 5 figs., 5 tabs.« less
Effects of microwave (2.45 GHz) irradiation on some biological characters of Salmonella typhimurium.
Nasri, Kaouther; Daghfous, Douraid; Landoulsi, Ahmed
2013-04-01
The present study was carried out to evaluate the effects of sub-lethal doses of microwave radiation on some biological characteristics in Salmonella typhimurium. The aim was to show the relationship between this treatment and the development of radiotolerance in this pathogen because there is a need for more information on physiological responses of pathogens to sub-lethal doses of microwave radiation. So, the bacterial strain was treated with a dose of 3600J (40-s exposure with power P=90 W) to cause cellular damage. The results have shown that the exposure of bacteria to microwaves resulted in a significant inhibition of cellular growth. This treatment has notably increased the effectiveness of the most tested antibiotics by the amelioration or the appearance of sensitivity in exposed bacteria. Gas chromatography (GC) analysis was performed to demonstrate the modification of the fatty acids (FA) composition. Results obtained have shown that this treatment had a significant effect on the FA content with an increase of unsaturated FA percentage. The acquisition of sensitivity to the sodium deoxycholate and the significant increase in the amount of extracellular proteins in exposed bacteria has confirmed the weakening of the bacterial membrane by microwaves. This study represents one of the few demonstrating the modifications on the bacterial membrane as a cellular response to survive the non-ionising radiation stress. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Listeriosis downregulates hepatic cytochrome P450 enzymes in sublethal murine infection.
Kummer, Anne; Nishanth, Gopala; Koschel, Josephin; Klawonn, Frank; Schlüter, Dirk; Jänsch, Lothar
2016-10-01
Listeria monocytogenes (Lm) can cross the intestinal barrier in humans and then disseminates into different organs. Invasion of the liver occurs even in sublethal infections, however, knowledge of affected physiological processes is scarce. This study employed a sublethal murine infection model to investigate liver responses systematically by proteomics. Liver samples from three stages of the sublethal infection covering the initial invasion, the peak of infection, and the clearance phase (1, 3, 9 days postinoculation) were analyzed in comparison to samples from noninfected mice. Apart from flow cytometry and RT-PCRs for immune status control, liver responses were analyzed by quantitative peptide sequencing (HPLC-Orbitrap Fusion) using 4-plex iTRAQ-labeling. Accurate MS characterized about 3600 proteins and statistics revealed 15% of the hepatic proteome as regulated. Immunological data as well as protein regulation dynamics strongly indicate stage-specific hepatic responses in sublethal infections. Most notably, this study detected a comprehensive deregulation of drug metabolizing enzymes at all stages, including 25 components of the cytochrome P450 system. Sublethal Lm infection deregulates hepatic drug metabolizing pathways. This finding indicates the need to monitor drug administration along Lm infections, especially in all patients needing constant medication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fujimichi, Yuki; Hamada, Nobuyuki
2014-01-01
Over the past century, ionizing radiation has been known to induce cataracts in the crystalline lens of the eye, but its mechanistic underpinnings remain incompletely understood. This study is the first to report the clonogenic survival of irradiated primary normal human lens epithelial cells and stimulation of its proliferation. Here we used two primary normal human cell strains: HLEC1 lens epithelial cells and WI-38 lung fibroblasts. Both strains were diploid, and a replicative lifespan was shorter in HLEC1 cells. The colony formation assay demonstrated that the clonogenic survival of both strains decreases similarly with increasing doses of X-rays. A difference in the survival between two strains was actually insignificant, although HLEC1 cells had the lower plating efficiency. This indicates that the same dose inactivates the same fraction of clonogenic cells in both strains. Intriguingly, irradiation enlarged the size of clonogenic colonies arising from HLEC1 cells in marked contrast to those from WI-38 cells. Such enhanced proliferation of clonogenic HLEC1 cells was significant at ≥2 Gy, and manifested as increments of ≤2.6 population doublings besides sham-irradiated controls. These results suggest that irradiation of HLEC1 cells not only inactivates clonogenic potential but also stimulates proliferation of surviving uniactivated clonogenic cells. Given that the lens is a closed system, the stimulated proliferation of lens epithelial cells may not be a homeostatic mechanism to compensate for their cell loss, but rather should be regarded as abnormal. This is because these findings are consistent with the early in vivo evidence documenting that irradiation induces excessive proliferation of rabbit lens epithelial cells and that suppression of lens epithelial cell divisions inhibits radiation cataractogenesis in frogs and rats. Thus, our in vitro model will be useful to evaluate the excessive proliferation of primary normal human lens epithelial cells that may underlie radiation cataractogenesis, warranting further investigations.
Effects of ionizing radiation on extracellular matrix
NASA Astrophysics Data System (ADS)
Mohamed, F.; Bradley, D. A.; Winlove, C. P.
2007-09-01
The extracellular matrix is a ubiquitous and important component of tissues. We investigated the effects of ionizing radiation on the physical properties of its principal macromolecular components, pericardial collagen, ligament elastin and hyaluronan, a representative glycosaminoglycan. Samples were exposed to X-rays from an electron linear accelerator in the range of 10-100 Gy to cover the range of irradiation exposure during radiotherapy. A uniaxial mechanical testing protocol was used to characterize the fibrous proteins. For pericardial tissue the major change was an increase in the elastic modulus in the toe region of the curve (⩽20% strain), from 23±18 kPa for controls to 57±22 kPa at a dose of 10 Gy ( p=0.01, α=0.05). At larger strain (⩾20% strain), the elastic modulus in the linear region decreased from 1.92±0.70 MPa for control pericardium tissue to 1.31±0.56 MPa ( p=0.01, α=0.05) for 10 Gy X-irradiated sample. Similar observations have been made previously on tendon collagen at larger strains. For elastin, the stress-strain relationship was linear up to 30% strain, but the elastic modulus decreased significantly with irradiation (controls 626±65 kPa, irradiated 474±121 kPa ( p=0.02, α=0.05), at 10 Gy X-irradiation). The results suggest that for collagen the primary effect of irradiation is generation of additional cross-links, while for elastin chain scissions are important. The viscosity of HA (at 1.25% w/v and 0.125% w/v) was measured by both cone and plate and capillary viscometry, the former providing measurement at uniform shear rate and the latter providing a more sensitive indication of changes at low viscosity. Both techniques revealed a dose-dependent reduction in viscosity (from 3400±194 cP for controls to 1500±88 cP at a shear rate of 2 s -1 and dose of 75 Gy), again suggesting depolymerization.
Synthesis of complex organic molecules in simulated methane rich astrophysical ices
NASA Astrophysics Data System (ADS)
Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.
2017-12-01
It has been proposed that organic molecules required for life on earth may be formed by the radiation processing of molecular ices in space environments, e.g., within our solar system. Such processes can be studied in the laboratory with surface science analytical techniques and by using low-energy electron (LEE) irradiation to simulate the effects of the secondary electrons that are generated in great abundance whenever ionizing radiation interacts with matter. Here we present new measurements of 70 eV LEE irradiation of multilayer films of CH4, 18O2, and CH4/18O2 mixtures (3:1 ratio) at 22 K. The electron stimulated desorption (ESD) yields of cations and anions have been recorded as a function of electron fluence. At low fluence, the prompt desorption of more massive multi-carbon or C—O containing cationic fragments agrees with our earlier measurements. However, new anion ESD signals of C2-, C2H-, and C2H2- from CH4/18O2 mixtures increase with fluence, indicating the gradual synthesis (and subsequent electron-induced fragmentation) of new, more complex species containing several C and possibly O atoms. Comparisons between the temperature programed desorption (TPD) mass spectra of irradiated and unirradiated films show the electron-induced formation of new chemical species, the identities of which are confirmed by reference to the NIST database of electron impact mass spectra and by TPD measurements of films composed of the proposed products. New species observed in the TPD of irradiated mixture films include C3H6, C2H5OH, and C2H6. Furthermore, X-ray photoelectron spectroscopy of irradiated films confirms the formation of C—O, C=O, and O=C—O— bonds of newly formed molecules. Our experiments support the view that secondary LEEs produced by ionizing radiation drive the chemistry in irradiated ices in space, irrespective of the radiation type.
Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions
NASA Astrophysics Data System (ADS)
Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.
2012-09-01
As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azzam, Edouard I
2013-01-16
The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimatemore » human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.« less
The use of nanomaterials for mass spectrometry can be uplifting for analyte detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Lipson, R. H.
2014-03-31
Surface-Assisted Laser Desorption Ionization (SALDI) involves desorbing and ionizing analyte molecules from a nanoporous substrate by laser irradiation for detection in a mass spectrometer. In this work experiments were designed to better understand the mechanisms governing desorption and ionization for Desorption Ionization On Silicon (DIOS), a variant of SALDI which uses porous silicon (pSi) as a substrate. Experiments are also reported for other nanoporous semiconducting materials (WO{sub 3}, TiO{sub 2}) which exhibit very similar behaviors; specifically, that both protonated analyte ions and analyte radical cations can be generated with relative intensities that depend on the position of the incident lasermore » focus relative to substrate surface. While thermal desorption appears to be important, preliminary evidence suggests that the ionization mechanism leading to protonated analytes involves in part electrons and holes formed when photoexciting the substrate above its electronic band gap, and the presence of defect states within the band gap. Radical cation formation appears to be driven in part by electron transfer due to the large electron affinity of each substrate used in this work.« less
Identification of irradiated refrigerated pork with the DNA comet assay
NASA Astrophysics Data System (ADS)
Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.; Villavicencio, A. L. C. H.
2004-09-01
Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells (``Comet Assay'') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a 60Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sa~o Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6°C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA ``Comet Assay''. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.
Optimizing the ionization and energy absorption of laser-irradiated clusters
NASA Astrophysics Data System (ADS)
Kundu, M.; Bauer, D.
2008-03-01
It is known that rare-gas or metal clusters absorb incident laser energy very efficiently. However, due to the intricate dependencies on all the laser and cluster parameters, it is difficult to predict under which circumstances ionization and energy absorption are optimal. With the help of three-dimensional particle-in-cell simulations of xenon clusters (up to 17256 atoms), it is shown that for a given laser pulse energy and cluster, an optimum wavelength exists that corresponds to the approximate wavelength of the transient, linear Mie-resonance of the ionizing cluster at an early stage of negligible expansion. In a single ultrashort laser pulse, the linear resonance at this optimum wavelength yields much higher absorption efficiency than in the conventional, dual-pulse pump-probe setup of linear resonance during cluster expansion.
Rare-gas-cluster explosions under irradiation by intense short XUV pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, K.; Murphy, B.; Kandadai, N.
High-intensity, extreme-ultraviolet (XUV) femtosecond interactions with large rare-gas clusters of xenon and argon have been studied at a wavelength of 38 nm. Pulses of XUV radiation with nJ energy are produced by high-order harmonic conversion from a 35-fs, near-infrared, terawatt laser. Mass resolved ion spectra show charge states up to Xe{sup 8+} and Ar{sup 4+}. Kinetic-energy measurements of ions and electrons indicate that a nanoplasma is formed and a hydrodynamic cluster explosion ensues after heating by the short wavelength pulse. It appears that the observed charge states and electron temperatures are consistent with sequential, single-photon ionization and collisional ionization ofmore » ions that have had their ionization potential depressed by plasma continuum lowering in the cluster nanoplasma.« less
Enhanced radiation resistant fiber optics
Lyons, Peter B.; Looney, Larry D.
1993-01-01
A process for producing an optical fiber having enhanced radiation resitance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation.
Enhanced radiation resistant fiber optics
Lyons, P.B.; Looney, L.D.
1993-11-30
A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.
2014-03-05
increased granulocyte colony stim- ulating factor (G-CSF) in mouse blood for more than 7 days [7]. The increase was initially believed to be a self ...hematopoietic stem cell mobilization from the bone marrow into the bloodstream. It is involved in recovery from infection [11, 12] and wound healing [13]. Peg-G...mapping data; corrections for the 60Co decay and the small differences in the mass energy absorption coefficients for water and soft tissue were
Taĭts, M Iu; Dudina, T V; Kandybo, T S; Elkina, A I
1990-01-01
In experiments with mature Wistar male rats it was shown that X-radiation of 12.9 mCi/kg and the combined effect of X-rays and 131I of 6.5 mCi/kg changed the rate of mediator processes in the structures responsible for the hypothalamic function regulation. At remote times (6 months) following irradiation differences were observed in the discoordination of mediator interrelations associated with the peculiarities of the indirect effect of external and combined irradiation implemented via endocrine mechanism system.
THE VASCULAR PATHOPHYSIOLOGY OF AN IRRADIATED GRAFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, P.; Casarett, G.; Grise, J.W.
1960-06-01
The difference in the vascularization of grafted and normal skin forms a reasonable basis for explaining the differences in the radiation reactions of these structures. The radioisotope half time of disappearance following subcutaneous injection is an index of vascular integrity of the graft and serves as a parameter to predict its radioresponsiveness. In developing a concept of the spectrum of reactions of grafted skin to ionizing irradiation, knowledge of the radiopathologic changes in capillaries must be utilized with knowledge of the histophysiology of the vascularity of an autograft. (auth)
NASA Astrophysics Data System (ADS)
Krainov, V. P.; Roshchupkin, A. S.
2001-12-01
Dynamics of the inner and outer above-barrier ionization and of the Coulomb explosion are calculated for large hydrogen iodide clusters irradiated by superintense ultrashort laser pulses. We have found that the Coulomb forces predominate in the expansion of these clusters in comparison with the hydrodynamic forces. The energy distribution of the iodine multiple atomic ions in laser focal volume is derived. Results of our calculations are in a good agreement with the recent experimental data of Tisch et al. [Phys. Rev. A 60, 3076 (1999)].
Santini, Maria Teresa; Romano, Rocco; Rainaldi, Gabriella; Ferrante, Antonella; Motta, Andrea; Indovina, Pietro Luigi
2006-02-01
The metabolic changes that occur in MG-63 osteosarcoma three-dimensional tumor spheroids exposed to 2 Gy of ionizing radiation, a dose that is comparable to radiation therapy, were studied using high-resolution proton nuclear magnetic resonance ((1)H-NMR) spectroscopy. Specifically, the (1)H-NMR spectra of control and exposed MG-63 spheroids were compared. Small spheroids (about 50-80 microm in diameter) with no hypoxic center were used. The spectra of whole MG-63 spheroids as well as the perchloric acid extracts of these systems were evaluated. Cell damage was also examined by lactate dehydrogenase release and changes in cell growth. No cell damage was observed, but numerous metabolic changes took place in spheroids after exposure to ionizing radiation. In particular, significant increases in both CH(2) and CH(3) mobile lipids, considered by many authors as markers of apoptosis and also present in MG-63 spheroids undergoing overt apoptosis, were observed in spheroids irradiated with 2 Gy. However, the chromatin dye Hoechst 33258 and DNA fragmentation assays showed no overt apoptosis up to 7 days after irradiation with this low dose. Thus it is evident that increases in mobile lipids do not always indicate actual cell death. A detailed analysis of the other metabolic changes observed appears to suggest that the cell death program was initiated but not completed. In fact, the completely different behavior of two important cellular defense mechanisms, reduced glutathione and taurine, in spheroids irradiated with 2 Gy and in those undergoing overt apoptosis seems to indicate that these systems are protecting spheroids from actual cell death. In addition, these data also suggest that (1)H-NMR can be used to examine the effects of low doses of ionizing radiation in spheroids, a cell model of great complexity that closely resembles tumors in vivo. The importance of this possibility in relation to reaching the ultimate goal of a better evaluation of the outcome of radiotherapy protocols should not be ignored.
NASA Astrophysics Data System (ADS)
Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.
2011-08-01
The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloschak, Gayle E; Grdina, David; Li, Jian-Jian
Low dose ionizing radiation effects are difficult to study in human population because of the numerous confounding factors such as genetic and lifestyle differences. Research in mammalian model systems and in vitro is generally used in order to overcome this difficulty. In this program project three projects have joined together to investigate effects of low doses of ionizing radiation. These are doses at and below 10 cGy of low linear energy transfer ionizing radiation such as X-ray and gamma rays. This project was focused on cellular signaling associated with nuclear factor kappa B (NFkB) and mitochondria - subcellular organelles criticalmore » for cell aging and aging-like changes induced by ionizing radiation. In addition to cells in culture this project utilized animal tissues accumulated in a radiation biology tissue archive housed at Northwestern University (http://janus.northwestern.edu/janus2/index.php). Major trust of Project 1 was to gather all of the DoE sponsored irradiated animal (mouse, rat and dog) data and tissues under one roof and investigate mitochondrial DNA changes and micro RNA changes in these samples. Through comparison of different samples we were trying to delineate mitochondrial DNA quantity alterations and micro RNA expression differences associated with different doses and dose rates of radiation. Historic animal irradiation experiments sponsored by DoE were done in several national laboratories and universities between 1950’s and 1990’s; while these experiments were closed data and tissues were released to Project 1. Project 2 used cells in culture to investigate effects that low doses or radiation have on NFκB and its target genes manganese superoxide dismutase (MnSOD) and genes involved in cell cycle: Cyclins (B1 and D1) and cyclin dependent kinases (CDKs). Project 3 used cells in culture such as “normal” human cells (breast epithelial cell line MCF10A cells and skin keratinocyte cells HK18) and mouse embryo fibroblast (mef) cells to focus on role of NFkB protein and several other proteins such as survivin (BIRC5) in radiation dependent regulation of tumor necrosis factor alpha (TNFα) and its downstream signaling.« less
Marrow transplantation in the treatment of a murine heritable hemolytic anemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, J.E.; McFarland-Starr, E.C.
1989-05-15
Mice with hemolytic anemia, sphha/sphha, have extremely fragile RBCs with a lifespan of approximately one day. Neither splenectomy nor simple transplantation of normal marrow after lethal irradiation cures the anemia but instead causes rapid deterioration and death of the mutant unless additional prophylactic procedures are used. In this report, we show that normal marrow transplantation preceded by sublethal irradiation increases but does not normalize RBC count. The mutant RBCs but not all the WBCs are replaced by donor cells. Splenectomy of the improved recipient causes a dramatic decrease in RBC count, indicating that the mutant spleen is a site ofmore » donor-origin erythropoiesis as well as of RBC destruction. Injections of iron dextran did not improve RBC counts. Transplantation of primary recipient marrow cells into a secondary host with a heritable stem cell deficiency (W/Wv) corrects the defect caused by residence of the normal cells in the sphha/sphha host. The original +/+ donor cells replace the RBCs of the secondary host, and the RBC count is normalized. Results indicate that the environment in the sphha/sphha host is detrimental to normal (as well as mutant) erythroid cells but the restriction is not transmitted.« less
Fowler, J F; Sheldon, P W; Begg, A C; Hill, S A; Smith, A M
1975-05-01
First-generation transplants of spontaneous mouse mammary carcinomas have been used extensively for radiobiological investigations of fractionated irradiation schedules, r.b.e. of fast neutrons and effectiveness of radiosensitizers, as reported elsewhere. The present work investigates the growth characteristics of the tumours; the criteria for the choice of end-points used in the definition of 'local control' of irradiated tumours; the reason for a decrease of 30 per cent in X-ray dose required to control tumours in females as compared with male mice; the proportion of hypoxic cells and its variation with time (reoxygenation) after a single dose of 1500 rad of X-rays; and the repair capacity of tumour cells within 24 hours after a substantial first dose of X-rays. Evidence is presented that the male-female difference was due to a higher proportion of hypoxic cells in tumours in male than in female mice. The repair of sub-lethal injury in tumour cells made hypoxic was slightly less than in skin made hypoxic but not significantly so. In the two-dose experiments on clamped tumours, no evidence of induced synchrony was found.
An ear punch model for studying the effect of radiation on wound healing.
Deoliveira, Divino; Jiao, Yiqun; Ross, Joel R; Corbin, Kayla; Xiao, Qizhen; Toncheva, Greta; Anderson-Evans, Colin; Yoshizumi, Terry T; Chen, Benny J; Chao, Nelson J
2011-08-01
Radiation and wound combined injury represents a major clinical challenge because of the synergistic interactions that lead to higher morbidity and mortality than either insult would produce singly. The purpose of this study was to develop a mouse ear punch model to study the physiological mechanisms underlying radiation effects on healing wounds. Surgical wounds were induced by a 2 mm surgical punch in the ear pinnae of MRL/MpJ mice. Photographs of the wounds were taken and the sizes of the ear punch wounds were quantified by image analysis. Local radiation to the ear was delivered by orthovoltage X-ray irradiator using a specially constructed jig that shields the other parts of body. Using this model, we demonstrated that local radiation to the wound area significantly delayed the healing of ear punch wounds in a dose-dependent fashion. The addition of sublethal whole body irradiation (7 Gy) further delayed the healing of ear punch wounds. These results were replicated in C57BL/6 mice; however, wound healing in MRL/MpJ mice was accelerated. These data indicate that the mouse ear punch model is a valuable model to study radiation and wound combined injury.
Shibuya, K; Akahori, H; Takahashi, K; Tahara, E; Kato, T; Miyazaki, H
1998-01-01
Previous studies have shown that daily multiple administration of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) markedly stimulates thrombopoiesis and effectively ameliorates thrombocytopenia, and in most cases anemia and neutropenia, in myelosuppressed animals. In this study, we evaluated the effects of a single intravenous injection of PEG-rHuMGDF on hematopoietic recovery after sublethal total-body irradiation in mice. A single injection of PEG-rHuMGDF (1 to 640 microg/kg) 1 hour after irradiation accelerated platelet, red blood cell (RBC), and white blood cell (WBC) recovery in a dose-dependent fashion. In the bone marrow of vehicle-treated mice, megakaryocytic, erythroid, and myeloid progenitors, as well as day 12 colony-forming unit-spleen (CFU-S), were dramatically decreased much earlier than the nadirs of peripheral blood cells, whereas megakaryocytes were modestly decreased. Treatment with PEG-rHuMGDF (80 microg/kg, an optimal dose) 1 hour after irradiation resulted in more rapid recovery of these four hematopoietic progenitors and also significantly facilitated megakaryocyte recovery. In addition, the same PEG-rHuMGDF administration schedule expanded bone marrow cells capable of rescuing lethally irradiated recipient mice. As the interval between irradiation and PEG-rHuMGDF treatment was longer, its effects on hematopoietic recovery were attenuated. In contrast to the effects of PEG-rHuMGDF, a single injection of recombinant human granulocyte colony-stimulating factor (rhG-CSF) 1 hour after irradiation exclusively accelerated WBC recovery, but only to a similar extent as PEG-rHuMGDF (80 microg/kg) treatment even when rhG-CSF doses were escalated to 1,000 microg/kg. This appeared related to different pharmacokinetics of these two factors after a single injection in irradiated mice. The concentrations of PEG-rHuMGDF after injection persisted in the plasma for a longer time compared with rhG-CSF. These results indicate that a single injection of PEG-rHuMGDF at an early time after irradiation is able to effectively improve thrombocytopenia, anemia, and leukopenia with concomitant accelerated recovery of both primitive and committed hematopoietic progenitors in irradiated mice. Our data also show that compared with the rhG-CSF shown to exert multilineage effects on hematopoiesis, PEG-rHuMGDF has more wide-ranging effects on peripheral blood cell recovery.
Detecting ionizing radiation with optical fibers down to biomedical doses
NASA Astrophysics Data System (ADS)
Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; De Natale, P.; Gagliardi, G.
2013-10-01
We report on a passive ionizing radiation sensor based on a fiber-optic resonant cavity interrogated by a high resolution interferometric technique. After irradiation in clinical linear accelerators, we observe significant variations of the fiber thermo-optic coefficient. Exploiting this effect, we demonstrate an ultimate detection limit of 160 mGy with an interaction volume of only 6 × 10-4 mm3. Thanks to its reliability, compactness, and sensitivity at biomedical dose levels, our system lends itself to real applications in radiation therapy procedures as well as in radiation monitoring and protection in medicine, aerospace, and nuclear power plants.
Radiation Interaction with Therapeutic Drugs and Cell Membranes
NASA Astrophysics Data System (ADS)
Martin, Diana I.; Manaila, Elena N.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Matei, Constantin I.; Margaritescu, Irina D.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.
2007-04-01
This transient permeabilized state of the cell membrane, named the ``cell electroporation'' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.
Irradiation Design for an Experimental Murine Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.
2010-12-07
In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.
The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes
NASA Astrophysics Data System (ADS)
Hawkins Evans, D.; Abrahamse, H.
2009-02-01
Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and chronic renal failure.
NASA Astrophysics Data System (ADS)
Armitage, Mark
Ionizing radiation can have several different effects on cells, some are almost instantaneous such as the generation of DNA damage, other cellular responses take a matter of minutes or hours - DNA repair protein induction/activation, and others may take months or even years to be manifested - carcinogenesis. Human epithelial cell lines derived from both normal, non-neoplastic tissues and from a malignant source were cultured in order to examine several effects of ionizing radiation on such cell types. Cells not from a malignant source were previously immortalized by viral infection or by transfection with viral sequences. Simian virus 40 immortalised uroepithelial cells (SV-HUC) were found to be approximately a factor of two fold more radioresistant than cells of malignant origin (T24) in terms of unrepaired clastogenic damage i.e. assessment of micronuclei levels following irradiation. SV-HUC lines unlike T24 cells are non-tumourigenic when inoculated into nude athymic mice. SV-HUC lines proved very resistant to full oncogenic transformation using radiation and chemical carcinogens. However, morphological alterations and decreased anchorage dependant growth was observed in post carcinogen treated cells after appropriate cell culture conditions were utilized. The progression from this phenotype to a fully tumourigenic one was not recorded in this study. The ability of ionizing radiation to induce increased levels of the nuclear phosphoprotein p53 was also assessed using several different cell lines. SV- HUC and T24 cell lines failed to exhibit any increased p53 stabilization following irradiation. One cell line, a human papilloma virus transformed line (HPV) did show an approximate two fold increase of the wild type p53 protein after treatment with radiation. Only the cell line HPV showed any cell cycle delay, resulting in accumulation of cells in the G2/M compartment in post irradiation cell cycle analysis. The status of p53 was also assessed i.e. wild type or mutant conformation in all the above cells lines and two other control lines HOS (a human osteosarcoma cell line) and H Tori-3 (SV40 immortalised thyroid epithelial cells).